paperID
stringlengths
36
36
pwc_id
stringlengths
8
47
arxiv_id
stringlengths
6
16
nips_id
float64
url_abs
stringlengths
18
329
url_pdf
stringlengths
18
742
title
stringlengths
8
325
abstract
stringlengths
1
7.27k
authors
stringlengths
2
7.06k
published
stringlengths
10
10
conference
stringlengths
12
47
conference_url_abs
stringlengths
16
198
conference_url_pdf
stringlengths
27
199
proceeding
stringlengths
6
47
taskID
stringlengths
7
1.44k
areaID
stringclasses
688 values
embedding
stringlengths
9.26k
12.5k
umap_embedding
stringlengths
29
44
43f85bf5-b0e5-40fc-b99a-27f6d614bf55
3d-petct-tumor-lesion-segmentation-via-gcn
2302.12571
null
https://arxiv.org/abs/2302.12571v1
https://arxiv.org/pdf/2302.12571v1.pdf
3D PETCT Tumor Lesion Segmentation via GCN Refinement
Whole-body PET/CT scan is an important tool for diagnosing various malignancies (e.g., malignant melanoma, lymphoma, or lung cancer), and accurate segmentation of tumors is a key part for subsequent treatment. In recent years, CNN-based segmentation methods have been extensively investigated. However, these methods often give inaccurate segmentation results, such as over-segmentation and under-segmentation. Therefore, to address such issues, we propose a post-processing method based on a graph convolutional neural network (GCN) to refine inaccurate segmentation parts and improve the overall segmentation accuracy. Firstly, nnUNet is used as an initial segmentation framework, and the uncertainty in the segmentation results is analyzed. Certainty and uncertainty nodes establish the nodes of a graph neural network. Each node and its 6 neighbors form an edge, and 32 nodes are randomly selected for uncertain nodes to form edges. The highly uncertain nodes are taken as the subsequent refinement targets. Secondly, the nnUNet result of the certainty nodes is used as label to form a semi-supervised graph network problem, and the uncertainty part is optimized through training the GCN network to improve the segmentation performance. This describes our proposed nnUNet-GCN segmentation framework. We perform tumor segmentation experiments on the PET/CT dataset in the MICCIA2022 autoPET challenge. Among them, 30 cases are randomly selected for testing, and the experimental results show that the false positive rate is effectively reduced with nnUNet-GCN refinement. In quantitative analysis, there is an improvement of 2.12 % on the average Dice score, 6.34 on 95 % Hausdorff Distance (HD95), and 1.72 on average symmetric surface distance (ASSD). The quantitative and qualitative evaluation results show that GCN post-processing methods can effectively improve tumor segmentation performance.
['Yueyang Teng', 'YuDong Yao', 'Qingqing Fang', 'Hengzhi Xue']
2023-02-24
null
null
null
null
['tumor-segmentation']
['computer-vision']
[ 4.49578501e-02 3.17971230e-01 -2.99366087e-01 -3.78986239e-01 -6.91765666e-01 -6.42675385e-02 1.71125144e-01 2.89436072e-01 -5.70623219e-01 6.87998593e-01 -2.10152835e-01 -3.31062227e-01 -6.92904145e-02 -1.03310156e+00 -3.80042464e-01 -1.00226593e+00 6.65108114e-02 6.65830493e-01 5.87144792e-01 1.56113744e-01 -6.69178739e-02 4.52830642e-01 -7.19244421e-01 -3.95903587e-02 1.22027981e+00 1.23922217e+00 1.06502384e-01 2.12266684e-01 -2.78411627e-01 2.73713082e-01 -4.57836688e-01 -2.75720865e-01 1.86824296e-02 -3.47624630e-01 -8.16398919e-01 3.59454975e-02 -3.28323752e-01 -3.14136177e-01 -1.89432442e-01 1.48380888e+00 4.36146080e-01 5.89167736e-02 6.46516860e-01 -1.14491332e+00 -6.31558001e-02 7.14499056e-01 -7.71881998e-01 1.08972535e-01 -4.46166754e-01 1.58834249e-01 5.67103267e-01 -5.92324972e-01 3.91160101e-01 7.84324229e-01 7.24598229e-01 4.08845365e-01 -7.54348636e-01 -7.81747699e-01 -1.39099285e-01 -5.27641177e-03 -1.66632235e+00 1.35240376e-01 5.11394262e-01 -1.91836163e-01 3.84485990e-01 3.02358299e-01 9.28574741e-01 5.38010538e-01 6.72599912e-01 7.87805378e-01 6.51487827e-01 4.08404246e-02 2.08239704e-01 -9.46519747e-02 6.24983832e-02 7.07826614e-01 4.00363386e-01 -3.12083419e-02 3.97416770e-01 2.64954597e-01 1.04128993e+00 1.19096473e-01 -3.22355628e-01 -4.24017608e-02 -9.53043520e-01 8.82051408e-01 1.28493476e+00 4.17895645e-01 -3.59724611e-01 9.52067375e-02 4.53859299e-01 -3.47110093e-01 6.50735617e-01 7.14823306e-02 4.35281247e-02 1.63892657e-01 -1.04187584e+00 -1.76488832e-01 4.45014477e-01 6.17063284e-01 4.14060414e-01 -3.47384870e-01 -4.55411822e-01 7.63933480e-01 5.16200840e-01 1.96394339e-01 7.01357067e-01 -6.03789568e-01 1.83363706e-01 8.73943210e-01 -3.00941199e-01 -1.04892921e+00 -7.57555723e-01 -6.79330885e-01 -1.39558053e+00 -3.78313772e-02 4.62996453e-01 -8.62784907e-02 -1.35993063e+00 1.37555170e+00 5.20329952e-01 1.69295728e-01 -4.03121561e-01 1.12531853e+00 1.04273355e+00 4.38191354e-01 1.93670288e-01 -5.61711609e-01 1.25324118e+00 -1.06926823e+00 -8.08418572e-01 1.18680678e-01 7.70544827e-01 -4.37736809e-01 6.63379073e-01 1.79783463e-01 -9.33344126e-01 -2.77178407e-01 -7.24288166e-01 3.16558212e-01 -1.29433379e-01 3.31424065e-02 6.38142765e-01 5.37303925e-01 -1.00012827e+00 6.45553648e-01 -1.14764833e+00 -1.57670960e-01 8.81221533e-01 6.01962626e-01 -6.98633343e-02 -1.71987146e-01 -1.25234604e+00 5.91667593e-01 8.39473367e-01 4.06577975e-01 -7.32738376e-01 -6.57465458e-01 -7.46948004e-01 -1.19637623e-01 3.99264812e-01 -5.51046848e-01 1.14085603e+00 -7.60773480e-01 -1.34855354e+00 6.85096323e-01 1.51589155e-01 -3.28404158e-01 8.21415901e-01 6.45831227e-01 -3.89425457e-01 2.84851581e-01 2.40139887e-01 9.05062139e-01 3.56722891e-01 -9.75876868e-01 -6.64089620e-01 -4.54036444e-01 -3.75694752e-01 5.07032275e-01 -4.89306860e-02 -2.90524930e-01 -8.70864928e-01 -5.93217909e-01 6.42710567e-01 -8.22250187e-01 -5.95393956e-01 4.51324880e-02 -7.73830593e-01 -1.82741374e-01 7.98365057e-01 -7.31085837e-01 1.27998269e+00 -2.04042625e+00 -7.20213130e-02 8.04862678e-01 5.12576342e-01 1.95208937e-01 2.73614496e-01 -6.41412318e-01 -2.81927753e-02 4.76088673e-01 -6.93374693e-01 -1.41296804e-01 -4.26912904e-01 2.60215849e-01 5.77348650e-01 4.72621083e-01 -3.07419896e-02 1.19315493e+00 -8.85953903e-01 -9.50235665e-01 2.97000647e-01 3.86465251e-01 -1.56592876e-01 6.78512752e-02 -1.41529828e-01 5.90029418e-01 -7.37262011e-01 6.92600369e-01 8.06667149e-01 -3.77752692e-01 -8.44301134e-02 -2.84707934e-01 1.34349510e-01 -1.90990016e-01 -8.35244715e-01 1.35468805e+00 -2.88602877e-02 2.57651061e-01 8.08982849e-02 -7.55094528e-01 8.02727401e-01 1.68633372e-01 8.55177402e-01 -6.91715062e-01 6.81844413e-01 3.12556267e-01 3.20501745e-01 -3.60938311e-01 8.15855488e-02 -2.86199361e-01 1.68733478e-01 1.69499874e-01 -4.35615152e-01 -5.77493012e-01 9.59516764e-02 1.79825246e-01 9.27287817e-01 -3.92913014e-01 9.88795087e-02 -2.70580858e-01 5.71138442e-01 1.10954076e-01 7.70922780e-01 2.24432215e-01 -4.78599459e-01 9.75734353e-01 7.23461032e-01 -2.55154073e-01 -7.06593454e-01 -7.78366566e-01 -4.10618037e-01 2.13376120e-01 4.38197672e-01 -6.58832639e-02 -1.06499171e+00 -1.02339947e+00 -2.11502060e-01 7.17764437e-01 -7.07223177e-01 -2.91942298e-01 -3.51616144e-01 -1.09196091e+00 4.59945440e-01 6.86403811e-01 9.24112856e-01 -1.23307347e+00 -2.20959574e-01 3.26756209e-01 -2.54478961e-01 -8.81703973e-01 -4.21814799e-01 1.95370596e-02 -1.08122408e+00 -1.16023886e+00 -9.59487200e-01 -5.08067250e-01 1.01704812e+00 -3.79591323e-02 7.42571175e-01 4.60533321e-01 -1.79822564e-01 -2.25227416e-01 -8.61383155e-02 -2.69672096e-01 -4.07997727e-01 5.33814095e-02 -3.38256836e-01 -1.82393402e-01 1.51451960e-01 -1.88319072e-01 -7.24042654e-01 6.18349075e-01 -1.00470841e+00 1.97311863e-01 6.46234691e-01 8.71534824e-01 1.29203129e+00 5.43132007e-01 2.34182000e-01 -9.16684508e-01 5.11604130e-01 -3.50975901e-01 -5.95129013e-01 1.17584489e-01 -6.07232928e-01 -4.11378026e-01 5.43499410e-01 -2.31581017e-01 -7.96503305e-01 3.20196748e-02 -3.75993997e-01 -3.95521253e-01 -3.66961397e-03 8.02156270e-01 -1.78049952e-01 -2.97088176e-01 3.58927101e-01 -1.43272445e-01 2.90392935e-01 1.70297578e-01 -1.69956744e-01 5.55994034e-01 2.27092981e-01 -9.08373818e-02 3.93623292e-01 3.77789199e-01 2.21867889e-01 -3.87035161e-01 -6.69923425e-01 -2.43692383e-01 -3.79952252e-01 -3.22509557e-01 1.14815199e+00 -5.23427367e-01 -5.35697639e-01 6.77416265e-01 -7.80574262e-01 -4.76018429e-01 -3.30544114e-01 6.82992101e-01 -2.16332287e-01 3.35862398e-01 -7.03620791e-01 -3.03473681e-01 -7.04649687e-01 -1.69099975e+00 9.23583090e-01 8.43571901e-01 -6.77960366e-02 -1.11749208e+00 -3.28232527e-01 2.30580598e-01 3.28508496e-01 4.31161255e-01 7.88800716e-01 -7.38994241e-01 -3.66349310e-01 -2.91148335e-01 -6.06786847e-01 3.08234900e-01 1.91806197e-01 2.87974954e-01 -5.16962767e-01 -2.63042361e-01 -6.23925328e-02 -4.28043827e-02 7.94060290e-01 1.00389850e+00 1.75524485e+00 1.06939599e-01 -7.09143102e-01 8.90211582e-01 1.28052437e+00 3.82245749e-01 6.71647549e-01 1.55613750e-01 9.49096084e-01 2.72225231e-01 6.51229441e-01 1.65225074e-01 1.82564586e-01 2.39454195e-01 8.07399929e-01 -3.20308656e-01 -1.31502420e-01 1.34619130e-02 -3.55993301e-01 7.37865865e-01 -1.18603399e-02 -4.32334989e-01 -1.10525250e+00 4.05259430e-01 -1.70942688e+00 -3.31740201e-01 -4.66347516e-01 1.96982622e+00 7.65706480e-01 3.25879395e-01 -2.37530902e-01 1.26818232e-02 1.15421844e+00 -9.38058197e-02 -7.53210902e-01 1.81322936e-02 2.52627075e-01 2.58845389e-01 5.01051664e-01 3.61904144e-01 -1.06483519e+00 7.64251113e-01 5.00736523e+00 1.24846542e+00 -1.14080167e+00 -2.99626011e-02 1.32029319e+00 3.13626647e-01 -2.30489045e-01 -2.31982902e-01 -5.15830398e-01 6.04968011e-01 3.96842241e-01 -9.79645737e-03 8.91608447e-02 6.25384808e-01 3.42676699e-01 -4.77886736e-01 -6.99728310e-01 8.90507102e-01 -2.00745955e-01 -1.14956045e+00 -1.10590104e-02 2.07700014e-01 8.03396523e-01 -2.56094709e-02 -8.12141076e-02 1.69994846e-01 1.73352107e-01 -1.30385375e+00 1.45652041e-01 5.17834067e-01 9.08704877e-01 -1.04706168e+00 1.40777111e+00 4.68812287e-01 -1.14649963e+00 3.70964944e-01 -4.88307446e-01 6.32112205e-01 2.12671593e-01 1.03121126e+00 -1.00180888e+00 8.18563581e-01 4.83089030e-01 6.21700168e-01 -5.65838575e-01 1.38295031e+00 -2.68894613e-01 6.00533068e-01 -7.09088922e-01 -1.68215826e-01 3.85517627e-01 -3.32073092e-01 4.38849598e-01 7.89450169e-01 3.76114756e-01 4.51906711e-01 2.19038665e-01 9.66804862e-01 -3.16392750e-01 9.50217620e-02 1.61405832e-01 1.26524180e-01 2.37977073e-01 1.57903683e+00 -1.48846018e+00 -3.90632272e-01 1.80994645e-01 6.57424808e-01 4.36086729e-02 1.30675882e-01 -1.16871893e+00 -3.28684419e-01 -5.05489185e-02 -3.42896581e-03 -2.03651235e-01 3.22596461e-01 -5.74541569e-01 -7.92497754e-01 -2.80085146e-01 -5.43901801e-01 6.60460651e-01 -7.90066242e-01 -1.17474604e+00 6.31418467e-01 -1.31117418e-01 -9.63702202e-01 1.95418000e-01 -3.39746803e-01 -9.72491801e-01 8.53492618e-01 -1.13582420e+00 -7.26384819e-01 -8.06406438e-01 3.66826564e-01 3.74684840e-01 2.12546721e-01 4.79463160e-01 1.38370797e-01 -9.13579881e-01 6.25916600e-01 -2.42661715e-01 3.86541039e-01 2.88960665e-01 -1.13607442e+00 -6.49272352e-02 7.45579839e-01 -5.10617018e-01 1.63691461e-01 1.05613098e-01 -1.09268618e+00 -6.40896559e-01 -1.55849767e+00 3.43128383e-01 1.17099576e-01 4.27042335e-01 1.65184721e-01 -1.04441559e+00 3.57808083e-01 -1.92353398e-01 4.67582554e-01 3.86721909e-01 -5.75694740e-01 5.76808751e-01 5.21309040e-02 -1.57738256e+00 6.21858537e-01 6.18224084e-01 3.93081158e-02 -1.50640905e-01 4.62055087e-01 8.82320881e-01 -9.41537440e-01 -1.13049579e+00 9.14520502e-01 3.16760391e-01 -8.83691788e-01 7.20549285e-01 -3.31899454e-03 3.09644580e-01 -4.34917569e-01 3.23361129e-01 -1.33772850e+00 -2.71841168e-01 2.62754317e-02 3.12859625e-01 9.63047028e-01 5.12119055e-01 -6.07756317e-01 1.02710748e+00 8.60436618e-01 -5.32612503e-01 -1.29054952e+00 -9.72338021e-01 -4.60115731e-01 1.38772605e-03 -4.76863712e-01 6.95847094e-01 8.58310044e-01 -4.04356331e-01 -1.23224579e-01 4.85632867e-01 4.18740474e-02 5.76892436e-01 -3.49847525e-01 2.20523015e-01 -9.92014766e-01 1.80926993e-01 -8.65232229e-01 -4.00051862e-01 -7.01528847e-01 -1.81649029e-01 -1.02339578e+00 1.43416718e-01 -1.90573657e+00 1.80950239e-01 -6.59948766e-01 -4.09204662e-01 4.38872457e-01 -3.58969301e-01 1.71204656e-01 -2.71872401e-01 1.15413800e-01 -4.85467881e-01 6.01793110e-01 1.83202589e+00 -3.83850306e-01 -3.04613590e-01 4.12918597e-01 -3.64635825e-01 8.72431397e-01 9.38615263e-01 -4.17448908e-01 -3.31351697e-01 -9.53902677e-02 -1.27018020e-01 2.17355043e-01 2.38374531e-01 -9.56008613e-01 2.81156689e-01 -1.28850371e-01 7.22464025e-01 -8.85865271e-01 -8.14622343e-02 -9.33272958e-01 1.88705906e-01 6.84624195e-01 -3.59048471e-02 -3.80272627e-01 2.17768446e-01 3.85152668e-01 -1.62437424e-01 -2.38315433e-01 9.99665201e-01 -1.38150185e-01 -2.65329689e-01 9.81896520e-01 -8.91990587e-02 2.60674693e-02 1.29649854e+00 -3.55363131e-01 -9.59977433e-02 -4.55346368e-02 -8.23264778e-01 7.01046288e-01 2.26447314e-01 -1.77612782e-01 7.61465311e-01 -1.38885510e+00 -5.21417201e-01 1.23618208e-01 -5.17984331e-02 8.14161241e-01 4.13201600e-01 1.28420508e+00 -8.42098415e-01 1.52521329e-02 -9.23687592e-03 -9.44537103e-01 -9.02978122e-01 1.98884681e-01 8.19291174e-01 -6.41128421e-01 -5.11501491e-01 1.14781237e+00 3.05531412e-01 -2.70939082e-01 1.44597322e-01 -6.79598510e-01 -4.25821006e-01 -1.95549026e-01 1.70748234e-01 3.36189300e-01 2.82318115e-01 -5.11219442e-01 -3.78748834e-01 3.79670322e-01 -1.95152402e-01 2.12374385e-02 9.80478704e-01 7.24238902e-02 -4.60602969e-01 -3.05222590e-02 1.11353350e+00 -4.70260501e-01 -1.12848580e+00 -1.00831762e-01 -3.25365931e-01 -7.88486898e-02 4.13983762e-01 -8.18636298e-01 -1.58638191e+00 8.46180856e-01 6.67712212e-01 2.09648505e-01 1.20397651e+00 -6.39856979e-02 1.02999699e+00 -1.47045121e-01 8.85053305e-04 -9.99524832e-01 -1.84580728e-01 3.57720941e-01 6.79407954e-01 -1.19409025e+00 4.91643995e-02 -6.78794980e-01 -5.85094810e-01 1.16647565e+00 9.74527895e-01 -6.11850470e-02 6.59994721e-01 1.91153675e-01 -8.90671089e-02 -3.66497666e-01 -7.89320935e-03 -1.49819274e-02 2.72754490e-01 2.83118427e-01 1.04018420e-01 4.59802061e-01 -4.41393942e-01 9.45873439e-01 -1.43438995e-01 -7.85008371e-02 2.16681376e-01 5.34317732e-01 -4.34191883e-01 -6.34277284e-01 -2.55053163e-01 8.21495116e-01 -3.83739322e-01 9.10599716e-03 -2.34389380e-01 1.03604615e+00 1.84535444e-01 6.06071115e-01 1.31917819e-01 -4.35786813e-01 1.33418590e-01 -3.43472958e-01 1.79267794e-01 -5.55892467e-01 -6.01960421e-01 3.41758221e-01 -2.28795975e-01 -4.41626072e-01 -1.71632752e-01 -3.24926645e-01 -1.90883410e+00 -1.12005673e-01 -6.91726744e-01 3.39907140e-01 6.33650780e-01 1.04159737e+00 -2.10227087e-01 9.38538194e-01 6.29091442e-01 -4.30289537e-01 -2.42075831e-01 -8.76540244e-01 -5.72112679e-01 1.45350412e-01 -1.80545449e-01 -6.11260295e-01 -2.84212202e-01 -5.08210063e-01]
[14.588037490844727, -2.4886281490325928]
b775f4c2-af67-4bf6-8a9f-ee66858e052c
consistent-classification-of-translation-1
null
null
https://aclanthology.org/W17-0807
https://aclanthology.org/W17-0807.pdf
Consistent Classification of Translation Revisions: A Case Study of English-Japanese Student Translations
Consistency is a crucial requirement in text annotation. It is especially important in educational applications, as lack of consistency directly affects learners{'} motivation and learning performance. This paper presents a quality assessment scheme for English-to-Japanese translations produced by learner translators at university. We constructed a revision typology and a decision tree manually through an application of the OntoNotes method, i.e., an iteration of assessing learners{'} translations and hypothesizing the conditions for consistent decision making, as well as re-organizing the typology. Intrinsic evaluation of the created scheme confirmed its potential contribution to the consistent classification of identified erroneous text spans, achieving visibly higher Cohen{'}s kappa values, up to 0.831, than previous work. This paper also describes an application of our scheme to an English-to-Japanese translation exercise course for undergraduate students at a university in Japan.
['Atsushi Fujita', 'Anthony Hartley', 'Kyo Kageura', 'Kikuko Tanabe', 'Mayuka Yamamoto', 'Chiho Toyoshima']
2017-04-01
null
null
null
ws-2017-4
['text-annotation']
['natural-language-processing']
[ 1.22059703e-01 2.73370653e-01 -2.11643368e-01 -3.39272708e-01 -1.21575999e+00 -8.11593950e-01 2.65183568e-01 5.65953493e-01 -7.69157529e-01 1.04493475e+00 3.31011593e-01 -9.19808745e-01 -4.14133549e-01 -5.22781014e-01 -6.15488768e-01 -1.10889457e-01 9.87550974e-01 6.24238968e-01 2.77553797e-01 -3.55189294e-01 7.14158714e-01 2.83081263e-01 -1.65954006e+00 3.07080239e-01 1.67488742e+00 2.50707775e-01 3.93256009e-01 4.49766397e-01 -3.31976086e-01 5.02777278e-01 -8.35801065e-01 -8.38191152e-01 -3.14330518e-01 -5.75817943e-01 -1.19176316e+00 1.80691965e-02 6.97658181e-01 -7.04117119e-02 3.33309621e-01 1.34157538e+00 4.74802017e-01 2.24962354e-01 4.98408616e-01 -7.70892560e-01 -1.00865030e+00 1.04908907e+00 1.92093015e-01 1.71107680e-01 6.36505902e-01 -4.61482912e-01 8.53188455e-01 -1.08488905e+00 5.70318460e-01 6.63412273e-01 8.69098246e-01 4.38512921e-01 -1.05300558e+00 -7.91834593e-01 -3.86697017e-02 9.85468701e-02 -1.24754179e+00 -3.75234455e-01 2.88005233e-01 -7.70285606e-01 7.11712301e-01 3.55167568e-01 9.68341529e-01 8.63934457e-01 3.42568725e-01 2.40796342e-01 1.63557959e+00 -9.09772217e-01 9.21496525e-02 9.24258232e-01 1.94764793e-01 5.11454821e-01 6.64443195e-01 -3.98150682e-01 -6.80709243e-01 2.06638962e-01 4.49749470e-01 -4.35022146e-01 -1.76222697e-01 2.08133996e-01 -1.25733054e+00 3.93153876e-01 -3.04293185e-01 4.13456947e-01 -3.14702429e-02 -3.72267514e-01 3.36621970e-01 6.86741769e-01 3.02836776e-01 5.18934965e-01 -4.86651659e-01 -7.18967795e-01 -8.84840310e-01 1.78366110e-01 8.50056827e-01 1.42061949e+00 1.69689864e-01 -1.62522048e-01 2.08732449e-02 1.09957731e+00 4.87109154e-01 4.55258846e-01 9.23445344e-01 -7.83813655e-01 4.10988688e-01 7.63437808e-01 8.36211741e-02 -3.68144810e-01 -1.07793234e-01 -5.25650799e-01 -2.68591970e-01 1.77396744e-01 6.20840430e-01 -1.61014766e-01 -5.95968306e-01 1.35163963e+00 1.24151908e-01 -9.74352896e-01 1.91508621e-01 6.36641026e-01 1.06307054e+00 1.52529746e-01 2.58668423e-01 -6.24070406e-01 1.57063103e+00 -7.81646132e-01 -1.07072675e+00 4.05396104e-01 9.52431262e-01 -1.50152969e+00 1.53439033e+00 6.60284758e-01 -1.39312768e+00 -7.25832820e-01 -8.06429148e-01 -1.96291149e-01 -2.74269015e-01 2.68902838e-01 7.97141567e-02 1.18783593e+00 -1.09946597e+00 5.61817586e-01 -3.66355598e-01 -5.79995930e-01 -3.45190279e-02 3.89808148e-01 -3.42392892e-01 3.48172665e-01 -1.03908253e+00 1.03028774e+00 1.36112526e-01 -1.59877151e-01 -1.78091511e-01 -6.17218077e-01 -4.92704093e-01 -1.44785121e-01 6.09189123e-02 -4.55855161e-01 1.68348837e+00 -1.09558022e+00 -1.63692749e+00 9.88477945e-01 -7.93524683e-02 3.25790316e-01 5.91596901e-01 -2.13621423e-01 -5.88045537e-01 -2.17156589e-01 4.58906442e-01 2.55346596e-01 8.66376758e-02 -1.16478980e+00 -1.13063562e+00 -3.54633033e-01 -1.20023079e-01 6.40398800e-01 -7.66036928e-01 3.06712598e-01 -2.76496083e-01 -8.83201778e-01 6.04267657e-01 -1.06894588e+00 3.23837787e-01 -3.13334286e-01 9.41324309e-02 -6.08655751e-01 1.76309049e-01 -1.01250219e+00 1.73489368e+00 -1.63244009e+00 -1.30912781e-01 3.41725051e-01 2.17059478e-01 4.78327535e-02 3.80305588e-01 6.33552194e-01 1.10644676e-01 5.39986968e-01 4.41519618e-02 3.92019786e-02 4.58232537e-02 -2.85353791e-02 -1.84704233e-02 1.08896859e-01 -3.70335907e-01 3.92373770e-01 -1.12038600e+00 -7.06806898e-01 -2.44245768e-01 2.36099437e-02 -2.79364616e-01 -2.30171699e-02 3.25446248e-01 1.02498062e-01 -1.53881833e-01 5.60425162e-01 1.46323126e-02 1.85274139e-01 3.53043199e-01 3.77444774e-01 -7.43626356e-01 9.52780485e-01 -1.02684152e+00 1.51595020e+00 -5.24948180e-01 7.94739604e-01 -4.41955805e-01 -3.55502933e-01 1.19983613e+00 7.53986299e-01 1.91706240e-01 -7.80575454e-01 8.13622847e-02 7.58674145e-01 1.89780459e-01 -7.06526101e-01 1.09844327e+00 -2.86501914e-01 -8.86952784e-03 6.52350366e-01 1.56759039e-01 -3.24640006e-01 3.51321191e-01 1.56234652e-01 4.84067410e-01 3.70252103e-01 3.42769206e-01 -8.61740530e-01 3.38973582e-01 4.29501891e-01 3.86916250e-01 6.28466427e-01 -1.21727593e-01 3.35581452e-01 1.92088977e-01 -1.42462328e-01 -1.15750599e+00 -7.80805826e-01 -4.93697613e-01 9.92636919e-01 -1.60755470e-01 -5.57719707e-01 -9.43549514e-01 -8.32766533e-01 -3.61185789e-01 1.05551302e+00 -3.21579009e-01 -2.07805261e-02 -3.34762931e-01 -2.44082764e-01 5.33293843e-01 3.98724586e-01 2.78003633e-01 -8.92883778e-01 -5.16501069e-01 3.76684666e-01 -6.22257769e-01 -6.17889762e-01 -4.70074415e-01 2.52368450e-01 -1.01127994e+00 -6.48767829e-01 -4.21920866e-01 -1.22186589e+00 7.71746695e-01 3.15986961e-01 9.90851402e-01 3.57479542e-01 4.76370692e-01 4.43194628e-01 -5.80585778e-01 -6.77829862e-01 -8.49473894e-01 2.62357026e-01 2.96277165e-01 -1.00131679e+00 6.64936662e-01 -3.39804947e-01 -7.52807502e-03 4.67119277e-01 -8.42082024e-01 1.51942313e-01 6.48761153e-01 8.10581923e-01 4.66295600e-01 8.93429518e-02 9.16967034e-01 -1.08891821e+00 1.21205676e+00 -1.74969845e-02 -5.04681468e-01 6.32445931e-01 -1.31999969e+00 -2.40515038e-01 3.95401955e-01 -4.45463240e-01 -1.21016550e+00 -3.52089465e-01 -3.17477763e-01 3.40093762e-01 -1.56363979e-01 6.05950177e-01 -1.14850350e-01 -3.47203553e-01 8.43850791e-01 6.68440536e-02 -1.22787014e-01 -2.27293164e-01 -2.04146415e-01 1.04903555e+00 3.54836136e-01 -9.80897188e-01 6.96536720e-01 -5.11725605e-01 -4.67794865e-01 -7.42734313e-01 -5.96104205e-01 -4.72074568e-01 -9.96574938e-01 -5.29653728e-01 5.58799148e-01 -9.21640038e-01 -6.56567156e-01 1.20496646e-01 -8.84163618e-01 -2.68794417e-01 -3.21878999e-01 1.05364347e+00 -3.43730003e-01 2.25902766e-01 -5.54894924e-01 -5.21334052e-01 -1.16390184e-01 -1.32417202e+00 3.96458775e-01 3.94522995e-01 -8.09419334e-01 -1.15100527e+00 1.65912449e-01 8.96496356e-01 2.36244388e-02 -4.48209256e-01 1.06141579e+00 -9.25170302e-01 9.30016339e-02 7.62672722e-02 2.19547838e-01 1.65544495e-01 6.27059191e-02 1.58254638e-01 -7.74972975e-01 -3.73662934e-02 7.85118341e-02 -3.03922415e-01 9.08082649e-02 -1.81628257e-01 6.18563831e-01 -5.54115593e-01 1.33207738e-01 -7.18876645e-02 1.20356953e+00 5.10088742e-01 4.05769050e-01 7.85703003e-01 5.79312801e-01 8.28362286e-01 7.19839633e-01 -1.45088919e-02 6.31574750e-01 7.37910867e-01 -4.32960838e-01 3.57514054e-01 -3.77130061e-01 -3.54216874e-01 5.45167863e-01 1.84671342e+00 -2.51567036e-01 -7.82821327e-02 -1.12396753e+00 6.03378475e-01 -1.42455089e+00 -6.70111179e-01 -5.99373877e-01 2.44765115e+00 1.33437872e+00 2.47248128e-01 2.08510518e-01 2.45674118e-01 6.23524368e-01 -7.81372428e-01 2.91220456e-01 -9.61619198e-01 1.78767100e-01 1.96729481e-01 3.07376206e-01 7.52119958e-01 -3.47511470e-01 1.02377403e+00 6.26859188e+00 5.82462549e-01 -7.57052243e-01 8.84201080e-02 1.01159133e-01 3.67133647e-01 -8.65810871e-01 1.54088974e-01 -1.00313199e+00 3.20903301e-01 1.02751362e+00 -5.20770729e-01 5.94842993e-02 5.15374124e-01 2.49826863e-01 -8.17587003e-02 -7.51158595e-01 2.89541900e-01 2.05866322e-01 -9.58350003e-01 8.83428976e-02 1.10408366e-01 9.83692169e-01 -6.58907652e-01 -2.37169728e-01 3.34582090e-01 5.66788971e-01 -6.91690981e-01 1.18896604e+00 2.81372994e-01 8.35715055e-01 -6.22780263e-01 8.46827745e-01 1.75474867e-01 -6.04893863e-01 3.36794823e-01 -1.81300640e-01 -3.72601271e-01 -2.57874370e-01 3.16282392e-01 -1.21569192e+00 4.42646712e-01 6.99720979e-01 2.01406822e-01 -7.41386235e-01 9.75270748e-01 -5.95993876e-01 9.10314858e-01 2.47127101e-01 -4.71663594e-01 -5.10210358e-02 -4.27936584e-01 3.97539228e-01 1.28336477e+00 6.66494548e-01 2.64410466e-01 -4.34692092e-02 4.17713672e-01 -1.09638922e-01 6.79942667e-01 -3.92749518e-01 7.63118640e-02 9.74394262e-01 9.47729290e-01 -9.07035291e-01 -4.99323487e-01 -4.62347299e-01 8.53912532e-01 2.05712110e-01 2.83465326e-01 -3.96549493e-01 -5.69412172e-01 1.12157062e-01 9.16531906e-02 -1.94386154e-01 -1.36298046e-01 -9.14626062e-01 -8.24678779e-01 2.29259610e-01 -1.15913880e+00 1.81040376e-01 -4.99506623e-01 -9.02180076e-01 4.34448153e-01 -4.68386821e-02 -1.50538898e+00 2.92948753e-01 -4.27336782e-01 -3.30192745e-01 1.17434168e+00 -1.02872741e+00 -8.41596246e-01 -2.56197870e-01 1.54551685e-01 7.33547091e-01 -5.67011125e-02 9.05852079e-01 3.01109731e-01 -5.85311055e-01 9.62615490e-01 7.48696476e-02 -1.89710706e-01 1.12062776e+00 -1.58180475e+00 -4.76248078e-02 9.52069402e-01 6.38797060e-02 1.00880492e+00 7.06580341e-01 -1.03535664e+00 -1.09680295e+00 -7.68655300e-01 1.89220524e+00 -6.46769643e-01 7.93382645e-01 4.47853468e-02 -1.01127148e+00 5.43400645e-01 4.16704118e-01 -9.28671062e-01 1.31450915e+00 2.35604495e-01 4.64262255e-02 -6.49607927e-02 -8.88936698e-01 8.62380505e-01 1.04953897e+00 -5.30386090e-01 -1.17222571e+00 3.59851748e-01 6.20482922e-01 -7.01644957e-01 -1.39816427e+00 3.21698301e-02 8.82323027e-01 -6.75891161e-01 3.71243745e-01 -4.14017051e-01 6.68164790e-01 -3.22623581e-01 9.31120142e-02 -1.31735992e+00 -3.96189719e-01 -5.33056319e-01 7.29418337e-01 1.50693595e+00 8.53710294e-01 -3.91200721e-01 4.00300860e-01 7.99855411e-01 -8.81071806e-01 -5.31006455e-01 -8.05505872e-01 -5.57421207e-01 4.28838044e-01 -2.41632134e-01 3.00610095e-01 1.30935955e+00 5.51407874e-01 2.35764593e-01 7.75650665e-02 -2.68961675e-02 4.04566526e-01 -3.71629804e-01 5.75997829e-01 -1.44675672e+00 2.48898596e-01 -7.63790250e-01 -9.18614939e-02 -6.36766016e-01 3.10530560e-03 -1.02051985e+00 1.48021445e-01 -1.68184686e+00 -1.76609668e-03 -6.24323905e-01 2.34602895e-02 4.68953371e-01 -3.82355034e-01 2.45409101e-01 -9.11988020e-02 4.64339793e-01 -3.58572274e-01 1.19922698e-01 1.31310093e+00 3.24611217e-01 -4.72751111e-01 5.71231954e-02 -1.09260714e+00 5.85599780e-01 8.03080678e-01 -6.22174740e-01 -4.64783341e-01 -5.06169140e-01 6.54746532e-01 -5.72735779e-02 -1.02456152e-01 -9.24893498e-01 4.51693714e-01 -5.36346555e-01 4.65468615e-01 -2.01444775e-01 -4.64576006e-01 -8.43910575e-01 2.78969705e-01 4.12817270e-01 -6.08645439e-01 8.10450494e-01 3.05689424e-01 -2.21241564e-01 -2.04314858e-01 -6.85245633e-01 4.53537583e-01 -1.88873827e-01 -5.36237121e-01 -5.02047598e-01 -7.89703846e-01 -1.88875142e-02 9.23046350e-01 -5.21794081e-01 -4.05309796e-01 -1.48672879e-01 -5.06420195e-01 2.47444138e-02 7.72970259e-01 4.41078573e-01 5.13783753e-01 -1.31072211e+00 -5.94920576e-01 6.73942268e-02 3.45576882e-01 -2.41899878e-01 -4.38972525e-02 1.09623861e+00 -7.53850043e-01 4.19492960e-01 -4.27268237e-01 -2.28805959e-01 -1.51468611e+00 -1.32277876e-01 -1.45099014e-01 1.23360492e-02 -5.63795388e-01 6.54809773e-01 -5.05099714e-01 -5.54280877e-01 3.50001603e-01 -4.53616858e-01 -5.29039025e-01 2.38003701e-01 2.69929051e-01 6.76880896e-01 5.19459546e-01 -5.92844069e-01 1.63077260e-03 4.43070740e-01 -7.17042089e-02 -6.95009589e-01 6.89611554e-01 -4.52714920e-01 -1.61833718e-01 9.72853839e-01 4.91981894e-01 7.40521848e-01 -4.58948612e-01 -1.81515560e-01 3.09672028e-01 -4.42844212e-01 -1.12584397e-01 -1.30809283e+00 -7.78401271e-02 5.62852442e-01 3.49440455e-01 9.73390639e-02 8.23106706e-01 -4.52626139e-01 4.05245036e-01 5.40996850e-01 1.76453277e-01 -1.64165175e+00 -2.22444385e-01 6.45962179e-01 6.87296867e-01 -1.22333646e+00 7.36380294e-02 -3.07255298e-01 -7.18007565e-01 1.49109507e+00 6.00495994e-01 7.40059793e-01 2.13547215e-01 -1.35685235e-01 5.01792550e-01 9.02371630e-02 -6.01376235e-01 3.01451504e-01 6.47197306e-01 2.65294135e-01 1.24980342e+00 3.47847223e-01 -1.34770894e+00 6.51472747e-01 -7.65992880e-01 5.21386676e-02 9.95437384e-01 1.03823304e+00 -7.85434604e-01 -1.38258803e+00 -5.79278350e-01 3.70935798e-01 -5.10880888e-01 -2.57774621e-01 -6.39922798e-01 8.12292397e-01 1.93027854e-01 1.04811966e+00 -1.01125509e-01 -4.49961096e-01 4.80281323e-01 4.20499384e-01 4.57744956e-01 -8.37994516e-01 -1.20998907e+00 9.51419249e-02 3.62161726e-01 2.33829454e-01 -3.79320741e-01 -8.65980744e-01 -1.12460041e+00 -4.35806870e-01 -4.81429607e-01 7.71277905e-01 9.56366479e-01 1.03717959e+00 -1.58417732e-01 5.92314661e-01 2.59175241e-01 1.71740294e-01 -5.61495006e-01 -1.19998467e+00 -2.91313082e-01 3.48263949e-01 -1.54085204e-01 -2.91237295e-01 -1.30812213e-01 2.51000285e-01]
[11.263469696044922, 9.555848121643066]
6baa326e-8f21-4dd3-bec7-7fa43bdf37e4
revisiting-ipa-based-cross-lingual-text-to
2110.07187
null
https://arxiv.org/abs/2110.07187v2
https://arxiv.org/pdf/2110.07187v2.pdf
Revisiting IPA-based Cross-lingual Text-to-speech
International Phonetic Alphabet (IPA) has been widely used in cross-lingual text-to-speech (TTS) to achieve cross-lingual voice cloning (CL VC). However, IPA itself has been understudied in cross-lingual TTS. In this paper, we report some empirical findings of building a cross-lingual TTS model using IPA as inputs. Experiments show that the way to process the IPA and suprasegmental sequence has a negligible impact on the CL VC performance. Furthermore, we find that using a dataset including one speaker per language to build an IPA-based TTS system would fail CL VC since the language-unique IPA and tone/stress symbols could leak the speaker information. In addition, we experiment with different combinations of speakers in the training dataset to further investigate the effect of the number of speakers on the CL VC performance.
['Xinyuan Yu', 'Yang Zhang', 'Haoyue Zhan', 'Yue Lin', 'Haitong Zhang']
2021-10-14
null
null
null
null
['voice-cloning']
['speech']
[-3.36371422e-01 -4.40943569e-01 -1.87971756e-01 -3.79581720e-01 -1.32538664e+00 -8.47354352e-01 2.91886747e-01 -4.07441914e-01 -2.66196996e-01 2.88896769e-01 4.12971973e-01 -9.33305144e-01 4.81282711e-01 -2.33886242e-01 -7.34294116e-01 -4.61654752e-01 3.15518051e-01 2.30106071e-01 1.78441092e-01 -3.96423507e-03 -1.71409845e-02 2.25775287e-01 -1.38636267e+00 2.85454154e-01 8.03636551e-01 5.83482563e-01 2.62723774e-01 6.51649952e-01 -3.42617244e-01 4.57758725e-01 -9.71897900e-01 -5.89023471e-01 5.57791770e-01 -7.14268804e-01 -5.79698384e-01 -3.30270380e-01 6.60942614e-01 1.77335441e-01 6.21212013e-02 6.90268219e-01 7.25229621e-01 5.83571866e-02 7.19285548e-01 -9.10174251e-01 -4.55397964e-01 1.13478613e+00 -2.38856435e-01 1.28957674e-01 3.54468793e-01 2.96151787e-01 1.20768178e+00 -8.06647718e-01 5.51318526e-01 1.63968205e+00 6.80322707e-01 4.38969254e-01 -1.36740172e+00 -9.47704256e-01 -1.11132540e-01 -8.64339843e-02 -1.51963985e+00 -8.49867821e-01 7.67527103e-01 -4.30288702e-01 6.89039171e-01 4.28213507e-01 4.25206542e-01 1.11127424e+00 1.11523382e-01 8.07979286e-01 1.46897101e+00 -8.37722182e-01 -8.26107562e-02 4.31400806e-01 -6.33910531e-05 2.73032606e-01 -2.96982825e-01 2.78704286e-01 -8.18613589e-01 8.00991356e-02 4.11265731e-01 -9.88804162e-01 -5.79749458e-02 3.84684503e-01 -7.32478142e-01 8.66978168e-01 -8.12477618e-02 5.67077637e-01 8.43046606e-02 2.30271406e-02 8.74822557e-01 5.64937234e-01 2.34202340e-01 4.64849919e-01 -7.52118051e-01 -3.39152396e-01 -9.40769196e-01 -1.30250975e-01 7.99144149e-01 7.54180074e-01 3.62194955e-01 5.89470923e-01 -1.00288540e-01 1.28404868e+00 3.21982175e-01 7.49075174e-01 7.61289537e-01 -9.05463874e-01 6.11107588e-01 -2.09579125e-01 -2.61103302e-01 -4.15040702e-01 1.77916661e-01 -3.11085671e-01 -8.47956538e-02 -2.24106357e-01 6.77774370e-01 -2.36573413e-01 -9.12651181e-01 1.95534348e+00 -1.35444179e-02 -1.09823301e-01 7.44881406e-02 4.96110916e-01 5.68930686e-01 9.05084729e-01 2.58523315e-01 -3.99690241e-01 1.36583090e+00 -8.06481719e-01 -9.46953535e-01 -1.38575315e-01 8.00948322e-01 -1.38491845e+00 2.00705171e+00 2.99178421e-01 -1.06338549e+00 -9.08997416e-01 -6.45341516e-01 -1.62524462e-01 -4.47981596e-01 2.18349993e-01 2.55364358e-01 1.25496864e+00 -7.67962635e-01 1.66759387e-01 -5.42848289e-01 -1.45551926e-02 -1.42045110e-01 1.20787203e-01 1.03951562e-02 1.56433240e-01 -1.51969230e+00 8.92169237e-01 1.09032519e-01 -2.43801519e-01 -6.38314724e-01 -7.67474353e-01 -7.39622116e-01 -2.15414166e-01 1.42661810e-01 5.20391390e-03 1.35193896e+00 -8.93559873e-01 -1.90675807e+00 7.03067183e-01 -5.58945715e-01 -1.19533733e-01 4.58306015e-01 -2.65341640e-01 -7.13587105e-01 -3.63319874e-01 3.08595747e-01 5.54906666e-01 7.37272561e-01 -1.35649586e+00 -6.69798970e-01 -2.69763112e-01 -8.12374055e-01 2.91581631e-01 6.06439114e-02 4.84274477e-01 -7.52513647e-01 -7.12181032e-01 -7.00665265e-02 -1.17288041e+00 3.64036471e-01 -8.99638474e-01 -6.38693929e-01 -3.95084172e-01 5.86300790e-01 -9.60262835e-01 1.40314913e+00 -2.54458547e+00 -2.91984081e-01 2.18918324e-01 -8.22607160e-01 1.83086798e-01 -2.28896160e-02 4.08896416e-01 2.39214301e-01 5.25348485e-01 1.10707907e-02 -7.05057263e-01 1.25919327e-01 4.86009359e-01 -3.44130218e-01 1.69648826e-01 -2.57053643e-01 7.71694958e-01 -4.04316097e-01 -6.59351945e-01 2.11095691e-01 3.81303400e-01 -4.47423309e-01 1.22538619e-01 7.05807582e-02 5.86759269e-01 7.88981542e-02 5.41694045e-01 3.93017709e-01 8.78462374e-01 2.13272005e-01 6.33618385e-02 -6.05697513e-01 1.09675491e+00 -8.30072939e-01 1.23574591e+00 -7.67961919e-01 7.09313333e-01 -2.92078331e-02 -2.79741049e-01 7.43347704e-01 5.53119302e-01 5.75183406e-02 -7.16372609e-01 1.72076032e-01 7.02839553e-01 6.52275801e-01 -2.10856944e-01 5.30133545e-01 -5.16245723e-01 -3.49299103e-01 3.08344603e-01 -4.84732948e-02 -5.28897107e-01 5.38017647e-03 -2.08632946e-01 3.99473429e-01 -1.39365390e-01 -6.93435073e-02 -4.12912995e-01 3.67349476e-01 -1.16865383e-02 6.27904356e-01 6.87207878e-01 -2.71701455e-01 4.46869940e-01 2.68284649e-01 3.36465299e-01 -8.46668899e-01 -1.25249577e+00 -4.96470600e-01 1.33231044e+00 -4.24197316e-01 -3.25633347e-01 -1.04749978e+00 -3.08435827e-01 -5.08767255e-02 1.21630943e+00 -8.12113881e-02 8.97232667e-02 -7.88706958e-01 -1.70567080e-01 1.29365635e+00 2.24579453e-01 1.31850675e-01 -1.38167274e+00 1.39229044e-01 2.90024608e-01 -3.80764842e-01 -1.29668999e+00 -1.03765976e+00 2.40973353e-01 -4.40717787e-01 -4.57756221e-01 -3.86308044e-01 -1.00756192e+00 -3.46370600e-02 -1.98334828e-03 6.95989132e-01 -4.60230649e-01 2.62268811e-01 1.41752467e-01 -2.39367962e-01 -5.95161378e-01 -1.15235496e+00 4.70518649e-01 3.98775101e-01 -9.90986452e-02 3.61182272e-01 -1.55758739e-01 9.80900079e-02 2.89324731e-01 -4.51196879e-01 -3.69617969e-01 1.53770700e-01 4.63531673e-01 5.65942109e-01 2.52075493e-01 6.66319966e-01 -9.63596821e-01 8.82670403e-01 -9.20975581e-02 -5.44141293e-01 5.03040180e-02 -2.82470584e-01 -1.01126775e-01 8.98039579e-01 -5.81444025e-01 -1.17804646e+00 6.23911843e-02 -6.58532083e-01 -4.07478064e-01 -2.39507645e-01 6.58900440e-01 -4.88338411e-01 1.49941906e-01 3.40172082e-01 2.02092752e-01 -1.33078143e-01 -8.24977815e-01 4.07403708e-01 9.93590951e-01 5.87257147e-01 -6.71683431e-01 6.33242607e-01 -2.19336465e-01 -5.89397013e-01 -1.11817527e+00 -6.66042209e-01 -4.22054738e-01 -6.31585598e-01 -1.91655010e-01 7.87849367e-01 -9.31257010e-01 -5.12523890e-01 4.93826747e-01 -9.76212144e-01 -5.03853858e-01 -2.00163022e-01 7.94453323e-01 -4.43390578e-01 1.42873555e-01 -7.54691601e-01 -7.75867641e-01 -7.27783516e-02 -1.47232211e+00 6.47930086e-01 -2.14873120e-01 -4.74592388e-01 -8.85401666e-01 1.26249731e-01 5.78115880e-01 2.42854059e-01 -3.63331825e-01 1.04731643e+00 -4.15545136e-01 -1.71729118e-01 1.94814220e-01 3.64582658e-01 7.39052236e-01 4.76464361e-01 3.53267580e-01 -1.31386065e+00 -8.24503899e-02 9.97943357e-02 2.28137756e-03 3.97889823e-01 6.68416321e-01 7.75489151e-01 -4.34608966e-01 9.89495367e-02 4.53200698e-01 1.12885821e+00 4.62048173e-01 5.86698115e-01 -1.68486703e-02 8.66733193e-01 8.41805935e-01 5.85522830e-01 -1.56929076e-01 4.44029391e-01 7.07702279e-01 -5.23289084e-01 6.62298724e-02 -5.17254114e-01 -5.46464026e-01 1.16360283e+00 1.87579346e+00 2.71242768e-01 -2.62793213e-01 -8.76364172e-01 7.57026613e-01 -9.58847880e-01 -6.77068532e-01 -3.79424691e-01 2.47468877e+00 1.40768683e+00 2.29733154e-01 2.41644368e-01 2.87415296e-01 6.85872436e-01 -4.28349301e-02 -5.40294163e-02 -1.20682275e+00 -2.53459573e-01 4.15129930e-01 6.35472298e-01 1.00084972e+00 -6.72065318e-01 1.75671732e+00 6.93687534e+00 1.24369335e+00 -1.52688789e+00 2.54082710e-01 3.24311376e-01 1.25108510e-01 -4.83999401e-01 -6.42581657e-02 -1.16094983e+00 6.36466861e-01 1.42925751e+00 1.14962526e-01 5.51414430e-01 5.30894935e-01 5.75022817e-01 -1.09090202e-01 -8.51829946e-01 6.86117649e-01 -1.73156232e-01 -6.22614563e-01 4.59961686e-03 1.16444968e-01 7.41029799e-01 2.15304315e-01 3.44049901e-01 4.82003212e-01 3.40636313e-01 -8.63503993e-01 1.11564362e+00 -2.34960243e-01 1.18197632e+00 -7.59015441e-01 4.13738668e-01 1.45961344e-01 -1.16878355e+00 2.11892903e-01 -9.69395190e-02 2.62999415e-01 4.44485366e-01 4.61646914e-02 -1.19214594e+00 2.96950102e-01 4.39581156e-01 1.45314317e-02 -5.74661195e-01 7.71025240e-01 -2.62665808e-01 1.56868696e+00 -4.49471116e-01 3.24348360e-01 3.29435796e-01 -2.00459994e-02 5.49350917e-01 1.50149333e+00 3.82413745e-01 -3.97958189e-01 8.80979300e-02 5.88642895e-01 6.92624748e-02 7.13192225e-01 -6.46366775e-01 -1.72044575e-01 8.77603471e-01 4.13684487e-01 -4.04091179e-01 -1.94818422e-01 -4.48694378e-01 8.23556662e-01 4.39942665e-02 4.12211865e-01 -6.76445723e-01 -1.25070989e-01 9.86778677e-01 1.16351090e-01 3.42048526e-01 -4.56224442e-01 -5.35489917e-01 -6.86595321e-01 -2.68233269e-01 -1.07560039e+00 5.55568784e-02 -3.79019737e-01 -1.33256197e+00 5.10578275e-01 -2.06353500e-01 -8.75058353e-01 -3.17562699e-01 -5.23171961e-01 -4.27966744e-01 1.21522236e+00 -1.45614123e+00 -1.00038433e+00 6.16792381e-01 5.90648055e-01 7.15326190e-01 -1.05691642e-01 8.24455738e-01 5.30808866e-01 -6.01527035e-01 1.13846445e+00 2.10080788e-01 3.44549805e-01 1.02092147e+00 -1.14521825e+00 5.55675030e-01 7.72491038e-01 3.89782190e-01 8.82410109e-01 6.80836201e-01 -7.69113064e-01 -1.13593388e+00 -1.07287943e+00 1.24890721e+00 -4.41472530e-01 5.07755458e-01 -5.20695984e-01 -9.13258970e-01 8.76924992e-01 3.67541671e-01 -4.88199770e-01 9.13191974e-01 2.57314086e-01 -3.18485528e-01 -1.02228388e-01 -8.22351515e-01 9.55168366e-01 7.06359148e-01 -1.12096405e+00 -5.79543829e-01 -2.69584656e-01 1.10361409e+00 -2.45544761e-01 -8.77875566e-01 4.83990833e-02 6.86478972e-01 -6.49666548e-01 6.81442976e-01 -3.34021866e-01 -1.85947523e-01 -3.13602239e-01 -4.89911914e-01 -1.59847665e+00 -1.64441064e-01 -7.14050055e-01 6.37114823e-01 1.80069435e+00 6.65594697e-01 -7.11491466e-01 1.17888853e-01 3.48665744e-01 -5.90992570e-01 -6.96934015e-02 -1.13223064e+00 -1.26540971e+00 5.38114488e-01 -9.58968937e-01 5.54219902e-01 9.51858580e-01 -2.95487434e-01 5.71724296e-01 -3.44942629e-01 2.49172777e-01 2.35164270e-01 -2.86447674e-01 6.99627817e-01 -9.16644096e-01 -1.86866269e-01 -3.94396067e-01 1.24292970e-01 -7.15377390e-01 3.50497067e-01 -9.69820857e-01 3.11748266e-01 -7.71041870e-01 -4.52068090e-01 -9.71761584e-01 -3.21027279e-01 4.19307262e-01 -8.34047645e-02 1.46597102e-01 5.80665052e-01 1.56870261e-01 2.16631398e-01 4.04043823e-01 1.32764316e+00 2.99149305e-01 -7.12675631e-01 2.31440678e-01 -4.29842293e-01 5.38658559e-01 1.05382919e+00 -8.16617608e-01 -2.19082162e-01 -3.50585908e-01 -5.40523708e-01 5.65513559e-02 -3.41151178e-01 -8.02333832e-01 -1.65769011e-02 -1.78321466e-01 -1.18231200e-01 -6.68707669e-01 4.91698742e-01 -5.77488601e-01 2.58946657e-01 3.07116657e-01 -3.03218275e-01 1.47338556e-02 5.44749439e-01 -2.33136341e-01 -3.46304476e-01 -2.96040177e-01 7.85609186e-01 -1.15707755e-01 -3.02177906e-01 -1.43326581e-01 -9.32927549e-01 3.94889057e-01 4.93821234e-01 -2.17884645e-01 1.22617602e-01 -1.70583770e-01 -3.95091772e-01 -2.57251322e-01 3.88345957e-01 6.13394558e-01 -7.65006617e-02 -1.25481582e+00 -5.95598876e-01 4.48698670e-01 -8.69281515e-02 -5.96246541e-01 -2.14918591e-02 5.40570855e-01 -3.27421695e-01 8.26548100e-01 -1.12614110e-02 -4.00460184e-01 -1.42534077e+00 2.21446037e-01 2.74902672e-01 1.15489952e-01 -1.50174156e-01 8.70610476e-01 2.17968285e-01 -8.80404353e-01 3.32123548e-01 -3.63282412e-01 1.95038185e-01 1.68384343e-01 -7.71494806e-02 2.84887940e-01 -7.06927553e-02 -1.18158901e+00 -3.66366357e-01 5.59695899e-01 1.70728322e-02 -8.06932926e-01 5.95992327e-01 -4.49409217e-01 1.98914409e-01 1.22083402e+00 1.37390602e+00 1.10957468e+00 -7.56942391e-01 -7.53800049e-02 1.93821713e-02 -4.33868766e-01 5.84846102e-02 -8.94067347e-01 -8.22361946e-01 1.05742025e+00 2.60875940e-01 1.70755565e-01 5.76765776e-01 -1.65267840e-01 1.05290544e+00 -2.36194938e-01 1.94679648e-01 -1.39242411e+00 -3.83117676e-01 8.30060363e-01 7.31334448e-01 -1.10731030e+00 -5.31185687e-01 -5.61625242e-01 -1.23996484e+00 6.62149370e-01 4.38023657e-01 3.90950859e-01 7.41977990e-01 2.70089597e-01 7.15790987e-01 1.38830706e-01 -5.05664647e-01 -1.83040902e-01 3.73668611e-01 3.81469995e-01 7.69156933e-01 6.76323950e-01 -3.52468520e-01 5.06578803e-01 -1.19287062e+00 -5.36223829e-01 3.06895018e-01 3.98691475e-01 -1.34865448e-01 -1.58508062e+00 -5.53815484e-01 1.39976904e-01 -9.49441493e-01 -5.90331435e-01 -5.05228162e-01 8.00096571e-01 2.52920777e-01 1.06647050e+00 2.98399366e-02 -4.53539699e-01 1.87489048e-01 6.95039392e-01 2.53163964e-01 -7.62553215e-01 -9.63185191e-01 5.37246108e-01 3.72046083e-01 -1.42546654e-01 1.16131596e-01 -1.06994677e+00 -1.28254259e+00 -4.86586094e-01 -5.65638661e-01 2.64907062e-01 8.54329348e-01 8.69042933e-01 6.95505440e-02 3.95355046e-01 7.69189000e-01 -2.57307440e-01 -3.38727087e-01 -1.09878063e+00 -7.51947105e-01 9.27740186e-02 2.28122368e-01 -3.90824348e-01 -7.33010173e-01 1.44450381e-01]
[14.614263534545898, 6.773756504058838]
a2f2d8e5-c966-4d03-a11a-ea5e5d815c42
rethinking-the-editing-of-generative
2305.09454
null
https://arxiv.org/abs/2305.09454v1
https://arxiv.org/pdf/2305.09454v1.pdf
Rethinking the editing of generative adversarial networks: a method to estimate editing vectors based on dimension reduction
While Generative Adversarial Networks (GANs) have recently found applications in image editing, most previous GAN-based image editing methods require largescale datasets with semantic segmentation annotations for training, only provide high level control, or merely interpolate between different images. Previous researchers have proposed EditGAN for high-quality, high-precision semantic image editing with limited semantic annotations by finding `editing vectors'. However, it is noticed that there are many features that are not highly associated with semantics, and EditGAN may fail on them. Based on the orthogonality of latent space observed by EditGAN, we propose a method to estimate editing vectors that do not rely on semantic segmentation nor differentiable feature estimation network. Our method assumes that there is a correlation between the intensity distribution of features and the distribution of hidden vectors, and estimates the relationship between the above distributions by sampling the feature intensity of the image corresponding to several hidden vectors. We modified Linear Discriminant Analysis (LDA) to deal with both binary feature editing and continuous feature editing. We then found that this method has a good effect in processing features such as clothing type and texture, skin color and hair.
['Xuyang Li', 'Qi Li', 'Zhenghong Yu', 'Haoran Jiang', 'Yuhan Cao']
2023-03-07
null
null
null
null
['dimensionality-reduction']
['methodology']
[ 5.07243693e-01 5.07235453e-02 -1.09882340e-01 -5.94072282e-01 -3.67619306e-01 -5.40212691e-01 4.59099889e-01 -4.58305150e-01 -2.03798100e-01 6.36582196e-01 9.16357189e-02 3.24000269e-01 1.06211260e-01 -1.08116663e+00 -8.35752189e-01 -6.98411465e-01 2.64881432e-01 2.93350965e-01 4.33796458e-03 -2.21235141e-01 9.64541659e-02 2.57794946e-01 -1.39516056e+00 2.56878197e-01 1.05420732e+00 9.04989541e-01 9.25677791e-02 5.63612938e-01 -4.28253382e-01 6.04546666e-01 -8.21843863e-01 -5.31140149e-01 4.46825862e-01 -8.20133865e-01 -5.61202466e-01 3.93721789e-01 2.80768573e-01 -2.49590695e-01 -1.45724490e-01 1.48840868e+00 1.76928326e-01 -4.13826993e-03 9.65413094e-01 -1.52306283e+00 -1.20171773e+00 3.01468164e-01 -5.25066972e-01 -5.11509418e-01 3.03867817e-01 -1.17857186e-02 5.89312613e-01 -6.55691862e-01 7.55568027e-01 1.18772328e+00 8.01098764e-01 5.96732497e-01 -1.07034981e+00 -6.18375957e-01 -6.88501149e-02 2.98076347e-02 -1.28922153e+00 -2.15918154e-01 1.04714096e+00 -4.11460876e-01 2.81107545e-01 5.72601855e-01 9.84160304e-01 1.12486267e+00 1.85415864e-01 6.67762160e-01 1.33594275e+00 -6.60223365e-01 1.29621655e-01 3.29896897e-01 -4.91215795e-01 8.94310772e-01 -1.63687482e-01 -1.15612596e-01 -3.99558544e-01 -1.74744111e-02 1.17077315e+00 1.26967728e-01 -1.73431993e-01 -4.38062370e-01 -1.27113473e+00 1.13828027e+00 3.30693036e-01 1.85636416e-01 -3.42883140e-01 3.90116632e-01 1.85457900e-01 4.21075940e-01 6.04618132e-01 4.32044327e-01 -3.05731446e-01 -1.40481517e-02 -8.50771964e-01 -1.55637413e-01 5.34253180e-01 9.96716857e-01 1.04053617e+00 1.84182018e-01 -2.14495569e-01 9.63221788e-01 1.16193101e-01 6.55411363e-01 4.97217625e-01 -1.17491984e+00 7.78022707e-02 5.83450079e-01 -1.09226234e-01 -1.31220865e+00 1.40920579e-01 2.17721704e-02 -1.03416872e+00 2.55757898e-01 3.20447475e-01 -5.28458208e-02 -1.14086699e+00 1.81995738e+00 2.45084882e-01 -7.99179897e-02 -1.27876237e-01 8.72754276e-01 5.24334311e-01 5.75565696e-01 -1.29188523e-01 -1.68930694e-01 1.01423967e+00 -8.70590746e-01 -1.02765524e+00 3.37204672e-02 2.66815007e-01 -9.33414400e-01 1.33506536e+00 2.78100729e-01 -8.34685147e-01 -5.61442316e-01 -9.43438530e-01 -1.43557936e-01 -5.69939852e-01 2.46850461e-01 1.05341864e+00 7.33717382e-01 -9.95303035e-01 5.82571447e-01 -6.54289186e-01 -3.15482497e-01 3.04557562e-01 2.53561735e-01 -4.25664961e-01 3.37401666e-02 -1.11783397e+00 6.54437423e-01 2.26553500e-01 1.96815997e-01 -6.86169744e-01 -2.72030056e-01 -8.35428715e-01 -2.35974982e-01 3.14129889e-01 -7.08521068e-01 6.23782635e-01 -1.75534832e+00 -1.77885413e+00 8.10566962e-01 8.13999027e-03 4.93225306e-02 7.79167950e-01 -5.80192953e-02 -4.02639151e-01 7.92040750e-02 1.99437529e-01 9.86404657e-01 1.32337058e+00 -1.24331129e+00 -1.83463797e-01 -1.87346056e-01 6.28326088e-02 2.40625620e-01 -3.50440264e-01 -3.41868959e-02 -4.97255296e-01 -9.24512804e-01 2.45718434e-01 -8.91231358e-01 -1.85839057e-01 3.44187826e-01 -5.42186975e-01 1.19166844e-01 7.77889013e-01 -8.23133767e-01 6.46251738e-01 -2.28810310e+00 2.31974840e-01 4.20627803e-01 4.50255647e-02 -9.77725014e-02 -1.08850345e-01 1.57255113e-01 9.53512713e-02 1.93032026e-01 -5.59147239e-01 -8.05014968e-02 4.61708046e-02 4.26166028e-01 -1.89671293e-01 4.02750850e-01 9.44559649e-03 9.57973838e-01 -8.65216434e-01 -6.45864725e-01 2.48111188e-01 5.09153843e-01 -4.70000952e-01 2.28865474e-01 -3.22032094e-01 4.71891165e-01 -2.68612176e-01 6.14669800e-01 6.64839506e-01 9.87251624e-02 1.25932634e-01 -5.00062585e-01 2.11161897e-01 -4.32855129e-01 -1.17720723e+00 1.69905996e+00 -3.10414255e-01 6.90570772e-01 -7.89103657e-02 -9.68802631e-01 9.84438002e-01 9.62881446e-02 6.58626437e-01 -4.44092274e-01 1.49249226e-01 -1.90481078e-02 -3.17022413e-01 -3.89456511e-01 4.60952967e-01 1.68406554e-02 -1.47781134e-01 3.29155892e-01 1.27388328e-01 -4.35242087e-01 -8.12003314e-02 7.24763274e-02 6.97225988e-01 2.31960714e-01 1.68700352e-01 -1.05048455e-01 2.90869266e-01 -5.84440716e-02 5.39105475e-01 6.81860864e-01 1.02821685e-01 8.51494610e-01 6.17204487e-01 -1.90017462e-01 -1.29253185e+00 -1.06376719e+00 6.25127405e-02 9.39222038e-01 2.20467746e-01 -1.32599071e-01 -1.13416684e+00 -7.95439720e-01 -1.74679428e-01 6.37388289e-01 -8.91355395e-01 -3.61387283e-01 -1.54042065e-01 -6.99158728e-01 5.25872469e-01 4.07267332e-01 8.24503303e-01 -1.11827898e+00 -1.19355842e-01 -2.19533648e-02 -1.18783444e-01 -9.22249019e-01 -7.82299995e-01 -4.43518721e-02 -6.32345796e-01 -1.06774116e+00 -6.93557858e-01 -7.38324225e-01 1.16792631e+00 -5.97640648e-02 7.28368580e-01 3.20759080e-02 -3.89340192e-01 4.89188790e-01 -4.64079350e-01 -2.54061908e-01 -4.81453747e-01 -1.61639601e-01 -7.49516785e-02 2.24146023e-01 1.45358846e-01 -4.15918648e-01 -2.88097441e-01 4.23459709e-01 -1.05774689e+00 1.94752365e-01 5.44376433e-01 1.01599705e+00 5.53895116e-01 1.56750962e-01 3.40548158e-01 -1.19033146e+00 6.29483938e-01 -1.10316575e-01 -3.49897563e-01 4.25947547e-01 -5.82894325e-01 5.18582575e-03 5.02507269e-01 -5.68052590e-01 -1.02273905e+00 1.56110033e-01 -1.70053795e-01 -5.41448474e-01 -1.70017049e-01 1.96620643e-01 -4.49421823e-01 -2.53022283e-01 5.57172656e-01 3.24425101e-01 2.61056036e-01 -2.04429790e-01 7.10891366e-01 5.32775104e-01 4.31044817e-01 -3.78823251e-01 8.27270627e-01 5.67572534e-01 -2.07935557e-01 -7.46760070e-01 -6.88965857e-01 -2.92728655e-02 -8.39281678e-01 -2.66533345e-01 1.17153275e+00 -6.88858449e-01 -4.23124880e-01 6.68026567e-01 -9.99216735e-01 -2.61094600e-01 -6.48480415e-01 4.93941933e-01 -6.13485456e-01 5.15010715e-01 -6.21943355e-01 -5.28327405e-01 -1.31889388e-01 -1.07989919e+00 9.27212656e-01 5.76232225e-02 -1.89126462e-01 -1.09537160e+00 -1.94033176e-01 1.87748417e-01 5.26811361e-01 4.99846399e-01 9.90862072e-01 -6.80136457e-02 -5.30111790e-01 -2.52067119e-01 -1.84700772e-01 6.52081490e-01 4.79680806e-01 1.74121618e-01 -8.05812180e-01 -8.82408917e-02 3.94494422e-02 -8.18552747e-02 6.39106691e-01 4.75152224e-01 1.49137294e+00 -4.97459531e-01 -1.19632771e-02 9.40702319e-01 1.37711561e+00 2.40645558e-01 9.37866330e-01 1.15057528e-01 1.15131927e+00 4.50579673e-01 5.45486569e-01 1.15717620e-01 4.62316200e-02 6.54864788e-01 3.27025831e-01 -5.23026943e-01 -7.78802931e-02 -4.47825521e-01 4.95767087e-01 9.60278332e-01 -2.35861659e-01 -7.47201666e-02 -3.23967189e-01 5.00265360e-01 -1.64168406e+00 -7.20003545e-01 -1.52740963e-02 1.93945491e+00 1.04586983e+00 -5.43054491e-02 -1.59270808e-01 1.94916241e-02 8.55471551e-01 4.63418029e-02 -6.12756073e-01 -5.47264218e-01 -2.19307795e-01 2.94728369e-01 8.10578704e-01 3.78717870e-01 -9.15284157e-01 1.13793063e+00 7.07143974e+00 9.76944745e-01 -1.15417635e+00 2.51546443e-01 4.39436495e-01 2.97468632e-01 -6.48828983e-01 9.02140960e-02 -3.03340167e-01 5.91156662e-01 2.10386306e-01 1.50084108e-01 7.58467734e-01 9.15084183e-01 -2.24667117e-01 -4.24387790e-02 -7.97944605e-01 9.31325734e-01 2.67112553e-01 -1.01798677e+00 2.40616530e-01 1.27264678e-01 1.05877626e+00 -5.97974837e-01 2.41596892e-01 6.07270971e-02 4.19357955e-01 -1.08610177e+00 6.72980726e-01 7.95731306e-01 1.24200487e+00 -6.50299013e-01 7.33257830e-01 1.70204148e-01 -7.91757405e-01 4.05804485e-01 -5.76296151e-01 1.46654814e-01 -5.83575070e-02 7.25314081e-01 -6.80800915e-01 3.10332060e-01 4.10137534e-01 6.86141372e-01 -4.95601267e-01 4.20198798e-01 -5.77590764e-01 4.45273548e-01 -1.74482480e-01 1.91417530e-01 -1.04032084e-01 -5.46130121e-01 2.97301680e-01 8.33209872e-01 4.66481656e-01 -1.77580833e-01 8.80709365e-02 1.03554273e+00 -6.82549998e-02 2.52782643e-01 -6.12515509e-01 -2.27770150e-01 2.14928091e-01 1.14669287e+00 -9.52995420e-01 -3.50481808e-01 -2.07758412e-01 1.58567679e+00 -1.66077748e-01 3.97863686e-01 -1.07591403e+00 -4.72823083e-01 4.63086575e-01 -7.14794770e-02 2.34984845e-01 -3.22982848e-01 -4.08650994e-01 -1.29024172e+00 -1.53429598e-01 -8.32854152e-01 -7.70475119e-02 -9.57111001e-01 -1.36861122e+00 3.45149457e-01 -1.59166008e-01 -1.13036549e+00 -1.72255635e-01 -3.85906875e-01 -4.26583618e-01 7.58099616e-01 -1.02947986e+00 -1.46813738e+00 -4.43852991e-01 8.49775195e-01 4.99203742e-01 -2.95951575e-01 1.02793133e+00 2.31594354e-01 -2.59577423e-01 7.50123382e-01 1.73757866e-01 3.87600452e-01 7.19419122e-01 -1.22171545e+00 1.16218314e-01 6.80343509e-01 1.78457022e-01 4.91374135e-01 5.81364691e-01 -7.69709468e-01 -1.19862592e+00 -1.12438560e+00 4.33410108e-01 -2.70243704e-01 1.89622074e-01 -4.17520076e-01 -6.34527922e-01 9.03803766e-01 1.72630474e-01 -1.50825769e-01 5.44680834e-01 -6.13495037e-02 -7.93399196e-03 5.91798860e-04 -1.32734144e+00 4.28180695e-01 1.12964404e+00 -6.99778795e-01 -3.70542407e-01 3.81205767e-01 6.41261458e-01 -4.81518507e-01 -9.13210809e-01 3.22520077e-01 4.56913859e-01 -8.34320843e-01 8.37488770e-01 -4.45085287e-01 5.53366661e-01 -3.17569345e-01 -2.06083700e-01 -1.48814690e+00 -3.12776923e-01 -1.95621476e-01 3.37605864e-01 1.36718082e+00 1.24200188e-01 -6.16503477e-01 7.60596037e-01 4.29621547e-01 7.53476918e-02 -3.57889980e-01 -5.79545498e-01 -6.31208539e-01 -3.90754968e-01 -2.71966219e-01 7.48664737e-01 1.36747050e+00 -5.14637232e-01 -3.40644717e-02 -7.99511850e-01 -7.05512837e-02 6.85208499e-01 1.41004641e-02 9.61321115e-01 -9.33963835e-01 -2.05946490e-01 -1.27461389e-01 -6.38283372e-01 -7.76543140e-01 2.60619074e-01 -8.23291123e-01 9.19448435e-02 -1.37887168e+00 1.43759772e-01 -6.03737473e-01 -1.27768397e-01 6.27352118e-01 9.70194675e-03 5.53731263e-01 -8.30164063e-04 3.04182023e-01 -3.97149175e-01 6.72336578e-01 1.55505085e+00 -2.06303433e-01 -3.60258408e-02 -2.01789364e-01 -6.07538462e-01 9.01261806e-01 6.72290206e-01 -4.98068571e-01 -3.88310045e-01 -4.22430664e-01 1.71212599e-01 -1.13506027e-01 4.56471622e-01 -8.29403639e-01 -5.16872481e-02 -4.20992285e-01 7.69343972e-01 -2.21145868e-01 3.69100004e-01 -9.59270239e-01 5.40075064e-01 1.78190559e-01 -3.67018580e-01 -2.27460295e-01 -3.70016277e-01 4.65056330e-01 -4.29607719e-01 -2.30044946e-01 7.74860203e-01 -4.46301967e-01 -7.63864636e-01 2.05818847e-01 -2.85262346e-01 -1.81834847e-01 1.08303916e+00 -4.54067439e-01 7.15599060e-02 -5.86460292e-01 -8.32437634e-01 -2.40142986e-01 8.79376709e-01 3.23011577e-01 6.09710276e-01 -1.55879974e+00 -4.10366863e-01 5.58362782e-01 -1.51389375e-01 -3.50337272e-04 1.92923278e-01 5.30016899e-01 -6.67151153e-01 -1.41530320e-01 -6.33735597e-01 -7.11793482e-01 -1.07315183e+00 3.73811632e-01 2.58501917e-01 9.12571475e-02 -3.87637287e-01 8.55120003e-01 1.93507746e-01 -5.97634971e-01 -1.49165288e-01 -1.46959305e-01 -1.09646827e-01 8.86946023e-02 -7.10590463e-03 2.33399376e-01 -3.21194530e-01 -6.07684970e-01 6.61741719e-02 8.38058650e-01 1.45762727e-01 -1.03682861e-01 1.17512059e+00 -1.22896701e-01 -3.78298640e-01 5.04534960e-01 1.21368647e+00 2.94734478e-01 -1.28398180e+00 -2.71443930e-02 -3.83033365e-01 -8.80342424e-01 -5.39998077e-02 -5.63095510e-01 -1.41148901e+00 6.61932111e-01 7.88869381e-01 1.85937062e-01 1.26545489e+00 -1.39633849e-01 8.90000582e-01 -1.02082789e-01 3.94009739e-01 -1.38838243e+00 2.08923101e-01 2.58401245e-01 8.17111552e-01 -1.21373940e+00 3.03003415e-02 -7.07975149e-01 -8.70672405e-01 1.00106716e+00 6.10152245e-01 -2.28167161e-01 4.67564017e-01 5.85308075e-02 1.68708026e-01 -2.02074945e-01 -1.42802924e-01 -3.32604907e-03 2.66804993e-01 7.48843789e-01 1.27351612e-01 3.34160179e-01 -2.63996184e-01 2.00553477e-01 -3.67450774e-01 -6.54615015e-02 4.35070008e-01 6.44444525e-01 -1.52914405e-01 -1.24307442e+00 -3.87649238e-01 5.28067589e-01 -3.23607087e-01 -6.15651868e-02 -2.86189824e-01 7.22903073e-01 5.51676214e-01 4.38957423e-01 1.52790308e-01 -4.02400970e-01 1.87610075e-01 -1.65110044e-02 6.88638210e-01 -5.14479578e-01 -1.74098924e-01 6.15951754e-02 -2.42272943e-01 -5.51785409e-01 -5.52755415e-01 -5.66968679e-01 -9.57479596e-01 -2.65702307e-01 -3.92979831e-01 7.54971430e-02 1.06278765e+00 8.96711230e-01 2.05630343e-02 5.58289766e-01 6.77154422e-01 -5.16164243e-01 -2.26836354e-01 -9.25078809e-01 -9.12491262e-01 8.14855635e-01 -7.92252719e-02 -6.69918656e-01 -3.60005766e-01 5.25362790e-01]
[11.736138343811035, -0.45144644379615784]
30ad301d-d49c-4d01-b2e0-ce97f1ded628
a-dataset-for-building-code-mixed-goal
1806.05997
null
http://arxiv.org/abs/1806.05997v1
http://arxiv.org/pdf/1806.05997v1.pdf
A Dataset for Building Code-Mixed Goal Oriented Conversation Systems
There is an increasing demand for goal-oriented conversation systems which can assist users in various day-to-day activities such as booking tickets, restaurant reservations, shopping, etc. Most of the existing datasets for building such conversation systems focus on monolingual conversations and there is hardly any work on multilingual and/or code-mixed conversations. Such datasets and systems thus do not cater to the multilingual regions of the world, such as India, where it is very common for people to speak more than one language and seamlessly switch between them resulting in code-mixed conversations. For example, a Hindi speaking user looking to book a restaurant would typically ask, "Kya tum is restaurant mein ek table book karne mein meri help karoge?" ("Can you help me in booking a table at this restaurant?"). To facilitate the development of such code-mixed conversation models, we build a goal-oriented dialog dataset containing code-mixed conversations. Specifically, we take the text from the DSTC2 restaurant reservation dataset and create code-mixed versions of it in Hindi-English, Bengali-English, Gujarati-English and Tamil-English. We also establish initial baselines on this dataset using existing state of the art models. This dataset along with our baseline implementations is made publicly available for research purposes.
['Suman Banerjee', 'Mitesh M. Khapra', 'Siddhartha Arora', 'Nikita Moghe']
2018-06-15
a-dataset-for-building-code-mixed-goal-2
https://aclanthology.org/C18-1319
https://aclanthology.org/C18-1319.pdf
coling-2018-8
['goal-oriented-dialog']
['natural-language-processing']
[-4.78752702e-01 -5.58755398e-02 -1.17605999e-01 -6.94611788e-01 -1.04426277e+00 -8.49968255e-01 7.24576890e-01 3.90477409e-03 -3.16605419e-01 1.01827466e+00 6.29723847e-01 -8.81130934e-01 2.37597436e-01 -5.64302206e-01 -1.61556646e-01 -3.21040779e-01 1.36852577e-01 1.04437816e+00 -2.35685706e-02 -1.22455537e+00 -4.14536819e-02 -1.05784893e-01 -9.86777782e-01 5.23497462e-01 7.63531983e-01 3.32149178e-01 4.44005340e-01 9.29950595e-01 -3.73437673e-01 1.06382442e+00 -4.21860635e-01 -6.70652568e-01 4.82116314e-03 -6.80910230e-01 -1.22677684e+00 1.29729137e-01 -2.55472828e-02 -3.99169058e-01 -1.96157366e-01 6.66214049e-01 4.00144875e-01 3.21888685e-01 5.16333699e-01 -1.28314710e+00 -5.04652679e-01 9.39355731e-01 -9.82954800e-02 -5.10757864e-02 7.50061631e-01 -1.52017936e-01 1.15189052e+00 -6.87075853e-01 6.93454444e-01 1.33682311e+00 4.13591474e-01 5.21126628e-01 -1.03538811e+00 -5.57385325e-01 8.12605023e-02 -8.27374682e-02 -1.05918431e+00 -6.70160651e-01 5.76048374e-01 -2.46025249e-01 1.03929818e+00 4.91370440e-01 3.00131470e-01 1.27036786e+00 3.97498421e-02 1.03668535e+00 1.08872747e+00 -2.27291331e-01 -1.23394258e-01 6.81551337e-01 7.43611977e-02 2.57898599e-01 -5.25556505e-01 -3.71426314e-01 -3.58951241e-01 -7.21376464e-02 1.47869393e-01 -1.13806993e-01 4.92768846e-02 7.00421929e-02 -1.42124677e+00 1.13566923e+00 2.79131174e-01 5.99407256e-01 -9.12354980e-03 -3.82646799e-01 6.08237565e-01 7.12069333e-01 4.19729590e-01 2.19100118e-02 -6.33480251e-01 -6.72813952e-01 -6.13197982e-01 7.26374686e-01 1.35743403e+00 1.47639239e+00 7.39927769e-01 -3.26264292e-01 2.61432439e-01 1.43972838e+00 3.65098119e-01 4.24832791e-01 2.74646550e-01 -8.52881372e-01 9.13542628e-01 5.46209574e-01 2.05934778e-01 -5.88422358e-01 -5.27066827e-01 1.27849087e-01 -7.52551198e-01 -4.57427442e-01 5.62144995e-01 -5.51401079e-01 -4.17741537e-01 1.33842456e+00 1.32992133e-01 -6.62415624e-01 5.05945802e-01 7.07582533e-01 1.19936585e+00 7.41683006e-01 -2.25183427e-01 4.81278002e-02 1.47010887e+00 -1.43322587e+00 -8.64433646e-01 -4.21513975e-01 7.72031724e-01 -1.21219051e+00 1.27083480e+00 3.05713471e-02 -9.82317507e-01 -4.01597679e-01 -5.28123379e-01 -3.48297834e-01 -7.27367401e-01 1.93500072e-02 6.85105264e-01 8.60262454e-01 -1.09660006e+00 -1.99154079e-01 -4.82782155e-01 -8.61609459e-01 -6.89704239e-01 5.21086529e-02 -4.25649047e-01 -2.57498890e-01 -1.58884251e+00 9.78283226e-01 1.20969549e-01 9.96159837e-02 -6.26178920e-01 -1.35043338e-01 -1.26110065e+00 -3.41680318e-01 1.81200653e-01 5.39150871e-02 1.83137989e+00 -5.79844654e-01 -1.55633950e+00 9.39460576e-01 -3.12283993e-01 -2.19026491e-01 6.32825613e-01 5.30626327e-02 -7.72433996e-01 -5.04217029e-01 4.67336476e-01 6.66514277e-01 1.61458086e-02 -1.08942676e+00 -9.36463594e-01 -2.64981449e-01 6.98867440e-01 5.38031042e-01 2.45839089e-01 3.11801821e-01 -4.12563354e-01 -3.38361800e-01 -5.61310723e-03 -1.25021172e+00 9.03046131e-03 -8.06263268e-01 -5.08932590e-01 -1.33737370e-01 8.63144457e-01 -8.32644701e-01 1.26985955e+00 -2.04216218e+00 -2.67764091e-01 -1.93773031e-01 -1.98015153e-01 -1.20165400e-01 1.85537949e-01 1.18256259e+00 3.88776422e-01 -9.27970931e-02 -1.27394691e-01 -4.66689676e-01 1.71673715e-01 5.95546365e-01 5.53666009e-03 1.37576377e-02 -2.44223312e-01 7.13581562e-01 -1.03595507e+00 -3.43243688e-01 3.70659411e-01 2.47125089e-01 -6.97316766e-01 3.11281830e-01 -2.04690889e-01 8.47003937e-01 -1.07052878e-01 8.00885677e-01 5.04831731e-01 1.10288382e-01 3.81903380e-01 3.37308258e-01 -4.14484441e-01 1.01759398e+00 -1.01959658e+00 1.64081252e+00 -9.43956792e-01 6.72767639e-01 5.10580003e-01 -6.50319397e-01 8.77324700e-01 5.45543849e-01 2.01893166e-01 -6.32517219e-01 1.18381433e-01 3.95471364e-01 1.26884148e-01 -3.49154264e-01 9.87747490e-01 7.77718029e-04 -7.15373635e-01 4.29780602e-01 -3.46876204e-01 -3.60397279e-01 5.12523293e-01 3.64890367e-01 7.55587935e-01 -1.62330419e-01 1.94426984e-01 -3.70989501e-01 9.17024851e-01 2.61066884e-01 1.09992698e-01 5.48400104e-01 -4.47241962e-01 4.45697606e-01 2.89135993e-01 -1.78467199e-01 -8.95454407e-01 -8.79816711e-01 -2.22946808e-01 1.76594162e+00 -7.06369206e-02 -4.25045818e-01 -4.86947268e-01 -4.52491254e-01 -3.31409693e-01 8.35674703e-01 -1.47097453e-01 4.54027593e-01 -4.96745199e-01 -3.49515855e-01 4.68833834e-01 4.52445783e-02 1.15440583e+00 -1.02721167e+00 2.15124995e-01 6.07354581e-01 -9.81078327e-01 -1.26580191e+00 -9.17315900e-01 2.93245852e-01 -2.65847236e-01 -6.41931474e-01 -7.21364677e-01 -1.17612767e+00 6.29037470e-02 4.32849377e-01 1.32763720e+00 -1.99923307e-01 2.31335700e-01 1.62123010e-01 -5.88669121e-01 -2.68466920e-01 -1.00402665e+00 5.27894080e-01 -1.05903663e-01 -2.18410179e-01 7.55822182e-01 -2.86787063e-01 -3.05341601e-01 6.51349068e-01 -3.71165514e-01 2.17113331e-01 7.91323259e-02 8.42485487e-01 -3.96329105e-01 -1.81541875e-01 8.22668374e-01 -1.10353220e+00 9.06580865e-01 -7.39028335e-01 -9.13631469e-02 1.29667309e-03 -8.60364661e-02 -2.20860347e-01 5.99462390e-01 -1.32771015e-01 -1.13715267e+00 -1.47806868e-01 -8.68585765e-01 6.38191998e-01 -3.20386052e-01 6.26283765e-01 -3.02455842e-01 3.63027006e-01 5.03962398e-01 2.99907357e-01 -1.56908572e-01 -3.95042747e-01 4.17938113e-01 1.62663829e+00 4.19223756e-01 -5.80073059e-01 2.90449053e-01 5.47698326e-02 -9.23163831e-01 -1.14825821e+00 -3.39528859e-01 -9.68046248e-01 -4.94515896e-01 -2.61843234e-01 9.37117815e-01 -1.10504150e+00 -8.71774435e-01 5.46504021e-01 -1.00484765e+00 -6.02271557e-01 6.90020561e-01 3.47634792e-01 -4.90460783e-01 6.40226714e-03 -1.02183962e+00 -8.75310481e-01 -7.92747065e-02 -1.47137260e+00 1.04868555e+00 2.39093341e-02 -6.36679411e-01 -1.29132700e+00 9.40435529e-02 8.66264224e-01 6.65161788e-01 -2.09889054e-01 9.72070813e-01 -8.39881480e-01 -1.50042549e-01 -3.40612754e-02 -1.17566653e-01 1.30571023e-01 5.55128872e-01 -2.13800654e-01 -7.95273364e-01 -2.41859630e-01 -2.14780316e-01 -6.71696305e-01 3.07164080e-02 2.07023695e-02 2.97482628e-02 -3.55721205e-01 -8.31607077e-03 -7.73426741e-02 9.02727187e-01 5.48806250e-01 4.18626010e-01 3.50846410e-01 4.90029693e-01 8.70854795e-01 6.74050272e-01 4.22320724e-01 1.44126999e+00 7.90898323e-01 -9.69360694e-02 1.15282513e-01 2.17115194e-01 -2.58820504e-01 4.97779876e-01 1.44642365e+00 3.70666087e-01 -1.25009820e-01 -1.04404652e+00 9.73810315e-01 -1.83469629e+00 -7.30835617e-01 -2.62292653e-01 1.94420874e+00 1.24872494e+00 1.10696675e-02 4.71431881e-01 -1.63338065e-01 6.03372812e-01 1.80295348e-01 -2.07596142e-02 -6.95531964e-01 2.63557345e-01 -4.46455687e-01 2.01184571e-01 1.05339479e+00 -1.07679689e+00 1.22195971e+00 5.40323305e+00 4.58234370e-01 -9.50189471e-01 2.24521995e-01 7.39776969e-01 2.68046498e-01 -2.06189215e-01 1.68483749e-01 -1.14255333e+00 5.67165792e-01 1.33101869e+00 -4.15346064e-02 7.68352628e-01 9.85493243e-01 3.28114957e-01 -2.75803149e-01 -1.20036829e+00 1.05223775e+00 -2.32945874e-01 -1.08213508e+00 -3.81134957e-01 -6.13983124e-02 5.67375243e-01 1.90335602e-01 -2.04221353e-01 1.05068076e+00 1.01907063e+00 -7.23419726e-01 6.43032789e-01 -2.37254918e-01 4.19074565e-01 -8.50717306e-01 7.62448251e-01 7.98326135e-01 -1.27845550e+00 1.58663526e-01 -1.17811663e-02 -1.71542197e-01 3.84581596e-01 9.38291661e-03 -1.05086315e+00 3.69432420e-01 8.09186101e-01 3.62252116e-01 -2.05032170e-01 3.20452631e-01 8.64613652e-02 3.23010236e-01 -1.86084196e-01 -3.32081586e-01 7.09846377e-01 -4.58220243e-01 2.82266617e-01 1.43071544e+00 1.38635427e-01 -5.81442080e-02 4.47429001e-01 4.20082062e-01 -1.35387897e-01 2.08929852e-01 -8.60420525e-01 -6.10321648e-02 4.02126521e-01 1.16267896e+00 -5.93522549e-01 -1.35584533e-01 -8.15335035e-01 1.04868019e+00 1.01083353e-01 2.44098350e-01 -6.51906788e-01 -5.44881225e-01 7.40604699e-01 6.96954876e-02 -3.08046848e-01 -5.01010120e-01 1.18749879e-01 -1.05030632e+00 -8.49496722e-02 -1.51719058e+00 2.64315575e-01 -5.93750536e-01 -1.19559336e+00 8.27859402e-01 8.14594328e-02 -9.01368678e-01 -9.42379773e-01 -2.59817451e-01 -2.94668347e-01 9.83230770e-01 -1.27414024e+00 -1.33696711e+00 -1.43804193e-01 7.51653314e-01 1.12798381e+00 -2.45224103e-01 9.52743232e-01 7.08319306e-01 -1.90843821e-01 5.54361939e-01 2.57541329e-01 5.44764876e-01 9.92705762e-01 -1.34559083e+00 6.79298818e-01 3.58063817e-01 -3.29157077e-02 7.78303027e-01 7.93582261e-01 -6.18189394e-01 -1.23347080e+00 -8.44306648e-01 1.61385870e+00 -6.77928567e-01 9.04535532e-01 -9.95303333e-01 -6.30503058e-01 9.43163335e-01 6.26067817e-01 -6.88304126e-01 6.50527358e-01 3.61688614e-01 6.56303987e-02 4.27542366e-02 -1.16417634e+00 8.35138083e-01 7.90383756e-01 -7.85761774e-01 -4.99954432e-01 5.68591833e-01 5.86930871e-01 -6.99775040e-01 -6.92869663e-01 -1.88879460e-01 4.51337337e-01 -1.17301309e+00 5.85119247e-01 -3.47627908e-01 2.18894899e-01 1.18172690e-01 -4.09574002e-01 -1.47598302e+00 1.70322597e-01 -9.11662936e-01 5.84597647e-01 1.49487424e+00 6.99787617e-01 -6.81819856e-01 6.30511940e-01 8.32095861e-01 -1.71494603e-01 -1.76854968e-01 -8.70750427e-01 -4.78726238e-01 3.91751111e-01 -3.94633919e-01 6.58870876e-01 9.51827645e-01 4.61701423e-01 6.48180008e-01 -5.25559843e-01 -1.77196324e-01 -2.31017149e-03 1.06814746e-02 1.16398287e+00 -7.26500273e-01 -2.52004296e-01 -1.47860482e-01 1.21876426e-01 -1.46323466e+00 9.34706628e-02 -8.67324531e-01 3.56222630e-01 -1.71980464e+00 -1.76810861e-01 -8.22181165e-01 5.71736693e-01 2.96745211e-01 4.34064679e-02 4.98775542e-02 1.57911718e-01 1.67597800e-01 -4.80958819e-01 1.98997110e-01 9.97631907e-01 -1.75150529e-01 -5.14896154e-01 4.46732938e-01 -8.44708622e-01 4.36827898e-01 6.77511513e-01 -1.62399352e-01 -5.69475591e-01 -3.20826173e-01 2.13097721e-01 6.37808621e-01 -2.96996951e-01 -7.50203907e-01 1.40659466e-01 -1.67873457e-01 -3.41078728e-01 -5.99375069e-01 4.16391939e-01 -8.65464211e-01 7.36495331e-02 1.24424696e-01 -3.84777874e-01 2.53591090e-01 7.43354857e-03 1.25228941e-01 -4.89086360e-01 -1.47989959e-01 6.68112993e-01 -4.90511447e-01 -6.76908374e-01 -1.03828229e-01 -1.05743015e+00 2.47608572e-01 8.47729206e-01 3.04785017e-02 -4.07786399e-01 -1.25333989e+00 -5.96676886e-01 7.91317165e-01 2.71738231e-01 8.47316682e-01 3.61058004e-02 -1.31425703e+00 -7.36856222e-01 2.44434237e-01 4.39824849e-01 -3.44384313e-01 1.80892915e-01 7.00937867e-01 -7.40949988e-01 9.05737996e-01 -1.14806600e-01 -3.84134918e-01 -1.14939201e+00 8.64023417e-02 1.53249323e-01 -3.04451883e-01 -2.14152455e-01 6.71640158e-01 -9.11434665e-02 -1.49321258e+00 3.03989053e-01 -3.09589356e-01 -2.09469646e-01 1.30008847e-01 3.94582599e-01 1.27078086e-01 1.97875798e-01 -9.71931458e-01 -4.28278834e-01 -1.21740133e-01 -3.00044149e-01 -4.87165481e-01 8.00184369e-01 -7.75761783e-01 -2.63498306e-01 8.70977819e-01 1.37586939e+00 1.69991195e-01 -6.02237344e-01 -1.63801327e-01 1.44781530e-01 -2.50913113e-01 -4.06342834e-01 -8.02261949e-01 -5.05939245e-01 7.59461880e-01 2.14807585e-01 5.89988589e-01 6.18338645e-01 1.51656121e-01 1.06434512e+00 7.24387586e-01 7.43226409e-01 -1.16071486e+00 -2.35746056e-01 1.29756069e+00 8.30492795e-01 -1.67443681e+00 -6.72358990e-01 -1.74188346e-01 -1.14486027e+00 8.14704120e-01 4.49664325e-01 4.00028259e-01 7.90057838e-01 2.72443175e-01 7.27061450e-01 7.25352690e-02 -7.76961982e-01 -4.69877273e-01 -2.02894688e-01 6.26441360e-01 1.13684475e+00 2.21846357e-01 -3.41785222e-01 4.08475518e-01 -8.24358165e-01 -3.95706892e-01 6.87380016e-01 1.11772990e+00 -2.65971303e-01 -1.52893686e+00 -2.41993994e-01 2.29923159e-01 -4.52872008e-01 -4.35408324e-01 -6.05895460e-01 1.00843203e+00 -2.51672119e-01 1.69918716e+00 2.67182128e-03 -4.10283387e-01 2.22241938e-01 4.24811095e-01 -1.60831064e-01 -7.52754986e-01 -1.01765919e+00 2.26855278e-01 7.64555573e-01 -4.01164219e-02 -4.44862545e-01 -5.42634487e-01 -1.20870447e+00 -1.02228045e+00 -9.33448970e-02 4.74779755e-01 7.16420770e-01 9.21154559e-01 -7.51179010e-02 1.24885872e-01 5.98746598e-01 -6.08294725e-01 -1.04596071e-01 -1.28829741e+00 -5.68535745e-01 2.96542913e-01 4.00017112e-01 -2.98083127e-01 -2.58275777e-01 2.23128963e-02]
[12.570096015930176, 8.221664428710938]
46b9fc8a-7f75-4f17-98cb-52d048ed5cba
automated-top-view-registration-of-broadcast
1703.01437
null
http://arxiv.org/abs/1703.01437v1
http://arxiv.org/pdf/1703.01437v1.pdf
Automated Top View Registration of Broadcast Football Videos
In this paper, we propose a novel method to register football broadcast video frames on the static top view model of the playing surface. The proposed method is fully automatic in contrast to the current state of the art which requires manual initialization of point correspondences between the image and the static model. Automatic registration using existing approaches has been difficult due to the lack of sufficient point correspondences. We investigate an alternate approach exploiting the edge information from the line markings on the field. We formulate the registration problem as a nearest neighbour search over a synthetically generated dictionary of edge map and homography pairs. The synthetic dictionary generation allows us to exhaustively cover a wide variety of camera angles and positions and reduce this problem to a minimal per-frame edge map matching procedure. We show that the per-frame results can be improved in videos using an optimization framework for temporal camera stabilization. We demonstrate the efficacy of our approach by presenting extensive results on a dataset collected from matches of football World Cup 2014.
['Vineet Gandhi', 'C. V. Jawahar', 'Rahul Anand Sharma', 'Bharath Bhat']
2017-03-04
null
null
null
null
['bird-view-synthesis', 'homography-estimation']
['computer-vision', 'computer-vision']
[ 3.19960654e-01 -3.23930621e-01 2.77762264e-02 -9.21006724e-02 -7.71774530e-01 -6.93594217e-01 6.00666344e-01 2.84500774e-02 -5.67238331e-01 3.67001176e-01 -8.77508372e-02 2.65994996e-01 -8.26954693e-02 -6.04751766e-01 -8.23671281e-01 -3.07305634e-01 6.64664358e-02 4.81846809e-01 7.87280262e-01 -5.50691605e-01 5.37935078e-01 5.40820301e-01 -1.61022985e+00 1.27549116e-02 2.09869713e-01 6.97719693e-01 7.94671401e-02 7.40846515e-01 4.21192139e-01 8.08546171e-02 -3.34762305e-01 -4.84375536e-01 8.02459538e-01 -4.75016326e-01 -6.70234501e-01 5.82134187e-01 8.81653428e-01 -1.62492901e-01 -3.66530299e-01 1.04265070e+00 5.42123795e-01 4.07680750e-01 8.78242850e-02 -1.20392776e+00 3.18925023e-01 -2.06437513e-01 -7.22498953e-01 9.59565043e-02 1.03143632e+00 -2.28104562e-01 6.42717004e-01 -8.00941288e-01 1.19348800e+00 8.04152131e-01 9.54929411e-01 1.21729180e-01 -1.30975902e+00 -4.21344906e-01 -1.46003872e-01 4.29668128e-01 -1.62519491e+00 -5.65319002e-01 9.01704609e-01 -5.17774940e-01 6.86884522e-01 2.28741989e-01 9.80709016e-01 5.20020306e-01 1.64062586e-02 3.35334204e-02 9.99686122e-01 -9.48708415e-01 -2.80332975e-02 -2.40926564e-01 3.35147940e-02 6.90189779e-01 1.82937577e-01 2.83346176e-01 -8.40042174e-01 -6.14504106e-02 1.17713678e+00 -2.12485611e-01 -3.04398000e-01 -1.00227582e+00 -1.34247804e+00 6.40770078e-01 -1.25077171e-02 2.44512215e-01 -2.89194942e-01 9.56132933e-02 1.88994646e-01 2.36372620e-01 2.83345163e-01 2.86993086e-01 4.12011705e-02 -4.09121901e-01 -1.18780625e+00 3.96012604e-01 8.43334377e-01 1.14678812e+00 9.32825327e-01 -1.80421710e-01 4.27708030e-01 5.65313101e-01 3.99344694e-03 2.12709025e-01 1.36525124e-01 -1.39070213e+00 4.43799138e-01 3.19025427e-01 2.46186018e-01 -1.54554498e+00 -2.90888786e-01 2.93454155e-02 -2.01445550e-01 2.44620055e-01 6.77800417e-01 8.10062140e-03 -4.52382356e-01 1.33898830e+00 5.27326643e-01 3.55517238e-01 -2.05730438e-01 8.56014371e-01 3.90054613e-01 3.73125106e-01 -6.98989511e-01 -2.94735193e-01 1.24033928e+00 -8.01660299e-01 -7.36732602e-01 -1.57738417e-01 3.13460141e-01 -1.26493883e+00 5.08692145e-01 3.76008987e-01 -1.41490579e+00 -5.64351737e-01 -1.10461688e+00 5.47362827e-02 8.75659510e-02 9.73273367e-02 1.48504570e-01 5.83047450e-01 -1.21772540e+00 5.85744083e-01 -9.18127060e-01 -5.57545066e-01 -3.51301581e-01 7.47848451e-01 -8.11973214e-01 2.41567716e-02 -1.03722119e+00 8.62154901e-01 3.87901992e-01 6.92684278e-02 -1.96758807e-01 -3.75999451e-01 -9.66885924e-01 -2.42999390e-01 5.45409441e-01 -6.23709977e-01 1.14075553e+00 -1.06458735e+00 -1.69500959e+00 1.11984253e+00 -2.57849336e-01 -3.23950678e-01 7.12250710e-01 -1.53911024e-01 -1.00522026e-01 4.44392979e-01 1.09055884e-01 3.52074027e-01 5.73693216e-01 -1.31520760e+00 -7.64419615e-01 -1.14980802e-01 3.53502154e-01 4.57427889e-01 3.79482843e-02 1.11728802e-01 -1.07673192e+00 -6.91866159e-01 5.18860638e-01 -1.44790220e+00 -3.23917627e-01 -1.56158745e-01 4.06302065e-02 5.89051127e-01 6.30746305e-01 -6.73344314e-01 1.26715124e+00 -2.05178905e+00 3.26344460e-01 6.16345644e-01 -2.70731270e-01 -1.93363614e-02 2.73717940e-01 5.78978062e-01 -1.89002290e-01 -5.40003479e-01 -2.55695917e-02 -1.50028944e-01 -3.00584346e-01 1.57270506e-01 1.25356521e-02 1.08868778e+00 -5.13874650e-01 2.94194549e-01 -7.72317469e-01 -6.46478713e-01 4.12934273e-01 5.92993200e-01 -7.01690197e-01 -9.81587544e-02 3.37688476e-01 4.43982750e-01 -4.24734093e-02 4.52239513e-01 6.43870354e-01 3.70299906e-01 1.81508914e-01 -3.29237431e-01 -3.99925619e-01 -1.07591311e-02 -1.95953000e+00 2.28154302e+00 -1.40025556e-01 6.83005393e-01 1.53384805e-01 -8.94532204e-01 9.25031424e-01 4.95972306e-01 9.28185880e-01 -3.88675630e-01 2.89203286e-01 2.11122587e-01 -9.69236344e-02 -2.09660232e-01 8.65258515e-01 -1.90652102e-01 -9.64376926e-02 2.54428566e-01 5.02838865e-02 -2.06379965e-01 4.62521136e-01 -8.74832645e-02 6.64267123e-01 5.48576117e-01 4.78037566e-01 -3.00977528e-01 6.54943764e-01 2.97053844e-01 5.25873184e-01 4.33121890e-01 -2.57163588e-02 1.08363867e+00 1.69031367e-01 -5.39649248e-01 -1.18642581e+00 -6.46941960e-01 -6.63223192e-02 4.26908225e-01 6.47735178e-01 -8.07134092e-01 -1.00382268e+00 -7.67634958e-02 -3.93248260e-01 5.60275801e-02 -3.74283880e-01 7.91013762e-02 -1.05328798e+00 -4.07260567e-01 1.51639536e-01 3.27528656e-01 4.36587572e-01 -5.10354996e-01 -7.91172862e-01 2.00184897e-01 -4.35922831e-01 -1.53100228e+00 -6.87670887e-01 -3.97469610e-01 -8.98021102e-01 -1.19285154e+00 -6.01891518e-01 -8.78899693e-01 7.65097082e-01 4.94657993e-01 9.92077351e-01 5.87448552e-02 -1.47120178e-01 7.39238858e-01 -3.80844474e-01 8.97633806e-02 -3.27488899e-01 -1.15819030e-01 2.87800103e-01 2.19016299e-01 3.25145304e-01 -4.91681933e-01 -4.79865730e-01 7.56581426e-01 -8.10347199e-01 1.20416813e-01 5.96738607e-02 6.89948559e-01 7.96600580e-01 -7.96954427e-03 -2.16298118e-01 -6.16474450e-01 1.82496756e-01 6.93688989e-02 -9.13001955e-01 1.13806546e-01 -1.38509542e-01 -2.78872043e-01 3.19582745e-02 -3.52555186e-01 -8.81746531e-01 7.74043977e-01 5.95982336e-02 -3.80551726e-01 1.43149737e-02 2.09923133e-01 -1.31851897e-01 -6.18029535e-01 5.39281487e-01 1.30292475e-02 7.15198517e-02 -2.86538333e-01 2.66104400e-01 2.92086363e-01 9.37425315e-01 -6.10424459e-01 9.37847614e-01 8.07772636e-01 3.38844806e-01 -9.01610196e-01 -3.70579243e-01 -1.03739953e+00 -1.34708118e+00 -6.00124478e-01 8.42234433e-01 -8.00203443e-01 -7.18697965e-01 2.03847483e-01 -1.30543196e+00 7.08213523e-02 -2.62052238e-01 9.37852442e-01 -1.12028277e+00 7.98544168e-01 -2.93490231e-01 -3.74421060e-01 1.24693535e-01 -1.36981940e+00 1.12299371e+00 6.10053763e-02 -2.89474487e-01 -9.76281285e-01 5.74400544e-01 2.56729543e-01 -1.93542227e-01 5.35217226e-01 1.90703776e-02 -1.12510517e-01 -6.51325107e-01 -5.79015195e-01 4.08226311e-01 -4.25169393e-02 8.02281201e-02 4.39801812e-02 -5.57863176e-01 -3.47810090e-01 9.78453159e-02 3.45582128e-01 3.10984939e-01 4.61252987e-01 4.36202526e-01 2.22114637e-01 -3.01031440e-01 8.43365371e-01 1.57210732e+00 1.45082459e-01 7.34887123e-01 1.02808523e+00 5.93731940e-01 5.87365866e-01 1.01242185e+00 3.73285681e-01 1.45217240e-01 1.53428280e+00 1.51748657e-01 -1.72533721e-01 -1.57152101e-01 -1.69999614e-01 3.75118732e-01 7.11176276e-01 -7.30989635e-01 1.03270032e-01 -8.42855096e-01 5.77950299e-01 -1.94538009e+00 -1.27730334e+00 -3.57198954e-01 2.51100516e+00 4.37909812e-01 -4.68235649e-02 3.05104464e-01 4.01783675e-01 1.10061753e+00 -5.40190935e-02 2.22175837e-01 -3.82519394e-01 3.26839164e-02 1.70643836e-01 8.06267142e-01 9.24438536e-01 -1.20601630e+00 8.69116783e-01 6.49932718e+00 5.60584843e-01 -8.51657331e-01 -1.51913762e-02 -2.27769762e-01 -1.48491422e-02 2.36131161e-01 5.07784665e-01 -8.64411652e-01 1.67689696e-01 5.66637576e-01 -1.36277393e-01 2.24558741e-01 6.37376964e-01 5.87092936e-02 -3.57714504e-01 -1.01881588e+00 1.28913832e+00 5.98437726e-01 -1.46493411e+00 -3.26781273e-01 2.86146402e-01 8.81687701e-01 -3.46279621e-01 -3.14810157e-01 -4.61425036e-01 -1.52583227e-01 -5.17994761e-01 7.75611579e-01 5.00147402e-01 7.87596703e-01 -7.98768044e-01 4.44906712e-01 1.59727275e-01 -1.42156613e+00 3.56529504e-01 -1.99115351e-01 -2.12299213e-01 6.53788328e-01 -8.79895166e-02 -5.71470320e-01 9.21850383e-01 6.48943007e-01 6.93058550e-01 -4.91981208e-01 1.35095024e+00 2.38244161e-01 2.01950334e-02 -5.28018653e-01 6.77148163e-01 6.11281432e-02 -7.60434449e-01 8.67897093e-01 1.02084553e+00 4.92707759e-01 2.12655321e-01 2.89210290e-01 -4.91462881e-03 3.70302469e-01 2.27683201e-01 -7.41498172e-01 6.15943789e-01 5.05150817e-02 1.15828705e+00 -1.13050687e+00 -1.40201002e-01 -6.86829865e-01 1.07869208e+00 -1.84770346e-01 7.85649717e-02 -7.21303165e-01 -2.02087641e-01 2.43648320e-01 6.48290336e-01 2.40347862e-01 -5.99106789e-01 5.46318628e-02 -1.34138787e+00 2.10510686e-01 -1.02726042e+00 3.42419356e-01 -5.77191830e-01 -5.52289069e-01 7.81438529e-01 5.30284107e-01 -1.89184713e+00 -5.56355834e-01 -3.48255068e-01 -2.92116821e-01 5.75024962e-01 -1.08007288e+00 -9.61239874e-01 -3.23800981e-01 8.42076540e-01 6.00334346e-01 -8.97866637e-02 6.47985280e-01 5.43108344e-01 -9.53945965e-02 3.46113324e-01 1.01222053e-01 -1.28918514e-02 8.68688583e-01 -9.56336617e-01 3.47422630e-01 1.16556370e+00 3.74584883e-01 5.12735844e-01 9.50261176e-01 -5.68029404e-01 -1.28803647e+00 -4.50674891e-01 8.55107427e-01 -5.01523733e-01 5.68197846e-01 -3.26640278e-01 -5.41075349e-01 9.49774325e-01 1.01966992e-01 8.81541171e-04 5.13057888e-01 -2.71361411e-01 2.69519240e-01 -1.16311744e-01 -7.68303871e-01 5.30539393e-01 9.39185679e-01 -2.28385553e-01 -6.23901844e-01 2.09288195e-01 -3.26036066e-02 -1.00996435e+00 -9.17396188e-01 2.52502322e-01 7.28392780e-01 -1.08363366e+00 1.27068341e+00 2.76515516e-03 -1.01091065e-01 -7.09212542e-01 -2.65542388e-01 -9.68035936e-01 1.14207398e-02 -1.06289196e+00 4.63940382e-01 1.10327554e+00 -1.48047864e-01 -1.77854359e-01 9.61510897e-01 6.26586378e-01 -1.08450390e-01 -1.63580999e-01 -1.21553135e+00 -7.43146241e-01 -5.03375053e-01 -3.06051612e-01 1.45888492e-01 8.30856681e-01 1.51937008e-01 -2.54777428e-02 -5.39425075e-01 2.42846295e-01 6.68159366e-01 2.97488689e-01 1.18449068e+00 -1.24150014e+00 -3.69642466e-01 -9.07091796e-02 -1.14784801e+00 -1.03304541e+00 5.21690026e-03 -5.18350601e-01 9.19324234e-02 -1.19470286e+00 -6.25364780e-02 -2.51044482e-01 4.08102751e-01 -8.17011893e-02 2.04676911e-01 6.93363965e-01 3.76825929e-01 3.49049300e-01 -4.20350373e-01 -3.86350937e-02 9.47620630e-01 4.40354466e-01 -2.34120965e-01 2.28080582e-02 -7.30080977e-02 1.13795948e+00 4.17908907e-01 -4.64080453e-01 -2.57146895e-01 -4.34739679e-01 1.89250156e-01 3.68626773e-01 4.25127536e-01 -1.20241857e+00 4.70434844e-01 -1.52610838e-01 9.88562703e-02 -5.06041408e-01 7.43813157e-01 -1.12444222e+00 7.64333487e-01 3.15282315e-01 1.11910582e-01 6.18970931e-01 1.14302061e-01 5.06674528e-01 -4.97998774e-01 -4.81132805e-01 6.48719609e-01 -1.70451477e-01 -9.24390018e-01 1.39549717e-01 -1.80163775e-02 -1.41446635e-01 1.39782655e+00 -8.93595099e-01 2.43068829e-01 -4.89521503e-01 -9.12012398e-01 -1.75015539e-01 1.17868984e+00 2.79855728e-01 4.46520537e-01 -1.37668920e+00 -4.34540957e-01 3.99857968e-01 -1.84889678e-02 -1.70196250e-01 2.18842581e-01 1.00950444e+00 -1.19165206e+00 2.35387310e-01 -4.63738233e-01 -9.54853654e-01 -1.67350984e+00 4.31670129e-01 4.33881879e-01 -1.08952373e-02 -7.72673309e-01 1.65174022e-01 -5.27027547e-02 2.90583018e-02 -4.41357121e-02 4.05762084e-02 -2.11476997e-01 -5.74963428e-02 3.27327043e-01 6.55589819e-01 3.01933914e-01 -1.51244152e+00 -3.59010875e-01 1.42340612e+00 3.00465077e-01 -6.25261426e-01 1.22443962e+00 -4.15834069e-01 9.90764424e-02 1.98408023e-01 1.09227264e+00 4.17313784e-01 -1.30024731e+00 1.16570201e-02 -1.84062317e-01 -9.94916320e-01 -3.72634642e-02 5.59045151e-02 -9.63483095e-01 5.32725990e-01 6.89747214e-01 6.25240849e-03 1.02273190e+00 -2.70524353e-01 6.98229790e-01 2.19115511e-01 4.77785766e-01 -1.20588672e+00 -2.83450663e-01 2.01654419e-01 7.23348260e-01 -9.08535123e-01 3.82954776e-01 -8.36615860e-01 -4.50845271e-01 1.39035141e+00 2.85394073e-01 -5.47635198e-01 5.39764404e-01 1.94834024e-01 1.13287017e-01 -1.99394897e-01 -7.60410503e-02 -2.39721417e-01 3.94831538e-01 6.29488468e-01 3.11546624e-01 -4.58586007e-01 -7.34382689e-01 -3.40690315e-02 -4.14118230e-01 7.64027834e-02 9.13359344e-01 1.27095592e+00 -2.63608217e-01 -1.65977550e+00 -8.53174984e-01 -3.62200886e-01 -5.52878559e-01 1.79887474e-01 -1.85068548e-01 1.15306056e+00 4.82991226e-02 8.78375649e-01 2.09893316e-01 -2.44190887e-01 7.64952064e-01 -1.59385756e-01 8.35620999e-01 -4.80784535e-01 -5.44974923e-01 5.37871003e-01 1.47846594e-01 -7.21818328e-01 -1.10725737e+00 -9.82925773e-01 -9.25510764e-01 -2.44397774e-01 -4.53455657e-01 1.80349559e-01 6.25054896e-01 7.58498609e-01 8.67021456e-02 -5.63951284e-02 5.12023151e-01 -1.25891376e+00 -4.43734787e-02 -3.41354519e-01 -5.07340968e-01 6.54809237e-01 6.77915439e-02 -9.78546441e-01 -7.27453828e-03 7.47522950e-01]
[7.971292495727539, -1.6502262353897095]
1560807c-c883-46a8-bd45-fad08c9db5b5
saliency-guided-mutual-learning-network-for
2305.07180
null
https://arxiv.org/abs/2305.07180v1
https://arxiv.org/pdf/2305.07180v1.pdf
Saliency-Guided Mutual Learning Network for Few-shot Fine-grained Visual Recognition
Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision. Existing literature focus on addressing this challenge through global-based or local-based representation approaches. The former employs global feature representations for recognization, which may lack fine-grained information. The latter captures local relationships with complex structures, possibly leading to high model complexity. To address the above challenges, this article proposes a novel framework called SGML-Net for few-shot fine-grained visual recognition. SGML-Net incorporates auxiliary information via saliency detection to guide discriminative representation learning, achieving high performance and low model complexity. Specifically, SGML-Net utilizes the saliency detection model to emphasize the key regions of each sub-category, providing a strong prior for representation learning. SGML-Net transfers such prior with two independent branches in a mutual learning paradigm. To achieve effective transfer, SGML-Net leverages the relationships among different regions, making the representation more informative and thus providing better guidance. The auxiliary branch is excluded upon the transfer's completion, ensuring low model complexity in deployment. The proposed approach is empirically evaluated on three widely-used benchmarks, demonstrating its superior performance.
['Tong Zhang', 'Xinrong Gong', 'C. L. Philip Chen', 'Haiqi Liu']
2023-05-12
null
null
null
null
['fine-grained-visual-recognition', 'saliency-detection']
['computer-vision', 'computer-vision']
[ 4.16626364e-01 -1.38722286e-01 -6.21476054e-01 -2.65778631e-01 -8.50559413e-01 -3.10312480e-01 6.29215837e-01 2.76037902e-01 2.23993305e-02 3.16174150e-01 4.79397506e-01 8.75500739e-02 -1.03420764e-01 -6.11861408e-01 -5.20421505e-01 -7.93973565e-01 2.41971642e-01 -1.60515234e-01 4.37351644e-01 1.12690642e-01 5.07936001e-01 4.63758171e-01 -1.66785538e+00 2.52322912e-01 1.00028598e+00 1.22571349e+00 4.79453743e-01 2.32935965e-01 -2.75652796e-01 9.39536691e-01 -2.81174898e-01 -4.65232544e-02 2.18596801e-01 -1.56368688e-01 -5.71657717e-01 1.52062461e-01 6.05925620e-01 -3.96626741e-01 -3.43016177e-01 1.08795989e+00 2.91574627e-01 3.58282596e-01 7.59337246e-01 -1.09333575e+00 -8.01254153e-01 2.53843129e-01 -7.46047139e-01 4.55352783e-01 1.82478353e-01 3.82658333e-01 1.32889307e+00 -1.10111117e+00 2.81431586e-01 1.34624934e+00 4.76160258e-01 3.38624448e-01 -1.09749889e+00 -6.64060712e-01 7.20496058e-01 4.13415730e-01 -1.42734039e+00 -5.51051021e-01 8.99867058e-01 -4.44984019e-01 7.86465228e-01 6.01823069e-02 3.36098313e-01 8.85079503e-01 -2.07908582e-02 1.20349634e+00 9.14891660e-01 -2.81146139e-01 2.04129517e-01 -2.56653856e-02 4.66050804e-01 8.02676737e-01 3.12087566e-01 1.24547571e-01 -7.42392123e-01 -2.37931609e-02 1.02458477e+00 6.36961520e-01 -2.94820696e-01 -5.96260786e-01 -1.08352947e+00 8.42201531e-01 8.22509110e-01 1.18775643e-01 -5.73619723e-01 -2.13509612e-02 3.75005633e-01 1.26256257e-01 3.74399930e-01 1.79225042e-01 -1.29608527e-01 -6.09965399e-02 -9.41206515e-01 -1.44093484e-01 3.06629717e-01 1.01502180e+00 1.03478992e+00 1.65242523e-01 -5.83431959e-01 1.05634749e+00 5.72958708e-01 2.98033416e-01 4.77816164e-01 -5.01572609e-01 5.71490228e-01 9.79890704e-01 -1.00559518e-01 -1.14164698e+00 2.66316924e-02 -8.37876856e-01 -8.06660950e-01 -4.02541794e-02 -3.22301574e-02 2.76848882e-01 -1.11626196e+00 1.61816096e+00 2.65959382e-01 6.19242191e-01 -1.32023349e-01 9.74076509e-01 8.92295301e-01 6.53618157e-01 2.63981014e-01 5.12153357e-02 1.19229949e+00 -1.39067864e+00 -2.52230912e-01 -4.06195432e-01 3.43462318e-01 -6.24313414e-01 1.01584268e+00 4.23045829e-02 -6.23088300e-01 -7.00986087e-01 -1.03082323e+00 -4.29891981e-02 -1.62271261e-01 3.07441890e-01 4.89337534e-01 2.44754791e-01 -9.19574797e-01 2.62766957e-01 -8.31887245e-01 -4.25635010e-01 7.77021945e-01 2.05086228e-02 -1.24459498e-01 -5.29624581e-01 -7.74829209e-01 6.17924809e-01 2.22919047e-01 7.76268020e-02 -1.11847115e+00 -7.44282544e-01 -1.02515674e+00 2.75389224e-01 3.65417898e-01 -4.87050414e-01 1.02253425e+00 -7.93299317e-01 -1.18985009e+00 5.59902012e-01 -3.71844858e-01 -3.20609719e-01 2.45676607e-01 -2.76355058e-01 -3.18783760e-01 2.15021968e-01 2.98172116e-01 6.55740798e-01 1.22293913e+00 -1.43904114e+00 -8.50272000e-01 -2.75727421e-01 1.49217606e-01 3.76141340e-01 -5.70389032e-01 -2.19217762e-01 -6.13557220e-01 -1.04662311e+00 1.77071109e-01 -6.75172448e-01 -1.96796387e-01 3.77502851e-02 -2.77729422e-01 -4.18195367e-01 9.48599935e-01 -4.78270918e-01 1.13420570e+00 -2.25276160e+00 2.29822174e-02 7.28285015e-02 3.93617541e-01 4.01646644e-01 -4.67493981e-01 2.81730533e-01 1.87976032e-01 -1.90107554e-01 -1.35848522e-01 -2.89649516e-01 -8.83861184e-02 1.60856009e-01 -5.01477003e-01 3.39685589e-01 6.03890061e-01 1.13441920e+00 -1.02449214e+00 -4.11175907e-01 3.86106938e-01 3.75856787e-01 -4.94258195e-01 2.82754660e-01 3.33754905e-02 1.39462709e-01 -7.55342126e-01 1.02448809e+00 6.72172725e-01 -4.79994953e-01 -1.23471454e-01 -4.50959861e-01 7.07264524e-03 2.68131420e-02 -1.13395691e+00 1.64998007e+00 -4.30737019e-01 4.00315940e-01 7.22520100e-03 -1.16304290e+00 1.27852988e+00 -2.03542456e-01 2.19894603e-01 -7.85305500e-01 1.46886660e-02 -3.81394364e-02 -1.10651061e-01 -2.62022704e-01 4.97331053e-01 -6.08661398e-03 1.72465034e-02 4.46872324e-01 1.99589580e-01 3.57556790e-01 -1.90774873e-01 3.10037702e-01 9.98927534e-01 1.32852525e-01 5.83625197e-01 -2.21186042e-01 4.34838086e-01 -3.01720351e-01 8.17242265e-01 9.19328809e-01 -5.78311622e-01 5.83203495e-01 -6.41380772e-02 -1.86111569e-01 -3.34554136e-01 -1.23946488e+00 1.75093099e-01 1.41300380e+00 6.44441366e-01 -4.80803162e-01 -2.82461941e-01 -8.89776349e-01 1.58106104e-01 5.60058951e-01 -7.63401091e-01 -6.06966913e-01 -2.93250144e-01 -2.56830126e-01 1.48325637e-01 7.38361537e-01 5.02449334e-01 -1.21574557e+00 -7.63010025e-01 1.07180506e-01 -3.72715965e-02 -6.95403397e-01 -5.53214371e-01 1.51256144e-01 -9.91124213e-01 -1.12621319e+00 -8.29581738e-01 -9.19291675e-01 8.27691317e-01 1.14808452e+00 8.86801839e-01 9.42061096e-02 -4.23962563e-01 5.66146851e-01 -6.47870600e-01 -2.77928919e-01 2.45026559e-01 5.95395379e-02 -1.76434234e-01 4.60211754e-01 6.21529698e-01 -5.46209157e-01 -7.73704350e-01 3.70318383e-01 -7.89461732e-01 6.87221531e-03 9.22790825e-01 1.05648065e+00 6.63128257e-01 -2.23314315e-01 7.68610477e-01 -5.48128664e-01 3.76446247e-01 -6.82924688e-01 -2.50786781e-01 3.21381569e-01 -4.21072751e-01 -8.81124102e-03 6.66010737e-01 -3.64752889e-01 -1.10570133e+00 -9.24907848e-02 2.73759484e-01 -8.45878243e-01 -2.00986430e-01 5.39237797e-01 -2.50930846e-01 -2.52583295e-01 3.21495622e-01 7.11236656e-01 -8.14522356e-02 -6.36948168e-01 3.02765906e-01 5.13729870e-01 4.82515454e-01 -6.19178951e-01 7.72333622e-01 3.65105212e-01 -4.52138305e-01 -7.05250502e-01 -1.22683775e+00 -9.38709080e-01 -6.22439563e-01 -1.77712068e-01 4.25308883e-01 -1.14946568e+00 -2.11092174e-01 3.61911297e-01 -7.53262162e-01 -1.99262556e-02 -3.68648380e-01 3.15754980e-01 -2.76770443e-01 3.77344728e-01 -4.01445985e-01 -7.46275008e-01 -3.82654548e-01 -1.07122147e+00 1.31694329e+00 6.81467414e-01 3.20932195e-02 -9.58058059e-01 -1.40750498e-01 2.90008456e-01 4.94233906e-01 -7.70798400e-02 6.77804649e-01 -5.97489536e-01 -7.99545527e-01 -1.38290972e-01 -7.64944613e-01 2.23961607e-01 4.74494249e-01 -2.60241181e-01 -9.89158154e-01 -5.37096679e-01 -1.47544146e-01 -5.73243737e-01 1.30157518e+00 2.01923460e-01 1.20878971e+00 -1.23986796e-01 -4.47303623e-01 5.63120246e-01 1.37741065e+00 4.23074886e-02 3.68949175e-01 3.08935463e-01 1.10017419e+00 4.73513037e-01 1.08663917e+00 5.68433762e-01 5.67081511e-01 6.66876554e-01 3.95208150e-01 -6.34770468e-02 -3.44942868e-01 -4.23110217e-01 3.33891094e-01 9.11615431e-01 2.42804810e-01 2.37129569e-01 -8.01996946e-01 6.73889160e-01 -2.10248780e+00 -9.13924932e-01 5.26896596e-01 1.91538370e+00 5.56089759e-01 -1.08112274e-02 2.38384828e-02 -1.72505006e-01 8.55339289e-01 5.53713620e-01 -9.48073804e-01 1.64761208e-02 9.02320817e-02 -3.30706611e-02 1.03718393e-01 7.72611722e-02 -1.17062283e+00 1.10802197e+00 5.33118486e+00 1.09205389e+00 -1.25348818e+00 1.89599209e-02 4.92606401e-01 -2.17262632e-03 -1.99423552e-01 -1.69424247e-03 -9.44847047e-01 4.21860129e-01 4.18477803e-01 -2.56552517e-01 6.74700886e-02 1.06440330e+00 6.66491538e-02 -2.33413037e-02 -9.64693606e-01 1.22737312e+00 3.27598631e-01 -1.34294415e+00 5.07895172e-01 -8.76448080e-02 7.34342098e-01 1.26844227e-01 9.18641537e-02 5.10116875e-01 2.55345941e-01 -7.89881229e-01 6.50889277e-01 7.21659601e-01 7.01767564e-01 -8.71379673e-01 5.44142306e-01 3.19561273e-01 -1.78055382e+00 -2.09131613e-01 -5.70411742e-01 4.71004285e-02 2.45355768e-04 5.16631544e-01 -5.90265095e-01 6.83926105e-01 4.84863222e-01 1.40626919e+00 -9.19911146e-01 1.40268385e+00 -1.38362154e-01 8.57584596e-01 -4.02120799e-02 2.07788453e-01 4.82375741e-01 -1.76922679e-01 5.26680171e-01 1.40664649e+00 4.69718091e-02 -7.30941966e-02 7.98729181e-01 7.27497578e-01 -1.03667371e-01 -3.73145081e-02 -4.47325140e-01 7.32159391e-02 6.50253296e-01 1.38112664e+00 -7.82557487e-01 -3.44985962e-01 -5.53317964e-01 9.08043861e-01 6.35680139e-01 3.52480859e-01 -6.14759922e-01 -4.47243512e-01 6.99790239e-01 -2.50398159e-01 6.64691806e-01 -4.85905521e-02 -3.56685072e-01 -1.25576508e+00 -5.29958121e-02 -9.14861202e-01 6.62007511e-01 -2.92158455e-01 -1.63602173e+00 3.88078630e-01 -1.70864269e-01 -1.41833627e+00 5.75988144e-02 -3.88851702e-01 -7.99156785e-01 8.61934185e-01 -1.89568019e+00 -1.56374824e+00 -6.09470487e-01 7.11487830e-01 9.94225860e-01 -4.07153219e-01 5.72008789e-01 1.62071839e-01 -7.64552832e-01 9.58983362e-01 -3.10578365e-02 -4.22674268e-02 7.01513469e-01 -1.03175068e+00 2.34915048e-01 1.04195499e+00 1.89000025e-01 9.47314560e-01 1.86370581e-01 -6.33563399e-01 -1.36679912e+00 -1.61995494e+00 4.18852359e-01 -1.70216233e-01 4.60235327e-01 -2.48948604e-01 -1.24666893e+00 3.88363570e-01 -2.46521384e-01 2.98724085e-01 7.85706222e-01 1.56860173e-01 -8.90800655e-01 -2.13986427e-01 -8.62946570e-01 4.73276675e-01 1.06560171e+00 -8.39193523e-01 -8.79569292e-01 1.55649846e-03 7.86760926e-01 1.31675214e-01 -5.73321164e-01 3.49535286e-01 4.93073016e-01 -8.02217782e-01 1.02100062e+00 -3.35827619e-01 4.25839067e-01 -5.44144034e-01 -2.74266332e-01 -1.25580072e+00 -7.79107869e-01 -1.98777974e-01 -5.57283401e-01 1.44164085e+00 2.30161077e-03 -6.05193734e-01 7.54582107e-01 2.40888506e-01 -2.34541640e-01 -9.26804245e-01 -6.14560723e-01 -7.83720434e-01 -3.39175820e-01 -2.36660287e-01 3.98140967e-01 9.89234030e-01 -3.26149702e-01 3.78246605e-01 -4.57832992e-01 9.13488120e-02 8.01097453e-01 5.95983028e-01 7.89305151e-01 -1.24279249e+00 -2.24316835e-01 -5.48246205e-01 -5.70496142e-01 -1.48273683e+00 1.60786301e-01 -9.90238965e-01 2.12756187e-01 -1.62865174e+00 6.03149951e-01 -5.09231865e-01 -9.92845714e-01 6.68076336e-01 -5.03958762e-01 3.36982608e-01 5.13082445e-01 5.82841098e-01 -1.07272780e+00 1.01924491e+00 1.08423674e+00 -3.51458371e-01 -1.74073696e-01 -7.72881731e-02 -1.04035711e+00 7.14440465e-01 5.85127771e-01 -1.98852032e-01 -6.60818517e-01 -2.87322938e-01 -6.68623865e-01 -4.73801225e-01 5.34689486e-01 -1.06649947e+00 4.60096538e-01 -3.78048390e-01 4.02281106e-01 -6.80683792e-01 2.11136207e-01 -6.76250041e-01 -3.78581226e-01 2.86643147e-01 -3.51658702e-01 -3.48212421e-01 9.59435180e-02 1.01950300e+00 -5.44910669e-01 -4.14493717e-02 8.46873164e-01 1.11394674e-01 -1.29908240e+00 6.60309315e-01 6.22204989e-02 -8.05296823e-02 1.05447793e+00 -4.36623156e-01 -1.55866995e-01 -2.41655424e-01 -3.99842203e-01 3.31120998e-01 5.00293374e-01 8.12576771e-01 1.02955055e+00 -1.45775962e+00 -4.81987953e-01 2.00349122e-01 6.57168984e-01 1.20435059e-02 5.23497403e-01 7.77611256e-01 -8.05065222e-03 4.05310482e-01 -3.27257693e-01 -8.53278220e-01 -1.15507329e+00 5.26780784e-01 -1.92876831e-02 -1.46012321e-01 -7.88886309e-01 9.36004519e-01 8.70883405e-01 -1.84286907e-01 2.46119112e-01 -3.89003642e-02 -4.46183652e-01 1.69967294e-01 8.44932556e-01 2.79869765e-01 -2.49893218e-01 -8.09770644e-01 -4.87275273e-01 6.43609285e-01 -6.51477039e-01 4.63176847e-01 1.35688412e+00 -4.69998121e-01 1.29812375e-01 4.68603313e-01 1.16540813e+00 -1.60166025e-01 -1.77127457e+00 -8.14926267e-01 1.10512696e-01 -7.56012619e-01 2.92262554e-01 -7.49750078e-01 -1.09644592e+00 9.94525552e-01 5.47736347e-01 -2.80598909e-01 1.27033699e+00 2.35188715e-02 7.69858479e-01 2.89621383e-01 5.54757774e-01 -8.54077160e-01 4.36605185e-01 6.75098956e-01 8.65345538e-01 -1.30529857e+00 -5.34466021e-02 -4.74765956e-01 -7.21792400e-01 8.41843605e-01 9.01836932e-01 -2.84651697e-01 4.52558041e-01 -2.80563682e-01 -6.32966161e-02 -9.88216847e-02 -7.03811407e-01 -3.17817152e-01 7.29425728e-01 7.29129195e-01 1.16641290e-01 6.24820031e-03 1.83209553e-01 8.87218297e-01 3.52873027e-01 -2.19417319e-01 3.68207172e-02 1.15861750e+00 -7.18923509e-01 -7.55630970e-01 -1.48924887e-01 8.35991144e-01 3.62314582e-02 -2.10846618e-01 -3.13891619e-01 3.39360654e-01 -5.66661917e-02 9.04850960e-01 -1.01162808e-03 -3.46744061e-01 2.02791363e-01 -1.82405382e-01 2.31171638e-01 -9.22512829e-01 -2.95046598e-01 1.11007914e-01 -2.38104388e-01 -7.58123040e-01 -4.09898043e-01 -6.61123335e-01 -9.04217482e-01 1.16801478e-01 -3.53773177e-01 4.79380041e-03 6.56544417e-02 1.03582883e+00 6.97084486e-01 5.80238521e-01 8.48518670e-01 -1.03183126e+00 -5.81475794e-01 -7.60447681e-01 -6.63954854e-01 3.39221120e-01 4.72063839e-01 -1.12441504e+00 -2.49874577e-01 1.85331609e-02]
[9.705199241638184, 1.950963020324707]
c7175464-f7d3-4358-9ecb-b95e095bf46a
retrieval-augmented-chest-x-ray-report
2305.03660
null
https://arxiv.org/abs/2305.03660v1
https://arxiv.org/pdf/2305.03660v1.pdf
Retrieval Augmented Chest X-Ray Report Generation using OpenAI GPT models
We propose Retrieval Augmented Generation (RAG) as an approach for automated radiology report writing that leverages multimodally aligned embeddings from a contrastively pretrained vision language model for retrieval of relevant candidate radiology text for an input radiology image and a general domain generative model like OpenAI text-davinci-003, gpt-3.5-turbo and gpt-4 for report generation using the relevant radiology text retrieved. This approach keeps hallucinated generations under check and provides capabilities to generate report content in the format we desire leveraging the instruction following capabilities of these generative models. Our approach achieves better clinical metrics with a BERTScore of 0.2865 ({\Delta}+ 25.88%) and Semb score of 0.4026 ({\Delta}+ 6.31%). Our approach can be broadly relevant for different clinical settings as it allows to augment the automated radiology report generation process with content relevant for that setting while also having the ability to inject user intents and requirements in the prompts as part of the report generation process to modulate the content and format of the generated reports as applicable for that clinical setting.
['Tanuja Ganu', 'Ranjit Manuel', 'Gopinath Ganapathy', 'Mercy Ranjit']
2023-05-05
null
null
null
null
['instruction-following']
['natural-language-processing']
[ 2.04562470e-01 9.39602017e-01 2.35131681e-02 -1.98379025e-01 -1.61137283e+00 -6.10220075e-01 6.26995146e-01 4.36087191e-01 -3.11086714e-01 5.32545865e-01 9.16514337e-01 -5.92371881e-01 -2.99625307e-01 -4.80107754e-01 -4.14742112e-01 -2.54338413e-01 -6.01560576e-03 7.54728019e-01 -2.12368906e-01 -3.39181662e-01 1.90207288e-01 1.70145467e-01 -8.51306558e-01 6.16491675e-01 5.51321268e-01 5.87070227e-01 4.79534090e-01 1.32503462e+00 1.36716723e-01 1.02365553e+00 -6.56524241e-01 -3.32715660e-01 1.18778251e-01 -4.76889700e-01 -7.22697198e-01 -1.00696525e-02 4.19395059e-01 -6.49277568e-01 -6.10413313e-01 5.47857821e-01 8.69135201e-01 -1.12553507e-01 9.70785379e-01 -5.95327199e-01 -1.08077765e+00 6.67748272e-01 -4.15104151e-01 4.63908374e-01 6.36888623e-01 4.42951739e-01 4.52952027e-01 -8.29577506e-01 9.19146538e-01 8.20700049e-01 1.55481070e-01 7.45288491e-01 -1.00739360e+00 -5.81844807e-01 -2.48108789e-01 -4.37743664e-01 -1.14384317e+00 -2.50962704e-01 2.91597545e-01 -5.46886325e-01 9.77580965e-01 5.05015373e-01 5.40085912e-01 1.16917217e+00 8.12452734e-01 4.18719471e-01 6.40403926e-01 -3.09651136e-01 1.01066902e-01 3.66447359e-01 3.33859324e-02 9.04413819e-01 2.24892810e-01 1.16705364e-02 -5.19585371e-01 -2.76809543e-01 9.63149309e-01 -1.61156878e-01 -3.72900367e-01 2.47494951e-01 -1.45457935e+00 1.06699479e+00 4.71547872e-01 -3.68145481e-02 -6.63173139e-01 1.27241656e-01 2.57916957e-01 2.17332747e-02 2.22811759e-01 8.21239054e-01 2.96694517e-01 2.24230886e-02 -1.07737529e+00 3.95349801e-01 8.04084539e-01 1.18739545e+00 9.21629742e-02 3.77524793e-02 -1.06734037e+00 7.28977442e-01 4.58548307e-01 7.04270124e-01 6.64040029e-01 -8.57704401e-01 3.59047025e-01 3.01116168e-01 1.70456897e-02 -5.99340200e-01 -3.68065029e-01 -5.90550363e-01 -3.14369977e-01 1.25314295e-02 -1.96505487e-01 -3.08919549e-01 -1.39058042e+00 1.50130570e+00 1.01619828e-02 -4.82916385e-01 3.22223455e-01 7.75689900e-01 1.49830878e+00 5.60543835e-01 3.67190421e-01 -9.07828361e-02 1.67798734e+00 -8.58705342e-01 -6.16833329e-01 -2.61434555e-01 5.47325730e-01 -1.18766844e+00 1.20566595e+00 1.56586945e-01 -1.49176526e+00 -3.16325516e-01 -1.12224305e+00 -7.73428753e-02 2.27429107e-01 3.03953707e-01 4.35744882e-01 3.22147489e-01 -1.58218026e+00 -1.97370932e-01 -7.12760091e-01 -4.26565677e-01 1.79419681e-01 3.91610533e-01 -3.42129946e-01 -2.57378817e-01 -6.85977340e-01 9.75951195e-01 3.15132290e-01 -3.47255260e-01 -1.06464243e+00 -1.13202286e+00 -8.99944246e-01 -2.23969817e-01 1.72900483e-01 -1.27977002e+00 1.74852240e+00 -2.08246484e-01 -1.02702713e+00 8.36119890e-01 3.09148848e-01 -3.40118706e-01 5.91547251e-01 1.17232308e-01 -3.92382562e-01 6.85668230e-01 3.30675513e-01 1.10229993e+00 6.86869919e-01 -1.19003391e+00 -1.88135803e-01 -1.12011038e-01 1.82479009e-01 5.48778772e-01 -9.14194509e-02 -1.87360987e-01 -4.82972801e-01 -8.46978068e-01 -9.37219411e-02 -1.09192598e+00 -5.20205677e-01 -7.15300348e-03 -5.20377278e-01 1.19314522e-01 3.94556910e-01 -8.96803558e-01 1.30810785e+00 -1.85785174e+00 -2.61751503e-01 2.16234326e-01 5.45456350e-01 -1.43600404e-01 -1.90532342e-01 6.63188577e-01 -1.79760873e-01 1.68288305e-01 -3.92954014e-02 -1.49695829e-01 -2.97956198e-01 -2.00673848e-01 -3.17332625e-01 -3.73258889e-02 4.44536269e-01 1.09920335e+00 -9.75569963e-01 -6.33621097e-01 -9.02250409e-03 5.69045246e-01 -8.65447283e-01 4.18031394e-01 -1.50832146e-01 4.62678403e-01 -5.18708408e-01 5.77504933e-01 1.93062454e-01 -5.70332885e-01 1.84411462e-02 -2.06923380e-01 1.07912958e-01 1.50368869e-01 -5.49139798e-01 1.88408053e+00 -6.49398088e-01 3.09379369e-01 -1.54254109e-01 2.57359058e-01 8.50335658e-01 4.90572006e-01 6.00237489e-01 -5.06263554e-01 -5.13378251e-03 4.35670139e-03 1.00356946e-02 -8.70105505e-01 9.41466093e-01 -3.58127832e-01 -3.12288672e-01 9.16388392e-01 1.40444905e-01 -5.44972897e-01 1.27087340e-01 8.77122223e-01 1.65714455e+00 -1.27014518e-01 3.00617725e-01 5.84812984e-02 -7.49478191e-02 3.28048259e-01 -4.77795243e-01 1.23035371e+00 1.27968341e-01 1.07615888e+00 1.32498503e-01 3.06324679e-02 -1.08945799e+00 -1.28815174e+00 -5.82802556e-02 7.15342224e-01 -3.56587619e-01 -3.50368530e-01 -3.56072009e-01 -7.44516551e-01 -4.14372265e-01 1.08684146e+00 -6.25438929e-01 -5.22691667e-01 -3.78520399e-01 -4.11139220e-01 4.70519036e-01 5.99946976e-01 -1.13902248e-01 -1.28701508e+00 -7.93805301e-01 3.36670995e-01 -3.67812186e-01 -9.73707318e-01 -9.42062140e-01 3.35598439e-02 -5.93247712e-01 -7.06800759e-01 -1.14835823e+00 -7.09282458e-01 9.50389624e-01 1.13124579e-01 1.09584975e+00 -2.28105001e-02 -6.54195249e-01 1.24156487e+00 -5.09497523e-01 -6.10829890e-01 -1.08826733e+00 -1.97244748e-01 -4.33426321e-01 -6.28970981e-01 2.54680235e-02 -3.67106237e-02 -9.38671649e-01 -3.93882006e-01 -1.44542778e+00 4.95122761e-01 9.81405079e-01 8.64240766e-01 4.93433446e-01 -9.69366491e-01 3.87395322e-01 -7.74135232e-01 1.22314954e+00 -8.02744210e-01 5.69941886e-02 2.92172223e-01 -7.80589461e-01 2.37168416e-01 4.06961627e-02 -3.96505266e-01 -9.35191393e-01 -2.65492886e-01 -5.11241406e-02 -4.58261549e-01 9.93119255e-02 7.04879522e-01 7.95198441e-01 1.90422609e-01 1.08435452e+00 4.08750802e-01 1.13687001e-01 1.30401388e-01 3.54361147e-01 7.25396037e-01 7.44082630e-01 -2.25556180e-01 7.55451500e-01 3.11992854e-01 -4.16121125e-01 -2.59738952e-01 -7.92859554e-01 -3.29658657e-01 6.75335228e-02 -2.72827238e-01 1.00081944e+00 -9.68357980e-01 -1.97440669e-01 -4.18478340e-01 -1.09674788e+00 6.51347861e-02 -4.72252995e-01 5.76187074e-01 -7.17395723e-01 9.42877755e-02 -7.71181941e-01 -6.57857478e-01 -1.06270325e+00 -1.49568987e+00 1.34052062e+00 4.05319005e-01 -7.52855659e-01 -7.46713877e-01 1.18735276e-01 3.83838952e-01 5.45707643e-01 1.78710446e-01 1.10756373e+00 -6.85801446e-01 -5.89662194e-01 -4.03814852e-01 -1.93625271e-01 -5.55531494e-02 2.12835401e-01 -1.79803744e-01 -6.97904944e-01 -2.68954843e-01 -1.97940186e-01 -2.26415232e-01 6.38368070e-01 3.64275724e-01 8.14819455e-01 -4.37769294e-01 -1.70384705e-01 3.18686068e-01 1.24461246e+00 3.32772702e-01 5.49414873e-01 1.50252029e-01 3.53083253e-01 3.74310553e-01 5.51432073e-01 6.36446834e-01 7.10215509e-01 2.87304848e-01 2.50967830e-01 -1.38208032e-01 -5.13046801e-01 -4.02955413e-01 2.34156266e-01 7.46432483e-01 2.68405944e-01 -2.28074297e-01 -1.05693221e+00 5.91810226e-01 -1.41437304e+00 -8.02368164e-01 1.43239349e-01 1.91361690e+00 1.03295612e+00 2.26866025e-02 -2.09060222e-01 -6.14489257e-01 3.17172289e-01 -9.18832347e-02 -3.33024293e-01 -6.16614342e-01 4.11340147e-01 6.75458014e-01 3.96201521e-01 3.61058533e-01 -6.11927450e-01 4.83643234e-01 6.48863983e+00 2.54143894e-01 -1.14329422e+00 1.41115934e-01 5.86020291e-01 -3.53791863e-01 -5.91966629e-01 -2.47439414e-01 -6.25855446e-01 2.19841242e-01 1.14892197e+00 -6.02722943e-01 -5.88260628e-02 5.45722961e-01 3.86639893e-01 -2.93650985e-01 -1.24546456e+00 9.24916327e-01 5.01469493e-01 -1.71883905e+00 5.05083323e-01 3.47489446e-01 5.52621722e-01 -2.45906025e-01 6.98994696e-01 5.01296341e-01 4.14561689e-01 -1.08023620e+00 6.69568121e-01 8.51204038e-01 1.18154085e+00 -4.61663425e-01 6.55631244e-01 -3.48501317e-02 -4.02596921e-01 1.25757396e-01 -5.02860025e-02 7.42695451e-01 2.44016990e-01 1.04595773e-01 -2.09085751e+00 5.22876322e-01 2.69708037e-01 -6.67451918e-02 -6.01380706e-01 9.88831162e-01 -3.72243440e-03 3.11699897e-01 -1.09446503e-01 1.40745882e-02 2.56973386e-01 5.01223564e-01 7.87436068e-01 1.34095216e+00 6.44987047e-01 2.30630249e-01 1.92518115e-01 7.88990974e-01 -7.21844360e-02 2.94399410e-01 -6.65909588e-01 -2.53405690e-01 2.94493377e-01 1.42439640e+00 -5.57938874e-01 -4.17877883e-01 -6.15631579e-04 7.89192677e-01 -1.60040498e-01 2.35058963e-01 -8.31343889e-01 -9.55637991e-02 -4.53179143e-02 4.76284832e-01 2.31093675e-01 -9.55226198e-02 -1.64855495e-01 -6.91631258e-01 -1.68547437e-01 -9.83488202e-01 6.05654597e-01 -1.36422300e+00 -1.04830527e+00 8.88939619e-01 1.75142378e-01 -1.54434633e+00 -8.43053520e-01 -2.28705928e-01 -4.03691113e-01 8.75507116e-01 -1.29862142e+00 -1.46446705e+00 -4.90552366e-01 3.91305029e-01 8.26595068e-01 -2.94221997e-01 1.16490626e+00 -5.32595031e-02 6.05683289e-02 8.01352203e-01 -5.68093121e-01 -1.53285200e-02 9.48170543e-01 -1.22650886e+00 -1.50343478e-01 4.99369293e-01 -9.60545540e-02 9.49834943e-01 8.01075935e-01 -8.79632175e-01 -1.36033320e+00 -1.07490528e+00 5.86134613e-01 -5.45767248e-01 6.38729155e-01 1.77837834e-01 -5.61777949e-01 5.61996579e-01 4.35478240e-01 -4.44949418e-01 1.04433763e+00 -5.26443481e-01 -1.41856194e-01 1.87147647e-01 -1.26939905e+00 9.54833329e-01 5.11392713e-01 -4.20107961e-01 -5.57285964e-01 6.64162815e-01 1.00812113e+00 -1.00749731e+00 -1.16085458e+00 1.13578483e-01 4.10704821e-01 -3.68327260e-01 7.07912982e-01 -5.32239079e-01 1.00558019e+00 -8.31229240e-02 -2.40056235e-02 -1.06571686e+00 -2.83277184e-01 -5.83571553e-01 -5.67060821e-02 5.55282414e-01 8.22273433e-01 -2.07546026e-01 3.59441906e-01 7.81073809e-01 -6.66117132e-01 -7.03704894e-01 -6.78021610e-01 9.05976724e-03 -5.17372340e-02 -4.67119515e-01 1.70850798e-01 5.53685009e-01 -3.47849950e-02 1.58664882e-01 1.44022837e-01 2.78714478e-01 2.91406602e-01 -2.59994745e-01 4.98841196e-01 -6.12453878e-01 -6.20350599e-01 -2.32070312e-01 -1.94893986e-01 -5.04412889e-01 -5.16909301e-01 -1.27011955e+00 -1.46094680e-01 -2.10930729e+00 6.20742500e-01 -3.49184304e-01 -2.93765754e-01 6.78828955e-01 -8.29121023e-02 3.07994127e-01 4.59360093e-01 2.91602194e-01 -3.33190531e-01 1.43385500e-01 1.50547171e+00 -3.64543527e-01 -2.75178373e-01 -1.84520081e-01 -1.48819554e+00 2.41736874e-01 3.83258253e-01 -5.28568506e-01 -6.94401205e-01 -3.42371076e-01 2.03675151e-01 5.13959110e-01 5.29784858e-01 -9.36795712e-01 3.38381708e-01 1.16674379e-02 4.67970937e-01 -7.81910539e-01 3.27964813e-01 -2.11934775e-01 2.38786355e-01 3.87828112e-01 -6.72519386e-01 3.43128562e-01 4.26011026e-01 4.38068599e-01 1.16380945e-01 -3.51895213e-01 4.12483692e-01 -5.77715456e-01 -2.89366066e-01 2.19906643e-01 -5.43658793e-01 5.75533696e-03 1.04144931e+00 -2.17039540e-01 -4.26755309e-01 -8.99819851e-01 -1.04017234e+00 2.26875961e-01 1.87071934e-01 6.49946213e-01 1.15313983e+00 -1.04227507e+00 -1.15638328e+00 2.57376600e-02 5.90702713e-01 1.10939052e-02 5.24801135e-01 8.42804372e-01 -5.83126605e-01 3.88064563e-01 6.78898245e-02 -5.22116840e-01 -1.08611143e+00 6.86267391e-02 1.90267086e-01 -7.26174653e-01 -8.04388583e-01 7.65471518e-01 3.11485887e-01 -4.07516509e-02 -1.57145530e-01 -1.85744643e-01 -1.53979827e-02 -2.23595753e-01 8.09978604e-01 -3.09393167e-01 3.64991814e-01 -1.30732924e-01 -8.28989446e-02 -1.87097207e-01 -7.56398499e-01 -6.91470385e-01 1.37084854e+00 1.86550841e-02 2.92867184e-01 4.96630408e-02 8.80239308e-01 1.73458979e-01 -7.63657093e-01 1.21414207e-01 -3.65997851e-01 1.87870026e-01 3.39065850e-01 -1.59166610e+00 -6.13285840e-01 3.21259499e-01 8.05002451e-01 -2.48767406e-01 8.83197546e-01 4.51781303e-01 6.01314604e-01 8.21754057e-03 1.79232270e-01 -7.68825114e-01 6.36027753e-01 2.12912694e-01 1.38503492e+00 -9.21340644e-01 8.04057121e-02 1.98197529e-01 -1.16119206e+00 1.17168427e+00 4.51980799e-01 7.32261762e-02 2.99431324e-01 5.64926386e-01 4.48122084e-01 -6.68129563e-01 -9.01992738e-01 7.64093548e-02 4.82403010e-01 6.96328759e-01 8.86369288e-01 1.64006099e-01 -3.85920793e-01 4.55414414e-01 -4.90424216e-01 2.31958516e-02 1.11162519e+00 1.18219674e+00 -1.54826581e-01 -7.96997726e-01 -4.59903538e-01 9.20011342e-01 -5.74114501e-01 -4.05835927e-01 -1.99532346e-03 6.31499767e-01 -4.39460367e-01 8.94744098e-01 -2.18826130e-01 -1.62856981e-01 4.03367996e-01 -6.14915155e-02 5.16159117e-01 -1.28731692e+00 -7.70317793e-01 3.84984136e-01 2.00356156e-01 -3.67431760e-01 9.31455269e-02 -5.97691834e-01 -1.43704712e+00 3.30354303e-01 2.89331656e-02 -5.28873317e-02 8.36761415e-01 5.07098794e-01 5.43699801e-01 9.22145963e-01 2.48791248e-01 -4.64807868e-01 -5.57697892e-01 -1.10610199e+00 -1.60537735e-01 1.81920305e-02 2.42909610e-01 -2.74135470e-01 1.32702067e-01 2.36515224e-01]
[15.050920486450195, -1.3866506814956665]
d5686e23-26c7-4233-a2b2-6de49a7c1f21
a-similarity-preserving-network-trained-on
null
null
http://papers.nips.cc/paper/9566-a-similarity-preserving-network-trained-on-transformed-images-recapitulates-salient-features-of-the-fly-motion-detection-circuit
http://papers.nips.cc/paper/9566-a-similarity-preserving-network-trained-on-transformed-images-recapitulates-salient-features-of-the-fly-motion-detection-circuit.pdf
A Similarity-preserving Network Trained on Transformed Images Recapitulates Salient Features of the Fly Motion Detection Circuit
Learning to detect content-independent transformations from data is one of the central problems in biological and artificial intelligence. An example of such problem is unsupervised learning of a visual motion detector from pairs of consecutive video frames. Rao and Ruderman formulated this problem in terms of learning infinitesimal transformation operators (Lie group generators) via minimizing image reconstruction error. Unfortunately, it is difficult to map their model onto a biologically plausible neural network (NN) with local learning rules. Here we propose a biologically plausible model of motion detection. We also adopt the transformation-operator approach but, instead of reconstruction-error minimization, start with a similarity-preserving objective function. An online algorithm that optimizes such an objective function naturally maps onto an NN with biologically plausible learning rules. The trained NN recapitulates major features of the well-studied motion detector in the fly. In particular, it is consistent with the experimental observation that local motion detectors combine information from at least three adjacent pixels, something that contradicts the celebrated Hassenstein-Reichardt model.
['Yanis Bahroun', 'Anirvan Sengupta', 'Dmitri Chklovskii']
2019-12-01
null
null
null
neurips-2019-12
['motion-detection']
['computer-vision']
[ 5.25224626e-01 1.05514526e-01 -1.17913134e-01 -2.51519054e-01 3.14978715e-05 -4.50334221e-01 8.42671514e-01 -1.33044809e-01 -8.07359278e-01 5.04453361e-01 1.41259506e-01 -1.68394744e-02 -1.60168305e-01 -5.75058937e-01 -9.29370165e-01 -9.88227785e-01 9.10330340e-02 1.04291186e-01 3.91851008e-01 2.50622332e-02 4.53539997e-01 6.65025532e-01 -1.51711071e+00 1.43664107e-01 3.31980884e-01 4.92475033e-01 4.86639589e-01 1.00835466e+00 2.74173498e-01 1.03329480e+00 -3.51428017e-02 2.44512577e-02 4.45029616e-01 -9.66352940e-01 -9.49301541e-01 2.22459272e-01 3.67802590e-01 -5.22187017e-02 -3.55280876e-01 1.16250539e+00 3.49026523e-03 4.26959813e-01 1.04727435e+00 -1.05474353e+00 -6.69802010e-01 2.50709713e-01 -4.10619497e-01 3.16860199e-01 -2.87319887e-02 1.19907066e-01 8.51577878e-01 -7.73154378e-01 1.03308368e+00 1.17281604e+00 3.71720314e-01 8.56311858e-01 -1.60700309e+00 2.01388240e-01 -1.33679524e-01 2.50927836e-01 -1.28735709e+00 -5.48765719e-01 5.89185774e-01 -6.03224635e-01 7.56175041e-01 2.26504534e-01 6.40271723e-01 9.14203703e-01 4.71306145e-01 6.70651317e-01 7.52015710e-01 -7.92863131e-01 4.32146430e-01 -2.28419811e-01 -3.58725339e-02 9.33069348e-01 3.77234071e-01 1.84769377e-01 -5.77586114e-01 1.62254781e-01 1.32514298e+00 -5.79913296e-02 -3.70898485e-01 -8.56947362e-01 -1.57283247e+00 7.88723230e-01 4.92013991e-01 6.61502481e-01 -3.14914048e-01 3.59000951e-01 -5.70716411e-02 1.43978551e-01 -7.22886026e-02 3.53120148e-01 -1.18170045e-01 3.61758918e-01 -1.03974199e+00 -7.29721934e-02 7.13398337e-01 4.33997482e-01 9.11655605e-01 2.74596661e-01 2.38043040e-01 3.36454451e-01 5.83641469e-01 3.18072975e-01 7.53542900e-01 -1.47292662e+00 -2.52424508e-01 3.00941855e-01 -9.13638505e-04 -1.08388376e+00 -4.39284712e-01 -1.12281956e-01 -9.78362620e-01 7.64123261e-01 1.00403833e+00 1.18643641e-01 -5.42082012e-01 2.03541589e+00 1.80367976e-01 1.80022106e-01 9.59001258e-02 1.07875407e+00 2.81662256e-01 6.52739167e-01 1.40258614e-02 -5.23920357e-01 1.05098975e+00 -7.94652462e-01 -4.37363088e-01 -3.16142827e-01 6.01938784e-01 -3.29646796e-01 8.45451057e-01 3.32546115e-01 -1.07251346e+00 -6.36844754e-01 -1.26719534e+00 -2.57855326e-01 -1.72571123e-01 4.13062535e-02 5.64137220e-01 1.90299347e-01 -1.21984303e+00 8.84890795e-01 -1.11081660e+00 -1.00117910e+00 -1.12440693e-03 3.58367175e-01 -5.15956998e-01 4.40148354e-01 -6.48832142e-01 1.01803625e+00 5.90413451e-01 9.13354084e-02 -1.02278435e+00 -3.54913622e-02 -6.97560132e-01 -2.14703307e-01 9.64765400e-02 -1.19932663e+00 1.12085140e+00 -1.50757921e+00 -1.57900536e+00 1.25640392e+00 -4.97706264e-01 -7.76105642e-01 4.24353659e-01 1.58672109e-01 -8.41416121e-02 3.63650650e-01 -1.87679470e-01 1.09205437e+00 1.04521418e+00 -1.08940995e+00 -3.47656399e-01 -2.18660817e-01 -1.21260799e-01 1.66849896e-01 -1.81265563e-01 -7.93603137e-02 -2.93168146e-02 -6.93405747e-01 3.20769966e-01 -7.96836317e-01 -3.66576850e-01 5.77034771e-01 -1.00011103e-01 3.14736776e-02 3.93808246e-01 -4.89373893e-01 8.34660649e-01 -2.02864003e+00 5.25145710e-01 -2.30518728e-02 2.93107957e-01 1.62441295e-03 -2.15514809e-01 1.55421048e-01 -1.83915734e-01 -1.96450204e-01 -4.91672486e-01 1.63654730e-01 -1.51762977e-01 2.98218936e-01 -1.89767286e-01 8.19965243e-01 1.99951768e-01 9.66110229e-01 -8.56830478e-01 -5.06476760e-01 3.22259933e-01 3.13347220e-01 -5.56152701e-01 -1.91830508e-02 -2.94546783e-01 6.90004230e-01 -2.08099693e-01 1.72895044e-01 1.86703846e-01 -3.18924993e-01 1.77218318e-01 -1.17853113e-01 -3.00164431e-01 -1.86676338e-01 -9.83561099e-01 1.88422930e+00 9.86253619e-02 1.08059990e+00 3.22989412e-02 -1.54724979e+00 7.97697842e-01 2.30108976e-01 5.60844064e-01 -3.22649121e-01 3.12198669e-01 1.21017620e-01 1.41712338e-01 -5.75045288e-01 1.24352835e-01 -2.17433855e-01 3.55998576e-01 4.93392736e-01 3.01627755e-01 -3.56467371e-03 2.47527361e-01 -4.50432971e-02 1.08680677e+00 3.99318546e-01 8.35788310e-01 -4.48063970e-01 6.38890743e-01 -8.05756673e-02 5.51617980e-01 8.19594622e-01 -3.45400900e-01 7.05934405e-01 1.66870549e-01 -6.79311931e-01 -1.23060012e+00 -1.18516481e+00 1.93944871e-02 7.92173207e-01 1.55204132e-01 2.18913555e-02 -1.03371847e+00 -1.48795888e-01 -3.57368320e-01 4.74724859e-01 -7.58903563e-01 -2.62001365e-01 -6.07252717e-01 -5.48027396e-01 2.95024365e-01 1.47547901e-01 4.15854007e-01 -1.29996622e+00 -1.17430568e+00 1.72341064e-01 -5.59819415e-02 -9.37059104e-01 -2.57448852e-01 2.65828282e-01 -1.07584858e+00 -9.23926950e-01 -8.13326061e-01 -9.86825466e-01 8.23526919e-01 3.60122085e-01 7.38230586e-01 -9.32392031e-02 -3.96539807e-01 3.61279756e-01 3.94913927e-02 -1.56261295e-01 -6.05874598e-01 -3.21639061e-01 4.25092816e-01 1.66602120e-01 3.78639936e-01 -6.07104838e-01 -5.08260310e-01 3.27043712e-01 -1.06090212e+00 1.49929330e-01 5.40058315e-01 7.40537643e-01 7.52935290e-01 -2.31046706e-01 1.31599262e-01 -3.16085190e-01 3.33443396e-02 -1.43185243e-01 -6.87943459e-01 2.93489963e-01 -2.46868312e-01 5.29293716e-01 5.76677501e-01 -6.17549360e-01 -9.19080555e-01 7.98646927e-01 2.10125417e-01 -2.55555719e-01 -3.84348929e-01 2.46307477e-01 -1.28114596e-01 -3.07171494e-01 9.94523287e-01 5.17924607e-01 -1.31173711e-02 -5.87929934e-02 5.45480251e-01 1.25137553e-01 1.00483358e+00 -1.84429139e-01 8.01344991e-01 9.08894658e-01 3.53533894e-01 -1.25945735e+00 -4.54210311e-01 -3.19737703e-01 -9.92587268e-01 -3.52910578e-01 1.20541978e+00 -4.83070880e-01 -6.74058557e-01 4.11520541e-01 -1.34763122e+00 -3.28901201e-01 -5.37281692e-01 8.85249078e-01 -1.34631431e+00 5.00064313e-01 -4.82395202e-01 -8.11454237e-01 1.68037742e-01 -6.77377999e-01 6.00570142e-01 2.74867594e-01 -4.49733436e-01 -1.16318858e+00 3.75553548e-01 -7.75334165e-02 8.66692364e-02 3.34094703e-01 7.63039827e-01 -3.23889047e-01 -7.13194847e-01 -2.38109217e-03 8.03229287e-02 1.39421031e-01 6.88048378e-02 2.74865687e-01 -1.01170099e+00 -5.42938076e-02 5.95839202e-01 -1.13634460e-01 1.14904761e+00 9.21233237e-01 7.48156190e-01 -2.04494119e-01 -2.73304135e-01 6.81557417e-01 1.44031715e+00 2.96998620e-01 5.22660255e-01 3.69045049e-01 5.42443454e-01 8.57366443e-01 1.01002358e-01 1.93526633e-02 -7.90699124e-02 5.19744396e-01 3.26305687e-01 1.01381429e-01 -1.36976346e-01 -3.02240551e-01 6.35604858e-01 7.55685747e-01 -3.87018263e-01 -4.98939157e-02 -7.34446228e-01 3.55823547e-01 -2.18294787e+00 -1.30472612e+00 -2.49826405e-02 2.48755717e+00 6.16096258e-01 1.44977704e-01 1.80434808e-01 6.75703287e-02 7.95664608e-01 7.02754930e-02 -5.07688403e-01 -3.11279148e-01 -5.75287580e-01 -2.85329074e-01 4.93732184e-01 7.10870683e-01 -1.11777890e+00 8.78468931e-01 6.74348164e+00 4.43882942e-01 -1.02986038e+00 -7.00838789e-02 4.82268095e-01 1.36293203e-01 5.50809428e-02 2.09833860e-01 -5.49941003e-01 9.74368230e-02 9.72620666e-01 -4.50651139e-01 6.14889324e-01 5.06070077e-01 6.41953528e-01 -3.32687587e-01 -1.48700511e+00 1.02876103e+00 1.69828281e-01 -1.41081583e+00 1.95486546e-01 5.34604453e-02 7.22204864e-01 -1.12957835e-01 -1.08850129e-01 -4.20154572e-01 2.83689409e-01 -8.43581438e-01 7.64197946e-01 9.92642701e-01 1.55834809e-01 -2.78388351e-01 1.12857558e-01 7.30943561e-01 -1.05124092e+00 -1.08969603e-02 -6.86028659e-01 -2.88332522e-01 1.96123704e-01 2.75150657e-01 -4.00920898e-01 -7.09716231e-03 2.98895538e-01 8.66852701e-01 -4.37767684e-01 1.22257972e+00 -1.51967615e-01 2.26182431e-01 -3.43025804e-01 -1.35067450e-02 1.01165436e-01 -3.94801468e-01 6.87578976e-01 1.01728427e+00 2.78571427e-01 7.66822100e-02 -2.96386570e-01 1.12690163e+00 6.58723712e-02 1.20703951e-02 -1.01844835e+00 -8.47993717e-02 -2.96409847e-03 1.10407639e+00 -1.18114877e+00 -2.88666844e-01 -3.38994950e-01 1.09736753e+00 3.12697023e-01 4.65019733e-01 -4.53861654e-01 9.24686864e-02 3.62422466e-01 -5.26637712e-04 3.29405040e-01 -4.45932329e-01 -1.80627957e-01 -1.21304917e+00 -2.62682855e-01 -3.80435765e-01 1.51967574e-02 -8.64250720e-01 -9.32070374e-01 2.85428673e-01 4.07028245e-03 -1.42728877e+00 -5.22268772e-01 -8.91245961e-01 -6.37089789e-01 4.26484346e-01 -9.42184806e-01 -8.71454358e-01 9.59361903e-03 5.50698161e-01 5.80112338e-01 -1.61105841e-02 7.09768653e-01 -2.89128453e-01 -3.90378743e-01 1.03538699e-01 2.52683908e-01 4.82289381e-02 4.28969055e-01 -1.17149413e+00 3.30757201e-01 1.22761905e+00 8.09393704e-01 5.73938310e-01 9.52253163e-01 -3.49459976e-01 -1.18388009e+00 -9.00748312e-01 9.62773442e-01 -4.58933860e-01 7.73120642e-01 -2.22313032e-01 -9.42524910e-01 6.65012181e-01 2.73040771e-01 1.94508046e-01 2.06346527e-01 -7.70463645e-01 -1.44695878e-01 5.82223684e-02 -8.08600843e-01 8.56260300e-01 1.15997660e+00 -4.41104114e-01 -7.54851043e-01 3.50427866e-01 2.71596819e-01 1.33632630e-01 -3.54659855e-01 1.01738214e-01 7.23398209e-01 -1.03481328e+00 1.01359022e+00 -6.40104771e-01 2.84793198e-01 -6.54525220e-01 -8.45532268e-02 -1.09964550e+00 -5.74961662e-01 -6.65648997e-01 -7.64200985e-02 6.68067873e-01 1.99401885e-01 -3.87731582e-01 7.37831056e-01 4.06248778e-01 2.48199224e-01 -1.05211549e-01 -8.75797629e-01 -1.01794434e+00 9.38868821e-02 -1.36571765e-01 -4.07424957e-01 9.26879883e-01 1.75262854e-01 2.74858594e-01 -4.01392370e-01 -8.34563896e-02 9.20552075e-01 -1.31065652e-01 6.61116719e-01 -1.16544032e+00 -5.49132168e-01 -6.08710229e-01 -7.95957863e-01 -1.18122804e+00 2.71191925e-01 -8.38839471e-01 3.43612373e-01 -1.26814127e+00 2.72417426e-01 4.83690768e-01 -2.01513678e-01 2.67657399e-01 2.61345059e-01 2.03785390e-01 2.16399446e-01 4.98718917e-01 -5.10988832e-01 2.19697818e-01 1.14905643e+00 -3.28257568e-02 -1.51789367e-01 -1.35792702e-01 -2.53998399e-01 1.29186869e+00 7.92113423e-01 -5.28461397e-01 -4.30915982e-01 -5.08409500e-01 1.22009307e-01 -2.62497608e-02 6.84987903e-01 -1.12753665e+00 7.33697295e-01 -4.27966624e-01 4.34161097e-01 -2.01387227e-01 1.09357461e-01 -7.09340811e-01 3.11223149e-01 8.73960912e-01 -5.67213118e-01 1.95838325e-02 -1.72125533e-01 7.18594372e-01 -1.43909693e-01 -5.51148951e-01 1.12647378e+00 -4.10542250e-01 -1.10320091e+00 -7.69982487e-02 -1.02352798e+00 -1.51370034e-01 9.90109622e-01 -6.55374050e-01 -2.38338619e-01 -3.15643251e-01 -1.00479794e+00 -4.41286206e-01 6.99223876e-01 1.59145132e-01 6.85255945e-01 -1.25276911e+00 -6.08218968e-01 1.78258061e-01 3.28854434e-02 -3.83248538e-01 -1.76577732e-01 8.76858175e-01 -8.86010766e-01 4.85923409e-01 -5.92745900e-01 -6.76298738e-01 -1.08385682e+00 7.82834709e-01 6.13012791e-01 2.20663309e-01 -3.84864211e-01 6.78898335e-01 6.43771470e-01 1.16781384e-01 -4.23840471e-02 -5.31765044e-01 -1.34741202e-01 -3.48920345e-01 6.56381130e-01 2.69848287e-01 -4.38985765e-01 -8.77441525e-01 -2.45502725e-01 8.07490885e-01 3.00878078e-01 -3.79097044e-01 1.21457291e+00 -2.39313483e-01 -1.96151555e-01 7.53038824e-01 1.17021465e+00 -3.37109059e-01 -1.38959050e+00 -3.18072408e-01 3.88017386e-01 -1.21907704e-01 -2.24263817e-01 -1.11452363e-01 -7.95950711e-01 9.89674687e-01 5.57347000e-01 1.32009208e-01 1.11170161e+00 -7.64609948e-02 2.50680894e-01 8.40818703e-01 3.78128946e-01 -1.01221192e+00 1.51224121e-01 3.72738302e-01 8.82095754e-01 -1.26785660e+00 -1.48388982e-01 -1.00331947e-01 -2.89528489e-01 1.30344498e+00 3.68601948e-01 -5.93962073e-01 5.58551610e-01 7.86429718e-02 -8.99685621e-02 1.32848740e-01 -8.71912479e-01 -2.58345068e-01 3.52795005e-01 7.57041693e-01 4.06651825e-01 -2.33942568e-01 -5.23611784e-01 -3.87436822e-02 1.21875502e-01 2.61879414e-01 5.09779751e-01 8.76826167e-01 -8.77597690e-01 -8.10902119e-01 -3.27761441e-01 -7.96330944e-02 -8.98550302e-02 9.11011472e-02 -6.03524566e-01 6.44899249e-01 9.91073437e-03 6.40993357e-01 8.01489204e-02 -1.94926381e-01 -1.43638909e-01 -1.30454767e-02 8.25710833e-01 -4.66915935e-01 9.28718410e-03 2.16008753e-01 -5.22008181e-01 -6.20655954e-01 -1.09980178e+00 -8.27302158e-01 -1.39220214e+00 -8.09016153e-02 1.22946009e-01 -8.00735354e-02 4.80788589e-01 1.07432926e+00 -1.51541606e-01 4.20932956e-02 3.87375027e-01 -1.00388694e+00 -3.07728529e-01 -5.48782110e-01 -7.31394231e-01 5.39138377e-01 4.28300649e-01 -3.83726835e-01 -5.78249931e-01 8.80047500e-01]
[8.945442199707031, -0.3936833143234253]
02e7e4c1-a561-4595-9657-7d9514f522c6
deep-bv-a-fully-automated-system-for-brain
1811.03601
null
http://arxiv.org/abs/1811.03601v1
http://arxiv.org/pdf/1811.03601v1.pdf
Deep BV: A Fully Automated System for Brain Ventricle Localization and Segmentation in 3D Ultrasound Images of Embryonic Mice
Volumetric analysis of brain ventricle (BV) structure is a key tool in the study of central nervous system development in embryonic mice. High-frequency ultrasound (HFU) is the only non-invasive, real-time modality available for rapid volumetric imaging of embryos in utero. However, manual segmentation of the BV from HFU volumes is tedious, time-consuming, and requires specialized expertise. In this paper, we propose a novel deep learning based BV segmentation system for whole-body HFU images of mouse embryos. Our fully automated system consists of two modules: localization and segmentation. It first applies a volumetric convolutional neural network on a 3D sliding window over the entire volume to identify a 3D bounding box containing the entire BV. It then employs a fully convolutional network to segment the detected bounding box into BV and background. The system achieves a Dice Similarity Coefficient (DSC) of 0.8956 for BV segmentation on an unseen 111 HFU volume test set surpassing the previous state-of-the-art method (DSC of 0.7119) by a margin of 25%.
['Jeffrey Ketterling', 'Orlando Aristizabal', 'Jack Langerman', 'Yao Wang', 'Nitin Nair', 'Jonathan Mamou', 'Ziming Qiu', 'Daniel H. Turnbull']
2018-11-05
null
null
null
null
['brain-ventricle-localization-and-segmentation']
['medical']
[-4.12648842e-02 2.05950871e-01 4.28637594e-01 -1.91840410e-01 -5.13885260e-01 -6.36729658e-01 1.17561929e-01 3.31179887e-01 -6.60314441e-01 4.83101428e-01 -7.54756927e-01 -2.98302114e-01 4.58378851e-01 -7.95862615e-01 -6.87260807e-01 -6.95752919e-01 -1.91345453e-01 7.32472360e-01 5.99966466e-01 1.99372128e-01 2.29697391e-01 7.40791857e-01 -1.02845180e+00 -5.25175035e-02 4.73340750e-01 1.15376604e+00 4.00832593e-01 8.23491395e-01 -3.09119731e-01 1.90285534e-01 -5.65957546e-01 -3.33712809e-02 2.28098840e-01 -5.52339852e-01 -9.24288452e-01 -1.06997423e-01 2.51631588e-01 -7.42340207e-01 6.37764186e-02 7.76935458e-01 7.24147618e-01 -2.84066588e-01 8.83877456e-01 -6.63676560e-01 -8.10234472e-02 3.19633335e-01 -7.89038777e-01 7.52661526e-01 1.08775005e-01 -2.84612507e-01 4.39491749e-01 -8.49153936e-01 9.24275398e-01 5.38686156e-01 6.01768315e-01 7.09291995e-01 -1.31109321e+00 -8.28364015e-01 -5.39030671e-01 -4.60731357e-01 -1.27569926e+00 -1.79624230e-01 3.37106138e-01 -1.15620553e+00 7.11988807e-01 -1.38566092e-01 9.75221932e-01 1.23008288e-01 4.69267637e-01 5.13604701e-01 7.50383973e-01 -1.76607043e-01 4.12719965e-01 -2.88462847e-01 -1.94673538e-02 1.13384545e+00 2.44271997e-02 -3.34218979e-01 -1.18983187e-01 -9.98825505e-02 1.24579453e+00 -2.80593961e-01 -2.92990267e-01 -4.51764435e-01 -9.65621293e-01 8.16321373e-01 7.19096288e-02 4.59897667e-01 -1.67118073e-01 3.95827234e-01 4.86057967e-01 -8.44987035e-02 7.14690149e-01 2.00333983e-01 -3.17669779e-01 2.44592559e-02 -1.24092042e+00 2.05618382e-01 3.97743136e-01 5.56778133e-01 4.22631592e-01 7.79049750e-03 -2.05736719e-02 7.28444278e-01 4.49133158e-01 3.45252842e-01 4.56146300e-01 -9.72468376e-01 1.34633273e-01 5.17303646e-01 -4.15588111e-01 -4.25049156e-01 -7.52245784e-01 -1.26842007e-01 -6.42741323e-01 3.92410904e-01 5.94930351e-01 -5.89158356e-01 -1.07114065e+00 1.32134843e+00 7.98440635e-01 -3.25404964e-02 -4.18261766e-01 9.40228283e-01 1.39933896e+00 4.20454532e-01 6.28761947e-03 -1.85470074e-01 1.17754912e+00 -3.02717745e-01 -3.65100861e-01 1.58854768e-01 8.67512643e-01 -5.02280116e-01 3.37130398e-01 -2.72112656e-02 -1.02101767e+00 8.02389979e-02 -1.04483879e+00 -4.78398763e-02 -1.96653023e-01 2.12198541e-01 4.99529064e-01 6.62577331e-01 -1.24346447e+00 6.54325783e-01 -1.10842001e+00 -3.29868466e-01 1.04055333e+00 6.16057336e-01 -6.69936538e-01 4.36441004e-01 -5.36725581e-01 5.82874179e-01 2.06263334e-01 -1.93577304e-01 -9.77496028e-01 -1.16404366e+00 -9.74601269e-01 -6.84231520e-02 -6.77165464e-02 -4.00547415e-01 1.12038112e+00 -2.20020667e-01 -1.45578849e+00 1.33101189e+00 2.65284181e-02 -4.37040001e-01 7.09365964e-01 8.45636800e-02 4.40043926e-01 6.59918129e-01 2.46730059e-01 7.32767582e-01 5.94034314e-01 -1.02866387e+00 -3.44085932e-01 -5.81412435e-01 -4.53495562e-01 -2.94742167e-01 2.43195668e-01 1.97465762e-01 -2.89214641e-01 -3.59465539e-01 5.43942809e-01 -6.10715091e-01 -5.24513386e-02 3.69537592e-01 3.20853554e-02 -3.88185307e-02 8.55686069e-01 -1.03134501e+00 7.19286382e-01 -1.77470338e+00 -5.04925661e-02 3.02831560e-01 7.57175446e-01 3.84658486e-01 2.38666087e-01 -1.44524306e-01 1.12009421e-01 1.48392841e-02 -5.69311202e-01 -3.46256793e-01 -5.85269928e-01 -2.56835669e-01 2.74949968e-01 9.63708878e-01 -4.94253673e-02 8.22841465e-01 -8.93236101e-01 -8.97550166e-01 2.33148560e-01 5.46354711e-01 -3.68815392e-01 2.44218990e-01 1.82594225e-01 7.84687996e-01 -3.05153757e-01 7.69649684e-01 7.90835738e-01 -1.76197886e-02 -2.99880821e-02 2.15002820e-01 -1.29712954e-01 -5.71044445e-01 -5.13722122e-01 1.66664958e+00 -1.67226583e-01 1.07273555e+00 3.25673014e-01 -1.08235776e+00 9.43725526e-01 3.78897995e-01 8.10735822e-01 -4.38664019e-01 6.46062195e-01 3.21534842e-01 -6.94622621e-02 -6.18546009e-01 -2.53297269e-01 -4.08884943e-01 3.79932940e-01 4.81478482e-01 6.19020164e-01 -3.80830079e-01 4.00223255e-01 1.42699052e-02 1.16244316e+00 2.31877610e-01 1.03902951e-01 -5.99543393e-01 4.70394433e-01 -3.96046013e-01 5.76739371e-01 6.46664202e-02 -5.87669194e-01 1.22221267e+00 8.19204867e-01 -4.84360486e-01 -1.18396032e+00 -9.04991448e-01 -5.84570408e-01 6.42723083e-01 -4.23607305e-02 8.41971040e-02 -1.26865840e+00 -6.21262550e-01 1.29042909e-01 1.34270638e-01 -8.73496890e-01 4.14351881e-01 -5.48358977e-01 -7.40446746e-01 5.39585114e-01 3.88445467e-01 4.91578341e-01 -8.92863810e-01 -1.19939935e+00 1.92251116e-01 1.97426770e-02 -1.20432460e+00 -3.25906016e-02 2.37253327e-02 -8.40298116e-01 -1.18042648e+00 -1.39570940e+00 -8.29731286e-01 9.06830788e-01 -3.42870563e-01 8.91533792e-01 2.72319049e-01 -7.92354286e-01 2.45647989e-02 -1.46783128e-01 -4.55945909e-01 -3.76112133e-01 -3.59123617e-01 -2.60969847e-01 -4.25834358e-01 -2.78392970e-03 -4.65372831e-01 -7.89107680e-01 7.94187784e-02 -6.43584788e-01 -1.21569119e-01 1.37971908e-01 5.60355067e-01 8.24131668e-01 -4.55130607e-01 4.77610737e-01 -9.17027056e-01 2.05784097e-01 -3.65920484e-01 -1.03740275e+00 3.33459564e-02 -6.69144839e-02 -5.22727549e-01 4.04798090e-01 -2.12627277e-01 -6.51060104e-01 2.80673087e-01 -3.59698296e-01 -3.26290935e-01 -2.30897829e-01 2.22250670e-01 4.24686879e-01 -5.92773080e-01 3.96474361e-01 2.02067867e-01 2.11623743e-01 -2.48407394e-01 -9.58529115e-02 4.29007053e-01 4.29282039e-01 -1.56119123e-01 3.91875595e-01 6.22739255e-01 5.11595607e-01 -9.51690733e-01 -2.52043724e-01 -5.11376441e-01 -1.00803006e+00 -6.20948970e-01 1.22499824e+00 -5.43018818e-01 -6.20560348e-01 4.00463402e-01 -1.15064323e+00 -7.10509241e-01 3.05103153e-01 4.06532139e-01 -5.41189790e-01 5.69879889e-01 -8.41837287e-01 -6.48825109e-01 -7.55112529e-01 -1.20672798e+00 1.03761375e+00 2.39616603e-01 -3.02570730e-01 -8.28980327e-01 2.44699582e-01 5.47834277e-01 1.87246770e-01 8.54426682e-01 8.39921772e-01 -5.09264290e-01 -2.64211800e-02 -5.04383862e-01 -2.86543995e-01 2.54949808e-01 -1.44615546e-01 1.71591431e-01 -9.91898656e-01 -1.38028726e-01 -1.46995306e-01 -2.46163025e-01 8.85338724e-01 8.40584338e-01 1.07114708e+00 4.20634687e-01 -3.70532781e-01 8.09662044e-01 1.49680769e+00 5.21410346e-01 1.41063705e-01 2.03028306e-01 5.43170393e-01 6.35803103e-01 5.25832117e-01 6.26060188e-01 -4.02007103e-02 1.21880852e-01 4.11556870e-01 -3.52822363e-01 5.76492809e-02 4.64611590e-01 -3.13125849e-01 1.75295040e-01 -3.50392520e-01 1.75293684e-02 -1.33627474e+00 7.21095502e-01 -1.34706688e+00 -5.51456869e-01 -5.21977805e-02 2.15510702e+00 7.48499751e-01 -2.44242381e-02 1.71610281e-01 1.84723251e-02 7.39898682e-01 -3.65368307e-01 -2.65379488e-01 -4.85279173e-01 2.97321171e-01 3.58549386e-01 4.47104305e-01 2.83382624e-01 -1.33777595e+00 7.53466725e-01 6.31045008e+00 4.62338299e-01 -1.19296491e+00 5.47181629e-02 9.60050702e-01 -1.19610786e-01 2.52055019e-01 -5.41961312e-01 -4.39715862e-01 4.90993828e-01 5.02820969e-01 5.32657504e-02 5.39778359e-02 6.89112186e-01 -8.33251327e-02 -4.96107161e-01 -1.09387803e+00 8.70927036e-01 1.17623890e-02 -1.46695137e+00 -3.67710680e-01 1.20625973e-01 6.46229804e-01 1.89333797e-01 -2.03910634e-01 -3.00850961e-02 -4.08092201e-01 -1.02207696e+00 5.34691513e-01 2.40663156e-01 1.07131779e+00 -8.98647487e-01 1.27765083e+00 4.00720119e-01 -1.04708850e+00 3.51881832e-01 -4.91967112e-01 2.24023208e-01 7.37180188e-02 6.77631497e-01 -1.11884224e+00 -4.69090156e-02 7.99288332e-01 -5.55516360e-03 -2.37390891e-01 1.22660482e+00 2.52109081e-01 5.03887951e-01 -3.53166252e-01 1.69978723e-01 1.13911271e-01 -3.82677346e-01 4.05218273e-01 1.30611837e+00 4.33052450e-01 3.42315912e-01 -3.49190652e-01 1.07539356e+00 -1.29041061e-01 3.72077703e-01 -6.09644353e-01 -7.86786824e-02 1.13786891e-01 1.47017515e+00 -1.56932664e+00 -3.15144271e-01 -3.05837423e-01 6.62659645e-01 3.42796654e-01 -1.42869009e-02 -7.26886392e-01 -4.57849175e-01 1.48020074e-01 2.99525678e-01 4.11650449e-01 -7.58178756e-02 -3.37519705e-01 -6.04188085e-01 -3.18747520e-01 7.54412040e-02 1.12197295e-01 -3.92044395e-01 -5.21827340e-01 4.16017950e-01 -1.10689342e-01 -8.37551236e-01 -6.31570071e-02 -4.34770018e-01 -8.39972675e-01 8.24962497e-01 -1.13982081e+00 -7.67410100e-01 -3.02197963e-01 -1.15053244e-01 3.60898554e-01 -1.43884897e-01 7.97873318e-01 1.78286076e-01 -6.09135091e-01 3.36787641e-01 2.33455095e-02 5.29789507e-01 2.38821983e-01 -1.40329552e+00 1.83891281e-01 6.89299703e-01 -4.21082407e-01 5.61024964e-01 6.46136940e-01 -7.80754089e-01 -8.40971410e-01 -1.06121051e+00 6.12706363e-01 -1.05440326e-01 2.70268053e-01 -3.08475107e-01 -8.36733520e-01 5.77462792e-01 -4.62697484e-02 5.68410218e-01 1.00366592e+00 -6.61024451e-01 2.00148180e-01 3.72181743e-01 -1.61834872e+00 3.11847001e-01 4.45400625e-01 6.56310171e-02 -3.06409359e-01 2.75419354e-01 3.52745384e-01 -7.28188932e-01 -1.23303926e+00 5.93153536e-01 7.58135617e-01 -9.68846738e-01 9.05869305e-01 -9.27810296e-02 8.00515234e-01 -1.04949556e-01 3.56009632e-01 -8.92058790e-01 1.57964695e-02 -3.92112970e-01 3.77249229e-03 1.03249025e+00 3.77820820e-01 -4.39155579e-01 1.12647927e+00 5.68157732e-01 -2.21812829e-01 -1.21805644e+00 -1.18636096e+00 -4.58590508e-01 3.37664127e-01 -1.96631432e-01 2.52626419e-01 6.17873013e-01 1.42916188e-01 -3.64174061e-02 4.55085605e-01 -1.38249069e-01 7.92187154e-01 1.27636552e-01 3.51192951e-01 -1.21061647e+00 3.41892779e-01 -6.12753570e-01 -7.50336647e-01 -3.90936226e-01 4.96474579e-02 -8.94896150e-01 1.99760765e-01 -1.73579180e+00 2.63327748e-01 -1.06469309e-02 7.42439693e-03 2.66259253e-01 2.74689030e-02 5.98728716e-01 -1.60488695e-01 -1.13932490e-01 -3.60726655e-01 2.89077342e-01 1.32528281e+00 1.13167062e-01 -2.29695663e-01 -9.49222688e-03 1.14889704e-01 9.98444855e-01 1.02885139e+00 -3.71326119e-01 -1.61696240e-01 -1.80471018e-01 -2.41390571e-01 2.85389364e-01 8.76910463e-02 -1.08674288e+00 4.65525053e-02 3.57504159e-01 9.22693551e-01 -8.83389354e-01 7.24524856e-02 -6.38758242e-01 -1.88137516e-01 6.92240357e-01 -3.61117385e-02 -4.93544400e-01 2.63764322e-01 1.33121923e-01 6.61667809e-02 -4.66477364e-01 1.18480778e+00 -4.27052081e-01 -2.59083688e-01 4.27988946e-01 -8.18931460e-01 9.58305076e-02 1.34754014e+00 -3.26466590e-01 1.64566096e-02 1.42085835e-01 -6.26650453e-01 2.37823457e-01 3.85652125e-01 -4.67454106e-01 8.48750234e-01 -7.78087735e-01 -6.40706182e-01 2.52249062e-01 -1.87794328e-01 5.47529519e-01 3.29594374e-01 1.00411165e+00 -1.64041626e+00 4.01733935e-01 -3.56974542e-01 -9.07582700e-01 -1.66703534e+00 6.03495575e-02 5.02895534e-01 1.50873587e-01 -8.21517527e-01 1.40427375e+00 3.47793341e-01 -4.56229895e-01 1.02811260e-02 -4.48087841e-01 -6.52286828e-01 1.18125625e-01 4.40187484e-01 4.69322354e-01 3.92476916e-02 -9.60124016e-01 -3.89657885e-01 1.03621233e+00 2.99216896e-01 1.09006859e-01 1.35979712e+00 4.79799733e-02 -3.85283321e-01 2.37678781e-01 1.43902612e+00 -4.84584481e-01 -1.05030513e+00 1.50104061e-01 -2.76112884e-01 -3.28565896e-01 3.41335773e-01 -2.83777237e-01 -1.49471664e+00 1.01121068e+00 6.47954881e-01 1.25542432e-01 7.12451160e-01 1.31452248e-01 1.01848090e+00 -2.50325110e-02 2.83983797e-01 -1.08847272e+00 -2.15198681e-01 3.89755160e-01 7.59869397e-01 -1.32622778e+00 2.35965714e-01 -6.50393665e-01 -2.45206982e-01 1.27611864e+00 6.74116135e-01 -1.63430676e-01 8.38571250e-01 4.26024705e-01 3.57784778e-01 -5.13083756e-01 -3.06585461e-01 4.57281470e-02 2.43331671e-01 6.22246802e-01 6.96222901e-01 -1.54666737e-01 -5.28880537e-01 4.21152085e-01 -1.29288405e-01 2.62578595e-02 4.42010790e-01 1.13598788e+00 -7.56018579e-01 -2.56725401e-01 -1.74479410e-01 6.31091774e-01 -1.11962128e+00 1.68124631e-01 -1.93929642e-01 6.81694806e-01 3.47804755e-01 4.38573122e-01 2.26539239e-01 1.00110695e-01 -1.35673016e-01 4.86857112e-04 6.43457532e-01 -7.78833091e-01 -4.93819028e-01 4.58458602e-01 -3.08680773e-01 -6.52665555e-01 -1.99924842e-01 -5.15592992e-01 -1.91848123e+00 6.35769740e-02 -2.39166349e-01 -1.89279571e-01 1.01769137e+00 1.03115046e+00 -1.65933475e-01 5.67081571e-01 3.83569419e-01 -1.01868021e+00 2.58946002e-01 -7.96106756e-01 -9.47014809e-01 -5.82830086e-02 4.06393677e-01 -6.97476387e-01 -3.59767109e-01 1.82931259e-01]
[14.331670761108398, -2.6734108924865723]
29e2f54e-571a-4919-bd7b-c4760bae2415
maximal-multiverse-learning-for-promoting
null
null
https://aclanthology.org/2021.eacl-main.14
https://aclanthology.org/2021.eacl-main.14.pdf
Maximal Multiverse Learning for Promoting Cross-Task Generalization of Fine-Tuned Language Models
Language modeling with BERT consists of two phases of (i) unsupervised pre-training on unlabeled text, and (ii) fine-tuning for a specific supervised task. We present a method that leverages the second phase to its fullest, by applying an extensive number of parallel classifier heads, which are enforced to be orthogonal, while adaptively eliminating the weaker heads during training. We conduct an extensive inter- and intra-dataset evaluation, showing that our method improves the generalization ability of BERT, sometimes leading to a +9{\%} gain in accuracy. These results highlight the importance of a proper fine-tuning procedure, especially for relatively smaller-sized datasets. Our code is attached as supplementary.
['Lior Wolf', 'Itzik Malkiel']
2021-04-01
null
null
null
eacl-2021-2
['unsupervised-pre-training']
['methodology']
[ 2.49103814e-01 1.36790037e-01 -3.47919852e-01 -6.19230747e-01 -9.21556175e-01 -7.87618697e-01 7.24381387e-01 2.75463432e-01 -7.17391193e-01 7.18538523e-01 -4.70629835e-04 -6.71039581e-01 -1.98688242e-03 -4.75949705e-01 -5.02850235e-01 -5.48159778e-01 -1.15163058e-01 6.11829042e-01 3.09302062e-01 -2.37121172e-02 9.37769040e-02 4.58500862e-01 -1.22101176e+00 1.08240947e-01 7.66436517e-01 9.50203955e-01 -1.09876975e-01 4.80293751e-01 -4.20300737e-02 7.67509401e-01 -4.29839343e-01 -6.38384819e-01 2.86381721e-01 -3.80184166e-02 -7.95783699e-01 3.09921473e-01 -2.72530317e-03 -7.09358752e-02 7.01936707e-03 7.97994316e-01 2.47810796e-01 3.31859291e-01 7.35727847e-01 -1.00579476e+00 -2.23013833e-01 7.05004811e-01 -6.29182637e-01 3.20665866e-01 -1.09475091e-01 1.78440958e-01 1.20288384e+00 -1.03299260e+00 1.58169061e-01 8.76562119e-01 7.67419815e-01 2.99728811e-01 -1.44352341e+00 -8.86268318e-01 2.63501912e-01 -2.97814220e-01 -1.57843173e+00 -5.96684515e-01 7.30035543e-01 -4.66318935e-01 9.39376712e-01 1.31956428e-01 1.60540730e-01 8.25212836e-01 -1.60551026e-01 7.72428095e-01 1.12656724e+00 -7.39043057e-01 3.45855445e-01 4.59435165e-01 5.64266801e-01 4.38467056e-01 1.66612938e-01 4.10674550e-02 -2.67994523e-01 -3.26279432e-01 3.48193169e-01 -2.45863080e-01 2.47661714e-02 -4.08392668e-01 -8.77901196e-01 1.02360654e+00 1.68785930e-01 2.91775584e-01 -7.70157874e-02 -2.49717608e-01 4.12837535e-01 1.89604461e-01 5.70681930e-01 5.54694772e-01 -7.34395683e-01 -1.15239486e-01 -1.10873449e+00 1.04802512e-01 8.76932204e-01 9.20051754e-01 9.75615919e-01 -2.26488426e-01 -1.29674137e-01 1.08802652e+00 1.06006339e-01 2.05675676e-01 6.54875815e-01 -5.66456437e-01 5.81531823e-01 6.37824237e-01 4.34381105e-02 -5.15513837e-01 -5.59716821e-01 -5.68177283e-01 -6.09436452e-01 -1.96734086e-01 4.75120097e-01 -4.05810386e-01 -8.60674322e-01 1.89613283e+00 3.07825685e-01 -4.02869172e-02 -2.10553840e-01 4.79751468e-01 4.02857780e-01 2.23499656e-01 4.14889842e-01 -2.82683611e-01 1.19669580e+00 -1.07580268e+00 -5.52027285e-01 -3.63475621e-01 9.54704106e-01 -6.28914356e-01 1.34700954e+00 3.43861848e-01 -8.14301312e-01 -3.82278383e-01 -9.02206540e-01 -1.16750054e-01 -3.23218912e-01 3.05668026e-01 8.09386075e-01 9.34480727e-01 -8.60108912e-01 4.20043468e-01 -8.54851484e-01 -7.69903883e-02 3.50972652e-01 7.68169403e-01 -3.43133003e-01 6.86661303e-02 -1.21066070e+00 5.97292840e-01 5.90752006e-01 -1.00990564e-01 -4.33255553e-01 -5.15484095e-01 -8.05995941e-01 7.33567625e-02 6.26334012e-01 -3.68884861e-01 1.40657425e+00 -8.49512994e-01 -1.40921426e+00 8.59401047e-01 -2.14289293e-01 -5.38006842e-01 6.20265424e-01 -2.07769677e-01 -3.14423621e-01 -1.66973770e-01 -1.01224057e-01 6.86335921e-01 6.36225700e-01 -1.22765267e+00 -5.73468328e-01 -3.90696585e-01 -3.29851592e-03 1.63150415e-01 -7.85963118e-01 8.34169313e-02 -7.95349002e-01 -8.12218487e-01 -1.06969185e-01 -1.05120087e+00 -2.42982209e-01 -4.39029068e-01 -4.18527693e-01 -2.92461276e-01 5.91853738e-01 -3.50441515e-01 1.59832203e+00 -2.18580151e+00 -2.92920709e-01 4.83348429e-01 3.01748127e-01 4.04219508e-01 -3.80839519e-02 3.51124048e-01 -6.97943494e-02 2.20353067e-01 -3.18719298e-01 -7.13366449e-01 -1.99555263e-01 1.76266119e-01 -2.98036724e-01 2.78706640e-01 3.48458230e-01 8.24533761e-01 -7.11230099e-01 -4.54461485e-01 -9.04121026e-02 7.26768449e-02 -6.00385010e-01 -1.12124672e-02 -2.13933542e-01 3.98509234e-01 -3.93639356e-01 3.89952242e-01 4.72290367e-01 -5.80788910e-01 4.87039000e-01 1.53673097e-01 -4.55838256e-02 5.39072216e-01 -1.31576753e+00 1.12944841e+00 -2.79570788e-01 3.19292694e-01 5.17509766e-02 -8.37242126e-01 7.93163002e-01 1.15058117e-01 5.57797372e-01 -2.82916397e-01 1.81231886e-01 1.82676747e-01 4.48514260e-02 -1.43212467e-01 4.41110760e-01 -1.56445473e-01 1.47237172e-02 5.83656371e-01 4.47564572e-02 9.47250351e-02 3.35986525e-01 1.95769027e-01 9.75292027e-01 -2.16800719e-01 5.03957748e-01 -5.45189500e-01 5.58760405e-01 -9.74599570e-02 5.01538992e-01 9.63815451e-01 -2.58302987e-01 4.49963331e-01 4.92201239e-01 -1.36266559e-01 -8.67578208e-01 -7.69209862e-01 -3.03959042e-01 1.28763509e+00 -1.95277795e-01 -4.73216057e-01 -7.66939700e-01 -1.10016751e+00 1.95889339e-01 7.96235025e-01 -8.12483549e-01 -1.02485515e-01 -5.67110300e-01 -1.00820816e+00 6.77214801e-01 7.51553655e-01 2.97547311e-01 -8.86312962e-01 -2.13670984e-01 -2.69565210e-02 1.11073047e-01 -1.17990220e+00 -4.94805634e-01 8.47705841e-01 -8.66655469e-01 -9.85854685e-01 -4.22563016e-01 -7.47794092e-01 7.22070456e-01 1.63302451e-01 8.58298182e-01 2.56166816e-01 2.74116307e-01 1.82309042e-04 -3.51190269e-01 -3.84965360e-01 -3.42805535e-01 4.52133000e-01 6.46394640e-02 -1.21478535e-01 5.39649487e-01 -4.59591329e-01 -2.24469587e-01 4.66742665e-01 -9.10131574e-01 7.99094737e-02 6.55558109e-01 1.10845697e+00 4.27760750e-01 1.34041697e-01 4.17814344e-01 -1.37745821e+00 5.19941449e-01 -4.44232285e-01 -6.44117951e-01 1.99984401e-01 -8.54157388e-01 1.91897944e-01 7.78300643e-01 -5.54101646e-01 -8.38069677e-01 1.86308727e-01 -1.87779739e-01 -2.21692085e-01 -1.86991915e-01 7.11817861e-01 -1.57261029e-01 -1.40104005e-02 7.01965213e-01 -1.34127215e-01 -1.17790721e-01 -5.98986983e-01 3.46827388e-01 8.41656864e-01 3.76647830e-01 -6.60778642e-01 9.15636301e-01 3.11807454e-01 -3.37413371e-01 -7.31573105e-01 -1.02216744e+00 -7.02867627e-01 -9.14565384e-01 2.29832098e-01 3.52196932e-01 -8.37870955e-01 -4.01987106e-01 2.59831220e-01 -4.98845100e-01 -7.38046527e-01 -2.14845315e-01 6.19273424e-01 -5.07001989e-02 5.05417407e-01 -6.34741306e-01 -6.59446359e-01 -3.03831518e-01 -1.03493702e+00 9.76756454e-01 -6.44509643e-02 -2.93874592e-01 -1.04286623e+00 5.77709451e-02 4.31428850e-01 1.67820036e-01 -4.96697545e-01 9.15043175e-01 -1.34229183e+00 3.97747234e-02 -3.13617468e-01 -2.52702743e-01 3.68675143e-01 1.81579128e-01 -3.43709327e-02 -1.12743235e+00 -4.11466449e-01 -1.24331862e-01 -4.84254003e-01 9.79982972e-01 1.40383154e-01 1.33221066e+00 -1.40742779e-01 -3.56472969e-01 4.79234517e-01 1.06690347e+00 6.60175979e-02 1.87188223e-01 3.82517129e-01 5.95198750e-01 4.74558353e-01 5.48003197e-01 3.94588500e-01 3.33353907e-01 6.98375404e-01 -6.16644472e-02 -1.87142089e-01 2.30750382e-01 -2.08718210e-01 9.99175906e-02 5.89690566e-01 1.77940875e-01 -1.75170004e-01 -1.11174560e+00 2.70495415e-01 -1.66577005e+00 -6.36105955e-01 1.81046292e-01 2.42128730e+00 1.11180103e+00 5.81767201e-01 4.65411842e-01 3.78881574e-01 5.70608020e-01 -1.23893984e-01 -4.84178692e-01 -7.73006678e-02 2.00584429e-04 2.85685569e-01 6.01231217e-01 6.56285942e-01 -1.26089835e+00 1.27799761e+00 7.03120136e+00 9.13437426e-01 -1.31949353e+00 4.07323353e-02 8.70525062e-01 -4.91406135e-02 -2.78671592e-01 2.06877708e-01 -1.00200212e+00 3.38593125e-01 9.38993633e-01 -5.10884225e-02 4.11978364e-01 8.45519781e-01 2.21015960e-01 -3.01982332e-02 -1.03159332e+00 5.50442338e-01 -1.38506323e-01 -1.00720263e+00 -7.65767545e-02 8.64845440e-02 5.92829883e-01 2.38335550e-01 -2.63459861e-01 5.50443769e-01 5.16936600e-01 -8.52678716e-01 7.15319037e-01 -8.68770257e-02 6.95522904e-01 -7.87693441e-01 6.10683382e-01 6.93081439e-01 -1.04824197e+00 -1.79545030e-01 -5.61224706e-02 -3.64872417e-03 -1.19090602e-01 9.24949169e-01 -8.22580755e-01 3.96824896e-01 4.28987920e-01 4.82772082e-01 -8.17996740e-01 7.45833457e-01 -2.94414163e-01 9.93023396e-01 -3.57989162e-01 -5.76201491e-02 1.62707150e-01 -5.20146936e-02 2.19010979e-01 1.57780075e+00 -2.59759009e-01 4.98628244e-02 4.52794552e-01 6.25471056e-01 -2.03536749e-01 2.26324484e-01 -2.18008623e-01 -8.34060684e-02 6.63761020e-01 1.29638863e+00 -8.74330819e-01 -4.43954051e-01 -4.37677681e-01 5.58368981e-01 7.40602672e-01 4.57526892e-01 -8.51056635e-01 -2.51264155e-01 1.33613810e-01 2.83383187e-02 4.12550628e-01 -3.90420556e-01 -6.49317563e-01 -1.10575831e+00 -1.03836261e-01 -9.55353439e-01 6.35817051e-01 -2.19665751e-01 -1.18220973e+00 5.80225348e-01 -5.02628973e-03 -9.62470710e-01 -3.00918490e-01 -6.73461258e-01 -4.48918641e-01 6.27395928e-01 -1.44266224e+00 -1.08150470e+00 -1.45510405e-01 4.65641260e-01 2.66659081e-01 -2.00909423e-03 7.72115707e-01 2.97048777e-01 -9.83334363e-01 1.03988063e+00 1.00191765e-01 2.15148389e-01 8.50570261e-01 -1.25115442e+00 2.11105809e-01 7.72728682e-01 1.58386797e-01 9.53518271e-01 5.29688001e-01 -5.58277845e-01 -9.29736853e-01 -1.06636858e+00 1.07215905e+00 -3.29123497e-01 9.25496221e-01 -7.06249595e-01 -9.72186565e-01 9.59165633e-01 -2.42830932e-01 -9.64777991e-02 8.69951189e-01 6.82643294e-01 -4.27520037e-01 -7.44282007e-02 -9.11160707e-01 5.85162878e-01 8.56113076e-01 -3.20028424e-01 -3.89737248e-01 4.12013561e-01 5.18944979e-01 -2.79117227e-01 -8.32152247e-01 5.06041527e-01 4.26193863e-01 -7.22542942e-01 6.74988687e-01 -5.88077545e-01 2.68103480e-01 -7.26677664e-03 -9.18346196e-02 -1.06433725e+00 -2.98792154e-01 -6.61491156e-01 -3.98831740e-02 1.33349800e+00 7.13476539e-01 -7.98958302e-01 7.95707583e-01 7.95322061e-01 2.61743981e-02 -9.40711915e-01 -6.12008691e-01 -7.08236814e-01 3.01798820e-01 -6.79557502e-01 3.89292777e-01 1.02873063e+00 -1.75903533e-02 6.13531232e-01 -1.93533555e-01 8.48377571e-02 1.74716070e-01 -8.30784664e-02 8.65093589e-01 -1.17054260e+00 -4.32146728e-01 -5.54992139e-01 4.51729484e-02 -1.15646648e+00 2.62023121e-01 -7.91320384e-01 2.16032341e-02 -7.83214092e-01 4.25959200e-01 -8.64948273e-01 -4.77506101e-01 8.88307929e-01 -6.02445483e-01 2.70118445e-01 -1.31041586e-01 5.29590905e-01 -5.78896940e-01 4.73702610e-01 8.54283214e-01 2.00904310e-01 -4.78942007e-01 1.66655794e-01 -9.81754482e-01 7.26770103e-01 8.07515800e-01 -4.93346900e-01 -4.26709175e-01 -2.22373694e-01 -2.60869302e-02 -3.90277714e-01 1.49443045e-01 -8.54387879e-01 9.58191752e-02 -1.85323939e-01 3.61230135e-01 -2.70489812e-01 1.17449157e-01 -5.84888995e-01 -2.09673122e-01 3.02259237e-01 -6.05964661e-01 3.18471417e-02 4.08031851e-01 4.34107423e-01 -1.11711718e-01 -2.38025606e-01 9.40634787e-01 1.85321376e-01 -5.24578452e-01 1.64731339e-01 -1.32605538e-01 1.16373725e-01 7.83927619e-01 -1.20382875e-01 -2.48667020e-02 -3.00215691e-01 -5.72150111e-01 3.49837542e-01 4.13596183e-01 2.26700112e-01 -1.93046138e-01 -8.16151142e-01 -4.19935286e-01 4.21474546e-01 1.97161540e-01 -5.04665263e-02 -1.61500916e-01 9.74248767e-01 -1.03547916e-01 5.52043140e-01 3.65139067e-01 -6.39136672e-01 -1.18123031e+00 6.54984295e-01 3.38077635e-01 -8.07801127e-01 -5.82251012e-01 7.74508774e-01 2.24748492e-01 -6.14902258e-01 3.69804323e-01 -1.67945489e-01 -1.75116464e-01 -4.57419343e-02 3.54811549e-01 1.95859820e-01 3.46229017e-01 -4.54047561e-01 -4.64684993e-01 9.49961767e-02 -5.07268131e-01 -2.64015913e-01 1.11851525e+00 -1.44887477e-01 1.96179539e-01 3.72051150e-01 1.03624904e+00 4.84377861e-01 -1.33200359e+00 -3.63627493e-01 3.18662941e-01 -2.11122498e-01 1.13368869e-01 -9.41642284e-01 -8.47939730e-01 4.95225251e-01 1.18456580e-01 1.61750868e-01 1.19652021e+00 -1.58370078e-01 4.87781823e-01 5.42997777e-01 1.82585150e-01 -1.04639077e+00 -8.63595083e-02 7.24126518e-01 4.46958125e-01 -1.33743441e+00 5.88179529e-02 -5.42472780e-01 -7.62256265e-01 8.63124788e-01 4.59744453e-01 1.14034370e-01 7.61291265e-01 5.68825781e-01 2.27013394e-01 -6.75998628e-02 -7.46665597e-01 -7.61370361e-02 3.52330685e-01 1.32818213e-02 7.39716172e-01 -5.28933071e-02 -4.12167490e-01 7.90706098e-01 -3.17311555e-01 1.02611355e-01 -1.49849411e-02 1.06446588e+00 -3.01277041e-01 -1.29444122e+00 -2.37115711e-01 6.23122215e-01 -4.65146750e-01 -2.28619725e-01 -4.88627970e-01 1.02487159e+00 -7.81162605e-02 1.17333102e+00 -4.75759692e-02 -4.81768548e-01 1.76156476e-01 3.51350486e-01 1.76974148e-01 -7.64686167e-01 -7.17278361e-01 3.68019164e-01 1.33316413e-01 -2.95260757e-01 -1.75855830e-01 -6.80931628e-01 -1.26264310e+00 -1.63327396e-01 -6.89472914e-01 2.76769817e-01 3.32299620e-01 1.24470723e+00 2.69293964e-01 3.14467728e-01 7.07702696e-01 -6.86716497e-01 -9.98593569e-01 -1.17164898e+00 -6.03489220e-01 5.26948273e-01 1.55452654e-01 -7.71932065e-01 -5.19494474e-01 -7.60649815e-02]
[9.463397979736328, 3.643970251083374]
5bc9aa61-6855-454f-9366-711769dc6f34
from-images-to-sentences-through-scene
1511.03292
null
http://arxiv.org/abs/1511.03292v1
http://arxiv.org/pdf/1511.03292v1.pdf
From Images to Sentences through Scene Description Graphs using Commonsense Reasoning and Knowledge
In this paper we propose the construction of linguistic descriptions of images. This is achieved through the extraction of scene description graphs (SDGs) from visual scenes using an automatically constructed knowledge base. SDGs are constructed using both vision and reasoning. Specifically, commonsense reasoning is applied on (a) detections obtained from existing perception methods on given images, (b) a "commonsense" knowledge base constructed using natural language processing of image annotations and (c) lexical ontological knowledge from resources such as WordNet. Amazon Mechanical Turk(AMT)-based evaluations on Flickr8k, Flickr30k and MS-COCO datasets show that in most cases, sentences auto-constructed from SDGs obtained by our method give a more relevant and thorough description of an image than a recent state-of-the-art image caption based approach. Our Image-Sentence Alignment Evaluation results are also comparable to that of the recent state-of-the art approaches.
['Somak Aditya', 'Cornelia Fermuller', 'Chitta Baral', 'Yiannis Aloimonos', 'Yezhou Yang']
2015-11-10
null
null
null
null
['image-sentence-alignment']
['natural-language-processing']
[ 3.16103190e-01 2.50484616e-01 2.14474201e-01 -6.40759408e-01 -6.71007633e-01 -7.64572620e-01 1.10807729e+00 3.70763630e-01 -7.00135589e-01 6.43307686e-01 4.50663894e-01 -1.22478753e-01 -8.37948397e-02 -5.00829697e-01 -8.67404819e-01 -1.89573228e-01 4.45594758e-01 3.52674037e-01 3.87097061e-01 -4.09323066e-01 5.59297442e-01 4.91159528e-01 -1.74815702e+00 6.17600441e-01 3.00604731e-01 1.05256653e+00 4.60660160e-01 7.00455666e-01 -2.11814135e-01 1.51039112e+00 -1.98690981e-01 -6.95252478e-01 -6.18673535e-03 -4.07367975e-01 -1.28347075e+00 5.11429787e-01 9.64830875e-01 -9.50970575e-02 -1.89724758e-01 1.49058008e+00 2.09907100e-01 1.50621414e-01 5.60248256e-01 -1.31211174e+00 -1.31842172e+00 4.61867750e-01 -1.50105432e-01 9.00672525e-02 8.05571735e-01 2.31519520e-01 7.96989977e-01 -8.37374330e-01 1.19891024e+00 1.20157599e+00 2.61933953e-01 6.04422450e-01 -1.38269293e+00 -1.95464835e-01 -2.08472490e-01 5.45047045e-01 -1.71273458e+00 -4.91346061e-01 8.24126542e-01 -6.10653102e-01 1.24622595e+00 2.94851959e-01 6.21367455e-01 9.20986056e-01 -1.20565683e-01 4.70843762e-01 1.35460234e+00 -8.66634727e-01 3.46633822e-01 6.85755372e-01 1.08111855e-02 6.82420969e-01 3.45769487e-02 -3.08580130e-01 -5.41510463e-01 1.27030611e-01 7.48052299e-01 -4.38508093e-01 -1.68864414e-01 -5.59420705e-01 -1.43947721e+00 5.88673532e-01 6.45640910e-01 4.84055459e-01 -6.91570103e-01 3.73536885e-01 5.63885689e-01 -9.50562879e-02 1.29784688e-01 4.08914626e-01 8.60354863e-03 1.33803889e-01 -8.64193618e-01 2.70428210e-01 7.15385854e-01 1.30691981e+00 1.03314471e+00 -2.61831075e-01 -1.82923913e-01 5.14154673e-01 2.87190437e-01 8.10667753e-01 4.40935224e-01 -1.18746245e+00 1.93810299e-01 6.08489931e-01 3.76057893e-01 -1.46423197e+00 -8.46997835e-03 2.23203763e-01 -4.79835629e-01 -6.78272173e-02 2.10394651e-01 4.93945748e-01 -9.35455978e-01 1.51118803e+00 1.24894641e-01 -1.24040782e-01 4.46526408e-01 1.04048932e+00 1.16422117e+00 3.65817666e-01 1.18802592e-01 6.70614606e-03 1.67084670e+00 -8.45061183e-01 -7.28813589e-01 -3.76620531e-01 1.68776959e-01 -7.63221979e-01 1.13448274e+00 1.68532819e-01 -8.60450268e-01 -7.24010587e-01 -8.80316019e-01 -3.91226381e-01 -8.41899216e-01 1.43368199e-01 1.76107273e-01 3.21244329e-01 -1.46190774e+00 8.52450356e-02 -1.84870020e-01 -9.15884733e-01 3.13927680e-01 -1.37096137e-01 -6.19229436e-01 -3.23942959e-01 -9.60531473e-01 1.15511322e+00 8.14587057e-01 -1.91571742e-01 -1.19986928e+00 -1.81364432e-01 -1.23671377e+00 -3.83421242e-01 4.91206765e-01 -6.85678601e-01 1.05710030e+00 -1.38966823e+00 -1.05887139e+00 1.77983499e+00 1.80401411e-02 -7.69243538e-01 1.86216980e-01 -1.86214283e-01 -2.91901618e-01 7.60924518e-01 3.53749454e-01 1.12655628e+00 6.93083286e-01 -1.57335889e+00 -4.33633089e-01 -2.07650810e-01 5.51447213e-01 1.55566499e-01 -4.99235606e-03 3.01090062e-01 -6.44753516e-01 -2.63470292e-01 -1.87073752e-01 -9.42492485e-01 -1.17830470e-01 5.88052906e-03 -5.89222014e-01 -1.13752402e-01 4.49780494e-01 -9.29381311e-01 8.41818213e-01 -1.95415533e+00 -1.56571101e-02 3.17898244e-02 8.50336552e-02 2.88741291e-01 -2.35651582e-01 5.33375382e-01 -9.18405503e-02 1.63704529e-01 4.38322872e-02 -1.82203069e-01 2.09926039e-01 4.60754633e-01 -4.88682151e-01 2.64748096e-01 1.60047233e-01 9.33982313e-01 -1.32921970e+00 -9.97616410e-01 7.42746115e-01 3.32553327e-01 -1.18771501e-01 2.19726786e-01 -3.43622416e-01 1.77784711e-01 -3.20123762e-01 3.71800989e-01 3.61501485e-01 -2.02346489e-01 6.91130757e-02 -5.33322334e-01 -1.43613189e-01 -8.96287486e-02 -7.57747829e-01 2.01751447e+00 -3.31323206e-01 8.94885182e-01 -5.77034414e-01 -8.38261187e-01 9.05187726e-01 2.22369105e-01 -5.39145898e-03 -9.54515457e-01 1.54400706e-01 2.71471497e-03 -4.89327013e-01 -1.02136528e+00 7.36138046e-01 -9.38194916e-02 -1.42782748e-01 6.13086335e-02 4.11019981e-01 -6.50955439e-01 5.48875630e-01 5.57687521e-01 8.73219728e-01 3.89606357e-01 7.08735049e-01 -3.06845605e-01 9.27029967e-01 5.89202344e-01 6.82722777e-02 8.13689232e-01 -4.05064136e-01 7.41140783e-01 2.68686026e-01 -4.82097387e-01 -1.53853643e+00 -1.00072396e+00 1.05317511e-01 6.87797487e-01 3.24625909e-01 -5.83037615e-01 -1.11351168e+00 -3.82863581e-01 -2.92048544e-01 1.17293489e+00 -8.20584953e-01 1.98745102e-01 -1.62683558e-02 6.83123292e-03 5.71154892e-01 3.51447821e-01 8.57169867e-01 -1.44551480e+00 -9.14010644e-01 -8.45533609e-02 -4.93347019e-01 -2.14725780e+00 -3.03409368e-01 -4.09752727e-01 -9.11108404e-02 -1.18111086e+00 -3.69262695e-01 -8.01885009e-01 7.27819085e-01 2.54651397e-01 1.40284026e+00 1.03997532e-02 -5.54406643e-01 1.07502615e+00 -6.59424424e-01 -5.95833719e-01 -6.94415390e-01 -7.75792539e-01 1.30398124e-02 1.66283339e-01 7.59662509e-01 -1.76303536e-01 -4.02423948e-01 -1.04102055e-02 -1.21050048e+00 4.04915869e-01 4.22231078e-01 3.14475894e-01 7.99778402e-01 1.19048923e-01 2.13927791e-01 -4.59028453e-01 4.99733627e-01 3.91881634e-03 -5.12148857e-01 5.48066795e-01 -3.63420069e-01 1.04815908e-01 2.97760576e-01 -3.07122052e-01 -1.09848678e+00 4.04258966e-01 3.98242056e-01 -7.12445438e-01 -6.46434188e-01 3.47168475e-01 1.15899794e-01 -3.50793377e-02 9.92867947e-01 4.59500939e-01 -6.86135367e-02 8.75361413e-02 7.24948227e-01 7.40100980e-01 1.06340158e+00 -3.88115168e-01 6.81527853e-01 8.13762963e-01 -2.04581209e-03 -9.96902525e-01 -9.25336301e-01 -7.34341741e-01 -1.05116928e+00 -5.13952553e-01 1.49415445e+00 -9.05137181e-01 -3.22937340e-01 7.21974224e-02 -1.47872233e+00 -5.82447136e-03 -4.00683463e-01 3.89574200e-01 -9.97408509e-01 4.37508345e-01 -2.23031953e-01 -9.71414924e-01 -3.52558255e-01 -8.85566771e-01 1.23061645e+00 2.29626253e-01 -1.94554806e-01 -9.01857674e-01 8.87118932e-03 7.96968460e-01 1.75024822e-01 5.04557669e-01 5.62538385e-01 -6.04219437e-01 -3.99348319e-01 -2.09799573e-01 -7.64120936e-01 7.18656659e-01 -6.67691901e-02 6.24930970e-02 -1.07472456e+00 2.59992748e-01 -2.95381606e-01 -5.59861004e-01 4.73616451e-01 1.02119759e-01 5.95116079e-01 -3.34396601e-01 -2.83854902e-02 -8.15493837e-02 2.06657672e+00 -7.12613575e-03 1.01602352e+00 5.86306572e-01 6.38197303e-01 8.73795331e-01 7.97574401e-01 2.27380365e-01 6.77984118e-01 7.07517564e-01 6.83869958e-01 7.31469132e-03 -3.40642780e-01 -2.52055138e-01 3.45262945e-01 4.40267980e-01 -1.63059175e-01 -5.88810220e-02 -1.28570020e+00 1.00114679e+00 -2.18536448e+00 -1.15599835e+00 -2.52906650e-01 1.90513909e+00 8.19078565e-01 -1.10689387e-01 -8.01468790e-02 -2.70986408e-01 7.22753942e-01 6.36284845e-03 -4.04687710e-02 -5.96516848e-01 -2.79309362e-01 -1.80747226e-01 5.58255792e-01 2.57370651e-01 -1.12460458e+00 1.26207352e+00 5.68441439e+00 7.92259753e-01 -6.90568268e-01 1.97327286e-01 2.58870393e-01 2.58844078e-01 -5.27010225e-02 2.26533160e-01 -3.59228849e-01 7.52794594e-02 6.77502811e-01 -2.20537201e-01 6.00965917e-01 8.56746256e-01 2.38568380e-01 -4.78112519e-01 -1.20480132e+00 1.54253316e+00 9.34346914e-01 -1.46713316e+00 3.12308878e-01 -1.65827662e-01 7.83977866e-01 2.02376693e-01 -4.32736754e-01 -3.54608446e-02 3.71338427e-01 -9.10608530e-01 1.10788178e+00 9.54028010e-01 6.99057817e-01 -3.77190888e-01 1.02541459e+00 1.86611652e-01 -9.36652243e-01 2.49279812e-01 -6.46059394e-01 9.88488570e-02 2.22002879e-01 4.38441902e-01 -1.00604093e+00 7.79412746e-01 9.77498293e-01 5.75274825e-01 -1.23920059e+00 6.91547692e-01 -5.88565290e-01 1.88433185e-01 1.09565057e-01 -2.10048914e-01 4.34137195e-01 -6.74111098e-02 6.11484826e-01 1.43157005e+00 -1.21766932e-01 1.48079559e-01 2.38453150e-01 1.24321675e+00 1.40005186e-01 2.28043690e-01 -9.59813356e-01 -2.97688752e-01 1.24053091e-01 1.39655674e+00 -8.46849263e-01 -7.41187274e-01 -2.41809770e-01 1.12237012e+00 2.63467699e-01 2.65188485e-01 -8.33500803e-01 -2.62756735e-01 1.73226923e-01 -6.05760030e-02 1.38224721e-01 -1.24899186e-01 2.80303299e-01 -1.13385296e+00 3.24014761e-02 -6.22217119e-01 7.39512295e-02 -2.15871048e+00 -1.28623712e+00 9.49368298e-01 4.68051404e-01 -1.10001135e+00 -4.56499517e-01 -7.23655641e-01 1.18172597e-02 5.77734649e-01 -1.46435261e+00 -1.54535067e+00 -7.34208703e-01 5.71230948e-01 4.85455543e-01 3.72915007e-02 9.05849814e-01 -7.91803226e-02 8.34683329e-03 -2.75462627e-01 -4.67339426e-01 3.96188796e-01 5.57405233e-01 -1.30812085e+00 1.35059282e-01 9.04929698e-01 6.30436480e-01 4.40080702e-01 1.05709791e+00 -5.58425248e-01 -1.03523254e+00 -1.04902434e+00 9.34728622e-01 -8.58692944e-01 8.25587928e-01 -1.39162168e-01 -6.99805677e-01 6.08438790e-01 6.87878072e-01 1.16603717e-01 4.87774611e-01 -5.81932962e-01 -5.87370634e-01 4.45343778e-02 -1.06699681e+00 6.66117847e-01 9.49541390e-01 -1.03422487e+00 -1.11963606e+00 5.44790030e-01 6.74111485e-01 -2.13634297e-01 -6.71303213e-01 1.03313841e-01 5.20662785e-01 -7.76848733e-01 1.02653456e+00 -6.09583974e-01 6.74678206e-01 -5.45136333e-01 -7.74367034e-01 -8.72300446e-01 -3.17440033e-02 -1.84318811e-01 6.07465923e-01 1.32278204e+00 5.07067293e-02 4.08599563e-02 1.69815108e-01 7.32834816e-01 1.92301452e-01 -1.00834453e-02 -6.16482317e-01 -7.32958138e-01 -5.11042714e-01 -6.85745180e-01 2.25234941e-01 1.05528045e+00 -5.83680868e-02 5.98125756e-01 -1.78925857e-01 1.12381347e-01 7.47080982e-01 -1.46401137e-01 9.57297087e-01 -8.47065747e-01 1.19820677e-01 -8.03242698e-02 -1.16596329e+00 -2.88521320e-01 3.69702041e-01 -8.17946732e-01 2.54474610e-01 -1.97261727e+00 7.23900259e-01 3.08373511e-01 -9.84928012e-02 6.92973673e-01 3.55854124e-01 7.12219059e-01 4.74587262e-01 1.03082061e-01 -1.18159628e+00 1.98697791e-01 1.10956979e+00 -1.37667447e-01 2.08955109e-01 -1.19173110e+00 -4.90677267e-01 9.85816181e-01 5.58290362e-01 -3.62766862e-01 -3.61005187e-01 -1.98273018e-01 5.45046449e-01 -1.83848664e-01 1.09208107e+00 -1.06409347e+00 3.16432565e-01 -3.58633459e-01 3.11783031e-02 -5.69529057e-01 3.13489944e-01 -8.60296488e-01 2.36477390e-01 1.78907290e-01 -4.36696172e-01 -4.39226441e-02 2.66238689e-01 6.64241254e-01 -2.46370420e-01 -4.60698694e-01 5.16993165e-01 -4.51381356e-01 -1.50836480e+00 -4.45282310e-01 -2.38118201e-01 6.09558891e-04 1.13258076e+00 -4.18676168e-01 -4.98994887e-01 -6.69268370e-01 -6.92012131e-01 -2.77229883e-02 6.93820596e-01 5.01357734e-01 9.19239223e-01 -1.37133920e+00 -6.53557122e-01 -3.61898869e-01 7.53518879e-01 -1.50227249e-01 1.86765805e-01 7.56103575e-01 -9.49636877e-01 6.64234102e-01 -5.05224466e-01 -6.21130407e-01 -1.47001731e+00 1.04741907e+00 1.79939628e-01 7.74873346e-02 -5.90709150e-01 3.78412843e-01 1.49018511e-01 -1.88520268e-01 -2.15477094e-01 -2.76210129e-01 -4.32756096e-01 -1.62882149e-01 6.02314591e-01 -4.18866202e-02 -2.29207069e-01 -1.43561041e+00 -6.93624139e-01 6.31802022e-01 2.91927725e-01 -4.98189539e-01 1.06006157e+00 -5.54515064e-01 -4.08769876e-01 4.89304066e-01 9.84685302e-01 -1.92007661e-01 -7.26200521e-01 -3.47953409e-01 7.61750117e-02 -3.67913485e-01 -1.09552620e-02 -8.68900895e-01 -5.00378847e-01 6.88604951e-01 5.19052923e-01 3.53446871e-01 1.17147827e+00 3.48941356e-01 1.56247586e-01 5.61709702e-01 7.31579423e-01 -1.25959897e+00 3.88158768e-01 3.09835762e-01 1.35638559e+00 -1.46025884e+00 1.65274277e-01 -5.26652455e-01 -1.13165462e+00 1.20260143e+00 2.57274389e-01 -2.77157098e-01 4.27637577e-01 -3.61331195e-01 8.59811455e-02 -5.60032487e-01 -5.38843036e-01 -8.56274426e-01 6.82406962e-01 8.13557744e-01 2.82885749e-02 3.42081301e-02 -1.17412627e-01 4.43587303e-01 -7.08632991e-02 2.55701840e-01 8.43144894e-01 7.71080256e-01 -4.11982834e-01 -6.26042008e-01 -3.65277708e-01 -1.89561546e-01 -2.44125441e-01 -3.37559700e-01 -8.31666708e-01 9.89142597e-01 2.74883240e-01 1.20720398e+00 1.54501408e-01 -2.80638725e-01 2.56467521e-01 -5.88492267e-02 6.71305060e-01 -8.68546724e-01 -2.80234039e-01 -3.47287565e-01 4.07985091e-01 -7.57740319e-01 -1.28034675e+00 -4.49806541e-01 -1.28053868e+00 2.40308434e-01 -1.37625605e-01 -1.27891973e-01 1.02115571e+00 1.17032015e+00 2.59957939e-01 3.61701101e-01 1.68646290e-03 -8.39330792e-01 -3.66146415e-02 -7.71731496e-01 -5.21743357e-01 1.13587546e+00 -2.52588335e-02 -3.54288936e-01 -2.99162477e-01 9.13900495e-01]
[10.811554908752441, 1.266785740852356]
cfd332bc-64f8-472b-bfe9-fa779565854d
wildfire-detection-via-transfer-learning-a
2306.12276
null
https://arxiv.org/abs/2306.12276v1
https://arxiv.org/pdf/2306.12276v1.pdf
Wildfire Detection Via Transfer Learning: A Survey
This paper surveys different publicly available neural network models used for detecting wildfires using regular visible-range cameras which are placed on hilltops or forest lookout towers. The neural network models are pre-trained on ImageNet-1K and fine-tuned on a custom wildfire dataset. The performance of these models is evaluated on a diverse set of wildfire images, and the survey provides useful information for those interested in using transfer learning for wildfire detection. Swin Transformer-tiny has the highest AUC value but ConvNext-tiny detects all the wildfire events and has the lowest false alarm rate in our dataset.
['A. Enis Cetin', 'Hongyi Pan', 'Tianxiao Ye', 'Yifei Zhao', 'Emadeldeen Hamdan', 'Ziliang Hong']
2023-06-21
null
null
null
null
['transfer-learning']
['miscellaneous']
[ 2.98351049e-01 -5.64857602e-01 -1.23552263e-01 -3.45940083e-01 -2.17500359e-01 -6.79867744e-01 4.60557520e-01 -1.87169522e-01 -8.75875235e-01 4.67023313e-01 2.04988331e-01 -6.13251328e-01 -2.38968194e-01 -1.15138686e+00 -3.74162376e-01 -6.47810817e-01 -7.65187621e-01 -6.67672306e-02 3.96263063e-01 -3.69852781e-01 -1.38075247e-01 7.80094087e-01 -1.30217028e+00 2.42390350e-01 1.31544828e-01 9.00637925e-01 4.86026518e-02 1.17184973e+00 6.03434980e-01 1.00422227e+00 -6.96521401e-01 1.75939769e-01 8.35087001e-01 1.43140271e-01 -3.53831828e-01 -6.12657309e-01 9.50504363e-01 -1.01360631e+00 -5.60470104e-01 9.52591658e-01 4.97498572e-01 3.31969485e-02 5.74809074e-01 -9.70388055e-01 -4.01437849e-01 4.91497278e-01 -5.85388780e-01 1.15837812e+00 -2.76082516e-01 6.96520567e-01 6.60164714e-01 -6.86289310e-01 1.65476382e-01 1.17306888e+00 1.37463474e+00 1.34736255e-01 -1.01599824e+00 -1.07917809e+00 -1.48029670e-01 -3.50021087e-02 -1.45142710e+00 -2.82105684e-01 1.90606505e-01 -4.73336786e-01 1.50407457e+00 2.30690464e-02 6.80677414e-01 1.27906919e+00 3.91187608e-01 8.17088410e-02 1.27098155e+00 -2.72113923e-03 1.37214214e-01 -6.97201908e-01 3.14572603e-01 7.48903394e-01 5.97122312e-01 1.07103646e+00 -1.82652026e-01 -2.69600213e-01 1.17437935e+00 6.88153028e-01 -4.22862619e-01 2.97368407e-01 -1.05983615e+00 1.01043773e+00 1.32247794e+00 1.57196239e-01 -6.21482372e-01 2.44813919e-01 3.47575366e-01 3.89357328e-01 5.47731042e-01 3.48712146e-01 -5.99491894e-01 4.42617893e-01 -1.18570650e+00 2.68858463e-01 4.36079025e-01 4.32904601e-01 6.53220534e-01 2.28924245e-01 5.18096723e-02 7.33516395e-01 3.29999775e-01 1.19518614e+00 -1.74697056e-01 -8.42291236e-01 2.19031528e-01 3.56946230e-01 1.34976789e-01 -9.39503968e-01 -7.18010426e-01 -4.48389709e-01 -1.14668274e+00 9.46801186e-01 2.33730510e-01 -5.42550206e-01 -1.50265193e+00 1.02655494e+00 -3.73738676e-01 4.01847780e-01 2.85298396e-02 1.03715825e+00 9.42626953e-01 8.42883229e-01 5.24184823e-01 2.31414795e-01 1.12270355e+00 -7.11277246e-01 -2.07499027e-01 -8.72034609e-01 -3.73341702e-02 -2.00546846e-01 6.92731440e-01 -4.42695469e-02 2.27252282e-02 -4.83965456e-01 -1.19081831e+00 4.67672408e-01 -6.90826595e-01 1.62361294e-01 6.67162418e-01 3.16197008e-01 -1.13414693e+00 4.46392059e-01 -7.47556984e-01 -8.63160491e-01 6.48168087e-01 -5.30632734e-02 -2.76454896e-01 -1.25342131e-01 -1.05464053e+00 9.94985700e-01 4.04639035e-01 8.14301908e-01 -1.46249604e+00 -5.77464342e-01 -6.22483075e-01 9.27460194e-02 -1.68128684e-02 -6.70517325e-01 1.05131197e+00 -5.99738002e-01 -7.31956542e-01 9.13474917e-01 5.75812817e-01 -8.71637940e-01 2.53378808e-01 -1.38826743e-01 -5.99073172e-01 3.24191228e-02 2.70771563e-01 7.82464147e-01 9.57359433e-01 -1.14469028e+00 -1.11199665e+00 -3.56505126e-01 4.86302316e-01 -1.04197115e-01 1.91822529e-01 3.63215894e-01 7.24480689e-01 -6.89364552e-01 -1.80087894e-01 -7.36002922e-01 -4.99369085e-01 1.18075520e-01 -1.43647939e-01 2.54908442e-01 1.01854324e+00 -4.54376131e-01 8.46771896e-01 -2.04131031e+00 -6.86859369e-01 4.86347117e-02 2.35205501e-01 7.91490018e-01 -2.94518888e-01 3.23945880e-01 -6.44203275e-02 2.95144081e-01 -4.51346457e-01 7.85224319e-01 -5.54256082e-01 4.06692177e-01 -5.64743519e-01 4.39832956e-01 1.46568134e-01 5.09303749e-01 -1.00988030e+00 -8.07804540e-02 5.05355299e-01 4.54605758e-01 -2.33967882e-02 3.70047688e-01 -6.06340170e-02 2.02737272e-01 -2.02060148e-01 8.25881958e-01 8.39113593e-01 1.23255081e-01 -3.74097764e-01 -7.63643384e-02 -4.33631539e-01 -2.35445067e-01 -7.60251343e-01 9.02269006e-01 -3.57826531e-01 7.17231214e-01 9.16200504e-02 -4.44061160e-01 9.95874166e-01 1.56382412e-01 6.85471147e-02 -4.78121996e-01 4.34290394e-02 -7.27178752e-02 -3.08257878e-01 -6.76606059e-01 1.89724833e-01 -3.66152853e-01 5.38745150e-02 2.44048685e-01 -2.90389135e-02 3.91287565e-01 -1.26770437e-01 -3.02176297e-01 1.73839056e+00 -2.15702504e-01 2.52058029e-01 -1.55681878e-01 -8.37114453e-02 6.55004025e-01 2.91458696e-01 1.18789279e+00 -6.45517468e-01 5.22737145e-01 -3.37352633e-01 -1.41179883e+00 -6.70539141e-01 -1.56156492e+00 -1.85111240e-01 1.32288980e+00 -9.36587062e-03 4.34565842e-02 -8.20299760e-02 -8.28808188e-01 -4.66524586e-02 4.57800448e-01 -7.92281508e-01 -9.05009732e-02 -2.39538819e-01 -1.00086975e+00 1.20609403e+00 8.91861200e-01 1.16877556e+00 -1.51505363e+00 -1.35414076e+00 -2.49374136e-02 -1.24823213e-01 -9.15735126e-01 1.49634451e-01 8.96648288e-01 -9.84179616e-01 -1.43515646e+00 -4.10581619e-01 -7.60711253e-01 1.54334083e-01 8.89942884e-01 1.22903275e+00 4.17741202e-02 -4.57763553e-01 1.31431311e-01 -4.08222109e-01 -6.05324805e-01 6.85961843e-02 1.57499924e-01 -3.23204935e-01 -5.19809127e-01 8.08834016e-01 -8.19269538e-01 -6.16509199e-01 -4.77671549e-02 -7.84164786e-01 -5.98387003e-01 7.83986211e-01 6.66961908e-01 1.35360703e-01 3.00193220e-01 -6.02625087e-02 -3.92344415e-01 4.90231425e-01 -5.93904376e-01 -7.50483751e-01 -7.21059740e-02 -3.27352524e-01 -1.39744699e-01 5.31148434e-01 -1.62796319e-01 -9.43076551e-01 3.69446218e-01 1.46178275e-01 -5.72770655e-01 -7.27133334e-01 5.65822780e-01 5.61996698e-01 4.57356535e-02 1.34107399e+00 -2.17377052e-01 -5.59606075e-01 -4.73648548e-01 6.05687238e-02 7.36322522e-01 1.10314703e+00 2.43679509e-01 1.25840282e+00 6.64546192e-01 -1.60121977e-01 -1.19923687e+00 -1.09779572e+00 -7.98553467e-01 -7.40996361e-01 -3.14172417e-01 9.30166662e-01 -1.16592765e+00 -3.63645494e-01 7.77500272e-01 -1.09308136e+00 -5.38393259e-01 -8.81556794e-02 4.74234521e-01 1.47728413e-01 -3.32277834e-01 -4.06242520e-01 -8.10067356e-01 -8.70056510e-01 -3.35255384e-01 1.12515473e+00 4.25410748e-01 3.12073529e-01 -6.78057790e-01 7.18399167e-01 -2.77030915e-02 8.41003418e-01 5.62314212e-01 3.37664545e-01 -7.67122507e-02 -3.45102847e-01 -2.59443402e-01 -6.63514972e-01 3.49849820e-01 1.07856467e-01 2.92182267e-01 -1.19935548e+00 -1.08988866e-01 -4.48389292e-01 -2.38257796e-01 1.78760862e+00 8.14673960e-01 6.54710352e-01 -2.47878164e-01 -3.29268634e-01 9.63887870e-01 1.81931567e+00 4.09737825e-02 6.85679317e-01 7.51277924e-01 4.91309643e-01 -7.82741904e-02 2.03943938e-01 3.60650897e-01 1.60079777e-01 9.08003822e-02 1.17276597e+00 -5.13930202e-01 2.20207330e-02 -1.70886308e-01 5.75652003e-01 -4.64046896e-01 -6.97052777e-01 -2.61492599e-02 -1.15952873e+00 5.49883485e-01 -1.78876042e+00 -1.84236073e+00 -2.32022315e-01 1.95879889e+00 1.55632138e-01 -3.94448340e-02 1.62108868e-01 -1.89557225e-01 7.39555597e-01 7.68285990e-01 -2.93695390e-01 -1.82720095e-01 -2.56232142e-01 6.36478901e-01 1.32821965e+00 3.99912894e-01 -2.01717019e+00 1.17406642e+00 7.93928623e+00 -4.06897366e-02 -1.30246186e+00 1.07102305e-01 1.95442364e-02 -8.93666297e-02 6.68561220e-01 8.74188021e-02 -5.93105078e-01 -1.03538640e-01 1.04706383e+00 4.29843247e-01 6.46830440e-01 8.68814945e-01 5.05553007e-01 -3.16034794e-01 -3.15736175e-01 5.32241702e-01 -3.21435004e-01 -1.15519595e+00 -1.67693287e-01 -8.19778144e-02 3.34578186e-01 1.12761497e+00 -3.90140772e-01 5.34644604e-01 9.95923638e-01 -1.09669852e+00 3.25777292e-01 3.42460275e-01 5.78498125e-01 -4.75372970e-01 9.41148341e-01 2.25968599e-01 -1.24167264e+00 -3.89827490e-01 -7.74354517e-01 -6.68829679e-01 -1.29621968e-01 5.60198426e-01 -8.11698496e-01 -1.10825762e-01 1.46385527e+00 8.92686367e-01 -8.13317060e-01 1.21604228e+00 -5.30368209e-01 1.00564027e+00 -6.47150338e-01 3.11659425e-01 6.54317141e-01 7.69352727e-03 5.20338535e-01 1.50872612e+00 4.54658009e-02 8.55144709e-02 4.79602635e-01 7.11684167e-01 8.71974975e-02 -6.89226389e-01 -1.38030601e+00 3.05500329e-01 3.66622537e-01 1.46404028e+00 -5.00843525e-01 -1.58936396e-01 -1.46320507e-01 5.74060440e-01 -8.06688983e-03 4.43406731e-01 -9.14377809e-01 -3.78468931e-01 8.60900044e-01 1.60296604e-01 4.47376758e-01 -2.96982944e-01 6.40525222e-02 -8.63269210e-01 -3.81804854e-01 -4.39006239e-01 7.91287065e-01 -1.19262719e+00 -1.45171952e+00 7.78125286e-01 2.27713645e-01 -1.09941149e+00 5.27008697e-02 -8.56934845e-01 -1.05985975e+00 6.69658184e-01 -1.72324371e+00 -1.52005315e+00 -1.01188421e+00 6.64166868e-01 2.67381310e-01 -1.23462915e-01 1.14572597e+00 7.04746619e-02 -4.88294065e-01 -1.44640476e-01 -1.71350420e-01 6.90214157e-01 5.37918746e-01 -1.05864120e+00 6.19977355e-01 1.28766012e+00 7.12031946e-02 2.46336654e-01 4.02579665e-01 -6.09886825e-01 -8.21041107e-01 -1.92623019e+00 6.12911463e-01 -1.84863925e-01 5.81262887e-01 2.30195880e-01 -5.78833938e-01 1.15546560e+00 2.03415215e-01 4.56728101e-01 2.40661919e-01 5.67172319e-02 -9.44360495e-01 -3.28585207e-01 -1.31729496e+00 1.96546733e-01 1.04453206e+00 -4.27925706e-01 -6.64445043e-01 4.34350133e-01 1.27604827e-01 3.92803550e-03 -5.26495993e-01 6.20980680e-01 7.20111489e-01 -1.08278286e+00 1.15458488e+00 -6.22558713e-01 4.89807963e-01 -4.93442774e-01 -3.36500049e-01 -1.49203324e+00 -9.74336982e-01 1.96207583e-01 3.01058561e-01 5.76531172e-01 3.64986897e-01 -5.35131216e-01 3.98786217e-01 -3.58708560e-01 5.37148044e-02 1.55105501e-01 -7.64630914e-01 -9.90644693e-01 -1.98783338e-01 -3.13696176e-01 1.57792062e-01 7.47115970e-01 -5.44107318e-01 5.73503911e-01 -3.94065171e-01 9.92057860e-01 8.42385769e-01 -7.77192041e-02 5.63852072e-01 -1.53522527e+00 1.70366168e-01 -2.84124017e-01 -5.58450937e-01 -3.97962570e-01 -1.57573551e-01 -6.82763755e-01 3.21188450e-01 -1.52197146e+00 1.00468777e-01 -1.67265281e-01 -3.88192713e-01 1.38058102e+00 4.69313040e-02 6.85203314e-01 -7.25636333e-02 2.95252502e-01 -1.28607288e-01 1.50176585e-01 5.05186558e-01 -6.56755805e-01 -1.47397742e-01 1.58843428e-01 -2.99673259e-01 9.23387766e-01 1.01012552e+00 -7.50407219e-01 9.01088957e-03 -7.60820210e-01 -1.32054478e-01 -2.28622496e-01 1.16467166e+00 -1.58083510e+00 2.02867948e-02 -2.99313009e-01 5.44064581e-01 -6.27605379e-01 -8.96656513e-02 -1.04743159e+00 1.58867002e-01 7.44845390e-01 -2.48009227e-02 9.20425728e-02 2.89640814e-01 5.72133064e-01 1.75726071e-01 5.94819523e-02 1.05669558e+00 -3.95343274e-01 -1.22920561e+00 2.99034894e-01 -8.56915236e-01 -1.07811019e-01 6.78772271e-01 -9.31087583e-02 -8.34054708e-01 -2.23970652e-01 -3.80131423e-01 -5.60768768e-02 6.18851557e-02 6.67664826e-01 4.97838527e-01 -9.16372418e-01 -9.44417000e-01 3.55176806e-01 4.57119673e-01 -2.35670358e-01 -1.98690772e-01 3.43799770e-01 -9.83173430e-01 1.56400412e-01 -7.19292521e-01 -7.13808417e-01 -1.13310039e+00 4.18192267e-01 8.69051933e-01 -2.65452534e-01 -9.11379457e-01 6.77905440e-01 -3.87783974e-01 -6.30094111e-01 1.01088092e-01 -7.23518372e-01 -2.49556735e-01 -2.47399509e-01 7.50262022e-01 4.01210904e-01 1.05859071e-01 -5.17885804e-01 -5.90999961e-01 3.72338831e-01 3.80978346e-01 1.49817556e-01 1.75728297e+00 4.48717654e-01 8.80776644e-02 2.84774750e-01 6.38022423e-01 -7.30451524e-01 -1.23829818e+00 -1.18798211e-01 -2.27871090e-01 -3.94640028e-01 9.12083745e-01 -1.17069364e+00 -1.50779080e+00 7.37794816e-01 1.44222558e+00 -4.71619368e-02 1.21244502e+00 -3.31633866e-01 5.88546038e-01 8.80498052e-01 4.60093528e-01 -5.59965968e-01 -4.13919985e-01 8.92114758e-01 8.59299839e-01 -1.26195717e+00 -1.22781090e-01 1.98045805e-01 -2.01461434e-01 1.17548013e+00 5.57074308e-01 -5.27393878e-01 9.81325805e-01 6.41395986e-01 6.87624574e-01 -6.72960520e-01 -3.64937842e-01 -6.96090579e-01 -4.77691948e-01 1.07129788e+00 1.98053531e-02 4.19603497e-01 3.19662333e-01 7.30387419e-02 1.22158624e-01 3.30094397e-01 3.01649839e-01 1.17662275e+00 -9.68748450e-01 -1.69442326e-01 -6.82752430e-01 7.49704242e-01 -9.45089757e-02 -3.69726598e-01 -7.87347615e-01 7.12174714e-01 2.87873566e-01 1.16305625e+00 3.95757072e-02 -6.90234780e-01 6.19119287e-01 -2.51145869e-01 1.23707399e-01 -4.06909615e-01 -1.16033006e+00 -3.22130620e-01 2.90721096e-03 -4.45908189e-01 -7.86004663e-01 -1.88919723e-01 -7.09669590e-01 -5.20259619e-01 -1.96959853e-01 -3.57464820e-01 3.28856826e-01 7.57611394e-01 1.51603371e-01 2.13504821e-01 6.74726188e-01 -1.26969779e+00 -5.29582739e-01 -1.42227149e+00 -7.64806747e-01 -8.79938900e-02 5.88217735e-01 -5.51614881e-01 -6.28019452e-01 2.26449203e-02]
[9.261537551879883, -1.300600290298462]
4c3cd0e4-ccc7-4e7c-81c7-8fa836e918e1
deep-hyperedges-a-framework-for-transductive
1910.02633
null
https://arxiv.org/abs/1910.02633v1
https://arxiv.org/pdf/1910.02633v1.pdf
Deep Hyperedges: a Framework for Transductive and Inductive Learning on Hypergraphs
From social networks to protein complexes to disease genomes to visual data, hypergraphs are everywhere. However, the scope of research studying deep learning on hypergraphs is still quite sparse and nascent, as there has not yet existed an effective, unified framework for using hyperedge and vertex embeddings jointly in the hypergraph context, despite a large body of prior work that has shown the utility of deep learning over graphs and sets. Building upon these recent advances, we propose \textit{Deep Hyperedges} (DHE), a modular framework that jointly uses contextual and permutation-invariant vertex membership properties of hyperedges in hypergraphs to perform classification and regression in transductive and inductive learning settings. In our experiments, we use a novel random walk procedure and show that our model achieves and, in most cases, surpasses state-of-the-art performance on benchmark datasets. Additionally, we study our framework's performance on a variety of diverse, non-standard hypergraph datasets and propose several avenues of future work to further enhance DHE.
['Josh Payne']
2019-10-07
null
null
null
null
['hypergraph-embedding', 'hyperedge-classification']
['graphs', 'graphs']
[ 3.43694955e-01 3.39852840e-01 -2.26128444e-01 -1.87806070e-01 -2.32412100e-01 -7.81203449e-01 7.60400593e-01 1.28179476e-01 -2.45191120e-02 6.85910821e-01 1.81346387e-01 -6.44096196e-01 -4.06068683e-01 -1.03803360e+00 -7.90686369e-01 -7.23028898e-01 -4.24457282e-01 8.25164080e-01 8.60527828e-02 -1.95620686e-01 -1.19417667e-01 3.48253340e-01 -1.17223561e+00 1.33106604e-01 5.59584796e-01 3.51229310e-01 -3.10351729e-01 7.66415358e-01 -1.60040595e-02 6.07386112e-01 -1.57586366e-01 -7.38379419e-01 3.13621879e-01 -3.91575277e-01 -1.03634834e+00 2.05858916e-01 8.06118488e-01 1.40800858e-02 -8.10205758e-01 9.35653806e-01 6.02994442e-01 -2.24062562e-01 6.81649506e-01 -1.49131870e+00 -1.40408516e+00 7.35945582e-01 -6.52437210e-01 2.19469205e-01 2.36952677e-01 5.89575052e-01 1.65239584e+00 -6.13458931e-01 1.04612470e+00 1.40181220e+00 7.90740848e-01 2.89419621e-01 -1.71277070e+00 -4.31980699e-01 7.36692175e-02 9.93058681e-02 -1.08769059e+00 4.23394181e-02 5.04624009e-01 -4.66684192e-01 1.21410406e+00 5.62550798e-02 8.93341660e-01 1.23511362e+00 2.63751578e-02 5.99699974e-01 1.08620071e+00 -3.71260136e-01 -1.00943752e-01 -3.09691727e-01 2.80755162e-01 1.15542150e+00 6.10995293e-01 5.65220751e-02 -2.45813400e-01 -1.44784838e-01 8.55678797e-01 -1.84497640e-01 -3.64172339e-01 -1.02265990e+00 -1.25563562e+00 1.07062876e+00 8.59210968e-01 2.78709710e-01 -1.00656569e-01 4.74229336e-01 4.33585435e-01 4.19709504e-01 5.16438007e-01 5.49548507e-01 -2.54491717e-01 1.74601763e-01 -3.56600553e-01 5.46263717e-02 1.02514517e+00 9.22525525e-01 7.39236236e-01 -1.64128646e-01 -1.48242190e-02 6.41103029e-01 1.46561831e-01 2.81970859e-01 -4.46550995e-01 -3.82429957e-01 4.44970071e-01 9.90015030e-01 -4.20161217e-01 -1.25054729e+00 -6.87352717e-01 -3.29305887e-01 -9.45477188e-01 -1.17737921e-02 4.03055012e-01 -6.25513643e-02 -1.17826498e+00 1.90666437e+00 3.21749121e-01 6.26508534e-01 -1.21178076e-01 7.61504114e-01 1.23144770e+00 3.56017113e-01 5.88088855e-02 2.99634397e-01 1.23715913e+00 -8.02354395e-01 -4.02285010e-01 -1.09490827e-01 7.34455824e-01 -2.47422859e-01 1.14363122e+00 1.87560603e-01 -9.87959325e-01 -1.09748304e-01 -1.03020048e+00 -3.59129429e-01 -7.15133011e-01 -3.53290170e-01 1.25069821e+00 7.16817856e-01 -1.42665577e+00 3.65114391e-01 -6.99538410e-01 -8.80266905e-01 7.27683425e-01 5.34946859e-01 -6.46172702e-01 -3.95523489e-01 -1.26570380e+00 6.82554424e-01 3.43530327e-01 -7.47284666e-02 -8.12951148e-01 -9.11907911e-01 -9.63020027e-01 1.51133463e-01 4.94173735e-01 -1.17942977e+00 5.60586333e-01 -4.50339735e-01 -1.07105327e+00 1.12896216e+00 3.48341048e-01 -3.85339379e-01 2.01802790e-01 3.74383211e-01 -3.03931534e-01 1.70741767e-01 -3.55189443e-01 7.09176779e-01 1.78336591e-01 -1.22724879e+00 -1.60767347e-01 -4.59357113e-01 5.06631434e-01 1.30486742e-01 -5.59279084e-01 -3.43817085e-01 -8.00224066e-01 -2.29261771e-01 -1.61233917e-01 -1.28783405e+00 -1.21622533e-01 -2.23066434e-02 -7.97628760e-01 -4.78147149e-01 4.92976844e-01 -1.05489649e-01 1.18690681e+00 -1.72737658e+00 5.69044530e-01 3.68554354e-01 1.00692475e+00 3.34597081e-01 -5.03920257e-01 7.93408990e-01 -2.54477859e-01 3.52733940e-01 -3.67931455e-01 5.30893914e-02 2.52798617e-01 2.94868767e-01 7.81086236e-02 5.75945199e-01 3.40472430e-01 1.49311495e+00 -1.20416331e+00 -2.92465419e-01 3.78657371e-01 7.09686041e-01 -6.05395436e-01 -8.90514180e-02 -3.31458926e-01 1.33171864e-02 -2.86594629e-01 5.51741779e-01 7.36461341e-01 -1.03943503e+00 8.64257097e-01 -5.95807657e-02 4.40058887e-01 1.44067958e-01 -9.64941621e-01 1.72524178e+00 -7.23147169e-02 7.72809744e-01 -9.04757008e-02 -1.15635049e+00 4.93039191e-01 1.04390875e-01 5.08944571e-01 -3.72044981e-01 5.83241023e-02 -1.58599600e-01 3.11480433e-01 -6.24841273e-01 1.45746082e-01 2.25708276e-01 1.50391072e-01 5.03059447e-01 2.37867579e-01 9.06203017e-02 3.72884244e-01 7.44168580e-01 1.74842596e+00 1.03103071e-02 3.17135602e-01 -2.73693740e-01 1.29627332e-01 -1.09235771e-01 8.43237787e-02 6.22800112e-01 -1.66539624e-01 4.68884170e-01 1.04743552e+00 -4.24575746e-01 -1.17771661e+00 -1.20321655e+00 -1.12278968e-01 1.28408742e+00 1.08339362e-01 -3.85265499e-01 -5.71271420e-01 -9.19151366e-01 5.05163193e-01 1.18821822e-01 -9.37008560e-01 2.30051763e-02 -3.79718751e-01 -1.27390921e+00 5.69294810e-01 5.79365432e-01 -1.93634242e-01 -1.10768521e+00 2.63960600e-01 5.77166751e-02 3.35211456e-01 -1.15178156e+00 -3.46293837e-01 1.93871439e-01 -5.83809435e-01 -1.57961619e+00 -3.89435232e-01 -1.13289070e+00 6.53498232e-01 4.48715866e-01 1.74767065e+00 3.77703398e-01 -5.53439498e-01 4.59707528e-01 -1.79628536e-01 3.63827012e-02 -2.98246384e-01 3.29099625e-01 -3.20255339e-01 -3.41146767e-01 5.91809928e-01 -6.28258765e-01 -6.52570128e-01 6.71962649e-02 -1.04869258e+00 1.31367962e-03 5.59451401e-01 9.95744348e-01 3.45230520e-01 -3.03809047e-01 8.25407505e-01 -1.76858687e+00 6.71841204e-01 -7.62694299e-01 -6.51261151e-01 3.32837313e-01 -7.46088147e-01 5.77442050e-02 4.08018589e-01 3.65320174e-03 -4.85689670e-01 -2.74404198e-01 7.21632317e-03 -1.86184481e-01 1.67767316e-01 7.37829208e-01 -5.29029667e-02 -3.33353311e-01 6.28081679e-01 -1.50182709e-01 -5.84604070e-02 -1.10304192e-01 9.03239071e-01 2.12735996e-01 4.43746001e-01 -3.02917063e-01 8.47055912e-01 5.24102092e-01 5.13942897e-01 -6.56065583e-01 -5.85626781e-01 -4.51923132e-01 -7.08937943e-01 2.57326965e-03 8.77099633e-01 -6.61342263e-01 -1.13656056e+00 2.34968513e-01 -7.94247508e-01 -3.66917998e-01 1.70223832e-01 1.45316795e-01 -4.06785011e-01 5.89717150e-01 -7.83125758e-01 -3.45572412e-01 -2.09229499e-01 -1.12079477e+00 1.07937694e+00 -8.81673396e-02 1.87907353e-01 -1.61144125e+00 4.12243903e-01 2.65615106e-01 1.51285410e-01 6.06250167e-01 1.39762115e+00 -7.42971301e-01 -1.01252580e+00 3.17125246e-02 -6.22932673e-01 -1.53221926e-02 1.09690435e-01 1.93509996e-01 -8.22748363e-01 -5.91045141e-01 -1.07082295e+00 -7.84261346e-01 1.29451621e+00 3.32813740e-01 1.12416971e+00 7.35137463e-02 -7.22119391e-01 9.14746761e-01 1.64510465e+00 -3.95760119e-01 8.47144663e-01 -2.76792003e-03 1.19194484e+00 3.21134359e-01 -7.30621517e-02 5.18960282e-02 6.92677319e-01 3.60346228e-01 7.43402898e-01 -6.28281593e-01 -3.06757331e-01 -2.75748760e-01 -2.05245614e-02 8.80495965e-01 -3.16138417e-02 -9.56432819e-01 -8.27724814e-01 6.43587947e-01 -1.72928071e+00 -9.55578864e-01 -3.93490106e-01 1.95899224e+00 6.96184397e-01 4.97174391e-04 1.96931586e-01 -2.42872030e-01 7.98326612e-01 4.32138860e-01 -7.22860396e-01 -3.02208453e-01 -3.06036800e-01 3.99080843e-01 5.26525497e-01 3.41377974e-01 -1.24522340e+00 1.06669402e+00 6.72749901e+00 4.56876218e-01 -6.50996029e-01 -2.21930414e-01 4.79238749e-01 1.98446527e-01 -7.58864880e-01 -1.18139545e-02 -3.69724959e-01 1.42949566e-01 6.68266177e-01 6.71241283e-02 8.71986091e-01 3.87829751e-01 -3.94045472e-01 4.56569046e-01 -1.47660875e+00 8.33982646e-01 8.14098269e-02 -1.59458125e+00 -2.58900854e-03 3.55852455e-01 1.08531678e+00 4.63928789e-01 2.71449983e-01 3.78218710e-01 1.08070982e+00 -1.28644097e+00 -4.30647671e-01 3.06863666e-01 8.98451090e-01 -5.97671628e-01 4.36718822e-01 -2.23920181e-01 -1.27599502e+00 1.40724450e-01 -4.08746481e-01 3.42400432e-01 -1.84984967e-01 4.86741602e-01 -1.35786712e+00 7.65360534e-01 3.47390294e-01 8.84202063e-01 -6.02321982e-01 9.57993925e-01 -3.10689926e-01 6.79637909e-01 -1.07432559e-01 -5.25291152e-02 3.96787614e-01 -2.43664384e-01 4.56640959e-01 1.37503004e+00 -1.32252276e-01 -1.08895890e-01 3.97436678e-01 9.10294592e-01 -7.65432715e-01 9.22624320e-02 -1.10459292e+00 -6.49348319e-01 4.59971458e-01 1.56288040e+00 -9.49961364e-01 -9.83129665e-02 -7.03785479e-01 6.92051709e-01 8.50427806e-01 4.83762205e-01 -8.77474129e-01 -3.99725050e-01 6.78694606e-01 -8.19290429e-03 4.73685920e-01 -8.99936706e-02 8.56058523e-02 -1.02011752e+00 -2.86469102e-01 -9.60246921e-01 8.11068237e-01 -6.20642066e-01 -1.81586552e+00 3.61364096e-01 -2.71126330e-01 -5.89278042e-01 2.28908029e-03 -9.85181570e-01 -4.27162379e-01 5.85914373e-01 -1.52771544e+00 -1.31962049e+00 -3.19453776e-01 3.02872479e-01 -9.85025242e-02 -1.02385372e-01 8.00920784e-01 2.45970428e-01 -4.87235606e-01 6.95673168e-01 2.04751894e-01 2.50130504e-01 6.30382538e-01 -1.82772899e+00 1.00886369e+00 5.64725578e-01 4.38519031e-01 6.24865592e-01 3.72524917e-01 -6.24928534e-01 -2.05623698e+00 -1.17657804e+00 4.70049798e-01 -8.28520656e-01 9.47015166e-01 -7.77869761e-01 -9.02115643e-01 1.14660239e+00 4.74429876e-01 3.12058568e-01 7.66271174e-01 7.27706313e-01 -6.34517252e-01 9.21485275e-02 -9.71765935e-01 6.35058463e-01 1.56081927e+00 -6.20988786e-01 -1.59598976e-01 6.81505382e-01 9.02789772e-01 -2.13603675e-01 -1.14723933e+00 4.90906239e-01 4.62150633e-01 -7.66856670e-01 1.13650060e+00 -1.04282939e+00 3.50437611e-01 -1.69410244e-01 1.37996733e-01 -1.62568426e+00 -7.73954630e-01 -7.67070711e-01 -7.40439296e-02 9.32929754e-01 5.37489474e-01 -7.09587157e-01 9.57945764e-01 8.79259631e-02 -1.75021395e-01 -9.14170504e-01 -5.11536658e-01 -5.28214812e-01 1.62268192e-01 -4.26575579e-02 5.75473607e-01 1.20258164e+00 1.54568538e-01 7.48248696e-01 -2.68011063e-01 1.76925987e-01 5.75370133e-01 2.82470852e-01 1.07690299e+00 -1.41341519e+00 -3.83249134e-01 -5.39665699e-01 -7.57478535e-01 -8.59734476e-01 3.82404923e-01 -1.70533836e+00 -2.91553199e-01 -2.13430595e+00 8.12465668e-01 -2.52113551e-01 -5.36266565e-01 4.84916657e-01 -4.57860678e-01 5.67783892e-01 -6.18006214e-02 -3.49269181e-01 -8.72528076e-01 3.01039070e-01 1.64587665e+00 -3.17595512e-01 9.19538084e-03 -4.11306173e-01 -8.53496253e-01 2.87607819e-01 4.02452409e-01 -9.39531103e-02 -7.24510849e-01 -5.38824081e-01 5.69737911e-01 -1.71728104e-01 4.05601889e-01 -4.82907921e-01 4.00247201e-02 3.98953930e-02 2.58334666e-01 -3.07188392e-01 1.52801082e-01 -4.63679433e-01 -1.69290621e-02 2.33024418e-01 -4.61084992e-01 1.75703600e-01 6.03462867e-02 1.07198334e+00 3.83661449e-01 3.47004265e-01 6.01974368e-01 -3.72053823e-03 -5.97655416e-01 7.80198514e-01 8.72646645e-02 6.07937813e-01 9.71510708e-01 1.49629610e-02 -9.18065727e-01 -3.50382745e-01 -6.00779772e-01 5.64843953e-01 5.42098284e-01 3.62252116e-01 4.65744704e-01 -1.27396131e+00 -8.56565952e-01 6.65643513e-02 4.46123898e-01 -3.08277696e-01 1.37313470e-01 6.36788547e-01 -5.34450352e-01 4.74554569e-01 -2.47119050e-02 -7.02942312e-01 -1.21257138e+00 9.66834426e-01 9.11152512e-02 -3.50820690e-01 -7.59206116e-01 9.23579514e-01 5.53435147e-01 -7.53592491e-01 2.60818869e-01 -3.88937235e-01 -1.76820382e-01 -1.35074198e-01 3.47366706e-02 4.04772729e-01 3.09890416e-02 -4.24846321e-01 -3.73665780e-01 2.68793792e-01 -1.62861958e-01 4.93004173e-01 1.58132768e+00 2.26032630e-01 -2.15893060e-01 1.87978044e-01 1.38210678e+00 -1.73823610e-01 -1.08361220e+00 -3.31598133e-01 -5.61050326e-02 -2.55012006e-01 -1.48991868e-01 -8.90388906e-01 -1.27396822e+00 8.72144878e-01 3.18854541e-01 6.02992475e-01 8.06690335e-01 2.54716158e-01 6.73297584e-01 5.70859313e-01 5.74822687e-02 -6.38492942e-01 1.43602833e-01 4.61751938e-01 5.46010315e-01 -1.30522919e+00 1.93616405e-01 -6.46061122e-01 -4.82218325e-01 8.70468915e-01 5.96408904e-01 -2.85107821e-01 7.29018509e-01 2.57008642e-01 -3.18586260e-01 -8.34478259e-01 -9.54380572e-01 -5.71918368e-01 3.23052764e-01 8.30725491e-01 6.31136894e-01 2.57789224e-01 -2.60336474e-02 -1.24009937e-01 1.21126279e-01 -2.98119616e-02 4.55659956e-01 5.12347579e-01 -2.85471737e-01 -1.10841668e+00 3.90057474e-01 6.20368063e-01 -3.28427345e-01 -3.70475948e-01 -7.90269434e-01 1.12235785e+00 -4.23822179e-02 7.11966336e-01 2.97578722e-02 -3.68988544e-01 1.09490976e-01 -1.61198571e-01 8.38811159e-01 -8.83781672e-01 -4.95276809e-01 -2.37221509e-01 1.99214101e-01 -3.31031084e-01 -3.02334487e-01 -2.91565329e-01 -1.18452215e+00 -6.43422723e-01 -3.02506328e-01 -3.13952833e-01 2.64695823e-01 5.46914995e-01 5.20800650e-01 7.28334904e-01 4.90911752e-01 -5.71459115e-01 -3.67566884e-01 -7.74053276e-01 -7.52623320e-01 8.20271730e-01 8.87079015e-02 -7.33641565e-01 -1.71263605e-01 -3.07561457e-01]
[6.958550930023193, 6.238804817199707]
c5a732b3-ffe9-4709-9327-ef6f81432509
tart-a-plug-and-play-transformer-module-for
2306.07536
null
https://arxiv.org/abs/2306.07536v1
https://arxiv.org/pdf/2306.07536v1.pdf
TART: A plug-and-play Transformer module for task-agnostic reasoning
Large language models (LLMs) exhibit in-context learning abilities which enable the same model to perform several tasks without any task-specific training. In contrast, traditional adaptation approaches, such as fine-tuning, modify the underlying models for each specific task. In-context learning, however, consistently underperforms task-specific tuning approaches even when presented with the same examples. While most existing approaches (e.g., prompt engineering) focus on the LLM's learned representations to patch this performance gap, our analysis actually reveal that LLM representations contain sufficient information to make good predictions. As such, we focus on the LLM's reasoning abilities and demonstrate that this performance gap exists due to their inability to perform simple probabilistic reasoning tasks. This raises an intriguing question: Are LLMs actually capable of learning how to reason in a task-agnostic manner? We answer this in the affirmative and propose TART which generically improves an LLM's reasoning abilities using a synthetically trained Transformer-based reasoning module. TART trains this reasoning module in a task-agnostic manner using only synthetic logistic regression tasks and composes it with an arbitrary real-world pre-trained model without any additional training. With a single inference module, TART improves performance across different model families (GPT-Neo, Pythia, BLOOM), model sizes (100M - 6B), tasks (14 NLP binary classification tasks), and even across different modalities (audio and vision). Additionally, on the RAFT Benchmark, TART improves GPT-Neo (125M)'s performance such that it outperforms BLOOM (176B), and is within 4% of GPT-3 (175B). Our code and models are available at https://github.com/HazyResearch/TART .
['Christopher Ré', 'Christopher De Sa', 'Avanika Narayan', 'Kush Bhatia']
2023-06-13
null
null
null
null
['prompt-engineering']
['natural-language-processing']
[ 2.64739454e-01 2.66913325e-01 -1.46668896e-01 -3.53482872e-01 -1.07895744e+00 -6.43982828e-01 8.02526474e-01 -1.63460538e-01 -3.22290570e-01 6.43098652e-01 9.61999968e-02 -8.33845794e-01 -1.66508317e-01 -7.39941001e-01 -9.14050519e-01 -2.38003030e-01 3.97015154e-01 8.61544847e-01 3.07193995e-01 -3.60117704e-01 1.95854738e-01 2.24899471e-01 -1.27642357e+00 7.54294395e-01 9.29256380e-01 8.02960873e-01 1.60897285e-01 8.36933315e-01 -1.42774582e-01 1.11237419e+00 -5.55208266e-01 -6.91774309e-01 9.00356621e-02 1.09678740e-02 -9.05790389e-01 -3.39478910e-01 5.98406732e-01 -2.20688302e-02 -2.09700525e-01 6.54997051e-01 3.82232189e-01 -1.33352950e-02 8.47842574e-01 -1.42741561e+00 -8.33795130e-01 9.68201518e-01 -3.30430448e-01 3.76569219e-02 1.52397141e-01 3.38329196e-01 1.06464982e+00 -9.83183920e-01 1.54929549e-01 1.41067851e+00 1.00841975e+00 8.73934627e-01 -1.49940145e+00 -9.27453637e-01 1.67317614e-01 8.56938064e-02 -1.26637053e+00 -3.91914338e-01 3.40418041e-01 -3.68970305e-01 1.34066129e+00 1.36500552e-01 2.11121053e-01 1.59544981e+00 2.31524929e-01 8.06328654e-01 1.33293891e+00 -5.24754882e-01 2.67854631e-01 1.60469368e-01 2.17590675e-01 5.30310988e-01 2.07657546e-01 1.23917863e-01 -5.26490390e-01 -1.88469440e-01 4.73565787e-01 -1.45891547e-01 1.25573769e-01 -3.75238769e-02 -1.31733239e+00 6.52811050e-01 2.84531206e-01 3.41293931e-01 -1.30393371e-01 5.23728967e-01 2.46927947e-01 4.87344772e-01 1.00179669e-02 8.72630954e-01 -1.03617251e+00 -1.80122927e-01 -8.24971557e-01 3.10455918e-01 9.35204446e-01 9.91994381e-01 6.49130404e-01 2.07560733e-01 -5.63171208e-01 8.90958190e-01 1.26738727e-01 4.34213847e-01 6.63097620e-01 -1.15716314e+00 5.17593503e-01 4.73175377e-01 -1.38858214e-01 -4.76229727e-01 -4.98727500e-01 -6.37307346e-01 -7.55200446e-01 2.46194869e-01 5.93478799e-01 -1.92789540e-01 -8.77602160e-01 2.07711601e+00 -1.79862112e-01 1.23253547e-01 3.85486066e-01 3.70709866e-01 8.85738611e-01 5.21262288e-01 3.60251963e-01 2.42484987e-01 1.56641269e+00 -1.15748823e+00 -7.59667754e-02 -7.15768278e-01 5.22434771e-01 -7.34456599e-01 1.61449075e+00 5.15170097e-01 -1.21113336e+00 -6.81748033e-01 -7.90916383e-01 -7.77160674e-02 -5.20363569e-01 -4.50554490e-02 7.51829088e-01 5.97044528e-01 -1.16046631e+00 2.96646327e-01 -4.80132967e-01 -4.53858882e-01 3.73923063e-01 2.74656624e-01 -2.00065508e-01 -2.28976429e-01 -1.34742820e+00 1.22969985e+00 5.15182912e-01 -3.85561585e-01 -1.06569791e+00 -9.81050789e-01 -6.55795574e-01 2.30242059e-01 4.47535276e-01 -1.14602542e+00 1.75283432e+00 -7.93209672e-01 -1.38138974e+00 7.97088683e-01 -1.70115709e-01 -7.28025079e-01 5.92713356e-01 -1.06941588e-01 -3.84442270e-01 -1.63415775e-01 5.45079075e-02 8.87432337e-01 8.97859871e-01 -1.13809431e+00 -6.42092407e-01 1.71691686e-01 5.00888407e-01 -5.28107695e-02 -1.11880474e-01 6.99228933e-03 -2.78690189e-01 -7.94178069e-01 -1.49866119e-01 -9.66233253e-01 -1.03501894e-01 -1.91420048e-01 -4.13137138e-01 -3.45974863e-01 5.30606508e-01 -3.60039413e-01 1.00778592e+00 -1.95519662e+00 -1.26894414e-01 -4.12901156e-02 2.39199057e-01 3.24635983e-01 -4.34191883e-01 2.34716564e-01 -1.83152780e-01 2.77693033e-01 -2.83510596e-01 -4.18285340e-01 2.93204606e-01 4.28027898e-01 -4.35193777e-01 -2.95999348e-01 3.40559781e-01 1.14915311e+00 -7.21943080e-01 -4.81311798e-01 7.13127553e-02 3.30413043e-01 -8.93426716e-01 1.94882154e-01 -6.95796967e-01 4.41828609e-01 -2.65211165e-01 4.87093419e-01 3.14984322e-01 -4.98709530e-01 1.83492720e-01 -4.88622040e-02 3.18505824e-01 4.20526892e-01 -8.04092526e-01 1.52975249e+00 -9.88448679e-01 6.39254689e-01 -3.33795696e-01 -1.07202363e+00 7.95474887e-01 2.96243072e-01 -5.90133704e-02 -7.59796381e-01 -1.88653156e-01 2.77736604e-01 2.47705206e-01 -3.94567072e-01 3.01701397e-01 -3.36452305e-01 -3.15154552e-01 5.56248069e-01 1.73027709e-01 -3.54835868e-01 1.15400583e-01 1.61311299e-01 1.44165981e+00 1.13532275e-01 3.28633428e-01 4.69142618e-03 4.40193951e-01 -4.61388230e-02 4.31425393e-01 1.21312582e+00 -3.16244811e-02 4.47082847e-01 3.81749779e-01 -2.99889445e-01 -9.45003450e-01 -1.29300535e+00 -1.26123667e-01 1.54846287e+00 -4.03534532e-01 -5.25398552e-01 -5.77418387e-01 -7.44063914e-01 1.19932815e-01 1.35823846e+00 -6.86693907e-01 -4.41763222e-01 -5.20327151e-01 -7.68100321e-01 9.15958881e-01 6.85480475e-01 7.26622105e-01 -1.34479606e+00 -3.32740813e-01 8.11342970e-02 -3.09861243e-01 -1.22345066e+00 -6.04947358e-02 3.93032908e-01 -8.22722197e-01 -9.18931007e-01 -3.46799821e-01 -5.62943101e-01 4.23572868e-01 3.98235582e-02 1.52518678e+00 3.27819996e-02 8.57647061e-02 5.05525291e-01 -1.24189951e-01 -4.14092600e-01 -8.17034543e-01 4.01792407e-01 -1.25320151e-01 -4.84203428e-01 4.38089430e-01 -8.42024446e-01 -2.25155771e-01 4.26442444e-01 -5.91503859e-01 3.03444892e-01 9.20452714e-01 9.43470299e-01 3.72792691e-01 1.17429413e-01 7.98753321e-01 -1.01334107e+00 7.11128056e-01 -5.58472157e-01 -2.98626900e-01 6.04660988e-01 -8.12303126e-01 3.49576920e-01 6.68557703e-01 -7.11246252e-01 -1.20793879e+00 -4.23076838e-01 -2.05228329e-01 -3.21773022e-01 -1.43062577e-01 4.94106531e-01 -6.06089421e-02 2.00990513e-01 1.05755150e+00 3.01644117e-01 -3.73170078e-01 -4.04973686e-01 3.29181582e-01 3.85831833e-01 6.25345170e-01 -1.16692042e+00 1.02812946e+00 -3.98786142e-02 -1.44293398e-01 -1.80029631e-01 -1.22701633e+00 1.10857300e-01 -1.57665461e-01 2.62268573e-01 6.56126618e-01 -1.03913879e+00 -9.70217586e-01 2.34421358e-01 -1.00992417e+00 -9.38025177e-01 -2.13185757e-01 2.88686693e-01 -7.81071603e-01 -6.99751973e-02 -6.30942345e-01 -7.43136048e-01 -3.66463631e-01 -1.09397984e+00 9.24154818e-01 1.02193989e-01 -6.56699359e-01 -1.04846537e+00 -2.08872721e-01 6.66018486e-01 7.02287853e-01 -1.31372705e-01 1.34560549e+00 -8.40492308e-01 -4.79422361e-01 -1.36462506e-02 -3.74096215e-01 4.53315467e-01 -1.05125450e-01 -8.09941813e-02 -1.24271393e+00 -1.06764724e-02 -1.64747179e-01 -5.24766624e-01 9.74915385e-01 2.18995601e-01 1.32078719e+00 -3.10014367e-01 -2.19449639e-01 5.55304408e-01 1.06175828e+00 2.90305931e-02 5.34666896e-01 5.24889767e-01 5.21137357e-01 3.56914490e-01 2.96834558e-01 3.46521400e-02 6.05926812e-01 6.26380146e-01 3.38981658e-01 2.48309553e-01 -2.94008940e-01 -4.73021239e-01 6.40749454e-01 4.50739533e-01 -3.48355025e-02 -9.39850137e-02 -1.18757010e+00 3.18329901e-01 -1.84088540e+00 -9.13244903e-01 2.60023683e-01 1.94513619e+00 1.23642743e+00 6.21772051e-01 -1.60604209e-01 1.07206367e-01 3.05617750e-01 -1.23084538e-01 -7.57875323e-01 -7.07576692e-01 -2.33097613e-01 5.20414531e-01 9.76389647e-02 5.27552128e-01 -7.58656621e-01 1.18622315e+00 6.68223906e+00 1.04106522e+00 -9.18003738e-01 2.84176320e-01 5.13452113e-01 -4.77255881e-03 -5.61836898e-01 9.89702567e-02 -8.88452530e-01 3.06239963e-01 1.35188031e+00 -1.11196004e-01 7.18157709e-01 8.35672736e-01 -2.07336023e-01 9.40216632e-05 -1.33933771e+00 8.57873261e-01 -8.59106481e-02 -1.34624147e+00 1.53531745e-01 -2.49150708e-01 6.64129257e-01 1.08852021e-01 3.40330482e-01 1.32665420e+00 7.28188753e-01 -1.41738999e+00 9.05005991e-01 5.98392963e-01 6.37632608e-01 -4.47483063e-01 4.70488042e-01 6.76898658e-01 -9.03560817e-01 -3.93034637e-01 -2.19747931e-01 -2.16009006e-01 -2.84105122e-01 4.50580060e-01 -1.06221914e+00 2.04593360e-01 8.27986002e-01 4.91160452e-01 -1.05668175e+00 6.31682098e-01 -6.17640615e-01 9.26620603e-01 -1.46452263e-01 1.70206040e-01 6.90613687e-02 4.64166790e-01 3.37054640e-01 1.31835437e+00 2.53055811e-01 -2.04183206e-01 -8.49050563e-03 1.07078481e+00 -2.74360359e-01 -3.72119963e-01 -3.58567744e-01 -7.16133714e-02 5.50600171e-01 1.13403952e+00 -1.41768157e-01 -5.06448328e-01 -4.10767883e-01 5.86827338e-01 5.88520706e-01 4.60085034e-01 -1.02194524e+00 8.46415237e-02 6.45698309e-01 5.40016964e-03 1.10044807e-01 5.57543188e-02 -4.92411941e-01 -1.22486711e+00 -1.37296930e-01 -1.29908824e+00 5.23810863e-01 -1.28633320e+00 -1.54437017e+00 5.55911541e-01 1.36830300e-01 -8.97436976e-01 -5.26948214e-01 -7.18068659e-01 -6.60102248e-01 9.03432190e-01 -1.52754056e+00 -1.39877164e+00 -2.87261307e-01 7.08840370e-01 5.38085520e-01 -4.95891511e-01 1.05927682e+00 9.61503163e-02 -4.74283308e-01 9.97503519e-01 -2.26936519e-01 2.03683197e-01 8.82583678e-01 -1.36370134e+00 6.09983325e-01 4.47937012e-01 1.07085392e-01 8.10089827e-01 7.80867755e-01 -3.09698880e-01 -1.00041616e+00 -1.18271339e+00 1.00560308e+00 -9.19140100e-01 8.54023516e-01 -4.31444257e-01 -8.98981988e-01 1.10649407e+00 7.99732506e-02 1.02459760e-02 6.79378450e-01 5.67210317e-01 -1.01501155e+00 -1.09797433e-01 -1.14442444e+00 8.96067023e-01 1.13685048e+00 -7.40512908e-01 -1.05339253e+00 4.05712068e-01 9.62190151e-01 -3.71805847e-01 -9.08271432e-01 4.52178478e-01 7.02389836e-01 -1.02518046e+00 1.19767094e+00 -8.73337090e-01 6.08301401e-01 -8.62298831e-02 -5.92402875e-01 -1.15345597e+00 -2.93515891e-01 -4.25409645e-01 -2.62380958e-01 1.21800661e+00 6.48757577e-01 -1.08891141e+00 5.57083964e-01 5.75130939e-01 -6.41418993e-02 -8.86702061e-01 -6.41897857e-01 -8.63895297e-01 5.87081671e-01 -1.02536404e+00 7.39416003e-01 7.87750959e-01 -2.17340082e-01 6.13085568e-01 -1.08443081e-01 7.26805851e-02 4.26945537e-01 1.42660484e-01 8.94885302e-01 -1.34182441e+00 -7.23205388e-01 -6.17459238e-01 1.31236359e-01 -7.81664371e-01 5.31116664e-01 -1.12398601e+00 -1.45554811e-01 -1.46926284e+00 2.91261882e-01 -7.37067282e-01 -4.29919183e-01 1.04588544e+00 -1.58407241e-01 1.21138714e-01 3.14462304e-01 2.24011078e-01 -4.81451631e-01 2.10488826e-01 1.09825587e+00 -3.42239469e-01 1.76328629e-01 2.34125420e-01 -1.14557076e+00 9.00768816e-01 9.20014501e-01 -5.12976825e-01 -4.81275797e-01 -4.41524029e-01 5.78114152e-01 -5.92066608e-02 7.55455256e-01 -1.28085077e+00 9.87278447e-02 -2.32237130e-01 4.81605470e-01 -1.75183967e-01 4.39036399e-01 -6.80271149e-01 6.51315674e-02 4.73834604e-01 -6.33255720e-01 -4.24603894e-02 5.46717346e-01 2.32160479e-01 -4.05974612e-02 -3.06535482e-01 7.52337694e-01 -2.27773696e-01 -6.90212011e-01 -8.27343110e-03 -3.44203144e-01 3.10871840e-01 5.82738936e-01 -1.53950959e-01 -6.71622038e-01 -3.94263148e-01 -8.62176239e-01 1.96679801e-01 2.28302225e-01 4.33156997e-01 2.86088735e-01 -1.08498955e+00 -8.53297889e-01 1.34269267e-01 3.30895275e-01 2.07905751e-02 2.40664333e-01 8.67778242e-01 5.12933685e-03 4.32929158e-01 -7.06771091e-02 -5.46324968e-01 -8.35315645e-01 5.37330508e-01 5.47123730e-01 -6.85311556e-01 -3.26865733e-01 8.27698946e-01 4.55662102e-01 -1.01052463e+00 3.76912542e-02 -6.16953850e-01 6.05270341e-02 -2.43546605e-01 4.08053130e-01 -3.16067450e-02 -7.99831599e-02 -9.41116139e-02 -2.88218409e-01 4.26214188e-01 -7.47513846e-02 3.70034296e-03 1.10070121e+00 2.22107142e-01 2.16721669e-01 5.42188764e-01 7.94356227e-01 4.90812920e-02 -1.23789144e+00 -4.75661129e-01 4.90316153e-02 1.27663827e-02 -3.18809122e-01 -1.44462478e+00 -7.71476686e-01 1.04070807e+00 1.29140228e-01 1.26903541e-02 1.15135264e+00 5.37439659e-02 5.08663297e-01 7.97828913e-01 5.13621747e-01 -7.71773517e-01 3.62840444e-01 9.01907444e-01 1.08135223e+00 -1.34189212e+00 -2.28988931e-01 1.86870750e-02 -7.93289363e-01 9.73037362e-01 8.64734769e-01 1.06155254e-01 5.60528994e-01 2.89779782e-01 -1.40612558e-01 2.36530006e-01 -1.38041818e+00 -7.23781735e-02 2.50465780e-01 7.10711896e-01 4.49544251e-01 1.09639071e-01 3.32396418e-01 8.77805054e-01 -6.12483501e-01 1.23080730e-01 2.02408925e-01 6.77882254e-01 -3.36666346e-01 -1.09182310e+00 -4.53384757e-01 4.86781031e-01 -2.47420415e-01 -4.84056562e-01 -7.41403028e-02 9.79074478e-01 1.91074356e-01 9.54475045e-01 -1.04090281e-01 -4.03392643e-01 3.26003432e-01 4.66138959e-01 4.65047181e-01 -8.20126176e-01 -7.60100484e-01 -3.76450270e-01 2.32131675e-01 -3.61030489e-01 -1.22708552e-01 -4.60616946e-01 -1.25344253e+00 -4.81629461e-01 2.62339383e-01 -8.30339268e-02 2.95206726e-01 1.11098731e+00 3.32619131e-01 7.34499931e-01 3.25877778e-02 -5.06976068e-01 -8.03105295e-01 -1.15564811e+00 -1.12188719e-01 1.46774575e-01 1.36257768e-01 -6.65484369e-01 -3.28003585e-01 -1.20339662e-01]
[10.20919418334961, 7.88517951965332]
0f170e26-f7d4-46c2-b9c8-d24a291ca3c9
person-re-identification-based-on-res2net
1910.04061
null
https://arxiv.org/abs/1910.04061v2
https://arxiv.org/pdf/1910.04061v2.pdf
Improved Res2Net model for Person re-identification
Person re-identification has become a very popular research topic in the computer vision community owing to its numerous applications and growing importance in visual surveillance. Person re-identification remains challenging due to occlusion, illumination and significant intra-class variations across different cameras. In this paper, we propose a multi-task network base on an improved Res2Net model that simultaneously computes the identification loss and verification loss of two pedestrian images. Given a pair of pedestrian images, the system predicts the identities of the two input images and whether they belong to the same identity. In order to obtain deeper feature information of pedestrians, we propose to use the latest Res2Net model for feature extraction of each input image. Experiments on several large-scale person re-identification benchmark datasets demonstrate the accuracy of our approach. For example, rank-1 accuracies are 83.18% (+1.38) and 93.14% (+0.84) for the DukeMTMC and Market-1501 datasets, respectively. The proposed method shows encouraging improvements compared with state-of-the-art methods.
['Hyo Jong Lee', 'Zongjing Cao']
2019-10-08
null
null
null
null
['large-scale-person-re-identification']
['computer-vision']
[ 1.15994904e-02 -6.84227109e-01 1.51001751e-01 -4.60950613e-01 -4.61917907e-01 -3.69596153e-01 6.75434709e-01 7.87596256e-02 -9.75523770e-01 8.56440842e-01 1.43076986e-01 2.60130793e-01 2.51906663e-01 -4.37285602e-01 -4.69351172e-01 -5.53897500e-01 2.88744509e-01 3.17227900e-01 1.79458678e-01 1.14989579e-02 7.06753507e-02 3.89951676e-01 -1.76088893e+00 1.00520507e-01 5.92506766e-01 9.38852966e-01 -1.28081664e-01 6.15691304e-01 5.18827617e-01 3.56950462e-01 -5.20315766e-01 -9.16310728e-01 5.31392932e-01 -6.96295127e-02 -6.11500680e-01 1.38494540e-02 9.36594844e-01 -5.50458908e-01 -6.03069663e-01 1.30859625e+00 7.64657795e-01 2.81068265e-01 4.00939167e-01 -1.34458649e+00 -6.91984475e-01 5.16473055e-02 -9.51468647e-01 4.13204432e-01 3.34942877e-01 6.75102696e-02 6.62229955e-01 -8.39692414e-01 2.15243250e-01 1.25674808e+00 8.48381102e-01 7.22679138e-01 -1.22013438e+00 -1.11040986e+00 1.17978141e-01 7.49139845e-01 -1.85537994e+00 -5.89851379e-01 3.49004269e-01 -4.15746778e-01 6.27883136e-01 2.68501073e-01 4.17383075e-01 1.03646874e+00 -1.32846460e-01 7.17942536e-01 1.15193582e+00 -2.73065656e-01 -3.38894278e-01 4.18908626e-01 4.13112640e-01 4.82237101e-01 4.98095095e-01 1.59437299e-01 -3.06100368e-01 -1.08021889e-02 5.35924852e-01 2.72151858e-01 -1.81907520e-01 1.44999921e-02 -1.02593362e+00 4.51250762e-01 5.15517831e-01 9.12950113e-02 -1.94100291e-01 7.73651851e-03 5.09646118e-01 3.98178287e-02 3.70991826e-01 -5.29306494e-02 -9.99235436e-02 1.03611991e-01 -7.91640401e-01 4.03813541e-01 3.48075241e-01 8.05608571e-01 5.36044657e-01 -3.20708573e-01 -2.47782573e-01 1.17719567e+00 1.71293870e-01 5.49917877e-01 5.53994298e-01 -4.67034519e-01 4.62506682e-01 5.16864300e-01 3.73629987e-01 -1.18621290e+00 -2.89545804e-01 -5.92932045e-01 -1.35903609e+00 -3.08178756e-02 6.23748422e-01 1.82438884e-02 -6.93063140e-01 1.68685079e+00 2.07891732e-01 6.29681945e-01 -8.47318675e-03 9.84961510e-01 1.00518274e+00 3.71085465e-01 3.09722692e-01 2.15609297e-01 1.60153949e+00 -1.03054142e+00 -2.38326460e-01 -3.12204093e-01 5.86494803e-02 -6.57153785e-01 4.23341185e-01 8.41881409e-02 -7.66715109e-01 -1.16530430e+00 -9.23033595e-01 9.11825150e-02 -3.88429701e-01 6.81502879e-01 8.43609422e-02 9.26509678e-01 -1.15618026e+00 4.71216172e-01 -3.34352672e-01 -7.82008588e-01 3.80548149e-01 6.13764644e-01 -6.31483674e-01 -1.85001880e-01 -9.88642395e-01 8.29103947e-01 3.43496233e-01 2.01713502e-01 -5.82836032e-01 -6.21552765e-01 -6.71884716e-01 2.09740251e-02 4.67783585e-02 -6.98820055e-01 9.35874581e-01 -8.95837545e-01 -1.12118948e+00 1.24367952e+00 -3.01877230e-01 -5.76054275e-01 8.80557835e-01 -3.46075714e-01 -6.86397254e-01 -1.53505132e-01 3.90833169e-01 6.93927467e-01 6.50888681e-01 -1.15147340e+00 -1.13634515e+00 -5.57620287e-01 -1.11243486e-01 1.94162682e-01 -5.49766243e-01 4.38849211e-01 -5.39979577e-01 -5.53633988e-01 -2.77950466e-01 -1.08347952e+00 -5.58172613e-02 -1.57431856e-01 -6.66659415e-01 -3.24330598e-01 5.89482844e-01 -1.01794243e+00 7.53421426e-01 -2.00071812e+00 -9.99213606e-02 5.17497025e-02 3.24970812e-01 6.54753804e-01 -1.14944369e-01 -9.95451212e-02 -3.01321357e-01 -2.31612958e-02 3.23410362e-01 -8.09975028e-01 -2.14992136e-01 -4.77350563e-01 4.27853726e-02 6.76366270e-01 -4.96785119e-02 7.94905782e-01 -6.27124548e-01 -3.11885029e-01 5.15249908e-01 5.88023782e-01 -4.23993990e-02 2.48404860e-01 7.29393065e-01 5.64574301e-01 -1.98267519e-01 4.81291533e-01 9.42200124e-01 -2.75474221e-01 -7.96846300e-02 -6.15652084e-01 -1.40445158e-01 -4.60823208e-01 -1.37565458e+00 1.08438933e+00 -1.60087720e-01 6.86734974e-01 -2.59166270e-01 -7.91669250e-01 7.53891528e-01 1.80451274e-01 3.67301792e-01 -6.83196723e-01 3.11764508e-01 8.28873441e-02 -9.78313312e-02 -1.63728341e-01 7.53353655e-01 1.29774258e-01 5.30143548e-03 2.02659398e-01 -9.86591950e-02 8.73759985e-01 3.45501214e-01 -1.11546747e-01 5.72344363e-01 -1.82981431e-01 4.30028856e-01 -2.09470063e-01 1.15600252e+00 -5.64768612e-01 6.45913720e-01 8.21160853e-01 -6.76537871e-01 7.88239479e-01 -2.70336509e-01 -8.40816736e-01 -1.23913682e+00 -8.95451427e-01 -1.27565295e-01 9.33945119e-01 5.60332835e-01 -1.81272447e-01 -6.85799897e-01 -4.53313947e-01 9.01702493e-02 2.43851721e-01 -6.20209277e-01 -3.70117184e-03 -7.32463598e-01 -1.10674465e+00 7.50673652e-01 6.34784818e-01 1.24808133e+00 -5.37750661e-01 -1.76897377e-01 -9.36457887e-03 -4.82622266e-01 -1.49538875e+00 -7.80326128e-01 -8.48000705e-01 -2.51249462e-01 -1.26272452e+00 -1.29603446e+00 -1.02693892e+00 7.80255914e-01 6.38176024e-01 7.41173089e-01 3.67375702e-01 -3.96476120e-01 2.51886785e-01 -1.00837879e-01 -4.73790318e-02 -1.76450998e-01 5.42450603e-03 5.82380533e-01 6.59503639e-01 5.34107268e-01 -2.00378343e-01 -8.20294321e-01 7.44281173e-01 -3.05364341e-01 8.62628147e-02 2.52830684e-01 8.65356982e-01 4.40470517e-01 8.11353549e-02 5.36536038e-01 -3.92798632e-01 4.58731949e-01 -1.31104887e-01 -6.11151338e-01 6.41758978e-01 -3.73476565e-01 -4.74346042e-01 6.27393901e-01 -4.39215690e-01 -1.00241959e+00 1.69578820e-01 2.36976519e-02 -2.36689791e-01 -4.20929372e-01 -1.93587869e-01 -1.23417288e-01 -3.28111500e-01 2.64094651e-01 2.88458705e-01 -2.32035518e-01 -4.57345039e-01 4.90097776e-02 8.04239690e-01 8.75535250e-01 -2.61917204e-01 1.02584755e+00 4.28802848e-01 -1.67615414e-01 -8.81566346e-01 -6.15220606e-01 -7.45380163e-01 -6.49122298e-01 -3.34579945e-01 9.58374143e-01 -1.36489522e+00 -1.27077019e+00 1.09931993e+00 -1.23706865e+00 4.16214198e-01 1.51810855e-01 4.24673945e-01 5.83392270e-02 7.39668548e-01 -5.46002626e-01 -8.10191393e-01 -6.43282413e-01 -1.31769371e+00 8.74544680e-01 7.86230445e-01 3.03731449e-02 -6.81279302e-01 -2.25198686e-01 6.08855784e-01 4.57940191e-01 8.61973688e-02 1.86184555e-01 -7.68621266e-01 -5.21381915e-01 -6.44198239e-01 -9.06381309e-01 2.89870858e-01 3.14612478e-01 -2.88928479e-01 -1.13085639e+00 -7.09313393e-01 -5.18991649e-01 -9.45591182e-02 9.50874627e-01 2.99643487e-01 1.18602538e+00 -1.91460326e-01 -5.62671483e-01 6.93745375e-01 1.42246604e+00 3.19249555e-02 5.28522849e-01 6.19343877e-01 9.30840850e-01 4.83543068e-01 1.91318884e-01 5.29424727e-01 6.86602116e-01 9.40367997e-01 1.38383359e-01 -1.58751607e-01 -1.87994406e-01 -1.80340305e-01 3.60820070e-02 2.96105921e-01 -3.92385453e-01 -2.43103519e-01 -7.81651258e-01 5.03356934e-01 -1.98538268e+00 -1.20706201e+00 -1.69656143e-01 2.50526762e+00 3.18593651e-01 -1.81785241e-01 4.72393095e-01 -8.10669363e-02 1.53677559e+00 -5.62951863e-02 -5.73908508e-01 3.32702398e-01 -3.25111777e-01 -1.44467413e-01 9.14202213e-01 2.92428702e-01 -1.61932290e+00 8.81038308e-01 5.31011343e+00 7.14280128e-01 -6.74525082e-01 6.23181723e-02 1.03889859e+00 7.98097849e-02 6.99980915e-01 -5.15897512e-01 -1.38868284e+00 7.17041969e-01 6.72920883e-01 -5.16352534e-01 3.17348242e-01 4.62305903e-01 4.39044572e-02 -9.04887393e-02 -1.08078909e+00 1.61419630e+00 4.20620412e-01 -1.14195478e+00 1.70798209e-02 8.31879396e-03 8.12993586e-01 -2.36719549e-01 2.44979024e-01 7.34222680e-02 2.00646967e-01 -1.09617352e+00 5.91350853e-01 5.10761201e-01 9.08351064e-01 -8.92770886e-01 1.25920403e+00 5.19290902e-02 -1.62100554e+00 -7.94531256e-02 -4.52063918e-01 7.36466646e-02 2.78743595e-01 2.22776413e-01 -5.74899733e-01 6.45720184e-01 1.17306697e+00 9.99209106e-01 -9.59698856e-01 1.40042388e+00 1.13537274e-01 1.02422662e-01 -1.95990682e-01 1.41949490e-01 -3.24860394e-01 -9.56056044e-02 3.66706997e-01 1.13259578e+00 1.76290452e-01 -2.58288644e-02 4.02870744e-01 6.07504487e-01 -3.12592804e-01 1.23970071e-02 -2.58156508e-01 5.35785019e-01 2.60956764e-01 1.25250256e+00 -4.48890924e-01 -4.36237931e-01 -3.97768766e-01 1.31762946e+00 2.18831286e-01 2.92012125e-01 -9.12245393e-01 -2.44122386e-01 1.07496297e+00 -2.26621822e-01 1.69562504e-01 -3.25413309e-02 -7.81729966e-02 -1.28650272e+00 1.32377103e-01 -7.58055925e-01 5.09841084e-01 -3.61453891e-01 -1.72145092e+00 6.91744864e-01 -1.35256678e-01 -1.32989931e+00 -5.34685329e-03 -6.05867982e-01 -4.54237878e-01 1.16120994e+00 -1.57005930e+00 -1.46047068e+00 -7.79974818e-01 6.43791497e-01 5.51776886e-01 -6.73077345e-01 6.33567035e-01 7.16192842e-01 -9.89530802e-01 1.27024508e+00 2.79320776e-01 6.85461581e-01 9.23854470e-01 -8.41894448e-01 8.07487249e-01 1.13420844e+00 -3.50967348e-01 4.79665011e-01 4.74642485e-01 -5.70745111e-01 -9.81129348e-01 -1.34618413e+00 9.23944712e-01 -4.07809794e-01 3.55245441e-01 -1.16717182e-01 -7.18509138e-01 5.46328843e-01 9.49124340e-03 9.00465697e-02 7.24499345e-01 -6.92696944e-02 -4.10869330e-01 -4.13768113e-01 -1.31721413e+00 5.35369575e-01 1.04869771e+00 -4.04534847e-01 -2.13213399e-01 2.34959468e-01 2.79087365e-01 -2.21187785e-01 -6.57558680e-01 3.02349538e-01 8.69833171e-01 -9.58716035e-01 1.54992938e+00 -5.31760514e-01 -6.35611042e-02 -4.10609663e-01 -1.63796604e-01 -1.12515152e+00 -6.66124105e-01 -1.46766335e-01 3.55226457e-01 1.45464921e+00 -5.83545938e-02 -8.71143043e-01 8.25468302e-01 9.58244801e-01 5.25502205e-01 -1.08250670e-01 -1.05694497e+00 -7.72906184e-01 -2.63875276e-01 2.29787175e-02 6.78098083e-01 6.53199613e-01 -5.55907547e-01 2.33699411e-01 -9.54470456e-01 4.14681524e-01 1.15003264e+00 -1.03528142e-01 1.01303697e+00 -1.42312431e+00 8.57448019e-03 -4.29547191e-01 -8.23736072e-01 -9.55411434e-01 3.80278856e-01 -7.83281386e-01 -1.95685074e-01 -1.16459239e+00 8.60180616e-01 -3.49895835e-01 -5.80221236e-01 3.05587500e-01 -5.01807034e-01 7.66432047e-01 4.63614285e-01 3.56256425e-01 -6.60975873e-01 5.81613243e-01 6.22371137e-01 -4.74802643e-01 2.28513740e-02 2.59446651e-01 -6.97875679e-01 5.91280758e-01 9.49516058e-01 -9.12121311e-02 9.69160125e-02 -4.99369740e-01 -3.98534745e-01 -4.55077499e-01 1.00760758e+00 -1.35508943e+00 5.03975034e-01 2.10281551e-01 9.28166807e-01 -5.45290470e-01 5.03146470e-01 -7.00765848e-01 3.47174138e-01 4.83787686e-01 -2.85324663e-01 4.32195604e-01 3.16813439e-01 6.22218788e-01 -4.95863222e-02 2.48275921e-02 1.04443955e+00 -5.00096828e-02 -9.61949050e-01 6.06940687e-01 5.75787611e-02 -1.86284125e-01 1.12956810e+00 -3.25370759e-01 -5.02701640e-01 -2.84421146e-01 -3.85750204e-01 2.80757129e-01 5.08477330e-01 7.14257002e-01 7.45144486e-01 -1.41971636e+00 -1.08615017e+00 1.74307063e-01 1.93909228e-01 -5.83800018e-01 4.67423469e-01 4.54825222e-01 -1.78824499e-01 3.81162733e-01 -5.28249323e-01 -5.40743172e-01 -1.91239381e+00 2.73322433e-01 6.50980532e-01 -2.03513712e-01 -4.18184787e-01 8.05438757e-01 3.25129628e-01 -2.62103409e-01 2.22489521e-01 3.66077662e-01 -4.47430938e-01 -1.28695965e-01 1.02378559e+00 8.39198112e-01 -1.48558453e-01 -1.31430030e+00 -6.37404442e-01 8.28055203e-01 -5.84408820e-01 1.13654636e-01 1.05094528e+00 -2.00036034e-01 -5.37134297e-02 -8.19496214e-02 1.33266032e+00 -4.21127588e-01 -1.05214143e+00 -4.79237288e-01 -1.91087291e-01 -8.38955402e-01 -3.53755623e-01 -6.60355866e-01 -1.07909846e+00 6.25048041e-01 1.25043929e+00 -1.06902972e-01 9.04308438e-01 -3.33630562e-01 9.48152483e-01 2.09815145e-01 4.64104682e-01 -1.06305039e+00 -9.55365375e-02 2.41986200e-01 6.10470712e-01 -1.64208436e+00 1.27735674e-01 -3.13056886e-01 -3.32426965e-01 9.08312440e-01 8.62439334e-01 -2.75681820e-02 4.45181012e-01 -4.82007444e-01 -9.67238694e-02 4.86009508e-01 5.93014993e-02 -2.41987765e-01 4.66369569e-01 7.01005399e-01 1.96726620e-01 2.62070119e-01 6.02892786e-03 4.60151613e-01 -1.32528648e-01 7.97051471e-03 2.60205209e-01 3.77170593e-01 -1.67916328e-01 -1.08240473e+00 -5.75418293e-01 4.95824188e-01 -4.34230328e-01 6.46283254e-02 -1.84536785e-01 4.54283893e-01 1.59311026e-01 1.19916987e+00 4.40389551e-02 -7.46885240e-01 3.61061662e-01 -2.57995486e-01 3.23769599e-01 -1.83568373e-01 -6.89845800e-01 -5.22237778e-01 -2.53720153e-02 -2.76059598e-01 -6.41015828e-01 -8.19922984e-01 -5.66027403e-01 -7.32831776e-01 -1.78991139e-01 -1.40805662e-01 4.48601574e-01 8.14883113e-01 4.58653241e-01 2.36552775e-01 6.64614499e-01 -9.65510070e-01 -5.12160122e-01 -8.05930972e-01 -3.53328824e-01 7.35938787e-01 3.92112881e-01 -7.29606926e-01 -4.44028489e-02 1.31159708e-01]
[14.695645332336426, 0.9311878681182861]
c441cd5d-3d8a-437b-ba2b-5d211f01a0a7
the-spike-gating-flow-a-hierarchical
2206.01910
null
https://arxiv.org/abs/2206.01910v2
https://arxiv.org/pdf/2206.01910v2.pdf
The Spike Gating Flow: A Hierarchical Structure Based Spiking Neural Network for Online Gesture Recognition
Action recognition is an exciting research avenue for artificial intelligence since it may be a game changer in the emerging industrial fields such as robotic visions and automobiles. However, current deep learning faces major challenges for such applications because of the huge computational cost and the inefficient learning. Hence, we develop a novel brain-inspired Spiking Neural Network (SNN) based system titled Spiking Gating Flow (SGF) for online action learning. The developed system consists of multiple SGF units which assembled in a hierarchical manner. A single SGF unit involves three layers: a feature extraction layer, an event-driven layer and a histogram-based training layer. To demonstrate the developed system capabilities, we employ a standard Dynamic Vision Sensor (DVS) gesture classification as a benchmark. The results indicate that we can achieve 87.5% accuracy which is comparable with Deep Learning (DL), but at smaller training/inference data number ratio 1.5:1. And only a single training epoch is required during the learning process. Meanwhile, to the best of our knowledge, this is the highest accuracy among the non-backpropagation algorithm based SNNs. At last, we conclude the few-shot learning paradigm of the developed network: 1) a hierarchical structure-based network design involves human prior knowledge; 2) SNNs for content based global dynamic feature detection.
['Yuan Xie', 'Junwen Luo', 'C. -J. Richard Shi', 'Xiaoan Wang', 'Jiansong Zhang', 'Fangbo Tao', 'Tie XU', 'Qiaosha Zou', 'Yanhong Wang', 'Zihao Zhao']
2022-06-04
null
null
null
null
['gesture-recognition']
['computer-vision']
[ 4.92036700e-01 -2.96251625e-01 -5.89190759e-02 -8.90008669e-05 1.41425747e-02 -1.06419787e-01 6.57434702e-01 -3.98106091e-02 -7.96230316e-01 7.43379951e-01 -2.00608820e-01 -6.05859570e-02 -1.91781282e-01 -9.39863801e-01 -7.12614298e-01 -1.15591979e+00 1.29104868e-01 1.07448407e-01 1.00413203e+00 -1.92878246e-01 5.58587909e-01 6.10773444e-01 -1.95265734e+00 2.94040948e-01 5.74846745e-01 1.40194118e+00 4.86431301e-01 5.25451481e-01 -2.21348435e-01 1.00064659e+00 -3.88776839e-01 1.96190163e-01 2.03241169e-01 -5.71908832e-01 -3.06810826e-01 -1.68070108e-01 -9.61390659e-02 -2.90974647e-01 -4.32810217e-01 9.87172782e-01 6.99320912e-01 3.17914516e-01 6.60300255e-01 -1.27604997e+00 -3.15845370e-01 2.68861264e-01 -3.69171590e-01 5.33895552e-01 -1.47326365e-02 5.65259337e-01 5.11110663e-01 -6.39997780e-01 6.07352912e-01 8.54993641e-01 4.19067949e-01 7.98940718e-01 -6.25565767e-01 -7.33213365e-01 7.39916563e-02 5.63131630e-01 -7.50467241e-01 -2.47050911e-01 8.02690446e-01 -4.17901665e-01 1.35342956e+00 -3.15070361e-01 1.07277608e+00 1.27567732e+00 5.62941074e-01 8.63864541e-01 1.23838425e+00 -1.27534285e-01 7.67189026e-01 -4.36025739e-01 2.75522143e-01 7.39430964e-01 3.43590319e-01 2.32530415e-01 -8.36847842e-01 4.18477595e-01 1.00727832e+00 2.98157245e-01 7.79934824e-02 -1.34950265e-01 -9.86017585e-01 7.00485647e-01 5.68813980e-01 4.53646421e-01 -6.14698350e-01 5.58017850e-01 5.72621286e-01 1.68784425e-01 -1.79574817e-01 8.19478855e-02 -3.39183599e-01 -3.89285475e-01 -6.94369614e-01 1.75346345e-01 6.83681846e-01 3.87847513e-01 4.60551381e-01 5.50589979e-01 -3.14977765e-02 5.38609087e-01 2.63722718e-01 3.54083389e-01 9.74235117e-01 -8.13804328e-01 1.96186360e-02 7.27872968e-01 -1.62907138e-01 -8.40856135e-01 -5.30008197e-01 -1.56158969e-01 -8.10227454e-01 7.72200048e-01 4.06689137e-01 -1.69698477e-01 -1.08752060e+00 1.44585359e+00 2.96959616e-02 4.08495486e-01 1.10686317e-01 8.94011676e-01 9.12892103e-01 6.38978183e-01 3.36475462e-01 -2.92956293e-01 1.17056131e+00 -8.46037149e-01 -6.70328319e-01 -2.17310652e-01 2.43550226e-01 -2.44478106e-01 8.40758264e-01 5.54598987e-01 -8.38598073e-01 -5.95149994e-01 -1.33950102e+00 4.14164603e-01 -7.54464865e-01 2.30985712e-02 1.01719022e+00 4.96526688e-01 -8.72105837e-01 7.05596805e-01 -1.04275787e+00 -7.13381946e-01 6.52853847e-01 6.16708517e-01 -1.34354115e-01 2.23899171e-01 -8.93027723e-01 7.32582629e-01 8.01375866e-01 -1.50163220e-02 -9.83002245e-01 -7.30556846e-02 -6.01186693e-01 6.83636665e-02 2.33585566e-01 -5.23139060e-01 1.03647780e+00 -8.70520294e-01 -1.96205175e+00 6.05661273e-01 1.06263254e-02 -7.67734528e-01 1.23678565e-01 5.15042767e-02 -2.38872379e-01 2.37088934e-01 -1.86270207e-01 7.11858869e-01 7.67968833e-01 -7.99282074e-01 -7.34610975e-01 -4.85486716e-01 -7.84449801e-02 1.85066000e-01 -3.99604172e-01 -1.71036318e-01 1.07666040e-02 -5.86232483e-01 1.72366768e-01 -6.74704194e-01 -2.98616383e-02 2.53639877e-01 1.85534850e-01 -4.93698299e-01 1.00697947e+00 -3.16486686e-01 9.52167988e-01 -2.00621653e+00 -1.20373957e-01 -7.64621720e-02 1.30775645e-02 5.99536180e-01 6.84448238e-03 2.41309538e-01 2.58044988e-01 -3.98207337e-01 -3.35274875e-01 3.16360384e-01 -1.67219639e-01 2.73935854e-01 6.20914288e-02 1.98705673e-01 1.29129693e-01 1.09262884e+00 -8.74761164e-01 -3.46706897e-01 5.14820814e-01 8.13088194e-02 -2.76717067e-01 6.81055337e-02 -2.73477346e-01 3.77218068e-01 -3.49965960e-01 9.44905460e-01 2.76304930e-01 -3.94658148e-02 -1.01252124e-01 -2.78761655e-01 -4.23854262e-01 -2.04545096e-01 -1.10660517e+00 1.80520368e+00 2.37225788e-03 6.72938287e-01 -1.86089069e-01 -1.46534979e+00 1.26438344e+00 9.59150791e-02 7.48120785e-01 -1.15872562e+00 5.26823938e-01 3.21866840e-01 2.64081359e-01 -7.70889044e-01 -8.51912424e-02 -1.70637786e-01 1.03439666e-01 2.55366117e-01 5.15805066e-01 3.39966625e-01 2.52736121e-01 -2.47758582e-01 1.51718020e+00 2.09822446e-01 2.96280295e-01 1.16568329e-02 4.20405477e-01 -2.05109511e-02 6.89603925e-01 8.15227807e-01 -7.53864169e-01 1.69042483e-01 1.68150842e-01 -5.42840421e-01 -7.03705728e-01 -1.19174123e+00 5.10478653e-02 1.13048398e+00 4.12711561e-01 1.69644594e-01 -6.14144921e-01 -3.35374981e-01 -1.60735965e-01 3.18258554e-01 -4.57583636e-01 -2.56972283e-01 -5.35836756e-01 -8.30182672e-01 7.08569407e-01 7.96832383e-01 1.15767813e+00 -1.77505648e+00 -1.15066242e+00 5.52597880e-01 4.47086483e-01 -9.10573542e-01 2.34474823e-01 5.29194653e-01 -1.04662836e+00 -1.20700002e+00 -4.98336405e-01 -1.13124311e+00 1.88268006e-01 -1.29393523e-03 4.59356070e-01 -2.50143826e-01 -4.99430120e-01 2.22130075e-01 -3.59938174e-01 -6.25026524e-01 1.61296308e-01 -2.09429994e-01 5.18627279e-02 -1.42873460e-02 7.81626523e-01 -9.28428113e-01 -8.79121721e-01 -4.56575258e-03 -7.42722511e-01 1.21074859e-02 9.44488883e-01 9.22435284e-01 5.94285250e-01 1.08970396e-01 7.77618706e-01 -5.78257918e-01 5.11506259e-01 -4.16727901e-01 -5.70296526e-01 2.73825638e-02 -4.84434366e-01 -4.95715514e-02 7.18968809e-01 -5.24685919e-01 -1.21411514e+00 4.45077330e-01 -1.75471097e-01 -1.08472906e-01 -4.57423896e-01 2.85034180e-01 -2.41177678e-02 -3.83252949e-01 6.30585611e-01 6.74542606e-01 9.96725336e-02 -2.80972332e-01 -5.60119003e-02 6.88457847e-01 6.85291588e-01 -1.60852224e-01 1.87198922e-01 4.66736197e-01 5.36057614e-02 -7.71854460e-01 -2.43309975e-01 -5.20780027e-01 -4.60743785e-01 -6.69650614e-01 1.11850321e+00 -6.52585626e-01 -1.11718154e+00 1.14542127e+00 -1.12817907e+00 -3.81114066e-01 -1.58729300e-01 6.23919725e-01 -7.27717578e-01 -4.82109152e-02 -7.90768325e-01 -9.12819862e-01 -5.08034408e-01 -8.71215880e-01 6.39466465e-01 7.66441762e-01 1.48367494e-01 -7.38480031e-01 1.89196974e-01 2.31247962e-01 4.84447658e-01 6.14359200e-01 7.15770543e-01 -6.95160031e-01 -5.15230238e-01 5.71990609e-02 -2.55109072e-01 1.74671322e-01 1.68971419e-01 -1.69306949e-01 -1.00049031e+00 -9.17963833e-02 1.02869511e-01 -4.83753353e-01 1.23610640e+00 5.60116291e-01 1.08650827e+00 4.98576313e-02 -2.62424976e-01 2.94983685e-01 1.74988711e+00 1.01444423e+00 7.49207914e-01 4.58152562e-01 4.91618276e-01 1.57245755e-01 3.51105362e-01 6.30049706e-01 -1.38695240e-01 2.42150590e-01 6.48115456e-01 3.10145557e-01 -1.78544551e-01 -6.36707023e-02 5.15762150e-01 9.13821995e-01 -3.61154288e-01 -1.64507970e-01 -8.53430212e-01 4.37200695e-01 -2.11851144e+00 -1.16832054e+00 -1.82430614e-02 1.96290064e+00 4.99571294e-01 5.00902534e-01 1.30224511e-01 4.09369379e-01 5.96974492e-01 1.30047187e-01 -1.15059674e+00 -4.10242289e-01 -8.77844170e-02 6.98261976e-01 3.54843915e-01 -7.36883879e-02 -1.13988709e+00 1.01557386e+00 5.43451786e+00 7.27237105e-01 -1.40037632e+00 3.03737018e-02 1.23395480e-01 2.22868097e-04 3.47128958e-01 -3.19248170e-01 -7.14806497e-01 8.01452994e-01 8.65611792e-01 -9.65646096e-03 4.81380135e-01 8.32130611e-01 2.18414500e-01 -3.87754947e-01 -5.46907306e-01 1.32315218e+00 4.97358525e-03 -1.58081758e+00 1.91003338e-01 -2.08290070e-01 4.91775781e-01 1.66033894e-01 -3.09508115e-01 3.88858408e-01 1.05919922e-02 -9.46547985e-01 2.79292881e-01 7.78865159e-01 3.93294126e-01 -7.52228975e-01 8.00498009e-01 4.13731635e-01 -1.36446762e+00 -5.87920249e-01 -3.69409919e-01 -5.25712252e-01 -4.11045318e-03 2.44268447e-01 -3.05633694e-01 9.18863937e-02 8.24440420e-01 8.67423415e-01 -3.55559617e-01 1.34587395e+00 9.43622589e-02 5.62441647e-01 -1.44168735e-01 -6.26023650e-01 3.57735127e-01 -4.32311483e-02 3.78839225e-01 1.04988062e+00 2.29432985e-01 2.54501104e-01 9.00000855e-02 5.88442206e-01 -3.79502438e-02 -1.39471158e-01 -8.09318602e-01 -1.88383639e-01 4.19917494e-01 1.11912286e+00 -1.15239584e+00 -2.95691311e-01 -3.92591506e-01 1.02295744e+00 1.85749963e-01 2.14951530e-01 -6.32713079e-01 -7.81453371e-01 4.28737819e-01 -1.44897550e-01 4.67861027e-01 -1.47982135e-01 -3.80817324e-01 -8.99759948e-01 -1.33469895e-01 -4.38517541e-01 2.28471518e-01 -6.98690355e-01 -1.00009012e+00 2.53308535e-01 -3.50554883e-01 -1.18550301e+00 -1.97776824e-01 -1.13117623e+00 -9.03989851e-01 2.56981730e-01 -1.33835495e+00 -8.56425405e-01 -6.15458846e-01 7.62696981e-01 7.70754755e-01 -5.22177994e-01 7.63638914e-01 1.44360229e-01 -5.84791183e-01 1.72420278e-01 1.02528408e-01 2.80398935e-01 2.65480548e-01 -1.07402802e+00 1.07092075e-02 8.97360384e-01 -2.62689292e-02 2.42587417e-01 2.48358443e-01 -5.91050684e-01 -1.47278678e+00 -1.02495706e+00 3.53813648e-01 1.43611476e-01 6.45060003e-01 -1.38188720e-01 -8.09894264e-01 2.02426255e-01 1.14239700e-01 1.09433174e-01 5.46178937e-01 -5.83278000e-01 1.36179432e-01 -3.68930131e-01 -1.17844975e+00 3.60578746e-01 1.20574450e+00 -2.18614489e-01 -6.34008288e-01 4.34195288e-02 4.31542218e-01 -1.73857167e-01 -5.83440423e-01 4.37862217e-01 8.32475841e-01 -1.13205254e+00 5.40635109e-01 -4.87250298e-01 2.03001529e-01 -4.64367986e-01 -4.62713912e-02 -8.39880586e-01 -4.46440756e-01 -3.26915920e-01 -4.82708037e-01 8.98955822e-01 -1.40665695e-01 -6.51476860e-01 1.11842501e+00 2.73436666e-01 -2.31121778e-01 -1.04331744e+00 -1.10436380e+00 -1.00539219e+00 -2.53245413e-01 -2.66267478e-01 -1.94409341e-02 4.75746125e-01 -5.72733134e-02 2.50583678e-01 1.10129956e-02 -2.18969733e-01 6.92835867e-01 -1.29975423e-01 2.42883176e-01 -1.44339299e+00 -2.98092335e-01 -5.19294977e-01 -9.88000214e-01 -8.20981205e-01 -1.59880430e-01 -5.10238111e-01 2.22422495e-01 -1.65555716e+00 1.19997658e-01 -5.28072678e-02 -8.14020097e-01 5.64185202e-01 2.78461963e-01 1.24897420e-01 3.32629532e-02 5.57668023e-02 -6.77481532e-01 5.63675463e-01 1.03171837e+00 -1.40176937e-01 -3.11785042e-01 -9.00117680e-03 -2.59193003e-01 8.01749110e-01 1.09201324e+00 -3.49783421e-01 -5.85374117e-01 -6.92265853e-02 -2.38944426e-01 -1.34846181e-01 5.11536658e-01 -1.57347298e+00 7.86442339e-01 -2.82699347e-01 5.09799004e-01 -4.47550178e-01 2.03645900e-01 -6.53845906e-01 -1.64747834e-01 1.03894520e+00 1.43017843e-02 -2.88882762e-01 1.56345293e-01 7.44917512e-01 -2.05882117e-01 -1.77626297e-01 9.00670111e-01 -3.84646505e-01 -1.55378902e+00 3.15321147e-01 -7.70192862e-01 -1.63751006e-01 1.26776397e+00 -6.82223260e-01 -3.21470588e-01 8.13263282e-02 -5.26253700e-01 -1.03101879e-01 5.67241339e-03 3.15996379e-01 8.90103459e-01 -1.29061854e+00 -1.08940341e-01 1.82437330e-01 1.32366214e-02 -1.53441086e-01 2.29312211e-01 6.65795386e-01 -5.98811328e-01 3.87041450e-01 -9.66577113e-01 -4.59694028e-01 -1.01662123e+00 2.94524759e-01 2.45166004e-01 -1.05993949e-01 -5.22439599e-01 6.96744084e-01 -1.14251763e-01 -9.71035659e-02 5.15551746e-01 -2.56110221e-01 -5.30668795e-01 8.95808712e-02 5.47002912e-01 6.97628498e-01 1.33793652e-02 -2.38657013e-01 -4.81513679e-01 4.61153597e-01 1.16727106e-01 -9.31058899e-02 1.54043615e+00 3.42494816e-01 7.70079568e-02 6.57028377e-01 8.53715360e-01 -9.28651452e-01 -1.61646533e+00 6.51724562e-02 1.32327735e-01 7.79395327e-02 -2.27835737e-02 -8.25131357e-01 -9.72899139e-01 9.23016965e-01 1.04945362e+00 -1.15245029e-01 1.24771845e+00 -3.73625308e-01 1.03694272e+00 8.31306219e-01 5.52119553e-01 -1.47120750e+00 5.77288032e-01 6.29300177e-01 5.88262975e-01 -1.20890546e+00 -3.30658197e-01 1.61244541e-01 -3.58355463e-01 1.41668117e+00 1.05324149e+00 -6.12342954e-01 8.05810928e-01 2.83756077e-01 -1.50001109e-01 -2.81292647e-01 -7.05398619e-01 -4.44369286e-01 -9.71658900e-02 7.57531583e-01 4.40367498e-02 -1.86296046e-01 -5.49483597e-01 7.45117962e-01 2.32255489e-01 6.29298985e-01 1.71539307e-01 1.25015712e+00 -9.85776246e-01 -7.61252403e-01 1.03684612e-01 7.92840898e-01 -9.39744562e-02 1.30593134e-02 -1.36296988e-01 5.52177787e-01 4.81753170e-01 7.60397553e-01 7.56790414e-02 -6.82722688e-01 2.46076480e-01 2.11488724e-01 6.04609549e-01 -3.73720467e-01 -5.11060953e-01 -3.37537616e-01 -3.35295945e-01 -7.36736715e-01 -7.86835670e-01 -4.09871489e-01 -1.72431052e+00 -1.53350711e-01 2.87171360e-02 -3.95483315e-01 6.89670384e-01 1.20520890e+00 2.62090445e-01 5.51795304e-01 3.45372796e-01 -8.92276168e-01 -1.16766237e-01 -7.88187325e-01 -6.73816919e-01 2.08377913e-01 -5.88534847e-02 -9.30147529e-01 -2.08262220e-01 1.75389349e-01]
[8.22718334197998, 2.395636796951294]
63648821-3e49-407e-b557-4e986943673c
exploring-large-scale-unlabeled-faces-to
2303.08617
null
https://arxiv.org/abs/2303.08617v2
https://arxiv.org/pdf/2303.08617v2.pdf
Exploring Large-scale Unlabeled Faces to Enhance Facial Expression Recognition
Facial Expression Recognition (FER) is an important task in computer vision and has wide applications in human-computer interaction, intelligent security, emotion analysis, and other fields. However, the limited size of FER datasets limits the generalization ability of expression recognition models, resulting in ineffective model performance. To address this problem, we propose a semi-supervised learning framework that utilizes unlabeled face data to train expression recognition models effectively. Our method uses a dynamic threshold module (\textbf{DTM}) that can adaptively adjust the confidence threshold to fully utilize the face recognition (FR) data to generate pseudo-labels, thus improving the model's ability to model facial expressions. In the ABAW5 EXPR task, our method achieved excellent results on the official validation set.
['Wangyuan Zhu', 'Jichao Zhu', 'Guochen Xie', 'Gongpeng Zhao', 'Renda Li', 'Zhongpeng Cai', 'Jun Yu']
2023-03-15
null
null
null
null
['facial-expression-recognition']
['computer-vision']
[ 2.97610015e-01 -1.75934732e-01 -3.07728320e-01 -1.07662308e+00 -3.67544204e-01 -2.92290717e-01 9.52118561e-02 -6.25747621e-01 -4.13400441e-01 7.76062548e-01 -4.77720588e-01 -6.49117082e-02 3.49876851e-01 -4.92654294e-01 -1.32369593e-01 -7.83361197e-01 7.32000619e-02 -4.07762080e-02 -3.29236031e-01 -2.44993284e-01 -1.20562702e-01 6.73064530e-01 -1.58760405e+00 5.58230162e-01 8.11927676e-01 1.54807901e+00 -3.41385335e-01 2.76056796e-01 -2.62236744e-01 1.04474497e+00 -6.25712931e-01 -5.23182631e-01 -7.55303875e-02 -4.66389954e-01 -5.06776571e-01 3.08445007e-01 5.52671850e-02 -2.87460923e-01 -4.79916371e-02 1.19378519e+00 3.15886199e-01 1.65704340e-01 6.54704213e-01 -1.63211358e+00 -5.68672061e-01 1.90334767e-02 -9.16794837e-01 1.21937478e-02 2.22937495e-01 -1.65315732e-01 4.45227891e-01 -1.14694810e+00 4.67910528e-01 1.21887791e+00 4.29960579e-01 1.11593175e+00 -9.74265158e-01 -1.27637613e+00 9.95999482e-03 2.64823854e-01 -1.70016992e+00 -6.60646141e-01 9.17209566e-01 -2.18164071e-01 5.88321924e-01 1.34316415e-01 4.13240373e-01 9.90304112e-01 -2.40429074e-01 8.40280533e-01 1.44042325e+00 -5.39936483e-01 3.45854580e-01 2.44307265e-01 1.63643509e-01 8.57562363e-01 -5.70268631e-01 -3.26284803e-02 -6.33267105e-01 -3.33300591e-01 6.58305407e-01 -1.42752245e-01 -6.66467100e-02 2.54342377e-01 -1.21072002e-01 8.82143676e-01 2.06301928e-01 2.03977898e-01 -4.30300266e-01 -2.38503322e-01 3.83893549e-01 3.99523616e-01 7.86222577e-01 -1.91499162e-02 -5.10859311e-01 -1.90288275e-01 -6.65856898e-01 -1.66453764e-01 5.28267801e-01 5.06974638e-01 8.85588229e-01 3.59235883e-01 -8.00153464e-02 1.58073211e+00 3.92655820e-01 4.28599626e-01 4.38578814e-01 -1.11361492e+00 -1.27414748e-01 8.06007266e-01 -8.70573521e-02 -8.20579112e-01 -9.05378088e-02 2.24911228e-01 -8.59672546e-01 3.98075342e-01 1.57490075e-01 -3.35342050e-01 -9.65909183e-01 1.99841726e+00 2.50662506e-01 2.55093664e-01 3.25103551e-02 7.94824600e-01 7.77108312e-01 6.34436011e-01 6.28744423e-01 -5.92203438e-01 1.16452754e+00 -7.36499846e-01 -9.68167603e-01 -1.75961241e-01 6.79536581e-01 -4.09163237e-01 8.80189776e-01 6.08675897e-01 -5.72685659e-01 -5.12758315e-01 -8.07742059e-01 3.32886726e-01 -2.32330367e-01 5.09607732e-01 1.06726706e+00 8.00496876e-01 -8.49371493e-01 -4.71315533e-03 -5.69394767e-01 -4.60591763e-02 8.59513521e-01 6.52239740e-01 -7.26542473e-01 -1.34399161e-01 -1.21104002e+00 6.28801405e-01 1.85569391e-01 3.74539852e-01 -4.04136449e-01 -1.18327670e-01 -8.91093493e-01 -1.27998525e-02 8.04352015e-02 4.50510718e-02 1.33843398e+00 -1.92194283e+00 -1.74523032e+00 1.13317573e+00 -3.85821790e-01 -1.46413803e-01 1.57944500e-01 6.60144314e-02 -7.05927551e-01 1.30395740e-01 -4.27477688e-01 8.06801915e-01 1.04394972e+00 -9.20284331e-01 -2.19117329e-01 -7.01799750e-01 -4.15390998e-01 -5.82520440e-02 -5.89460909e-01 5.40531874e-01 -4.69527841e-01 -4.84815031e-01 -7.93328136e-02 -9.52448070e-01 -1.67628765e-01 3.00465882e-01 1.53018340e-01 -5.70933461e-01 1.17790818e+00 -3.91851395e-01 1.18253553e+00 -2.53213239e+00 -3.03615123e-01 4.26128536e-01 -1.60881460e-01 6.94812059e-01 -1.17209487e-01 -4.29861784e-01 -3.70552748e-01 -4.40934710e-02 -2.56401718e-01 -2.33843982e-01 -3.97838652e-01 3.96997154e-01 -2.20101595e-01 1.39087304e-01 5.13846636e-01 6.85902655e-01 -4.95099068e-01 -6.67445898e-01 7.11831897e-02 5.53792894e-01 -3.52866471e-01 4.64723915e-01 -1.78429574e-01 3.27388614e-01 -7.22949982e-01 9.73416209e-01 8.43225837e-01 -1.40506625e-01 2.30214745e-01 -6.00158349e-02 3.83435279e-01 -7.08610177e-01 -9.38319147e-01 1.17200661e+00 -4.07238513e-01 5.33616781e-01 2.15851679e-01 -9.45986986e-01 1.38277769e+00 3.73449743e-01 6.40606344e-01 -6.37804031e-01 4.83156979e-01 8.57147723e-02 -8.62670243e-02 -6.19178116e-01 1.01110421e-01 -2.31792256e-01 1.11781381e-01 2.79223859e-01 2.30465993e-01 2.80252248e-01 -5.42055862e-03 -2.28920773e-01 7.29180694e-01 8.88530537e-02 1.86567739e-01 1.28550962e-01 8.60948145e-01 -2.92110801e-01 8.38085055e-01 6.04878701e-02 -5.55226862e-01 1.92738578e-01 4.49347049e-01 -4.66221511e-01 -4.46057498e-01 -7.22251296e-01 -3.39627415e-01 1.34334922e+00 -3.49046141e-01 -2.52282768e-01 -9.57988620e-01 -9.33902800e-01 -1.94175616e-01 6.06817782e-01 -8.74676406e-01 -5.39381087e-01 -1.89699158e-01 -9.24953103e-01 7.30051398e-01 6.18387222e-01 6.93269730e-01 -1.37251854e+00 -9.86193120e-02 -4.74118665e-02 -2.32458934e-01 -1.12041235e+00 -1.09095849e-01 1.43294679e-02 -5.71666718e-01 -1.07112241e+00 -4.87454712e-01 -7.20457017e-01 1.08769858e+00 -8.11600536e-02 6.19787514e-01 2.06453875e-01 -3.49332392e-01 1.91499934e-01 -4.07658219e-01 -6.21691585e-01 -5.47689259e-01 -4.74527776e-01 1.40198410e-01 4.46075678e-01 9.44624066e-01 -1.45315796e-01 -2.19618514e-01 5.77018261e-01 -9.23587382e-01 -2.89221287e-01 3.06559891e-01 1.04993773e+00 5.81431508e-01 -8.31315592e-02 9.05086398e-01 -8.27450514e-01 7.09800303e-01 -3.65657151e-01 -5.23312330e-01 4.48374659e-01 -5.49292684e-01 -2.76246548e-01 5.21151841e-01 -7.78022051e-01 -1.53594410e+00 3.24065566e-01 -5.00214994e-01 -6.81800127e-01 -9.37210172e-02 4.50752050e-01 -3.77252936e-01 -4.52276051e-01 5.64694166e-01 -7.63684884e-03 4.82941866e-01 -2.44294301e-01 -2.26612408e-02 1.17183697e+00 4.70843583e-01 -5.38174510e-01 7.95040950e-02 1.74286976e-01 4.97035570e-02 -8.74526560e-01 -9.77159202e-01 -1.49404868e-01 -3.81285042e-01 -4.67372686e-01 6.07979715e-01 -9.62216258e-01 -8.42395842e-01 7.41236627e-01 -1.01703751e+00 -1.90174684e-01 2.87905455e-01 3.07135850e-01 -3.70562464e-01 1.01948209e-01 -7.27779746e-01 -1.21056235e+00 -4.31487232e-01 -1.04519296e+00 9.60344017e-01 5.09554744e-01 -2.75380343e-01 -5.92500448e-01 -1.20632641e-01 5.02633870e-01 2.46083438e-01 2.63958573e-01 7.30591536e-01 -5.60577095e-01 1.27569124e-01 -3.51468325e-01 -3.07360858e-01 1.03660738e+00 2.70124227e-01 3.66088420e-01 -1.26194739e+00 1.17636494e-01 -1.30509228e-01 -1.05105150e+00 7.09867954e-01 -1.98908038e-02 1.79011273e+00 -4.46029156e-02 -7.63829350e-02 4.85654801e-01 8.35069120e-01 5.14790595e-01 8.91668916e-01 -1.97952598e-01 2.08141029e-01 6.62914634e-01 9.07298088e-01 6.60893917e-01 -1.06768221e-01 6.07591987e-01 1.90130398e-02 -2.79160410e-01 3.08859378e-01 -7.31990114e-02 4.44560051e-01 1.32647172e-01 -1.63948730e-01 -1.22983366e-01 -5.89051008e-01 -1.66010752e-01 -1.68131280e+00 -9.38778162e-01 2.19327405e-01 1.85610807e+00 8.87982249e-01 -2.68899798e-01 -1.85270637e-01 6.92385584e-02 6.00456417e-01 -9.93567333e-02 -6.57148480e-01 -7.34147012e-01 -1.54267892e-01 5.56947708e-01 -2.60724932e-01 1.38670042e-01 -1.06313980e+00 1.14270139e+00 6.62877035e+00 9.81318176e-01 -1.46763694e+00 -8.08047876e-02 1.18865108e+00 1.58114240e-01 3.28362048e-01 -5.66354513e-01 -6.69655740e-01 3.76255721e-01 7.80727148e-01 -5.70315458e-02 3.03091228e-01 1.32561994e+00 3.00014287e-01 -5.66754229e-02 -7.42084622e-01 1.17950845e+00 2.26142481e-01 -6.53928697e-01 7.39881992e-02 -1.59366786e-01 4.43262756e-01 -3.82717550e-01 2.21285090e-01 6.27534688e-01 6.72733560e-02 -1.28066146e+00 6.90161064e-02 3.08500230e-01 1.25387681e+00 -8.50776792e-01 7.16428578e-01 1.75233126e-01 -7.03095794e-01 -1.40281871e-01 -3.01517069e-01 8.38122517e-02 -2.30980478e-02 1.66988939e-01 -7.50848472e-01 1.09311147e-02 7.07821310e-01 3.71625930e-01 -4.36839402e-01 3.47259134e-01 -2.89536834e-01 9.20441449e-01 -3.19572419e-01 1.24708400e-04 -7.99475014e-02 -3.88718992e-01 -1.16814554e-01 9.83275354e-01 2.19195336e-01 5.24534106e-01 9.28790122e-02 5.67357838e-01 -3.81618291e-01 3.62531304e-01 -3.23006302e-01 -2.80675262e-01 2.39050254e-01 1.55382228e+00 -4.22232747e-01 -2.07580343e-01 -4.16670948e-01 9.15609598e-01 5.24799585e-01 4.66861039e-01 -9.00622308e-01 -7.83184990e-02 6.73462451e-01 -1.99873015e-01 -1.45193875e-01 8.53193924e-03 1.16180606e-01 -1.05909944e+00 -1.27302542e-01 -9.94037390e-01 6.56566024e-01 -9.31047320e-01 -1.29052365e+00 7.91317046e-01 -1.06206693e-01 -1.04359043e+00 -4.65675950e-01 -8.79211128e-01 -5.65614700e-01 6.25594854e-01 -1.25353837e+00 -1.17545772e+00 -4.45614964e-01 8.41960788e-01 3.36458713e-01 -4.74490225e-01 1.16492605e+00 3.42210054e-01 -8.82638991e-01 9.55153644e-01 -3.53383362e-01 4.54548538e-01 8.25053334e-01 -5.44603586e-01 -4.74690825e-01 5.15691578e-01 1.24037161e-01 5.21989882e-01 3.77818614e-01 -1.95275053e-01 -1.05287707e+00 -1.06726325e+00 4.77002770e-01 1.03889935e-01 3.50029349e-01 -2.17279464e-01 -1.07862413e+00 4.95285124e-01 -2.43489504e-01 4.98414367e-01 1.36634874e+00 7.69087523e-02 -5.87988496e-01 -3.17125261e-01 -1.50955939e+00 4.65503186e-01 6.42279565e-01 -5.05180955e-01 -6.33038506e-02 7.50632584e-02 1.36877447e-01 -1.24266975e-01 -7.31262922e-01 8.07423174e-01 7.50196338e-01 -7.71027863e-01 5.93861938e-01 -9.52429116e-01 2.85619974e-01 -1.25321701e-01 -2.78136462e-01 -1.00270879e+00 -5.98520301e-02 -3.73583496e-01 -2.17291698e-01 1.30899882e+00 3.29269022e-01 -5.29847980e-01 9.52642143e-01 1.19851768e+00 4.23686296e-01 -9.59756613e-01 -9.71099436e-01 -4.28685725e-01 -3.35703701e-01 -4.46777105e-01 5.76519489e-01 1.02417445e+00 -5.44636212e-02 2.66033769e-01 -3.24017912e-01 -2.32206017e-01 3.16415280e-01 -3.34261470e-02 5.93802810e-01 -1.11232436e+00 -7.72842467e-02 -2.34920233e-01 -4.60925907e-01 -6.66269004e-01 9.04889762e-01 -7.40060270e-01 -6.88774213e-02 -5.79250813e-01 1.99598148e-01 -5.12591183e-01 -7.02136159e-01 1.03426194e+00 -2.08007485e-01 6.53282881e-01 -9.94445011e-02 -1.03049003e-01 -6.42303348e-01 8.46284926e-01 9.80102539e-01 -3.43166254e-02 -1.19964473e-01 2.34117687e-01 -6.06889486e-01 8.78380597e-01 8.28972876e-01 -2.20460519e-01 -3.91326636e-01 -9.43762623e-03 -3.33754629e-01 9.45122242e-02 1.05182745e-01 -4.19585377e-01 -1.55331329e-01 -4.49348748e-01 9.03309584e-01 7.74538293e-02 5.44021606e-01 -7.44085252e-01 -7.56721348e-02 4.15641479e-02 -2.44929060e-01 -1.46275058e-01 4.09589082e-01 1.58517793e-01 -4.54751045e-01 -2.26433352e-01 1.02875543e+00 1.45460695e-01 -1.04155433e+00 7.03656793e-01 -5.07537425e-01 -3.85750979e-01 1.13326716e+00 -1.21508799e-01 4.34041489e-03 -4.55372810e-01 -7.68737078e-01 2.17459142e-01 3.81753683e-01 5.46414375e-01 8.56331289e-01 -1.40151978e+00 -5.82346261e-01 5.59935331e-01 4.77060109e-01 -3.85842949e-01 2.67697513e-01 4.64330167e-01 -4.20947038e-02 -2.35539079e-01 -3.65884602e-01 -4.57023114e-01 -1.78871632e+00 3.04624200e-01 4.37672645e-01 -4.37649488e-02 2.14054972e-01 8.40870917e-01 6.58772290e-02 -2.79944897e-01 2.23483816e-01 5.92529535e-01 -4.28445607e-01 -1.64962113e-01 9.08934653e-01 -4.11713962e-03 -1.93119228e-01 -9.27348077e-01 -2.80420244e-01 3.15032750e-01 -1.92649409e-01 5.32025434e-02 1.06237614e+00 1.55218720e-01 -3.97191137e-01 1.93603933e-01 1.36036229e+00 -3.24220479e-01 -1.06901753e+00 -1.48242921e-01 1.13608064e-02 -4.31859314e-01 1.23243019e-01 -7.95435905e-01 -1.13422680e+00 8.03793669e-01 8.07727456e-01 -3.37503165e-01 1.62864530e+00 -1.93252832e-01 4.02906030e-01 5.65959275e-01 4.06961113e-01 -1.22653639e+00 2.54297942e-01 2.54781842e-01 6.75262094e-01 -1.48026383e+00 -2.09934637e-01 -5.82046330e-01 -9.66882408e-01 1.22299433e+00 1.24190271e+00 3.41150314e-01 7.39776611e-01 4.63879883e-01 5.29380083e-01 4.70435880e-02 -7.44467974e-01 1.05186090e-01 1.51514024e-01 4.68646318e-01 5.54498672e-01 -1.52706373e-02 -3.05884063e-01 9.24963713e-01 2.26325959e-01 6.69065237e-01 3.61033380e-02 9.24091220e-01 -3.54390204e-01 -1.28109860e+00 -1.35057747e-01 6.02519453e-01 -7.43515909e-01 3.09153169e-01 -6.39880478e-01 3.44474584e-01 7.14327544e-02 1.03915107e+00 3.23509201e-02 -4.99416411e-01 7.86624998e-02 4.46629226e-01 4.93753552e-01 -2.24385694e-01 -1.84597015e-01 -2.34851055e-02 1.02839716e-01 -4.73357469e-01 -6.70617759e-01 -3.88053089e-01 -1.42233706e+00 1.26315672e-02 -3.81808132e-01 2.95127720e-01 4.94131029e-01 9.25299108e-01 3.88726324e-01 -1.18821613e-01 1.20387113e+00 -1.97031617e-01 -5.14551044e-01 -1.03842628e+00 -6.83369994e-01 6.09270692e-01 -9.89456922e-02 -9.23832297e-01 -1.92079797e-01 2.90850312e-01]
[13.587821960449219, 1.7268437147140503]
9fcdb66c-d5ec-4208-a1f5-c81849bf8e10
end-to-end-adversarial-text-to-speech
2006.03575
null
https://arxiv.org/abs/2006.03575v3
https://arxiv.org/pdf/2006.03575v3.pdf
End-to-End Adversarial Text-to-Speech
Modern text-to-speech synthesis pipelines typically involve multiple processing stages, each of which is designed or learnt independently from the rest. In this work, we take on the challenging task of learning to synthesise speech from normalised text or phonemes in an end-to-end manner, resulting in models which operate directly on character or phoneme input sequences and produce raw speech audio outputs. Our proposed generator is feed-forward and thus efficient for both training and inference, using a differentiable alignment scheme based on token length prediction. It learns to produce high fidelity audio through a combination of adversarial feedback and prediction losses constraining the generated audio to roughly match the ground truth in terms of its total duration and mel-spectrogram. To allow the model to capture temporal variation in the generated audio, we employ soft dynamic time warping in the spectrogram-based prediction loss. The resulting model achieves a mean opinion score exceeding 4 on a 5 point scale, which is comparable to the state-of-the-art models relying on multi-stage training and additional supervision.
['Mikołaj Bińkowski', 'Sander Dieleman', 'Jeff Donahue', 'Karen Simonyan', 'Erich Elsen']
2020-06-05
null
https://openreview.net/forum?id=rsf1z-JSj87
https://openreview.net/pdf?id=rsf1z-JSj87
iclr-2021-1
['adversarial-text']
['adversarial']
[ 8.12605977e-01 4.62440848e-01 1.33700877e-01 -2.85398096e-01 -1.27216554e+00 -6.78186893e-01 7.01240242e-01 -2.16534995e-02 -1.70311511e-01 5.62539160e-01 2.20094323e-01 -2.64769375e-01 3.99145842e-01 -5.59261262e-01 -9.31231320e-01 -5.78639090e-01 7.54616864e-04 2.48159051e-01 -7.24350661e-02 -8.50723386e-02 -5.27190194e-02 1.77604735e-01 -1.40193152e+00 5.14308333e-01 6.13919556e-01 1.20488286e+00 2.88497210e-02 1.21802068e+00 4.15720910e-01 8.15946817e-01 -9.19450879e-01 -6.40832961e-01 4.39013511e-01 -8.09282541e-01 -4.19666499e-01 -3.21642235e-02 3.80007535e-01 -2.42606342e-01 -4.65371847e-01 8.75108242e-01 7.18541861e-01 2.56904453e-01 6.60890520e-01 -1.03019547e+00 -3.80461156e-01 7.30177462e-01 1.51387110e-01 -1.73185572e-01 4.58462834e-01 3.39787871e-01 1.24221635e+00 -1.00689912e+00 3.43730986e-01 1.29095435e+00 5.97776294e-01 5.65832794e-01 -1.53404915e+00 -6.88962221e-01 -7.57544413e-02 -1.25570953e-01 -1.19906616e+00 -9.72761095e-01 7.47092903e-01 -4.41692293e-01 1.21957707e+00 3.12818259e-01 3.98279458e-01 1.34919643e+00 2.21321881e-01 4.77221280e-01 8.28691423e-01 -5.84765911e-01 2.38594025e-01 -2.43209470e-02 -1.15035427e+00 3.21925759e-01 -7.60316789e-01 3.63468975e-01 -6.93538666e-01 4.45926599e-02 6.39845967e-01 -4.28722322e-01 -2.09141761e-01 1.64067432e-01 -1.29898512e+00 6.44994080e-01 2.90367365e-01 -7.91077986e-02 -3.75694543e-01 3.41875911e-01 5.94882131e-01 6.67555749e-01 4.11558568e-01 4.83411402e-01 -3.96452725e-01 -2.33814061e-01 -1.37993252e+00 4.40391362e-01 7.04050004e-01 7.29748011e-01 3.65500331e-01 7.10144162e-01 -4.66681927e-01 7.99163103e-01 2.34385997e-01 6.44612610e-01 6.95831954e-01 -9.47931767e-01 6.74278796e-01 -1.65381491e-01 -4.52503711e-02 -5.64731300e-01 9.74342749e-02 -3.84324610e-01 -8.39195549e-01 4.16673213e-01 2.81822264e-01 -3.89896393e-01 -1.07097864e+00 1.83456254e+00 8.63026902e-02 4.71151739e-01 1.85427949e-01 7.23418653e-01 2.20443174e-01 1.03199327e+00 -1.37536302e-01 -2.99254090e-01 8.96752536e-01 -1.14552963e+00 -7.88157403e-01 -1.58994272e-01 1.34582639e-01 -1.15192473e+00 1.17377102e+00 5.80566943e-01 -1.50555980e+00 -8.47520709e-01 -1.20247400e+00 -9.09611583e-02 -1.18698493e-01 2.26472542e-01 -2.15332806e-01 5.69438457e-01 -9.87069726e-01 9.28137600e-01 -8.18523109e-01 4.13391829e-01 -3.25427949e-02 3.57230783e-01 -1.06621824e-01 3.21463645e-01 -1.41018474e+00 6.70902491e-01 3.82226378e-01 -8.87656882e-02 -1.19674981e+00 -9.37667966e-01 -9.61925387e-01 1.82834625e-01 3.25180292e-02 -7.40710676e-01 1.71485245e+00 -1.21337104e+00 -2.39303875e+00 4.47858036e-01 -6.43590167e-02 -9.14577186e-01 8.31363976e-01 -1.19712979e-01 -6.37079179e-01 1.57745466e-01 -6.85883537e-02 7.34773874e-01 1.59360421e+00 -8.13117206e-01 -6.10496223e-01 3.42521161e-01 -3.73982936e-01 6.25551119e-02 -1.17913201e-01 -7.90107921e-02 -1.67394385e-01 -1.33153760e+00 -3.96801621e-01 -9.26483870e-01 -1.46748930e-01 -1.15347400e-01 -3.79559517e-01 6.35861233e-02 6.64321005e-01 -9.92276132e-01 1.26842272e+00 -2.15955162e+00 3.36272836e-01 1.67828143e-01 -2.66731650e-01 2.70828456e-01 -2.08626255e-01 6.93823338e-01 -2.09527999e-01 -1.67177066e-01 -4.63699281e-01 -8.95121992e-01 2.95519203e-01 -8.40295181e-02 -9.40446854e-01 3.31787109e-01 6.31552517e-01 6.90816104e-01 -9.97899652e-01 -9.61701795e-02 3.16085964e-01 7.10764408e-01 -7.34775424e-01 6.72489226e-01 -5.51661253e-01 6.49647892e-01 2.74028867e-01 3.16133767e-01 9.79915187e-02 3.62318248e-01 6.11598529e-02 7.06853718e-02 3.00411391e-03 9.60042477e-01 -8.73903632e-01 1.78454876e+00 -1.05445945e+00 8.38268816e-01 1.33168325e-01 -8.10102403e-01 1.08107674e+00 9.19953644e-01 1.35723934e-01 -4.53178287e-01 2.15358310e-03 4.24905270e-01 2.54977457e-02 -1.29691631e-01 3.77557188e-01 -3.59986424e-01 -1.57248415e-02 4.27992404e-01 2.87202775e-01 -7.14793026e-01 -6.86219335e-02 -2.57669330e-01 1.02034235e+00 2.16039836e-01 -2.01323703e-02 3.35623413e-01 5.43163836e-01 -6.33858502e-01 2.76585072e-01 3.81282598e-01 2.48383775e-01 9.59713697e-01 4.65416342e-01 1.57797605e-01 -1.69655657e+00 -1.16802216e+00 1.03812285e-01 1.10146189e+00 -6.77063107e-01 -4.39735591e-01 -9.50889528e-01 -3.63595694e-01 -2.34834924e-01 9.22744393e-01 -2.60773033e-01 -3.05220783e-01 -7.57433832e-01 5.04056402e-02 9.85462546e-01 3.34494710e-01 -7.51476884e-02 -1.21900284e+00 -3.57337803e-01 6.54617608e-01 -3.78765054e-02 -1.17360020e+00 -8.26476038e-01 2.63100863e-01 -6.09906614e-01 -3.18858027e-01 -8.92807245e-01 -6.60050094e-01 2.63162136e-01 -5.30271709e-01 1.04295206e+00 -4.07786191e-01 -8.37179646e-03 -1.91858858e-01 -2.24401683e-01 -4.43703532e-01 -1.05279684e+00 2.18810782e-01 2.32400477e-01 3.57816070e-01 -3.91299427e-01 -8.77012670e-01 -4.95445043e-01 1.28275231e-01 -9.74938691e-01 1.55280471e-01 5.27966142e-01 1.04583418e+00 6.51781142e-01 1.93855800e-02 9.56060886e-01 -4.54264611e-01 6.21175826e-01 -3.53414088e-01 -5.97503901e-01 -7.70644844e-02 -4.72972333e-01 8.04511830e-02 1.37920272e+00 -6.75724149e-01 -7.59994626e-01 1.95035771e-01 -5.62132418e-01 -8.49525869e-01 3.67419198e-02 2.17468232e-01 -2.21894711e-01 3.97428513e-01 7.51550138e-01 3.39653164e-01 -3.70910801e-02 -3.28612089e-01 5.16067564e-01 9.41493154e-01 9.83469307e-01 -2.86921561e-01 8.88631463e-01 3.66859958e-02 -9.84567031e-02 -7.09616184e-01 -6.99799776e-01 1.33149568e-02 -4.28106725e-01 -8.29052329e-02 6.02106988e-01 -1.16751504e+00 -3.81643921e-01 4.86049294e-01 -1.19093549e+00 -7.19695687e-01 -5.85725069e-01 5.19948006e-01 -1.06677306e+00 -4.63876985e-02 -5.67363799e-01 -9.08682942e-01 -6.04459286e-01 -1.01586556e+00 1.25953925e+00 -3.24846238e-01 -3.72707397e-01 -8.88898194e-01 7.32779652e-02 7.79682100e-02 4.16096717e-01 4.06275421e-01 7.10208893e-01 -5.53681791e-01 -3.86160403e-01 -3.46431345e-01 3.16875041e-01 8.99488926e-01 1.07976899e-01 1.77830979e-01 -1.29814780e+00 -4.02238876e-01 1.49505381e-02 -3.89247835e-01 6.92122698e-01 1.41382515e-01 1.00836766e+00 -7.01266110e-01 3.29096735e-01 6.42397821e-01 9.44723070e-01 -6.12056023e-03 5.79214811e-01 -7.99158216e-02 5.06765068e-01 5.58141410e-01 5.49674571e-01 4.75579202e-01 -6.49239197e-02 7.74109662e-01 4.14373666e-01 5.81623465e-02 -4.28519368e-01 -7.37006068e-01 8.17262709e-01 1.06194890e+00 4.47408825e-01 -3.72272074e-01 -5.72733343e-01 6.68493509e-01 -1.54650795e+00 -1.03787720e+00 3.98351043e-01 2.33115983e+00 1.38787591e+00 5.43566167e-01 2.25699410e-01 6.51357710e-01 6.04932427e-01 2.19416514e-01 -6.41704500e-01 -7.81399310e-01 2.36970812e-01 7.38758326e-01 3.34668845e-01 7.05975711e-01 -8.51946235e-01 8.10959101e-01 6.35874414e+00 9.54334795e-01 -1.62289643e+00 -8.26806873e-02 5.45641780e-01 -3.22087646e-01 -3.24096143e-01 -2.37156972e-01 -3.89984548e-01 5.61277509e-01 1.74147582e+00 -2.20199972e-01 9.20343041e-01 5.70104539e-01 5.46906352e-01 5.66495955e-01 -1.37599409e+00 7.12365448e-01 -2.83564359e-01 -1.23246539e+00 4.61704470e-02 -2.98837095e-01 9.06176984e-01 -1.10753000e-01 4.26392734e-01 3.47388387e-01 1.25096127e-01 -1.52206051e+00 1.31338608e+00 4.11046267e-01 1.46885061e+00 -8.12334895e-01 2.90284306e-01 4.56986070e-01 -1.13785684e+00 1.00859646e-02 1.01975791e-01 -1.36951953e-01 3.69140565e-01 4.49644625e-01 -1.37668288e+00 2.90303260e-01 2.45070189e-01 4.75287110e-01 1.28569350e-01 6.69703066e-01 -4.22553629e-01 9.60681498e-01 -3.02488267e-01 2.96457082e-01 2.97084183e-01 8.93736556e-02 5.14880478e-01 1.58008432e+00 6.15245104e-01 -3.96616906e-01 -4.16932777e-02 7.56025434e-01 -3.46503645e-01 -1.26901790e-01 -3.45519036e-01 -1.96431026e-01 6.96702659e-01 9.02828693e-01 -7.00669140e-02 -2.81201720e-01 -2.51088262e-01 1.07957160e+00 8.26655105e-02 2.69356698e-01 -8.01828146e-01 -8.16162229e-01 7.11548924e-01 1.96659595e-01 6.86060727e-01 -1.38891473e-01 -2.59734422e-01 -8.40897024e-01 1.59822777e-01 -1.16437769e+00 -1.64445996e-01 -5.82694590e-01 -1.05698681e+00 8.81452799e-01 -4.14668858e-01 -1.35209548e+00 -1.16524482e+00 -3.24853897e-01 -7.65412629e-01 1.34153056e+00 -1.46076310e+00 -1.15414941e+00 2.33970955e-01 4.75387573e-01 8.53276074e-01 -2.87420988e-01 9.90288794e-01 2.90423274e-01 -3.15603018e-01 1.01796174e+00 8.75828192e-02 -8.27635871e-04 8.50022554e-01 -1.34522927e+00 1.11531341e+00 9.25288022e-01 2.52251089e-01 2.11836949e-01 1.01567483e+00 -2.11211175e-01 -9.62818146e-01 -1.48588586e+00 9.88930047e-01 -3.33455890e-01 7.65590549e-01 -5.61623156e-01 -7.83014357e-01 4.83154029e-01 3.26919764e-01 7.71990716e-02 5.77754676e-01 -6.20634139e-01 -4.57075119e-01 -9.90645811e-02 -9.98438179e-01 5.06042361e-01 5.10466456e-01 -1.03764009e+00 -5.17322421e-01 1.11067735e-01 9.62209821e-01 -8.16587090e-01 -9.88835931e-01 2.26965904e-01 5.27626097e-01 -8.12120736e-01 9.05660391e-01 -4.70233589e-01 7.21902072e-01 -3.22383940e-01 -2.26383671e-01 -1.60305810e+00 5.34425639e-02 -1.39377284e+00 -4.13082629e-01 1.24418616e+00 6.33215606e-01 -1.88976467e-01 4.85297382e-01 7.30307698e-02 -5.23486912e-01 -7.74535775e-01 -1.10857475e+00 -7.18929827e-01 1.61016449e-01 -5.50819635e-01 5.80133915e-01 4.86964017e-01 -4.27570790e-02 4.46609646e-01 -6.18604362e-01 2.41289034e-01 3.58431697e-01 -1.85550779e-01 6.58974767e-01 -6.38321698e-01 -6.98489308e-01 -4.76039618e-01 -9.52621400e-02 -1.12589324e+00 3.36927742e-01 -7.58486092e-01 3.97452176e-01 -9.29935157e-01 -7.99725235e-01 -2.21101969e-01 -9.98095572e-02 2.20912158e-01 -3.17896642e-02 3.50170821e-01 2.66710132e-01 -4.34103198e-02 3.35263722e-02 7.17765927e-01 1.08417976e+00 -8.79135951e-02 -1.87455744e-01 3.92857730e-01 -1.83683291e-01 3.84321272e-01 7.28561044e-01 -4.20727938e-01 -4.92808670e-01 -2.81138182e-01 9.27750766e-02 4.06864434e-01 3.40721905e-01 -1.07175744e+00 6.46021962e-02 -2.71959212e-02 1.92186326e-01 -2.48375222e-01 7.95731723e-01 -7.16734409e-01 1.77183628e-01 3.63535076e-01 -8.66755724e-01 -8.01206306e-02 1.99760407e-01 5.37584066e-01 -5.69350719e-01 7.34641915e-03 1.00278831e+00 1.08540662e-01 1.34575114e-01 2.02637076e-01 -3.71115714e-01 9.44899172e-02 6.84192240e-01 1.71888515e-01 2.10988045e-01 -6.62468791e-01 -6.35757685e-01 -1.83572277e-01 1.86551854e-01 4.49102521e-01 4.89202350e-01 -1.54302418e+00 -1.06649685e+00 5.02814949e-01 -2.08616957e-01 6.62377626e-02 -8.02546088e-03 3.51220816e-01 -3.45834523e-01 4.98763770e-01 -5.48162311e-02 -3.43356311e-01 -9.14771736e-01 4.13731337e-01 3.65169108e-01 -3.23247671e-01 -4.01916772e-01 7.92938948e-01 -1.74910575e-01 -3.70739043e-01 5.24715722e-01 -4.94234324e-01 3.39079052e-01 -1.13898702e-01 5.09170115e-01 2.11475343e-01 3.87506694e-01 -5.30408561e-01 1.41079060e-03 1.38306707e-01 2.94282138e-01 -7.93800116e-01 1.05091584e+00 5.96872065e-04 3.00295949e-01 5.76784492e-01 1.35794318e+00 2.27333173e-01 -1.81808269e+00 -2.50882775e-01 -3.50809783e-01 -2.95184016e-01 2.03339711e-01 -7.79964566e-01 -8.04954469e-01 1.03316414e+00 3.63894135e-01 3.60558122e-01 1.18095922e+00 -4.69405711e-01 1.26093745e+00 4.98295836e-02 -1.93227157e-01 -1.08282578e+00 2.74641484e-01 6.04802847e-01 1.09346211e+00 -8.24928164e-01 -4.33232546e-01 -3.76509130e-02 -5.29414356e-01 1.15272701e+00 1.22748584e-01 -3.45554858e-01 4.26842451e-01 5.25599122e-01 1.35598078e-01 6.46181762e-01 -1.26881421e+00 2.25483149e-01 5.65635443e-01 6.47965908e-01 5.66012263e-01 2.74679214e-02 2.56505519e-01 4.20194417e-01 -8.61138105e-01 -2.89918095e-01 3.15980881e-01 3.90742838e-01 -1.80252284e-01 -1.23254061e+00 -4.06669468e-01 1.82070836e-01 -7.65404046e-01 -3.02220792e-01 -1.82393089e-01 1.11924067e-01 -1.24348126e-01 1.06513929e+00 2.29519710e-01 -5.15169442e-01 4.90698636e-01 2.14897931e-01 2.81593502e-01 -6.45393312e-01 -8.39559555e-01 2.76677012e-01 1.19356997e-01 -3.53285611e-01 8.97151828e-02 -6.84552848e-01 -1.25126934e+00 -2.35907555e-01 -1.96857423e-01 -4.65175249e-02 8.51524472e-01 7.44700909e-01 1.27223119e-01 9.47427094e-01 1.16133249e+00 -1.26185548e+00 -1.08094895e+00 -1.20118177e+00 -2.91610003e-01 2.74697065e-01 9.93381083e-01 1.41694602e-02 -3.71540964e-01 5.16606927e-01]
[15.449807167053223, 6.098127365112305]
a1d0b92d-e774-4288-8828-e42d86ce7007
a-two-stream-amr-enhanced-model-for-document-1
2205.00241
null
https://arxiv.org/abs/2205.00241v1
https://arxiv.org/pdf/2205.00241v1.pdf
A Two-Stream AMR-enhanced Model for Document-level Event Argument Extraction
Most previous studies aim at extracting events from a single sentence, while document-level event extraction still remains under-explored. In this paper, we focus on extracting event arguments from an entire document, which mainly faces two critical problems: a) the long-distance dependency between trigger and arguments over sentences; b) the distracting context towards an event in the document. To address these issues, we propose a Two-Stream Abstract meaning Representation enhanced extraction model (TSAR). TSAR encodes the document from different perspectives by a two-stream encoding module, to utilize local and global information and lower the impact of distracting context. Besides, TSAR introduces an AMR-guided interaction module to capture both intra-sentential and inter-sentential features, based on the locally and globally constructed AMR semantic graphs. An auxiliary boundary loss is introduced to enhance the boundary information for text spans explicitly. Extensive experiments illustrate that TSAR outperforms previous state-of-the-art by a large margin, with 2.54 F1 and 5.13 F1 performance gain on the public RAMS and WikiEvents datasets respectively, showing the superiority in the cross-sentence arguments extraction. We release our code in https://github.com/ PKUnlp-icler/TSAR.
['Zhifang Sui', 'Baobao Chang', 'Shuang Zeng', 'Tianyu Liu', 'Peiyi Wang', 'Runxin Xu']
2022-04-30
null
https://aclanthology.org/2022.naacl-main.370
https://aclanthology.org/2022.naacl-main.370.pdf
naacl-2022-7
['document-level-event-extraction']
['natural-language-processing']
[ 3.11457187e-01 1.79120582e-02 -2.51397461e-01 -4.06048864e-01 -1.01911294e+00 -6.39741182e-01 7.95401692e-01 7.25199103e-01 -5.19398570e-01 6.86171174e-01 7.38340914e-01 -2.36417606e-01 -2.31649265e-01 -7.92186081e-01 -6.23376608e-01 -4.49950248e-01 -1.74264945e-02 3.24917920e-02 5.05063295e-01 -2.16572881e-01 3.71179253e-01 1.06103443e-01 -1.43208253e+00 7.12261677e-01 7.22027779e-01 8.57338846e-01 1.16413765e-01 4.47612733e-01 -4.62391049e-01 1.05389726e+00 -8.91986728e-01 -5.73293984e-01 -3.66866678e-01 -3.48851055e-01 -9.88297164e-01 -2.33929932e-01 -2.13598058e-01 7.23042488e-02 -3.70550543e-01 8.92757833e-01 5.38653910e-01 8.91821161e-02 3.16822052e-01 -1.09284365e+00 -2.59900182e-01 1.21319139e+00 -8.19871068e-01 6.50071025e-01 4.71077651e-01 -1.59688935e-01 1.27254391e+00 -8.49797785e-01 6.37346089e-01 1.36815214e+00 2.78993070e-01 1.82407856e-01 -7.47669160e-01 -5.82124114e-01 6.15165710e-01 2.60455400e-01 -1.03453016e+00 -2.63925701e-01 1.03287923e+00 -3.16341594e-02 1.18672812e+00 4.73021030e-01 2.45960101e-01 1.31337857e+00 6.02951981e-02 1.12387812e+00 8.89390707e-01 -2.51568884e-01 9.54882205e-02 -2.38424420e-01 6.16150260e-01 3.52720499e-01 1.84034631e-01 -2.78934032e-01 -8.49352896e-01 -3.02801967e-01 2.98394382e-01 6.22008229e-03 -2.37794653e-01 5.13080359e-01 -1.20778286e+00 6.96495891e-01 1.37048885e-01 5.13183594e-01 -4.19194132e-01 -2.18962431e-02 9.53622043e-01 8.03758353e-02 4.91049886e-01 4.24971171e-02 -8.62536013e-01 -4.40042228e-01 -6.95726037e-01 2.19584972e-01 7.15843558e-01 9.64904368e-01 2.45203465e-01 -3.26069504e-01 -5.18964827e-01 7.58573472e-01 3.16171438e-01 1.82864666e-01 4.82249260e-01 -2.28267327e-01 1.07734859e+00 8.13831329e-01 -1.29020661e-01 -1.16984546e+00 -4.22488153e-01 -3.92732382e-01 -6.07527018e-01 -6.03826702e-01 1.42659664e-01 -1.99313909e-01 -4.46543455e-01 1.82836986e+00 6.19388521e-01 2.39569142e-01 2.65410274e-01 7.48129368e-01 1.22238946e+00 9.49910581e-01 2.97177255e-01 -3.46574068e-01 1.95856059e+00 -8.94816339e-01 -1.05536604e+00 -5.43103933e-01 6.81836307e-01 -9.24395978e-01 1.14088964e+00 2.26946443e-01 -1.11456096e+00 -1.49214029e-01 -9.85105693e-01 -3.74931723e-01 -4.51413453e-01 2.46679917e-01 6.36390567e-01 8.99797603e-02 -1.40776664e-01 3.58217865e-01 -6.76813543e-01 2.49357689e-02 4.14972067e-01 8.98137838e-02 -1.76780328e-01 1.09265402e-01 -1.89093411e+00 5.74543417e-01 7.04576015e-01 9.06312466e-02 -4.07775134e-01 -7.01232374e-01 -9.35530484e-01 2.18001917e-01 9.61221457e-01 -2.99436808e-01 1.18082952e+00 -4.87168103e-01 -1.18092120e+00 5.92041254e-01 -3.46247047e-01 -2.88623750e-01 2.35318452e-01 -5.63426137e-01 -6.94831848e-01 2.07623407e-01 2.48061046e-01 9.32678767e-03 5.73717892e-01 -8.58899117e-01 -5.96248507e-01 -5.30174494e-01 7.42248073e-02 4.02808309e-01 -2.40800917e-01 5.51516235e-01 -6.14308119e-01 -1.08514047e+00 -7.53592029e-02 -4.12442982e-01 1.80436164e-01 -6.01684928e-01 -6.51351392e-01 -6.28951669e-01 9.31275070e-01 -7.15774477e-01 1.81072485e+00 -2.29083538e+00 6.01986423e-02 -1.49095729e-01 7.32432008e-02 2.14765131e-01 1.12006674e-02 7.50984192e-01 -2.39380181e-01 1.32435143e-01 -2.66925156e-01 -2.76584506e-01 -5.03894538e-02 1.77609444e-01 -6.63143158e-01 1.91318750e-01 4.03242022e-01 8.69530916e-01 -1.03191590e+00 -8.36362660e-01 -7.86099434e-02 3.41488540e-01 -2.15774760e-01 9.83267203e-02 -9.26201046e-02 9.32387188e-02 -8.70323777e-01 5.15645325e-01 6.40532613e-01 -3.36996704e-01 2.53362119e-01 -2.77850658e-01 -1.11547001e-01 1.04640949e+00 -1.37038994e+00 1.85949659e+00 -4.36365932e-01 1.72928318e-01 -6.62228167e-02 -1.03508019e+00 7.84220576e-01 4.55319762e-01 1.84534878e-01 -6.61920309e-01 2.14442119e-01 9.96405855e-02 -2.38530457e-01 -4.32678163e-01 4.49346721e-01 7.91247096e-03 -6.00481570e-01 3.66514087e-01 -5.83099984e-02 4.20033753e-01 3.36161405e-01 6.49034619e-01 1.24037349e+00 2.21583843e-02 5.04208863e-01 -2.01574251e-01 6.40739202e-01 -1.88205913e-01 7.38850713e-01 5.14049232e-01 3.20650116e-02 4.40806925e-01 8.98466587e-01 -7.84207731e-02 -3.16613942e-01 -7.93824732e-01 -1.44526765e-01 1.08117235e+00 4.43928689e-01 -9.90817189e-01 -5.89795530e-01 -1.23579812e+00 -1.19621940e-01 9.57466960e-01 -5.97507775e-01 6.63397908e-02 -8.69166970e-01 -9.26844060e-01 7.46109664e-01 7.69349635e-01 6.01224184e-01 -1.21738303e+00 -7.20159471e-01 4.00457680e-01 -6.45738125e-01 -1.20172668e+00 -5.73477328e-01 2.80300587e-01 -6.11222982e-01 -1.07046151e+00 -1.46407411e-01 -4.91567075e-01 3.13113004e-01 8.82192776e-02 1.14621150e+00 5.29386140e-02 -2.24277630e-01 -7.78129324e-02 -6.35570109e-01 -5.02414823e-01 5.48759811e-02 1.35666922e-01 -4.83200938e-01 -9.71786454e-02 5.90735316e-01 -4.62019205e-01 -6.09951615e-01 2.17817709e-01 -1.00459492e+00 1.53776750e-01 5.26750326e-01 8.65684509e-01 6.34754837e-01 2.70355672e-01 8.32443297e-01 -1.01485455e+00 7.70380795e-01 -8.32901061e-01 -2.18673885e-01 2.19604701e-01 -4.33202147e-01 1.32235408e-01 6.88313484e-01 -4.53184694e-01 -1.55914283e+00 -4.05258089e-01 -1.21153243e-01 1.53810278e-01 -9.89177525e-02 6.76543474e-01 -5.85573494e-01 1.04550695e+00 2.40547895e-01 1.61299706e-01 -4.97775048e-01 -4.03807431e-01 3.91293436e-01 7.63323784e-01 5.00005007e-01 -9.28324699e-01 4.31185126e-01 4.80147630e-01 -2.25300938e-01 -6.34517789e-01 -1.20959747e+00 -6.51104271e-01 -1.69410795e-01 1.58760130e-01 7.38181949e-01 -8.38323176e-01 -6.34763718e-01 2.52694637e-01 -1.48810947e+00 4.27188389e-02 -2.82537073e-01 3.04653138e-01 -3.47118676e-02 4.12312061e-01 -7.91280031e-01 -7.57057667e-01 -6.82920754e-01 -8.94091129e-01 1.31904018e+00 2.24552855e-01 -3.72904360e-01 -7.83361316e-01 -1.12368673e-01 2.24794671e-01 -9.67421904e-02 2.82443494e-01 8.01084936e-01 -9.98904824e-01 -2.35923856e-01 -4.70556803e-02 -4.01012480e-01 1.59184933e-02 2.13110402e-01 -2.40885317e-01 -8.63624215e-01 1.95725877e-02 2.59912044e-01 -1.67057276e-01 9.34069037e-01 3.27552931e-04 1.29764473e+00 -4.80548322e-01 -5.51501811e-01 1.70050487e-01 1.10163474e+00 1.98924258e-01 6.36160791e-01 3.59237373e-01 6.07759774e-01 6.60429657e-01 1.02046871e+00 5.96643984e-01 3.82622361e-01 4.60518479e-01 2.86153018e-01 1.03922427e-01 -1.76153734e-01 -4.54738915e-01 3.99494618e-01 8.22852671e-01 1.81353226e-01 -6.11176252e-01 -7.21367240e-01 6.22657716e-01 -2.18428063e+00 -9.55774486e-01 -3.40143919e-01 1.88121438e+00 1.08213377e+00 5.44903338e-01 -1.64375544e-01 4.88637716e-01 8.19935203e-01 5.25107145e-01 -2.90208817e-01 -2.41346672e-01 -2.25843668e-01 2.30239689e-01 1.72673926e-01 2.84601003e-01 -1.18918073e+00 8.18597078e-01 4.50778866e+00 1.24414515e+00 -8.38950276e-01 1.55831218e-01 5.37954569e-01 -1.76112279e-01 -4.21718270e-01 1.57378569e-01 -1.11231554e+00 7.73431242e-01 8.66415441e-01 -6.86669871e-02 -7.40103647e-02 5.49537659e-01 1.26209527e-01 -1.01615675e-01 -8.77529144e-01 7.83906102e-01 -1.09326197e-02 -1.28811932e+00 6.47736192e-02 -2.22261190e-01 9.33798701e-02 -2.59427249e-01 -2.71387309e-01 3.32385451e-01 -1.34426385e-01 -6.61771059e-01 7.77131975e-01 2.03851029e-01 5.31121135e-01 -9.65541065e-01 7.98115075e-01 2.82953650e-01 -1.69057035e+00 6.53002709e-02 6.22388572e-02 -9.38334092e-02 4.12426412e-01 9.93463814e-01 -4.23405141e-01 1.10407889e+00 6.64367378e-01 8.14358652e-01 -4.34746474e-01 3.29939902e-01 -7.03178644e-01 8.47073674e-01 -4.23413575e-01 -2.74577975e-01 3.03574353e-01 8.77936408e-02 8.05803061e-01 1.61065531e+00 -7.06470087e-02 4.73998278e-01 5.88020235e-02 7.75261700e-01 -1.75222486e-01 2.57385880e-01 -2.52561539e-01 -1.26957759e-01 6.83270037e-01 1.38690972e+00 -9.19661939e-01 -4.80307192e-01 -4.56493437e-01 9.60391581e-01 3.60981166e-01 1.60567582e-01 -1.21602929e+00 -7.66612470e-01 4.06120449e-01 -5.41602932e-02 3.87573898e-01 9.13644359e-02 -2.82556355e-01 -1.30477929e+00 4.51852232e-01 -8.00203145e-01 9.69955385e-01 -5.36905229e-01 -1.26415563e+00 5.69787025e-01 2.41428375e-01 -7.84725726e-01 6.51049614e-02 -4.94738072e-01 -7.91180909e-01 7.17597485e-01 -1.52011096e+00 -1.13032401e+00 -2.64087971e-02 4.15341705e-01 7.44709432e-01 2.67954618e-01 5.75049996e-01 4.66709882e-01 -8.86634707e-01 5.01847029e-01 -5.14045000e-01 2.95117795e-01 6.67151213e-01 -1.20273471e+00 3.42318773e-01 9.96542871e-01 1.31005347e-01 8.34404290e-01 4.74185318e-01 -8.44571233e-01 -1.40460718e+00 -9.56647098e-01 1.25701416e+00 -4.64881867e-01 7.53580272e-01 -3.95818561e-01 -1.10465801e+00 6.15930319e-01 3.07619005e-01 -3.94709371e-02 6.61429405e-01 3.39696348e-01 -5.16723037e-01 6.67829514e-02 -1.00314569e+00 6.55661047e-01 1.21050012e+00 -4.84993756e-01 -1.08944142e+00 1.20285682e-01 1.04824698e+00 -5.10936677e-01 -7.35396385e-01 5.13104737e-01 7.75363967e-02 -6.00251198e-01 9.61026669e-01 -5.29977024e-01 6.34515166e-01 -4.31553632e-01 -8.60580504e-02 -7.44925916e-01 3.39587219e-02 -8.33379328e-01 -4.40127492e-01 1.79587400e+00 4.85538125e-01 -5.49662948e-01 2.03917950e-01 2.26183623e-01 -8.86811912e-02 -1.02096224e+00 -8.24817836e-01 -5.93613207e-01 -2.51100063e-01 -7.06600070e-01 8.13748658e-01 8.91388655e-01 2.99490869e-01 9.69539404e-01 -5.47856465e-02 2.62046814e-01 3.30285579e-01 3.99885029e-01 2.17422605e-01 -9.60737348e-01 -3.12661648e-01 -3.23276013e-01 1.60170525e-01 -1.00273132e+00 1.94266498e-01 -9.24351990e-01 -5.07444702e-02 -1.52674520e+00 4.17880714e-01 -2.23963425e-01 -4.39395040e-01 5.21247387e-01 -5.35394430e-01 -4.47624922e-01 -2.59695984e-02 -2.35204305e-02 -7.86596537e-01 6.08716726e-01 9.84129369e-01 1.43310338e-01 -1.51558295e-01 -2.84121335e-01 -8.38105083e-01 8.76368344e-01 8.54136765e-01 -6.96284473e-01 -5.42750418e-01 -4.39402103e-01 3.33329856e-01 8.67509544e-02 3.44663739e-01 -4.55434769e-01 1.87659845e-01 -9.71771851e-02 1.57888830e-01 -9.75515246e-01 1.50193468e-01 -4.64820564e-01 -2.91312933e-01 1.22449160e-01 -3.60316217e-01 2.69004971e-01 4.56423074e-01 7.61273861e-01 -4.62426484e-01 -3.59081775e-01 2.83703178e-01 2.25662924e-02 -5.53231299e-01 7.36844689e-02 -5.05828075e-02 6.15477860e-01 8.51319969e-01 3.02308708e-01 -6.50641739e-01 5.28191179e-02 -3.64629060e-01 2.46168837e-01 -2.05742344e-01 5.63785672e-01 6.03952527e-01 -1.15721202e+00 -7.05892324e-01 -4.48535830e-02 1.52246073e-01 2.65349299e-01 3.92868608e-01 7.55881786e-01 5.40816672e-02 2.16975659e-01 5.76296389e-01 -2.48080209e-01 -1.47853708e+00 6.08616352e-01 -2.24208072e-01 -7.51617312e-01 -8.71090293e-01 7.88598239e-01 2.14661032e-01 -9.23310146e-02 1.65532589e-01 -4.17053789e-01 -2.66290694e-01 2.86483735e-01 6.91952348e-01 3.11365068e-01 1.19693771e-01 -4.03587520e-01 -6.84734643e-01 2.13525742e-01 -3.22071820e-01 -1.98347196e-01 1.16709399e+00 -9.98338982e-02 -2.29262874e-01 3.04935396e-01 1.11926866e+00 3.41355115e-01 -8.29773128e-01 -2.92263508e-01 2.53706664e-01 -2.10849077e-01 7.60429502e-02 -9.41791415e-01 -6.90568388e-01 7.05311120e-01 -1.57581881e-01 3.57514083e-01 1.21194828e+00 3.79487187e-01 1.06450772e+00 9.81927961e-02 -8.52257684e-02 -1.02552259e+00 1.79153129e-01 6.40219212e-01 1.05529654e+00 -8.86499345e-01 5.58848605e-02 -8.63784254e-01 -7.06305861e-01 9.63600457e-01 4.13978130e-01 7.18803406e-02 6.06800795e-01 5.69994628e-01 -3.80615115e-01 -4.65671241e-01 -8.51673126e-01 -6.02240115e-02 2.73469239e-01 -1.06990613e-01 6.45842791e-01 -3.78521457e-02 -7.59979010e-01 1.40193307e+00 -1.69367658e-03 -2.61179507e-01 1.27667829e-01 1.21141720e+00 -1.23663761e-01 -1.21619272e+00 -1.13017276e-01 2.08177850e-01 -8.77896845e-01 -4.23695982e-01 -3.99176031e-01 8.37677836e-01 1.19171508e-01 1.04305542e+00 -5.30857630e-02 -3.45472880e-02 5.34817398e-01 1.66110620e-01 2.70560563e-01 -6.05706573e-01 -8.32775056e-01 2.50900030e-01 5.32757461e-01 -5.43080330e-01 -3.76883000e-01 -8.27733696e-01 -1.85335696e+00 7.69871399e-02 -4.11887944e-01 3.16167414e-01 4.33576077e-01 9.69340324e-01 6.87702596e-01 9.98752236e-01 4.72377390e-01 -1.46827325e-01 -5.28959692e-01 -9.28471744e-01 -3.55782330e-01 5.85972846e-01 4.26298194e-02 -6.05377555e-01 -4.52568382e-01 -1.38048708e-01]
[9.090896606445312, 9.168861389160156]
859aab68-b994-420c-946a-8a6ce1f70593
promptpose-language-prompt-helps-animal-pose
2206.11752
null
https://arxiv.org/abs/2206.11752v3
https://arxiv.org/pdf/2206.11752v3.pdf
CLAMP: Prompt-based Contrastive Learning for Connecting Language and Animal Pose
Animal pose estimation is challenging for existing image-based methods because of limited training data and large intra- and inter-species variances. Motivated by the progress of visual-language research, we propose that pre-trained language models (e.g., CLIP) can facilitate animal pose estimation by providing rich prior knowledge for describing animal keypoints in text. However, we found that building effective connections between pre-trained language models and visual animal keypoints is non-trivial since the gap between text-based descriptions and keypoint-based visual features about animal pose can be significant. To address this issue, we introduce a novel prompt-based Contrastive learning scheme for connecting Language and AniMal Pose (CLAMP) effectively. The CLAMP attempts to bridge the gap by adapting the text prompts to the animal keypoints during network training. The adaptation is decomposed into spatial-aware and feature-aware processes, and two novel contrastive losses are devised correspondingly. In practice, the CLAMP enables the first cross-modal animal pose estimation paradigm. Experimental results show that our method achieves state-of-the-art performance under the supervised, few-shot, and zero-shot settings, outperforming image-based methods by a large margin.
['DaCheng Tao', 'Jing Zhang', 'Yufei Xu', 'Zhe Chen', 'Wen Wang', 'Xu Zhang']
2022-06-23
null
http://openaccess.thecvf.com//content/CVPR2023/html/Zhang_CLAMP_Prompt-Based_Contrastive_Learning_for_Connecting_Language_and_Animal_Pose_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Zhang_CLAMP_Prompt-Based_Contrastive_Learning_for_Connecting_Language_and_Animal_Pose_CVPR_2023_paper.pdf
cvpr-2023-1
['animal-pose-estimation']
['computer-vision']
[ 1.03666365e-01 -3.16955775e-01 -2.08266139e-01 -4.63571578e-01 -5.35772085e-01 -4.67772752e-01 6.10054314e-01 2.35494286e-01 -8.17220390e-01 4.45857793e-01 7.27787763e-02 3.59637141e-01 -2.36497447e-02 -4.90275681e-01 -1.15946949e+00 -4.57836509e-01 -1.45999059e-01 2.08682910e-01 5.26951015e-01 -2.33135670e-01 1.49282441e-01 5.94360232e-01 -1.67563915e+00 4.58413223e-03 5.16993463e-01 1.07588398e+00 6.84564352e-01 5.34154952e-01 -1.32016554e-01 8.32076311e-01 -2.77338535e-01 -2.79594988e-01 1.98870689e-01 -5.12123942e-01 -5.08978128e-01 4.58314717e-02 6.64064348e-01 -5.63982725e-01 -4.33028132e-01 8.56745958e-01 3.57996255e-01 3.16124558e-01 7.03536034e-01 -1.48418188e+00 -6.28301561e-01 3.52185339e-01 -8.54702830e-01 3.41791391e-01 9.62790549e-02 3.71463805e-01 1.00443268e+00 -1.01312280e+00 6.77149653e-01 1.36711812e+00 8.24663460e-01 5.21572053e-01 -1.48983169e+00 -7.14267015e-01 3.87665361e-01 3.20129931e-01 -1.42396259e+00 -4.56889093e-01 9.40246344e-01 -6.31095231e-01 7.72160888e-01 -8.76627788e-02 8.85604739e-01 1.13886094e+00 4.21682224e-02 8.07507813e-01 8.11026514e-01 -3.17912310e-01 7.66712725e-02 1.89226940e-02 -2.36841843e-01 8.55967402e-01 9.79699343e-02 2.80868590e-01 -9.35582578e-01 -1.74196362e-01 9.57052648e-01 1.84499383e-01 -2.54284441e-01 -1.11691248e+00 -1.33335245e+00 8.65621686e-01 8.37465882e-01 -5.63277490e-02 -3.33617985e-01 4.71443623e-01 4.10827309e-01 -2.63334420e-02 4.38348562e-01 5.91072738e-01 -3.11583608e-01 1.84437424e-01 -8.61168981e-01 2.53167987e-01 4.86964226e-01 1.08824968e+00 8.96816313e-01 -5.55186272e-02 -2.67592520e-01 9.17586625e-01 5.06533206e-01 5.68589628e-01 2.12400287e-01 -8.15530419e-01 3.01066279e-01 2.40723655e-01 9.04669389e-02 -1.01301527e+00 -3.12683135e-01 -3.79242748e-01 -5.90799868e-01 1.61561146e-02 4.06322449e-01 1.22348107e-01 -9.80386078e-01 2.00811315e+00 4.48216259e-01 1.49031103e-01 -3.46009910e-01 1.05885589e+00 9.16976869e-01 6.55482948e-01 4.40932065e-01 -2.12623384e-02 1.39347577e+00 -1.19299912e+00 -6.12241983e-01 -8.16261888e-01 4.06053752e-01 -4.71172005e-01 1.10063446e+00 -2.21572265e-01 -9.41853642e-01 -4.88683611e-01 -1.02519047e+00 -2.29237050e-01 -4.45456266e-01 1.63836822e-01 5.87150931e-01 -2.94481069e-02 -7.68875360e-01 4.38869506e-01 -8.60583305e-01 -6.17423296e-01 4.92233336e-01 1.40345842e-01 -6.20434642e-01 1.10474594e-01 -9.66742754e-01 9.45415020e-01 3.04513454e-01 2.08275348e-01 -1.10975087e+00 -7.84957230e-01 -1.27352834e+00 -9.67446715e-02 6.64384782e-01 -7.29303658e-01 1.30865848e+00 -9.90219235e-01 -1.33415055e+00 1.15815616e+00 2.69984603e-02 -5.44822991e-01 5.86074710e-01 -3.85006964e-01 1.14379257e-01 5.78294575e-01 1.95570603e-01 1.27759051e+00 1.07760918e+00 -1.55571616e+00 -6.81596458e-01 -4.83131170e-01 6.30821362e-02 2.38057509e-01 -2.32716814e-01 7.84581807e-03 -6.99819565e-01 -8.37569594e-01 4.66957502e-02 -9.68337119e-01 -1.27957329e-01 1.04737270e+00 -2.70562340e-03 -3.34355347e-02 5.90565205e-01 -5.96206546e-01 8.68556917e-01 -2.15321207e+00 2.76736170e-01 -1.91094592e-01 2.29594469e-01 1.19115718e-01 -4.37946647e-01 5.10034800e-01 5.04205786e-02 -3.64111662e-01 -1.82969943e-01 -4.14632052e-01 -1.17925182e-01 2.96303481e-01 -3.65673780e-01 7.60585368e-01 4.00545686e-01 1.00874269e+00 -9.25391197e-01 -7.85987437e-01 3.90174359e-01 5.22476077e-01 -7.76286662e-01 4.30167586e-01 -2.61502892e-01 3.84723425e-01 -3.21493626e-01 7.09327996e-01 5.20076573e-01 -2.59191751e-01 -7.43694305e-02 -4.74691838e-01 -6.01596683e-02 -1.37893379e-01 -7.53530562e-01 1.97714925e+00 -4.18396473e-01 5.79728305e-01 8.10330287e-02 -1.09842968e+00 5.22811294e-01 -1.70430735e-01 3.38780910e-01 -5.43361902e-01 1.28945649e-01 -1.01518750e-01 -1.42604023e-01 -5.44417083e-01 4.09164935e-01 -1.08583882e-01 -3.31841521e-02 -1.40486136e-01 4.41076070e-01 -3.16522688e-01 1.83091849e-01 1.63756415e-01 6.95552588e-01 6.02289975e-01 5.48643529e-01 -1.95603043e-01 2.12206274e-01 3.20630544e-03 4.46147829e-01 6.67747617e-01 -4.23851818e-01 5.03457785e-01 3.21052819e-01 -3.12459052e-01 -1.04205418e+00 -1.01108038e+00 2.59990525e-03 1.52073860e+00 5.29254138e-01 -4.11359400e-01 -6.09649241e-01 -6.48388147e-01 2.36060768e-01 4.71217573e-01 -9.16757703e-01 -3.39570075e-01 -4.96425301e-01 -2.07437143e-01 3.25665414e-01 8.10804605e-01 5.01911104e-01 -1.00907016e+00 -9.24457252e-01 9.53544676e-02 -2.31042698e-01 -1.36157203e+00 -5.68521917e-01 4.62959915e-01 -5.85842729e-01 -7.62098968e-01 -9.07195091e-01 -9.91333604e-01 7.84430504e-01 5.61773896e-01 8.64066422e-01 7.54560456e-02 -5.49739540e-01 4.29794639e-01 -4.00832206e-01 -2.48204112e-01 5.85324578e-02 -1.93899855e-01 1.05505129e-02 -3.00399780e-01 1.99006408e-01 -4.82595295e-01 -7.39243686e-01 2.69507349e-01 -7.19284594e-01 2.09356025e-01 7.48333454e-01 9.77183282e-01 7.21059680e-01 -5.89481592e-01 1.47347689e-01 -2.93745309e-01 1.65070593e-02 -3.31512600e-01 -5.76532781e-01 2.70607740e-01 -1.75494626e-02 1.82489559e-01 5.46385348e-01 -8.42800617e-01 -6.76231921e-01 3.84855002e-01 -4.20678370e-02 -5.45930564e-01 -1.84393227e-01 3.71388853e-01 4.52801362e-02 -4.59705353e-01 5.70170522e-01 2.54903078e-01 5.02632186e-02 -4.53158379e-01 3.60176027e-01 2.51603216e-01 6.32632256e-01 -5.24954140e-01 9.70371664e-01 6.09984636e-01 -2.90437676e-02 -1.00496101e+00 -1.00786364e+00 -6.87367022e-01 -6.81379616e-01 -4.04280305e-01 1.06745303e+00 -1.15365720e+00 -6.16095185e-01 4.62948561e-01 -1.12457192e+00 -4.57285494e-01 -2.44285554e-01 7.04662144e-01 -8.48095894e-01 3.81191045e-01 -5.41100740e-01 -5.95012188e-01 -8.91611055e-02 -1.06123388e+00 1.39160109e+00 7.14743603e-03 -1.04185939e-01 -6.25060141e-01 -1.86164267e-02 1.99586824e-01 2.44634613e-01 1.12214625e-01 7.65118241e-01 -5.19417167e-01 -6.10223353e-01 -1.55653223e-01 -4.92496282e-01 9.79420394e-02 -2.60409772e-01 -2.36483455e-01 -8.19460988e-01 -4.20237660e-01 -2.40996912e-01 -7.77758121e-01 8.75170350e-01 4.19800043e-01 1.19939005e+00 -1.91005729e-02 -4.85953659e-01 8.08177769e-01 1.37544918e+00 -1.58609524e-01 2.20069945e-01 3.34173769e-01 8.22180748e-01 7.13998497e-01 6.75583899e-01 4.17934895e-01 4.71590728e-01 1.01007497e+00 5.67999125e-01 -1.10310748e-01 -2.10429251e-01 -8.03544819e-01 1.06984377e-01 4.36645687e-01 9.73562673e-02 -1.07742965e-01 -8.90221834e-01 6.57505333e-01 -1.89728582e+00 -9.68214512e-01 3.67079288e-01 2.02552390e+00 8.30106735e-01 -1.14570208e-01 2.20201135e-01 -3.68640929e-01 5.32486320e-01 2.84116417e-01 -7.33895540e-01 2.56130695e-01 6.97902143e-02 -3.21040630e-01 6.84656918e-01 2.21499324e-01 -1.30832601e+00 1.12178826e+00 6.46526432e+00 8.56350660e-01 -1.05909801e+00 -8.03998485e-02 1.74901351e-01 -4.60440069e-02 4.50198576e-02 -9.47192609e-02 -7.47672677e-01 3.14890802e-01 2.72863865e-01 -5.24307659e-04 3.78392786e-01 1.05668044e+00 -3.10003553e-02 -2.26591542e-01 -1.33424592e+00 1.19108796e+00 4.70332265e-01 -1.06875467e+00 1.16152115e-01 -9.86302793e-02 3.51094812e-01 1.01492330e-01 2.37218458e-02 2.65133679e-01 7.84978643e-02 -7.38992453e-01 1.21051085e+00 3.95124972e-01 6.48106754e-01 -5.42275488e-01 3.62065583e-01 5.55141687e-01 -1.45366848e+00 -1.25036702e-01 -3.93749088e-01 4.09002341e-02 3.01707555e-02 -1.04232363e-01 -3.31713974e-01 1.96898833e-01 9.71454084e-01 7.36310780e-01 -6.98465526e-01 1.20869148e+00 -1.24049239e-01 1.70747057e-01 -4.09387052e-01 -1.31182879e-01 3.75032753e-01 3.35684046e-02 5.66225648e-01 1.07332873e+00 1.41484976e-01 7.09833503e-02 3.91542405e-01 9.06372011e-01 -7.05679432e-02 1.60115346e-01 -5.65999210e-01 -1.08109668e-01 3.61172706e-01 1.22405612e+00 -8.83830249e-01 -2.15565488e-01 -4.34631497e-01 1.03026950e+00 6.68322086e-01 3.59144092e-01 -1.04536450e+00 -3.17568719e-01 5.86562395e-01 2.73640156e-01 6.90697908e-01 -3.20787251e-01 2.07646966e-01 -1.05535877e+00 -5.25752679e-02 -5.69134533e-01 5.27495593e-02 -9.72960532e-01 -1.29221106e+00 3.42941344e-01 4.72118467e-01 -1.38232911e+00 -2.02033117e-01 -6.29382908e-01 -1.27727270e-01 5.17912030e-01 -1.63236892e+00 -1.68729830e+00 -3.53197604e-01 3.82114947e-01 6.50771499e-01 8.85253847e-02 5.89416504e-01 1.35309324e-01 -9.71702412e-02 6.32404625e-01 -1.00887157e-01 1.02804229e-01 8.16169977e-01 -8.68258119e-01 1.99117675e-01 7.85373330e-01 2.01915011e-01 5.10656655e-01 9.33497012e-01 -5.10823309e-01 -1.44645107e+00 -1.00519311e+00 6.05943441e-01 -2.88083524e-01 8.10556114e-01 -6.63916171e-01 -8.28092337e-01 5.35537958e-01 -1.13015041e-01 4.51744825e-01 4.89883423e-01 -1.18876390e-01 -5.60610414e-01 -1.17017264e-02 -9.10033643e-01 6.80198848e-01 1.21438360e+00 -7.28173852e-01 -6.98765814e-01 2.99857467e-01 7.08118618e-01 -4.01037455e-01 -4.80170637e-01 4.84260619e-01 6.95082307e-01 -5.24117172e-01 1.23053801e+00 -5.10466456e-01 6.77000165e-01 -3.78732145e-01 -2.15455130e-01 -1.25012112e+00 -4.45406705e-01 -6.21736348e-02 -5.02560250e-02 9.83850002e-01 7.78087825e-02 -1.16921656e-01 4.30756062e-01 2.27703810e-01 -1.01033282e-02 -5.84157050e-01 -6.63036644e-01 -8.64431858e-01 1.15652301e-03 -1.75302878e-01 1.62167430e-01 7.06753850e-01 -1.86758727e-01 4.56444472e-01 -7.67065287e-01 1.56772792e-01 7.84988761e-01 1.82807848e-01 9.12056923e-01 -1.10620022e+00 -3.01782638e-01 -3.19132060e-01 -6.40522778e-01 -1.46920812e+00 3.31249505e-01 -6.75124764e-01 5.80888212e-01 -1.38431060e+00 5.21634936e-01 3.72138098e-02 5.30259917e-03 5.99292874e-01 -1.85025841e-01 4.81043547e-01 3.23505402e-01 2.06203908e-01 -8.48582268e-01 7.73221016e-01 1.25164795e+00 -1.32436365e-01 3.66746224e-02 -3.29673409e-01 -3.89413178e-01 9.98398840e-01 3.81602407e-01 -4.64341819e-01 -3.40617597e-01 -4.84172851e-01 1.27005085e-01 1.38555951e-02 9.21615601e-01 -9.93680239e-01 3.52873862e-01 -2.11300179e-01 3.77054602e-01 -7.05122352e-01 5.26095092e-01 -9.13754463e-01 -2.14703575e-01 4.01594073e-01 -6.47383928e-01 -3.39109093e-01 2.59070188e-01 1.00393450e+00 -1.80897012e-01 2.34622993e-02 1.02791250e+00 -1.41723171e-01 -1.08760369e+00 5.28140306e-01 -1.68308794e-01 2.51770139e-01 1.01549697e+00 -2.13831887e-01 -1.45534039e-01 -2.78241783e-01 -3.86706233e-01 3.91053617e-01 5.58518589e-01 5.84489763e-01 5.93683243e-01 -1.33619249e+00 -4.06554312e-01 2.36152276e-01 7.99466193e-01 -7.31501356e-02 4.50207233e-01 8.98199856e-01 -6.21808708e-01 1.79422960e-01 -4.03976381e-01 -7.81738281e-01 -1.38285661e+00 7.47397840e-01 3.15159172e-01 1.14803813e-01 -7.64152050e-01 1.18816423e+00 8.10894847e-01 -3.43224823e-01 6.43273592e-01 -3.76052678e-01 -1.06527224e-01 7.97514245e-02 5.47544301e-01 -7.86932111e-02 -3.83930326e-01 -9.78946567e-01 -4.37167257e-01 9.65152800e-01 -1.16858490e-01 -1.07479785e-02 1.44257307e+00 -2.56326556e-01 1.75907940e-01 6.37463987e-01 1.23943651e+00 -3.56063783e-01 -1.62361777e+00 -5.92007577e-01 -3.19084466e-01 -5.55272281e-01 1.08499654e-01 -5.75869799e-01 -7.87522554e-01 1.10380769e+00 6.21820211e-01 -2.48520195e-01 8.72504592e-01 2.80370951e-01 6.64519668e-01 5.57984114e-01 4.18814510e-01 -1.21330881e+00 4.43368375e-01 3.52577895e-01 1.09780073e+00 -1.59588969e+00 5.87092228e-02 -4.38551992e-01 -7.34217584e-01 7.28918493e-01 9.72495377e-01 -1.06475465e-01 5.68986475e-01 1.68320388e-01 -1.78749308e-01 -1.72965989e-01 -6.61965847e-01 -5.06144404e-01 5.18330693e-01 6.25660479e-01 1.95504755e-01 -2.08256885e-01 2.96114106e-02 4.63425964e-01 3.28996666e-02 -1.13858804e-01 -1.22587167e-01 1.03390372e+00 -6.43407583e-01 -4.28355634e-01 -2.32677430e-01 1.95610791e-01 -2.20983610e-01 -1.34969398e-01 -2.80139208e-01 8.61968994e-01 1.70545310e-01 3.87709588e-01 1.30850986e-01 -1.62839994e-01 3.64641219e-01 -2.15357244e-01 6.47854507e-01 -6.17133141e-01 -2.34847501e-01 1.28498495e-01 -1.67204902e-01 -6.93363965e-01 -7.19210744e-01 -3.15258265e-01 -9.77918029e-01 -1.95406619e-02 -5.17547011e-01 -1.79097503e-01 5.40038347e-01 9.55443203e-01 3.98079343e-02 4.44048941e-01 3.14601868e-01 -1.32913339e+00 -5.39584339e-01 -8.25573385e-01 -5.11167824e-01 4.72368866e-01 5.45611858e-01 -9.83891547e-01 -5.72248697e-01 2.58445948e-01]
[7.6684980392456055, -0.9397859573364258]
adffc92c-e6f0-4750-8b09-ba458b7d83bc
high-dimensional-and-permutation-invariant
2306.03933
null
https://arxiv.org/abs/2306.03933v1
https://arxiv.org/pdf/2306.03933v1.pdf
High-dimensional and Permutation Invariant Anomaly Detection
Methods for anomaly detection of new physics processes are often limited to low-dimensional spaces due to the difficulty of learning high-dimensional probability densities. Particularly at the constituent level, incorporating desirable properties such as permutation invariance and variable-length inputs becomes difficult within popular density estimation methods. In this work, we introduce a permutation-invariant density estimator for particle physics data based on diffusion models, specifically designed to handle variable-length inputs. We demonstrate the efficacy of our methodology by utilizing the learned density as a permutation-invariant anomaly detection score, effectively identifying jets with low likelihood under the background-only hypothesis. To validate our density estimation method, we investigate the ratio of learned densities and compare to those obtained by a supervised classification algorithm.
['Benjamin Nachman', 'Vinicius Mikuni']
2023-06-06
null
null
null
null
['density-estimation']
['methodology']
[ 7.63075352e-02 -2.90185124e-01 -2.12679263e-02 -2.25048900e-01 -6.08666658e-01 -6.21021926e-01 9.90886390e-01 2.49434114e-01 -2.96606660e-01 9.26006138e-01 -1.24026306e-01 -4.63651925e-01 -6.51174009e-01 -8.88658941e-01 -5.48449993e-01 -8.95040572e-01 -3.34058374e-01 8.36751878e-01 4.71708953e-01 4.73705888e-01 3.01042110e-01 1.07579827e+00 -1.30831909e+00 -3.37181568e-01 8.60209584e-01 1.02636468e+00 -1.23791479e-01 9.12379086e-01 -4.12892163e-01 3.53414357e-01 -4.77018327e-01 -4.83579427e-01 3.27774823e-01 -6.01762235e-01 -4.53629494e-01 -2.11269140e-01 5.24816394e-01 -4.68708836e-02 -4.37171996e-01 1.47924936e+00 9.21812356e-02 4.70786572e-01 1.38855922e+00 -1.15753078e+00 -5.29294789e-01 2.69228294e-02 -3.51996928e-01 8.15086782e-01 -4.48605753e-02 -1.43296178e-02 1.08524227e+00 -8.31261992e-01 6.36143208e-01 1.19573307e+00 4.09657657e-01 2.14891374e-01 -1.56495953e+00 -4.01981950e-01 -2.05363452e-01 1.68577030e-01 -1.07632995e+00 -1.72691137e-01 8.63499165e-01 -7.02246845e-01 7.34824538e-01 1.53643951e-01 4.07423139e-01 1.30870295e+00 6.36718631e-01 3.41644645e-01 1.19962788e+00 -4.41932619e-01 5.83425581e-01 1.47475302e-01 2.76822895e-01 6.45844698e-01 7.30640769e-01 3.27061146e-01 -4.05926764e-01 -4.96720880e-01 8.75603855e-01 -2.97249675e-01 7.55812749e-02 -9.73222911e-01 -9.00275290e-01 9.69017506e-01 -1.23094469e-01 2.83850729e-01 -2.87298650e-01 -1.23917863e-01 3.22336227e-01 4.89644669e-02 7.85233855e-01 5.47663867e-01 -4.45330918e-01 -3.87928486e-01 -8.88830662e-01 3.98693860e-01 1.09184039e+00 7.26280987e-01 6.20733142e-01 2.05412418e-01 -4.38376933e-01 5.88919461e-01 2.33993635e-01 7.78163195e-01 1.60784945e-01 -7.52728999e-01 9.11398605e-02 2.29712605e-01 1.82272792e-01 -7.64756203e-01 -3.67663205e-01 -5.07085204e-01 -9.30588484e-01 3.55888218e-01 8.20290387e-01 -1.05282977e-01 -8.59090209e-01 1.54290414e+00 3.54433060e-01 2.15529189e-01 2.16760859e-02 5.75173080e-01 1.48970503e-02 5.06595075e-01 1.75998166e-01 -3.07880580e-01 1.01554108e+00 -4.29971725e-01 -4.47549969e-01 9.97104049e-02 2.54025102e-01 -5.51004946e-01 8.32622945e-01 3.17686588e-01 -7.91160166e-01 -2.61387646e-01 -6.72579825e-01 3.34196895e-01 -2.16183200e-01 2.39133332e-02 6.90789282e-01 8.75648975e-01 -7.27716565e-01 9.11970258e-01 -1.08713984e+00 -4.80558187e-01 2.77480870e-01 -4.25425619e-02 -2.21384302e-01 2.92059362e-01 -7.65299857e-01 7.39102304e-01 4.35783774e-01 -3.87934268e-01 -7.74674654e-01 -9.26743090e-01 -7.06066608e-01 3.59959900e-01 1.63446918e-01 -5.82774043e-01 1.14456952e+00 -1.30588248e-01 -1.59068060e+00 3.25158149e-01 -2.57243723e-01 -7.27249026e-01 5.17386198e-01 -6.95229694e-02 -6.32401288e-01 3.34988087e-01 4.86099236e-02 2.20102770e-03 1.16364062e+00 -8.67777884e-01 -4.07385767e-01 -1.26782417e-01 -2.93915510e-01 -3.48461360e-01 -1.70702025e-01 -1.16713107e-01 -2.41154730e-02 -6.27362907e-01 2.80237973e-01 -7.66226649e-01 -9.42034200e-02 -7.46839568e-02 -3.42487961e-01 -8.63175765e-02 8.20311546e-01 -5.95684111e-01 8.02697599e-01 -2.23728442e+00 2.04923123e-01 7.14779675e-01 2.10295334e-01 9.67460126e-02 9.93108079e-02 1.22922316e-01 6.57657757e-02 -3.56016234e-02 -5.05559444e-01 -2.04841182e-01 2.62874573e-01 1.60506248e-01 -3.74012113e-01 5.61710775e-01 7.03340948e-01 5.45586050e-01 -9.45763230e-01 -1.37630627e-01 3.19455087e-01 1.72031060e-01 -5.67670822e-01 1.83141068e-01 -2.21095964e-01 7.65464544e-01 -4.35527444e-01 5.24046063e-01 9.06991482e-01 -6.33640513e-02 -1.01603135e-01 -3.07636652e-02 -1.27481371e-01 1.56817272e-01 -1.06688821e+00 1.25054681e+00 -1.51885480e-01 4.68733996e-01 4.43001464e-02 -1.05550897e+00 9.77780461e-01 -7.23518655e-02 4.18616980e-01 -4.93468404e-01 -3.22408453e-02 1.64385095e-01 2.21363097e-01 -1.89822152e-01 4.68089074e-01 -4.92702872e-01 -4.30168808e-02 3.28403443e-01 5.70406079e-01 -1.31871149e-01 4.06582117e-01 3.40599716e-01 1.59598446e+00 -3.15430090e-02 2.63313085e-01 -4.20689791e-01 5.17550826e-01 -3.94353151e-01 2.90068120e-01 1.34930170e+00 -2.90084749e-01 2.76889920e-01 9.74143803e-01 7.56136924e-02 -1.42372477e+00 -1.81299591e+00 -7.07599223e-01 6.55971527e-01 -2.83339113e-01 -4.16209042e-01 -2.64897197e-01 -8.77019465e-01 3.22901994e-01 8.88823628e-01 -3.05414349e-01 -3.95928293e-01 -2.55616456e-01 -1.02203107e+00 3.89584184e-01 3.39888632e-01 2.23972529e-01 -7.17933416e-01 1.35620058e-01 -1.81965269e-02 6.36425138e-01 -1.20723855e+00 1.55617744e-02 2.70261079e-01 -7.41577387e-01 -1.00609410e+00 -4.46087211e-01 -1.91225689e-02 5.55567324e-01 -2.44672477e-01 8.97852600e-01 -4.92881626e-01 -5.32279968e-01 6.98536634e-01 -2.90463418e-01 -2.61298001e-01 -7.06776559e-01 -2.35736221e-02 5.19232273e-01 -4.09843363e-02 4.97566283e-01 -7.03293204e-01 -2.07468942e-01 1.10994697e-01 -7.10836351e-01 -6.81047440e-01 8.88599277e-01 7.02856898e-01 3.54279548e-01 3.56762260e-01 4.88911957e-01 -7.78093457e-01 6.86891019e-01 -6.20521724e-01 -9.43573713e-01 -1.01247273e-01 -3.75925690e-01 3.54981631e-01 5.69504797e-01 -4.36771244e-01 -1.09556293e+00 -2.26140037e-01 -5.24323843e-02 -5.89537442e-01 -5.15126526e-01 1.34911343e-01 -1.92220472e-02 -3.12836796e-01 4.04997677e-01 1.99826360e-01 -9.52478349e-02 -5.82583308e-01 3.94579083e-01 1.42244846e-01 5.73759437e-01 -9.02107716e-01 1.26108909e+00 3.31490874e-01 5.91590106e-01 -1.04982686e+00 -9.54191327e-01 -5.24110675e-01 -8.62640023e-01 -1.17007211e-01 9.16227162e-01 -4.46309805e-01 -4.32615727e-01 3.28461796e-01 -8.96624148e-01 1.49138048e-01 -7.65647233e-01 1.11285198e+00 -5.59395134e-01 6.80611014e-01 -5.06551802e-01 -1.20230389e+00 1.59561440e-01 -7.16307878e-01 8.86114895e-01 1.48769587e-01 -9.88871977e-02 -1.28112352e+00 5.09169817e-01 -3.18079352e-01 4.49737817e-01 -8.36740956e-02 1.33798468e+00 -1.10259533e+00 -6.24773145e-01 -1.84646189e-01 -4.46948290e-01 5.88185787e-01 2.96449456e-02 1.89641416e-02 -7.86001146e-01 -2.64103323e-01 1.50533631e-01 1.01397730e-01 1.00522566e+00 4.23272818e-01 1.43073130e+00 1.76842704e-01 -2.46984079e-01 4.42543238e-01 1.02152312e+00 -1.19251937e-01 2.78606385e-01 7.06687802e-03 4.65288371e-01 2.96788454e-01 2.26758555e-01 4.73975658e-01 -4.28155363e-01 3.85900766e-01 -2.27524503e-03 3.42483908e-01 2.38315184e-02 -2.17090368e-01 3.37304413e-01 8.31236124e-01 1.10475935e-01 -1.43739298e-01 -7.91826963e-01 1.16668411e-01 -1.59046507e+00 -1.08612287e+00 -4.29723710e-02 2.37302494e+00 4.78323668e-01 5.74598253e-01 1.05231978e-01 -1.40415862e-01 6.78254008e-01 1.47537729e-02 -4.81633991e-01 -3.07401270e-01 1.95178054e-02 6.76518381e-01 4.26722586e-01 4.29494649e-01 -1.23225224e+00 5.81168115e-01 7.06555939e+00 9.59827900e-01 -5.70895910e-01 1.51836082e-01 7.75625929e-02 -8.63233134e-02 -1.68942079e-01 3.95665988e-02 -9.62039948e-01 6.51311278e-01 1.03828251e+00 -1.88831270e-01 1.39703766e-01 8.20702255e-01 -4.47035022e-02 -2.75030881e-01 -1.13472104e+00 6.49582148e-01 2.08231751e-02 -1.08675933e+00 1.53084844e-01 3.16730618e-01 5.66909075e-01 -1.20696612e-01 4.12745886e-02 6.54132068e-01 2.79987514e-01 -6.99236393e-01 2.61825681e-01 9.86359298e-01 3.44101369e-01 -7.38975644e-01 5.93335092e-01 1.94524169e-01 -8.02489400e-01 1.26703665e-01 -6.83237731e-01 -3.77943702e-02 3.72264415e-01 1.15050197e+00 -8.57991636e-01 5.76637924e-01 3.47724229e-01 5.76638281e-01 -6.04242802e-01 1.42803955e+00 5.22938743e-03 9.39760804e-01 -5.67055941e-01 -6.00894801e-02 9.06761065e-02 -8.43700230e-01 1.29691446e+00 1.24761581e+00 8.41336012e-01 -4.09550041e-01 9.26775336e-02 1.23225760e+00 -8.27491954e-02 -1.35707095e-01 -7.77654409e-01 -3.69822443e-01 2.00517878e-01 1.42610872e+00 -9.90293622e-01 -8.93697143e-02 -4.71682519e-01 8.00838232e-01 4.29762602e-01 3.35851610e-01 -6.14899874e-01 -2.29029849e-01 9.01876509e-01 1.31614894e-01 6.37252152e-01 -7.99457312e-01 1.62292406e-01 -1.23907614e+00 -5.67160510e-02 -2.36402869e-01 1.82582542e-01 -3.23254287e-01 -2.18045831e+00 2.28318051e-02 2.53512591e-01 -1.02297044e+00 -2.20501110e-01 -1.24329603e+00 -8.56478870e-01 9.62042451e-01 -1.30822778e+00 -6.89388275e-01 1.41410902e-01 3.28052282e-01 5.59246838e-02 -6.42295659e-01 7.55289972e-01 1.83555096e-01 -4.09635782e-01 2.36308217e-01 5.53997934e-01 -9.14915651e-02 6.45298541e-01 -1.74346185e+00 3.15946877e-01 1.00103128e+00 3.22461843e-01 5.70100844e-01 8.75283003e-01 -9.94535267e-01 -1.20911014e+00 -9.27749872e-01 2.10267782e-01 -7.04995036e-01 1.35899222e+00 -6.35856271e-01 -1.13581610e+00 3.89304429e-01 -3.77405196e-01 2.05987468e-01 6.62133217e-01 4.08919632e-01 -1.57003179e-01 2.91241705e-01 -1.22861290e+00 2.68798649e-01 9.67291236e-01 -6.23680890e-01 -6.29274905e-01 3.13615561e-01 4.71574724e-01 -1.25161424e-01 -7.39909649e-01 4.67391282e-01 8.41301158e-02 -6.40974522e-01 9.90712345e-01 -9.74564970e-01 4.50695632e-03 -1.98412910e-01 -1.14508040e-01 -1.30911219e+00 -5.75165033e-01 -3.36532056e-01 -5.73310614e-01 1.25119328e+00 2.03236461e-01 -6.95914984e-01 8.07373583e-01 3.28178287e-01 2.09228545e-01 -1.59518734e-01 -1.44735050e+00 -1.05977094e+00 2.12573618e-01 -5.14985502e-01 -1.86893400e-02 6.41500890e-01 -3.76091957e-01 2.41480470e-01 -2.64234602e-01 6.26023412e-01 8.21686745e-01 -1.17773190e-01 5.88388264e-01 -1.65341449e+00 -6.15637898e-01 -5.10459602e-01 -9.16394234e-01 -7.37812936e-01 6.09168231e-01 -1.08474422e+00 -1.72015905e-01 -8.43539417e-01 1.95821241e-01 -2.97099084e-01 -4.36211556e-01 -2.38431737e-01 9.30843726e-02 -1.04749054e-02 -1.04748078e-01 -5.79324923e-02 -5.13221085e-01 7.91156530e-01 8.63841712e-01 5.10481559e-02 2.13388190e-01 2.60923356e-01 -6.39372766e-02 9.10364807e-01 8.04927886e-01 -4.64094281e-01 -2.08353862e-01 3.58488202e-01 1.88019410e-01 -3.42732996e-01 6.32601082e-01 -1.35746741e+00 1.96714606e-02 -6.01703003e-02 8.51046622e-01 -4.83511567e-01 4.24324930e-01 -4.81145710e-01 -2.86657661e-01 -6.80501089e-02 -1.12470783e-01 -1.38458148e-01 3.07041496e-01 1.10385430e+00 2.20221560e-03 -7.20881581e-01 7.12521076e-01 7.30906576e-02 -5.22110403e-01 2.67619580e-01 -5.94949901e-01 2.43884876e-01 1.02516723e+00 4.01423246e-01 -2.55135149e-01 -2.26716608e-01 -1.01830232e+00 -2.42102310e-01 2.46689796e-01 6.43044561e-02 3.82470965e-01 -1.23350322e+00 -4.56653476e-01 4.21771914e-01 2.56765541e-02 -4.91755515e-01 6.15977049e-02 8.55214715e-01 -3.30565959e-01 3.14210862e-01 -1.69049263e-01 -7.52757311e-01 -8.05969656e-01 5.09283245e-01 2.38900065e-01 -3.83582503e-01 -7.11771607e-01 5.40285408e-01 1.08842351e-01 -5.92348456e-01 -9.15690064e-02 -3.55700105e-01 1.03863299e-01 -1.89853951e-01 3.61470729e-01 4.49281365e-01 7.71369636e-02 -1.92911431e-01 -1.45298585e-01 1.86405912e-01 -1.68948054e-01 -2.22162291e-01 8.73933256e-01 1.66042402e-01 -2.08465144e-01 7.84019530e-01 9.15374875e-01 4.29731339e-01 -1.21596265e+00 -2.39551410e-01 2.40652993e-01 -7.22222030e-01 -2.93724332e-02 -5.42377532e-01 -4.22821969e-01 8.13256204e-01 6.06768191e-01 5.95566988e-01 3.51502508e-01 3.25498462e-01 3.90702069e-01 6.01117730e-01 2.08641842e-01 -8.23043168e-01 1.16880484e-01 7.98750758e-01 4.41587210e-01 -1.02956796e+00 -2.31498964e-02 -3.41166884e-01 -1.72029957e-01 1.10292065e+00 5.00195980e-01 -2.49120459e-01 9.13712084e-01 2.84914196e-01 -4.94033068e-01 -1.36917904e-01 -4.25154030e-01 -2.53586620e-01 5.51394939e-01 6.95791066e-01 1.51866361e-01 2.32060533e-03 -1.59865603e-01 2.82057881e-01 -2.63232470e-01 -5.44546723e-01 4.60858524e-01 7.24837124e-01 -6.03847742e-01 -1.27875245e+00 -1.69367000e-01 9.74363744e-01 -3.58731180e-01 1.94786908e-03 -1.20166920e-01 6.88632846e-01 -2.80093759e-01 4.34661537e-01 5.06319642e-01 2.30637044e-01 8.76931027e-02 6.08664751e-01 6.56397760e-01 -5.71582258e-01 2.11373150e-01 -1.92001790e-01 -3.16548161e-02 -3.07525277e-01 -2.77430922e-01 -8.82596135e-01 -7.44421363e-01 -2.54283458e-01 -4.94475067e-02 3.61501992e-01 6.54661298e-01 1.06597590e+00 2.16034070e-01 6.48608625e-01 2.41367728e-01 -9.26487982e-01 -9.48860943e-01 -9.87125576e-01 -1.00350869e+00 5.23739815e-01 2.60378391e-01 -1.14799297e+00 -8.65742028e-01 -5.74420989e-01]
[7.333451747894287, 3.951925277709961]
0afdccc9-f1e7-4488-96ba-8a521417a9ce
3d-saliency-guided-deep-quality-predictor-for
null
null
https://www.sciencedirect.com/science/article/pii/S0925231222000029
https://www.researchgate.net/publication/357645676_3D_Saliency_guided_Deep_Quality_predictor_for_No-Reference_Stereoscopic_Images
3D Saliency guided Deep Quality predictor for No-Reference Stereoscopic Images
The use of 3D technologies is growing rapidly, and stereoscopic imaging is usually used to display the 3D contents. However, compression, transmission and other necessary treatments may reduce the quality of these images. Stereo Image Quality Assessment (SIQA) has attracted more attention to ensure good viewing experience for the users and thus several methods have been proposed in the literature with a clear improvement for deep learning-based methods. This paper introduces a new deep learning-based no-reference SIQA using cyclopean view hypothesis and human visual attention. First, the cyclopean image is constructed considering the presence of binocular rivalry that covers the asymmetric distortion case. Second, the saliency map is computed considering the depth information. The latter aims to extract patches on the most perceptual relevant regions. Finally, a modified version of the pre-trained Convolutional Neural Network (CNN) is fine-tuned and used to predict the quality score through the selected patches. Five distinct pre-trained models were analyzed and compared in term of results. The performance of the proposed metric has been evaluated on four commonly used datasets (3D LIVE phase I and phase II databases as well as Waterloo IVC 3D Phase 1 and Phase 2). Compared with the state-of-the-art metrics, the proposed method gives better outcomes. The implementation code will be made accessible to the public at: https://github.com/o-messai/3D-NR-SIQA
['Zianou Ahmed seghir', 'Fella Hachouf', 'Aladine Chetouani', 'Oussama Messai']
2022-01-06
null
null
null
journal-2022-1
['image-quality-estimation', 'blind-image-quality-assessment', 'stereoscopic-image-quality-assessment', 'no-reference-image-quality-assessment']
['computer-vision', 'computer-vision', 'computer-vision', 'computer-vision']
[ 1.33807242e-01 -2.89241165e-01 -2.33609732e-02 -2.29189113e-01 -8.61102104e-01 -2.04537749e-01 3.68959159e-01 -4.44725715e-02 -2.95995146e-01 5.71666241e-01 4.08636272e-01 2.72803791e-02 -1.28632009e-01 -6.09272301e-01 -5.51172853e-01 -7.52488911e-01 -1.04052350e-01 -8.03329498e-02 4.93552446e-01 -2.73680210e-01 6.62394643e-01 5.19122124e-01 -1.81906617e+00 3.07595372e-01 9.28526938e-01 1.28961575e+00 5.87098837e-01 4.87688094e-01 2.68505603e-01 4.12851155e-01 -3.87407094e-01 -2.31548175e-01 5.34616649e-01 -4.76970643e-01 -6.91742778e-01 1.11398019e-01 3.89177144e-01 -4.45531040e-01 -4.62050766e-01 1.16267645e+00 9.75245357e-01 3.03892866e-02 3.07537109e-01 -9.86209631e-01 -4.07871366e-01 -1.31104365e-01 -6.40971839e-01 7.47152090e-01 5.76503456e-01 4.15299594e-01 7.75052071e-01 -9.78569210e-01 4.90235716e-01 1.06004155e+00 6.35991171e-02 2.53376096e-01 -7.95544028e-01 -6.36418462e-01 -4.90430683e-01 9.18649971e-01 -1.40393472e+00 -3.54276747e-01 9.64939713e-01 -2.40320250e-01 9.08704102e-01 1.25922307e-01 7.30569184e-01 6.74832940e-01 5.87679803e-01 7.21187353e-01 1.40952051e+00 -3.92950505e-01 1.54619962e-01 1.07911669e-01 -2.64141053e-01 4.91133153e-01 4.74087568e-03 3.67492050e-01 -6.62532926e-01 2.39116803e-01 6.60726130e-01 -1.38182238e-01 -5.70615411e-01 -6.02858901e-01 -1.04762936e+00 5.51184177e-01 7.69147038e-01 3.40484083e-01 -5.00941157e-01 -2.89439827e-01 2.91740596e-01 1.61320373e-01 5.14766932e-01 3.78699154e-01 -2.46994630e-01 -2.33211949e-01 -9.78545308e-01 1.71840116e-01 1.69989675e-01 7.15641141e-01 6.60930574e-01 -2.61675590e-03 -1.64525226e-01 8.92432690e-01 2.79241830e-01 5.82318425e-01 4.45268065e-01 -9.72954273e-01 4.88712847e-01 4.98486936e-01 1.94744349e-01 -1.09593487e+00 -4.08839971e-01 -6.16393447e-01 -8.52794111e-01 5.18564939e-01 7.05701634e-02 1.99309260e-01 -7.48261392e-01 1.15081620e+00 1.65888965e-01 -1.17335528e-01 -7.16145430e-03 1.42668247e+00 8.24655235e-01 6.72375977e-01 -4.13021296e-01 -1.93325698e-01 1.12248373e+00 -7.84230173e-01 -7.04930782e-01 -9.53809768e-02 2.82495972e-02 -9.59701955e-01 9.76732075e-01 6.98100507e-01 -1.44580400e+00 -9.34404492e-01 -1.33129776e+00 -2.18398228e-01 -1.89990357e-01 -3.39826792e-02 2.22692609e-01 6.63620114e-01 -1.27154362e+00 4.56258684e-01 -6.10518157e-01 -2.24132031e-01 5.96492648e-01 3.47441018e-01 -2.94545382e-01 -4.52228159e-01 -1.37056243e+00 1.08804250e+00 1.77743256e-01 7.93444887e-02 -9.90582883e-01 -4.64405447e-01 -7.27408111e-01 9.99471620e-02 1.07736841e-01 -5.47925949e-01 9.64504778e-01 -9.58331823e-01 -1.48959088e+00 9.81025219e-01 -2.68487155e-01 -3.37405920e-01 3.27940673e-01 -2.27407262e-01 -3.14198583e-01 5.27380884e-01 1.16469443e-01 7.75391281e-01 7.21344113e-01 -1.22134829e+00 -8.99395406e-01 -5.10674179e-01 2.89914846e-01 7.30958998e-01 2.42678504e-02 4.20951657e-02 -7.45982587e-01 -4.19712007e-01 2.24198520e-01 -6.41812503e-01 1.15148842e-01 6.71603531e-02 -2.48162270e-01 -3.01455939e-03 5.22727191e-01 -7.96643138e-01 1.18159580e+00 -2.10781670e+00 2.84019202e-01 -7.81679079e-02 1.41246572e-01 3.57340127e-01 5.31092994e-02 1.12322740e-01 -1.03566125e-01 -2.81667322e-01 -1.84361503e-01 -1.54471725e-01 -3.36335152e-01 -3.37064236e-01 1.97757870e-01 6.42095804e-01 1.92930892e-01 5.53351820e-01 -7.52563655e-01 -4.19143856e-01 7.30615854e-01 4.89941806e-01 -5.84719241e-01 2.98674047e-01 2.65220016e-01 6.35052800e-01 -1.20562844e-01 7.53638864e-01 1.03416705e+00 -1.44238994e-01 -2.04580784e-01 -4.67618704e-01 -3.75862777e-01 1.88476339e-01 -1.07964432e+00 1.89521492e+00 -5.16996861e-01 7.89019704e-01 -1.03891283e-01 -8.61015797e-01 8.12472880e-01 2.42776245e-01 5.07239521e-01 -1.43699801e+00 2.25603804e-01 4.47703719e-01 1.54029742e-01 -7.35592961e-01 3.49170595e-01 6.38342127e-02 2.18291372e-01 3.93218882e-02 1.31633595e-01 -2.96498209e-01 1.79506969e-02 -1.95584670e-02 7.20411360e-01 3.61566208e-02 3.63884121e-01 -1.51485011e-01 8.92125249e-01 -1.20106906e-01 3.77464265e-01 3.31575245e-01 -4.47286218e-01 1.02617216e+00 2.63233304e-01 -3.12996656e-01 -1.21203935e+00 -1.07759881e+00 -1.98447466e-01 3.59308034e-01 7.18544900e-01 -5.97434379e-02 -6.01892591e-01 -3.13189536e-01 -4.28085387e-01 6.65711462e-01 -4.16593641e-01 -1.22738183e-01 -3.45024735e-01 -3.73887658e-01 -1.25030264e-01 7.31078014e-02 1.03530633e+00 -1.20097494e+00 -9.45833564e-01 -4.75139543e-02 -5.30760288e-01 -9.97778177e-01 -2.69707739e-01 -1.32143155e-01 -7.73324728e-01 -1.10541403e+00 -1.10214269e+00 -6.68078601e-01 3.40450168e-01 7.01156676e-01 1.01103878e+00 -2.40271300e-01 -2.00555176e-01 2.14779437e-01 -3.87834698e-01 -3.00703257e-01 -7.26633593e-02 -9.85586792e-02 -1.80708513e-01 2.25259662e-02 3.50594193e-01 -4.70030010e-01 -1.15217948e+00 2.99212307e-01 -8.46615791e-01 2.46312141e-01 7.86644876e-01 7.49416888e-01 6.88203931e-01 1.75774828e-01 2.21564844e-01 -2.52012879e-01 3.61416727e-01 -2.47471645e-01 -7.17698991e-01 -1.54964194e-01 -5.25033653e-01 -1.18410498e-01 3.08710843e-01 1.21763624e-01 -1.11954916e+00 -1.87237844e-01 -3.07844162e-01 -5.95797062e-01 -2.49068245e-01 1.82813913e-01 -4.60538775e-01 -1.57349631e-01 5.59582889e-01 3.46821308e-01 -4.23841141e-02 -2.99787134e-01 -1.08528748e-01 8.05486262e-01 3.60854954e-01 1.55353755e-01 6.93911433e-01 6.44410849e-01 1.11824991e-02 -7.12966084e-01 -7.36788988e-01 -5.76076150e-01 -5.72919369e-01 -5.62773287e-01 1.01331031e+00 -9.24200296e-01 -5.40070295e-01 6.89488590e-01 -1.09065557e+00 -6.41201437e-02 -6.92755505e-02 7.36322284e-01 -7.64095962e-01 3.32539797e-01 -2.29573622e-01 -4.84468490e-01 -4.81202185e-01 -1.64326108e+00 9.98382390e-01 4.80953127e-01 1.86079547e-01 -5.50025344e-01 -2.26429082e-03 5.23430884e-01 5.00305831e-01 2.05398966e-02 8.56808364e-01 -6.27195761e-02 -8.02207470e-01 2.42143702e-02 -4.29392576e-01 5.71208537e-01 1.17842235e-01 -5.66681385e-01 -1.05114090e+00 -2.65085071e-01 2.05869466e-01 -1.39489606e-01 5.24069369e-01 8.20897758e-01 1.16772962e+00 7.87266195e-02 -5.15166596e-02 6.76395476e-01 1.66384089e+00 5.15482128e-01 1.02845144e+00 5.40127397e-01 4.32983905e-01 5.35394788e-01 8.75709593e-01 3.97460282e-01 2.71668315e-01 9.91931081e-01 6.91183388e-01 -3.03040355e-01 -3.91591996e-01 6.93439096e-02 1.75895691e-01 6.24788165e-01 -1.28602669e-01 -2.45334595e-01 -8.42000246e-01 6.55010939e-01 -1.25155652e+00 -9.94721055e-01 -1.15534768e-03 2.31538057e+00 5.56145489e-01 3.12958211e-01 -1.65898874e-01 4.35355991e-01 6.01710796e-01 2.32239485e-01 -5.77322423e-01 -3.74423891e-01 -2.46964604e-01 4.91828978e-01 4.16134268e-01 3.64082783e-01 -1.05401063e+00 4.81101125e-01 5.23765039e+00 9.27421093e-01 -1.36183584e+00 2.80882210e-01 7.55420566e-01 -2.78064698e-01 -7.73050860e-02 -1.68754473e-01 -4.77371722e-01 5.94556391e-01 7.93614149e-01 -8.33392814e-02 3.16782534e-01 4.52913582e-01 6.35080516e-01 -6.28588378e-01 -7.36674368e-01 1.43881023e+00 2.91911632e-01 -1.20983064e+00 -8.33337530e-02 1.11180328e-01 8.61928940e-01 1.75055400e-01 3.67346853e-01 -6.52718768e-02 -5.12211740e-01 -8.36907327e-01 6.45921588e-01 6.31652832e-01 8.33300889e-01 -1.00977993e+00 1.00428355e+00 1.31875485e-01 -8.21094990e-01 -1.76887974e-01 -3.45364749e-01 1.37234136e-01 1.61529317e-01 5.59212387e-01 -4.30790544e-01 7.98152566e-01 1.16467249e+00 8.33859563e-01 -7.60547400e-01 1.52096450e+00 -1.08413123e-01 3.41163218e-01 6.37556016e-02 2.21007407e-01 2.07360610e-01 -4.58890165e-04 7.91599452e-01 7.44003296e-01 5.95622480e-01 1.63003236e-01 -3.92516851e-01 7.08481371e-01 1.39066458e-01 1.14116363e-01 -5.07913530e-01 5.98804891e-01 1.38620334e-02 1.03543961e+00 -4.58838701e-01 -2.03601360e-01 -7.17288673e-01 1.14505231e+00 -1.95253238e-01 2.38968715e-01 -6.98918700e-01 -4.12070155e-01 4.44853455e-01 4.45278287e-01 4.01909292e-01 6.77650347e-02 -2.29098991e-01 -1.04228222e+00 1.16019078e-01 -9.93372977e-01 1.64229304e-01 -1.28170705e+00 -9.67925906e-01 6.89907074e-01 7.82483146e-02 -1.81914175e+00 -1.39019340e-01 -4.22573090e-01 -3.95088702e-01 1.13472235e+00 -1.84093666e+00 -5.43657839e-01 -6.45376265e-01 6.32833064e-01 9.15364325e-01 -1.34735882e-01 4.62611049e-01 6.35661125e-01 -1.90932512e-01 3.75870764e-01 1.74510524e-01 -2.67149448e-01 8.04925025e-01 -9.93801236e-01 2.78983060e-02 9.64922011e-01 -3.31761450e-01 1.51048424e-02 6.90997303e-01 -3.45484018e-01 -1.21090102e+00 -8.03726017e-01 6.87485158e-01 -6.45091385e-02 4.37424071e-02 -4.04638387e-02 -7.80297935e-01 -6.27878681e-02 6.05538428e-01 7.54788071e-02 2.42300302e-01 -5.05043149e-01 1.30055338e-01 -3.58476430e-01 -1.23710394e+00 3.24196637e-01 7.76975274e-01 -3.81446779e-01 -3.39200139e-01 8.00332893e-03 4.38837945e-01 -5.65573871e-01 -6.86031759e-01 4.57054794e-01 4.71796215e-01 -1.61327446e+00 9.17731881e-01 3.18927646e-01 7.56741703e-01 -4.65646118e-01 -2.70838499e-01 -1.36182916e+00 -1.74890235e-01 -1.72212973e-01 9.83894691e-02 7.19393909e-01 1.69309095e-01 -4.09666598e-01 6.31362617e-01 6.52683303e-02 -3.24308574e-01 -7.50264406e-01 -1.06637430e+00 -3.78786057e-01 -2.92265475e-01 -2.25770071e-01 3.20503145e-01 5.13984740e-01 -2.06648558e-01 2.82648265e-01 -3.58060122e-01 2.32186541e-01 6.82345510e-01 1.21519893e-01 5.36684513e-01 -9.02898610e-01 -1.71277732e-01 -4.41498309e-01 -8.12011123e-01 -1.03103685e+00 -4.73581314e-01 -7.30392039e-01 -1.50600657e-01 -1.63586450e+00 1.22645721e-01 -1.71708852e-01 -4.08301681e-01 -2.40460053e-01 -6.14617765e-02 4.44138795e-01 1.92493975e-01 2.73739040e-01 -5.30347884e-01 7.32470095e-01 1.60632741e+00 -1.99760884e-01 -1.87627807e-01 2.65290231e-01 -4.00708705e-01 4.58120555e-01 9.94973838e-01 -1.72570527e-01 -4.85805780e-01 -4.13202494e-01 9.41988379e-02 3.21041018e-01 4.52973127e-01 -1.50804758e+00 1.91228300e-01 2.39353970e-01 6.85718060e-01 -1.04003179e+00 5.07758260e-01 -8.74347687e-01 -2.09655482e-02 4.81865287e-01 -2.10418835e-01 2.05192398e-02 1.82340503e-01 2.84090996e-01 -6.09342337e-01 -1.01238862e-01 1.15471876e+00 -1.93635285e-01 -9.93855417e-01 2.99193710e-01 -7.84615353e-02 -1.05115965e-01 9.21902835e-01 -4.62826014e-01 -5.43307029e-02 -5.07201254e-01 -4.62866604e-01 -6.14964403e-03 4.13000166e-01 3.56447607e-01 1.03167391e+00 -1.28431571e+00 -7.04490125e-01 3.01619351e-01 2.29860038e-01 -2.06925929e-01 7.29131579e-01 9.51670408e-01 -6.66368663e-01 6.83548033e-01 -7.69987404e-01 -8.23546112e-01 -1.14870107e+00 6.40239716e-01 5.18772840e-01 -1.49944052e-01 -4.10785496e-01 5.71253717e-01 2.99645185e-01 5.78411743e-02 1.70245379e-01 -1.90569833e-01 -5.77306032e-01 -1.66196123e-01 5.60878038e-01 3.94971400e-01 2.85926849e-01 -8.11265588e-01 -3.12298447e-01 6.93373024e-01 1.19980574e-01 -2.33598590e-01 1.29906201e+00 -5.78445673e-01 1.58193022e-01 2.31462032e-01 1.35594797e+00 -1.46070644e-01 -1.29028678e+00 -2.61821181e-01 -3.79595488e-01 -8.38516951e-01 3.82170022e-01 -7.96664655e-01 -1.20488536e+00 1.32504594e+00 1.45678866e+00 -7.71848261e-02 1.71940482e+00 -1.14451468e-01 7.10613191e-01 -2.74078459e-01 5.13659239e-01 -8.58772278e-01 1.68894634e-01 2.08599851e-01 1.00934589e+00 -1.54536986e+00 4.82781790e-02 -1.85485810e-01 -6.62995577e-01 9.20692086e-01 6.73240125e-01 -9.38556492e-02 6.54918611e-01 -1.82792410e-01 -4.94562685e-02 -3.28806460e-01 -4.80978847e-01 -3.46791476e-01 5.86139560e-01 7.03610122e-01 2.82316178e-01 -1.89027414e-01 -3.24774772e-01 1.66146100e-01 -9.84549522e-02 -1.07728713e-03 4.89661396e-01 5.98021388e-01 -3.52756470e-01 -6.27092421e-01 -4.28108752e-01 3.72406453e-01 -5.42618096e-01 -1.55020162e-01 1.43698692e-01 6.35362506e-01 3.52081895e-01 1.04776263e+00 6.35863468e-02 -3.06944162e-01 5.97300053e-01 -4.09598500e-01 4.80736583e-01 -3.79806161e-01 -4.15556312e-01 1.62021413e-01 -2.30762511e-01 -8.93622458e-01 -7.89931417e-01 -4.91574526e-01 -8.94627810e-01 -2.01217905e-01 -1.48708493e-01 -9.34137851e-02 7.18704045e-01 5.85225761e-01 3.38763207e-01 4.70645159e-01 9.10084844e-01 -1.11006868e+00 9.54816397e-03 -9.19922054e-01 -4.73366559e-01 3.99079859e-01 4.37120736e-01 -8.56632590e-01 -3.92403960e-01 -9.58766863e-02]
[11.789329528808594, -1.9554492235183716]
819876b3-6017-4dbf-bf6e-aa2eb763c417
are-negative-samples-necessary-in-entity
2108.05278
null
https://arxiv.org/abs/2108.05278v2
https://arxiv.org/pdf/2108.05278v2.pdf
Are Negative Samples Necessary in Entity Alignment? An Approach with High Performance, Scalability and Robustness
Entity alignment (EA) aims to find the equivalent entities in different KGs, which is a crucial step in integrating multiple KGs. However, most existing EA methods have poor scalability and are unable to cope with large-scale datasets. We summarize three issues leading to such high time-space complexity in existing EA methods: (1) Inefficient graph encoders, (2) Dilemma of negative sampling, and (3) "Catastrophic forgetting" in semi-supervised learning. To address these challenges, we propose a novel EA method with three new components to enable high Performance, high Scalability, and high Robustness (PSR): (1) Simplified graph encoder with relational graph sampling, (2) Symmetric negative-free alignment loss, and (3) Incremental semi-supervised learning. Furthermore, we conduct detailed experiments on several public datasets to examine the effectiveness and efficiency of our proposed method. The experimental results show that PSR not only surpasses the previous SOTA in performance but also has impressive scalability and robustness.
['Man Lan', 'Yuanbin Wu', 'Wenting Wang', 'Xin Mao']
2021-08-11
null
null
null
null
['graph-sampling']
['graphs']
[ 1.22891821e-01 1.05468892e-01 -3.98195654e-01 -1.63190737e-01 -8.15533698e-01 -2.42394656e-01 1.02596171e-01 3.73988837e-01 -3.67095083e-01 8.94367576e-01 1.60568982e-01 -2.54299134e-01 -2.18289807e-01 -8.56464863e-01 -7.47336924e-01 -4.12586182e-01 -2.39500985e-01 4.81906533e-01 5.67536414e-01 -2.41724521e-01 -1.29557371e-01 2.15369210e-01 -1.06811726e+00 -1.53776467e-01 1.29778683e+00 8.44713688e-01 1.17310718e-01 1.48008034e-01 -1.06645703e-01 1.06333148e+00 -3.70471388e-01 -1.02800190e+00 1.87929660e-01 -2.62068152e-01 -9.14030969e-01 -1.40153423e-01 1.92855865e-01 -2.97161579e-01 -5.18945932e-01 1.33883977e+00 6.02709591e-01 -1.24786839e-01 2.94301420e-01 -1.56427610e+00 -7.33553469e-01 1.06350851e+00 -8.86482775e-01 -2.76979804e-02 2.52002597e-01 -1.54581249e-01 1.28179061e+00 -6.06328964e-01 6.67739749e-01 1.03532124e+00 8.47827077e-01 2.34195456e-01 -9.83789980e-01 -8.19371045e-01 2.19102174e-01 2.98292696e-01 -1.81216812e+00 -2.40574211e-01 7.45227098e-01 -1.35447025e-01 9.39258933e-01 7.33610988e-02 5.45993149e-01 6.92149460e-01 -8.56171697e-02 8.96792829e-01 7.23255336e-01 -2.85558373e-01 -6.81313351e-02 1.58327803e-01 1.70311611e-02 9.09246922e-01 4.92539793e-01 -2.80415088e-01 -3.65363419e-01 -3.12046975e-01 5.75716615e-01 -8.28447193e-02 -3.21564198e-01 -5.90986431e-01 -1.10725319e+00 7.08243132e-01 6.98915660e-01 7.03591630e-02 -2.10690066e-01 4.28240746e-02 5.86813748e-01 3.59311104e-01 2.10849330e-01 1.96651831e-01 -5.23983181e-01 1.90519169e-01 -5.80342114e-01 1.14443116e-01 7.05535352e-01 1.39654458e+00 7.88921714e-01 4.21843603e-02 1.74266919e-01 7.50859618e-01 2.12660268e-01 5.00704706e-01 3.29095930e-01 -3.91145736e-01 1.05265749e+00 9.04150486e-01 -1.45019919e-01 -1.27821577e+00 -4.53412473e-01 -5.75243235e-01 -1.23004341e+00 -4.97273862e-01 -1.30310670e-01 -8.22439194e-02 -5.15418768e-01 2.03430772e+00 3.89338672e-01 9.30851623e-02 2.64899552e-01 5.05556881e-01 1.01542044e+00 3.99689347e-01 1.79082364e-01 -4.29463923e-01 1.15036702e+00 -1.21601152e+00 -8.68565381e-01 -2.37285897e-01 9.80114460e-01 -4.87623245e-01 9.40708876e-01 -1.10394873e-01 -9.15960371e-01 -4.12335604e-01 -1.27679300e+00 -1.20681912e-01 -4.15287793e-01 3.38964880e-01 9.20319617e-01 4.71176147e-01 -8.52225721e-01 4.92751628e-01 -5.10374844e-01 -2.85986811e-01 4.47942346e-01 6.17071331e-01 -6.53336287e-01 -1.01343868e-02 -1.50515270e+00 6.78626060e-01 7.67756939e-01 -5.93435131e-02 -2.24790931e-01 -5.72106361e-01 -1.02506220e+00 2.24171758e-01 7.44329512e-01 -7.62478828e-01 7.78185129e-01 -7.55563915e-01 -1.05356324e+00 5.13405859e-01 -7.51694441e-02 -3.85289907e-01 5.96524715e-01 -3.65856886e-01 -7.61546075e-01 -6.70546591e-02 2.07399458e-01 3.99742007e-01 2.00371042e-01 -1.02331626e+00 -6.37508214e-01 -4.46317285e-01 1.52495760e-03 4.17823732e-01 -5.07165432e-01 -1.69424221e-01 -7.28072882e-01 -7.10931182e-01 2.68047273e-01 -9.41257358e-01 -2.03533486e-01 -4.55615520e-01 -7.06206441e-01 -2.10776776e-01 4.25008386e-01 -7.26611614e-01 1.78033912e+00 -2.16204739e+00 2.20678568e-01 1.70132533e-01 3.18848521e-01 4.88673002e-01 -3.22104990e-02 6.12627268e-01 -2.43959263e-01 2.22375840e-01 -1.30447447e-01 -4.98884059e-02 -1.53972864e-01 1.91104449e-02 -1.57613039e-01 1.10727355e-01 8.44673961e-02 1.08688915e+00 -1.10782266e+00 -7.83748150e-01 -1.02927729e-01 2.68477678e-01 -4.30337369e-01 1.39580414e-01 6.34978414e-02 1.22748233e-01 -3.63351494e-01 7.89087534e-01 7.54179716e-01 -6.37179255e-01 5.75555682e-01 -5.97233355e-01 2.94235110e-01 2.86965013e-01 -1.63663745e+00 1.34474528e+00 1.79800969e-02 3.63825588e-03 -2.98347652e-01 -7.26359367e-01 8.51429760e-01 1.85656339e-01 3.56504619e-01 -7.03747034e-01 -7.29333535e-02 4.22916055e-01 -2.11005449e-01 -3.99292141e-01 7.57753372e-01 2.60944992e-01 -1.77558977e-02 2.04288840e-01 1.39595509e-01 5.58775306e-01 3.42306644e-01 5.03677249e-01 1.09082425e+00 1.88738462e-02 5.90774894e-01 1.45277726e-02 6.78198338e-01 -2.05411226e-01 1.04693401e+00 4.16566223e-01 -2.14202166e-01 3.97542790e-02 6.63091719e-01 -2.96343327e-01 -8.96032214e-01 -7.53233314e-01 3.45610052e-01 6.99780345e-01 4.46733236e-01 -8.37323308e-01 -4.17919099e-01 -1.01499033e+00 1.78064834e-02 4.34548378e-01 -2.69752920e-01 -4.76453453e-01 -5.90897560e-01 -9.61173356e-01 7.01747715e-01 7.14959621e-01 8.05449426e-01 -6.61807299e-01 2.14755878e-01 1.47413045e-01 -5.61198652e-01 -1.36173415e+00 -4.94617939e-01 -2.26362105e-02 -9.67804909e-01 -1.21815276e+00 -3.67435932e-01 -9.92556810e-01 9.96751189e-01 4.35419887e-01 9.66169178e-01 2.32410878e-01 1.74878493e-01 -2.05032945e-01 -3.24160159e-01 -1.81404009e-01 -2.66999424e-01 5.80046594e-01 1.13955587e-01 -2.24246085e-01 3.94522369e-01 -4.88347828e-01 -4.97690141e-01 3.42409372e-01 -8.51881623e-01 1.13184124e-01 1.01645851e+00 8.75527263e-01 7.00509131e-01 4.19192255e-01 8.55406523e-01 -1.41817808e+00 5.24107873e-01 -4.42978114e-01 -6.20462716e-01 7.99928665e-01 -1.15909767e+00 2.23145988e-02 7.62452781e-01 -1.78999379e-01 -8.68786395e-01 1.20342761e-01 -2.64640629e-01 -2.43295982e-01 4.40362573e-01 6.31956577e-01 -3.62637579e-01 -9.05552804e-02 4.43433046e-01 2.90199041e-01 -1.40827477e-01 -3.69147182e-01 2.95185655e-01 6.45765424e-01 5.30384421e-01 -4.11285400e-01 1.00081348e+00 1.70307845e-01 2.39006174e-03 -2.04276115e-01 -7.79439390e-01 -3.44836980e-01 -6.46386683e-01 2.40463883e-01 4.08313900e-01 -1.42482400e+00 -6.39773011e-01 3.84891570e-01 -7.69976318e-01 1.16668552e-01 3.51440571e-02 4.85745341e-01 -3.00564915e-01 8.10837746e-01 -8.01968098e-01 -6.32149398e-01 -8.22950661e-01 -9.67959821e-01 7.01479733e-01 3.98695529e-01 1.48810282e-01 -6.84568226e-01 -7.37969354e-02 5.07597089e-01 2.70686924e-01 1.56706795e-01 1.17085671e+00 -7.69027054e-01 -6.50117159e-01 -2.97821552e-01 -3.92126352e-01 1.41645640e-01 1.73654377e-01 1.56458002e-02 -4.83327776e-01 -5.68190813e-01 -7.17926741e-01 -4.58358973e-01 5.49495459e-01 -1.92293480e-01 8.59103084e-01 -4.62274730e-01 -5.06558120e-01 5.98125100e-01 1.68276691e+00 4.27335426e-02 7.04216003e-01 2.72624403e-01 9.79372442e-01 3.08386177e-01 9.49534714e-01 2.53976554e-01 7.94723094e-01 5.19204080e-01 3.02544892e-01 -3.03128570e-01 1.60971861e-02 -8.05768847e-01 3.01765084e-01 1.49303389e+00 -1.28383547e-01 -2.73686588e-01 -6.47026002e-01 6.69071555e-01 -2.20079088e+00 -6.90240979e-01 -1.00293398e-01 2.25522208e+00 7.48814285e-01 3.48523349e-01 1.61476418e-01 1.69645295e-01 8.77160132e-01 8.86538029e-02 -5.77839851e-01 7.10207820e-02 -2.50564426e-01 -1.80293128e-01 6.91590667e-01 1.09902352e-01 -1.13396120e+00 1.11323082e+00 6.22329807e+00 7.20638990e-01 -7.59511650e-01 1.63554382e-02 2.90496856e-01 2.65100539e-01 -3.37740958e-01 1.54720634e-01 -9.00594294e-01 5.07147551e-01 5.07371128e-01 -2.69269198e-01 3.40800762e-01 9.37580287e-01 -6.46054029e-01 3.72210681e-01 -8.13621879e-01 9.11596358e-01 1.70782749e-02 -1.17664385e+00 2.44130641e-01 -1.71907738e-01 6.44446969e-01 1.77186325e-01 -4.32220817e-01 4.92668092e-01 5.04396617e-01 -6.70225322e-01 3.70989889e-01 1.13590129e-01 8.46981883e-01 -1.01913130e+00 1.00762141e+00 2.32221693e-01 -1.60641253e+00 -6.91812858e-02 -6.20072663e-01 4.54295903e-01 8.81489292e-02 6.05346024e-01 -6.67691886e-01 1.34445965e+00 6.24513626e-01 8.19259942e-01 -6.71933949e-01 9.11377549e-01 -4.29257154e-01 2.46382758e-01 -3.07174206e-01 -1.73501689e-02 -1.20207109e-01 -2.48602509e-01 3.02570760e-01 1.05796301e+00 2.51623988e-01 -1.85100451e-01 1.41951814e-01 4.70497638e-01 -4.26720262e-01 4.12231445e-01 -6.03552461e-01 -2.05663696e-01 9.95217621e-01 1.20499218e+00 -4.97074246e-01 -2.44786292e-01 -7.34977961e-01 8.54226053e-01 8.23954105e-01 1.73417494e-01 -1.00306618e+00 -6.91130400e-01 2.17926025e-01 -9.77687016e-02 3.17468762e-01 -5.99696115e-02 2.24813551e-01 -1.25446284e+00 2.91321695e-01 -9.61222291e-01 8.86052251e-01 -5.99250555e-01 -1.18971050e+00 6.85645521e-01 -3.42342794e-01 -1.23597634e+00 6.29607961e-02 -9.08848569e-02 -2.09051445e-01 4.91441905e-01 -1.66438115e+00 -1.42911947e+00 -2.62653291e-01 6.16914988e-01 -8.67910311e-02 -2.04475716e-01 7.14160502e-01 8.89899969e-01 -9.01681244e-01 1.10541022e+00 8.19897186e-03 2.84367442e-01 8.24404955e-01 -1.22121787e+00 4.87185061e-01 9.19637859e-01 -1.65920071e-02 5.93675554e-01 2.38516703e-01 -8.63387167e-01 -1.36099803e+00 -1.23145974e+00 1.25164652e+00 -1.02345057e-01 5.84744573e-01 -2.15661466e-01 -9.49946642e-01 1.07200074e+00 -1.71695709e-01 -1.16123125e-01 7.77994752e-01 3.29375267e-01 -5.68832815e-01 -4.63548571e-01 -1.06531131e+00 7.10665405e-01 1.18597770e+00 -4.23162729e-01 -3.77333105e-01 2.84928381e-01 9.95370686e-01 -4.96067911e-01 -1.17247653e+00 9.28165674e-01 4.31115538e-01 -7.43454397e-01 8.84319544e-01 -6.82584167e-01 2.73872763e-01 -4.74823475e-01 -4.91350591e-02 -1.01769066e+00 -6.04336202e-01 -6.51492715e-01 -4.45044279e-01 1.66922164e+00 4.78473037e-01 -8.49490106e-01 6.15108669e-01 3.43126118e-01 1.73565373e-01 -9.35349822e-01 -6.12020075e-01 -7.84588873e-01 -3.52393806e-01 2.24027544e-01 1.08418512e+00 1.30844748e+00 1.59776896e-01 7.11071134e-01 -6.49207711e-01 4.94769871e-01 5.12096584e-01 2.69891798e-01 8.71194363e-01 -1.09592485e+00 -2.22692207e-01 -9.83267128e-02 -5.84398210e-01 -9.76494849e-01 -1.91814050e-01 -8.78615975e-01 -3.11133534e-01 -1.58641660e+00 6.66264951e-01 -6.81008220e-01 -5.02007306e-01 6.43347144e-01 -5.33869743e-01 -1.37868598e-01 -4.35429364e-02 4.37651783e-01 -1.02763307e+00 4.93245959e-01 8.82968485e-01 6.26832470e-02 -1.09848797e-01 -2.65127122e-01 -9.35886204e-01 4.46989149e-01 6.42219961e-01 -5.05533099e-01 -6.68718934e-01 -3.60203952e-01 6.76091492e-01 1.69007853e-01 -7.12390020e-02 -9.08696353e-01 4.52844739e-01 -1.17112361e-02 1.55048683e-01 -7.15783715e-01 -1.79916963e-01 -7.64585853e-01 3.96669507e-01 6.21986806e-01 -1.30245224e-01 4.31026638e-01 -1.52392790e-01 7.90022492e-01 -3.69852304e-01 -2.90782414e-02 5.83559752e-01 1.08195886e-01 -6.89023077e-01 5.28500021e-01 4.21264708e-01 1.82677388e-01 1.02647245e+00 1.11551709e-01 -5.58295667e-01 -2.80129433e-01 -2.82589257e-01 6.13585293e-01 5.22188365e-01 5.23318946e-01 3.16582143e-01 -1.51134157e+00 -6.32145464e-01 1.39668524e-01 3.12009007e-01 2.79967397e-01 2.55927414e-01 9.15441573e-01 -4.43494767e-01 3.32695216e-01 -3.20614688e-02 -1.89089194e-01 -1.43686783e+00 6.83831692e-01 1.52585208e-01 -7.10371792e-01 -5.81978798e-01 6.67208850e-01 -7.06268549e-02 -6.98751628e-01 3.90512943e-01 2.29944810e-01 -2.04989493e-01 -1.37975529e-01 2.05897823e-01 3.35016996e-01 4.55009975e-02 -6.32664204e-01 -4.00279433e-01 4.12674546e-01 -5.35607398e-01 6.34235263e-01 1.21365583e+00 -2.23507002e-01 -2.48360604e-01 1.00965209e-01 9.99639213e-01 1.91629618e-01 -6.55937254e-01 -6.56252682e-01 1.41511664e-01 -3.32422942e-01 -2.65325367e-01 -5.86358607e-01 -1.23279703e+00 4.38616514e-01 2.59718597e-01 1.22084834e-01 1.20021057e+00 -2.02630714e-01 1.25045979e+00 4.20315146e-01 5.08959830e-01 -1.27410972e+00 -1.51233763e-01 2.42805079e-01 3.97884578e-01 -1.17363858e+00 5.25712371e-01 -9.27263379e-01 -8.73488843e-01 7.58450389e-01 9.04721916e-01 3.48114192e-01 4.32007730e-01 1.32960090e-02 -2.80465245e-01 -2.20443889e-01 -7.83190370e-01 -2.95043260e-01 1.04414135e-01 3.31097662e-01 2.90695161e-01 -5.42985573e-02 -4.56907809e-01 8.59901965e-01 -1.36008814e-01 1.75971240e-01 2.43146390e-01 9.67490613e-01 -9.63719562e-02 -1.15653849e+00 3.84428531e-01 4.80973989e-01 -4.94610995e-01 -4.15803194e-02 -4.61807996e-01 9.10997093e-01 -3.37853208e-02 6.89444065e-01 -3.14721346e-01 -7.79873013e-01 4.65839893e-01 4.42854827e-03 3.07901204e-01 -2.24336535e-01 -3.56629819e-01 -2.38044485e-01 2.50720024e-01 -3.82923245e-01 -3.24089199e-01 -3.30663562e-01 -1.28456926e+00 -4.02114153e-01 -8.70318294e-01 2.04095155e-01 2.71919072e-01 6.55713558e-01 7.78629661e-01 4.03502941e-01 7.10167050e-01 2.79477477e-01 -7.10778534e-01 -8.27298939e-01 -6.41809881e-01 6.02876067e-01 -7.82961175e-02 -4.65844214e-01 -1.62356332e-01 -3.79688382e-01]
[8.74822998046875, 7.973048210144043]
fbb7fa08-4afb-463b-9e38-e91ab00678b4
one-class-kernel-spectral-regression
1807.01085
null
http://arxiv.org/abs/1807.01085v6
http://arxiv.org/pdf/1807.01085v6.pdf
One-Class Kernel Spectral Regression
The paper introduces a new efficient nonlinear one-class classifier formulated as the Rayleigh quotient criterion optimisation. The method, operating in a reproducing kernel Hilbert space, minimises the scatter of target distribution along an optimal projection direction while at the same time keeping projections of positive observations distant from the mean of the negative class. We provide a graph embedding view of the problem which can then be solved efficiently using the spectral regression approach. In this sense, unlike previous similar methods which often require costly eigen-computations of dense matrices, the proposed approach casts the problem under consideration into a regression framework which is computationally more efficient. In particular, it is shown that the dominant complexity of the proposed method is the complexity of computing the kernel matrix. Additional appealing characteristics of the proposed one-class classifier are: 1-the ability to be trained in an incremental fashion (allowing for application in streaming data scenarios while also reducing the computational complexity in a non-streaming operation mode); 2-being unsupervised, but providing the option for refining the solution using negative training examples, when available; And last but not the least, 3-the use of the kernel trick which facilitates a nonlinear mapping of the data into a high-dimensional feature space to seek better solutions.
['Shervin Rahimzadeh Arashloo', 'Josef Kittler']
2018-07-03
null
null
null
null
['one-class-classifier']
['methodology']
[ 4.05199081e-01 3.18779141e-01 1.94948286e-01 -1.04785904e-01 -4.28154469e-01 -3.82752448e-01 5.71636140e-01 3.74087125e-01 -6.59843862e-01 5.40566325e-01 -2.36493155e-01 -3.23029995e-01 -5.77265799e-01 -7.42611349e-01 -3.20570409e-01 -1.16589773e+00 -3.52769911e-01 5.26968420e-01 1.41574740e-01 -1.95293069e-01 2.57249087e-01 7.73452997e-01 -1.72883141e+00 -3.01529169e-01 7.70727575e-01 1.18889201e+00 8.68605822e-02 7.33927786e-01 1.63060009e-01 5.85070491e-01 -2.77853966e-01 -1.82099655e-01 4.81709599e-01 -3.18873793e-01 -4.83160168e-01 3.38749647e-01 -5.21484837e-02 2.51316696e-01 1.89797416e-01 9.25303817e-01 4.03533012e-01 2.75296420e-01 8.47672582e-01 -1.10361087e+00 -7.14130476e-02 -6.23344304e-03 -3.90232891e-01 7.76439235e-02 3.48599255e-01 -3.76936555e-01 9.89899755e-01 -1.01618052e+00 3.67783397e-01 6.73607469e-01 4.94155198e-01 1.12775899e-01 -1.53965461e+00 -2.04419225e-01 -2.89230138e-01 2.22154602e-01 -1.63187945e+00 -2.49281555e-01 8.73613477e-01 -6.22917295e-01 7.31067121e-01 6.07731223e-01 8.45994055e-01 4.61031377e-01 9.87895057e-02 4.95702863e-01 1.06207252e+00 -7.01026678e-01 5.59568822e-01 6.26559794e-01 -4.77326885e-02 4.89262819e-01 2.35490233e-01 -6.54625744e-02 -1.72954082e-01 -3.82717311e-01 2.36830667e-01 -4.07776237e-02 -4.67240006e-01 -1.02212203e+00 -9.44123030e-01 1.10816002e+00 9.97895449e-02 3.76982689e-01 -4.94761109e-01 -4.36570793e-01 3.43422830e-01 3.28287989e-01 5.99250674e-01 2.80439615e-01 -1.58653438e-01 -7.32019693e-02 -1.06873858e+00 8.19689110e-02 1.18872988e+00 4.57382590e-01 9.93397057e-01 1.00805305e-01 5.75829864e-01 5.48347175e-01 3.99121404e-01 3.01624715e-01 6.23908758e-01 -3.11966479e-01 3.36191624e-01 5.97331047e-01 1.80328246e-02 -1.07898176e+00 -4.52694625e-01 -6.02135181e-01 -8.37117076e-01 3.96355718e-01 3.76844108e-01 -2.34031789e-02 -1.54217035e-01 1.39403534e+00 6.37244284e-01 2.53587067e-01 2.90407509e-01 6.53941512e-01 -2.20446922e-02 6.20360017e-01 -3.46525371e-01 -6.40248179e-01 8.64332318e-01 -5.92508793e-01 -4.61703360e-01 2.44693369e-01 7.48982072e-01 -7.60882914e-01 6.92377031e-01 5.99697590e-01 -6.89905584e-01 -2.58871138e-01 -1.22832561e+00 4.34045136e-01 -5.01001000e-01 1.89519197e-01 3.39433908e-01 8.80094349e-01 -1.14501607e+00 6.50577188e-01 -6.12401187e-01 -3.55045378e-01 -1.58257544e-01 6.43301904e-01 -4.98620838e-01 1.75819680e-01 -9.12942231e-01 9.31720376e-01 4.69767839e-01 2.82229275e-01 -9.56347063e-02 -5.49248695e-01 -1.04558706e+00 1.07093520e-01 2.73382157e-01 -6.78510070e-02 5.32699645e-01 -1.04131746e+00 -1.66099787e+00 5.89662015e-01 -1.44456372e-01 -4.10032839e-01 6.89471841e-01 -3.80241908e-02 -3.43474865e-01 3.25904757e-01 -1.08951658e-01 -8.84297043e-02 1.13263810e+00 -8.11634839e-01 -3.49893659e-01 -4.73797500e-01 -3.39293092e-01 3.83648127e-01 -6.76907599e-01 -4.16205049e-01 -8.37848634e-02 -4.44292188e-01 2.79822290e-01 -1.01699460e+00 -3.33917171e-01 -2.05732331e-01 -8.50895494e-02 -1.75979018e-01 1.00647509e+00 -4.55759108e-01 1.16853309e+00 -2.32410169e+00 6.02640986e-01 9.31925416e-01 1.11930460e-01 1.64764777e-01 2.36536726e-01 8.85434210e-01 -4.42638606e-01 -4.00652349e-01 -4.03686851e-01 -2.89441198e-02 -2.76197374e-01 6.43897057e-02 -1.83024123e-01 1.00573885e+00 4.18968290e-01 3.57574195e-01 -7.64375746e-01 -4.70234245e-01 4.80281442e-01 5.36599994e-01 -3.93811256e-01 2.32397601e-01 4.42645371e-01 2.74358362e-01 -1.64974079e-01 5.79655915e-02 4.50993091e-01 -1.30869880e-01 1.90020815e-01 -5.02747074e-02 -2.32474670e-01 -1.78895801e-01 -1.85249412e+00 1.19530857e+00 -5.32272518e-01 6.03264451e-01 1.62667960e-01 -1.61542928e+00 1.20503986e+00 3.74493688e-01 8.00523877e-01 -2.37780124e-01 2.72137336e-02 3.39806825e-01 -1.18066810e-01 -2.58832753e-01 4.88602281e-01 -3.44552338e-01 2.28652164e-01 4.91256088e-01 8.48034862e-03 -5.90581447e-02 1.64442584e-01 8.10163394e-02 7.91280866e-01 -2.11704858e-02 7.05688596e-01 -5.38153648e-01 9.93367910e-01 -2.99292624e-01 8.23246166e-02 2.28043094e-01 1.68169618e-01 2.88798422e-01 4.08124655e-01 -3.21152419e-01 -7.56803930e-01 -9.28760111e-01 -3.73759419e-01 6.79080725e-01 -8.01865384e-03 -2.43993744e-01 -5.88733852e-01 -5.17207623e-01 -7.92424679e-02 5.64155221e-01 -7.15007484e-01 -2.46246438e-02 -3.67384851e-01 -5.88925898e-01 6.99695386e-03 1.29252058e-02 -4.46010567e-02 -7.32742250e-01 -8.35739374e-01 1.89115733e-01 1.27434567e-01 -6.51136220e-01 -1.37178466e-01 6.20170951e-01 -1.11627042e+00 -1.04952860e+00 -8.17680597e-01 -6.69793725e-01 6.78600788e-01 1.17999390e-01 5.88547409e-01 -1.67956188e-01 -4.55727130e-01 6.61210537e-01 -3.33550036e-01 -2.51368493e-01 -2.51051337e-01 -6.26171231e-02 1.96969345e-01 5.90851426e-01 3.87513012e-01 -6.28747582e-01 -2.46823639e-01 2.95827031e-01 -9.82618988e-01 -2.75875121e-01 5.49502969e-01 9.87527192e-01 5.15433967e-01 3.40145290e-01 5.69947779e-01 -9.12172854e-01 5.51771939e-01 -5.85174680e-01 -7.63245106e-01 1.45461023e-01 -8.77783895e-01 1.75985768e-01 8.72673750e-01 -4.27282840e-01 -7.59150684e-01 4.45656002e-01 5.69249243e-02 -2.03709215e-01 -1.22980950e-02 3.79522711e-01 8.19180831e-02 -3.80899906e-01 7.61375844e-01 5.50969303e-01 4.16056961e-01 -3.10287148e-01 3.01145434e-01 7.66002893e-01 1.97843716e-01 -2.14065954e-01 1.06086266e+00 5.23262739e-01 4.03187722e-01 -1.46332526e+00 -2.63949692e-01 -1.09132171e+00 -9.87623334e-01 -4.10296738e-01 4.59279358e-01 -5.84369838e-01 -6.00115657e-01 2.47519258e-02 -5.27762949e-01 1.10055715e-01 -6.62639022e-01 7.15721846e-01 -8.40325058e-01 7.88483560e-01 -8.43582526e-02 -1.27718163e+00 -1.56013459e-01 -8.06320667e-01 7.41683602e-01 2.31825057e-02 -2.82128215e-01 -1.16185057e+00 2.59741902e-01 5.67072779e-02 1.46634117e-01 9.65595096e-02 7.41347849e-01 -9.07131374e-01 -4.59352545e-02 -7.68214643e-01 3.46913561e-02 5.56253672e-01 5.28186448e-02 -1.39541924e-01 -9.08150613e-01 -5.40159762e-01 3.78832579e-01 -1.00576118e-01 4.22031045e-01 1.08213589e-01 6.14234805e-01 -1.10241115e-01 -6.36623567e-03 4.04248804e-01 1.50353861e+00 -4.36021760e-02 3.83611262e-01 2.87039548e-01 3.45956773e-01 8.46587062e-01 7.51588464e-01 6.80714607e-01 -5.92795610e-02 7.44769335e-01 3.77949625e-01 -2.38786623e-01 6.21384561e-01 2.26345778e-01 2.59753615e-01 9.43180740e-01 -1.46647003e-02 1.62779555e-01 -6.55944943e-01 5.15441120e-01 -1.86930871e+00 -9.77939129e-01 -1.88707560e-01 2.72581577e+00 3.48135144e-01 -5.37616434e-03 3.16633284e-01 8.14116776e-01 5.43511868e-01 1.85625441e-02 -1.17667399e-01 -6.00397706e-01 9.38590243e-02 4.29976672e-01 4.87393409e-01 6.71765566e-01 -1.06553054e+00 1.29792407e-01 5.29322290e+00 5.89760840e-01 -1.19237053e+00 -2.21516088e-01 7.99591318e-02 2.01736987e-02 -8.42625573e-02 7.98536688e-02 -4.80650872e-01 3.17382634e-01 9.71166313e-01 -1.39956698e-01 3.97186637e-01 1.00009394e+00 1.55789644e-01 -3.71253788e-01 -1.10109794e+00 1.03913057e+00 2.67878532e-01 -8.45310271e-01 -2.78468579e-01 4.94197220e-01 2.61975855e-01 -2.46112645e-01 -1.08410142e-01 5.00933677e-02 -4.70672041e-01 -7.46531129e-01 6.09453082e-01 3.59472662e-01 5.27739048e-01 -9.94863033e-01 7.87813604e-01 6.47283137e-01 -1.11514890e+00 -1.60814628e-01 -2.98349202e-01 -2.39587501e-01 2.15750393e-02 6.90343142e-01 -9.61762846e-01 6.74420834e-01 4.41362798e-01 5.68944395e-01 -4.81303483e-01 9.88298774e-01 2.20251247e-01 3.82033259e-01 -6.50809109e-01 -2.66590089e-01 2.73622662e-01 -6.71615303e-01 6.56542242e-01 1.32535422e+00 5.73664069e-01 -7.28484690e-02 1.26981750e-01 3.89367700e-01 5.38434863e-01 7.44774938e-01 -9.52932298e-01 6.98388845e-04 -4.78096819e-03 1.37171912e+00 -8.97826254e-01 -1.19646285e-02 -5.13918459e-01 9.79362428e-01 3.24050546e-01 3.36871922e-01 -2.15950534e-01 -6.52753055e-01 1.42451301e-01 2.76784152e-01 5.44950962e-01 -1.60868332e-01 -8.95856172e-02 -9.95154262e-01 2.59221137e-01 -4.76883620e-01 3.95791203e-01 -1.80301681e-01 -9.27350938e-01 5.48454702e-01 -5.97909242e-02 -1.51656544e+00 -7.20736980e-01 -6.92417145e-01 -3.39914948e-01 1.06546628e+00 -1.32906282e+00 -6.26023114e-01 4.51895855e-02 7.15012312e-01 1.33387342e-01 -2.21575618e-01 1.18971598e+00 1.65120736e-01 -2.35705867e-01 3.37731034e-01 4.43302423e-01 -2.00817734e-01 3.37572843e-01 -1.43380916e+00 -3.81497592e-01 7.58989692e-01 2.57526726e-01 4.73017037e-01 8.36025298e-01 -2.61366278e-01 -1.20745850e+00 -6.36036992e-01 9.72142279e-01 5.23508899e-03 8.46147060e-01 -3.54369193e-01 -9.49555874e-01 1.66665792e-01 -1.32082731e-01 7.98684284e-02 1.05544043e+00 1.54708892e-01 -4.91412468e-02 -1.47332907e-01 -1.04296327e+00 3.09811980e-01 6.95276111e-02 -5.31859756e-01 -3.86868864e-01 3.65126312e-01 -1.27206799e-02 -3.49913649e-02 -9.07557011e-01 4.76728939e-03 5.68193555e-01 -1.07728589e+00 7.60887921e-01 -3.98352683e-01 -5.76421469e-02 -4.15958881e-01 -9.16226655e-02 -1.17449307e+00 -1.65146157e-01 -7.09855556e-01 -1.73888847e-01 8.00967693e-01 3.91562790e-01 -8.85021865e-01 8.96451414e-01 3.13229352e-01 3.71111721e-01 -1.05795252e+00 -1.26886821e+00 -7.18922436e-01 -4.13189590e-01 -4.76416290e-01 -1.59025550e-01 7.55946517e-01 2.76597857e-01 2.32382730e-01 -4.16157573e-01 2.18975410e-01 7.07769454e-01 8.43475983e-02 6.71522021e-01 -1.46502995e+00 -6.80187523e-01 -7.14196861e-02 -1.06245852e+00 -6.92280114e-01 3.56860198e-02 -7.78298914e-01 2.66864952e-02 -8.31753075e-01 -2.23730668e-01 -3.72866362e-01 -2.84926146e-01 -8.94290805e-02 1.69903159e-01 2.26532549e-01 7.99673144e-03 2.65821934e-01 -1.66595131e-01 4.39059347e-01 5.69355607e-01 2.52661079e-01 -3.09242904e-01 4.64942247e-01 -3.61335963e-01 5.99134207e-01 5.45680344e-01 -4.25823450e-01 -6.59003258e-01 3.45790803e-01 3.70108306e-01 4.83765788e-02 1.30675524e-01 -9.17454541e-01 2.24975124e-01 1.44214347e-01 2.63988554e-01 -3.88676584e-01 4.52041179e-01 -1.13649058e+00 1.11314312e-01 5.35529852e-01 -1.37383848e-01 3.80116999e-02 -1.36655299e-02 9.85731781e-01 -3.20426315e-01 -8.44658375e-01 8.96571398e-01 2.12637633e-01 -4.90613699e-01 -1.75716281e-01 -5.94188750e-01 -2.37831861e-01 1.32744443e+00 -5.99345803e-01 5.16174495e-01 -5.52342296e-01 -8.75672400e-01 -1.83310226e-01 5.01834631e-01 -6.75534680e-02 4.96012568e-01 -1.06763327e+00 -4.63328987e-01 5.65482199e-01 1.89218864e-01 -1.64129913e-01 1.04610890e-01 1.11591148e+00 -6.44975305e-01 3.54857415e-01 5.97959943e-02 -7.92688668e-01 -1.33706057e+00 5.41732788e-01 8.21368098e-02 -3.40238482e-01 -6.62369072e-01 5.43174922e-01 4.23420779e-03 -3.79615873e-01 1.23943590e-01 1.47769824e-01 -5.28987765e-01 3.44495982e-01 5.60031474e-01 5.81428170e-01 4.55254853e-01 -8.78389776e-01 -2.93576509e-01 4.98894870e-01 1.46602377e-01 -2.62108058e-01 1.45936561e+00 -9.25666839e-02 -2.26290300e-01 6.13915920e-01 1.45329726e+00 2.84390271e-01 -9.72944140e-01 -2.49450609e-01 3.00808668e-01 -3.66875410e-01 9.93613228e-02 -9.41718742e-02 -6.34216726e-01 8.11918914e-01 6.69610500e-01 5.63918114e-01 1.22340274e+00 -2.86843061e-01 1.18781976e-01 4.84963447e-01 1.07852764e-01 -1.11111832e+00 -2.23653615e-01 1.90143451e-01 7.31185794e-01 -9.81251061e-01 2.12671623e-01 -5.60767412e-01 -4.62368608e-01 1.62182415e+00 -4.09919582e-02 -3.20588529e-01 8.43875468e-01 1.32729232e-01 1.41633824e-01 -9.53584313e-02 -4.04492587e-01 -1.26487017e-01 3.26936990e-01 6.38581753e-01 3.94569129e-01 5.02023883e-02 -4.76560444e-01 -4.70075645e-02 -6.76719993e-02 -2.62010753e-01 5.53054631e-01 8.36095273e-01 -2.79377699e-01 -1.03940153e+00 -3.52836311e-01 5.38542449e-01 -2.51786470e-01 1.60307586e-01 -2.04727456e-01 9.09926295e-01 -2.33224511e-01 8.60695601e-01 -1.43091112e-01 -1.15837388e-01 3.29784572e-01 2.84515202e-01 1.92691356e-01 -6.91756904e-01 -2.40743935e-01 2.45155796e-01 -1.85279265e-01 -4.55324262e-01 -3.73522103e-01 -8.42029214e-01 -8.84581625e-01 2.16221899e-01 -6.49505079e-01 5.93677521e-01 9.20982599e-01 9.91156757e-01 -7.75418952e-02 6.18222281e-02 9.65919733e-01 -1.07756519e+00 -9.84600484e-01 -7.29561269e-01 -1.03269184e+00 2.28669256e-01 2.05117106e-01 -6.25638545e-01 -6.78114772e-01 -1.64540499e-01]
[7.823635578155518, 4.101921558380127]
337caf5e-c329-47c6-b459-25168005dfff
multi-modal-egocentric-activity-recognition
1807.00612
null
https://arxiv.org/abs/1807.00612v3
https://arxiv.org/pdf/1807.00612v3.pdf
Multi-modal Egocentric Activity Recognition using Audio-Visual Features
Egocentric activity recognition in first-person videos has an increasing importance with a variety of applications such as lifelogging, summarization, assisted-living and activity tracking. Existing methods for this task are based on interpretation of various sensor information using pre-determined weights for each feature. In this work, we propose a new framework for egocentric activity recognition problem based on combining audio-visual features with multi-kernel learning (MKL) and multi-kernel boosting (MKBoost). For that purpose, firstly grid optical-flow, virtual-inertia feature, log-covariance, cuboid are extracted from the video. The audio signal is characterized using a "supervector", obtained based on Gaussian mixture modelling of frame-level features, followed by a maximum a-posteriori adaptation. Then, the extracted multi-modal features are adaptively fused by MKL classifiers in which both the feature and kernel selection/weighing and recognition tasks are performed together. The proposed framework was evaluated on a number of egocentric datasets. The results showed that using multi-modal features with MKL outperforms the existing methods.
['Alptekin Temizel', 'Peter Jančovič', 'Fatih Özkan', 'Mehmet Ali Arabaci', 'Elif Surer']
2018-07-02
null
null
null
null
['egocentric-activity-recognition']
['computer-vision']
[ 3.87889892e-02 -5.50571978e-01 -8.87808483e-03 -2.14062199e-01 -8.57091188e-01 -1.46009997e-01 7.39253819e-01 1.82420149e-01 -6.62068665e-01 6.51135147e-01 7.96074867e-01 6.37750983e-01 -4.74766254e-01 -2.27682605e-01 -3.16582412e-01 -1.11970615e+00 -2.24266067e-01 -1.34183735e-01 2.35127985e-01 1.25928074e-01 4.52744961e-01 3.21829408e-01 -2.01712322e+00 3.36713493e-01 5.92204630e-01 1.02598214e+00 1.83707923e-01 1.09366620e+00 2.72476166e-01 9.57759082e-01 -3.08086604e-01 -1.08647421e-02 -9.62118879e-02 -3.25471103e-01 -4.85854715e-01 2.62228340e-01 6.41168505e-02 -1.91982627e-01 4.39635254e-02 5.73994815e-01 7.50939608e-01 6.98100507e-01 9.32517827e-01 -1.34483683e+00 2.54431367e-01 -8.12616795e-02 -5.35415590e-01 4.96457905e-01 8.65598321e-01 -1.32772595e-01 7.28290439e-01 -9.72458363e-01 3.18731576e-01 1.21043110e+00 6.05336905e-01 1.29539341e-01 -9.24051702e-01 -4.23538446e-01 4.14969027e-02 1.04261124e+00 -1.41404760e+00 -6.09054685e-01 1.04917014e+00 -7.40663230e-01 7.80732870e-01 1.19203083e-01 1.09917307e+00 9.76457596e-01 2.81849116e-01 8.77685666e-01 8.65630388e-01 -5.17669261e-01 4.01755542e-01 2.63116181e-01 -5.47887832e-02 5.49489379e-01 -5.50010987e-02 -4.23649281e-01 -8.25743198e-01 -4.51376587e-01 3.14056158e-01 5.79349175e-02 -2.27319479e-01 -8.01099539e-01 -1.36348689e+00 6.64616942e-01 -1.96573377e-01 3.77380103e-01 -7.82671809e-01 1.60207316e-01 6.89637065e-01 -5.17580472e-02 6.35845542e-01 -3.40446293e-01 -2.59923875e-01 -5.70157409e-01 -8.38639200e-01 1.86791390e-01 6.08133376e-01 5.15086353e-01 7.35767007e-01 -6.10966049e-02 -2.53345698e-01 8.54945064e-01 5.83221912e-01 3.12062651e-01 9.57910478e-01 -8.78752828e-01 1.93220362e-01 5.03451347e-01 1.04827888e-01 -1.02673423e+00 -6.20763838e-01 -2.51448691e-01 -6.53546929e-01 1.71387747e-01 3.23952675e-01 -2.05959573e-01 -4.61127013e-02 1.55420899e+00 9.00441349e-01 6.82471752e-01 1.98775753e-01 8.60624433e-01 4.32113290e-01 6.19872093e-01 2.17941031e-01 -5.41965365e-01 1.50035334e+00 -7.94995666e-01 -8.76051664e-01 2.82536417e-01 7.12907374e-01 -8.12962651e-01 5.21515608e-01 7.05770016e-01 -7.09124029e-01 -7.98295796e-01 -1.03315842e+00 4.24322516e-01 -3.05409551e-01 3.58263582e-01 3.57988834e-01 8.38134587e-01 -7.75665998e-01 3.83577645e-01 -7.40607858e-01 -6.58472419e-01 8.68619531e-02 1.68633714e-01 -6.01048768e-01 3.65518987e-01 -9.32295799e-01 7.25339055e-01 6.88707292e-01 -9.79536772e-02 -8.59691501e-01 -1.88137233e-01 -9.31351125e-01 -9.41084027e-02 9.19834524e-02 -6.49526596e-01 8.66393209e-01 -1.11688447e+00 -1.78355443e+00 5.25849164e-01 -2.13568166e-01 -3.93191755e-01 3.91652137e-01 -5.53620994e-01 -5.16069412e-01 4.83917773e-01 -1.30675301e-01 5.38955480e-02 1.28781331e+00 -7.04730153e-01 -9.31163490e-01 -6.58437371e-01 -4.04010480e-03 8.18017542e-01 -6.21790707e-01 6.44366741e-02 -1.20686173e-01 -5.64743996e-01 -9.06060040e-02 -6.77894771e-01 2.34493181e-01 -3.18883866e-01 6.65375367e-02 -4.93553907e-01 8.63107681e-01 -8.11087251e-01 1.30987203e+00 -2.16682220e+00 3.96556139e-01 6.91149309e-02 -7.79508501e-02 2.06218585e-02 4.68796670e-01 3.60442281e-01 -4.36994294e-03 -7.85264254e-01 2.90085495e-01 -3.32924366e-01 -1.78026468e-01 -2.75060594e-01 3.38610351e-01 1.00947976e+00 -1.27629176e-01 2.22060934e-01 -9.92353439e-01 -1.03301108e+00 8.42439651e-01 7.27438450e-01 -6.60992622e-01 3.24582636e-01 4.26297843e-01 5.71383357e-01 -4.29191232e-01 4.50503170e-01 4.10332322e-01 2.59546787e-01 -1.02702543e-01 -3.50915492e-01 -1.77981168e-01 -4.49915320e-01 -1.74759102e+00 1.95815873e+00 -4.33463663e-01 4.56267029e-01 4.86335764e-03 -1.30205882e+00 6.43515766e-01 6.35625482e-01 1.09363055e+00 2.33755000e-02 2.01859146e-01 -9.47883353e-02 -2.37013862e-01 -9.73480523e-01 4.02995557e-01 3.49874645e-01 6.03245832e-02 3.53421539e-01 5.71389496e-01 3.82121325e-01 2.97140956e-01 8.95248540e-03 8.76927435e-01 5.78546226e-01 7.59500027e-01 -1.12381622e-01 1.43407130e+00 -4.20002609e-01 4.55974132e-01 3.82650167e-01 -4.94315892e-01 1.90341651e-01 3.77829783e-02 -1.83426902e-01 -6.89225614e-01 -8.83191228e-01 6.32508621e-02 1.34803760e+00 1.68528706e-02 -5.31910002e-01 -9.81060803e-01 -4.14541602e-01 -1.76507145e-01 4.90660876e-01 -4.59810108e-01 -3.44775707e-01 -3.72637123e-01 -6.29905105e-01 3.61232758e-01 2.86378771e-01 5.29108524e-01 -1.05063641e+00 -9.50046360e-01 4.40985024e-01 -2.72007167e-01 -9.85797763e-01 -2.45011643e-01 -1.28850222e-01 -8.94025624e-01 -1.10828888e+00 -8.96456897e-01 -3.88351411e-01 2.74421632e-01 3.75452250e-01 4.46048349e-01 -6.06541812e-01 -4.00870860e-01 1.18656218e+00 -4.31403905e-01 -2.36791119e-01 5.77571020e-02 -2.02752367e-01 5.02790153e-01 9.19217885e-01 4.76117879e-01 -8.18123877e-01 -7.69590616e-01 1.80748329e-01 -5.14717460e-01 -1.90190703e-01 5.14908433e-01 7.20146894e-01 2.52542496e-01 -1.33593753e-01 6.30215228e-01 -1.55774593e-01 5.82880020e-01 -5.80001712e-01 -1.37240142e-01 2.17680082e-01 -1.64406985e-01 -1.50704980e-01 3.66077602e-01 -6.95752800e-01 -1.33723605e+00 2.10432991e-01 1.43704966e-01 -4.45424736e-01 -3.67704868e-01 2.26526663e-01 -3.59861523e-01 1.05917811e-01 6.33095801e-01 4.89534885e-01 -1.15559518e-01 -2.93863326e-01 4.98346657e-01 8.75043988e-01 3.62103492e-01 -4.82927799e-01 4.00816083e-01 6.19852781e-01 -3.16653624e-02 -1.41933656e+00 -4.24236804e-01 -1.07700205e+00 -7.93991208e-01 -9.53643382e-01 1.13699675e+00 -1.17794442e+00 -1.02542806e+00 8.00189734e-01 -8.63676906e-01 3.61075610e-01 -1.46387815e-01 1.32910478e+00 -1.01128721e+00 7.39220023e-01 -9.56419110e-02 -1.44843102e+00 -3.83924872e-01 -8.61475468e-01 1.07198763e+00 3.59695017e-01 -2.36868396e-01 -9.91572976e-01 4.02951837e-01 7.54980683e-01 1.19475715e-01 2.20585361e-01 1.76903471e-01 -5.93969882e-01 -9.92360860e-02 -3.65097493e-01 2.06727788e-01 4.60745782e-01 2.09295645e-01 -2.88053125e-01 -1.20122027e+00 -1.85905188e-01 1.16220430e-01 -3.22230101e-01 4.86999869e-01 6.88606858e-01 8.99401188e-01 -9.65371877e-02 -2.08913386e-01 4.59528953e-01 1.05087698e+00 1.55788913e-01 3.88085216e-01 3.31929773e-01 6.21222198e-01 4.43783700e-01 9.06864285e-01 1.17952478e+00 4.16226745e-01 7.61887193e-01 3.65703613e-01 4.51708049e-01 3.38472784e-01 2.21787974e-01 6.72414958e-01 7.58424819e-01 -5.15583038e-01 1.38430037e-02 -3.06342661e-01 4.99168158e-01 -2.21149421e+00 -1.39436972e+00 2.07348898e-01 2.32795119e+00 2.29380101e-01 2.31660474e-02 5.24540305e-01 5.50242841e-01 9.05659497e-01 2.50827730e-01 -3.59862447e-01 -1.27914295e-01 9.44565162e-02 -2.33654663e-01 2.51943916e-01 2.96251953e-01 -1.51121318e+00 4.09428507e-01 4.64300776e+00 9.85734999e-01 -6.71204507e-01 3.98769200e-01 -6.02969639e-02 -1.56860381e-01 4.06888813e-01 -4.68074642e-02 -7.14050174e-01 5.89803517e-01 8.52807701e-01 -1.83815181e-01 2.40518779e-01 1.02426660e+00 5.74535310e-01 -6.30715430e-01 -7.06148207e-01 1.55801666e+00 5.84315658e-01 -7.37653673e-01 -2.86462158e-01 -3.25056240e-02 3.67254287e-01 -3.25075328e-01 -4.23162997e-01 2.12183908e-01 -3.52486402e-01 -1.73394397e-01 5.92021823e-01 1.02821684e+00 1.41797796e-01 -9.03476059e-01 5.60867190e-01 4.87319946e-01 -1.52254808e+00 -3.60802233e-01 -1.18193902e-01 -7.87234604e-02 2.52897233e-01 4.77886796e-01 -5.23116887e-01 6.55567527e-01 7.08582282e-01 9.33462799e-01 -2.58480072e-01 1.32065260e+00 1.36828676e-01 4.12769467e-01 -3.44573766e-01 -1.89846754e-01 -1.18248582e-01 -3.41601610e-01 7.71690667e-01 1.45472515e+00 4.69519675e-01 -1.23278148e-01 2.07995400e-01 1.05835594e-01 5.13756752e-01 6.44401908e-01 -5.42288661e-01 3.17360908e-01 3.50650661e-02 1.55256140e+00 -5.76964796e-01 -5.75291336e-01 -5.22544503e-01 1.10365164e+00 1.23098731e-01 1.79115042e-01 -8.71459126e-01 -3.29088688e-01 6.56630397e-01 -1.55417293e-01 1.92680985e-01 -2.56863415e-01 5.33696473e-01 -1.44617295e+00 -3.96568887e-02 -3.39020938e-01 7.11798608e-01 -9.13907588e-01 -6.44476175e-01 1.17719308e-01 3.62987489e-01 -1.67620516e+00 -6.68829560e-01 -3.41045886e-01 -5.15550137e-01 4.95661825e-01 -1.14205456e+00 -1.25394320e+00 -5.60550570e-01 1.07408059e+00 8.17220926e-01 -3.63063574e-01 6.93531096e-01 5.51677048e-01 -5.15425742e-01 1.27267510e-01 2.18579531e-01 -1.60026222e-01 8.97737384e-01 -1.09139359e+00 -6.08757913e-01 6.85412765e-01 3.76491733e-02 1.51706114e-01 6.68836594e-01 -4.26985115e-01 -1.29191303e+00 -7.19139397e-01 5.98429859e-01 -9.42173526e-02 5.27563691e-01 -1.27169639e-01 -3.50765616e-01 4.43224579e-01 2.04153471e-02 7.34680817e-02 9.07380939e-01 -1.29134566e-01 1.61668584e-01 -4.38495815e-01 -1.11902595e+00 2.39276320e-01 8.20052624e-01 -4.67731088e-01 -5.76594293e-01 3.27591419e-01 -1.04749814e-01 -3.70251872e-02 -1.01750982e+00 1.64887786e-01 1.11970532e+00 -1.18170822e+00 1.07417512e+00 -3.96077126e-01 -3.10408652e-01 -4.98312473e-01 -2.66937405e-01 -1.28119230e+00 -4.08384800e-01 -4.16844487e-01 -4.89422530e-01 1.17043912e+00 -4.79752779e-01 -4.25437480e-01 6.89857304e-01 1.27244517e-01 -3.31670605e-02 -2.44323418e-01 -1.18295181e+00 -5.11602640e-01 -9.77805197e-01 -5.84556758e-01 3.72810811e-02 6.39405191e-01 2.82204658e-01 2.88089663e-01 -8.01798940e-01 -1.20949168e-02 9.33511257e-01 -3.59890163e-01 1.08853042e+00 -1.34126818e+00 -3.39217544e-01 -1.39462531e-01 -1.15996897e+00 -6.46060288e-01 1.70235127e-01 -5.19548595e-01 -3.09161156e-01 -1.16976452e+00 2.22663894e-01 2.82802165e-01 -6.72197342e-01 -1.37857556e-01 -1.17690697e-01 1.46806940e-01 -9.79500636e-03 5.01983240e-02 -9.54742372e-01 7.17653692e-01 7.34066069e-01 -7.42315948e-02 -4.13785517e-01 3.19617957e-01 -1.10674910e-01 9.64251280e-01 6.08775258e-01 -2.67085910e-01 -5.29099643e-01 3.08743954e-01 -1.42403349e-01 1.95122182e-01 4.42278773e-01 -1.64505005e+00 2.94519037e-01 -2.73841992e-02 6.27882421e-01 -7.54694760e-01 9.00853455e-01 -8.64105225e-01 1.39352158e-01 4.58901823e-01 -1.26172498e-01 -2.29094699e-01 -2.84875453e-01 8.04616034e-01 -2.29309782e-01 -2.69116879e-01 6.48955405e-01 -1.06756195e-01 -1.04444361e+00 -9.02655870e-02 -8.23042214e-01 -2.54897386e-01 1.38238025e+00 -6.42075837e-01 2.78858542e-01 -6.11181676e-01 -9.70363200e-01 -6.03327863e-02 -5.98608740e-02 3.71918470e-01 6.04378760e-01 -1.48423862e+00 -6.18163645e-01 1.13061123e-01 3.90213072e-01 -4.85207409e-01 7.53375232e-01 1.27911651e+00 -2.29971603e-01 2.22392142e-01 -4.26808208e-01 -7.80879259e-01 -1.57805777e+00 4.13393438e-01 1.78352401e-01 -1.92309365e-01 -3.03874373e-01 4.34009582e-01 -5.65973334e-02 1.36671625e-02 2.67884940e-01 -8.75588804e-02 -9.35766399e-01 6.44615531e-01 6.10899091e-01 1.04996097e+00 -6.79508522e-02 -1.22998667e+00 -4.90407795e-01 9.28179622e-01 3.08447987e-01 -3.25267583e-01 1.09610891e+00 -3.56659442e-01 1.98878825e-01 7.17357993e-01 1.07359767e+00 -1.07089795e-01 -1.06799054e+00 -2.59850383e-01 -5.40907495e-02 -4.27548259e-01 5.97143508e-02 2.87586404e-03 -5.27049899e-01 7.54288256e-01 1.05912089e+00 -1.81504842e-02 1.15792382e+00 -3.11057448e-01 3.92827630e-01 4.26438779e-01 3.32580417e-01 -1.51369393e+00 3.76762450e-01 1.01183817e-01 6.37564719e-01 -1.00776756e+00 3.10239941e-01 8.66713002e-02 -6.37682915e-01 1.11524546e+00 4.39904630e-01 -2.41131723e-01 1.00747025e+00 -2.70121008e-01 -2.25761145e-01 1.64600998e-01 -5.44919789e-01 -4.23497170e-01 3.00978899e-01 7.13329852e-01 2.76712656e-01 -1.15722761e-01 -4.95133191e-01 4.64871526e-01 1.74073055e-01 2.27417886e-01 2.94352651e-01 1.02931392e+00 -6.82405889e-01 -5.82051754e-01 -8.30655992e-01 3.58681113e-01 -4.47426558e-01 5.03037751e-01 2.51265168e-01 3.69238973e-01 3.19649577e-01 1.13494837e+00 -9.54444185e-02 -4.32594061e-01 1.80995911e-01 3.90797257e-01 6.15907967e-01 -1.56224310e-01 -4.11385864e-01 4.10457313e-01 8.07441026e-02 -6.34547770e-01 -1.10299742e+00 -1.06625748e+00 -7.08469748e-01 1.89548671e-01 -4.59919721e-01 2.78819293e-01 8.95959437e-01 1.06966460e+00 1.91824630e-01 3.54451299e-01 7.24455833e-01 -1.35397780e+00 -3.90758485e-01 -1.18105090e+00 -7.86931515e-01 6.66305661e-01 1.78086936e-01 -1.03508198e+00 -5.89738309e-01 3.30158234e-01]
[7.976809978485107, 0.375964492559433]
7acb243b-99de-4cbd-92e0-bc7c1f281ff7
neural-best-buddies-sparse-cross-domain
1805.04140
null
http://arxiv.org/abs/1805.04140v2
http://arxiv.org/pdf/1805.04140v2.pdf
Neural Best-Buddies: Sparse Cross-Domain Correspondence
Correspondence between images is a fundamental problem in computer vision, with a variety of graphics applications. This paper presents a novel method for sparse cross-domain correspondence. Our method is designed for pairs of images where the main objects of interest may belong to different semantic categories and differ drastically in shape and appearance, yet still contain semantically related or geometrically similar parts. Our approach operates on hierarchies of deep features, extracted from the input images by a pre-trained CNN. Specifically, starting from the coarsest layer in both hierarchies, we search for Neural Best Buddies (NBB): pairs of neurons that are mutual nearest neighbors. The key idea is then to percolate NBBs through the hierarchy, while narrowing down the search regions at each level and retaining only NBBs with significant activations. Furthermore, in order to overcome differences in appearance, each pair of search regions is transformed into a common appearance. We evaluate our method via a user study, in addition to comparisons with alternative correspondence approaches. The usefulness of our method is demonstrated using a variety of graphics applications, including cross-domain image alignment, creation of hybrid images, automatic image morphing, and more.
['Daniel Cohen-Or', 'Mingyi Shi', 'Jing Liao', 'Kfir Aberman', 'Dani Lischinski', 'Baoquan Chen']
2018-05-10
null
null
null
null
['image-morphing']
['computer-vision']
[ 3.00448537e-01 -3.63499187e-02 2.12145343e-01 -3.67232144e-01 -3.85797888e-01 -4.56508577e-01 5.90796828e-01 5.36223590e-01 -2.94906348e-01 3.99326771e-01 1.50049962e-02 2.34445766e-01 -1.10741839e-01 -8.54600549e-01 -7.80402720e-01 -5.39391160e-01 1.55343086e-01 4.59057182e-01 7.22049952e-01 -4.41232294e-01 4.13645834e-01 9.23626125e-01 -1.69193828e+00 5.00405848e-01 6.45094812e-01 9.90958095e-01 3.11945826e-01 1.98387489e-01 -1.99559152e-01 1.42497629e-01 -3.34642380e-01 -4.69840109e-01 5.68762541e-01 -5.53412199e-01 -1.05774844e+00 2.18276381e-01 1.06278443e+00 2.28796806e-02 1.32421963e-02 1.32570624e+00 2.41392359e-01 3.12615216e-01 4.88621682e-01 -1.13987553e+00 -5.96666574e-01 2.07443103e-01 -8.17575932e-01 8.87708664e-02 2.81121433e-01 -1.63121551e-01 9.48582232e-01 -8.71993601e-01 6.37815595e-01 1.35105610e+00 8.38549972e-01 5.66539586e-01 -1.67500281e+00 -5.20349622e-01 8.85267258e-02 3.30676474e-02 -1.50619590e+00 -3.50468457e-01 9.58320081e-01 -4.18762594e-01 7.53263831e-01 2.75339961e-01 8.02598119e-01 4.83604729e-01 1.04491465e-01 4.52865809e-01 1.09276867e+00 -5.61442256e-01 1.88533962e-01 2.56149411e-01 -3.16448063e-02 8.57099175e-01 -2.81756129e-02 -8.96284655e-02 -5.27239859e-01 -2.38377929e-01 1.08658493e+00 -1.30399734e-01 -3.46424103e-01 -9.83411551e-01 -1.24394000e+00 6.60268366e-01 7.78331399e-01 6.72932327e-01 -2.38127917e-01 3.70594151e-02 1.55340463e-01 1.26054913e-01 2.85148084e-01 7.64523447e-01 -2.62718856e-01 4.66386706e-01 -9.77519870e-01 2.30357647e-01 6.07763469e-01 7.89602697e-01 1.22434413e+00 -4.03720826e-01 1.66126713e-02 1.10875344e+00 5.30765317e-02 -2.94900715e-01 5.43653429e-01 -9.48837399e-01 2.50065297e-01 7.95369387e-01 -6.52825087e-02 -1.44906354e+00 -2.31903031e-01 -2.54226148e-01 -9.55691516e-01 4.94543076e-01 3.63638431e-01 5.14080822e-01 -8.82918537e-01 1.69795334e+00 4.07989711e-01 3.78504358e-02 -8.72548148e-02 6.77831471e-01 7.14760721e-01 5.25431871e-01 -5.23136519e-02 1.93224609e-01 1.35195017e+00 -1.07301116e+00 -4.36029322e-02 -2.30880052e-01 3.31198931e-01 -8.93991828e-01 1.18574131e+00 1.59695297e-01 -1.45335639e+00 -8.61024201e-01 -8.64483297e-01 -1.65944368e-01 -5.61548948e-01 -1.04197010e-01 2.75451988e-01 3.72364640e-01 -1.48243594e+00 9.14206326e-01 -3.97832930e-01 -7.07406580e-01 4.18842822e-01 4.17224944e-01 -6.14173532e-01 1.35553882e-01 -9.11632299e-01 8.22363913e-01 3.93907934e-01 -7.69275054e-02 -3.28266025e-01 -5.71079373e-01 -9.59329128e-01 1.46502465e-01 -2.00016156e-01 -8.76337647e-01 9.77553725e-01 -1.46445537e+00 -1.15532708e+00 1.39040399e+00 -8.31771493e-02 -2.29216442e-01 4.10685956e-01 6.31154105e-02 -1.89585954e-01 4.26779054e-02 3.01879436e-01 1.19645929e+00 8.74782562e-01 -1.55407429e+00 -8.21798801e-01 -5.74777544e-01 3.76647152e-02 4.36109781e-01 -3.74249279e-01 1.62203237e-02 -8.81031573e-01 -7.72587955e-01 5.32259107e-01 -8.56218934e-01 -3.50598842e-01 2.97517836e-01 -1.50465533e-01 -1.30998388e-01 7.81857550e-01 -4.88898635e-01 8.43651354e-01 -2.29635954e+00 3.03715467e-01 4.97325063e-01 1.94293708e-01 -2.98570730e-02 -2.51942784e-01 1.17140703e-01 -2.83558279e-01 7.54034072e-02 -3.98980498e-01 -2.70723641e-01 -3.97876620e-01 8.74034017e-02 1.62995644e-02 2.50679761e-01 2.49416724e-01 7.80152678e-01 -8.98232818e-01 -6.14557445e-01 1.70041844e-01 1.79298177e-01 -5.68107843e-01 1.84921056e-01 8.66069347e-02 5.91264367e-01 -1.74408257e-01 3.46306175e-01 7.23301172e-01 -1.56825170e-01 -1.00639015e-01 -6.43222392e-01 -2.22182497e-01 1.50634602e-01 -1.19729114e+00 1.79108715e+00 -4.68415767e-01 6.78308666e-01 4.57504950e-02 -1.16177392e+00 1.06744075e+00 -1.69623688e-01 4.22172606e-01 -8.66609156e-01 5.70323803e-02 1.64935276e-01 -8.50016400e-02 -2.30951265e-01 6.34804189e-01 -3.51592004e-02 1.57742668e-03 3.64761114e-01 -1.09389694e-02 -5.57132185e-01 2.08041146e-01 -1.88349281e-02 5.67911088e-01 7.23683182e-03 5.47907829e-01 -3.76776606e-01 5.70835352e-01 8.12000409e-02 2.98756063e-01 6.25999868e-01 -6.76083416e-02 9.81782556e-01 2.73974448e-01 -7.35420704e-01 -1.19308972e+00 -1.07125580e+00 -1.42605469e-01 8.86094213e-01 6.03975475e-01 -1.21237375e-01 -9.22886014e-01 -5.24971962e-01 4.40901779e-02 3.23209167e-01 -8.53937209e-01 -1.59355596e-01 -8.52840066e-01 -2.73050606e-01 2.34010741e-01 4.83686984e-01 6.47979021e-01 -1.24240375e+00 -9.06102300e-01 1.75757691e-01 2.22617760e-02 -8.36917639e-01 -6.58097029e-01 1.06889695e-01 -1.08913088e+00 -8.85681391e-01 -8.61766934e-01 -1.32397461e+00 9.45779562e-01 4.83325988e-01 1.34121156e+00 2.40403637e-01 -5.27697802e-01 2.35338077e-01 -1.45554319e-01 1.79520145e-01 -4.99998868e-01 -4.70095314e-02 -2.41513312e-01 1.87154353e-01 -7.18701514e-04 -6.18151724e-01 -6.83981538e-01 5.28174698e-01 -8.94483745e-01 2.43817359e-01 5.05068600e-01 7.74217129e-01 8.15093875e-01 2.34169886e-02 -2.81657968e-02 -7.30202973e-01 7.20573425e-01 -1.47953987e-01 -6.75137937e-01 3.30776274e-01 -2.00557768e-01 1.79768428e-01 4.99106497e-01 -3.25686008e-01 -7.35688806e-01 2.26491407e-01 8.79746750e-02 -5.26432216e-01 -3.80248040e-01 1.08594358e-01 -1.87319189e-01 -3.52471888e-01 7.18036652e-01 1.86878592e-01 7.82710090e-02 -4.12991762e-01 4.23579544e-01 1.94293797e-01 7.78298616e-01 -4.96026874e-01 6.07687831e-01 5.43991208e-01 -1.74296871e-01 -6.08052611e-01 -4.61708158e-01 -4.08921361e-01 -1.09780157e+00 -4.17039730e-02 8.08060467e-01 -5.07168055e-01 -2.69310325e-01 4.71289396e-01 -1.43938839e+00 -1.72573313e-01 -3.69610667e-01 1.67063653e-01 -6.38458788e-01 2.90923774e-01 -3.06442589e-01 -1.96922630e-01 -9.59479362e-02 -1.21783447e+00 1.00622797e+00 3.95945728e-01 -4.08702224e-01 -9.67426300e-01 1.20863207e-01 -2.36671492e-02 2.20426053e-01 1.35041118e-01 1.36962533e+00 -5.22190213e-01 -3.29582155e-01 -3.49580832e-02 -4.44742948e-01 2.10683495e-01 4.40373033e-01 -7.28920028e-02 -7.75759220e-01 -4.06070113e-01 -2.09733680e-01 -1.39597684e-01 7.57329226e-01 3.35545421e-01 1.30244100e+00 -1.51905388e-01 -6.22276306e-01 7.01819539e-01 1.42580497e+00 4.00919229e-01 6.44121647e-01 4.97127831e-01 6.94767535e-01 1.09132028e+00 2.60969669e-01 5.98173812e-02 3.30323651e-02 1.00416839e+00 4.90652680e-01 -6.22492969e-01 -1.75107270e-01 -1.22026257e-01 -1.81534290e-01 3.88981432e-01 9.52613875e-02 7.55819380e-02 -8.56823325e-01 6.78097486e-01 -1.70526683e+00 -7.99100816e-01 -2.37053651e-02 2.50104809e+00 7.40202487e-01 5.28845377e-02 1.00142874e-01 -1.08912721e-01 1.10702634e+00 1.91966705e-02 -4.93151248e-01 -5.45412540e-01 -7.12396875e-02 4.48687732e-01 1.64554924e-01 3.07789892e-01 -1.04793620e+00 1.01866937e+00 6.27279377e+00 7.03832984e-01 -1.14186120e+00 -4.55894619e-02 9.11249518e-01 2.59190530e-01 -1.99930817e-01 2.09472366e-02 -6.20736897e-01 1.64961249e-01 5.52843027e-02 1.24947898e-01 2.71549195e-01 5.88279545e-01 -1.39122963e-01 -2.18213707e-01 -1.34785438e+00 1.06180108e+00 1.69948205e-01 -1.53263402e+00 2.58129656e-01 -1.34361222e-01 9.66558814e-01 -2.54658103e-01 1.35034293e-01 -2.17761040e-01 2.27466419e-01 -1.02305007e+00 8.80237341e-01 2.93616027e-01 6.72912955e-01 -7.58732021e-01 3.80360872e-01 6.79841563e-02 -1.38062716e+00 1.61066681e-01 -3.72417271e-01 3.71307373e-01 -6.65390417e-02 2.64950097e-01 -4.95424539e-01 4.12318647e-01 1.07930481e+00 5.04271388e-01 -6.05411768e-01 1.22436643e+00 2.20005825e-01 -2.63503045e-01 -1.37411445e-01 7.85036385e-02 3.27768266e-01 -3.28969866e-01 2.55918443e-01 1.14177728e+00 3.61769974e-01 -1.83692891e-02 8.08522776e-02 1.22268653e+00 -4.54404205e-02 2.11050525e-01 -7.42505789e-01 5.10227799e-01 4.81196791e-01 1.24698031e+00 -1.12329948e+00 -3.55771959e-01 -4.51042354e-01 1.43619406e+00 5.79129755e-01 7.24642798e-02 -6.95306957e-01 -4.77608234e-01 5.50103605e-01 2.49568582e-01 3.09266716e-01 -9.00053233e-02 -2.30353981e-01 -7.41359651e-01 -1.14041297e-02 -9.54769611e-01 3.26858461e-01 -8.36811483e-01 -1.29334688e+00 1.05154812e+00 -2.10997202e-02 -1.48189270e+00 1.68987233e-02 -3.67223859e-01 -6.77311182e-01 1.12757421e+00 -1.15584385e+00 -1.04201460e+00 -6.16953313e-01 7.01509953e-01 6.54821754e-01 -9.16669145e-02 7.15305388e-01 1.96267694e-01 -2.17017651e-01 4.98930633e-01 9.10089612e-02 4.88582358e-04 5.76489568e-01 -1.02367496e+00 7.30578184e-01 5.27180135e-01 3.82261038e-01 6.82708502e-01 4.73517776e-01 -4.75344837e-01 -5.19958973e-01 -1.07305777e+00 7.90589273e-01 -1.37992464e-02 3.35475892e-01 -3.05353433e-01 -1.17165613e+00 1.82920605e-01 3.29351962e-01 6.71826955e-03 3.10277492e-01 -1.03099503e-01 -4.85258132e-01 -1.14341527e-01 -1.07529521e+00 8.88605177e-01 1.02476776e+00 -4.53596503e-01 -6.35038197e-01 1.02997452e-01 2.98169315e-01 -3.83452654e-01 -6.09623492e-01 2.90386438e-01 7.06173539e-01 -1.37604320e+00 1.09227514e+00 -6.31679416e-01 4.53089833e-01 -4.15540963e-01 -5.42647094e-02 -1.46050763e+00 -5.09233892e-01 -4.47463453e-01 6.58119857e-01 1.08835971e+00 3.39201301e-01 -3.73510569e-01 9.32535231e-01 5.05488217e-01 6.04007998e-03 -6.82438672e-01 -8.26910853e-01 -7.77706027e-01 -1.91166892e-03 1.37393251e-01 5.98628342e-01 1.03950882e+00 -2.40709171e-01 2.54248589e-01 1.09104943e-02 5.94502613e-02 4.13590610e-01 5.06177485e-01 8.15099359e-01 -1.40324950e+00 -1.63474023e-01 -8.96561503e-01 -5.33267736e-01 -1.08633173e+00 9.81132090e-02 -8.84296536e-01 1.44520953e-01 -1.37157261e+00 2.90262043e-01 -7.60101080e-01 -1.58166885e-01 4.79338825e-01 3.14980149e-02 6.52252078e-01 1.66836441e-01 3.67842317e-01 -1.56648904e-01 4.06858653e-01 1.16006672e+00 -2.17256740e-01 -4.44495142e-01 1.14972433e-02 -5.01324117e-01 9.13743377e-01 7.64510632e-01 -4.33213145e-01 -2.53052950e-01 -5.45770884e-01 -7.27662370e-02 -1.79758459e-01 5.93428493e-01 -1.06319141e+00 2.31797412e-01 -1.00389242e-01 4.55855906e-01 -5.24499416e-01 3.69234681e-01 -8.71470034e-01 3.58933151e-01 5.96880853e-01 -4.90884066e-01 5.06281793e-01 3.63322347e-01 2.96886832e-01 -4.31364894e-01 -4.59983230e-01 1.30838859e+00 -4.02256072e-01 -8.54892731e-01 1.78988650e-01 2.80869342e-02 -1.50236592e-01 1.17117345e+00 -8.78860533e-01 1.41657770e-01 -1.34309307e-01 -7.71551013e-01 -1.49090022e-01 8.35430384e-01 4.57112134e-01 8.35368276e-01 -1.45603943e+00 -4.67351973e-01 4.61674273e-01 3.78558248e-01 6.99083731e-02 7.52546564e-02 5.19156694e-01 -5.91613173e-01 1.69416815e-01 -7.42330372e-01 -7.21184850e-01 -1.45690000e+00 4.16403085e-01 5.98533750e-01 -7.49343485e-02 -5.37087262e-01 1.02877140e+00 7.61564016e-01 -2.44954467e-01 1.21521421e-01 -3.14724803e-01 -3.60201716e-01 4.65684682e-02 2.03600198e-01 9.27595496e-02 3.20820451e-01 -9.35255527e-01 -2.31337219e-01 1.05661285e+00 -2.20067561e-01 -1.56845719e-01 1.22415686e+00 -9.05712098e-02 -4.61065888e-01 2.55838186e-01 1.42395604e+00 -4.43577282e-02 -1.15206075e+00 -3.53145719e-01 4.81346324e-02 -8.06473970e-01 -2.43877292e-01 -2.90269643e-01 -1.33078218e+00 7.68156469e-01 7.66659617e-01 2.36178577e-01 1.26943159e+00 3.09139848e-01 5.96906066e-01 -2.05149669e-02 3.46320927e-01 -8.47361147e-01 3.01255673e-01 3.38718861e-01 1.13265967e+00 -1.06038558e+00 -1.67692199e-01 -4.15981352e-01 -3.91977549e-01 1.19281757e+00 9.60806251e-01 -2.16798916e-01 3.99486184e-01 6.71118312e-03 -8.82051215e-02 -3.83207560e-01 -2.80007869e-01 -1.46071106e-01 4.53233659e-01 6.59985662e-01 4.23215479e-01 -2.55290031e-01 -3.18904608e-01 -2.55422760e-02 -1.27884343e-01 -6.02056444e-01 2.28490978e-01 7.91208386e-01 -4.11851764e-01 -1.18962049e+00 -4.13775742e-01 2.30188325e-01 4.71642762e-02 -2.61438906e-01 -6.66204810e-01 9.22315657e-01 4.00060982e-01 4.06459540e-01 6.00369215e-01 -1.96947917e-01 5.72090566e-01 -2.96856970e-01 6.06462419e-01 -7.16987610e-01 -7.59663343e-01 3.81129817e-03 -3.22623879e-01 -5.66709757e-01 -5.06486177e-01 -5.93432605e-01 -1.03434932e+00 -3.25412825e-02 -2.62506902e-01 -2.94951745e-03 5.31429052e-01 5.97244382e-01 2.83633471e-01 2.38048732e-01 7.18415499e-01 -1.07635200e+00 8.71128775e-03 -4.84992921e-01 -4.31306303e-01 8.09253514e-01 1.55929089e-01 -6.35727048e-01 3.67812701e-02 3.20138395e-01]
[8.430933952331543, -1.9154328107833862]
550562f2-25a7-45d5-bc65-474ff9c6af9c
robust-semi-supervised-learning-for
2303.09930
null
https://arxiv.org/abs/2303.09930v1
https://arxiv.org/pdf/2303.09930v1.pdf
Robust Semi-Supervised Learning for Histopathology Images through Self-Supervision Guided Out-of-Distribution Scoring
Semi-supervised learning (semi-SL) is a promising alternative to supervised learning for medical image analysis when obtaining good quality supervision for medical imaging is difficult. However, semi-SL assumes that the underlying distribution of unaudited data matches that of the few labeled samples, which is often violated in practical settings, particularly in medical images. The presence of out-of-distribution (OOD) samples in the unlabeled training pool of semi-SL is inevitable and can reduce the efficiency of the algorithm. Common preprocessing methods to filter out outlier samples may not be suitable for medical images that involve a wide range of anatomical structures and rare morphologies. In this paper, we propose a novel pipeline for addressing open-set supervised learning challenges in digital histology images. Our pipeline efficiently estimates an OOD score for each unlabelled data point based on self-supervised learning to calibrate the knowledge needed for a subsequent semi-SL framework. The outlier score derived from the OOD detector is used to modulate sample selection for the subsequent semi-SL stage, ensuring that samples conforming to the distribution of the few labeled samples are more frequently exposed to the subsequent semi-SL framework. Our framework is compatible with any semi-SL framework, and we base our experiments on the popular Mixmatch semi-SL framework. We conduct extensive studies on two digital pathology datasets, Kather colorectal histology dataset and a dataset derived from TCGA-BRCA whole slide images, and establish the effectiveness of our method by comparing with popular methods and frameworks in semi-SL algorithms through various experiments.
['Amit Sethi', 'Shashikant Khade', 'Abhijit PATIL', 'Varsha S', 'Nikhil Cherian Kurian']
2023-03-17
null
null
null
null
['whole-slide-images']
['computer-vision']
[ 4.62894380e-01 2.13882148e-01 -4.89264816e-01 -5.28289199e-01 -1.31429207e+00 -4.78962868e-01 2.68379360e-01 5.39968967e-01 -5.29084086e-01 6.33459568e-01 -1.24429323e-01 -3.79344881e-01 -1.17164738e-01 -3.92736971e-01 -7.00915635e-01 -1.07395554e+00 1.71152145e-01 7.86297381e-01 3.21007818e-01 4.47168499e-01 -1.68732496e-03 4.89345223e-01 -1.12247968e+00 7.36219525e-01 6.60378695e-01 6.68805242e-01 1.07827365e-01 6.40205503e-01 -1.26133353e-01 6.95514143e-01 -5.68204820e-01 -1.22549169e-01 1.97152495e-01 -5.26935816e-01 -7.73208201e-01 1.65261403e-01 4.98017877e-01 -1.90589949e-01 1.40682563e-01 1.18180549e+00 7.44917274e-01 -5.12001395e-01 8.21968019e-01 -1.28951848e+00 1.17930360e-01 6.93280697e-01 -6.08786225e-01 5.14001667e-01 -6.31649345e-02 3.66259128e-01 7.87355483e-01 -8.99769425e-01 1.16026235e+00 7.47721195e-01 8.32157433e-01 4.49536324e-01 -1.35595572e+00 -5.94405591e-01 -1.80991605e-01 -1.63763031e-01 -1.25872719e+00 -3.77414584e-01 3.21268737e-01 -4.85736281e-01 4.28900689e-01 1.91653773e-01 3.83320868e-01 9.71091390e-01 4.40868437e-01 8.58978748e-01 1.05441344e+00 -3.53471279e-01 5.55062711e-01 2.83991605e-01 1.34221911e-01 6.89578176e-01 3.37720722e-01 -1.26060052e-02 -4.71731752e-01 -6.34097517e-01 3.14417243e-01 1.88242808e-01 -2.66870353e-02 -5.91029823e-01 -1.21147954e+00 5.50961792e-01 1.98548451e-01 7.72269964e-02 -1.49477363e-01 -3.67417008e-01 6.07465684e-01 2.61354297e-01 3.37560326e-01 1.65915310e-01 -3.79401773e-01 2.44581282e-01 -1.36556065e+00 -1.67342156e-01 6.13800108e-01 7.03020334e-01 5.38478255e-01 -6.51144028e-01 -2.34616145e-01 6.73585474e-01 4.80221570e-01 1.16194353e-01 7.78265178e-01 -5.85242510e-01 -1.24632791e-01 8.67621064e-01 -2.93577939e-01 -2.26915866e-01 -5.70124626e-01 -3.88938934e-01 -8.93879473e-01 3.30593675e-01 8.53367150e-01 1.09093353e-01 -1.12452388e+00 1.29075742e+00 7.69327641e-01 1.85549989e-01 -3.65388989e-02 7.19531953e-01 9.45342422e-01 3.85624766e-02 7.10615516e-02 -4.09177780e-01 1.24143732e+00 -5.29270768e-01 -5.94429493e-01 5.55652231e-02 1.29939413e+00 -6.14205658e-01 1.19222689e+00 4.33337301e-01 -5.63050032e-01 -1.02465726e-01 -9.76369381e-01 1.25373587e-01 -2.00107992e-01 2.67192066e-01 4.72664475e-01 5.74848592e-01 -8.03288698e-01 4.54391986e-01 -1.06411600e+00 -4.99495327e-01 1.09373856e+00 4.67686504e-01 -5.56381464e-01 -3.42890173e-01 -6.37037933e-01 4.85318989e-01 3.45829636e-01 1.24919839e-01 -1.04127085e+00 -1.03586185e+00 -7.31064856e-01 -4.19712394e-01 3.65197361e-01 -3.61580223e-01 1.02742422e+00 -7.95979679e-01 -1.00512755e+00 1.45863712e+00 -1.09040454e-01 -3.47332776e-01 8.03028703e-01 3.53264630e-01 -2.10622579e-01 2.84078181e-01 2.86477566e-01 5.89684725e-01 6.87625229e-01 -1.06543672e+00 -5.57559013e-01 -4.58838671e-01 -6.25565469e-01 -7.86732435e-02 1.04237244e-01 -1.37697473e-01 -2.86158025e-01 -5.24974465e-01 2.75455505e-01 -1.03409064e+00 -4.74500000e-01 4.61460829e-01 -5.98221242e-01 -2.97316276e-02 7.15749621e-01 -1.59712568e-01 9.83824313e-01 -2.33503842e+00 -4.10078943e-01 4.83209819e-01 2.88535476e-01 2.67261028e-01 1.03375979e-01 -1.01277985e-01 -2.99089283e-01 1.96752563e-01 -3.25808138e-01 -2.46206298e-01 -2.75697112e-01 2.40254804e-01 3.02123632e-02 9.79742229e-01 2.34521285e-01 6.06938362e-01 -1.07468331e+00 -9.70166028e-01 -8.86958241e-02 -5.46472743e-02 -5.55442512e-01 3.13914806e-01 -1.29537150e-01 6.27750456e-01 -7.61208907e-02 1.06132364e+00 6.63463414e-01 -4.06332135e-01 3.07986856e-01 -1.77106678e-01 3.38581711e-01 1.54651366e-02 -1.05739260e+00 1.55036938e+00 2.79606730e-02 2.34458238e-01 2.54663620e-02 -6.30467594e-01 5.82659245e-01 1.47154093e-01 5.83854735e-01 -2.28468478e-01 7.64175355e-02 3.95235360e-01 2.61211246e-01 -6.43850386e-01 -1.36899486e-01 -3.68667990e-01 1.46889493e-01 6.08601987e-01 3.02591681e-01 -1.23519637e-01 2.23184749e-01 3.98420572e-01 1.38003302e+00 -2.14977693e-02 5.36056697e-01 -3.59290421e-01 5.06024837e-01 1.51401401e-01 7.92675436e-01 8.49904120e-01 -7.70713389e-01 8.62850845e-01 9.60060358e-01 -3.15075547e-01 -8.48939538e-01 -1.23063719e+00 -6.98111951e-01 6.40531242e-01 -2.11234629e-01 -2.50490069e-01 -5.29828072e-01 -1.35619843e+00 -4.95019592e-02 2.36442447e-01 -7.60986030e-01 -5.45084998e-02 -1.47576064e-01 -1.09021378e+00 6.47396505e-01 9.10893977e-02 -1.84690118e-01 -1.02145302e+00 -4.26843941e-01 -6.80409446e-02 1.55734301e-01 -9.34267282e-01 -3.89310390e-01 6.34807587e-01 -9.73253191e-01 -1.55384207e+00 -3.79400522e-01 -7.64525950e-01 1.42493820e+00 -1.05315857e-01 9.63562429e-01 2.32646689e-01 -7.29058027e-01 -6.43369853e-02 -2.90719599e-01 -5.87696910e-01 -9.60345864e-01 1.46019891e-01 -8.45512971e-02 5.72735071e-02 5.59686303e-01 -1.00283109e-01 -5.15660524e-01 4.68993366e-01 -1.28226912e+00 -2.86996841e-01 7.61386991e-01 1.25365496e+00 1.27201891e+00 1.52947009e-01 5.22998810e-01 -1.66003454e+00 -7.45025203e-02 -5.38549185e-01 -4.91086453e-01 2.11948425e-01 -4.29703951e-01 -9.82730687e-02 5.89671671e-01 -4.78849947e-01 -7.54537642e-01 4.15737510e-01 -2.26874858e-01 -2.95525104e-01 -3.47626507e-01 5.35361826e-01 -1.34239167e-01 1.52026517e-02 8.68840277e-01 -1.15579173e-01 4.47663486e-01 -4.86883111e-02 -1.33745417e-01 9.78267550e-01 3.98450404e-01 -1.53825164e-01 5.12978911e-01 9.33072269e-01 1.89539809e-02 -6.83024228e-01 -1.12711692e+00 -7.80919433e-01 -7.82320797e-01 -7.73796216e-02 3.39585692e-01 -7.49401748e-01 -3.86493564e-01 5.51839352e-01 -2.77255356e-01 -5.84263265e-01 -5.74312389e-01 5.53211212e-01 -3.62292796e-01 2.94428825e-01 -6.57967925e-01 -5.66480577e-01 -2.43848145e-01 -1.54837072e+00 1.21867311e+00 1.28633887e-01 -4.84298110e-01 -1.00833273e+00 1.80181414e-01 3.26790065e-01 -5.76225780e-02 3.23166072e-01 8.73786986e-01 -1.20218432e+00 -1.93964154e-01 -4.69822735e-01 1.60009757e-01 1.16632089e-01 2.29535282e-01 2.68877983e-01 -9.90149915e-01 -4.76586282e-01 -1.71089321e-02 -6.80313230e-01 8.50777388e-01 5.30426145e-01 1.28855669e+00 1.83642477e-01 -4.85055894e-01 7.60110557e-01 1.29167938e+00 -3.48561943e-01 5.57129204e-01 2.61139452e-01 4.04849499e-01 5.33706367e-01 1.01191688e+00 3.66492391e-01 9.28196311e-02 1.99165642e-01 3.87017131e-01 -4.29097176e-01 -1.07032038e-01 -2.09771305e-01 2.52062589e-01 2.73268163e-01 8.59280467e-01 6.34700507e-02 -1.10884857e+00 6.82275653e-01 -1.54771399e+00 -6.14396930e-01 -2.21346229e-01 2.26991725e+00 1.28788447e+00 3.99428695e-01 9.79996622e-02 1.81620091e-01 6.60193980e-01 -2.43963912e-01 -7.50233769e-01 1.02815591e-01 -9.03805047e-02 1.50189415e-01 3.73518705e-01 1.16926268e-01 -1.10677397e+00 6.25574410e-01 6.75930643e+00 8.51038277e-01 -1.17404532e+00 1.54476911e-01 1.06843245e+00 -2.30281726e-01 -8.65385458e-02 -3.89496572e-02 -9.43245173e-01 4.47383553e-01 8.17507923e-01 1.94727913e-01 -2.53427267e-01 6.95354164e-01 2.96655059e-01 -6.08695626e-01 -1.49476314e+00 8.81454766e-01 4.62251678e-02 -1.36149955e+00 -1.07901521e-01 1.97240815e-01 6.85109973e-01 1.76122576e-01 6.73103705e-02 -2.89524086e-02 3.49295735e-01 -1.05510044e+00 2.44880930e-01 3.33856940e-01 1.05709755e+00 -4.15233672e-01 1.28908098e+00 4.78025973e-01 -3.62727165e-01 2.19178572e-01 -3.16317230e-01 5.60683072e-01 -1.38090730e-01 1.22233498e+00 -1.39211786e+00 4.00436521e-01 6.50817811e-01 6.83368981e-01 -8.56945992e-01 1.17753029e+00 -1.21775009e-01 8.16592872e-01 -3.67630988e-01 3.73887748e-01 -1.09132864e-01 2.20190406e-01 3.69520485e-01 1.22830796e+00 1.11446436e-02 -2.32993260e-01 1.38324484e-01 6.30508661e-01 -5.60074970e-02 2.04512388e-01 -2.43560299e-01 -6.59301803e-02 4.69164163e-01 1.57581067e+00 -1.24707913e+00 -3.47542971e-01 -3.18513006e-01 4.53890651e-01 2.84886032e-01 -4.62865196e-02 -6.48355365e-01 7.52636045e-02 8.15856159e-02 1.85636431e-01 2.01897398e-02 5.02919137e-01 -2.93185115e-01 -1.11605656e+00 -2.67641515e-01 -1.18869483e+00 1.11298001e+00 -4.03836787e-01 -1.73391902e+00 3.07598621e-01 -3.77964944e-01 -1.53295779e+00 4.06510867e-02 -6.17066145e-01 -4.63927925e-01 4.97416526e-01 -1.43684506e+00 -1.11081684e+00 -1.82669580e-01 4.41488355e-01 2.33595371e-01 -8.61726180e-02 8.36677969e-01 1.97790608e-01 -7.53713310e-01 8.31152856e-01 2.75075547e-02 1.44110277e-01 1.31847835e+00 -1.38749731e+00 -2.74390846e-01 7.24192381e-01 -1.40326535e-02 5.25985718e-01 4.54203367e-01 -7.64876902e-01 -1.07346869e+00 -1.26020157e+00 4.91058558e-01 -5.41254580e-01 6.06694162e-01 -2.14832336e-01 -9.83739078e-01 7.45669961e-01 -3.52169991e-01 7.31629968e-01 1.51510894e+00 -2.64695555e-01 -9.48626250e-02 -7.29679912e-02 -1.61195302e+00 3.65370065e-01 6.41732454e-01 -3.09722751e-01 -3.12993109e-01 4.67032641e-01 5.27105778e-02 -7.26513743e-01 -1.00811982e+00 3.10101748e-01 4.01611865e-01 -8.73853505e-01 6.27635002e-01 -5.16926229e-01 2.09725603e-01 -5.55924416e-01 7.02537149e-02 -1.07694113e+00 5.88679910e-02 -5.03289640e-01 3.58294882e-02 1.19522321e+00 4.88337755e-01 -5.38951933e-01 1.08872092e+00 3.18663150e-01 -8.33335817e-02 -7.71265268e-01 -1.04907978e+00 -4.39651579e-01 1.49935931e-01 -1.93432599e-01 2.47199669e-01 1.02872300e+00 2.01696202e-01 -2.58495986e-01 2.79681772e-01 3.34264219e-01 9.04478312e-01 -1.04176365e-01 8.10182393e-01 -1.08381510e+00 -2.56629854e-01 -1.54883236e-01 -5.04852116e-01 -3.06391835e-01 8.12773183e-02 -1.35341418e+00 2.06774652e-01 -1.09855282e+00 7.16680586e-01 -6.99291825e-01 -3.34343940e-01 5.99627972e-01 -4.11247700e-01 5.76770782e-01 -4.67301160e-01 4.26079571e-01 -7.36313760e-01 3.25032463e-03 1.02188969e+00 -3.61532532e-02 -2.01721027e-01 2.52291765e-02 -6.61975861e-01 9.07680213e-01 5.06788611e-01 -9.36700940e-01 -2.01263577e-01 2.37872407e-01 8.05592164e-02 -2.79583603e-01 2.78722465e-01 -7.68572628e-01 3.39576066e-01 -6.08516186e-02 6.31282926e-01 -8.94419789e-01 -4.69886929e-01 -7.35157847e-01 1.44172519e-01 6.41409814e-01 -5.57355404e-01 -5.35654843e-01 -3.42448950e-02 5.44447005e-01 -1.79977134e-01 -3.46383810e-01 1.17556965e+00 -1.51488900e-01 -2.87958115e-01 3.07924747e-01 -3.00370544e-01 2.05712289e-01 1.17552269e+00 -3.14544052e-01 -2.91412413e-01 1.32691473e-01 -9.65369165e-01 4.91340488e-01 6.85629785e-01 -1.46090791e-01 4.44826692e-01 -1.01441836e+00 -6.91113353e-01 4.59510058e-01 5.83171904e-01 4.93349224e-01 4.60196942e-01 1.39718759e+00 -5.89765131e-01 2.58849971e-02 7.76793063e-02 -1.22547913e+00 -1.32820439e+00 4.24232930e-01 4.76954341e-01 -5.93635917e-01 -4.96438801e-01 8.17507863e-01 1.76218465e-01 -9.00253177e-01 1.96098149e-01 -3.17501456e-01 6.17941096e-02 1.00869089e-01 6.13530099e-01 2.64311694e-02 4.77126390e-01 -4.89815891e-01 -6.18745506e-01 -1.43254116e-01 -5.84410906e-01 1.63509265e-01 1.37467432e+00 7.74469003e-02 -3.05988103e-01 7.40405023e-01 1.10622227e+00 1.03865422e-01 -1.25547087e+00 -3.52931917e-01 1.31114826e-01 -3.97563517e-01 1.22076906e-01 -8.34839582e-01 -9.05311465e-01 5.21348238e-01 6.64075136e-01 -3.01777244e-01 9.96383488e-01 1.69723123e-01 3.02106500e-01 -1.35316312e-01 3.00940841e-01 -9.71084177e-01 9.02936161e-02 2.42567882e-02 2.70723403e-01 -1.54475605e+00 3.37231100e-01 -5.92517018e-01 -5.84704757e-01 1.00547647e+00 5.77565372e-01 1.01179458e-01 5.99776745e-01 6.99234724e-01 5.63067436e-01 -3.54889959e-01 -8.25831056e-01 6.90581948e-02 -3.49694267e-02 5.88916421e-01 4.51752007e-01 -2.18912780e-01 -1.19919442e-01 5.99154592e-01 1.71323754e-02 2.25663677e-01 7.29239523e-01 1.05938303e+00 -9.21918452e-02 -1.10370255e+00 -4.68379319e-01 8.69261503e-01 -7.67377079e-01 1.49075374e-01 -3.48685145e-01 6.82753980e-01 2.27403358e-01 5.51864505e-01 6.41550822e-03 1.58972606e-01 7.03557283e-02 5.49501851e-02 3.68864775e-01 -1.04909432e+00 -6.13226593e-01 3.83650512e-01 -2.19599724e-01 -4.71664876e-01 -4.80848163e-01 -1.04207623e+00 -1.48888683e+00 2.22399354e-01 -5.61197639e-01 -1.23243615e-01 2.37549841e-01 9.62184608e-01 2.10943252e-01 5.22293806e-01 6.40487313e-01 -3.64553779e-01 -5.69179118e-01 -7.72744000e-01 -7.60807216e-01 5.72674394e-01 4.19841200e-01 -4.49249178e-01 -6.27604961e-01 2.78216243e-01]
[15.067413330078125, -2.787741184234619]
b0e5ef59-639b-459b-b11a-144199e456dd
defending-against-adversarial-attack-in-ecg
2203.09487
null
https://arxiv.org/abs/2203.09487v1
https://arxiv.org/pdf/2203.09487v1.pdf
Defending Against Adversarial Attack in ECG Classification with Adversarial Distillation Training
In clinics, doctors rely on electrocardiograms (ECGs) to assess severe cardiac disorders. Owing to the development of technology and the increase in health awareness, ECG signals are currently obtained by using medical and commercial devices. Deep neural networks (DNNs) can be used to analyze these signals because of their high accuracy rate. However, researchers have found that adversarial attacks can significantly reduce the accuracy of DNNs. Studies have been conducted to defend ECG-based DNNs against traditional adversarial attacks, such as projected gradient descent (PGD), and smooth adversarial perturbation (SAP) which targets ECG classification; however, to the best of our knowledge, no study has completely explored the defense against adversarial attacks targeting ECG classification. Thus, we did different experiments to explore the effects of defense methods against white-box adversarial attack and black-box adversarial attack targeting ECG classification, and we found that some common defense methods performed well against these attacks. Besides, we proposed a new defense method called Adversarial Distillation Training (ADT) which comes from defensive distillation and can effectively improve the generalization performance of DNNs. The results show that our method performed more effectively against adversarial attacks targeting on ECG classification than the other baseline methods, namely, adversarial training, defensive distillation, Jacob regularization, and noise-to-signal ratio regularization. Furthermore, we found that our method performed better against PGD attacks with low noise levels, which means that our method has stronger robustness.
['Shenda Hong', 'Tong Liu', 'Weilun Xu', 'Zhaoji Fu', 'Shijia Geng', 'Jiahao Shao']
2022-03-14
null
null
null
null
['ecg-classification']
['medical']
[ 1.28026292e-01 -8.77713785e-02 2.32037783e-01 -2.63818473e-01 -5.14410138e-01 -6.47702992e-01 8.28825310e-03 -8.90953243e-02 -3.50027263e-01 7.12958515e-01 1.04627192e-01 -5.09165466e-01 4.78765368e-02 -8.53585541e-01 -3.94055128e-01 -7.51221418e-01 -3.46281588e-01 -1.62421122e-01 -8.00468177e-02 -4.43090469e-01 -1.32886559e-01 7.34377146e-01 -5.20051479e-01 2.98288733e-01 1.00188911e+00 7.44698524e-01 -8.70869040e-01 7.88563371e-01 3.94295305e-01 7.14734256e-01 -1.06409323e+00 -5.25730848e-01 6.32817864e-01 -7.22597718e-01 -3.69515687e-01 -7.34783649e-01 9.77260768e-02 -5.60514927e-01 -8.50562990e-01 1.23781931e+00 1.35884905e+00 -1.29286841e-01 2.95997202e-01 -9.43310440e-01 -5.60043812e-01 7.19731331e-01 -3.98531079e-01 4.57098842e-01 1.44354686e-01 4.10752922e-01 3.60415012e-01 -4.48844075e-01 1.38477117e-01 1.12083507e+00 1.00581646e+00 1.09408939e+00 -1.13732219e+00 -1.11436570e+00 -8.02764297e-02 -1.52826697e-01 -1.23831308e+00 1.81359500e-02 1.10323048e+00 -1.53620556e-01 3.40872347e-01 5.72266817e-01 4.90912706e-01 1.65693212e+00 5.84555089e-01 5.84233224e-01 1.16139352e+00 -8.07965621e-02 1.60291716e-01 -3.71801332e-02 -4.90256213e-02 3.75226408e-01 2.24074617e-01 5.27019143e-01 -3.78728546e-02 -8.02149534e-01 8.90114129e-01 9.51631144e-02 -6.10513806e-01 3.21544230e-01 -9.53196108e-01 8.65218282e-01 4.88115877e-01 2.61034787e-01 -3.07893515e-01 3.17341276e-02 1.00889003e+00 4.18042660e-01 2.60349631e-01 6.72030330e-01 -5.02776265e-01 4.21260074e-02 -4.13106620e-01 1.28455713e-01 8.17172885e-01 2.71428883e-01 -1.92959040e-01 7.51419485e-01 -3.33709151e-01 6.76454902e-01 -3.54946963e-03 7.69920230e-01 6.35030031e-01 -8.25311065e-01 4.41265434e-01 2.52217054e-01 -4.03735131e-01 -1.36186862e+00 -4.64086652e-01 -7.04473376e-01 -1.46362972e+00 1.86260089e-01 3.09784681e-01 -8.53976130e-01 -8.08959126e-01 1.84088981e+00 8.50478858e-02 5.00144064e-01 3.05983365e-01 9.17489231e-01 8.75841498e-01 2.39491686e-01 1.38468176e-01 -1.43797591e-01 9.19712007e-01 -2.63415337e-01 -8.60668838e-01 -1.32664330e-02 4.78647977e-01 -5.75572908e-01 1.03088295e+00 5.28393388e-01 -7.53910542e-01 -6.25380337e-01 -1.22974229e+00 5.85875630e-01 -3.11278924e-02 -4.98230398e-01 6.36098981e-01 1.49558628e+00 -5.29609084e-01 9.36073124e-01 -9.66875136e-01 1.52975410e-01 6.99910820e-01 3.74845922e-01 -1.60067901e-01 1.78472534e-01 -1.82074678e+00 7.16670454e-01 2.70147268e-02 2.48279959e-01 -1.02011704e+00 -7.48259306e-01 -6.50553882e-01 -1.00532383e-01 -1.32787516e-02 -6.15100503e-01 6.09615266e-01 -9.36518610e-01 -1.41527665e+00 6.33230150e-01 6.75575256e-01 -8.87696028e-01 5.61246395e-01 -4.43871111e-01 -7.36617446e-01 2.42435113e-01 -4.14192498e-01 6.98455945e-02 8.59283626e-01 -8.24999511e-01 2.02629045e-01 -4.59191740e-01 1.94511816e-01 -2.18760073e-01 -6.28843188e-01 5.51940352e-02 2.85834372e-01 -1.18576169e+00 -2.11024832e-04 -1.06524229e+00 -5.62973142e-01 -1.18635237e-01 -5.63829362e-01 4.02618051e-01 8.30623448e-01 -6.79356515e-01 1.40278125e+00 -2.57509375e+00 -2.97747105e-01 3.60647559e-01 3.03342551e-01 8.75558972e-01 -7.92474672e-02 2.30713218e-01 -4.05933112e-01 4.63189363e-01 -3.73690814e-01 3.39934975e-01 -2.91535646e-01 3.99925470e-01 -6.78769052e-01 5.98333895e-01 -9.75880250e-02 9.92762208e-01 -8.14944148e-01 -2.47927725e-01 5.91239631e-02 5.45073807e-01 -6.97815418e-01 1.85568824e-01 3.71162683e-01 7.96171188e-01 -5.74626684e-01 6.19888663e-01 7.34563351e-01 2.25704536e-01 2.75282443e-01 -2.41853416e-01 6.56254232e-01 -2.18740731e-01 -1.01546383e+00 1.12483144e+00 -5.81978895e-02 4.24895227e-01 -7.38393813e-02 -1.22170639e+00 1.04084587e+00 5.89622498e-01 5.49261808e-01 -3.27303886e-01 4.24268365e-01 1.33919999e-01 4.80808377e-01 -4.46284473e-01 -4.21272665e-01 -3.16686153e-01 -2.26410821e-01 9.43458453e-02 -4.71267939e-01 3.30970995e-02 -6.18254066e-01 2.66621560e-01 1.40781236e+00 -2.34076872e-01 1.57269016e-01 -1.85264662e-01 5.46814382e-01 -4.77472991e-01 1.00562990e+00 9.50064182e-01 -5.75721860e-01 6.59870744e-01 5.27521312e-01 -8.68259549e-01 -4.87021565e-01 -1.17365754e+00 -2.46254519e-01 4.78836805e-01 1.76255722e-02 -2.56783515e-01 -7.88470626e-01 -1.05692124e+00 8.21207017e-02 3.57476026e-01 -6.00331187e-01 -8.32406044e-01 -9.25690591e-01 -1.09952962e+00 1.66756451e+00 8.42753172e-01 8.50129485e-01 -9.57464218e-01 -4.71245646e-01 2.06849977e-01 -5.87310903e-02 -9.50853586e-01 -5.56102931e-01 5.93549907e-02 -1.16521716e+00 -1.10484052e+00 -7.42941558e-01 -4.20295924e-01 5.46351850e-01 -4.62816596e-01 8.74325812e-01 3.04673612e-03 -5.41293621e-01 2.93673486e-01 -2.99339205e-01 -8.28481913e-01 -6.63352847e-01 -3.98141026e-01 5.27061522e-01 7.42750196e-03 1.02061398e-01 -8.58863771e-01 -8.07031333e-01 3.24959636e-01 -8.95192146e-01 -7.14904904e-01 4.52343524e-01 9.81435061e-01 3.52790356e-01 1.74038947e-01 7.30138302e-01 -1.21987152e+00 1.11324620e+00 -2.12700188e-01 -1.86799809e-01 -1.02705836e-01 -5.30810416e-01 -1.61537424e-01 1.08713281e+00 -9.00800645e-01 -5.54880261e-01 -3.13686967e-01 -6.59455776e-01 -7.64685273e-01 -1.50941059e-01 3.70914817e-01 -1.41141817e-01 -4.48470920e-01 1.22497177e+00 -2.40961630e-02 2.50481181e-02 -3.27826649e-01 -4.91545945e-02 5.99034488e-01 5.28424323e-01 -5.74632108e-01 9.54091191e-01 5.39177537e-01 1.79556981e-01 -5.20861149e-01 -7.10425854e-01 2.75407583e-01 -5.97242154e-02 5.58556914e-02 8.33054841e-01 -6.70984924e-01 -9.01504338e-01 6.40305996e-01 -8.95433068e-01 -1.66693643e-01 -3.22076827e-01 6.05175555e-01 -1.22618517e-02 8.13281178e-01 -1.00092173e+00 -6.27044380e-01 -8.94536793e-01 -8.51428747e-01 2.09562227e-01 3.17064822e-02 -2.49121264e-01 -9.59100425e-01 2.01387238e-02 8.52484182e-02 6.83889925e-01 1.12678468e+00 8.80458832e-01 -1.02854776e+00 3.65902297e-02 -4.60904300e-01 3.00471693e-01 1.04784667e+00 1.70912415e-01 -2.12374538e-01 -1.01671815e+00 -5.40060699e-01 6.33199394e-01 -1.45905823e-01 3.20080131e-01 4.78923827e-01 1.51548517e+00 -4.22830462e-01 -1.60059631e-01 1.05228972e+00 1.01427734e+00 4.37671065e-01 1.03316355e+00 2.06385195e-01 7.43995130e-01 8.71397182e-02 2.86745578e-01 3.82849574e-01 -4.09891427e-01 2.95826703e-01 6.17249429e-01 -5.29740214e-01 2.50935733e-01 1.29185349e-01 2.79241741e-01 5.09402812e-01 -2.87593871e-01 -4.53724200e-03 -8.50881875e-01 -1.90836098e-02 -1.47202456e+00 -8.72628093e-01 -1.23960920e-01 2.15897107e+00 7.97637224e-01 4.79880154e-01 -5.86638004e-02 4.48456705e-01 6.17027462e-01 4.13874276e-02 -9.09487307e-01 -6.38728201e-01 -2.16375768e-01 5.84393561e-01 5.22548437e-01 -1.32027995e-02 -1.20275438e+00 4.99067754e-01 6.77902126e+00 6.19847953e-01 -1.35456073e+00 -3.01951356e-02 7.38676369e-01 -5.64774126e-03 9.21010301e-02 -4.43089187e-01 -2.64295280e-01 5.52045703e-01 9.02661443e-01 -1.05678446e-04 2.24387541e-01 9.54310179e-01 3.90683897e-02 7.85029650e-01 -8.51991951e-01 1.10365701e+00 -7.23477751e-02 -1.05371428e+00 7.36410543e-02 5.32174669e-03 5.70087016e-01 -2.27409318e-01 1.61947846e-01 5.04362822e-01 1.65114254e-01 -1.01974452e+00 -1.71161175e-01 2.10928053e-01 7.50111222e-01 -1.00198865e+00 1.07325709e+00 2.91244835e-01 -7.07797766e-01 -2.24337563e-01 -2.63604790e-01 -2.49326434e-02 -3.62941362e-02 5.62318981e-01 -3.58819366e-01 5.50973475e-01 7.32104957e-01 3.94296229e-01 -2.48355269e-01 5.83436787e-01 -4.00411516e-01 1.06966388e+00 -9.79557410e-02 3.17212880e-01 -4.51343367e-03 9.31163505e-02 8.49534333e-01 9.53313112e-01 -1.50626838e-01 3.71777564e-01 3.20357680e-01 5.70227921e-01 -5.87597601e-02 -4.49901819e-03 -7.65414298e-01 4.55293432e-02 3.93552274e-01 8.76485288e-01 -4.75468159e-01 -1.43826857e-01 -1.53233543e-01 8.35176766e-01 -3.61356020e-01 3.29706401e-01 -1.13432670e+00 -8.02555859e-01 8.15560937e-01 8.04879814e-02 -3.20875555e-01 4.96220179e-02 -5.62261760e-01 -1.14680326e+00 -1.39779979e-02 -1.64289725e+00 7.27934182e-01 -2.80030191e-01 -1.60770726e+00 8.07821333e-01 -2.03358307e-01 -1.38864791e+00 9.07380357e-02 -4.14080024e-01 -8.03102493e-01 9.86611843e-01 -8.79792571e-01 -6.56620622e-01 -1.04827248e-01 1.04616952e+00 1.53127566e-01 -3.61976355e-01 1.18258786e+00 5.11027515e-01 -5.24928927e-01 1.12287796e+00 -1.05372690e-01 9.13248479e-01 7.42312312e-01 -9.33969438e-01 4.14881408e-01 1.07936490e+00 -4.42180000e-02 1.01235247e+00 5.34901202e-01 -6.71351671e-01 -1.12077308e+00 -1.03492630e+00 -2.05062181e-02 -2.98478782e-01 3.26113254e-01 -2.16455445e-01 -1.10914767e+00 4.81542408e-01 -1.56393722e-02 4.08219129e-01 9.75252330e-01 -1.28270909e-01 -3.22492599e-01 -2.75800616e-01 -1.42466891e+00 7.77458727e-01 7.74423301e-01 -5.51425636e-01 -5.76966763e-01 3.27805132e-01 6.67271078e-01 -7.82629430e-01 -1.04851174e+00 9.96901631e-01 5.35658956e-01 -7.97847331e-01 1.38515759e+00 -8.70166957e-01 2.32832521e-01 -2.12355927e-02 2.31095590e-03 -1.27584159e+00 -2.60335475e-01 -8.72761250e-01 -1.50279909e-01 8.98436189e-01 5.73117025e-02 -1.25272667e+00 6.62185490e-01 6.05315328e-01 -1.23147003e-01 -9.08483505e-01 -7.72443473e-01 -9.21773076e-01 2.02615187e-01 -2.52299488e-01 5.03571689e-01 1.32631731e+00 -1.76386282e-01 6.75339699e-02 -6.89375401e-01 5.17471135e-01 5.45675755e-01 -3.07199210e-01 6.66114151e-01 -9.11696315e-01 -5.85187316e-01 -1.56573236e-01 -7.47464240e-01 -4.00556803e-01 -3.35664637e-02 -7.70133674e-01 -4.78771061e-01 -9.80198801e-01 -3.41842443e-01 -3.29880714e-01 -6.54867113e-01 4.96977955e-01 -6.57232285e-01 5.13362646e-01 1.10021450e-01 1.16314925e-01 1.12856947e-01 1.25614613e-01 1.25968134e+00 -1.73187762e-01 -3.60762566e-01 3.10827047e-01 -9.50797319e-01 1.00908017e+00 1.02341223e+00 -7.27669418e-01 -3.32699805e-01 -1.43031031e-01 -5.30951358e-02 1.29371390e-01 2.73116052e-01 -1.02517200e+00 -1.04826599e-01 2.02303380e-01 5.88809311e-01 -1.11119956e-01 3.82255577e-02 -6.97419703e-01 1.27650350e-01 1.17093551e+00 -3.00409436e-01 -2.09953263e-02 4.47811306e-01 4.14956629e-01 -1.38738245e-01 2.09832415e-01 1.00144911e+00 -7.45557696e-02 -9.07986835e-02 3.51643085e-01 -3.80342603e-01 3.90939504e-01 1.04919791e+00 -1.54982507e-01 -1.47758365e-01 -4.01194066e-01 -1.02923632e+00 -5.83398482e-03 -1.32637709e-01 1.51844144e-01 7.96356380e-01 -1.24055624e+00 -8.78592432e-01 4.37489420e-01 -4.69471902e-01 -2.06025884e-01 3.90282035e-01 8.24741483e-01 -7.11967230e-01 -1.16307966e-01 -2.98778206e-01 -4.76956367e-01 -1.58312380e+00 7.60347843e-01 7.33077765e-01 -2.56497532e-01 -9.68700528e-01 8.15749049e-01 3.14477175e-01 -4.52779144e-01 4.49017227e-01 -6.83126599e-02 -7.70798773e-02 -4.81202722e-01 4.54235613e-01 5.78192353e-01 3.03669348e-02 2.00153477e-02 -5.90547979e-01 4.86027390e-01 -3.01496144e-02 4.00318205e-01 1.02880096e+00 5.00009894e-01 -2.84061935e-02 -2.91063674e-02 9.84572291e-01 2.50455886e-01 -7.55447268e-01 6.66976497e-02 -5.22589684e-01 -4.76268500e-01 -1.00312755e-01 -8.40224743e-01 -1.35058630e+00 1.03927648e+00 1.00166285e+00 3.68263602e-01 1.42953026e+00 -7.31874049e-01 1.00354528e+00 3.89161766e-01 2.55806357e-01 -6.20708525e-01 2.33279184e-01 1.69783637e-01 6.66131914e-01 -9.15922582e-01 1.57263000e-02 -2.98765212e-01 -8.00619006e-01 9.22585487e-01 6.20141447e-01 -4.53082889e-01 8.35234821e-01 5.12437403e-01 6.79107785e-01 2.72616278e-02 -5.32553382e-02 5.30854404e-01 1.02754384e-01 7.30848432e-01 1.98261440e-01 1.00425497e-01 -4.35891330e-01 7.66110122e-01 -5.93794659e-02 -2.03127503e-01 2.56191552e-01 8.76224101e-01 2.49782026e-01 -1.27323401e+00 -6.12602890e-01 4.84458596e-01 -1.30903006e+00 -2.21912801e-01 -3.92371088e-01 7.20107675e-01 1.06769785e-01 8.78316224e-01 -6.47993505e-01 -7.07969010e-01 6.49536729e-01 -6.54699504e-02 2.13561431e-01 -4.63941306e-01 -1.11758006e+00 -6.63136244e-02 -1.91560820e-01 -5.94239414e-01 -1.89284496e-02 -1.86257631e-01 -1.05853879e+00 -4.01185602e-01 -3.46622854e-01 2.11189330e-01 3.22524726e-01 6.32251918e-01 3.59273463e-01 1.03096378e+00 8.83498192e-01 -3.92137825e-01 -1.13999999e+00 -8.13128948e-01 -6.84040308e-01 6.57474458e-01 2.00768486e-01 -1.11866668e-01 -5.81742465e-01 -2.18530491e-01]
[14.302435874938965, 3.1592235565185547]
835de342-8e08-4ce7-8f24-8685d77f5742
learning-structural-information-for-syntax
null
null
https://aclanthology.org/2022.findings-naacl.160
https://aclanthology.org/2022.findings-naacl.160.pdf
Learning Structural Information for Syntax-Controlled Paraphrase Generation
Syntax-controlled paraphrase generation aims to produce paraphrase conform to given syntactic patterns. To address this task, recent works have started to use parse trees (or syntactic templates) to guide generation.A constituency parse tree contains abundant structural information, such as parent-child relation, sibling relation, and the alignment relation between words and nodes.Previous works have only utilized parent-child and alignment relations, which may affect the generation quality.To address this limitation, we propose a Structural Information-augmented Syntax-Controlled Paraphrasing (SI-SCP) model. Particularly, we design a syntax encoder based on tree-transformer to capture parent-child and sibling relations. To model the alignment relation between words and nodes, we propose an attention regularization objective, which makes the decoder accurately select corresponding syntax nodes to guide the generation of words.Experiments show that SI-SCP achieves state-of-the-art performances in terms of semantic and syntactic quality on two popular benchmark datasets.Additionally, we propose a Syntactic Template Retriever (STR) to retrieve compatible syntactic structures. We validate that STR is capable of retrieving compatible syntactic structures. We further demonstrate the effectiveness of SI-SCP to generate diverse paraphrases with retrieved syntactic structures.
['Yufeng Chen', 'Jinan Xu', 'Yao Meng', 'Yujie Zhang', 'Deyi Xiong', 'Chenglin Bai', 'Erguang Yang']
null
null
null
null
findings-naacl-2022-7
['paraphrase-generation', 'paraphrase-generation']
['computer-code', 'natural-language-processing']
[ 3.90817761e-01 1.10468566e-02 -2.96845406e-01 -6.47786617e-01 -6.29741669e-01 -4.43155318e-01 3.62730056e-01 1.14050500e-01 -2.04992041e-01 4.64597970e-01 7.46547997e-01 -3.03270221e-01 1.40560493e-01 -1.00449228e+00 -7.74668932e-01 -2.68876523e-01 6.22931540e-01 3.16268384e-01 1.02017701e-01 -5.01493871e-01 3.43250960e-01 2.88666543e-02 -1.38801825e+00 7.21501946e-01 1.32261360e+00 5.55634677e-01 6.87653124e-01 -1.12188691e-02 -7.47866154e-01 6.02716804e-01 -6.58662140e-01 -7.56039917e-01 -1.50546553e-02 -8.20442259e-01 -8.96692872e-01 -2.23016158e-01 -1.43978205e-02 -3.14506404e-02 -1.51233301e-01 1.12284672e+00 3.51633370e-01 -1.37448817e-01 4.58682686e-01 -8.86262953e-01 -1.15165627e+00 1.02652109e+00 -2.87781268e-01 2.73689747e-01 7.10471570e-01 6.50045974e-03 1.46393692e+00 -1.01055110e+00 6.62982702e-01 1.45051944e+00 2.57537335e-01 5.91931283e-01 -1.03030014e+00 -6.39270782e-01 3.69886070e-01 3.70210469e-01 -1.18249428e+00 -3.36052239e-01 9.74657238e-01 2.76611391e-02 1.16646910e+00 7.48474970e-02 5.73894918e-01 1.19949675e+00 3.59722793e-01 1.01772547e+00 7.46134222e-01 -6.44825995e-01 1.24804862e-01 -2.05837917e-02 3.79013032e-01 5.48166454e-01 1.42868951e-01 -8.45232531e-02 -5.50641060e-01 5.77139221e-02 4.42215621e-01 -2.52959162e-01 -3.64688963e-01 -1.20272994e-01 -1.00381243e+00 9.90872383e-01 5.42278171e-01 3.70109826e-01 -1.40763447e-01 -1.93890125e-01 6.21587813e-01 4.54553187e-01 2.03743830e-01 5.29208243e-01 -2.95840830e-01 2.84519456e-02 -6.59266710e-01 2.55106330e-01 6.39736712e-01 1.38529909e+00 5.80562532e-01 -6.19028173e-02 -5.23058534e-01 1.26272798e+00 3.10573876e-01 5.37991822e-01 9.30308461e-01 -7.51755059e-01 9.91756618e-01 8.74341011e-01 -2.78944463e-01 -9.65550601e-01 -1.16303116e-01 -4.76595938e-01 -8.58598709e-01 -6.14565790e-01 -2.49826133e-01 2.02469543e-01 -7.93757975e-01 1.95475185e+00 9.38779712e-02 -1.89142406e-01 2.90225625e-01 8.97044063e-01 1.05913234e+00 9.20897901e-01 9.39655229e-02 -3.14056396e-01 1.42985392e+00 -1.08586037e+00 -6.34977639e-01 -5.03471911e-01 8.20493579e-01 -6.82310283e-01 1.60291183e+00 -1.00682944e-01 -1.24454927e+00 -5.95223606e-01 -9.22559142e-01 -2.62666821e-01 -3.56370807e-02 1.48806483e-01 2.83197761e-01 2.99668491e-01 -5.97813189e-01 5.10579765e-01 -5.17508030e-01 -1.38489828e-01 2.12542832e-01 1.83520634e-02 -1.79808646e-01 -2.21799448e-01 -1.51690090e+00 7.66417027e-01 6.35568321e-01 2.35060006e-02 -3.59320253e-01 -5.61062753e-01 -1.14908457e+00 3.83252501e-01 1.20851301e-01 -1.03473067e+00 1.24565387e+00 -9.70324457e-01 -1.35521936e+00 7.53156424e-01 -6.01904273e-01 -2.90052593e-01 -1.27478495e-01 -1.09705262e-01 -2.71993220e-01 -6.37667701e-02 3.61688703e-01 5.27964056e-01 5.33200443e-01 -9.52393353e-01 -5.56745708e-01 -3.43495876e-01 -4.09296900e-03 4.76548135e-01 -4.22767609e-01 2.53753006e-01 -5.61051011e-01 -1.06685078e+00 3.73104930e-01 -6.96795702e-01 -8.97661820e-02 -6.06203020e-01 -5.53841412e-01 -3.97494853e-01 3.57048035e-01 -7.29698300e-01 1.69698632e+00 -2.00743628e+00 5.59683084e-01 1.39669348e-02 -2.32668146e-01 4.16597784e-01 -4.53346461e-01 5.31600118e-01 -2.20508389e-02 2.47893617e-01 -3.80287379e-01 -3.51051956e-01 -5.28659672e-03 4.79807079e-01 -5.73695898e-01 -3.87285888e-01 2.50203192e-01 1.25582683e+00 -8.85867774e-01 -4.53529149e-01 -6.62057400e-02 8.09446722e-02 -6.83405876e-01 3.78636569e-01 -2.94455677e-01 1.51298400e-02 -6.17016912e-01 4.62018609e-01 5.37061810e-01 -2.33004332e-01 2.10034132e-01 -2.95896292e-01 3.39334548e-01 9.81335878e-01 -5.91309190e-01 1.81687605e+00 -9.73476708e-01 2.41153017e-02 -2.85817921e-01 -8.13467145e-01 1.21086252e+00 1.44237131e-02 -1.27083272e-01 -1.20726585e+00 1.91792808e-02 3.72951061e-01 -5.17786928e-02 -3.81061077e-01 5.04068196e-01 -2.26094469e-01 -2.87127733e-01 3.12516719e-01 -1.06335543e-02 -1.71230927e-01 3.27722043e-01 3.63494456e-01 1.20587826e+00 1.17610008e-01 2.74916679e-01 -1.10734738e-01 9.19713736e-01 -1.11925602e-01 8.24038327e-01 4.73644644e-01 2.49864832e-01 6.83153510e-01 5.36121130e-01 -2.78208226e-01 -1.11401880e+00 -1.08110344e+00 1.17174357e-01 9.30321276e-01 3.63938898e-01 -8.45682800e-01 -7.51381516e-01 -7.60867059e-01 -2.40107164e-01 1.11411047e+00 -2.84630448e-01 -5.67614198e-01 -1.14122832e+00 -5.20466685e-01 4.09914762e-01 6.92213178e-01 5.08726656e-01 -1.51592863e+00 -2.46729732e-01 5.61870456e-01 -5.64657390e-01 -1.14664841e+00 -7.72322834e-01 -1.04653254e-01 -7.89322793e-01 -9.03619409e-01 -5.71595848e-01 -1.18717325e+00 6.66050673e-01 2.44777173e-01 1.32409942e+00 5.52202873e-02 1.60361215e-01 -3.43841404e-01 -8.34794223e-01 1.92904826e-02 -7.12797046e-01 4.72243845e-01 -3.12050134e-01 -2.96646863e-01 3.90629858e-01 -8.55826855e-01 -4.72739488e-01 3.36949080e-01 -8.81605327e-01 4.17134792e-01 7.37324238e-01 9.60990071e-01 6.50328994e-01 -4.34791535e-01 6.73450887e-01 -9.51965690e-01 9.88428473e-01 -4.30134267e-01 -3.96779031e-01 5.92078686e-01 -5.61663508e-01 5.02698123e-01 1.24299550e+00 -2.18183640e-02 -1.19848216e+00 -1.02758162e-01 -4.04375225e-01 -4.36389476e-01 6.00736849e-02 6.33887947e-01 -4.96096641e-01 5.49936235e-01 4.32893038e-01 7.12170839e-01 -3.84380996e-01 -6.17980957e-01 4.19188291e-01 7.83266306e-01 5.22661150e-01 -7.85485983e-01 5.63981414e-01 -9.12009329e-02 -1.20949373e-01 -2.36027405e-01 -1.11179817e+00 -1.16072252e-01 -4.64512020e-01 4.08643931e-01 6.62182808e-01 -8.41732204e-01 1.73498224e-02 2.10612565e-01 -1.60722804e+00 4.85957377e-02 -1.74321786e-01 3.29637602e-02 -4.57301497e-01 6.34560049e-01 -7.90204883e-01 -2.11995438e-01 -9.67951477e-01 -1.19424248e+00 1.22121954e+00 9.93338004e-02 -2.84297764e-01 -6.84989035e-01 5.45102358e-02 4.10633415e-01 4.55725938e-01 -1.74298719e-01 1.58143723e+00 -6.54387236e-01 -5.19579768e-01 1.97281405e-01 -3.63505632e-01 3.52605253e-01 2.26669714e-01 -3.31988096e-01 -3.03631902e-01 -1.35345131e-01 -6.41886964e-02 -1.55440673e-01 8.46669495e-01 -1.77162997e-02 9.71358120e-01 -5.65236151e-01 -3.27440053e-01 7.79312670e-01 1.03997612e+00 2.32148215e-01 6.62774920e-01 2.99993157e-01 7.68826306e-01 7.09881306e-01 6.69080257e-01 2.64029890e-01 5.75928390e-01 8.29898179e-01 3.42718028e-02 3.68222952e-01 -2.98540980e-01 -8.03042591e-01 5.17884731e-01 1.23479748e+00 5.72666407e-01 -4.11157846e-01 -7.03060329e-01 5.06958783e-01 -1.79842114e+00 -6.04164183e-01 -1.63426042e-01 1.87926340e+00 1.05581117e+00 2.48547077e-01 -3.29990834e-01 -4.89504747e-02 7.77383387e-01 2.66667306e-01 -3.54046285e-01 -5.64446330e-01 -2.13648558e-01 4.37013179e-01 -4.24764752e-02 3.72738659e-01 -5.15559018e-01 1.35771489e+00 5.22870255e+00 1.08276761e+00 -7.75506437e-01 -4.22577895e-02 3.25819939e-01 -1.03941998e-02 -9.41073120e-01 1.68231905e-01 -9.64846671e-01 8.61436665e-01 6.41938090e-01 -5.22558570e-01 3.51942807e-01 8.70722175e-01 2.19927460e-01 3.09423417e-01 -1.07961917e+00 8.77150238e-01 2.06590265e-01 -1.32855487e+00 6.69082940e-01 -3.22423965e-01 5.00051737e-01 -2.10440010e-01 -3.12127382e-01 4.49765503e-01 2.06739038e-01 -8.65090013e-01 5.69115520e-01 1.28550157e-01 7.04068005e-01 -8.62809718e-01 7.52465367e-01 3.13788801e-01 -1.48894095e+00 -8.90416130e-02 -6.82373285e-01 2.28533402e-01 4.91140068e-01 6.46456420e-01 -4.41982657e-01 7.59517491e-01 3.78812551e-01 7.85683215e-01 -6.00480258e-01 7.03422606e-01 -9.04818177e-01 5.91848075e-01 -1.25498623e-01 -1.61796242e-01 2.32471481e-01 -3.23849171e-01 6.05443478e-01 1.20493996e+00 4.51165318e-01 3.82270440e-02 8.97270963e-02 1.12156463e+00 -1.64075911e-01 4.81979668e-01 -4.81437892e-01 2.75150478e-01 9.56082284e-01 8.59596312e-01 -2.72100389e-01 -2.88873136e-01 -2.86539137e-01 1.20331395e+00 7.21630871e-01 9.43876207e-02 -7.04403937e-01 -4.69022781e-01 5.12008607e-01 6.68850914e-02 3.13563794e-01 2.38327193e-03 -3.31921428e-01 -1.42728126e+00 6.03032410e-01 -1.04771221e+00 4.38658506e-01 -9.86321330e-01 -1.16184044e+00 7.89141953e-01 8.25552940e-02 -9.70994830e-01 -1.79149896e-01 -2.26248711e-01 -8.33501697e-01 9.09391105e-01 -1.49936140e+00 -1.22572577e+00 -1.70583323e-01 2.81628221e-01 1.08245611e+00 -2.87230343e-01 7.24831522e-01 1.11194447e-01 -8.34935784e-01 8.32732797e-01 -1.98686704e-01 1.17993988e-01 3.33941519e-01 -9.50864315e-01 9.61601079e-01 9.18008029e-01 2.64465600e-01 8.50265205e-01 3.54149669e-01 -7.09087431e-01 -1.26350427e+00 -1.29596722e+00 1.37835467e+00 -1.60925910e-01 3.07462662e-01 -3.57850462e-01 -1.15520799e+00 5.03831863e-01 1.86371908e-01 -4.72776413e-01 4.79914635e-01 -6.82236552e-02 -5.83714902e-01 -1.26803532e-01 -7.26764798e-01 8.39591086e-01 1.52420545e+00 -4.40497667e-01 -1.16587639e+00 2.89776921e-01 1.20771575e+00 -3.11345369e-01 -4.44108307e-01 6.42880321e-01 2.47352034e-01 -9.34429586e-01 7.01464236e-01 -5.94326079e-01 9.80520546e-01 -6.69415966e-02 -1.78504035e-01 -1.50672770e+00 -4.53902036e-01 -3.94477397e-01 -1.81219772e-01 1.53444552e+00 5.83811343e-01 -3.64970177e-01 7.82358110e-01 3.57230633e-01 -5.09691358e-01 -9.68477905e-01 -9.10881937e-01 -8.96559179e-01 2.60249197e-01 -1.99837357e-01 8.70445848e-01 6.09766424e-01 2.42972732e-01 8.94558668e-01 -1.65591553e-01 -1.61875442e-01 2.57949084e-01 5.68962216e-01 5.10506213e-01 -7.87177920e-01 -4.79715705e-01 -4.90124106e-01 4.24810499e-02 -1.45056164e+00 7.29035497e-01 -1.28826809e+00 -9.68384445e-02 -1.68210697e+00 2.46502519e-01 -4.72383261e-01 -7.06092566e-02 4.95477021e-01 -5.22341311e-01 -3.68726820e-01 2.92269230e-01 4.13493842e-01 -4.62311983e-01 1.00732934e+00 1.22213793e+00 -4.13611829e-02 -2.88221300e-01 -8.14682543e-02 -7.95980155e-01 4.76257265e-01 9.14505064e-01 -5.16088367e-01 -5.59916079e-01 -7.83202410e-01 3.86475950e-01 2.54527181e-01 -6.50178418e-02 -7.59508193e-01 1.14410266e-01 -2.42500156e-01 -9.34049562e-02 -5.07700741e-01 9.13293660e-02 -4.73060399e-01 -2.80710049e-02 4.06772256e-01 -5.88188946e-01 5.25195718e-01 -8.16083997e-02 3.36739093e-01 -4.24598992e-01 -6.01825356e-01 5.64069390e-01 -2.46116266e-01 -5.64226270e-01 2.53100712e-02 -9.00749192e-02 4.53074574e-01 6.92235351e-01 -1.92028861e-02 -3.20144087e-01 -1.45304039e-01 -2.37825334e-01 5.01247942e-01 5.09049714e-01 7.14645088e-01 8.23443651e-01 -1.52805555e+00 -8.00491512e-01 4.40935552e-01 3.92104685e-01 6.50157109e-02 1.12983142e-03 1.24728628e-01 -3.81162167e-01 4.64808851e-01 -3.98281775e-02 -1.83723733e-01 -1.25998616e+00 6.37344718e-01 2.21041054e-01 -5.17967939e-01 -6.77892506e-01 8.35446239e-01 3.88559461e-01 -5.19758463e-01 3.57652940e-02 -5.27760684e-01 -1.58597454e-01 -3.34836334e-01 4.55713153e-01 -2.31768172e-02 8.12901258e-02 -5.29190600e-01 -2.71834791e-01 5.94754755e-01 -4.81019109e-01 5.79054020e-02 9.73505616e-01 -1.71031207e-01 -2.06532523e-01 -1.84527084e-01 1.23204517e+00 -6.49327412e-02 -5.87751925e-01 -4.44648236e-01 1.68426052e-01 -4.10235524e-01 -2.62579203e-01 -6.58671856e-01 -9.30194438e-01 8.19864810e-01 -1.11582480e-01 -2.33491540e-01 1.15135431e+00 8.08612779e-02 1.41101921e+00 4.95400429e-01 4.76035625e-01 -8.86332095e-01 1.65571928e-01 8.89336288e-01 1.07519507e+00 -8.09584200e-01 -3.59618574e-01 -8.86229396e-01 -7.54743040e-01 8.71200025e-01 8.70401740e-01 -4.63285670e-02 1.94353744e-01 3.81664112e-02 -2.41137564e-01 -3.40534076e-02 -8.98521304e-01 -1.26927316e-01 2.64748067e-01 3.49063337e-01 5.71973145e-01 -1.79503709e-01 -8.13702464e-01 8.28917980e-01 -5.90822279e-01 -1.58318788e-01 2.47201309e-01 8.69433939e-01 -5.76812625e-01 -1.65049458e+00 1.22719526e-01 3.58728290e-01 -2.06599876e-01 -5.78821182e-01 -5.67974091e-01 2.50505000e-01 -8.08554143e-02 8.89451683e-01 -5.94360456e-02 -3.91920298e-01 6.77595377e-01 1.62486210e-01 3.94610226e-01 -1.04923320e+00 -7.44234204e-01 -1.59632280e-01 1.98451370e-01 -5.13849258e-01 5.58404345e-03 -3.19871038e-01 -1.32298613e+00 -1.16854556e-01 -3.49097878e-01 3.81110728e-01 2.36482829e-01 8.95500422e-01 6.69831634e-01 4.60671991e-01 9.34554279e-01 -3.71223241e-01 -7.41372168e-01 -8.58252406e-01 -2.95364290e-01 7.67653704e-01 -2.67232150e-01 -3.09928149e-01 -2.40212858e-01 -1.74628735e-01]
[11.630940437316895, 9.315764427185059]
c7420447-0014-42a9-af59-65489e1e4122
pseudo-value-based-deep-neural-networks-for
2207.05291
null
https://arxiv.org/abs/2207.05291v1
https://arxiv.org/pdf/2207.05291v1.pdf
Pseudo value-based Deep Neural Networks for Multi-state Survival Analysis
Multi-state survival analysis (MSA) uses multi-state models for the analysis of time-to-event data. In medical applications, MSA can provide insights about the complex disease progression in patients. A key challenge in MSA is the accurate subject-specific prediction of multi-state model quantities such as transition probability and state occupation probability in the presence of censoring. Traditional multi-state methods such as Aalen-Johansen (AJ) estimators and Cox-based methods are respectively limited by Markov and proportional hazards assumptions and are infeasible for making subject-specific predictions. Neural ordinary differential equations for MSA relax these assumptions but are computationally expensive and do not directly model the transition probabilities. To address these limitations, we propose a new class of pseudo-value-based deep learning models for multi-state survival analysis, where we show that pseudo values - designed to handle censoring - can be a natural replacement for estimating the multi-state model quantities when derived from a consistent estimator. In particular, we provide an algorithm to derive pseudo values from consistent estimators to directly predict the multi-state survival quantities from the subject's covariates. Empirical results on synthetic and real-world datasets show that our proposed models achieve state-of-the-art results under various censoring settings.
['Sanjay Purushotham', 'Md Mahmudur Rahman']
2022-07-12
null
null
null
null
['survival-analysis']
['miscellaneous']
[-7.91528299e-02 -3.14957201e-01 -5.50538957e-01 -7.03274846e-01 -1.20800626e+00 1.02111794e-01 2.46083990e-01 2.90937930e-01 -1.37183875e-01 1.20439231e+00 1.81451559e-01 -7.27736652e-01 -2.60890454e-01 -6.78129613e-01 -5.09106100e-01 -8.14529479e-01 -3.10013205e-01 6.72902703e-01 -2.98851520e-01 1.05904276e-02 -1.84979364e-01 2.54846185e-01 -7.68791676e-01 -5.83139397e-02 8.83286417e-01 7.24044263e-01 -4.86140221e-01 8.07446182e-01 6.52289614e-02 8.29747677e-01 -2.68361688e-01 -2.38888279e-01 -2.85859585e-01 -5.76226234e-01 -4.17672068e-01 -3.69078040e-01 -8.40700939e-02 -6.23855293e-01 -4.96106505e-01 6.02955282e-01 4.79844332e-01 -1.59283265e-01 1.23301518e+00 -1.45785451e+00 -3.86499912e-01 3.66152048e-01 -3.00241709e-01 1.35129705e-01 -6.78618923e-02 1.06329195e-01 6.68512940e-01 -4.29913998e-01 3.71874161e-02 1.18689644e+00 1.36072183e+00 6.83060944e-01 -1.43456900e+00 -5.13663232e-01 -1.01495646e-01 -5.00395484e-02 -1.29155397e+00 -4.30235386e-01 5.20808995e-01 -5.31569064e-01 6.10065997e-01 2.03368366e-01 5.15322447e-01 1.61843836e+00 1.13015759e+00 7.18664527e-01 1.11111772e+00 -2.96122152e-02 4.46909159e-01 -3.51524383e-01 6.56831861e-01 5.92420816e-01 3.00206095e-01 5.18043041e-01 -2.37192959e-01 -8.22305143e-01 1.15897167e+00 7.14573264e-01 1.06711112e-01 -5.40960670e-01 -1.24730480e+00 1.04187560e+00 -5.08620869e-03 -2.09263220e-01 -6.82138741e-01 6.02656484e-01 4.09615785e-01 1.90018922e-01 5.13057947e-01 -3.67727369e-01 -7.57670283e-01 -8.00255761e-02 -1.15491247e+00 1.06683947e-01 9.20219660e-01 7.52162337e-01 1.55905589e-01 1.11979678e-01 -7.59201348e-01 4.10845250e-01 3.87335211e-01 6.70371056e-01 3.51971090e-01 -7.37261236e-01 -2.06540842e-02 1.75821066e-01 4.24796283e-01 -1.47140533e-01 -9.84403610e-01 -9.09515738e-01 -1.58177471e+00 -8.44871104e-02 7.56609142e-01 -4.32725072e-01 -1.16266310e+00 2.13886833e+00 2.82461017e-01 6.09413445e-01 1.61158830e-01 2.81970918e-01 4.68016505e-01 4.74824160e-01 3.50015670e-01 -5.81358075e-01 1.27766669e+00 -4.76171225e-01 -8.92903328e-01 -6.31323308e-02 7.69607604e-01 9.16513205e-02 7.23850727e-01 7.63043063e-03 -9.89093125e-01 -2.24275794e-02 -5.23496151e-01 1.00816451e-01 2.74539795e-02 -4.60954197e-02 7.85279691e-01 6.25538886e-01 -8.35502982e-01 8.49504113e-01 -1.49103653e+00 -3.12888473e-01 5.90573192e-01 4.15659100e-01 -1.17990689e-03 2.29364172e-01 -1.40741277e+00 8.03587914e-01 -1.88546598e-01 1.78099722e-01 -1.44396424e+00 -8.30385447e-01 -7.03996181e-01 3.74911785e-01 -6.29448742e-02 -1.29308486e+00 1.35477674e+00 -4.72848684e-01 -1.32381308e+00 4.56747144e-01 -3.05108815e-01 -6.56585097e-01 6.18423462e-01 1.09099358e-01 -4.85312313e-01 -2.83007383e-01 1.49733767e-01 7.08520338e-02 7.36390710e-01 -6.15574181e-01 -3.41754675e-01 -4.41104442e-01 -6.33818984e-01 -2.06698090e-01 -1.11433841e-01 -8.76801088e-02 4.53459434e-02 -6.58832490e-01 5.15215546e-02 -9.82013404e-01 -6.01763189e-01 1.09902181e-01 -5.83435416e-01 -5.05761951e-02 3.74127664e-02 -8.88913274e-01 1.25028718e+00 -1.86297905e+00 -1.89719275e-01 -2.00929776e-01 2.44161114e-01 -2.67494947e-01 3.60740647e-02 5.58814764e-01 -3.15218084e-02 -1.54902384e-01 -6.40088260e-01 -6.59297407e-01 -2.78455496e-01 2.37047300e-01 -7.76209980e-02 8.21508229e-01 -6.63087796e-03 1.08708906e+00 -7.96800911e-01 -7.28938222e-01 -3.99759412e-02 6.05171621e-01 -3.66073132e-01 1.76786557e-01 2.43409440e-01 6.60116434e-01 -4.50834781e-01 8.18306327e-01 4.72138286e-01 -7.50068486e-01 -1.92581816e-03 3.66900116e-01 3.35228086e-01 4.76406403e-02 -7.08076119e-01 1.41684842e+00 -4.73945886e-01 2.21596271e-01 -3.00986141e-01 -1.15538871e+00 6.37236714e-01 5.80832422e-01 6.40895963e-01 4.60196361e-02 3.79490167e-01 1.31273568e-01 -1.74714774e-01 -1.88906312e-01 -1.50285691e-01 -8.52013528e-01 -6.19723082e-01 3.82398844e-01 -2.28872932e-02 2.93741792e-01 -4.04457897e-01 -2.87668072e-02 1.39994395e+00 -2.50928402e-01 7.23555028e-01 -1.78786024e-01 1.78926855e-01 -2.04504535e-01 1.09200513e+00 1.16268361e+00 -6.60026491e-01 5.35923779e-01 7.68292427e-01 -5.97537756e-01 -8.32405627e-01 -1.73991728e+00 -7.47165799e-01 4.80135620e-01 -3.60438913e-01 3.34871054e-01 -3.27055871e-01 -6.88475609e-01 2.68898070e-01 7.88382709e-01 -9.40173090e-01 -6.96237504e-01 -1.49290949e-01 -1.43818676e+00 6.53118432e-01 7.89303422e-01 -7.64245465e-02 -7.75588334e-01 -3.80199879e-01 5.55723429e-01 -2.94432670e-01 -4.19254482e-01 -4.54060882e-01 4.88710701e-01 -1.42655694e+00 -8.46431375e-01 -1.21109903e+00 -6.36636496e-01 4.88314390e-01 -4.75350469e-01 1.00570726e+00 -2.28712589e-01 7.33753890e-02 6.51177913e-02 2.71108121e-01 -3.49699855e-01 -6.86423302e-01 3.60988081e-02 2.59136140e-01 4.60208058e-02 2.39676073e-01 -6.09129965e-01 -7.82150209e-01 1.24205478e-01 -7.48263061e-01 5.52666038e-02 6.66376472e-01 1.36469579e+00 7.56562352e-01 -4.69300717e-01 1.34466338e+00 -9.76275146e-01 4.11069751e-01 -8.43266487e-01 -3.68872374e-01 4.03149903e-01 -9.16137993e-01 2.13565677e-01 5.79330027e-01 -7.11430371e-01 -9.02817488e-01 2.24050224e-01 -4.91572209e-02 -4.06175286e-01 -1.12928547e-01 7.64227450e-01 2.52255291e-01 4.93281484e-01 2.71374106e-01 4.41438615e-01 1.41190201e-01 -4.43322748e-01 -4.19949144e-02 6.99957609e-01 7.00082898e-01 -2.54204303e-01 1.22520708e-01 6.80180669e-01 6.99634492e-01 -1.86939567e-01 -1.12531626e+00 -3.06312948e-01 -5.78835368e-01 1.43646449e-01 7.36275375e-01 -1.12719119e+00 -8.68135393e-01 9.29444432e-01 -8.60938311e-01 -5.71796536e-01 -2.96836406e-01 7.23734081e-01 -9.83037293e-01 2.38564223e-01 -1.16818249e+00 -1.00586593e+00 -5.43632209e-01 -8.66637349e-01 1.03152466e+00 1.54691175e-01 -9.35017467e-02 -1.52995169e+00 5.31459749e-01 -6.73995018e-02 3.35868627e-01 5.65386593e-01 1.24191248e+00 -5.76946318e-01 -3.88276465e-02 -5.57326376e-01 3.85378394e-03 1.04995400e-01 3.70894045e-01 -3.41558069e-01 -5.60972095e-01 -5.59750080e-01 7.29715079e-02 6.95615485e-02 8.22235525e-01 1.37339079e+00 1.05483389e+00 -1.28728136e-01 -7.12810397e-01 7.90381432e-01 1.28006756e+00 1.48153231e-01 3.77339423e-01 -4.70279381e-02 3.81976247e-01 1.26493722e-01 3.40795934e-01 8.34069729e-01 7.06321359e-01 3.47917527e-01 4.01686609e-01 -6.20790422e-02 2.11821213e-01 -3.63037497e-01 3.86346459e-01 6.05996668e-01 5.86659968e-01 -2.31909961e-01 -1.06129658e+00 8.33932579e-01 -2.05165863e+00 -7.52693236e-01 -6.78963065e-01 2.54354405e+00 1.10556519e+00 8.32976401e-02 3.18364650e-01 -2.93822825e-01 7.93810666e-01 -2.26013854e-01 -1.12947524e+00 -1.72834456e-01 -1.15667984e-01 2.06507556e-02 5.80169559e-01 3.38374466e-01 -1.03462934e+00 5.61385393e-01 7.52382421e+00 3.58408451e-01 -6.92629933e-01 3.17191929e-01 9.63076115e-01 -1.99518964e-01 4.54892777e-02 2.43727073e-01 -8.45593512e-01 6.01510882e-01 1.67112601e+00 -2.08097354e-01 -2.28039678e-02 5.22955477e-01 2.97871351e-01 1.05159611e-01 -1.35196805e+00 7.48727798e-01 -3.79995883e-01 -1.11763382e+00 -1.91789418e-01 1.63349882e-01 7.34208405e-01 -1.89616047e-02 1.91813871e-01 5.90812922e-01 5.83564341e-01 -7.73904562e-01 4.36346561e-01 1.17612553e+00 1.08304608e+00 -7.87411571e-01 8.62658799e-01 3.77148598e-01 -6.73332751e-01 -1.93558037e-01 -2.15355247e-01 -4.94470857e-02 7.41825044e-01 9.47512865e-01 -6.36409342e-01 2.35428646e-01 2.95844167e-01 6.90290093e-01 -3.68297756e-01 1.14445460e+00 1.06289148e-01 1.08935523e+00 -2.17008233e-01 1.96683705e-01 -9.86395031e-02 1.24376148e-01 4.25437778e-01 7.71521389e-01 6.16816282e-01 -1.84903398e-01 -2.15628549e-01 8.95214856e-01 2.33259439e-01 -3.36299986e-01 -2.73714215e-01 1.05699398e-01 2.52731740e-01 8.27567279e-01 -6.20011747e-01 -4.64190483e-01 -4.50926542e-01 9.37908232e-01 1.88458696e-01 3.54981124e-01 -1.02397621e+00 -1.66448712e-01 7.54169106e-01 9.39622521e-02 4.86098379e-02 -1.69519871e-01 -5.91462016e-01 -1.44184613e+00 -5.07474542e-01 -5.12759328e-01 8.87585223e-01 -5.82270384e-01 -1.64550579e+00 2.19360128e-01 -1.00764513e-01 -1.09962952e+00 -5.16643107e-01 -2.45429724e-01 -7.00518191e-01 9.61457670e-01 -1.36904538e+00 -1.13359499e+00 1.61044121e-01 7.37372339e-01 2.75370508e-01 1.39060944e-01 9.05588388e-01 9.62401628e-02 -9.97169256e-01 6.99178874e-01 7.38740921e-01 9.06982347e-02 7.37094223e-01 -1.27270746e+00 6.55965626e-01 6.64672375e-01 -2.14258969e-01 3.94090623e-01 6.94286048e-01 -1.05241919e+00 -1.10125756e+00 -1.09150982e+00 9.92553949e-01 -7.98663318e-01 5.84329903e-01 -2.02411190e-01 -1.06878364e+00 8.61463845e-01 -5.77382565e-01 1.90604836e-01 8.22365940e-01 4.09693390e-01 1.90705329e-01 -1.69408675e-02 -1.10242116e+00 4.17709649e-01 6.96722925e-01 -4.81344908e-01 -4.47164178e-01 3.41797709e-01 5.58108211e-01 -1.22643679e-01 -8.94396424e-01 3.51161242e-01 6.96219265e-01 -6.58258557e-01 1.09675682e+00 -1.28748035e+00 3.81893963e-01 2.46191442e-01 1.08431794e-01 -1.39467955e+00 -5.94345927e-01 -5.40036321e-01 -5.45036912e-01 1.01559484e+00 3.09013635e-01 -8.07335377e-01 7.55033791e-01 8.94715965e-01 -3.05189714e-02 -8.31688464e-01 -1.45856416e+00 -1.11353242e+00 5.88129163e-01 -3.62781048e-01 8.59778285e-01 7.62119949e-01 -9.99936685e-02 4.72731926e-02 -7.73366868e-01 3.86430562e-01 1.02237415e+00 1.80966273e-01 3.51409227e-01 -1.65992248e+00 -2.44337723e-01 -2.16443706e-02 -1.12435482e-01 -5.71309745e-01 3.76396865e-01 -7.08700240e-01 2.16116756e-02 -1.67377830e+00 7.56570995e-01 -4.75826740e-01 -9.80692923e-01 5.30497491e-01 -3.96830082e-01 -2.60995299e-01 -4.63266999e-01 3.38913500e-01 -3.01235378e-01 7.33535111e-01 9.51556087e-01 1.31033093e-01 -2.91157782e-01 7.24829495e-01 -5.73274612e-01 4.69214618e-01 7.28957355e-01 -1.02981079e+00 -8.70196894e-02 7.02002272e-02 1.10924028e-01 1.32422805e+00 7.40050077e-01 -8.80370617e-01 3.40453498e-02 -5.49382031e-01 3.88848990e-01 -8.11170816e-01 3.70679855e-01 -5.33888400e-01 4.74677175e-01 9.45978045e-01 -3.77518594e-01 6.63463846e-02 -3.04686725e-02 1.13319743e+00 1.60787731e-01 1.60830021e-01 7.80153394e-01 2.18551502e-01 5.24867922e-02 6.37337327e-01 -7.66534567e-01 -2.63397139e-03 7.27748990e-01 1.97030112e-01 -1.20652743e-01 -8.61414909e-01 -9.85251844e-01 3.34446400e-01 2.15165943e-01 7.95358717e-02 4.71529007e-01 -1.49601555e+00 -9.38366711e-01 1.47968635e-01 9.81056876e-03 -2.45839745e-01 6.23182476e-01 1.21647620e+00 -1.39333144e-01 5.20048738e-01 -1.24996945e-01 -6.01223528e-01 -7.64218390e-01 7.30796397e-01 5.21324515e-01 -7.41995156e-01 -5.82525015e-01 4.41419750e-01 4.84499335e-01 -2.97377557e-01 -1.45993486e-01 -5.99272668e-01 1.87053710e-01 -7.91626275e-02 2.48320907e-01 4.49376613e-01 -2.81795323e-01 -4.58308667e-01 -4.44773883e-01 -3.67934088e-04 -2.22117752e-02 -2.32458845e-01 1.34730923e+00 -3.85593146e-01 3.55482250e-01 1.02907264e+00 1.10354960e+00 -8.59795690e-01 -1.58286536e+00 -2.13826105e-01 -1.11900076e-01 -3.18798944e-02 3.78487378e-01 -9.25183654e-01 -7.81619668e-01 1.03871310e+00 7.68774748e-01 -3.37810703e-02 9.50370729e-01 -1.67885795e-02 1.04048920e+00 1.13149710e-01 3.09531003e-01 -5.87733626e-01 -4.03417081e-01 2.11893842e-01 4.59777892e-01 -1.33042324e+00 -1.66354835e-01 1.47113219e-01 -4.26786929e-01 7.24384367e-01 1.77898794e-01 -1.64303984e-02 1.04467797e+00 1.46455348e-01 6.76040575e-02 -7.28177577e-02 -1.06005478e+00 1.38793766e-01 9.26245600e-02 5.35722911e-01 3.17611754e-01 3.09427351e-01 -2.55877912e-01 1.21670401e+00 1.57380700e-01 5.51161766e-01 7.56507516e-01 7.32402027e-01 1.48781300e-01 -9.74125683e-01 -3.08239460e-01 1.07354259e+00 -7.04363644e-01 -1.31979793e-01 2.96559125e-01 4.47971910e-01 -7.13240564e-01 7.44809151e-01 7.87137672e-02 1.58763304e-01 1.18581345e-02 3.86783659e-01 1.20766856e-01 -3.91857207e-01 -2.75291532e-01 -7.34053329e-02 -2.06103101e-01 -2.17046365e-01 8.11050832e-02 -1.13860321e+00 -1.10117280e+00 -3.44308227e-01 -4.39604104e-01 -1.35354027e-01 4.48185295e-01 9.53746259e-01 4.25845474e-01 7.38312006e-01 7.23496079e-01 -3.71281028e-01 -1.24216843e+00 -8.59613478e-01 -9.71758425e-01 2.20887735e-01 8.59802127e-01 -7.24178195e-01 -6.14336789e-01 -7.12399781e-02]
[7.801756381988525, 5.567692756652832]
b560115a-cedd-42de-9e79-a6a1c4ec80ac
100-things-you-always-wanted-to-know-about-1
null
null
https://aclanthology.org/P18-5001
https://aclanthology.org/P18-5001.pdf
100 Things You Always Wanted to Know about Semantics \& Pragmatics But Were Afraid to Ask
Meaning is a fundamental concept in Natural Language Processing (NLP), given its aim to build systems that mean what they say to you, and understand what you say to them. In order for NLP to scale beyond partial, task-specific solutions, it must be informed by what is known about how humans use language to express and understand communicative intents. The purpose of this tutorial is to present a selection of useful information about semantics and pragmatics, as understood in linguistics, in a way that{'}s accessible to and useful for NLP practitioners with minimal (or even no) prior training in linguistics. The tutorial content is based on a manuscript in progress I am co-authoring with Prof. Alex Lascarides of the University of Edinburgh.
['Emily M. Bender']
2018-07-01
null
null
null
acl-2018-7
['unsupervised-person-re-identification']
['computer-vision']
[ 3.47551554e-01 5.87242067e-01 -1.42803714e-01 -8.07152331e-01 -4.45845723e-01 -7.81012774e-01 5.86635113e-01 4.28332627e-01 -4.58757460e-01 7.00369000e-01 6.42148972e-01 -8.20822060e-01 -1.71597242e-01 -3.92511994e-01 -2.06728503e-02 -1.10215031e-01 2.14036137e-01 3.26229423e-01 9.78391021e-02 -6.00529134e-01 4.87451762e-01 4.31125373e-01 -1.21048093e+00 2.92361438e-01 5.82217395e-01 3.31897497e-01 4.73529041e-01 5.32466650e-01 -7.26000786e-01 9.31619346e-01 -4.48076397e-01 -3.07749540e-01 -3.15323561e-01 -3.68109912e-01 -1.44885302e+00 1.29227098e-02 -2.37242982e-01 1.69737011e-01 3.10509175e-01 1.09790194e+00 -8.40918124e-02 1.60589084e-01 5.98749816e-01 -5.96941650e-01 -5.05362689e-01 8.01740170e-01 1.24380767e-01 2.97993690e-01 8.03649962e-01 1.06087640e-01 1.20326436e+00 -3.98838103e-01 6.60809219e-01 1.44825363e+00 3.10914665e-01 8.04728329e-01 -1.02090883e+00 3.46476696e-02 3.45702052e-01 -3.51106167e-01 -1.02706337e+00 -8.10703695e-01 5.11213362e-01 -4.46221620e-01 1.30339003e+00 2.57681966e-01 4.00616765e-01 6.77756011e-01 1.43118605e-01 9.35710371e-01 8.60521674e-01 -9.60317910e-01 1.80212200e-01 5.54120958e-01 6.77138269e-01 2.42214397e-01 1.92192703e-01 -1.83063582e-01 -5.61763048e-01 1.30031835e-02 3.47634137e-01 -5.70208013e-01 -2.79846370e-01 7.13247135e-02 -1.29578412e+00 8.62687945e-01 -9.22276452e-02 9.04163778e-01 -3.58907491e-01 1.56934604e-01 4.39834386e-01 5.12928724e-01 1.89700499e-01 6.75741911e-01 -8.92267466e-01 -7.69149125e-01 -3.43471646e-01 1.69662103e-01 1.55870533e+00 9.17888999e-01 4.72375453e-01 -6.19028583e-02 6.27389431e-01 8.27677548e-01 7.90232778e-01 5.82389474e-01 5.53363800e-01 -1.11845195e+00 1.55652404e-01 7.68977404e-01 3.75993848e-01 -8.71631622e-01 -3.62881809e-01 1.85860366e-01 1.25176683e-01 -1.33090287e-01 5.00284433e-01 -3.63249093e-01 -2.43604124e-01 1.61290741e+00 1.64372593e-01 -8.28905463e-01 5.74511349e-01 6.39357805e-01 1.06011856e+00 7.57806778e-01 5.67369401e-01 -5.81256390e-01 1.78547812e+00 -2.07703084e-01 -8.92520070e-01 -6.91940188e-01 1.11019838e+00 -1.23402166e+00 1.55705726e+00 3.38874280e-01 -1.17938542e+00 -5.44241741e-02 -8.12671363e-01 -4.91079718e-01 -5.35637438e-01 -5.50330691e-02 1.03233349e+00 9.85138535e-01 -8.90075088e-01 3.02984327e-01 -6.89484060e-01 -9.79993045e-01 -1.82432532e-01 1.45828307e-01 -1.12074971e-01 2.70161033e-01 -1.19271970e+00 1.12002420e+00 6.64112985e-01 2.50528306e-01 3.29085328e-02 -1.30248085e-01 -1.09728181e+00 -2.42341787e-01 4.48278666e-01 -4.64041173e-01 1.82651758e+00 -1.16764975e+00 -1.53359437e+00 1.22780812e+00 -7.06416249e-01 -2.25244418e-01 -9.69706401e-02 -3.46532106e-01 -5.00023007e-01 2.26508841e-01 2.67065436e-01 5.39950669e-01 2.25476861e-01 -1.10628510e+00 -9.51018870e-01 -4.89901632e-01 3.82152945e-01 5.31076491e-01 1.76604707e-02 8.46839488e-01 -5.76678570e-03 -2.03509480e-01 3.51383477e-01 -6.38988256e-01 9.70820636e-02 -2.41174668e-01 -1.17443912e-01 -6.93335712e-01 7.36034691e-01 -6.52584851e-01 1.32157874e+00 -2.10309792e+00 -2.31654853e-01 2.51177028e-02 5.25640808e-02 2.89092124e-01 2.67710000e-01 1.04369688e+00 1.61079779e-01 4.02020693e-01 -3.34768444e-01 1.52409434e-01 4.97365117e-01 7.14155555e-01 -5.59179842e-01 2.45600224e-01 5.86679019e-02 7.57984459e-01 -1.01401746e+00 -4.53734368e-01 3.63227665e-01 3.51860762e-01 -9.01035815e-02 -3.03830020e-02 -3.58107299e-01 2.21420288e-01 -9.30872440e-01 3.92740965e-01 3.66995707e-02 -1.48263767e-01 3.94489408e-01 4.46503460e-01 -4.41894293e-01 1.23800993e+00 -1.00564492e+00 1.37652600e+00 -5.45498669e-01 7.21466124e-01 2.07350358e-01 -9.80895698e-01 7.74204850e-01 7.14986622e-01 -8.21434557e-02 -8.12849626e-02 2.44310319e-01 5.27877092e-01 3.81569535e-01 -7.10086524e-01 4.51094061e-01 -7.11074054e-01 -2.48847321e-01 8.72172296e-01 -3.23063314e-01 -5.86937368e-01 3.84187251e-01 2.77660728e-01 6.20388031e-01 1.44752651e-01 8.61384511e-01 -7.70316720e-01 9.26605701e-01 1.99875712e-01 2.91141033e-01 4.65267062e-01 -1.85342774e-01 -1.52721837e-01 6.99719608e-01 -5.88087916e-01 -7.41340935e-01 -5.72205544e-01 -3.89444321e-01 1.10261619e+00 -1.51424110e-01 -3.81237626e-01 -8.80013525e-01 -2.12703094e-01 -6.79433227e-01 1.53418219e+00 -1.81947187e-01 3.86467367e-01 -6.54665291e-01 -1.27586871e-01 2.43828088e-01 1.00893810e-01 3.20042282e-01 -1.67644691e+00 -9.65508759e-01 2.82166570e-01 -6.81745484e-02 -1.21830356e+00 -1.69651002e-01 1.80360883e-01 -8.01196754e-01 -9.29343462e-01 -2.01006636e-01 -1.01772833e+00 4.61537421e-01 -2.07490916e-03 1.02855754e+00 2.58643717e-01 3.64476413e-01 8.49974215e-01 -6.67923927e-01 -7.93397188e-01 -8.39276731e-01 5.94168156e-02 -2.45027944e-01 -4.37021106e-01 1.14105558e+00 -2.74053156e-01 -3.96861583e-02 -5.37867136e-02 -9.59430337e-01 -5.91170900e-02 1.97231352e-01 3.56636554e-01 7.97787011e-02 -9.44681466e-02 3.76947135e-01 -1.27145016e+00 9.63235557e-01 -1.43869713e-01 9.79998149e-03 3.41698974e-01 -2.54929483e-01 -8.24840739e-02 2.48034030e-01 1.91775367e-01 -1.33106399e+00 -1.03252128e-01 -4.72686678e-01 8.41413558e-01 -7.52510190e-01 6.39661014e-01 -5.19623578e-01 6.51259497e-02 6.29891574e-01 1.14627369e-01 1.31719217e-01 -4.01008427e-01 4.79975939e-01 9.31838274e-01 1.31153986e-01 -9.62675631e-01 3.27189296e-01 1.76832676e-01 -2.48882473e-01 -1.53894043e+00 -9.53468263e-01 -7.27483928e-01 -6.02020741e-01 8.92821625e-02 8.37795734e-01 -4.27438736e-01 -7.37496316e-01 -5.80550916e-02 -1.29994452e+00 -3.49124163e-01 -5.42837739e-01 6.20642006e-01 -7.10075498e-01 5.50188959e-01 -4.55989629e-01 -1.07156849e+00 -1.61446080e-01 -8.25776339e-01 8.96224797e-01 1.93156093e-01 -1.02315807e+00 -1.54029131e+00 -4.00814384e-01 2.96417534e-01 1.53467283e-01 -2.53231674e-01 1.14783466e+00 -1.13179672e+00 5.98567538e-04 -1.85883701e-01 2.73968242e-02 3.57115716e-01 3.06010246e-01 7.60885924e-02 -7.42870808e-01 2.02953130e-01 4.70290095e-01 -3.40821236e-01 -3.12488433e-02 4.25297141e-01 4.33767855e-01 -5.26362896e-01 -2.01861665e-01 -2.00758368e-01 1.31765270e+00 4.11662430e-01 5.12402177e-01 3.36161107e-01 1.02192059e-01 1.32645202e+00 5.70912361e-01 1.22227401e-01 6.30050719e-01 1.26523718e-01 -3.19815993e-01 4.70592469e-01 1.12488776e-01 -1.74850851e-01 3.06985617e-01 7.71211267e-01 1.25964403e-01 -2.29222357e-01 -1.25673282e+00 6.70489728e-01 -1.93539155e+00 -8.67239475e-01 -2.32284769e-01 1.91088080e+00 1.00040817e+00 1.54104397e-01 -1.37621894e-01 7.83606246e-02 5.63370645e-01 2.27827743e-01 1.28665462e-01 -1.20234895e+00 5.47845103e-02 -5.97865181e-03 -4.93102372e-02 9.89453793e-01 -8.81738961e-01 1.47967803e+00 6.56186581e+00 4.24605638e-01 -9.17764783e-01 -1.86742410e-01 3.30081314e-01 6.12469196e-01 -7.01256454e-01 5.19289196e-01 -8.13041031e-01 2.55441461e-02 1.11341012e+00 -5.10749340e-01 4.85919893e-01 5.62101722e-01 7.35499680e-01 -3.54527235e-01 -1.18707526e+00 6.76828027e-01 -1.14603519e-01 -9.55025434e-01 -1.45696491e-01 -1.37340441e-01 5.29183559e-02 -1.27388418e-01 -3.77367765e-01 5.50865903e-02 4.84294176e-01 -9.21274304e-01 4.31311190e-01 2.61299461e-01 1.69138625e-01 -6.05228245e-01 7.59552419e-01 8.67093801e-01 -9.39912438e-01 3.61736864e-02 -3.49018872e-01 -7.17222631e-01 5.68068504e-01 2.35839531e-01 -7.46575415e-01 1.33989841e-01 2.47004747e-01 3.94790411e-01 7.38505572e-02 5.74125946e-01 -7.10868716e-01 6.94662690e-01 -6.52951717e-01 -8.69505286e-01 4.61527854e-01 -7.52553791e-02 7.17653215e-01 1.34838963e+00 -1.18467294e-01 8.53946388e-01 1.53144851e-01 6.11653507e-01 5.91801822e-01 6.14210665e-01 -8.46293807e-01 -5.32667935e-01 4.88502562e-01 1.05725789e+00 -8.48609805e-01 -3.12488586e-01 -6.39270008e-01 4.10832316e-01 -2.19728187e-01 2.97873318e-01 9.37359631e-02 -5.13676882e-01 5.50244808e-01 2.03268185e-01 -7.72492886e-02 -4.21600640e-01 -4.57222283e-01 -8.88230443e-01 -2.12562103e-02 -9.05360043e-01 3.09788913e-01 -7.57356882e-01 -1.08138335e+00 4.27403808e-01 3.43921095e-01 -5.47967553e-01 -6.97551906e-01 -9.21390474e-01 -5.69415748e-01 1.09409654e+00 -1.25741160e+00 -1.22023237e+00 4.13894355e-01 -1.84675341e-03 6.13402903e-01 3.83447260e-02 1.09183073e+00 -4.82215673e-01 8.62974487e-03 -5.20305447e-02 -5.51994979e-01 4.01916094e-02 1.38256818e-01 -1.27525949e+00 3.64819646e-01 7.28312135e-01 3.21026117e-01 1.27049243e+00 1.33350277e+00 -4.50926363e-01 -1.43756890e+00 -1.78711891e-01 1.90400767e+00 -6.39800549e-01 9.91410792e-01 1.50239274e-01 -9.23239112e-01 1.00303173e+00 5.63483655e-01 -4.99069840e-01 9.84569311e-01 2.94888884e-01 1.91012695e-01 1.56358778e-01 -1.28985023e+00 6.95379734e-01 6.45434856e-01 -5.56016743e-01 -1.64992917e+00 5.39614737e-01 9.21483517e-01 -2.86974400e-01 -6.66081905e-01 -3.16100568e-02 4.37201619e-01 -4.77499396e-01 4.80280519e-01 -7.05401719e-01 -6.53613210e-02 -3.98511112e-01 -2.18801364e-01 -7.88487673e-01 2.73289651e-01 -1.02183700e+00 7.49322593e-01 1.18264794e+00 7.45573103e-01 -1.16077030e+00 5.31975508e-01 1.32928038e+00 -2.75747299e-01 -2.50733048e-01 -7.96634197e-01 -2.93315262e-01 3.77742290e-01 -9.30449426e-01 3.17396104e-01 8.01370561e-01 9.43538368e-01 8.03817153e-01 3.53698581e-01 -6.98839501e-02 3.54938626e-01 -1.31836250e-01 6.42795205e-01 -1.30451989e+00 -7.58548602e-02 -4.31954414e-01 -8.71313065e-02 -1.47422552e+00 2.78246641e-01 -6.24572456e-01 2.38547936e-01 -1.73085070e+00 -3.13711107e-01 -2.73259878e-01 2.80346692e-01 6.06797040e-01 3.18566293e-01 -3.90279651e-01 1.34905308e-01 3.11625034e-01 -2.69873649e-01 2.81057626e-01 1.23780179e+00 4.16061759e-01 -4.84273195e-01 2.14179546e-01 -1.20446682e+00 1.33481991e+00 8.23398292e-01 -3.76367390e-01 -6.83490276e-01 -3.97721261e-01 5.71343720e-01 -7.65454862e-03 -1.90653019e-02 -4.69649285e-01 3.07902575e-01 -6.08502626e-01 -2.15568990e-01 -4.24104750e-01 1.90583870e-01 -8.17276120e-01 -2.29685828e-01 3.18534881e-01 -5.91475964e-01 2.68401057e-02 2.99701661e-01 3.06216888e-02 -2.97174633e-01 -9.80044544e-01 3.55535209e-01 -6.37770653e-01 -1.06954086e+00 -3.09096426e-01 -7.68603861e-01 1.70600578e-01 9.61360037e-01 -3.89237165e-01 -4.99416627e-02 -6.12144113e-01 -8.16257775e-01 3.04276347e-01 4.45514470e-01 1.44336879e-01 5.86649835e-01 -6.36952579e-01 -3.64635170e-01 -4.96940687e-02 1.09713182e-01 -1.59055844e-01 -2.34974585e-02 5.68161130e-01 -8.67904186e-01 1.02461684e+00 2.59582192e-01 -1.76667720e-01 -1.22149217e+00 2.72079051e-01 1.99822858e-01 2.85782516e-01 -8.74311507e-01 8.50660861e-01 2.77372330e-01 -5.86455941e-01 1.52705591e-02 -4.09655601e-01 -6.87103152e-01 -1.60945147e-01 8.74538779e-01 -3.24001491e-01 -4.39696193e-01 -8.92725229e-01 -5.00484228e-01 4.59483087e-01 -1.38551280e-01 -5.47395110e-01 1.15968406e+00 -6.77976966e-01 -4.63654637e-01 9.25921023e-01 8.29515636e-01 1.05468452e-01 -5.83728135e-01 -3.02471906e-01 4.88434374e-01 -2.76276618e-01 -1.43616453e-01 -7.42675662e-01 -1.26504302e-01 9.93248105e-01 -6.62322342e-02 6.38390601e-01 7.05370843e-01 3.48758370e-01 7.83860028e-01 8.83571029e-01 3.80365223e-01 -1.40136671e+00 -3.96792829e-01 7.12559164e-01 1.07763815e+00 -9.93043780e-01 1.76300369e-02 -6.34956241e-01 -9.92868543e-01 1.48408091e+00 7.67701268e-02 2.47360051e-01 1.03456700e+00 8.79488513e-02 4.98862475e-01 -5.11551440e-01 -9.32762861e-01 -3.09745580e-01 -1.75858617e-01 7.04437733e-01 9.95594859e-01 9.19154361e-02 -1.14558673e+00 2.69133776e-01 -5.19740939e-01 4.44226637e-02 6.02998376e-01 1.23971975e+00 -1.10465014e+00 -1.46927702e+00 -1.68866619e-01 9.44692641e-02 -6.42394483e-01 -2.85137236e-01 -7.94761598e-01 1.17182815e+00 -2.43473127e-01 1.24129379e+00 -9.76778418e-02 3.86831999e-01 2.01941833e-01 3.01409364e-01 1.98206842e-01 -1.19194198e+00 -7.19660163e-01 1.77467883e-01 8.22090328e-01 -9.74753276e-02 -6.50636017e-01 -9.16937530e-01 -1.66087317e+00 -3.79294366e-01 3.27452854e-03 6.00690961e-01 7.68431544e-01 1.40924215e+00 -2.89402783e-01 -6.42447844e-02 -4.05752622e-02 -2.78379440e-01 -4.48893487e-01 -1.03883374e+00 -7.44880259e-01 -7.14441296e-04 6.93446994e-02 -8.33734497e-02 -3.86328459e-01 4.93184999e-02]
[10.40298843383789, 8.691010475158691]
99dcee22-7701-46a1-b400-02b3fae7dd42
robust-controlled-table-to-text-generation
null
null
https://openreview.net/forum?id=VBZCrsaUpsM
https://openreview.net/pdf?id=VBZCrsaUpsM
Robust (Controlled) Table-to-Text Generation with Structure-Aware Equivariance Learning
Controlled table-to-text generation seeks to generate natural language descriptions for highlighted subparts of a table. Previous SOTA systems still employ a sequence-to-sequence generation method, which merely captures the table as a linear structure and is brittle when table layouts change. We seek to go beyond this paradigm by (1) effectively expressing the relations of content pieces in the table, and (2) making our model robust to content-invariant structural transformations. Accordingly, we propose an equivariance learning framework, encoding tables with a structure-aware self-attention mechanism. This prunes the full self-attention structure into an order-invariant graph attention that captures the connected graph structure of cells belonging to the same row or column, and it differentiates between relevant cells and irrelevant cells from the structural perspective. Our framework also modifies the positional encoding mechanism to preserve the relative position of tokens in the same cell but enforce position invariance among different cells. Our technology is free to be plugged into existing table-to-text generation models, and has improved T5-based models to offer better performance on ToTTo and HiTab. Moreover, on a harder version of ToTTo, we preserve promising performance, while previous SOTA systems, even with transformation-based data augmentation, have seen significant performance drops.
['Anonymous']
2022-01-16
null
null
null
acl-arr-january-2022-1
['table-to-text-generation']
['natural-language-processing']
[ 5.46176016e-01 6.03007138e-01 -1.88986391e-01 -9.38735902e-02 -5.78892827e-01 -7.71224797e-01 6.52489364e-01 3.05432111e-01 2.21713781e-01 8.24481428e-01 5.88096380e-01 -5.08212090e-01 2.56796330e-01 -1.34597921e+00 -1.01015842e+00 -3.50173354e-01 1.58861473e-01 7.25214243e-01 2.27898583e-01 -6.83813393e-01 1.85363457e-01 4.37154084e-01 -1.27986419e+00 7.11188436e-01 8.24208677e-01 6.70365930e-01 -8.67727026e-02 6.40969992e-01 -5.34293890e-01 1.00656474e+00 -6.00073576e-01 -6.29075825e-01 3.38097900e-01 -7.39706099e-01 -9.94286597e-01 1.48156807e-01 8.31308186e-01 -1.23192891e-01 -5.79487979e-01 8.76564860e-01 2.50792027e-01 -2.02989385e-01 4.91961509e-01 -1.28095543e+00 -1.23707569e+00 1.16201985e+00 -4.77120191e-01 -8.18362460e-02 4.09594119e-01 2.26316258e-01 1.34014499e+00 -5.98477006e-01 8.40573311e-01 1.36815226e+00 4.60180849e-01 4.02592391e-01 -1.48193657e+00 -3.68325621e-01 4.43878204e-01 6.58674538e-02 -1.39249611e+00 -5.15335917e-01 6.84577525e-01 -2.22284138e-01 1.31087327e+00 5.31128526e-01 7.08792627e-01 9.34407771e-01 5.68939745e-01 6.61992490e-01 5.93301892e-01 -4.62198764e-01 8.19255114e-02 -3.10232323e-02 -2.35307291e-02 8.21030974e-01 5.86125851e-01 -3.83324355e-01 -4.24811393e-01 1.82633519e-01 8.62349331e-01 -2.74189979e-01 -1.32088512e-01 -7.48683035e-01 -1.35915387e+00 6.27305984e-01 6.26861155e-01 3.14713001e-01 -4.33046110e-02 2.27343902e-01 4.18816924e-01 2.90200442e-01 1.31185204e-01 8.39337409e-01 -4.52965796e-01 2.24167388e-02 -5.85118413e-01 5.52497387e-01 8.81392956e-01 1.58609521e+00 8.23086381e-01 1.61376953e-01 -7.86080778e-01 3.17320347e-01 -2.02383354e-01 2.74947852e-01 4.06931549e-01 -5.10429263e-01 7.43346810e-01 1.04460466e+00 -4.40937243e-02 -1.07421851e+00 -1.81176886e-01 -5.80480874e-01 -8.75891507e-01 -1.67414844e-01 1.81910843e-01 3.32096592e-03 -1.05520308e+00 1.77727282e+00 -4.24371697e-02 -2.71954834e-01 -1.02625675e-01 4.38743293e-01 6.84760153e-01 5.28471768e-01 -1.96500063e-01 4.61653322e-02 1.35754883e+00 -1.05389631e+00 -8.49875927e-01 -4.40369517e-01 9.10253227e-01 -3.87164444e-01 1.37541783e+00 7.97578618e-02 -1.34712148e+00 -6.55737698e-01 -1.30207002e+00 -5.35460293e-01 -8.22772563e-01 -2.59421647e-01 6.41090870e-01 5.95330536e-01 -1.33373737e+00 4.22855407e-01 -4.57344323e-01 -2.56444603e-01 1.99606255e-01 3.18152815e-01 -3.66412669e-01 -5.38454838e-02 -1.29222524e+00 8.15134346e-01 4.84846860e-01 -1.09232858e-01 -2.70363837e-01 -6.83764398e-01 -1.32365882e+00 5.02198756e-01 7.70601571e-01 -1.05635583e+00 9.52054679e-01 -6.16357684e-01 -1.15595281e+00 6.91180766e-01 -3.23806554e-01 -4.62456524e-01 2.99326301e-01 7.63597935e-02 -4.02518123e-01 -2.59921283e-01 2.03577995e-01 8.26523781e-01 5.24472892e-01 -1.38206756e+00 -4.62996334e-01 -2.83263654e-01 1.36013523e-01 2.82145470e-01 -1.80311441e-01 -4.81649339e-01 -8.01287591e-01 -9.39406633e-01 1.36134356e-01 -9.07325387e-01 -1.24020576e-01 -2.53544480e-01 -9.63923395e-01 1.47167683e-01 6.46488070e-01 -4.67418700e-01 1.70302737e+00 -1.86113095e+00 2.29262695e-01 7.05986619e-02 3.55276674e-01 8.25825520e-03 -2.51370221e-01 6.62635624e-01 -2.58728653e-01 5.80392182e-01 -3.17537457e-01 -8.84305835e-02 1.74821138e-01 1.57556966e-01 -3.90350938e-01 -1.23691007e-01 5.16411185e-01 1.41987538e+00 -9.35330808e-01 -4.51478660e-01 -1.12448409e-01 1.12534173e-01 -1.07777596e+00 -1.12497538e-01 -4.57757413e-01 -1.62456855e-01 -2.55962163e-01 5.76820970e-01 5.61589897e-01 -2.51127571e-01 4.43666756e-01 -3.09939772e-01 -2.25503687e-02 6.04042411e-01 -1.12855899e+00 1.56649590e+00 -3.70927483e-01 3.51976097e-01 -1.93569928e-01 -4.85411495e-01 8.58270228e-01 -1.80304021e-01 2.05969617e-01 -8.73998225e-01 -1.68841034e-01 -1.59147963e-01 2.29425341e-01 -5.89222163e-02 1.10888338e+00 1.87224910e-01 -5.66805899e-01 3.16995531e-01 -2.14839652e-01 -3.91707808e-01 5.35024822e-01 6.64740145e-01 1.17827165e+00 2.76437551e-01 3.52399826e-01 -3.56268406e-01 3.66342694e-01 7.50468895e-02 3.88409585e-01 8.72808337e-01 2.32504323e-01 6.77735090e-01 8.79529536e-01 -4.71960545e-01 -1.14698195e+00 -1.00426853e+00 2.92344391e-01 1.01041508e+00 6.79211989e-02 -8.04014921e-01 -8.76849771e-01 -7.43115842e-01 2.15338990e-01 1.01013124e+00 -9.70212042e-01 -4.99412894e-01 -8.24274778e-01 -5.24239957e-01 4.91688251e-01 7.31026888e-01 2.84724712e-01 -1.11564064e+00 -8.52312148e-02 3.78359854e-01 -1.44994557e-01 -9.26391959e-01 -1.02500379e+00 3.70521843e-01 -5.42052507e-01 -8.01812410e-01 -1.32454008e-01 -7.62879610e-01 8.40895295e-01 4.17649150e-02 1.39301836e+00 8.63639861e-02 -2.55354610e-03 4.43002321e-02 -2.13674799e-01 -3.88200760e-01 -5.83684742e-01 6.23825431e-01 -2.72028387e-01 -2.57328991e-02 6.80621490e-02 -3.78682971e-01 -1.93104625e-01 2.05453441e-01 -1.03738546e+00 3.36957574e-01 5.33626437e-01 7.80169904e-01 5.89519203e-01 -5.16451448e-02 4.07037079e-01 -1.32064366e+00 6.78682029e-01 -2.38752499e-01 -3.46798122e-01 4.28531498e-01 -7.67962933e-01 5.88927090e-01 8.43013287e-01 -1.06285907e-01 -8.11169028e-01 -3.07917949e-02 1.52877256e-01 -1.93442360e-01 8.49749520e-02 4.35560971e-01 -8.09589326e-01 3.64890993e-01 5.16811728e-01 4.44023937e-01 -1.56659007e-01 -1.72864109e-01 7.44858086e-01 1.14731744e-01 7.22334564e-01 -6.22025132e-01 1.05604470e+00 2.90268242e-01 2.65437830e-02 -3.06050688e-01 -5.23406804e-01 2.05500230e-01 -8.64928246e-01 3.39425057e-01 6.57510936e-01 -6.64901495e-01 -5.14729559e-01 2.53736734e-01 -9.90165710e-01 -5.34514844e-01 -5.92611253e-01 -4.38860804e-01 -3.95932853e-01 3.02983433e-01 -7.82873452e-01 -3.97181988e-01 -3.16173971e-01 -1.01789415e+00 1.13751173e+00 -4.84020859e-02 -5.25974810e-01 -9.56513047e-01 -1.26971275e-01 2.74283066e-03 4.10713673e-01 2.07318768e-01 1.53359103e+00 -5.77844918e-01 -9.76900160e-01 -9.11524519e-02 -3.07920158e-01 -2.27006555e-01 4.50730920e-01 2.01321170e-01 -4.85655069e-01 -2.56548464e-01 -5.11819124e-01 9.03716087e-02 8.54900539e-01 2.18011178e-02 1.18321228e+00 -7.22477436e-01 -4.70791429e-01 7.39555240e-01 1.18808103e+00 3.64540517e-01 9.18505251e-01 3.22022885e-01 1.21523666e+00 5.07701397e-01 1.18933260e-01 2.21564502e-01 7.34131336e-01 7.20358849e-01 3.95369619e-01 -2.39474252e-01 -4.51359242e-01 -9.09429133e-01 2.43983299e-01 7.10879087e-01 5.05753696e-01 -8.01443458e-01 -7.37634301e-01 6.80613637e-01 -1.59118521e+00 -8.52363527e-01 -1.85550466e-01 2.05039191e+00 8.57978404e-01 5.28800428e-01 -1.72154188e-01 1.86283946e-01 6.20342255e-01 2.68677503e-01 -5.13310015e-01 -6.70110047e-01 -3.15838367e-01 2.03287557e-01 6.00408971e-01 5.24712384e-01 -7.15833008e-01 1.30951607e+00 6.72467852e+00 6.61649883e-01 -8.98580432e-01 -4.53941852e-01 7.93644309e-01 -5.59218042e-02 -7.87340820e-01 1.40910794e-03 -8.31803977e-01 2.74102360e-01 6.17782593e-01 -4.35610294e-01 5.96393287e-01 5.90319633e-01 -3.23525071e-02 2.24420264e-01 -1.46503651e+00 5.51298201e-01 2.80476898e-01 -1.56725097e+00 8.22600305e-01 1.76031828e-01 6.24554455e-01 -6.42016768e-01 5.18512279e-02 5.72936893e-01 4.89140481e-01 -1.18562639e+00 9.61638153e-01 3.69841486e-01 1.03875411e+00 -8.38477969e-01 4.90777493e-01 -9.91429538e-02 -1.42077780e+00 7.20338821e-02 -1.16019636e-01 -1.86620533e-01 -1.21371401e-02 1.39696971e-01 -9.60013747e-01 7.39808381e-01 3.93924922e-01 5.12524486e-01 -9.50606048e-01 3.82536054e-01 -1.34894893e-01 1.70886219e-01 1.74942896e-01 -5.14876284e-02 2.00490877e-01 -1.82220474e-01 4.12528962e-01 1.16327083e+00 3.00032437e-01 -1.53380737e-01 8.48065615e-02 1.14839745e+00 -3.68974626e-01 1.05949650e-02 -8.38309288e-01 -1.10538818e-01 5.46934903e-01 9.75829363e-01 -8.49230826e-01 -6.26132607e-01 -2.79793710e-01 1.08512437e+00 3.47804904e-01 2.66143113e-01 -7.36264110e-01 -5.01222432e-01 6.19719505e-01 6.02987826e-01 5.47860563e-01 -1.06780529e-01 -8.69701803e-01 -1.02889574e+00 -1.56540722e-02 -1.14075649e+00 3.63066286e-01 -9.88369465e-01 -8.71724010e-01 8.19457531e-01 -4.55459394e-02 -8.35235655e-01 -2.80335754e-01 -3.42037290e-01 -4.55213904e-01 9.68490839e-01 -9.91785467e-01 -1.26342511e+00 -8.43578801e-02 3.77205789e-01 4.94360954e-01 -7.92841334e-03 7.92999506e-01 2.72684153e-02 -7.30768025e-01 1.10756040e+00 -2.64451504e-01 3.52401108e-01 6.74362242e-01 -1.56260586e+00 1.30084062e+00 1.07694268e+00 2.04598457e-01 1.02606261e+00 5.15724063e-01 -8.92110407e-01 -1.64432800e+00 -1.25710511e+00 1.13715720e+00 -7.91216552e-01 6.13579512e-01 -8.44385982e-01 -1.07980835e+00 1.01251042e+00 3.68304908e-01 -2.34961078e-01 2.41148114e-01 2.24193484e-02 -5.32917142e-01 -1.51610374e-01 -7.42445827e-01 1.16899478e+00 1.44973457e+00 -4.80287254e-01 -4.25886571e-01 6.40312284e-02 1.06514120e+00 -6.40252650e-01 -5.89886606e-01 2.79085040e-01 3.63938361e-01 -7.87709117e-01 7.94068158e-01 -7.17846990e-01 6.74212813e-01 -4.14766610e-01 3.94699387e-02 -1.41868067e+00 -8.42008591e-01 -8.50580990e-01 -2.57692635e-01 1.26135182e+00 7.77084291e-01 -4.94243264e-01 1.03280175e+00 5.75883210e-01 -4.75423992e-01 -5.69658101e-01 -5.26440203e-01 -6.05321467e-01 1.91446155e-01 6.34261966e-03 1.12353265e+00 1.06658649e+00 2.35163286e-01 7.58790851e-01 -3.23114812e-01 -8.98028165e-02 9.03137550e-02 1.46657228e-01 8.86454880e-01 -9.57677841e-01 -2.80451238e-01 -7.36883342e-01 5.18780947e-02 -1.16847372e+00 -1.18432678e-01 -1.09358466e+00 -1.23467082e-02 -1.82555580e+00 1.23116635e-01 -2.13953882e-01 -9.29595679e-02 7.61177778e-01 -4.05321360e-01 6.72549009e-02 3.07571083e-01 -1.74684823e-01 -3.28138053e-01 4.54026937e-01 1.56943345e+00 -4.08857197e-01 -2.48149872e-01 -5.15540481e-01 -1.38257480e+00 1.33395389e-01 6.40852034e-01 -3.44845742e-01 -6.94032550e-01 -5.33875465e-01 3.88657153e-01 3.69909294e-02 -1.51589140e-01 -7.88410306e-01 1.02705285e-01 -1.68231562e-01 4.32031333e-01 -5.79901159e-01 -4.76575755e-02 -5.76682448e-01 1.78869709e-01 4.88164157e-01 -6.08142853e-01 6.11347377e-01 4.12669867e-01 3.56171042e-01 -2.55911499e-02 1.79578364e-01 4.95691478e-01 -2.89032459e-01 -5.04973114e-01 3.38134557e-01 -4.16075915e-01 1.59756437e-01 6.82160914e-01 -4.56781745e-01 -5.54017067e-01 -4.64528859e-01 -3.33323210e-01 2.37449437e-01 8.29430997e-01 5.92382312e-01 3.28526765e-01 -1.40542877e+00 -6.33525968e-01 5.79860091e-01 3.43670368e-01 2.29057133e-01 9.26375389e-02 1.62211969e-01 -5.98443329e-01 6.37949407e-01 -3.29638660e-01 -1.31560251e-01 -8.72377872e-01 9.19742465e-01 2.15609729e-01 -7.02491760e-01 -4.93497223e-01 5.94804943e-01 4.76104945e-01 -3.49777043e-01 -2.06449796e-02 -8.19707155e-01 5.75057231e-02 -4.30212170e-02 3.75765830e-01 2.25816425e-02 3.30042094e-01 -4.61248219e-01 -2.17294484e-01 1.58473283e-01 -4.28868890e-01 1.33506060e-02 8.85917366e-01 -4.20924462e-02 -1.08385742e-01 1.57568574e-01 8.02307367e-01 4.70921248e-01 -1.14367747e+00 -8.19569677e-02 1.84987392e-02 -1.82806030e-01 -1.24596134e-01 -1.06466091e+00 -9.18126404e-01 6.09911799e-01 -2.18797863e-01 3.71998310e-01 8.72531414e-01 -3.17664117e-01 8.21035743e-01 3.66691500e-01 2.15126678e-01 -7.71775901e-01 1.63147584e-01 7.46302068e-01 1.13859510e+00 -7.34162629e-01 -2.92122792e-02 -6.86383545e-01 -7.14871168e-01 7.66463578e-01 9.60219860e-01 1.67809233e-01 8.29758029e-03 7.19784915e-01 -2.20106214e-01 -9.13444981e-02 -1.03410661e+00 -1.94963306e-01 2.85993010e-01 7.25093365e-01 5.49435973e-01 -6.15856331e-03 -1.46680987e-02 5.53196490e-01 -5.03959894e-01 -3.22431862e-01 7.44635463e-01 8.49562228e-01 -1.40403062e-01 -1.33054185e+00 -2.48280987e-01 4.81912315e-01 -1.33156031e-01 -6.35122895e-01 -8.63832295e-01 1.15679538e+00 5.87171651e-02 6.77267849e-01 3.72126698e-01 -4.96435523e-01 6.80573165e-01 3.03738266e-01 4.08316225e-01 -9.06784475e-01 -6.88363612e-01 9.83627588e-02 2.58099884e-01 -3.78355950e-01 4.42272872e-01 -5.45264781e-01 -1.24295294e+00 -5.44540584e-01 1.22305207e-01 6.72946647e-02 5.04839420e-02 4.58155304e-01 6.88090801e-01 1.12325978e+00 3.58530432e-01 -4.21924680e-01 -1.84186816e-01 -8.80518377e-01 -4.92242992e-01 4.98661667e-01 1.86628163e-01 -2.93559968e-01 1.15356512e-01 9.78288651e-02]
[10.855363845825195, 8.48784351348877]
59c27a33-ff68-4d82-944c-753f69ea2517
a-distributional-view-on-multi-objective
2005.07513
null
https://arxiv.org/abs/2005.07513v1
https://arxiv.org/pdf/2005.07513v1.pdf
A Distributional View on Multi-Objective Policy Optimization
Many real-world problems require trading off multiple competing objectives. However, these objectives are often in different units and/or scales, which can make it challenging for practitioners to express numerical preferences over objectives in their native units. In this paper we propose a novel algorithm for multi-objective reinforcement learning that enables setting desired preferences for objectives in a scale-invariant way. We propose to learn an action distribution for each objective, and we use supervised learning to fit a parametric policy to a combination of these distributions. We demonstrate the effectiveness of our approach on challenging high-dimensional real and simulated robotics tasks, and show that setting different preferences in our framework allows us to trace out the space of nondominated solutions.
['Nicolas Heess', 'Leonard Hasenclever', 'Sandy H. Huang', 'Martin Riedmiller', 'Abbas Abdolmaleki', 'Murilo F. Martins', 'Raia Hadsell', 'Michael Neunert', 'H. Francis Song', 'Martina Zambelli']
2020-05-15
null
null
null
null
['multi-objective-reinforcement-learning']
['methodology']
[ 1.82599932e-01 -1.72262222e-01 -2.32029364e-01 -2.06290156e-01 -8.09881330e-01 -8.53935421e-01 3.30373257e-01 6.97175562e-02 -8.07394445e-01 1.08185089e+00 3.75933796e-02 -9.62104946e-02 -7.39923298e-01 -5.57557344e-01 -6.02231205e-01 -7.04563141e-01 -1.66170642e-01 8.60208392e-01 1.11097872e-01 -2.01161385e-01 6.06034696e-01 4.98927712e-01 -1.43674672e+00 -1.29283473e-01 1.13219726e+00 8.03235352e-01 4.58702713e-01 8.39699268e-01 1.70556784e-01 2.76741982e-01 -7.64315605e-01 -2.02568639e-02 6.55904412e-01 -1.65376633e-01 -6.96656883e-01 2.38179982e-01 1.26818061e-01 -2.47368023e-01 2.29210541e-01 1.17543185e+00 4.84373987e-01 5.40235698e-01 8.41290057e-01 -1.50833535e+00 -3.91494453e-01 4.48373646e-01 -5.79757094e-01 -1.22272983e-01 2.17323616e-01 4.46146280e-01 1.15378559e+00 -1.61003157e-01 3.88815820e-01 1.46502256e+00 3.35978836e-01 3.23809326e-01 -1.47130084e+00 -2.45002046e-01 3.40354860e-01 -2.19829455e-01 -1.03661239e+00 -1.04569763e-01 6.18512511e-01 -3.28932196e-01 6.29944801e-01 2.90326513e-02 5.74444652e-01 7.97368646e-01 4.91907358e-01 6.39163971e-01 1.44923604e+00 -3.01757812e-01 5.97607791e-01 -4.47912887e-02 -4.67853040e-01 3.66429090e-01 2.72574514e-01 2.91944772e-01 -2.02899113e-01 -3.08786780e-01 1.04441059e+00 -5.41160218e-02 -5.73685169e-02 -9.40055907e-01 -1.24603629e+00 1.03717256e+00 2.13735178e-01 -1.11117601e-01 -5.35829902e-01 4.05530959e-01 9.83212069e-02 5.38734615e-01 -2.16664076e-02 1.14251196e+00 -6.22083426e-01 -2.28719085e-01 -4.02355909e-01 6.21185064e-01 7.65099704e-01 6.20866656e-01 7.26687551e-01 -1.83104932e-01 -2.68552601e-01 9.60343361e-01 2.19256788e-01 3.01259339e-01 3.98270547e-01 -1.55590296e+00 4.02581692e-01 3.02599967e-01 9.42392826e-01 -7.15040326e-01 -4.33966696e-01 -3.12637866e-01 -3.04591954e-01 9.64978814e-01 7.23768890e-01 -4.95209605e-01 -9.51690018e-01 1.89073431e+00 4.42243636e-01 -2.67329276e-01 1.16234824e-01 1.05794621e+00 -3.43969107e-01 4.59087759e-01 1.07652424e-02 -1.77457690e-01 8.30089569e-01 -9.71082568e-01 -4.82179761e-01 -5.27812600e-01 3.46168995e-01 -6.53085530e-01 1.49481177e+00 5.00734687e-01 -1.19277585e+00 -1.09131321e-01 -1.01690924e+00 3.57938796e-01 -9.21465978e-02 -9.46190208e-02 4.43320632e-01 3.59450281e-01 -9.82477486e-01 9.86224294e-01 -8.03152621e-01 -5.58711067e-02 2.35166773e-01 7.05354393e-01 7.63420537e-02 2.19235972e-01 -8.73720348e-01 1.26613128e+00 6.86719179e-01 -1.85697272e-01 -9.54020679e-01 -5.04612982e-01 -7.14566290e-01 -1.84732899e-02 8.91106069e-01 -5.41502893e-01 1.46981347e+00 -1.01546681e+00 -1.88764429e+00 4.21937585e-01 3.68489504e-01 -2.97904640e-01 7.34844506e-01 -1.27953529e-01 -2.52122171e-02 3.93509567e-02 5.58058582e-02 7.34798074e-01 9.79279339e-01 -1.11297202e+00 -7.82505691e-01 -2.33141810e-01 5.25670826e-01 6.58702195e-01 -4.46501613e-01 -6.55389503e-02 -4.21100482e-02 -4.84364003e-01 -2.50367135e-01 -9.77730036e-01 -7.76344717e-01 2.39825219e-01 -5.58406338e-02 -9.23616737e-02 3.65359634e-01 -9.14841518e-02 9.20026004e-01 -1.89752412e+00 6.66442215e-01 2.34702319e-01 4.34910432e-02 -1.82944968e-01 -3.55054080e-01 1.11355178e-01 2.94950753e-01 -2.62322240e-02 -3.73788208e-01 -1.32675052e-01 4.53119248e-01 6.29383802e-01 -6.14246763e-02 4.79956776e-01 1.43679053e-01 5.77219486e-01 -1.17345321e+00 -3.81752610e-01 1.11984216e-01 1.41900703e-01 -8.06293428e-01 2.78410167e-01 -5.04922628e-01 3.37731332e-01 -7.17558861e-01 3.84619236e-01 3.91443014e-01 -3.98723632e-02 2.97677636e-01 3.30254078e-01 -1.46537036e-01 4.84574176e-02 -1.67867613e+00 1.50552511e+00 -5.90812862e-01 6.59321770e-02 3.24209571e-01 -1.14642465e+00 8.29254270e-01 -5.47030717e-02 5.83800018e-01 -3.74386191e-01 2.59889185e-01 3.25886548e-01 3.53321545e-02 -2.18092561e-01 5.15769005e-01 -4.61644053e-01 -3.01433444e-01 5.26370406e-01 3.25894989e-02 -7.00663567e-01 4.21828389e-01 -4.93373632e-01 8.90235722e-01 1.38169453e-01 4.44372177e-01 -5.58056056e-01 2.38895550e-01 -1.06474057e-01 6.25677347e-01 8.96719992e-01 -3.36760044e-01 4.40176815e-01 8.24543893e-01 -2.65953302e-01 -1.01281309e+00 -1.13166094e+00 9.60380360e-02 1.16383004e+00 1.62727267e-01 1.51106194e-01 -4.36083019e-01 -7.51133859e-01 4.11750138e-01 7.22055793e-01 -5.66627860e-01 -1.80100024e-01 -6.13202691e-01 -6.30862832e-01 9.05639678e-02 5.46404004e-01 -1.78332478e-02 -1.02603936e+00 -1.13387692e+00 4.13271070e-01 2.55529553e-01 -8.01449001e-01 -8.13409567e-01 6.33698702e-01 -8.74040782e-01 -1.01044726e+00 -8.08528423e-01 -5.74164212e-01 6.52281463e-01 -6.67159855e-02 9.85778391e-01 -3.57288569e-01 -6.66604713e-02 3.63976300e-01 2.25925539e-03 -4.03603733e-01 -4.40941840e-01 -6.83033168e-02 3.78893524e-01 -8.39409307e-02 -3.55308324e-01 -4.58344907e-01 -4.49618459e-01 4.95157838e-01 -1.00131118e+00 -2.66624033e-01 5.46519220e-01 8.51548314e-01 6.02882564e-01 1.76503107e-01 4.80648428e-01 -5.04598975e-01 1.12536860e+00 -3.10426980e-01 -1.28971362e+00 3.48860562e-01 -5.78214288e-01 7.40129471e-01 7.78261960e-01 -9.47477460e-01 -7.10503638e-01 1.01993129e-01 4.14972007e-01 -5.26477098e-01 1.09784134e-01 4.51047778e-01 -1.39638856e-01 -2.10924134e-01 5.53062916e-01 -3.10043752e-01 2.53904760e-01 -1.98299453e-01 5.46072125e-01 3.54008675e-01 4.22131032e-01 -1.22989047e+00 6.81464672e-01 1.05826989e-01 -3.15161273e-02 -3.32662076e-01 -7.10420072e-01 -1.17844269e-02 -4.17121291e-01 -1.19247846e-01 6.01452768e-01 -4.14598525e-01 -8.41246367e-01 2.99624771e-01 -7.59052753e-01 -6.89498901e-01 -5.67625582e-01 4.71740186e-01 -1.26148534e+00 5.78023866e-02 -4.73553389e-02 -8.29089105e-01 2.00550020e-01 -1.46436489e+00 7.81623244e-01 4.10212845e-01 -2.94642687e-01 -1.09571731e+00 2.81383812e-01 -2.19251234e-02 5.15709698e-01 2.38609314e-01 6.88634217e-01 -4.27328378e-01 -3.54810327e-01 2.80902237e-01 9.17668641e-03 2.36400038e-01 2.51407892e-01 -6.93546608e-02 -3.28322858e-01 -6.63741112e-01 -3.08282766e-02 -7.69761205e-01 4.93084133e-01 5.77274382e-01 1.28165436e+00 -5.62299192e-01 -8.55573341e-02 6.26439750e-01 1.46381640e+00 4.15922642e-01 2.75603712e-01 7.30281830e-01 2.32317463e-01 4.00053024e-01 1.02161717e+00 6.84100688e-01 1.33123443e-01 7.17676699e-01 6.75135672e-01 2.85818487e-01 6.09628975e-01 2.25545336e-02 3.09000194e-01 2.53064856e-02 -4.74622138e-02 -2.34891951e-01 -7.97126770e-01 6.19272053e-01 -2.09364152e+00 -6.81424677e-01 8.45150113e-01 2.32083178e+00 1.07143569e+00 4.17518288e-01 4.25956458e-01 -2.32675031e-01 7.10907757e-01 4.83296392e-03 -1.02877724e+00 -6.26830816e-01 1.44074395e-01 3.11655492e-01 7.58514702e-01 6.86698735e-01 -1.26553071e+00 6.02964818e-01 7.41443968e+00 6.72828913e-01 -1.16014433e+00 -2.67308980e-01 3.71346176e-01 -4.39337075e-01 -3.64557981e-01 1.32548222e-02 -5.09122431e-01 3.61894995e-01 6.83887303e-01 -5.41858792e-01 8.82714927e-01 7.37861335e-01 2.73840457e-01 -9.63762030e-02 -1.07013500e+00 7.36679614e-01 -4.20596778e-01 -1.02134550e+00 -2.19716087e-01 1.51636377e-01 8.69809926e-01 -1.58347994e-01 2.64524400e-01 1.55951530e-01 1.02312016e+00 -1.14660418e+00 7.84065247e-01 2.68481970e-01 4.01521415e-01 -1.00123847e+00 3.14591736e-01 4.09756154e-01 -7.86877334e-01 -6.27979159e-01 -3.33476067e-01 -2.33793199e-01 7.02681914e-02 1.11161001e-01 -7.60055602e-01 1.44303709e-01 3.75402600e-01 2.60019273e-01 -2.67299768e-02 1.28970420e+00 -1.37895435e-01 3.87072400e-03 -5.27263999e-01 -4.09135431e-01 5.26986480e-01 -4.72654223e-01 5.64227104e-01 6.72787011e-01 4.95789111e-01 -1.22836933e-01 6.83447778e-01 9.10169899e-01 7.02439621e-02 -9.27398801e-02 -4.47150201e-01 -3.20742846e-01 4.02725339e-01 1.15722883e+00 -7.94924736e-01 7.05560893e-02 -7.58970529e-02 7.77844489e-01 6.22650027e-01 3.65012586e-01 -9.57474411e-01 -4.08385545e-01 1.14578652e+00 -2.42145732e-01 3.91505212e-01 -4.64352489e-01 -2.78816342e-01 -1.00297797e+00 3.62618864e-02 -1.01870954e+00 6.36337101e-01 -4.00660843e-01 -1.28887284e+00 1.25497013e-01 1.72427550e-01 -1.21519828e+00 -3.88907433e-01 -7.48082519e-01 -4.59593713e-01 7.49071956e-01 -1.44244683e+00 -4.62879956e-01 2.98599035e-01 4.50409055e-01 4.03605342e-01 -9.25672576e-02 5.75346291e-01 -1.48148224e-01 -2.98070461e-01 3.73908579e-01 4.77128714e-01 -4.20200229e-01 8.50233793e-01 -1.51239252e+00 -6.38305023e-02 3.55565310e-01 -1.25481695e-01 3.27541709e-01 1.10197389e+00 -2.51025528e-01 -1.32916176e+00 -6.76654279e-01 1.56970143e-01 -2.07104191e-01 1.04060769e+00 -4.01731301e-03 -7.03124464e-01 5.27907968e-01 2.43249640e-01 -1.16936222e-01 1.73758626e-01 4.49880436e-02 -2.29493733e-02 -9.97245014e-02 -1.35025132e+00 8.54377568e-01 7.10862398e-01 -1.06429629e-01 -6.37059212e-01 2.49544159e-01 6.52787507e-01 -6.19310856e-01 -7.97063172e-01 2.86749363e-01 4.72756833e-01 -5.87579370e-01 1.07508075e+00 -8.58726740e-01 3.68451506e-01 -3.26844305e-01 -2.15355322e-01 -2.07197165e+00 -2.94320434e-01 -7.07165539e-01 -2.99646310e-03 6.77140474e-01 2.64687002e-01 -8.83083761e-01 5.34136832e-01 6.40752494e-01 5.65493945e-03 -8.63077641e-01 -9.50666964e-01 -9.61809278e-01 3.35887194e-01 -3.05052679e-02 5.76709211e-01 6.59707665e-01 -1.46272928e-01 1.49572015e-01 -3.21400791e-01 2.47048914e-01 7.70776689e-01 4.12349284e-01 4.77636486e-01 -1.03846025e+00 -7.51874685e-01 -7.92334437e-01 -9.49518085e-02 -9.67415094e-01 1.61473706e-01 -4.38470572e-01 3.17648709e-01 -1.27607167e+00 3.22030820e-02 -7.68512547e-01 -5.44598818e-01 5.05286217e-01 -1.81979880e-01 -2.26206794e-01 3.35152626e-01 -1.13472588e-01 -6.85516357e-01 7.07820415e-01 1.44233561e+00 -2.75611997e-01 -4.60128665e-01 8.67743492e-02 -9.51281786e-01 8.16602707e-01 9.39834058e-01 -3.42187881e-01 -5.28325915e-01 -6.02896094e-01 1.67166024e-01 2.64698595e-01 9.64018852e-02 -7.69824445e-01 -7.72249624e-02 -1.13760054e+00 2.16691315e-01 -9.25122052e-02 3.13674659e-01 -7.36371458e-01 -9.86018404e-02 4.30802524e-01 -4.61304784e-01 1.45420626e-01 2.34504268e-01 4.30310488e-01 1.28503174e-01 -4.35909212e-01 1.09258604e+00 -1.67694807e-01 -4.41319734e-01 1.62677988e-01 -2.90629506e-01 3.67188096e-01 1.11265850e+00 2.05663070e-02 -1.33432811e-02 -3.30996990e-01 -6.94763780e-01 9.09692705e-01 6.80821896e-01 4.04613137e-01 4.78442430e-01 -1.24727476e+00 -5.13271987e-01 -7.00823143e-02 -6.16049469e-02 -1.41098842e-01 -2.67027557e-01 3.87286156e-01 -3.59001905e-01 1.18910849e-01 -6.92934155e-01 -4.12802607e-01 -1.02016532e+00 5.57195723e-01 5.11044741e-01 -4.56644565e-01 -1.00846544e-01 5.41761100e-01 1.33263078e-02 -7.64925778e-01 1.76035166e-01 -4.89037424e-01 -7.39307404e-02 4.94830944e-02 1.98733509e-01 3.96027625e-01 -3.49014431e-01 -3.31889614e-02 -1.65410772e-01 5.23401558e-01 6.33680746e-02 -5.33545613e-01 1.43076849e+00 2.82154623e-02 2.18595698e-01 3.52288693e-01 9.33314085e-01 -2.11553559e-01 -1.87905800e+00 5.65884002e-02 5.63264787e-02 -7.33600378e-01 -9.89916176e-02 -7.73841798e-01 -7.30538547e-01 4.06692386e-01 3.91350448e-01 1.54369801e-01 1.18807709e+00 -1.88881487e-01 3.51798892e-01 5.95319092e-01 5.91049135e-01 -1.47041667e+00 3.33814770e-01 5.86834192e-01 9.48625922e-01 -1.15710497e+00 -1.24611408e-01 6.11437820e-02 -7.56454051e-01 1.17003179e+00 6.31625354e-01 -3.38098705e-01 3.85395914e-01 4.81926024e-01 1.82985350e-01 1.17796876e-01 -7.89978981e-01 -1.61379829e-01 2.44896244e-02 5.74332416e-01 -7.62220006e-04 2.40174562e-01 -4.66405809e-01 1.15763068e-01 -5.45448549e-02 -1.22628942e-01 6.26164317e-01 1.26831591e+00 -7.33080983e-01 -1.51047075e+00 -6.89214706e-01 4.69564050e-01 -2.87266165e-01 3.66070837e-01 -1.38758808e-01 6.27618670e-01 -2.58490354e-01 7.20420659e-01 -1.06149085e-01 1.79716833e-02 3.62996548e-01 -1.09619141e-01 8.20853293e-01 -4.99892861e-01 -3.03512543e-01 1.75062835e-01 -7.86923394e-02 -5.94136536e-01 -2.64970154e-01 -7.67576277e-01 -1.31736076e+00 -2.47091949e-02 -3.38005126e-02 2.19249323e-01 3.44169080e-01 9.32574511e-01 6.90024644e-02 5.30598581e-01 7.36211061e-01 -8.85950863e-01 -1.40790951e+00 -4.46184099e-01 -6.51955903e-01 2.96093524e-01 5.54882050e-01 -1.17238772e+00 -2.75037378e-01 -4.10381436e-01]
[4.3005266189575195, 2.2826032638549805]
afae981d-b2a8-4d40-85ea-94ccab2fe7dc
a-unified-software-hardware-scalable
2201.02262
null
https://arxiv.org/abs/2201.02262v1
https://arxiv.org/pdf/2201.02262v1.pdf
A unified software/hardware scalable architecture for brain-inspired computing based on self-organizing neural models
The field of artificial intelligence has significantly advanced over the past decades, inspired by discoveries from the fields of biology and neuroscience. The idea of this work is inspired by the process of self-organization of cortical areas in the human brain from both afferent and lateral/internal connections. In this work, we develop an original brain-inspired neural model associating Self-Organizing Maps (SOM) and Hebbian learning in the Reentrant SOM (ReSOM) model. The framework is applied to multimodal classification problems. Compared to existing methods based on unsupervised learning with post-labeling, the model enhances the state-of-the-art results. This work also demonstrates the distributed and scalable nature of the model through both simulation results and hardware execution on a dedicated FPGA-based platform named SCALP (Self-configurable 3D Cellular Adaptive Platform). SCALP boards can be interconnected in a modular way to support the structure of the neural model. Such a unified software and hardware approach enables the processing to be scaled and allows information from several modalities to be merged dynamically. The deployment on hardware boards provides performance results of parallel execution on several devices, with the communication between each board through dedicated serial links. The proposed unified architecture, composed of the ReSOM model and the SCALP hardware platform, demonstrates a significant increase in accuracy thanks to multimodal association, and a good trade-off between latency and power consumption compared to a centralized GPU implementation.
['Andres Upegui', 'Quentin Berthet', 'Joachim Schmidt', 'Lyes Khacef', 'Benoit Miramond', 'Laurent Rodriguez', 'Artem R. Muliukov']
2022-01-06
null
null
null
null
['multimodal-association']
['time-series']
[-1.68149862e-02 2.64916658e-01 3.53191346e-01 -2.86455490e-02 4.15247560e-01 -3.72192800e-01 6.34230554e-01 5.59772372e-01 -6.55436635e-01 5.54302096e-01 -4.37442623e-02 1.79829493e-01 -4.05565321e-01 -9.54486966e-01 -4.62429762e-01 -8.25333118e-01 -3.07035148e-01 7.29584932e-01 4.66660351e-01 -3.55494767e-01 2.67314911e-01 6.68522358e-01 -2.36808205e+00 2.69760013e-01 8.10224056e-01 1.05032718e+00 5.49295723e-01 3.63691360e-01 -1.44127265e-01 2.11098388e-01 -3.91652048e-01 3.43393058e-01 9.69365537e-02 -1.14180446e-01 -3.61488640e-01 -2.41135374e-01 -6.56458810e-02 1.18126266e-01 8.40256810e-02 7.15077817e-01 6.90807998e-01 -1.18880957e-01 8.08181524e-01 -1.02770078e+00 5.83258383e-02 5.43029845e-01 -2.67299592e-01 1.91520661e-01 3.54063690e-01 -3.38206291e-01 3.43597829e-01 -7.73428619e-01 6.50335133e-01 7.23634660e-01 5.16782284e-01 2.38546759e-01 -1.37681234e+00 -4.71306741e-01 -2.84547299e-01 4.84722257e-01 -1.56171978e+00 5.11210319e-03 4.42134142e-01 -5.52685142e-01 1.12051809e+00 2.16995314e-01 1.50663376e+00 8.80446672e-01 6.42981827e-01 2.55275458e-01 1.50055611e+00 -7.07232535e-01 9.32738185e-01 4.06216681e-01 3.43645722e-01 2.36036971e-01 6.38116539e-01 -1.66069880e-01 -9.03778911e-01 6.79523945e-02 9.09998119e-01 -5.93095608e-02 2.66093999e-01 -2.98502237e-01 -9.43803430e-01 3.04123789e-01 4.45689470e-01 8.83033156e-01 -6.70466959e-01 1.23575509e-01 5.14742792e-01 -3.32232341e-02 1.46815926e-01 3.44286621e-01 -2.47917011e-01 2.00026259e-01 -1.14885592e+00 2.17600702e-03 9.31335747e-01 7.26443946e-01 6.60293758e-01 1.33803010e-01 1.40177026e-01 5.88388205e-01 3.29021424e-01 3.20997030e-01 1.03431571e+00 -3.90667230e-01 -5.54332554e-01 7.46507943e-01 -3.64938617e-01 -8.94364297e-01 -1.11218476e+00 -8.11469913e-01 -9.74203885e-01 6.40019417e-01 -4.80746068e-02 -5.78837804e-02 -7.69697785e-01 1.23832178e+00 4.49295908e-01 -2.60793623e-02 -6.42492771e-02 8.36859405e-01 7.48757243e-01 5.94595969e-01 -6.02296405e-02 -7.47712404e-02 1.71844327e+00 -7.20343113e-01 -6.42823339e-01 7.81856850e-02 1.74031079e-01 -4.63716477e-01 4.53564763e-01 7.42787123e-01 -1.03485155e+00 -7.02798188e-01 -1.44173157e+00 1.71347901e-01 -7.98306108e-01 -4.31993231e-03 6.61149502e-01 8.01544130e-01 -1.69999659e+00 4.34780091e-01 -9.51891541e-01 -9.52527940e-01 2.38323927e-01 8.43123972e-01 -4.48873073e-01 5.90667188e-01 -7.93795109e-01 9.47161138e-01 8.22351336e-01 -4.23048176e-02 -6.26969159e-01 -3.66171211e-01 -1.49367869e-01 4.29482788e-01 -4.62668389e-01 -1.13641179e+00 5.87141097e-01 -1.18646860e+00 -1.85578930e+00 7.90170789e-01 9.69820693e-02 -7.45969951e-01 1.79175779e-01 4.15108763e-02 -1.74669370e-01 3.47115457e-01 -2.31461987e-01 9.58413303e-01 6.69209898e-01 -1.01988804e+00 -5.93280673e-01 -4.93859798e-01 -3.62332851e-01 -2.02284008e-02 -1.02373970e+00 -3.22468460e-01 -4.78187427e-02 -5.02401173e-01 3.10855210e-01 -7.89272606e-01 -9.14517604e-03 -4.78206486e-01 2.26937737e-02 4.27572392e-02 3.79498690e-01 -2.87170202e-01 8.52190554e-01 -2.12365413e+00 2.45739534e-01 5.30518115e-01 1.14433557e-01 -1.29679337e-01 2.35904410e-01 6.42662406e-01 -1.16663270e-01 -5.77906549e-01 -5.16938008e-02 -6.90181330e-02 -1.48449123e-01 1.64504543e-01 5.25730886e-02 3.84534776e-01 -3.55865985e-01 3.77687782e-01 -5.12341201e-01 -2.63415843e-01 1.78964153e-01 5.70514560e-01 -4.69202906e-01 -9.99951959e-02 1.76179260e-01 4.12557244e-01 1.48494784e-02 6.10128701e-01 7.38816381e-01 8.86601731e-02 3.12325984e-01 9.76151451e-02 -6.77605331e-01 -2.05112696e-01 -1.24087298e+00 1.94074488e+00 -4.68163997e-01 5.28453529e-01 8.53003561e-02 -9.85476434e-01 1.29867995e+00 5.97378194e-01 4.65815604e-01 -7.97584832e-01 6.26290500e-01 5.38994431e-01 1.36973038e-01 -3.41262460e-01 3.20144236e-01 1.10687003e-01 4.15225089e-01 4.60443228e-01 7.60414720e-01 9.65934992e-02 2.41224691e-01 -2.14978635e-01 1.11882389e+00 1.19909845e-01 4.57924813e-01 -1.14704585e+00 5.61760426e-01 6.26906157e-02 5.08703617e-03 4.90554482e-01 3.92109275e-01 2.21471444e-01 8.75281915e-02 -4.55195487e-01 -9.37236488e-01 -1.07108307e+00 -5.52020907e-01 1.00801039e+00 7.60593712e-02 -1.98415101e-01 -1.24704206e+00 3.14994276e-01 -1.78953424e-01 4.26874548e-01 -6.90177739e-01 2.35353813e-01 -1.04297914e-01 -7.61742353e-01 3.60443711e-01 1.94719464e-01 5.76771617e-01 -1.15702868e+00 -1.43202114e+00 4.29176807e-01 6.38410449e-01 -7.32221186e-01 7.71758199e-01 6.19162977e-01 -1.33968222e+00 -4.31332886e-01 -5.07985413e-01 -9.93400514e-01 8.41142952e-01 -6.87535033e-02 6.06949449e-01 -1.15853094e-01 -5.97519457e-01 5.11366904e-01 -4.09172654e-01 -7.14027345e-01 6.97425306e-02 4.56207812e-01 3.62197101e-01 1.90186217e-01 1.09089538e-01 -1.49193442e+00 -7.57207155e-01 4.66463529e-02 -1.04425514e+00 2.62301356e-01 7.12619662e-01 6.68072522e-01 6.00075305e-01 4.36556824e-02 6.52574480e-01 -6.51544333e-01 4.45731074e-01 -6.07178390e-01 -6.84618175e-01 -2.52849281e-01 -7.91411579e-01 -3.01029142e-02 7.43122518e-01 -2.28261173e-01 -8.56736660e-01 3.65839243e-01 -2.20633864e-01 2.02590004e-01 -5.79647303e-01 3.62396389e-01 6.53693080e-02 -2.87343085e-01 7.37071812e-01 4.56756055e-01 -7.85829350e-02 -3.81226361e-01 1.38300717e-01 6.51793599e-01 6.13462985e-01 -3.98062199e-01 2.91135043e-01 7.26892889e-01 2.22298369e-01 -1.00831389e+00 2.64221817e-01 -2.59552270e-01 -7.60055602e-01 -6.64864302e-01 8.07461917e-01 -6.78835928e-01 -8.53771627e-01 4.84610677e-01 -1.32680786e+00 -5.98533303e-02 -3.26355994e-01 6.72434568e-01 -6.16823196e-01 -1.81427076e-01 -5.09953678e-01 -8.65159929e-01 -7.46496558e-01 -7.81937957e-01 6.30126476e-01 6.39168441e-01 -3.91693443e-01 -8.94982159e-01 2.44383931e-01 -2.64799058e-01 5.10514021e-01 1.65199116e-01 8.59696746e-01 -6.38614893e-01 -4.31700081e-01 -2.53415585e-01 1.89326733e-01 -5.24779484e-02 -3.76265258e-01 -9.23482776e-02 -1.27540052e+00 -1.91973791e-01 3.25200796e-01 1.57518193e-01 7.31276035e-01 4.90218312e-01 5.42561948e-01 8.43032002e-02 -4.50908899e-01 4.47141051e-01 1.73175120e+00 3.08096886e-01 6.77366674e-01 7.37174451e-01 -2.93414928e-02 8.45979393e-01 1.41654909e-01 6.15251243e-01 1.72950342e-01 4.97468799e-01 6.61128461e-01 -2.39674240e-01 4.88271825e-02 3.07720423e-01 1.92673936e-01 1.14103723e+00 -6.24818206e-01 3.39137428e-02 -1.01734126e+00 4.23216313e-01 -1.91242850e+00 -7.46404588e-01 -2.14858070e-01 2.31105089e+00 2.66574770e-01 1.01017915e-01 2.24645942e-01 4.16838109e-01 6.69760108e-01 -6.23097181e-01 -6.01455830e-02 -8.07664812e-01 -2.88397610e-01 6.90358937e-01 3.41185331e-01 2.56524384e-01 -7.47436881e-01 5.55223167e-01 6.26967192e+00 7.10643589e-01 -1.34759724e+00 5.59427679e-01 1.86568588e-01 -2.35711932e-01 1.26184985e-01 -1.50868520e-01 -6.48912072e-01 5.10978103e-01 1.09761977e+00 -1.89731568e-01 5.55535436e-01 7.43978977e-01 5.41957542e-02 -4.07016069e-01 -8.61965477e-01 9.75192726e-01 1.82335049e-01 -1.29903197e+00 -9.19876918e-02 2.64212370e-01 5.86044133e-01 1.98252037e-01 -4.41118190e-03 -1.11573204e-01 -4.50409889e-01 -7.00267375e-01 9.65729713e-01 6.10414743e-01 4.21527177e-01 -8.12289953e-01 9.45709765e-01 3.78266066e-01 -1.08322799e+00 -3.48347694e-01 -3.60807598e-01 -5.51448941e-01 -7.59829730e-02 6.53111160e-01 -8.03668559e-01 4.96210635e-01 9.08973157e-01 1.37010843e-01 -5.66517770e-01 1.35256588e+00 -2.04117447e-02 4.09395993e-01 -5.00826120e-01 -5.47906280e-01 -3.00049633e-02 -2.95219064e-01 5.66748202e-01 1.40074766e+00 6.36764288e-01 -1.04347602e-01 -4.89377648e-01 6.80142462e-01 4.59191561e-01 5.77980340e-01 -6.18269145e-01 5.37525117e-01 3.99378717e-01 1.85085237e+00 -1.46804655e+00 -3.14898729e-01 -9.33033356e-04 7.28321075e-01 6.97000995e-02 -5.54692335e-02 -6.44327164e-01 -4.35788780e-01 8.86085257e-02 4.70117986e-01 1.24248140e-01 -3.28598320e-01 -8.06126177e-01 -5.82745910e-01 -2.55958170e-01 -2.62308747e-01 3.62186059e-02 -7.96386242e-01 -9.09561098e-01 1.18327904e+00 -1.87443510e-01 -1.22168589e+00 -1.11815482e-01 -7.42982924e-01 -3.29342604e-01 5.56472480e-01 -9.00576711e-01 -1.12603092e+00 -5.18594384e-01 4.02598232e-01 1.75160989e-01 -5.36604345e-01 1.30586863e+00 2.44214028e-01 -2.86959141e-01 2.58211374e-01 3.23229134e-01 -5.40274978e-01 2.90380657e-01 -1.08092153e+00 -1.36197865e-01 5.22442937e-01 6.52928427e-02 6.06786549e-01 6.51262283e-01 -3.12536508e-01 -1.30809128e+00 -4.92403209e-01 5.03026903e-01 2.42579967e-01 5.14896512e-01 -7.10837781e-01 -5.14227271e-01 2.54732296e-02 7.46329010e-01 -3.35668087e-01 8.73929143e-01 1.10359818e-01 2.00330503e-02 -5.32273054e-01 -1.14553154e+00 5.30640662e-01 8.25654745e-01 -5.04983626e-02 -5.50303161e-01 2.54304171e-01 8.12251046e-02 -3.78160700e-02 -7.88899302e-01 4.47075814e-02 9.06428397e-01 -1.32071400e+00 5.23170233e-01 2.87048221e-01 1.38576508e-01 -4.03588325e-01 -7.85996951e-03 -1.16181946e+00 -5.53021193e-01 -3.60790104e-01 9.76449773e-02 1.15051937e+00 1.82726488e-01 -1.07262886e+00 6.40612066e-01 1.28798902e-01 -3.51833254e-01 -6.00864232e-01 -1.26039994e+00 -7.24301279e-01 -4.46051508e-01 -1.33385479e-01 4.47588503e-01 6.04049683e-01 7.34516025e-01 4.46389049e-01 3.90567809e-01 7.82118067e-02 4.52138901e-01 -1.24136604e-01 4.86372560e-01 -1.61665678e+00 -4.62282151e-01 -5.61445892e-01 -1.31281483e+00 -3.11787456e-01 -1.78926215e-01 -1.15188849e+00 -1.44791752e-01 -1.48338342e+00 9.95302424e-02 -2.76729643e-01 -5.40024042e-01 5.39337635e-01 6.67955279e-01 5.37632287e-01 3.61850820e-02 2.23497912e-01 -3.11579645e-01 1.42062321e-01 5.54699183e-01 1.30129755e-01 -3.90911371e-01 -5.46561122e-01 -2.57892698e-01 8.08269382e-01 7.65273094e-01 -5.11164308e-01 -1.81746155e-01 -4.72092897e-01 3.60534251e-01 -2.32759714e-01 3.25642735e-01 -1.88037431e+00 8.48790884e-01 7.57220745e-01 5.87446272e-01 -3.79812300e-01 3.80002052e-01 -1.19376731e+00 4.89029676e-01 9.83472943e-01 2.43960008e-01 7.02296868e-02 5.51120460e-01 2.04988658e-01 -2.77126282e-01 -2.93445528e-01 6.36133730e-01 1.93991944e-01 -4.91982877e-01 -3.43248725e-01 -1.08466494e+00 -9.15859401e-01 1.30999494e+00 -5.88161409e-01 -3.27193499e-01 2.06074938e-01 -1.03358090e+00 -3.17882806e-01 4.49432909e-01 -7.08583370e-02 3.43413919e-01 -1.08280337e+00 -4.43731934e-01 4.34470087e-01 -1.04505226e-01 -3.43610615e-01 6.09171748e-01 1.06285942e+00 -1.08728313e+00 4.86711800e-01 -1.32783651e+00 -8.20404470e-01 -9.98557448e-01 4.20812935e-01 1.07506000e-01 1.24729812e-01 -4.56645429e-01 5.53549170e-01 1.40137626e-02 -5.28098643e-02 3.82890552e-02 -4.39796299e-02 -5.86864591e-01 3.74932349e-01 4.77929801e-01 7.37667024e-01 5.30420363e-01 -1.37925044e-01 -4.05182034e-01 5.23145676e-01 3.11395705e-01 -5.34223855e-01 1.64649284e+00 1.38123468e-01 -7.92850018e-01 7.27009356e-01 4.92280185e-01 3.75724360e-02 -5.77265680e-01 4.27619159e-01 -1.95959523e-01 1.57783747e-01 1.29951552e-01 -8.68642569e-01 -7.14191318e-01 7.96181738e-01 1.08747578e+00 4.03588861e-01 1.44191170e+00 -3.30481052e-01 2.06746206e-01 2.56648391e-01 8.98056090e-01 -1.22642493e+00 -2.35765100e-01 3.60154808e-01 7.60661662e-01 -2.74240136e-01 -2.97643989e-02 -2.72730559e-01 -9.92722362e-02 1.51284719e+00 4.07054603e-01 -5.59893191e-01 8.17638814e-01 8.65701795e-01 -2.55326122e-01 -1.55428067e-01 -6.75571024e-01 -1.69635713e-01 -4.57914136e-02 7.27778196e-01 4.39416885e-01 2.12614596e-01 -8.93599749e-01 1.09629297e+00 -3.81863564e-01 3.00506890e-01 4.73488778e-01 9.06530559e-01 -6.59793139e-01 -1.09623826e+00 -6.90159261e-01 2.73683459e-01 -5.33269420e-02 -6.12908565e-02 -1.51024982e-01 6.06279671e-01 7.36521721e-01 6.67106211e-01 4.34978753e-01 -5.25770307e-01 6.55181631e-02 -3.84875797e-02 8.93758237e-01 -5.80180585e-01 -1.11869073e+00 4.12555486e-01 -2.92727858e-01 -1.45872161e-01 -2.77809620e-01 -5.82420766e-01 -1.51360416e+00 -8.32901821e-02 1.53090628e-02 1.93307459e-01 1.26345241e+00 6.97291851e-01 7.38288462e-01 8.51518810e-01 3.50680143e-01 -1.47518587e+00 3.53273839e-01 -9.81687069e-01 -1.11468410e+00 -3.68453294e-01 -3.86399895e-01 -7.87795126e-01 1.33783862e-01 4.29188907e-02]
[8.107510566711426, 2.722280263900757]
6d95c742-ff22-41d4-a096-8e5b9d70eb26
visual-scene-graphs-for-audio-source
2109.11955
null
https://arxiv.org/abs/2109.11955v1
https://arxiv.org/pdf/2109.11955v1.pdf
Visual Scene Graphs for Audio Source Separation
State-of-the-art approaches for visually-guided audio source separation typically assume sources that have characteristic sounds, such as musical instruments. These approaches often ignore the visual context of these sound sources or avoid modeling object interactions that may be useful to better characterize the sources, especially when the same object class may produce varied sounds from distinct interactions. To address this challenging problem, we propose Audio Visual Scene Graph Segmenter (AVSGS), a novel deep learning model that embeds the visual structure of the scene as a graph and segments this graph into subgraphs, each subgraph being associated with a unique sound obtained by co-segmenting the audio spectrogram. At its core, AVSGS uses a recursive neural network that emits mutually-orthogonal sub-graph embeddings of the visual graph using multi-head attention. These embeddings are used for conditioning an audio encoder-decoder towards source separation. Our pipeline is trained end-to-end via a self-supervised task consisting of separating audio sources using the visual graph from artificially mixed sounds. In this paper, we also introduce an "in the wild'' video dataset for sound source separation that contains multiple non-musical sources, which we call Audio Separation in the Wild (ASIW). This dataset is adapted from the AudioCaps dataset, and provides a challenging, natural, and daily-life setting for source separation. Thorough experiments on the proposed ASIW and the standard MUSIC datasets demonstrate state-of-the-art sound separation performance of our method against recent prior approaches.
['Anoop Cherian', 'Narendra Ahuja', 'Jonathan Le Roux', 'Moitreya Chatterjee']
2021-09-24
null
http://openaccess.thecvf.com//content/ICCV2021/html/Chatterjee_Visual_Scene_Graphs_for_Audio_Source_Separation_ICCV_2021_paper.html
http://openaccess.thecvf.com//content/ICCV2021/papers/Chatterjee_Visual_Scene_Graphs_for_Audio_Source_Separation_ICCV_2021_paper.pdf
iccv-2021-1
['audio-source-separation']
['audio']
[ 3.44511390e-01 -3.26762706e-01 2.24404544e-01 1.31353771e-03 -1.05407453e+00 -8.52001607e-01 2.38966063e-01 1.22489311e-01 9.49226022e-02 5.10431081e-02 6.72193646e-01 1.54029444e-01 -6.35765493e-02 -2.24390998e-01 -7.77170300e-01 -7.06034064e-01 -1.58097729e-01 1.12759555e-02 1.86565772e-01 5.76683693e-03 1.57484021e-02 2.46879831e-02 -1.91803932e+00 6.56296372e-01 2.91594654e-01 1.01727760e+00 2.94415385e-01 1.25474238e+00 -1.14063673e-01 9.96024311e-01 -6.77495003e-01 3.39742750e-02 1.24469981e-01 -9.04965699e-01 -6.25788569e-01 -1.29796425e-02 9.59281206e-01 1.73781179e-02 -3.89034480e-01 1.10198236e+00 8.71924460e-01 8.31357315e-02 5.08685589e-01 -1.62120032e+00 -6.84491992e-01 1.15352428e+00 -4.86924112e-01 2.97624350e-01 5.91926754e-01 1.12993516e-01 1.51787305e+00 -8.27389479e-01 2.53814250e-01 1.34416986e+00 6.18636966e-01 4.57858652e-01 -1.61499000e+00 -7.92902470e-01 9.87350643e-02 2.42914870e-01 -1.29660928e+00 -8.49717557e-01 1.37798631e+00 -7.17162251e-01 7.55358696e-01 4.11425591e-01 8.21634471e-01 1.32329059e+00 -2.25298911e-01 9.65362549e-01 5.68190038e-01 -4.56692874e-01 3.91857535e-01 -2.02052727e-01 2.20764264e-01 3.27718616e-01 -1.23803720e-01 3.19987722e-03 -1.09011209e+00 -2.47917473e-01 5.57374120e-01 -3.12056154e-01 -7.05089152e-01 -4.80794251e-01 -1.22276795e+00 4.84776944e-01 4.37912077e-01 2.39569113e-01 1.53542496e-03 5.80666900e-01 4.51745778e-01 1.71327218e-01 2.98872352e-01 2.24896178e-01 3.21743544e-04 -9.18227211e-02 -1.03744721e+00 2.33266354e-01 7.00624645e-01 8.61956298e-01 3.05612445e-01 6.82542384e-01 -2.38652408e-01 1.02246773e+00 5.86347401e-01 4.43425328e-01 5.75978279e-01 -8.14974606e-01 3.31755698e-01 2.15232626e-01 -2.39295065e-01 -9.15925145e-01 -3.44904572e-01 -6.72276318e-01 -6.34125948e-01 3.37261528e-01 3.65365595e-01 9.76865552e-03 -1.08777475e+00 1.93613267e+00 2.23568931e-01 7.07317710e-01 -2.45224640e-01 1.26536882e+00 1.40897393e+00 6.36210382e-01 -5.70684299e-02 1.17972858e-01 1.34353089e+00 -1.10940993e+00 -6.40524924e-01 -2.54555732e-01 -1.66372195e-01 -6.67953014e-01 1.38270593e+00 3.93603683e-01 -1.04927158e+00 -9.43616807e-01 -9.94487643e-01 -8.75541121e-02 -4.04492728e-02 1.01828612e-01 1.52577803e-01 4.94459957e-01 -9.18806314e-01 4.18235868e-01 -7.70704806e-01 7.26618385e-03 4.33316767e-01 -4.54690075e-03 -1.36287510e-01 5.13377905e-01 -9.47705626e-01 -1.03640817e-01 3.17345448e-02 -2.94241495e-02 -1.61311436e+00 -1.05203450e+00 -1.16481340e+00 3.82223219e-01 3.88049871e-01 -6.84374809e-01 1.26407540e+00 -1.33895910e+00 -1.43980312e+00 5.85000157e-01 -1.67503968e-01 -2.79074639e-01 -4.86600325e-02 -3.71033669e-01 -6.35412574e-01 3.38635683e-01 1.92266449e-01 3.53349209e-01 1.53988147e+00 -1.53164589e+00 -3.05939406e-01 -1.46760717e-01 -1.55026078e-01 1.82744026e-01 -1.75971568e-01 3.35752130e-01 -4.97151017e-01 -1.04467511e+00 -1.22891709e-01 -7.14625239e-01 2.45064080e-01 -1.54333383e-01 -8.40554595e-01 2.15783015e-01 6.61511064e-01 -5.63735962e-01 1.27627528e+00 -2.67967224e+00 4.99446720e-01 -3.93462414e-03 5.96290052e-01 -2.33089235e-02 -5.54912686e-01 3.95042360e-01 -5.16850173e-01 -1.40934950e-02 -2.57656097e-01 -6.48738027e-01 1.93591774e-01 -3.45348954e-01 -6.88702464e-01 3.56171459e-01 7.01567754e-02 5.33225894e-01 -1.14998162e+00 -3.55853230e-01 -4.32238616e-02 6.60528183e-01 -6.28761590e-01 4.89300579e-01 -1.84095114e-01 4.55146432e-01 1.62292585e-01 6.00954235e-01 4.97724742e-01 -2.17867475e-02 -8.64176229e-02 -3.13033640e-01 1.76043972e-01 5.26208401e-01 -1.53905535e+00 2.16487074e+00 -2.31610015e-01 9.11794305e-01 4.55955148e-01 -6.18336558e-01 5.32707751e-01 4.33400899e-01 3.51821959e-01 -2.56670475e-01 1.26650721e-01 -1.11717680e-04 8.10302496e-02 -4.59999591e-01 1.46960616e-01 -1.45929456e-01 1.77172236e-02 3.84865314e-01 6.68505609e-01 -2.05478311e-01 -2.58010317e-04 3.88731480e-01 1.11412799e+00 4.35536616e-02 7.79794110e-03 1.48189766e-02 2.74939030e-01 -4.97728854e-01 4.12703037e-01 5.87198079e-01 -2.41411239e-01 1.21925771e+00 5.23189962e-01 1.73830181e-01 -5.43585658e-01 -1.75015533e+00 2.28206784e-01 1.45839405e+00 1.52483404e-01 -9.21606898e-01 -6.57457232e-01 -5.48461258e-01 -1.44131510e-02 5.26187539e-01 -4.39069957e-01 -2.54502833e-01 -2.36181229e-01 -1.83839858e-01 8.04949760e-01 4.94029194e-01 -1.86356381e-02 -1.13782942e+00 -5.27621210e-01 1.69370458e-01 -3.63775998e-01 -9.15453017e-01 -7.36341417e-01 3.11941832e-01 -7.57367760e-02 -1.09667373e+00 -6.39910340e-01 -8.50930333e-01 1.23796590e-01 5.31479657e-01 1.25969887e+00 -3.86234939e-01 -4.17486012e-01 7.21086204e-01 -3.87873322e-01 -6.87086403e-01 -4.23722893e-01 -2.72791713e-01 1.58940107e-01 6.68909967e-01 -6.88187853e-02 -1.10827744e+00 -5.82474768e-01 -1.58203244e-01 -8.95112097e-01 -2.87033394e-02 4.76238504e-02 5.52897871e-01 6.98959768e-01 8.30341280e-02 5.93524873e-01 -2.75709897e-01 7.46624351e-01 -6.14022315e-01 -2.03482032e-01 -1.37591332e-01 2.83720195e-01 -9.87356007e-02 9.97831881e-01 -6.95082247e-01 -6.34000003e-01 1.06411278e-01 7.32307583e-02 -1.09762073e+00 -3.95972103e-01 1.81294799e-01 -5.07539928e-01 1.70676962e-01 7.53310740e-01 8.24493244e-02 -4.08685744e-01 -8.19612801e-01 4.87526923e-01 7.04979300e-01 8.42239380e-01 -2.37724081e-01 7.42960811e-01 4.27202582e-01 -1.34694219e-01 -1.13497686e+00 -7.59441316e-01 -6.34241998e-01 -3.94725323e-01 -4.11073714e-01 9.27399457e-01 -1.20142698e+00 -5.68267584e-01 4.21404243e-01 -1.07225800e+00 -5.11159301e-01 -5.27193844e-01 5.06847501e-01 -4.47714329e-01 2.67871886e-01 -3.66848826e-01 -1.06077635e+00 -7.63406903e-02 -1.01357901e+00 1.52030504e+00 9.66150239e-02 -4.35097337e-01 -7.81340480e-01 6.01043940e-01 6.85242116e-02 2.03320533e-02 2.97235757e-01 7.70522058e-01 -5.98940492e-01 -2.39721701e-01 3.06688458e-01 1.03896700e-01 4.65966851e-01 3.17090094e-01 1.33644203e-02 -1.74979138e+00 -1.92384273e-01 -1.45501539e-01 -4.66762334e-01 1.20455527e+00 4.50151712e-01 1.03477097e+00 -1.58153281e-01 -6.60300180e-02 8.01002681e-01 1.19234729e+00 9.47363377e-02 2.77896702e-01 -1.83161646e-01 1.39207137e+00 4.65851426e-01 -9.20865089e-02 3.57807249e-01 1.33225664e-01 6.66432083e-01 7.78898895e-01 -2.73031890e-01 -8.09095502e-01 -5.85946143e-01 7.51810431e-01 8.87055039e-01 2.46987626e-01 -3.12191755e-01 -6.20342791e-01 8.68133664e-01 -1.58710158e+00 -1.11378479e+00 -1.46388844e-01 2.07255220e+00 9.52255428e-01 -1.12446226e-01 5.45027971e-01 7.67165840e-01 7.79227674e-01 6.59091234e-01 -2.86008209e-01 -2.53108770e-01 -1.16949357e-01 4.81318384e-01 -2.59855241e-01 5.65122783e-01 -1.36191177e+00 6.88251615e-01 5.43992615e+00 8.84682775e-01 -1.26758838e+00 5.30118495e-02 -2.91470308e-02 -6.70104206e-01 -4.27000523e-01 -4.21303883e-02 -2.45090082e-01 4.98324305e-01 9.69003975e-01 1.25092909e-01 7.64119446e-01 6.89839721e-01 3.18147056e-02 2.09608629e-01 -1.33184052e+00 1.36707234e+00 3.92808884e-01 -1.01078105e+00 1.09916180e-01 -3.79434645e-01 2.24233001e-01 -1.01719014e-01 1.45874545e-01 5.00012003e-02 2.79171973e-01 -1.04274368e+00 1.42402434e+00 2.63573438e-01 8.09104502e-01 -6.26085639e-01 -1.53479129e-01 2.83247363e-02 -1.72862756e+00 -9.02469456e-02 -2.83036083e-02 4.22065333e-02 2.38576099e-01 4.61859673e-01 -6.61255479e-01 5.96186459e-01 1.02743495e+00 8.53636622e-01 -6.15011215e-01 1.18303072e+00 -2.23140821e-01 1.14804995e+00 -1.52103916e-01 3.68860126e-01 -1.35507047e-01 1.30951747e-01 1.26645279e+00 1.47386563e+00 1.68020919e-01 -5.13877034e-01 9.40997973e-02 1.17171073e+00 -1.38978913e-01 2.32213885e-02 -7.09630668e-01 -2.22862393e-01 2.63013721e-01 1.21977675e+00 -6.68778360e-01 -5.17335124e-02 -2.52922267e-01 9.61050868e-01 1.77482858e-01 5.31563699e-01 -1.02544081e+00 -7.40860641e-01 9.91517127e-01 5.02601042e-02 4.51408386e-01 -6.75133020e-02 6.15588725e-02 -1.12517011e+00 -1.63635220e-02 -9.72151399e-01 3.43153924e-01 -1.13624716e+00 -1.31348670e+00 8.35052371e-01 -1.21291757e-01 -1.62407482e+00 -1.10661522e-01 -4.39905941e-01 -8.18715394e-01 7.37967849e-01 -1.29650939e+00 -1.25985301e+00 -4.07282382e-01 8.43650520e-01 5.93887508e-01 -1.91038206e-01 7.04598665e-01 2.44825691e-01 -5.13113976e-01 6.09350145e-01 -1.36069074e-01 3.77819330e-01 9.14188623e-01 -1.45713067e+00 3.78785938e-01 1.01923621e+00 1.15033555e+00 2.57199287e-01 7.01717436e-01 -4.57491279e-01 -1.30525768e+00 -1.29601812e+00 4.92381394e-01 -3.90093327e-01 8.41032028e-01 -1.01448607e+00 -8.80397439e-01 5.53987265e-01 4.20899630e-01 2.06966847e-01 1.09062922e+00 -1.69342346e-02 -8.50449026e-01 -1.98793992e-01 -4.15168464e-01 6.22669935e-01 1.24292517e+00 -1.07307708e+00 -6.65746391e-01 -2.74875499e-02 9.81362700e-01 -2.80752778e-01 -1.78908750e-01 -2.78202910e-03 5.30819535e-01 -1.09702146e+00 1.25374889e+00 -7.26930678e-01 4.50041831e-01 -6.03251755e-01 -2.15102583e-01 -1.71447992e+00 -5.35000801e-01 -1.00138152e+00 -3.02851230e-01 1.70537376e+00 1.57084897e-01 6.24199025e-02 1.13008849e-01 -1.79405317e-01 -3.25981945e-01 -9.55717042e-02 -8.82684886e-01 -8.32653105e-01 -3.86379600e-01 -1.09490860e+00 4.89133120e-01 9.70835984e-01 5.32306768e-02 7.47128248e-01 -4.00847882e-01 4.50915545e-01 7.58992553e-01 3.75225931e-01 7.88282037e-01 -1.22778916e+00 -8.18655729e-01 -5.01331687e-01 -5.22364974e-01 -7.77467430e-01 4.21371460e-01 -1.20440376e+00 2.52135307e-01 -1.43651211e+00 5.03672706e-03 1.56791762e-01 -5.30832767e-01 3.86304379e-01 -1.56353205e-01 3.86518836e-01 4.24415201e-01 -3.78701650e-02 -6.25169754e-01 6.86895013e-01 9.09930527e-01 -5.75933397e-01 -4.74468291e-01 -2.01835066e-01 -8.21453929e-01 9.10874188e-01 4.48412806e-01 -5.50012529e-01 -7.09020555e-01 -6.40095174e-01 2.29340732e-01 4.59472127e-02 8.97734582e-01 -1.19346941e+00 1.98134810e-01 8.81019309e-02 6.43847212e-02 -2.40013525e-01 5.25230527e-01 -7.39744723e-01 9.13008973e-02 -1.89688340e-01 -5.93758821e-01 -5.70996642e-01 4.45191771e-01 8.41233909e-01 -4.76193458e-01 1.13273583e-01 5.84661126e-01 1.70142204e-01 -3.33829910e-01 9.18837413e-02 -3.23361665e-01 5.31523645e-01 4.99415398e-01 -2.58202963e-02 -1.48964420e-01 -6.70772433e-01 -8.43034029e-01 -1.78595096e-01 -9.26148146e-02 5.40925086e-01 8.02895606e-01 -1.59877801e+00 -8.10347438e-01 3.89266372e-01 2.77539581e-01 -1.51425347e-01 4.69857603e-01 5.49618900e-01 -1.01668082e-01 -2.68503964e-01 -1.10443749e-01 -7.02903152e-01 -1.54860580e+00 7.13469863e-01 3.16678762e-01 3.45414162e-01 -7.39810169e-01 1.25293541e+00 7.88133323e-01 1.53299287e-01 5.61619997e-01 -6.63685262e-01 -3.46205533e-01 2.60393560e-01 6.33092880e-01 4.56601679e-01 -1.79826364e-01 -8.65130365e-01 -5.28091609e-01 6.44722223e-01 6.13093972e-01 -4.91643637e-01 1.12233639e+00 -9.74231288e-02 -3.40445084e-04 1.14502311e+00 1.38329625e+00 7.43039489e-01 -1.28380787e+00 -1.14140123e-01 -5.37191212e-01 -4.94127333e-01 1.80451706e-01 -6.56554222e-01 -1.20769131e+00 1.24995816e+00 5.58775127e-01 5.51904559e-01 1.28032982e+00 2.11265415e-01 6.19409442e-01 -1.73840463e-01 -1.19203642e-01 -6.66862547e-01 3.43598366e-01 2.76567966e-01 1.33740890e+00 -8.95767331e-01 -4.84497011e-01 -3.31954867e-01 -7.16591597e-01 1.05518138e+00 2.85640240e-01 -2.39012554e-01 8.20312142e-01 5.42096257e-01 2.23183170e-01 -2.32511595e-01 -5.97405910e-01 -6.59760118e-01 8.06924760e-01 7.39520669e-01 3.34631145e-01 -3.79089033e-03 7.55947232e-01 1.31025314e+00 -5.28192818e-01 -4.42637950e-01 3.42124581e-01 6.09790921e-01 -2.29302317e-01 -6.60807133e-01 -5.49251676e-01 -1.12470910e-01 -4.45625395e-01 -3.75248015e-01 -9.19066966e-01 3.03956419e-01 2.70660341e-01 1.34051096e+00 1.80191264e-01 -6.96316242e-01 4.58093762e-01 2.29617104e-01 5.00694036e-01 -7.72572815e-01 -7.96450138e-01 8.11383724e-01 -7.15825474e-03 -6.11321509e-01 -4.70533878e-01 -4.65244651e-01 -1.30451870e+00 4.07747477e-01 1.61906071e-02 9.37467739e-02 2.02860847e-01 4.43225563e-01 4.57385480e-01 1.23077333e+00 5.60476363e-01 -1.28698850e+00 -5.16950488e-02 -7.98328519e-01 -9.50001895e-01 7.49394178e-01 9.59169447e-01 -6.79684222e-01 -7.45157838e-01 5.51468968e-01]
[14.8845796585083, 4.983665943145752]
828aa182-e48c-40da-8566-864ddd2d4fb3
robust-contact-state-estimation-in-humanoid
2208.00278
null
https://arxiv.org/abs/2208.00278v1
https://arxiv.org/pdf/2208.00278v1.pdf
Robust Contact State Estimation in Humanoid Walking Gaits
In this article, we propose a deep learning framework that provides a unified approach to the problem of leg contact detection in humanoid robot walking gaits. Our formulation accomplishes to accurately and robustly estimate the contact state probability for each leg (i.e., stable or slip/no contact). The proposed framework employs solely proprioceptive sensing and although it relies on simulated ground-truth contact data for the classification process, we demonstrate that it generalizes across varying friction surfaces and different legged robotic platforms and, at the same time, is readily transferred from simulation to practice. The framework is quantitatively and qualitatively assessed in simulation via the use of ground-truth contact data and is contrasted against state of-the-art methods with an ATLAS, a NAO, and a TALOS humanoid robot. Furthermore, its efficacy is demonstrated in base estimation with a real TALOS humanoid. To reinforce further research endeavors, our implementation is offered as an open-source ROS/Python package, coined Legged Contact Detection (LCD).
['Panos Trahanias', 'Dimitrios Kanoulas', 'Michael Maravgakis', 'Stylianos Piperakis']
2022-07-30
null
null
null
null
['contact-detection']
['robots']
[-9.83062834e-02 1.43742725e-01 -3.57541591e-01 1.36183664e-01 -3.77753645e-01 -1.18466839e-01 3.24273437e-01 -3.00728589e-01 -4.45044041e-01 9.88577425e-01 -3.72240096e-01 1.68154851e-01 -1.53452620e-01 -7.65036225e-01 -8.58797133e-01 -4.59426522e-01 -5.25387287e-01 7.77453244e-01 5.63212752e-01 -7.40321219e-01 6.63322583e-02 2.34307051e-01 -1.76640022e+00 -4.57538486e-01 8.01432550e-01 9.11300957e-01 4.02416050e-01 3.70856732e-01 1.10806155e+00 4.87105399e-01 -2.63946652e-01 2.00049337e-02 1.60747319e-01 -1.03359438e-01 -8.14181268e-01 -2.07078662e-02 1.29822940e-01 -3.19083869e-01 -3.37206542e-01 5.13241053e-01 7.82953680e-01 7.58834407e-02 8.37844551e-01 -1.53240609e+00 1.68884229e-02 1.97392955e-01 -2.86629289e-01 -1.13687053e-01 6.55677021e-01 4.24715698e-01 8.91678452e-01 -8.92926812e-01 7.82697439e-01 1.10229909e+00 1.13922060e+00 3.45233351e-01 -9.04155970e-01 -3.23735386e-01 -5.11052728e-01 2.82088190e-01 -1.22690248e+00 -2.57178605e-01 6.19323313e-01 -5.58872879e-01 1.10340071e+00 -1.55306414e-01 1.06658173e+00 1.52540171e+00 9.60325062e-01 8.51625204e-01 9.69641984e-01 -3.01026046e-01 3.99129778e-01 -6.37283325e-01 -9.36071724e-02 8.56505692e-01 7.36599267e-01 2.69733816e-01 -7.12606668e-01 -5.74751422e-02 8.97007763e-01 -4.51159477e-01 -1.98936090e-01 -9.87798810e-01 -1.25601363e+00 3.12053651e-01 4.11469430e-01 -1.98008165e-01 -7.32792556e-01 4.07863021e-01 4.13468271e-01 9.25030410e-02 -1.37227438e-02 1.17068216e-01 -3.81392390e-01 -5.29974461e-01 -4.65056628e-01 9.82378542e-01 1.17602587e+00 9.27987933e-01 3.01982522e-01 2.21385464e-01 3.72779340e-01 8.41276348e-01 3.40801001e-01 5.95866203e-01 2.41034612e-01 -1.26271391e+00 4.91529733e-01 3.14031094e-01 7.66277492e-01 -8.37159336e-01 -7.32632935e-01 -8.75935182e-02 -4.22165692e-01 8.35024416e-01 4.08075809e-01 -3.21260184e-01 -7.04683065e-01 1.62267482e+00 2.47804657e-01 -2.90220201e-01 1.89000696e-01 1.18459022e+00 2.80327767e-01 -9.05878842e-03 -2.47266912e-03 3.74667734e-01 1.27765954e+00 -7.74170280e-01 -6.00902140e-01 -6.70314133e-01 2.98736811e-01 -3.16912919e-01 1.18169272e+00 5.60168028e-01 -1.15790188e+00 -5.32556057e-01 -1.68787086e+00 -1.73566304e-02 -1.95860997e-01 2.83570439e-01 5.52401483e-01 2.19750836e-01 -7.16659963e-01 1.10909021e+00 -1.44264603e+00 -8.84917378e-01 3.29283462e-03 3.28692049e-01 -2.66131341e-01 3.38754386e-01 -1.53516591e+00 1.59867644e+00 1.12495460e-01 1.86466187e-01 -9.38241839e-01 -2.77693003e-01 -8.96627665e-01 -3.56546074e-01 2.94343561e-01 -1.05262160e+00 1.37668991e+00 -1.96942478e-01 -1.82184803e+00 9.26705718e-01 3.74696523e-01 -6.92504466e-01 9.97093678e-01 -8.16088974e-01 7.93775246e-02 2.78641254e-01 3.92732710e-01 4.90205109e-01 6.06339335e-01 -1.11952710e+00 -3.63528281e-01 -1.24124691e-01 -1.67438865e-01 5.65769970e-01 1.53997540e-01 -6.24242127e-01 -1.23983680e-03 -5.35731375e-01 2.25383192e-01 -1.26395357e+00 -1.92790955e-01 4.98390317e-01 -3.69350135e-01 2.70367432e-02 3.66692692e-01 -5.21013200e-01 5.81994176e-01 -1.72806954e+00 3.84070486e-01 1.74600542e-01 -8.57222304e-02 1.03777394e-01 5.48805118e-01 8.65244150e-01 4.42178577e-01 -4.04680699e-01 -4.39036816e-01 9.40258242e-03 1.46345481e-01 3.94339949e-01 7.20611662e-02 7.01119900e-01 1.19850732e-01 5.92183471e-01 -1.00441265e+00 -5.76681972e-01 3.28543901e-01 4.24088448e-01 -2.88608313e-01 -2.53402954e-03 8.90045017e-02 2.25051448e-01 -4.27656442e-01 9.06453192e-01 4.38883692e-01 1.17269456e-01 3.30176264e-01 -3.62227827e-01 -1.67434335e-01 1.55866712e-01 -1.27366948e+00 1.65659225e+00 -4.89933968e-01 3.26048672e-01 3.05142909e-01 -1.04233718e+00 1.12316430e+00 3.90591145e-01 6.28969967e-01 -3.53951365e-01 2.34312430e-01 7.62386143e-01 -4.30740342e-02 -5.65021157e-01 3.93881828e-01 2.58645505e-01 -1.73546910e-01 1.72541678e-01 4.19252694e-01 -4.22835380e-01 8.27351864e-03 -4.31097716e-01 1.02377963e+00 1.08993840e+00 5.10660589e-01 -7.07000434e-01 1.62344918e-01 2.35426098e-01 3.51782769e-01 6.25066996e-01 -5.28997242e-01 5.64198256e-01 1.21955998e-01 -1.86635613e-01 -1.05719626e+00 -1.69399202e+00 -2.76912570e-01 6.81103647e-01 6.73675239e-01 -2.69376747e-02 -1.10940301e+00 3.23322713e-01 5.44393539e-01 2.87472382e-02 -4.39668268e-01 -4.00089592e-01 -8.05766284e-01 -5.04610419e-01 7.29297221e-01 1.00756919e+00 5.61627269e-01 -1.35808384e+00 -1.56640828e+00 5.64325273e-01 -3.75888705e-01 -1.17087281e+00 3.07492793e-01 4.15710747e-01 -7.62676120e-01 -1.42267847e+00 -7.69888699e-01 -8.73219490e-01 1.92021427e-03 -1.02280408e-01 9.35734332e-01 -7.45900050e-02 -4.49654490e-01 4.14965302e-01 -3.15268397e-01 -1.66817918e-01 -7.09023178e-02 6.08705170e-02 6.27549529e-01 -7.09062338e-01 -7.85629973e-02 -8.21465135e-01 -7.52155125e-01 6.74483180e-01 -5.57703301e-02 -6.40564319e-03 4.56395090e-01 1.01622260e+00 5.48916459e-01 -3.49309325e-01 5.11814177e-01 -1.13693751e-01 5.52441597e-01 -3.73876065e-01 -3.14409852e-01 -2.22873256e-01 -4.31001246e-01 -4.43715602e-01 3.45480651e-01 -1.73229605e-01 -8.54187012e-01 1.57397225e-01 -2.87902117e-01 1.19811974e-01 6.70579867e-03 5.54548502e-01 2.24647075e-02 -3.04740131e-01 8.86802077e-01 4.43966463e-02 4.56549823e-01 -3.04540843e-01 1.15599751e-01 6.32776856e-01 9.61303294e-01 -8.19429755e-01 3.28464031e-01 6.93631887e-01 2.66325444e-01 -8.79701853e-01 -2.42926925e-03 -8.88789892e-02 -1.11830080e+00 -5.40012300e-01 6.64403498e-01 -8.57009053e-01 -1.03726220e+00 1.12349403e+00 -7.55737603e-01 -8.58624041e-01 2.09168959e-02 4.63600487e-01 -1.62418532e+00 4.39101607e-01 -8.85723054e-01 -7.77564049e-01 -4.24684793e-01 -1.14390111e+00 1.20628488e+00 -1.72513556e-02 -7.17550755e-01 -7.57033587e-01 1.49408565e-03 5.51957497e-03 -1.92520246e-02 8.53790879e-01 3.63256365e-01 8.82504061e-02 3.53440978e-02 -4.92664814e-01 3.00915122e-01 3.24423909e-02 1.81523368e-01 -9.95199233e-02 -6.69490755e-01 -4.99646753e-01 -1.71563670e-01 -7.50819385e-01 3.80649596e-01 4.01007891e-01 4.49279785e-01 1.26311600e-01 -5.60035586e-01 1.60161093e-01 1.18645442e+00 -1.92415476e-01 6.29341722e-01 8.02282929e-01 5.29266715e-01 7.58932650e-01 1.28975153e+00 4.94542420e-01 4.23056126e-01 9.75934625e-01 6.44949436e-01 4.40819412e-02 -1.08014315e-01 -2.45982513e-01 4.08674657e-01 6.21602833e-01 -5.43411016e-01 -1.19877629e-01 -1.13281024e+00 6.06366873e-01 -1.98154795e+00 -5.33006012e-01 -1.01350009e-01 2.04949975e+00 7.22129464e-01 5.24718225e-01 2.73145765e-01 6.40049279e-01 5.48009932e-01 -1.48549780e-01 -7.27729380e-01 -6.31436557e-02 1.00470893e-01 3.90100151e-01 4.84318018e-01 4.61763889e-01 -1.03088260e+00 9.57112134e-01 6.56858635e+00 4.53145713e-01 -1.04619825e+00 -1.61979094e-01 -3.55797321e-01 5.31563759e-01 6.23760164e-01 -3.60437185e-01 -3.24240118e-01 3.78167719e-01 5.60737610e-01 -3.29180062e-01 2.25867346e-01 1.18716133e+00 2.51236826e-01 -5.40229559e-01 -1.15340459e+00 5.17786801e-01 -2.77610898e-01 -7.83359289e-01 -3.98265451e-01 -2.58000374e-01 1.57866895e-01 1.97190151e-01 -2.66043514e-01 5.90738188e-03 2.53736854e-01 -6.84079885e-01 1.06387782e+00 5.57076097e-01 6.14703298e-01 -4.48979467e-01 7.72938907e-01 4.09530640e-01 -1.58676171e+00 -1.01770081e-01 -1.41237155e-01 -5.39623439e-01 3.95677179e-01 1.42243132e-01 -5.00343204e-01 7.52925217e-01 9.04828846e-01 9.23516870e-01 -2.78375655e-01 1.05746961e+00 -3.56860608e-01 2.98573375e-01 -5.49413502e-01 -2.70667583e-01 -7.00308830e-02 -3.97031195e-02 7.45170534e-01 8.74291301e-01 1.22317761e-01 -3.02267134e-01 4.03369427e-01 7.55870342e-01 7.66732097e-01 -2.63077676e-01 -5.84247649e-01 5.02885818e-01 5.29197216e-01 1.00670850e+00 -6.27895057e-01 -1.06559806e-02 1.41494632e-01 1.06450105e+00 1.50230780e-01 3.66855502e-01 -8.02453458e-01 -6.57170951e-01 7.22804844e-01 3.25950563e-01 -4.24792580e-02 -5.68436801e-01 -3.82652223e-01 -8.65735769e-01 4.56306338e-01 -4.14579272e-01 -7.16623589e-02 -9.47710574e-01 -1.21717453e+00 1.67246982e-01 4.34560835e-01 -1.58527493e+00 -6.30345047e-01 -9.49811637e-01 -4.22552675e-01 7.61768639e-01 -1.06400979e+00 -8.82025003e-01 -6.04270995e-01 2.95188397e-01 3.05130333e-01 1.77215129e-01 8.90401661e-01 1.41768441e-01 -4.15094756e-02 4.12199587e-01 -3.05881530e-01 -6.60466328e-02 6.52873933e-01 -1.24466026e+00 8.43836546e-01 3.04570347e-01 -8.29615951e-01 5.26887715e-01 1.14999080e+00 -8.05896819e-01 -1.45443416e+00 -6.54728949e-01 3.18375766e-01 -9.63910744e-02 8.48604620e-01 -2.74477065e-01 -8.28730285e-01 5.94464660e-01 -1.53844029e-01 1.33065143e-04 -4.72729132e-02 -3.31800580e-01 4.27301288e-01 1.27620772e-01 -1.29064810e+00 8.13307703e-01 1.37639129e+00 -1.43855885e-01 -8.71915638e-01 1.87439248e-01 1.84946343e-01 -9.09927666e-01 -9.91001964e-01 9.12642777e-01 1.11782086e+00 -6.82167768e-01 1.21023953e+00 -2.13467002e-01 3.84637207e-01 -2.22172320e-01 -1.62487522e-01 -1.17913902e+00 -1.11792274e-01 -4.62462664e-01 -3.23136240e-01 5.40496826e-01 -1.65789127e-01 -6.88953817e-01 9.07623291e-01 -2.45727420e-01 -2.85829931e-01 -1.14636016e+00 -1.37571108e+00 -1.11759233e+00 2.29012594e-01 -1.52910113e-01 -1.29893180e-02 5.91885030e-01 4.19030994e-01 -9.59240422e-02 -6.19880021e-01 2.62706488e-01 8.69876564e-01 -2.83055037e-01 9.54051673e-01 -1.37774229e+00 -7.89110214e-02 -6.39249384e-02 -8.15148771e-01 -7.67800570e-01 1.52532637e-01 -2.91303307e-01 5.76032639e-01 -1.64245903e+00 -4.13797259e-01 -3.53955358e-01 1.72406565e-02 5.64239979e-01 8.93742591e-02 3.36204022e-01 -1.80061325e-01 3.27074081e-01 -2.07469046e-01 5.00186861e-01 1.11719286e+00 1.88677460e-01 -7.08833486e-02 2.57101238e-01 1.82657167e-01 9.20867145e-01 9.22858715e-01 -5.18366322e-02 -1.17347412e-01 1.08257011e-01 -6.44191280e-02 2.10125223e-01 9.51413929e-01 -1.78442872e+00 2.52612121e-03 1.29435793e-01 1.76885054e-01 -4.77806091e-01 5.48466325e-01 -5.18366277e-01 2.36853287e-01 1.10629797e+00 5.55021800e-02 -1.46163270e-01 1.21092416e-01 4.96844411e-01 7.25885406e-02 2.69878283e-02 8.14269900e-01 -8.86793584e-02 -8.32661331e-01 -1.90098554e-01 -8.62338543e-01 -8.76709702e-04 9.24203336e-01 -6.43619657e-01 -1.68230355e-01 -2.41124585e-01 -9.53235686e-01 4.02560353e-01 7.40291417e-01 4.36972082e-01 4.18221444e-01 -1.34447253e+00 -3.33580136e-01 3.36569659e-02 2.40106344e-01 -2.36536846e-01 -9.95393097e-03 7.53306329e-01 -9.85051811e-01 1.22063264e-01 -9.98007953e-01 -9.20958459e-01 -8.07166398e-01 -1.51783735e-01 6.05482578e-01 6.26056865e-02 -9.36713517e-01 2.46756360e-01 -4.59709555e-01 -7.41425574e-01 1.51788861e-01 -4.79723990e-01 -7.01982602e-02 -4.23827916e-01 -2.70201147e-01 7.92967975e-01 2.11852595e-01 -6.79261088e-01 -4.54231590e-01 9.05107319e-01 5.87227881e-01 -2.77662575e-01 1.07067883e+00 -1.16089396e-01 3.40341598e-01 7.13744700e-01 4.99114931e-01 -5.06434739e-01 -1.83576584e+00 2.94878036e-01 1.65515974e-01 -2.17841621e-02 -6.02601230e-01 -7.14522481e-01 -5.09488344e-01 7.18490303e-01 9.40616906e-01 -2.33339414e-01 5.23864388e-01 -2.63510764e-01 8.52169573e-01 7.82758176e-01 1.10133564e+00 -1.45265436e+00 2.26760045e-01 4.79127973e-01 1.09452891e+00 -1.07923901e+00 3.25533509e-01 -8.04949224e-01 -4.89305884e-01 1.04008019e+00 7.77205110e-01 -8.14136267e-01 6.51023030e-01 6.10129356e-01 7.76593387e-02 -8.99434164e-02 -3.74852747e-01 -5.04748523e-02 -5.40804565e-02 1.06394458e+00 1.90788165e-01 2.07664326e-01 -5.64244270e-01 5.65164983e-01 -4.49274093e-01 4.44835991e-01 5.82393944e-01 1.72557592e+00 -6.31021798e-01 -7.79659688e-01 -1.90052941e-01 6.11527339e-02 -3.49922746e-01 4.88002092e-01 -2.22844601e-01 1.50616157e+00 -1.90191209e-01 6.95516706e-01 -9.55758616e-02 -4.86658782e-01 6.99905455e-01 -2.67748326e-01 8.00160289e-01 -4.40171421e-01 -2.41018027e-01 -2.87638634e-01 2.43620440e-01 -8.41711640e-01 -3.68342042e-01 -7.20046341e-01 -1.56875324e+00 1.40278563e-02 -1.24937154e-01 -1.90247014e-01 3.95444483e-01 7.59199917e-01 6.61467910e-02 4.55256730e-01 1.23869017e-01 -1.80582380e+00 -7.14493632e-01 -1.01601076e+00 -7.09111750e-01 3.04188102e-01 1.79661617e-01 -1.82793331e+00 -2.66052127e-01 2.26034336e-02]
[4.820591926574707, 1.0969507694244385]
79bc318f-354e-4825-baaa-397940cdb88d
metropolis-hastings-algorithm-in-joint
2305.19936
null
https://arxiv.org/abs/2305.19936v1
https://arxiv.org/pdf/2305.19936v1.pdf
Metropolis-Hastings algorithm in joint-attention naming game: Experimental semiotics study
In this study, we explore the emergence of symbols during interactions between individuals through an experimental semiotic study. Previous studies investigate how humans organize symbol systems through communication using artificially designed subjective experiments. In this study, we have focused on a joint attention-naming game (JA-NG) in which participants independently categorize objects and assign names while assuming their joint attention. In the theory of the Metropolis-Hastings naming game (MHNG), listeners accept provided names according to the acceptance probability computed using the Metropolis-Hastings (MH) algorithm. The theory of MHNG suggests that symbols emerge as an approximate decentralized Bayesian inference of signs, which is represented as a shared prior variable if the conditions of MHNG are satisfied. This study examines whether human participants exhibit behavior consistent with MHNG theory when playing JA-NG. By comparing human acceptance decisions of a partner's naming with acceptance probabilities computed in the MHNG, we tested whether human behavior is consistent with the MHNG theory. The main contributions of this study are twofold. First, we reject the null hypothesis that humans make acceptance judgments with a constant probability, regardless of the acceptance probability calculated by the MH algorithm. This result suggests that people followed the acceptance probability computed by the MH algorithm to some extent. Second, the MH-based model predicted human acceptance/rejection behavior more accurately than the other four models: Constant, Numerator, Subtraction, and Binary. This result indicates that symbol emergence in JA-NG can be explained using MHNG and is considered an approximate decentralized Bayesian inference.
['Akira Taniguchi', 'Yosinobu Hagiwara', 'Tadahiro Taniguchi', 'Ryota Okumura']
2023-05-31
null
null
null
null
['bayesian-inference']
['methodology']
[-1.27817959e-01 3.45327646e-01 -5.40418401e-02 -2.48532206e-01 4.81689662e-01 -3.67169410e-01 8.71494651e-01 2.60384288e-02 -9.71771359e-01 6.39411807e-01 -4.38577048e-02 -4.21514601e-01 -2.32571974e-01 -7.92683840e-01 -3.82987171e-01 -3.87887836e-01 7.69960657e-02 8.93937647e-01 -1.19374819e-01 -2.62777824e-02 4.79920119e-01 2.33301625e-01 -1.63200545e+00 -3.58807504e-01 7.46621192e-01 3.34633738e-01 1.66580930e-01 7.76904404e-01 3.67578678e-02 6.84098184e-01 -8.93017650e-01 -7.05064654e-01 2.32471019e-01 -9.63499725e-01 -6.69448197e-01 -4.35007513e-01 1.61833670e-02 -6.22686207e-01 -2.27033123e-02 1.22909772e+00 3.75614017e-01 3.01104814e-01 9.52892780e-01 -1.52017069e+00 -1.13809025e+00 1.10523725e+00 -1.59843206e-01 -9.22305286e-02 6.96884573e-01 9.66388434e-02 9.66003239e-01 -6.15912199e-01 7.13345110e-01 1.61301196e+00 3.68041664e-01 4.98624891e-01 -1.46861959e+00 -7.74868727e-01 7.65837356e-02 2.29081422e-01 -2.11656833e+00 -2.12676078e-01 5.18322468e-01 -4.22776878e-01 5.67468345e-01 4.91456240e-01 1.36630261e+00 9.03232396e-01 3.05456579e-01 3.94467145e-01 1.40520966e+00 -6.96092665e-01 7.43680537e-01 1.56654403e-01 1.02517441e-01 3.30819041e-01 8.48687589e-01 1.61225215e-01 -7.56662369e-01 -5.22904992e-01 1.14437449e+00 -5.78219652e-01 6.87649548e-02 -4.40408438e-02 -1.43067706e+00 7.46237814e-01 9.15318057e-02 6.42686665e-01 -6.39682710e-01 3.75791728e-01 -3.75692844e-01 3.29431266e-01 2.96178851e-02 5.08684635e-01 -1.06894717e-01 -2.96759546e-01 -8.51657569e-01 4.16494727e-01 1.20489371e+00 6.00884616e-01 2.56230414e-01 -8.98316875e-02 -5.24378158e-02 6.76673055e-01 9.86273348e-01 9.32618737e-01 4.81937259e-01 -1.20664299e+00 -4.58635122e-01 -5.69298044e-02 4.29484785e-01 -1.09594977e+00 -2.83476502e-01 -3.39963734e-01 -5.87781131e-01 2.69723088e-01 8.22492778e-01 1.25469685e-01 -4.82163101e-01 2.51716590e+00 1.79468557e-01 -7.80189037e-02 -1.49439499e-01 8.79892051e-01 4.06363875e-01 4.28345472e-01 4.69549835e-01 -5.24102807e-01 1.47699749e+00 -7.65280649e-02 -1.12386978e+00 2.86459755e-02 4.10259545e-01 -6.36623085e-01 9.98391449e-01 6.22520626e-01 -9.67234075e-01 -4.78842050e-01 -7.97676206e-01 2.05227226e-01 -1.37535080e-01 -2.79166609e-01 8.47484171e-01 1.17122984e+00 -1.34649718e+00 2.89212197e-01 -6.58662498e-01 -9.62738514e-01 -1.72943085e-01 2.89131790e-01 5.52184992e-02 3.48592609e-01 -1.34268093e+00 1.02256656e+00 5.68924882e-02 2.75655568e-01 -5.54681599e-01 2.41576850e-01 -5.08618116e-01 6.11119121e-02 -1.98181942e-02 -9.80591118e-01 1.44290173e+00 -1.33650446e+00 -1.94210494e+00 9.45198238e-01 -9.57581177e-02 -1.40516847e-01 4.54088509e-01 -5.23244310e-03 -3.63138795e-01 9.71129313e-02 3.62246007e-01 9.54776943e-01 4.89010125e-01 -1.31767249e+00 4.87373173e-02 -1.78508192e-01 -1.18135080e-01 3.94886076e-01 3.45659703e-01 1.94224358e-01 2.10264891e-01 -6.95046782e-01 3.97148341e-01 -9.40847158e-01 1.35355920e-01 1.77701339e-01 -2.07082465e-01 -5.52010894e-01 -2.08129928e-01 -3.95532131e-01 1.29342914e+00 -2.10197711e+00 -1.67005938e-02 6.84745550e-01 4.10001040e-01 -1.55471951e-01 6.59502894e-02 5.54012775e-01 1.43903106e-01 4.14587826e-01 -5.85325547e-02 -1.73491478e-01 7.09061921e-01 2.45304585e-01 -1.05754428e-01 6.85197949e-01 -7.48000741e-01 7.57635355e-01 -8.12993228e-01 -6.49738848e-01 5.79603389e-02 1.16209961e-01 -5.63422561e-01 1.89526781e-01 2.87428647e-01 7.50260502e-02 4.03151289e-02 5.57200134e-01 6.99506760e-01 -2.26976335e-01 5.85688174e-01 3.45120281e-01 -2.86862224e-01 -4.94437031e-02 -1.19265294e+00 1.00088513e+00 2.33467519e-01 5.23465872e-01 7.95761868e-02 -5.97040653e-01 8.58125269e-01 2.57470131e-01 -2.41736993e-01 -6.64633334e-01 5.30201554e-01 3.68365824e-01 7.15971768e-01 -1.00855969e-01 4.50656086e-01 -4.19293791e-01 -3.30413491e-01 8.83444130e-01 -1.08128801e-01 -4.41687942e-01 6.71089068e-02 5.88122368e-01 6.39068127e-01 -9.77145582e-02 8.79703343e-01 -5.29673517e-01 6.04421794e-02 -6.33357465e-01 6.18238151e-01 1.65619111e+00 -5.65563381e-01 8.56598318e-02 4.80140477e-01 -7.37608075e-02 -8.25157404e-01 -1.57097077e+00 -2.86135435e-01 1.08148503e+00 5.79520941e-01 -2.18437001e-01 -1.05531108e+00 7.97463134e-02 3.13676223e-02 1.55707681e+00 -7.04324663e-01 -3.53795230e-01 1.42455436e-02 -5.06438017e-01 9.32091296e-01 5.08222692e-02 5.18992960e-01 -1.20295286e+00 -1.02677405e+00 3.67794707e-02 -3.97169799e-01 -3.17559183e-01 -1.33357733e-01 -2.92259008e-01 -4.71232057e-01 -4.98945385e-01 -6.70409143e-01 -3.16680998e-01 6.21398032e-01 1.73532981e-02 6.77400172e-01 4.71750557e-01 1.77906062e-02 7.45478213e-01 -2.25111336e-01 -3.45118225e-01 -3.13495100e-01 -4.20674711e-01 5.05773067e-01 -9.07424316e-02 5.54224253e-01 -6.71807408e-01 -4.41372037e-01 4.23977971e-01 -7.33132064e-01 -6.32365886e-03 5.83549261e-01 3.76076609e-01 -1.56346053e-01 -4.23097461e-01 5.28144300e-01 -1.75099075e-01 9.38045919e-01 -4.98533010e-01 -3.57729197e-01 1.92684188e-01 -6.43638074e-01 -1.02019273e-01 7.33656110e-03 -8.02483141e-01 -1.04280376e+00 -5.47316849e-01 2.03467220e-01 2.43670285e-01 -3.80122066e-01 5.17373443e-01 -1.47249997e-02 2.44848087e-01 5.36181271e-01 1.85558334e-01 1.41908184e-01 -1.67695343e-01 4.11359102e-01 8.38886321e-01 3.16968471e-01 -8.03952813e-01 4.89288539e-01 1.97560102e-01 -2.61820883e-01 -1.01937425e+00 -2.92544395e-01 2.56695062e-01 -3.95353943e-01 -6.91092789e-01 9.81153190e-01 -5.92382669e-01 -1.42440104e+00 8.35218132e-01 -1.04430079e+00 -4.78636146e-01 -2.96280771e-01 1.16464019e+00 -7.09858835e-01 5.35084188e-01 -6.00311697e-01 -1.55501485e+00 2.56207585e-01 -6.68533862e-01 4.46041495e-01 2.65807778e-01 -1.26807642e+00 -8.22814524e-01 7.15841502e-02 1.42901674e-01 5.47026813e-01 -2.28896052e-01 6.90496564e-01 -9.55966949e-01 -4.63199019e-01 8.00338760e-02 2.50266612e-01 -4.02039945e-01 -2.93736439e-02 3.03490549e-01 -5.54747581e-01 -9.04965028e-02 2.77576625e-01 -1.84328735e-01 2.49868467e-01 5.55807710e-01 3.38846624e-01 -3.31085980e-01 -1.12271078e-01 5.46167344e-02 8.11070144e-01 4.88596261e-01 5.04896462e-01 2.26334840e-01 3.61765213e-02 6.61707699e-01 3.23264867e-01 5.66494763e-01 7.43831217e-01 6.98249638e-01 -2.95380061e-03 4.88309175e-01 2.58202285e-01 -3.87008607e-01 4.34013724e-01 8.39087725e-01 -5.80433309e-02 -4.96574879e-01 -8.13151479e-01 3.11485976e-01 -1.78680015e+00 -1.08540738e+00 -2.58286208e-01 2.45991850e+00 8.66408885e-01 1.40243605e-01 -7.32098380e-03 -4.15629968e-02 1.08395982e+00 -2.25387573e-01 -1.39804542e-01 -5.66956282e-01 -1.71636701e-01 5.91360033e-02 2.44997695e-01 8.49839747e-01 -2.19157353e-01 8.28063786e-01 7.30699062e+00 4.85179573e-01 -6.29967928e-01 3.51695083e-02 3.58481497e-01 1.51248112e-01 -3.55483681e-01 3.82071584e-01 -3.66244972e-01 5.97062588e-01 1.00090182e+00 -4.83481258e-01 6.28757000e-01 3.75124365e-01 1.83696106e-01 -9.55083787e-01 -1.02571213e+00 8.86389673e-01 2.71574557e-01 -3.22375208e-01 1.21152215e-01 3.74214441e-01 2.66929060e-01 -7.49987721e-01 1.35798201e-01 1.60939693e-01 7.89638937e-01 -7.95934200e-01 1.51694834e+00 9.31716263e-01 4.66065764e-01 -1.81474715e-01 7.92440534e-01 4.32143837e-01 -7.39147484e-01 7.33167082e-02 -2.59815395e-01 -9.12921965e-01 5.45753241e-01 3.95058334e-01 -8.37688208e-01 -4.02674340e-02 4.79002535e-01 -9.45846289e-02 -4.23867762e-01 1.00762188e+00 -5.46805501e-01 7.37558961e-01 -7.60768533e-01 -3.88298661e-01 -1.78412363e-01 -4.40280706e-01 5.26687682e-01 6.38338327e-01 4.24650639e-01 3.86702627e-01 -2.89649457e-01 1.46697450e+00 3.20439935e-01 2.19290197e-01 -3.89449865e-01 -1.18820630e-01 1.05015159e+00 6.28816426e-01 -1.43204427e+00 -6.82044387e-01 -2.24891547e-02 9.96066332e-01 -9.92970355e-03 3.36465716e-01 -9.00725722e-01 -2.02156484e-01 1.97672635e-01 5.67983985e-02 -1.55878530e-04 -2.21613601e-01 -5.18559277e-01 -1.02826238e+00 -5.78467131e-01 -5.85461140e-01 -1.48668913e-02 -9.98785138e-01 -1.18980837e+00 9.98374373e-02 6.26523376e-01 -7.03121424e-01 -1.36002511e-01 -1.06663555e-01 -2.88849086e-01 7.46841311e-01 -1.98123723e-01 -7.57451832e-01 -1.08325079e-01 3.35595906e-01 3.88528430e-03 3.11871141e-01 7.11113095e-01 -2.02687681e-01 -3.77639920e-01 5.19156098e-01 -2.28835821e-01 -8.28996226e-02 8.11462998e-01 -1.11679196e+00 1.90096900e-01 4.99900550e-01 6.87710419e-02 1.48799992e+00 9.14889097e-01 -1.15761364e+00 -6.08990669e-01 6.37454689e-02 1.37680137e+00 -3.04834604e-01 3.35219681e-01 -4.65759277e-01 -7.05568969e-01 6.71797037e-01 3.61293852e-01 -5.46895027e-01 1.06681168e+00 -9.24613420e-03 -1.38769835e-01 2.87068933e-01 -1.27724624e+00 9.11581516e-01 1.15109277e+00 -5.80334723e-01 -1.30790341e+00 -6.82588108e-03 2.18733713e-01 2.95487463e-01 -6.75982058e-01 -8.24981332e-02 1.08942318e+00 -9.42510545e-01 5.94177961e-01 -5.35719804e-02 -2.89715260e-01 -5.04782379e-01 -2.58425564e-01 -9.94906664e-01 -7.83015907e-01 -4.08446163e-01 4.81062531e-01 1.12374246e+00 1.41877994e-01 -1.10656929e+00 1.19240634e-01 1.03531492e+00 4.43202794e-01 1.98764816e-01 -1.20423436e+00 -6.12628400e-01 -4.44954038e-02 -2.91687995e-01 4.98960465e-01 1.22221768e+00 4.41697180e-01 1.48715958e-01 -4.52509582e-01 -1.46982685e-01 9.35940862e-01 -4.31022376e-01 6.94798291e-01 -1.64019048e+00 -4.61785376e-01 -6.99301004e-01 -3.55833143e-01 -1.06239104e+00 1.62731424e-01 -6.37542903e-01 2.37530053e-01 -1.47953665e+00 2.38022581e-01 -6.96586147e-02 -3.12289651e-02 2.81016290e-01 2.88988296e-02 4.18318287e-02 5.22479653e-01 5.17242670e-01 -6.03076994e-01 5.82169712e-01 7.29444385e-01 4.10868347e-01 -3.01677167e-01 -2.63769478e-01 -8.48840654e-01 7.77926207e-01 7.02266157e-01 -5.79857588e-01 -3.03736925e-01 1.08053796e-01 6.87078774e-01 4.80221286e-02 5.09238124e-01 -7.91768909e-01 4.99148935e-01 -2.63005912e-01 3.40921968e-01 -2.71412820e-01 2.85599351e-01 -6.04905665e-01 8.10335994e-01 7.74047911e-01 -3.24031591e-01 -3.11537087e-02 -5.58734611e-02 3.93176764e-01 3.30664843e-01 -2.56973267e-01 6.65752947e-01 -3.85649428e-02 -2.38478050e-01 -8.98075163e-01 -1.52164495e+00 -4.09184605e-01 1.03534949e+00 -5.83647490e-01 -1.93329468e-01 -9.34430718e-01 -9.37562764e-01 -1.94615081e-01 6.80284381e-01 1.80753563e-02 5.74944615e-01 -1.34363127e+00 -3.91829789e-01 2.50697970e-01 -1.99978039e-01 -7.50437260e-01 -4.98943450e-03 1.09141743e+00 -7.00926602e-01 2.40205929e-01 -3.48289162e-01 -3.47437650e-01 -8.63710225e-01 3.78976107e-01 1.52368173e-01 4.19969797e-01 1.15537710e-01 9.48689103e-01 3.13142627e-01 -5.21780610e-01 -1.47296339e-01 -2.89857656e-01 -4.01180089e-02 1.88904349e-02 2.84744054e-01 5.51095426e-01 -8.41366291e-01 -8.98394585e-01 -4.45348024e-01 4.19581503e-01 1.53650224e-01 -9.31642771e-01 6.43631458e-01 -5.27640224e-01 -5.57440817e-01 1.04333389e+00 2.85236597e-01 2.94784755e-01 -4.95992929e-01 9.31057557e-02 -3.05207610e-01 -6.68972313e-01 -4.39029485e-01 -9.09803212e-01 -1.40144959e-01 1.89206079e-01 4.49333906e-01 3.50299895e-01 5.07104814e-01 2.08366707e-01 -2.05602527e-01 3.58833820e-01 5.82302392e-01 -1.08605337e+00 -1.31914273e-01 2.12609485e-01 6.55114114e-01 -5.48615456e-01 -9.16468203e-02 -3.12306076e-01 -5.74926794e-01 6.18826985e-01 6.32264495e-01 5.72385639e-03 6.90356076e-01 -1.71108067e-01 -1.20412953e-01 -1.14801474e-01 -7.47743189e-01 4.82583530e-02 -2.08386898e-01 5.13374329e-01 4.72461343e-01 4.48870778e-01 -1.27903926e+00 8.41811001e-01 -7.43346274e-01 1.43044859e-01 8.63931894e-01 8.74386132e-01 -6.56364858e-01 -9.89485562e-01 -8.07391644e-01 2.72883594e-01 -8.13360587e-02 -1.54938787e-01 -9.48806524e-01 8.86129975e-01 2.08342239e-01 1.24740005e+00 3.73677641e-01 -2.34022021e-01 2.74174176e-02 2.44368389e-01 4.09630775e-01 -4.21117127e-01 -4.11780596e-01 1.27755612e-01 -1.53745458e-01 -2.05310181e-01 -4.07939941e-01 -9.76779342e-01 -1.12343359e+00 -6.78094268e-01 -5.31388462e-01 6.85677111e-01 2.79405892e-01 9.41720366e-01 -2.07996164e-02 -5.01051359e-02 -1.90072842e-02 -5.00196099e-01 -6.38501227e-01 -1.23972881e+00 -1.00338984e+00 1.71977863e-01 -2.53143847e-01 -7.79873610e-01 -9.56928790e-01 -1.31012127e-01]
[9.73060417175293, 7.580016136169434]
3b6ae408-4f66-4fcc-a8df-dfdd1d6d376a
a-constraints-fusion-induced-symmetric
2302.12114
null
https://arxiv.org/abs/2302.12114v1
https://arxiv.org/pdf/2302.12114v1.pdf
A Constraints Fusion-induced Symmetric Nonnegative Matrix Factorization Approach for Community Detection
Community is a fundamental and critical characteristic of an undirected social network, making community detection be a vital yet thorny issue in network representation learning. A symmetric and non-negative matrix factorization (SNMF) model is frequently adopted to address this issue owing to its great interpretability and scalability. However, it adopts a single latent factor matrix to represent an undirected network for precisely representing its symmetry, which leads to loss of representation learning ability due to the reduced latent space. Motivated by this discovery, this paper proposes a novel Constraints Fusion-induced Symmetric Nonnegative Matrix Factorization (CFS) model that adopts three-fold ideas: a) Representing a target undirected network with multiple latent factor matrices, thus preserving its representation learning capacity; b) Incorporating a symmetry-regularizer that preserves the symmetry of the learnt low-rank approximation to the adjacency matrix into the loss function, thus making the resultant detector well-aware of the target network's symmetry; and c) Introducing a graph-regularizer that preserves local invariance of the network's intrinsic geometry, thus making the achieved detector well-aware of community structure within the target network. Extensively empirical studies on eight real-world social networks from industrial applications demonstrate that the proposed CFS model significantly outperforms state-of-the-art models in achieving highly-accurate community detection results.
['Xin Luo', 'ZhiGang Liu']
2023-02-23
null
null
null
null
['community-detection']
['graphs']
[ 2.42604852e-01 -1.33120403e-01 -2.55767405e-01 1.52266055e-01 1.70476399e-02 -5.16415119e-01 3.49725544e-01 -8.71148407e-02 1.97301626e-01 2.26539060e-01 1.27489626e-01 -2.17351824e-01 -4.72325146e-01 -7.97064722e-01 -2.13013515e-01 -8.53816152e-01 -3.82053167e-01 3.62534106e-01 1.36621416e-01 -1.85973555e-01 2.30719134e-01 4.76613343e-01 -1.11626899e+00 1.83272734e-01 9.32711005e-01 5.94534516e-01 1.22981735e-01 3.98246378e-01 8.73466805e-02 8.29156935e-01 -3.25530201e-01 -2.23108977e-01 3.57352138e-01 -2.32659608e-01 -4.69662279e-01 6.12189710e-01 3.59806120e-02 1.97669834e-01 -7.62034595e-01 1.36748683e+00 1.62243485e-01 -1.73454974e-02 7.91430593e-01 -1.58999062e+00 -6.79229200e-01 5.72271883e-01 -1.17130053e+00 1.65127829e-01 3.61071855e-01 -1.58030257e-01 1.39657497e+00 -7.58974254e-01 6.26508832e-01 1.40385652e+00 5.96244454e-01 5.75015321e-02 -1.53841209e+00 -1.03092647e+00 3.43793988e-01 9.76851135e-02 -1.78528774e+00 -4.72068861e-02 1.11418796e+00 -7.79667258e-01 5.67502201e-01 2.31169298e-01 7.29512930e-01 8.15144897e-01 2.29431868e-01 6.31949961e-01 6.83230817e-01 -2.90453762e-01 -3.46252359e-02 -9.94970649e-02 1.26114758e-02 8.85277152e-01 6.10691786e-01 -2.16058299e-01 -3.34532499e-01 -4.81736869e-01 1.05085170e+00 4.80037838e-01 -3.10535878e-01 -1.07043481e+00 -1.28307104e+00 1.02340484e+00 7.65544116e-01 3.69620264e-01 -3.64779562e-01 -1.17652953e-01 4.35788810e-01 3.02216053e-01 1.57128870e-01 1.47377357e-01 3.47295493e-01 4.05448586e-01 -6.01627588e-01 -1.10632867e-01 6.61124706e-01 9.64805603e-01 7.10039139e-01 2.53586084e-01 1.38886899e-01 6.15344167e-01 6.12579286e-01 4.11274225e-01 2.18373537e-01 -6.04061604e-01 7.10928798e-01 1.29187405e+00 -2.56173998e-01 -1.92338467e+00 -4.31206763e-01 -8.28393281e-01 -1.64736605e+00 1.17052859e-02 6.35098666e-02 1.06073812e-01 -3.85946840e-01 1.61289656e+00 1.46478683e-01 3.40838432e-01 5.30371703e-02 8.48403573e-01 3.98607671e-01 4.51564014e-01 -3.64687264e-01 -4.57282305e-01 1.22997677e+00 -7.18954027e-01 -4.82410192e-01 -2.05907121e-01 2.68561214e-01 -7.63178885e-01 5.01111865e-01 3.15213770e-01 -2.87504882e-01 -4.56332952e-01 -1.39846396e+00 4.75469112e-01 7.47600347e-02 1.13446422e-01 9.89354610e-01 5.93125165e-01 -6.72769070e-01 2.79765248e-01 -5.67554533e-01 -3.85985762e-01 1.30012393e-01 3.95848781e-01 -6.37284935e-01 -4.09379333e-01 -1.00370181e+00 1.49708882e-01 3.97708863e-01 2.77292252e-01 -5.42474270e-01 -1.95278049e-01 -6.19667828e-01 1.13563217e-01 6.01259291e-01 -7.08820641e-01 3.58259261e-01 -9.15359735e-01 -9.45495963e-01 5.16801000e-01 -4.38909195e-02 -1.28045142e-01 4.47632164e-01 4.00199473e-01 -6.65834904e-01 2.87187189e-01 3.18053037e-01 -5.41478992e-02 1.28167188e+00 -1.37216401e+00 -2.94090033e-01 -4.07395810e-01 1.80395871e-01 1.70423552e-01 -5.34885228e-01 -3.41471344e-01 -3.47999305e-01 -8.23048472e-01 9.05016065e-01 -1.11214733e+00 -4.02184069e-01 -7.76616484e-02 -7.41118908e-01 -8.24954957e-02 1.13366795e+00 -5.00164986e-01 1.51908529e+00 -2.16881633e+00 3.57776821e-01 9.20291007e-01 8.81909788e-01 1.50112107e-01 -3.09103489e-01 7.07889438e-01 -4.53606158e-01 3.95994894e-02 -1.03392832e-01 -8.82629827e-02 -4.38035280e-01 9.45213661e-02 -1.21941946e-01 6.70512736e-01 2.36112297e-01 4.05902922e-01 -1.21904075e+00 -2.89540470e-01 2.39164904e-01 5.36848187e-01 -6.14707828e-01 -7.67823532e-02 4.43328768e-01 3.66301894e-01 -7.60107875e-01 5.02561331e-01 7.73906887e-01 -5.86685121e-01 7.46825576e-01 -5.29595077e-01 1.23735145e-01 -3.99979323e-01 -1.93020523e+00 1.31217325e+00 3.32741551e-02 2.25499317e-01 3.96571487e-01 -1.07156277e+00 1.08228147e+00 3.11500520e-01 9.33889151e-01 -2.62074381e-01 8.77318084e-02 -2.13449430e-02 2.82036424e-01 -1.03505313e-01 1.96011916e-01 5.85009381e-02 2.26777464e-01 5.32574534e-01 -1.27661154e-01 2.86788613e-01 3.92856717e-01 7.92754292e-01 1.23313498e+00 -6.19634032e-01 3.59960228e-01 -4.46594685e-01 9.18026447e-01 -5.40751338e-01 8.67787898e-01 3.47921908e-01 -1.43884793e-01 4.75556165e-01 6.55617356e-01 -2.50984251e-01 -7.64723778e-01 -1.25993109e+00 1.41823798e-01 6.16412640e-01 2.78729200e-01 -5.74815810e-01 -4.24656034e-01 -5.40316522e-01 2.43513852e-01 -1.76197991e-01 -4.92420733e-01 -2.56778240e-01 -2.55542666e-01 -6.96626961e-01 1.25220641e-01 3.61230344e-01 3.74828041e-01 -5.42363048e-01 2.72777319e-01 1.61659509e-01 -4.18951243e-01 -9.22004938e-01 -6.12290084e-01 -3.07797883e-02 -9.29796040e-01 -1.60668159e+00 -4.58595216e-01 -8.21398139e-01 1.18289828e+00 1.00955081e+00 6.56059563e-01 5.25106668e-01 -2.54714400e-01 2.16433764e-01 -3.65907162e-01 2.92973101e-01 -3.30944270e-01 -7.83830136e-03 5.33040702e-01 5.44948161e-01 1.67901248e-01 -8.33651841e-01 -3.94035608e-01 4.91064280e-01 -8.58794928e-01 6.02730401e-02 6.39323890e-01 9.19189215e-01 3.04840386e-01 6.37135088e-01 5.17638087e-01 -9.03987229e-01 6.90450609e-01 -5.30577540e-01 -5.35284340e-01 2.23790482e-01 -6.64760470e-01 -8.47007036e-02 5.12863696e-01 -4.74029243e-01 -5.66570818e-01 1.85562134e-01 5.18779099e-01 -7.32943714e-01 5.79637349e-01 5.91323614e-01 -2.50395745e-01 -3.32526892e-01 5.72577596e-01 2.40637422e-01 2.82995760e-01 -2.73468047e-01 2.51109451e-01 5.26415050e-01 2.14914665e-01 -4.93397832e-01 1.50321519e+00 5.66009164e-01 4.54224437e-01 -1.01062572e+00 -5.15250504e-01 -1.15641427e+00 -9.27277207e-01 -2.30888054e-01 4.88117635e-01 -1.17685318e+00 -9.08062160e-01 3.47071201e-01 -8.43827367e-01 7.32893705e-01 1.22010782e-01 4.59515989e-01 -2.35441089e-01 9.58638728e-01 -6.65587544e-01 -9.26846445e-01 -2.29704484e-01 -9.38185811e-01 6.49351895e-01 -1.22538783e-01 4.60505486e-02 -8.40385318e-01 -1.17423333e-01 4.03293490e-01 1.55073076e-01 4.66650724e-01 9.62920904e-01 -3.30170721e-01 -6.70637846e-01 -4.87660348e-01 -6.55164182e-01 5.39399564e-01 4.19901580e-01 2.55621910e-01 -6.71006382e-01 -8.80721629e-01 -1.47740647e-01 2.69775897e-01 7.08631396e-01 9.25678462e-02 6.27863824e-01 -2.65708685e-01 -5.27409494e-01 2.83785790e-01 1.25514901e+00 -1.15257457e-01 4.31901932e-01 5.00795208e-02 1.15430403e+00 5.09440124e-01 3.63885671e-01 4.56246853e-01 1.79069400e-01 4.00319159e-01 6.52302682e-01 -8.74838904e-02 1.88332036e-01 -3.20689857e-01 2.41372198e-01 1.31755757e+00 -3.28063309e-01 -6.39211386e-02 -8.02592993e-01 2.84421206e-01 -2.16033792e+00 -1.21655321e+00 -2.70457119e-01 2.12368536e+00 2.46154875e-01 4.21158880e-01 2.45932221e-01 5.13054430e-01 1.25286257e+00 3.75445098e-01 -4.77161288e-01 1.11580305e-01 -1.50471777e-01 -4.83502179e-01 2.58007258e-01 2.55805701e-01 -1.10524476e+00 4.11310226e-01 5.35961485e+00 9.40762818e-01 -9.16452706e-01 -1.97144091e-01 1.16593115e-01 4.24302518e-01 -1.88492060e-01 1.05502836e-01 -4.53922659e-01 2.06341118e-01 2.13265046e-01 -5.98426640e-01 6.17323995e-01 1.00832462e+00 1.97709411e-01 5.02822936e-01 -8.47158074e-01 1.02997148e+00 2.27377992e-02 -1.19860899e+00 5.09049475e-01 4.79928106e-01 8.27595174e-01 -1.75162718e-01 -5.06535396e-02 1.81667566e-01 1.04701824e-01 -7.02970743e-01 3.99086505e-01 3.28659296e-01 7.37756073e-01 -9.77766395e-01 6.71431065e-01 3.36119354e-01 -1.81113768e+00 -4.00851101e-01 -5.57281137e-01 -2.21911207e-01 -2.14361623e-02 8.36188853e-01 -8.64643037e-01 7.70761430e-01 2.56318510e-01 1.18667674e+00 -7.05974042e-01 9.74557042e-01 -1.04493901e-01 4.56853032e-01 -2.68977523e-01 3.85636419e-01 1.56377867e-01 -6.39481604e-01 9.71120536e-01 8.27040851e-01 3.40983532e-02 -1.72258466e-01 8.02570403e-01 7.52402246e-01 -2.04365611e-01 1.35246336e-01 -8.09026599e-01 -3.61426026e-01 4.57113534e-01 1.44889283e+00 -9.36978042e-01 1.50086924e-01 -4.01570082e-01 7.65923738e-01 2.30756432e-01 4.66510981e-01 -4.49708492e-01 -2.42855340e-01 7.28716612e-01 3.51694286e-01 1.87990084e-01 -2.81810611e-01 9.67364684e-02 -1.33014798e+00 6.73433095e-02 -8.84010792e-01 4.57358003e-01 -3.05778056e-01 -1.60712755e+00 5.49656868e-01 -3.26639235e-01 -1.68278062e+00 -1.24506675e-01 -4.83198375e-01 -6.41576767e-01 7.71919608e-01 -1.16435242e+00 -1.46540654e+00 -3.01332206e-01 7.70962298e-01 1.04587555e-01 -4.47020262e-01 6.77695453e-01 5.69960296e-01 -8.10990393e-01 4.80949312e-01 2.61513889e-01 4.62682635e-01 4.14645910e-01 -1.05662680e+00 1.98492005e-01 1.02769673e+00 1.42257482e-01 1.22030067e+00 4.23050672e-01 -7.38124609e-01 -1.60697114e+00 -1.06579614e+00 4.91902292e-01 -1.31440938e-01 1.08389342e+00 -4.52161491e-01 -7.52761781e-01 5.14632285e-01 -3.39116305e-01 8.13154057e-02 6.37989104e-01 3.59867305e-01 -8.33189964e-01 -1.70836359e-01 -9.67227399e-01 4.45783377e-01 1.13042414e+00 -8.86770844e-01 -2.21486136e-01 4.29005772e-01 5.04742146e-01 1.29955560e-01 -8.58826339e-01 4.93076921e-01 5.48430502e-01 -8.95145476e-01 1.16984439e+00 -2.84938872e-01 7.35216439e-02 -7.65083432e-01 -1.48190901e-01 -1.01175356e+00 -1.06477451e+00 -6.19410932e-01 -3.50985676e-01 1.28719378e+00 7.66818691e-03 -8.11712563e-01 9.62544024e-01 -8.39847550e-02 3.30267102e-01 -6.04467332e-01 -9.37507570e-01 -7.89170742e-01 -4.27430421e-01 5.59156314e-02 2.66091764e-01 1.45895922e+00 4.90274243e-02 6.70000553e-01 -4.63413537e-01 3.69123787e-01 8.60062420e-01 1.23410620e-01 6.82474673e-01 -1.74527478e+00 -2.21061036e-01 -3.66392046e-01 -8.95198584e-01 -7.97724068e-01 -2.93209893e-03 -9.39534843e-01 -4.83658254e-01 -1.28215456e+00 5.69398582e-01 -5.15607238e-01 -3.92837048e-01 1.14826657e-01 1.30538940e-01 3.16407651e-01 2.82178342e-01 4.75530684e-01 -6.10464454e-01 3.67078245e-01 1.34670866e+00 -3.92940283e-01 -3.18811946e-02 3.49109381e-01 -7.93559432e-01 7.24479675e-01 3.45085621e-01 -3.63076925e-01 -6.47408962e-01 8.23368728e-02 4.52694744e-01 1.17424987e-01 1.78319603e-01 -1.07703292e+00 3.63970459e-01 2.59001963e-02 2.30498165e-01 -5.03293395e-01 2.33066887e-01 -1.01814890e+00 2.94892877e-01 7.26625323e-01 1.86324731e-01 1.45416930e-01 -1.67036012e-01 1.25367045e+00 -3.78710687e-01 2.28637867e-02 6.63363397e-01 1.11036062e-01 -6.20651901e-01 4.25136566e-01 -2.45558769e-01 -1.18460380e-01 9.50966597e-01 -5.79618812e-01 -1.34732619e-01 -3.77528429e-01 -6.50376022e-01 2.87669778e-01 5.96187115e-01 7.66275704e-01 5.32817066e-01 -1.51414931e+00 -6.95551395e-01 4.48942363e-01 3.67129713e-01 -2.62425333e-01 3.72884482e-01 8.14401388e-01 -3.39748770e-01 1.22410998e-01 -1.13669671e-01 -8.29946160e-01 -1.43280864e+00 7.44361520e-01 1.56448334e-02 -6.50502384e-01 -6.42801166e-01 5.41156352e-01 3.44789892e-01 -5.16361594e-01 1.36775136e-01 7.93951824e-02 -3.75253588e-01 2.56321251e-01 4.59320962e-01 5.12458146e-01 -1.74449593e-01 -1.13320160e+00 -4.72484082e-01 7.02619672e-01 -1.53231788e-02 6.60562754e-01 1.06301057e+00 -1.96197093e-01 -4.16509300e-01 2.06759349e-01 1.17363524e+00 1.23153917e-01 -8.82191837e-01 -4.07693595e-01 -7.49636590e-02 -5.49651980e-01 3.77152227e-02 -1.02080330e-01 -1.18936276e+00 6.53076947e-01 4.03111517e-01 2.84592956e-01 9.06782031e-01 -5.75287461e-01 3.64014536e-01 5.09639800e-01 7.38545120e-01 -7.61974275e-01 4.88021106e-01 4.94915158e-01 8.08292150e-01 -1.02141750e+00 4.25563574e-01 -1.07073104e+00 -4.77370232e-01 1.12155831e+00 3.97540838e-01 -3.84573340e-01 9.16157007e-01 -2.90944159e-01 -3.94898742e-01 -3.89172673e-01 -2.52382219e-01 1.16418125e-02 4.85191464e-01 7.35424757e-01 2.21935004e-01 2.77719170e-01 1.28569737e-01 4.38409954e-01 1.63186908e-01 -4.57396299e-01 5.13516188e-01 6.70281112e-01 -3.48648250e-01 -1.04870117e+00 -3.43031853e-01 5.91533661e-01 -1.30662881e-02 1.43061534e-01 -4.29923356e-01 6.23967707e-01 -7.90245757e-02 1.10635686e+00 -2.76558518e-01 -6.87155008e-01 2.94626504e-01 -4.20827389e-01 1.71117395e-01 -9.81499135e-01 -3.04888129e-01 1.57408535e-01 -2.14236528e-01 -5.50568342e-01 -3.48546892e-01 -6.72016084e-01 -1.13648927e+00 -5.16040266e-01 -7.88320422e-01 3.98362905e-01 2.18826741e-01 7.31973410e-01 3.55439872e-01 5.59512317e-01 9.45542991e-01 -7.71912992e-01 -6.65215313e-01 -7.93092787e-01 -1.19000411e+00 5.35797477e-01 2.83304065e-01 -1.05542266e+00 -7.14977801e-01 -3.46775025e-01]
[7.302908420562744, 5.684795379638672]
edc09155-b3a5-4f3d-bf36-6c7a20e55e63
adversarial-attacks-on-binary-image-1
2010.11782
null
https://arxiv.org/abs/2010.11782v1
https://arxiv.org/pdf/2010.11782v1.pdf
Adversarial Attacks on Binary Image Recognition Systems
We initiate the study of adversarial attacks on models for binary (i.e. black and white) image classification. Although there has been a great deal of work on attacking models for colored and grayscale images, little is known about attacks on models for binary images. Models trained to classify binary images are used in text recognition applications such as check processing, license plate recognition, invoice processing, and many others. In contrast to colored and grayscale images, the search space of attacks on binary images is extremely restricted and noise cannot be hidden with minor perturbations in each pixel. Thus, the optimization landscape of attacks on binary images introduces new fundamental challenges. In this paper we introduce a new attack algorithm called SCAR, designed to fool classifiers of binary images. We show that SCAR significantly outperforms existing $L_0$ attacks applied to the binary setting and use it to demonstrate the vulnerability of real-world text recognition systems. SCAR's strong performance in practice contrasts with the existence of classifiers that are provably robust to large perturbations. In many cases, altering a single pixel is sufficient to trick Tesseract, a popular open-source text recognition system, to misclassify a word as a different word in the English dictionary. We also license software from providers of check processing systems to most of the major US banks and demonstrate the vulnerability of check recognitions for mobile deposits. These systems are substantially harder to fool since they classify both the handwritten amounts in digits and letters, independently. Nevertheless, we generalize SCAR to design attacks that fool state-of-the-art check processing systems using unnoticeable perturbations that lead to misclassification of deposit amounts. Consequently, this is a powerful method to perform financial fraud.
['Richard Wang', 'Yaron Singer', 'Alexander Rilee', 'Kojin Oshiba', 'Harrison Chase', 'Eric Balkanski']
2020-10-22
adversarial-attacks-on-binary-image
https://openreview.net/forum?id=xCm8kiWRiBT
https://openreview.net/pdf?id=xCm8kiWRiBT
null
['license-plate-recognition']
['computer-vision']
[ 4.14524257e-01 -2.56934106e-01 -8.96152705e-02 -3.19472492e-01 -7.32602954e-01 -1.28096402e+00 5.66608071e-01 -1.75991744e-01 -3.64721835e-01 4.86676574e-01 -7.40404546e-01 -1.14212179e+00 3.14238161e-01 -1.10392141e+00 -7.11560190e-01 -6.31408691e-01 1.69238418e-01 1.73377231e-01 1.82343632e-01 -3.55027884e-01 5.04846573e-01 7.36128747e-01 -1.08251691e+00 5.65648258e-01 5.60752392e-01 8.68893087e-01 -6.22398078e-01 1.08671737e+00 7.89581537e-02 8.83469701e-01 -8.62942338e-01 -1.11404550e+00 8.11279297e-01 -4.31673557e-01 -5.16965151e-01 4.32570837e-02 7.46873021e-01 -3.04079682e-01 -5.10205567e-01 1.73988461e+00 2.46638209e-01 -4.89300042e-01 6.29911959e-01 -1.27223384e+00 -1.04377270e+00 7.46873200e-01 -4.40589845e-01 2.85655469e-01 2.17994630e-01 4.56172913e-01 7.71509409e-01 -5.63995540e-01 3.05189908e-01 1.18976140e+00 6.85898244e-01 6.49860442e-01 -1.19796586e+00 -8.10155034e-01 -1.66320235e-01 4.44301851e-02 -1.33235407e+00 -4.08649296e-01 3.61411273e-01 -3.16839844e-01 6.79523051e-01 7.98442245e-01 2.01969832e-01 1.12443352e+00 4.10664678e-01 6.55054390e-01 1.61676896e+00 -7.71476686e-01 1.86583549e-01 4.89284128e-01 2.49890581e-01 8.94168735e-01 5.53783059e-01 2.57535994e-01 -1.45500660e-01 -5.00894785e-01 5.70566952e-01 -1.82210475e-01 -2.93346971e-01 1.86500940e-02 -8.46340597e-01 1.01154685e+00 -1.39903212e-02 2.13769302e-01 3.28192145e-01 3.32749069e-01 2.32148305e-01 7.64279664e-01 1.64033112e-03 5.61769545e-01 -3.25346708e-01 -4.24293801e-02 -7.67268419e-01 8.16109255e-02 1.24794865e+00 5.49349785e-01 4.48560864e-01 4.02410120e-01 3.17602962e-01 6.00197792e-01 2.98195809e-01 9.75938678e-01 5.19754052e-01 -3.56102943e-01 6.61388993e-01 2.30782017e-01 -2.97617055e-02 -1.17830968e+00 3.83451991e-02 -4.16769609e-02 -6.64122283e-01 9.83794749e-01 6.76963925e-01 -1.49788991e-01 -1.11835027e+00 1.14928269e+00 -2.15697199e-01 -1.85251012e-01 9.62814093e-02 5.08264840e-01 3.70895155e-02 4.50857431e-01 -1.89031065e-01 3.01293194e-01 1.34881556e+00 -5.34472823e-01 -5.24839401e-01 -3.41700822e-01 4.43911880e-01 -8.86431932e-01 9.87101376e-01 6.31620646e-01 -1.06370378e+00 -2.37852141e-01 -1.55270290e+00 2.63175249e-01 -9.88080680e-01 -2.09466442e-01 6.07107937e-01 1.94813466e+00 -6.77148342e-01 4.88441795e-01 -7.41914868e-01 1.06435813e-01 5.97480893e-01 5.32699764e-01 -3.48290056e-01 -1.63839623e-01 -1.23393643e+00 1.09016657e+00 -1.07547671e-01 -1.55213224e-02 -6.41647458e-01 -3.55345100e-01 -8.46660972e-01 1.15681544e-03 -4.12054546e-03 5.82007095e-02 9.82471168e-01 -1.31331527e+00 -1.29437375e+00 1.31355596e+00 1.51595265e-01 -8.16156626e-01 9.49670672e-01 3.93306345e-01 -9.63124812e-01 3.17685217e-01 -2.17180446e-01 9.96272489e-02 1.41764224e+00 -1.07070792e+00 -5.69356561e-01 -1.82599649e-01 1.17664739e-01 -5.54120183e-01 -4.33302492e-01 5.94604254e-01 -1.92893390e-02 -1.06788504e+00 -1.31827995e-01 -8.59062910e-01 -5.81097268e-02 3.03205084e-02 -5.35177469e-01 5.66219270e-01 9.39670265e-01 -5.95383942e-01 1.16355419e+00 -2.34706450e+00 -6.66327953e-01 8.19653988e-01 -6.80876970e-02 5.76700926e-01 -3.66347618e-02 7.38276690e-02 -3.46019238e-01 7.83210754e-01 -5.41418850e-01 4.99528181e-03 4.10424173e-01 4.02411073e-02 -9.50622797e-01 9.75502670e-01 1.70861900e-01 1.02156651e+00 -3.91453266e-01 -1.30901739e-01 2.98088063e-02 5.60575239e-02 -3.47951323e-01 -4.71200287e-01 -4.82258834e-02 -3.90599549e-01 -3.12572390e-01 1.00819230e+00 9.77694333e-01 -2.09236607e-01 1.40499949e-01 3.73211443e-01 2.79131860e-01 1.36223901e-03 -1.28866363e+00 6.52282476e-01 -1.60204142e-01 7.06225812e-01 1.68479264e-01 -9.02495801e-01 7.93499172e-01 4.04110514e-02 -1.36110514e-01 -4.47489053e-01 2.10982099e-01 3.28213155e-01 2.54809588e-01 -1.87353536e-01 4.67230082e-01 -1.83650017e-01 -2.97352821e-01 9.22354162e-01 -4.32865143e-01 -4.89243388e-01 2.75459941e-02 1.43480748e-01 1.31965411e+00 -4.85555559e-01 -1.69445917e-01 -7.03911558e-02 5.23653746e-01 -4.91140038e-02 7.87522420e-02 1.29369295e+00 -3.39525372e-01 5.74082434e-01 5.71752608e-01 -3.76601696e-01 -1.05737388e+00 -9.88568842e-01 -3.19725811e-01 5.57984114e-01 5.23009077e-02 -1.01088032e-01 -7.87714839e-01 -8.92230690e-01 5.00481844e-01 4.12096947e-01 -5.64056218e-01 -2.97673047e-01 -5.00040114e-01 -9.37385261e-01 1.50153100e+00 4.80958045e-01 7.25612104e-01 -7.54927754e-01 -2.55672067e-01 -7.83956051e-03 5.27844548e-01 -1.10378718e+00 -4.89563257e-01 3.19516540e-01 -4.99822408e-01 -1.39892769e+00 -3.56659383e-01 -7.68154204e-01 8.91434550e-01 -2.50263978e-02 7.82907486e-01 5.50943315e-01 -5.37057459e-01 4.01849091e-01 -2.38852754e-01 -4.69348192e-01 -1.21307361e+00 -2.53146589e-01 7.01561151e-03 2.90867895e-01 6.51028275e-01 5.76924309e-02 -4.99799624e-02 5.42187870e-01 -1.32788217e+00 -6.46827519e-01 3.30385715e-01 8.79296422e-01 1.22478325e-02 5.33972085e-01 2.39745960e-01 -1.16241920e+00 7.01401830e-01 -5.07194698e-02 -9.83739436e-01 5.36142766e-01 -6.18875861e-01 1.65788084e-03 7.21310794e-01 -6.66662574e-01 -6.98965669e-01 -4.06468324e-02 -1.33521393e-01 -2.25613505e-01 -9.04342607e-02 3.23144406e-01 -1.38560385e-01 -8.44462395e-01 8.28524947e-01 2.10135251e-01 5.98462708e-02 -2.16567427e-01 9.84156951e-02 9.02552485e-01 7.11781263e-01 -5.31827807e-01 1.42337918e+00 5.92259347e-01 8.18821881e-03 -5.39723694e-01 -6.23520017e-02 4.84335832e-02 -1.94726676e-01 1.77309573e-01 5.60403466e-01 -5.15399814e-01 -8.80160809e-01 1.08233941e+00 -8.36924374e-01 -3.60881925e-01 7.11820126e-02 -1.40119800e-02 -3.12489718e-01 8.18928361e-01 -9.52384949e-01 -8.42573702e-01 2.98106242e-02 -1.17612362e+00 4.74547505e-01 -8.46845731e-02 9.05919522e-02 -1.00920665e+00 -3.59844595e-01 3.15673351e-01 4.30510432e-01 5.82420826e-02 1.02563727e+00 -9.78778303e-01 -6.19520545e-01 -1.02252209e+00 8.11534468e-03 8.30054104e-01 4.43086810e-02 3.43802392e-01 -1.01267803e+00 -2.77557135e-01 2.72348583e-01 -3.89472514e-01 8.52521300e-01 -1.89273909e-01 1.14925408e+00 -4.66360271e-01 1.05953356e-02 6.01437449e-01 1.28579700e+00 4.41924602e-01 1.03775454e+00 6.76285684e-01 2.96341687e-01 8.98256823e-02 2.48570502e-01 3.12510669e-01 -4.07640338e-01 4.75187123e-01 4.04307485e-01 -1.75239220e-01 3.58035862e-01 -5.15485890e-02 5.94519675e-01 1.31522804e-01 2.69514531e-01 -1.81270286e-01 -8.82894754e-01 6.48069754e-02 -1.21252108e+00 -1.31156790e+00 -1.75007224e-01 2.18527293e+00 1.10471940e+00 5.64685047e-01 -2.85858274e-01 5.94340682e-01 9.81651127e-01 1.33858789e-02 -2.14233086e-01 -6.90077960e-01 -5.88807046e-01 7.87509143e-01 1.20315301e+00 6.43678665e-01 -1.40385580e+00 9.91695344e-01 7.05327845e+00 9.48309720e-01 -1.13876712e+00 -1.02452941e-01 9.91601527e-01 1.79400519e-01 -1.74596116e-01 4.94842306e-02 -8.82000744e-01 6.88760757e-01 8.56444776e-01 1.98890688e-03 6.06920600e-01 8.95492852e-01 -2.60302752e-01 5.26537746e-02 -1.05090189e+00 8.52744043e-01 3.30197453e-01 -1.38596749e+00 1.56593323e-02 7.20810145e-02 7.08372355e-01 -3.72471154e-01 6.43126309e-01 2.16849387e-01 6.83886826e-01 -1.50186956e+00 8.78695011e-01 1.67120174e-01 8.88693213e-01 -7.70641625e-01 5.80965757e-01 1.41256735e-01 -4.89795536e-01 -1.82903886e-01 -5.56239665e-01 3.63132246e-02 -3.44316602e-01 2.67288446e-01 -3.72437745e-01 1.31346080e-02 4.25782651e-01 1.80934504e-01 -8.70717406e-01 7.93132961e-01 -4.75764483e-01 7.25517750e-01 -3.94973278e-01 4.60044146e-02 2.96867013e-01 -1.70747921e-01 1.12147860e-01 1.32559669e+00 5.52576780e-02 9.75824296e-02 -1.32844269e-01 8.04468989e-01 -3.66671771e-01 -2.54934549e-01 -6.97771072e-01 -2.04598561e-01 3.69548053e-01 7.79839873e-01 -7.37833738e-01 -3.81476343e-01 -4.92977291e-01 1.07390392e+00 -3.19600910e-01 2.79219776e-01 -1.03069913e+00 -7.56100655e-01 5.72099805e-01 -2.03675389e-01 5.76126337e-01 -2.30766758e-01 -6.32349253e-01 -1.31191349e+00 1.25866547e-01 -1.81148410e+00 4.19636726e-01 -4.76003736e-01 -1.29754019e+00 4.02635753e-01 -4.90274042e-01 -1.15523851e+00 -1.07321061e-01 -1.16567409e+00 -5.33192515e-01 1.07025993e+00 -1.51160789e+00 -8.04835260e-01 2.49695197e-01 8.76148045e-01 2.59662032e-01 -6.41419232e-01 8.99762630e-01 1.38824880e-01 -4.97575462e-01 1.23460782e+00 3.85999143e-01 8.73359203e-01 5.86738586e-01 -1.12214887e+00 8.70600581e-01 1.41329312e+00 5.48849523e-01 7.28545725e-01 3.81620049e-01 -7.01175690e-01 -1.53906882e+00 -7.09771514e-01 6.30976021e-01 -6.30684555e-01 9.91583765e-01 -4.88257378e-01 -7.98359334e-01 7.64499962e-01 -6.82707056e-02 2.82529801e-01 5.57327509e-01 -5.03572583e-01 -9.02455866e-01 1.01348393e-01 -1.45236349e+00 7.36151159e-01 2.71640152e-01 -1.02979445e+00 -3.60311508e-01 4.38542485e-01 8.25450197e-02 -3.20075691e-01 -5.83454728e-01 -8.99598300e-02 6.22416615e-01 -8.49883080e-01 1.03217041e+00 -8.51994216e-01 3.78777564e-01 -2.20731571e-01 -2.55717993e-01 -7.69738138e-01 4.56073284e-02 -9.05974448e-01 1.37376055e-01 9.65809107e-01 6.91910803e-01 -1.05517697e+00 8.22537243e-01 9.80033457e-01 2.95016170e-01 -1.33473411e-01 -9.59125876e-01 -9.83636796e-01 5.30433834e-01 -6.40897453e-01 5.26599646e-01 1.32866645e+00 1.33717611e-01 -6.55301571e-01 -3.68414283e-01 4.96870726e-01 5.29155195e-01 -1.49011731e-01 7.95123160e-01 -6.24388874e-01 -7.25185752e-01 -7.56741345e-01 -8.02229285e-01 -7.66661048e-01 1.80345207e-01 -8.02886546e-01 -1.20957151e-01 -3.40670764e-01 -2.50439197e-01 -6.73507154e-01 -1.52603254e-01 6.35601640e-01 -1.86470792e-01 6.67903543e-01 4.20819342e-01 2.31975719e-01 2.11964950e-01 -3.84819329e-01 6.23926163e-01 -9.02695596e-01 3.97733927e-01 1.74996451e-01 -5.45134962e-01 7.67004490e-01 8.67504299e-01 -7.25967646e-01 1.60314262e-01 -2.73251534e-01 4.13175255e-01 -3.95700157e-01 6.15141451e-01 -8.92412007e-01 2.03971535e-01 -1.32746607e-01 3.95146579e-01 -5.27187400e-02 3.32163721e-02 -1.01786828e+00 -8.76834542e-02 7.76781142e-01 -2.60205984e-01 1.88301702e-03 1.56712398e-01 3.74282956e-01 -1.28911600e-01 -8.66273344e-01 1.06296051e+00 -3.23246300e-01 -2.71817565e-01 2.35934630e-02 -6.79048002e-01 -1.79075301e-01 1.04808855e+00 -4.65617090e-01 -9.46564496e-01 -3.07632804e-01 -5.33850908e-01 -2.55524307e-01 8.75599861e-01 1.60032481e-01 5.44366360e-01 -9.35558915e-01 -6.74077570e-01 7.07127571e-01 -1.94284678e-01 -7.58759081e-01 -2.25817829e-01 4.32896405e-01 -1.08763778e+00 2.58556217e-01 -1.01803012e-01 -1.04971334e-01 -1.51307452e+00 7.52062142e-01 7.10794687e-01 -3.08195442e-01 -3.30669582e-01 7.72806346e-01 -3.00008506e-01 -9.60927457e-03 2.70071924e-01 -3.90945464e-01 3.82818401e-01 -3.08693349e-01 7.12189496e-01 1.39218792e-01 3.47836256e-01 -2.39154965e-01 -2.20531955e-01 4.50122327e-01 -2.78565496e-01 -2.71213412e-01 9.01517570e-01 3.78642738e-01 -1.12812623e-01 -1.00132085e-01 1.03291702e+00 5.33854008e-01 -8.79749179e-01 8.83598477e-02 -7.30327680e-04 -9.07663405e-01 -2.39014104e-01 -9.05678749e-01 -1.16537070e+00 8.59179854e-01 5.41346371e-01 7.07482517e-01 7.93263197e-01 -6.23908639e-01 5.47130167e-01 7.74325192e-01 4.18579668e-01 -1.11602414e+00 -9.24278870e-02 5.97108960e-01 4.55338657e-01 -1.10887849e+00 3.36630456e-02 -3.38521004e-01 -5.20946443e-01 1.26587367e+00 1.71636119e-01 -1.44471854e-01 5.75900912e-01 8.04131091e-01 4.97891575e-01 1.21899188e-01 -3.57065409e-01 3.75268757e-01 -2.14778692e-01 7.39655852e-01 -2.04588220e-01 -1.14732258e-01 -4.90512280e-03 4.01307851e-01 -1.12033419e-01 -3.48306000e-01 1.15285349e+00 1.42379439e+00 -2.75458187e-01 -1.43975365e+00 -1.18744111e+00 4.04917151e-01 -1.01591933e+00 -4.95593220e-01 -6.04441643e-01 8.17445755e-01 -1.47725075e-01 1.03637350e+00 -8.91391635e-02 -3.47911209e-01 2.27400847e-02 3.49012703e-01 3.78512502e-01 -4.09895509e-01 -1.01516140e+00 -4.47653443e-01 3.03482125e-03 -1.39756784e-01 -1.01128802e-01 -6.66281819e-01 -8.64816427e-01 -8.23616624e-01 -4.55999523e-01 -1.19375847e-01 7.81276047e-01 6.64266825e-01 -1.04357153e-01 -5.29389605e-02 9.70897973e-01 -3.85327578e-01 -1.30873716e+00 -5.40244758e-01 -1.06464887e+00 4.94374812e-01 1.99751452e-01 -1.74224168e-01 -7.64596820e-01 4.34772313e-01]
[5.689977645874023, 7.893373012542725]
06bc89e9-4938-4b33-8a2b-f11155f778cf
multimodal-emotion-recognition-for-one-minute
1805.01060
null
http://arxiv.org/abs/1805.01060v1
http://arxiv.org/pdf/1805.01060v1.pdf
Multimodal Emotion Recognition for One-Minute-Gradual Emotion Challenge
The continuous dimensional emotion modelled by arousal and valence can depict complex changes of emotions. In this paper, we present our works on arousal and valence predictions for One-Minute-Gradual (OMG) Emotion Challenge. Multimodal representations are first extracted from videos using a variety of acoustic, video and textual models and support vector machine (SVM) is then used for fusion of multimodal signals to make final predictions. Our solution achieves Concordant Correlation Coefficient (CCC) scores of 0.397 and 0.520 on arousal and valence respectively for the validation dataset, which outperforms the baseline systems with the best CCC scores of 0.15 and 0.23 on arousal and valence by a large margin.
['Chenjie Cao', 'Ziqi Zheng', 'Xingwei Chen', 'Guoqiang Xu']
2018-05-03
null
null
null
null
['multimodal-emotion-recognition', 'multimodal-emotion-recognition']
['computer-vision', 'speech']
[-0.08267318 -0.06546824 0.03238434 -0.8378961 -0.7631837 -0.6141438 0.63907504 0.17994802 -0.22246373 0.6405761 0.42627928 0.5692184 0.17172682 -0.08262662 -0.25538564 -0.5394707 -0.4206246 -0.2639759 -0.4146924 -0.47473273 -0.05885255 0.18294613 -1.9048896 0.58836734 0.363532 1.8060606 -0.43669298 1.2355714 -0.07159887 0.5970178 -0.62612474 -0.551731 -0.09231493 -0.2812099 -0.4668938 -0.1764705 0.15422331 0.17308559 -0.08072887 0.7851242 0.5846015 0.32761633 0.85712403 -1.5414685 -0.291544 0.18921997 -0.6754673 0.09396619 0.7466767 -0.20734592 0.98596114 -1.1084392 0.23541379 1.1453624 0.5582351 0.7383677 -0.9762541 -0.64276385 0.06456371 0.27389833 -1.1196506 -0.4239164 1.0095949 -0.20744984 1.1794251 0.76154447 0.8611594 1.4155728 0.23910151 0.61453915 1.1299127 -0.20711587 0.1538195 0.6551024 0.1038592 0.23352006 -0.58185285 -0.29751953 -0.8597635 -0.21574597 0.02526326 -0.43746242 0.02642244 0.2713785 -1.0393598 0.72562283 0.14569499 -0.03616133 -0.7156118 0.09581516 0.8448562 0.5856813 0.37480882 0.38874325 -0.50523114 -0.70636296 -0.69635564 -0.11818781 0.66821927 0.691327 0.49645507 0.3047012 0.06850769 1.3075062 0.465087 0.49558118 0.5788875 -1.0777556 -0.01237446 0.24529703 0.15910988 -1.1702178 -0.6799516 0.06171652 -0.75145197 -0.2462717 -0.3111903 -0.49832255 -0.69113874 1.7629485 0.34854826 0.31749853 0.38260576 1.0450203 1.4471188 1.2337009 0.463117 -0.59859514 1.3394243 -0.65573555 -1.1827594 -0.24314733 0.16924956 -0.7701506 1.1051695 0.89921683 -1.222751 -0.60390466 -1.1760802 0.27722585 -0.40284452 -0.02884884 0.78814286 0.8556885 -0.9600487 0.34865782 -0.39831397 -0.25524545 0.04711398 0.5329327 -0.5084264 0.56558293 -1.4618726 0.8238229 0.0683521 0.22386432 -0.69135827 -0.397165 -0.90295756 -0.1890161 -0.4378204 -0.05998929 0.95658773 -1.4052596 -1.8251668 0.8247651 -0.03059907 -0.13561098 -0.05404817 -0.42788896 -1.1929263 0.3528829 -0.68082684 1.0235465 0.84853125 -1.1953642 -0.2556383 -0.34371346 -0.38603148 0.47197363 -0.4571842 0.37534794 -0.28797412 -0.1438537 0.13789487 -0.8797196 -0.11110227 -0.77925056 -0.03628811 -0.16605884 0.7138823 -0.7032076 1.3730799 -2.2458112 0.25824144 0.3503518 -0.05501946 -0.09199739 -0.29743534 0.35855487 -0.23376626 -0.25621 0.3177317 -0.49117818 0.25419858 0.19018432 -0.4305795 0.30189225 0.47253764 0.730407 -0.4874633 -0.475701 0.281889 0.78136975 -0.46383205 0.68790984 0.0941736 0.27822068 0.10038835 0.8684018 0.3848889 0.2364308 0.28196433 -0.43395907 0.15881659 -0.12592646 -1.0523131 1.4337784 -0.34198922 0.84651333 0.02756379 -0.8829884 1.5139134 0.5988414 0.5020625 -0.5410639 0.5531644 -0.15063868 -0.18303049 -0.7506973 0.829247 -0.37938774 -0.85123384 0.084292 0.48975596 -0.1924632 -0.15878206 0.230214 0.4114015 -0.19157517 0.1704349 0.06246421 0.6036681 -0.46821204 0.47224915 0.12016591 -0.5889478 0.5184371 0.8313297 -0.22841339 -0.79446113 -1.020762 -0.03697284 1.4215208 0.06309824 -0.6337509 -0.6485039 -0.17475167 -0.3095784 0.5567368 -0.75986767 -0.42283642 0.04327414 -0.77227324 0.4940099 0.60038245 -0.05289637 -1.0129012 -0.42127082 -0.07104048 -0.32084814 -1.1874534 0.16392165 0.30499634 -0.6037636 -0.342108 -0.19336762 -0.34994528 0.04709993 -0.41998327 0.8834713 -0.5909221 -0.17710342 0.8177362 -0.39504215 -0.67689276 0.01203987 -0.4291894 0.51354057 0.4025934 0.54580444 -0.6151767 -0.48972994 -0.02922282 -0.6061462 -0.18104358 0.2442828 0.695975 0.53787076 -0.6624908 1.1110253 -0.26999408 0.99210954 -0.69048 -0.06911813 0.01269403 -0.5612576 -0.57290053 0.3671112 -0.8769858 -1.0116465 0.11507318 -0.16030666 -0.7352904 -0.39512867 0.39750013 -0.12221915 0.2920879 0.5205685 0.03359323 -0.25584957 -0.09382527 0.5116672 1.080512 0.8749479 -0.28740403 -0.0236242 0.01177191 -0.13928849 -0.9822459 -0.6156137 -0.38264793 -0.4434645 -0.89042294 0.95492107 -1.2191594 -0.91339034 0.24368888 -0.82651657 0.12072528 0.21623994 0.8655157 -0.71587 0.21153615 -0.8763933 -1.2185818 -0.6046908 -0.68928695 0.9735464 0.4862304 -0.80279624 -0.8345672 0.24512921 0.40821552 0.47013745 0.5725021 0.45447752 -0.55537647 0.55875355 -0.46667406 0.06822318 0.5865019 -0.2464865 0.28369322 -1.389245 0.00971213 -0.07825113 -0.8497896 0.61238194 0.36968783 1.072345 -0.09404322 0.23953289 0.43751204 1.1424164 0.23567075 0.7564708 0.01211699 0.3359938 0.6628657 0.98963016 1.0457603 0.3698141 0.37113428 0.71437114 -0.0178893 0.6859839 0.16682936 0.6627301 1.0523287 -0.12251806 -0.00765915 -0.6760646 0.33242625 -1.6787922 -0.9906801 -0.34318623 1.7390162 0.87413925 -0.20039983 0.3301695 0.204969 0.4755078 0.31702954 -0.1931337 -1.5407876 -0.27291054 0.01475207 -0.20707595 0.36214152 -1.3069869 0.81269807 7.317264 0.24597357 -1.3434232 -0.10702863 0.74733686 -0.75169605 -0.05741481 -0.6009424 -0.39444143 0.48774263 1.6851707 -0.02995225 0.49330544 0.8795444 0.07156203 -0.04492155 -0.85535234 1.6319585 0.46888342 -0.5308583 -0.3703421 -0.5457014 0.81432676 -0.11131387 0.2687862 0.5597568 -0.32508945 -1.2058601 0.4772344 0.9580781 0.64483577 -1.1833824 0.777414 -0.13596854 -0.90603 -0.12215541 -0.3431068 -0.13487063 0.21115108 0.3934467 -0.5001294 0.13194315 0.93731123 0.57783043 -0.33967984 0.45710385 0.0850131 0.7194841 -0.1837991 -0.28707942 0.2594402 -0.10158298 0.29243025 1.8493319 0.26492128 0.5267563 -0.20725212 0.3187398 0.07980057 0.34011307 -0.31689203 -0.22109051 0.27569905 1.8898556 -0.20648238 -0.6327145 -0.33052477 0.9545182 -0.10246812 0.26928505 -1.3271979 -0.50447416 0.92380446 -0.7040794 0.04531577 0.01815763 -0.39345396 -1.0685027 -0.32305518 -0.69689184 0.45348132 -1.1746829 -1.274817 0.87739265 -0.22446147 -1.2685674 -0.4345589 -0.5914713 -0.63487834 0.7866215 -1.0503796 -0.8006469 -0.5768924 0.7692549 0.28607818 -0.18369281 1.1020328 0.3048944 -0.4380707 0.5561544 -0.305421 -0.22087401 0.9070521 -1.1387705 -0.48273975 0.20727333 -0.10055555 0.3612579 0.96741813 -0.11232419 -1.7191049 -0.78077096 0.8439326 -0.41863924 0.57781947 -0.3200047 -0.82125926 0.42256582 0.6662231 -0.11382682 1.4254481 0.31333423 -0.40830538 -0.17671251 -1.1826872 0.26650304 0.25480947 -0.6061074 -0.6183448 -0.11989549 0.46129218 -0.20082292 -1.4437712 0.61250705 1.0945624 -0.88803595 0.82126313 -0.9196835 0.5475172 0.0082901 -0.8337605 -1.3215789 -0.09482201 -0.34486914 -0.310747 1.2409763 0.4008853 -0.15264122 0.29542303 0.69961286 -0.03469242 -0.8221474 -0.7436977 -0.16232459 -0.4584701 -1.106499 0.4735241 1.1453321 0.8332366 0.72656894 -0.8852458 0.10193506 0.17932686 0.05445978 0.72721875 -1.0703758 0.13196772 -0.2777153 -0.6819593 -0.32854164 0.11094025 -0.39629585 -0.19087604 -1.1858367 0.16638303 0.39708644 -0.87292886 0.41369057 0.13869108 0.70160717 0.08644278 -0.34767398 -0.9696555 0.87593377 0.5016602 0.04448776 -0.42397627 -0.28865746 -0.6905834 0.6998558 1.0237052 0.03659362 -0.30662173 0.1930335 0.45544225 0.389553 -0.08618002 -0.7419699 -0.2809261 -0.10036276 0.82610327 -0.6845262 1.1657622 -0.5481356 0.22685613 -0.06896735 -0.5601754 0.19047037 0.48174176 0.39934844 -0.56123275 0.3085199 0.76342565 0.3332138 -0.77483344 -0.09100467 -0.5487887 -0.48862174 0.95718676 -0.24712718 -0.06531307 -0.83947605 -1.287144 0.18034755 0.0323607 0.88335514 0.9567599 -1.7675451 -0.510709 0.18538012 0.21696913 -0.9664122 0.5427615 1.2832315 0.16043247 0.19545375 -0.54632497 -0.70217425 -1.7871817 0.20939726 0.32517093 0.35219842 0.21892801 0.83292526 -0.10332052 -0.33115208 0.21666078 0.11706057 -0.71280855 0.5542369 0.7247794 0.42114422 -0.12079854 -1.1023785 -0.51367056 0.43513167 0.30228776 -0.25629315 1.4518467 -0.30859882 -0.16097519 1.0108482 1.453105 -0.25354132 -0.8106864 0.21455656 -0.15588588 -0.2632013 0.05959112 -1.0069234 -0.7300708 0.9432374 1.1123483 0.23248294 1.4551499 0.18096401 0.51239324 0.25011572 -0.15271349 -1.6364151 0.34903827 0.49034342 0.9389424 -1.3729905 -0.25042063 0.03754893 -1.5821587 1.0538768 0.6283178 -0.07663873 0.51047456 0.2535098 0.4388006 -0.24163829 -1.4948146 0.06680933 0.6663359 0.41586202 0.76550686 0.4471826 -0.42002594 1.2714952 -0.44250563 -0.41253534 0.4189072 0.40592575 -0.64580417 -0.500157 -0.40861133 0.35379654 -0.8771112 0.27387923 -0.61576986 0.25109833 -0.20475024 1.2160999 0.15446036 -1.0114038 0.25671256 0.48332158 0.3852343 -0.11157041 -0.62018967 0.56288916 0.43858075 -0.89163744 -0.6017995 -0.58164 -1.3658987 0.06704792 -0.02492366 0.24134885 1.0480901 0.43741214 0.31283656 0.2688245 1.1009755 -0.95028466 -0.08020014 -1.2173277 -0.8871261 0.59422666 0.11524758 -0.3971525 -0.5438593 0.08112962]
[13.347736358642578, 5.095846176147461]
96473f1f-5819-4246-a348-7d55b6d0a44c
an-unsupervised-domain-adaptive-approach-for
2203.03568
null
https://arxiv.org/abs/2203.03568v1
https://arxiv.org/pdf/2203.03568v1.pdf
An Unsupervised Domain Adaptive Approach for Multimodal 2D Object Detection in Adverse Weather Conditions
Integrating different representations from complementary sensing modalities is crucial for robust scene interpretation in autonomous driving. While deep learning architectures that fuse vision and range data for 2D object detection have thrived in recent years, the corresponding modalities can degrade in adverse weather or lighting conditions, ultimately leading to a drop in performance. Although domain adaptation methods attempt to bridge the domain gap between source and target domains, they do not readily extend to heterogeneous data distributions. In this work, we propose an unsupervised domain adaptation framework, which adapts a 2D object detector for RGB and lidar sensors to one or more target domains featuring adverse weather conditions. Our proposed approach consists of three components. First, a data augmentation scheme that simulates weather distortions is devised to add domain confusion and prevent overfitting on the source data. Second, to promote cross-domain foreground object alignment, we leverage the complementary features of multiple modalities through a multi-scale entropy-weighted domain discriminator. Finally, we use carefully designed pretext tasks to learn a more robust representation of the target domain data. Experiments performed on the DENSE dataset show that our method can substantially alleviate the domain gap under the single-target domain adaptation (STDA) setting and the less explored yet more general multi-target domain adaptation (MTDA) setting.
['Bin Yang', 'Karim Guirguis', 'Mario Döbler', 'Pavithran Pandiyan', 'Robert A. Marsden', 'George Eskandar']
2022-03-07
null
null
null
null
['multi-target-domain-adaptation']
['computer-vision']
[ 7.45973229e-01 -3.05911124e-01 -2.15332896e-01 -6.38165057e-01 -8.28148723e-01 -7.85681307e-01 7.32902348e-01 -1.15493998e-01 -4.70573723e-01 6.65336728e-01 1.19660255e-02 -1.90165550e-01 -6.24817498e-02 -5.89989960e-01 -6.27050698e-01 -8.42371941e-01 4.65060860e-01 2.39173889e-01 5.49051225e-01 -2.11009473e-01 4.62737605e-02 7.02753007e-01 -1.66398966e+00 -7.39617571e-02 1.04211974e+00 1.32630539e+00 3.52876157e-01 5.16195238e-01 -9.91215780e-02 5.36562145e-01 -5.16116381e-01 -5.00604697e-02 7.16960192e-01 -2.68189847e-01 -3.58925015e-01 1.47531241e-01 6.43922031e-01 -3.22254598e-01 -3.96206915e-01 9.78489161e-01 6.64811432e-01 3.34504604e-01 8.66637945e-01 -1.48093343e+00 -4.46888655e-01 -2.79703945e-01 -6.66783750e-01 2.51583695e-01 -9.14828759e-03 3.76698285e-01 5.46038032e-01 -5.64029217e-01 4.34850365e-01 1.18368196e+00 7.17398643e-01 5.94600081e-01 -1.26120281e+00 -8.30583811e-01 3.37511837e-01 2.03752905e-01 -1.07687938e+00 -4.31303293e-01 1.05782449e+00 -5.52792728e-01 7.95664132e-01 -7.17152730e-02 3.84114176e-01 1.33055151e+00 -2.03428436e-02 4.83195871e-01 1.46890163e+00 -4.90719788e-02 3.57229799e-01 1.76849112e-01 -1.70560524e-01 1.64188027e-01 3.67731720e-01 3.32037956e-01 -5.56465626e-01 -5.85421175e-02 4.41591829e-01 -7.42881447e-02 -2.76280548e-02 -8.47118258e-01 -9.93423641e-01 7.02766299e-01 4.28953707e-01 -8.33454803e-02 -2.49506325e-01 -2.62744248e-01 3.98064882e-01 3.39787036e-01 4.80439544e-01 2.89307714e-01 -4.84746903e-01 4.50868495e-02 -6.48914158e-01 2.55572081e-01 4.05345708e-01 8.25447559e-01 9.01446760e-01 1.17635660e-01 -7.73399994e-02 7.73978293e-01 2.95542687e-01 1.07190979e+00 3.13956052e-01 -8.97006392e-01 5.90521336e-01 5.83775401e-01 1.44576564e-01 -7.47604549e-01 -4.48995918e-01 -3.53680164e-01 -7.02305794e-01 5.65532863e-01 5.67465901e-01 -6.12596311e-02 -1.34786570e+00 1.91159523e+00 6.32540405e-01 1.40606329e-01 3.78155887e-01 1.00545418e+00 7.39972711e-01 3.04990351e-01 9.83475447e-02 1.82547569e-01 1.07942665e+00 -4.55271095e-01 -3.84279191e-01 -8.58419776e-01 3.06939512e-01 -5.97663581e-01 9.38361824e-01 3.93193848e-02 -5.44328630e-01 -7.03294456e-01 -1.23743606e+00 -9.74950939e-02 -6.33008182e-01 -1.90741628e-01 1.99456751e-01 6.88496649e-01 -5.42990029e-01 -1.24908015e-02 -5.78370750e-01 -5.62428713e-01 5.86027443e-01 2.08478615e-01 -4.28567857e-01 -2.93514729e-01 -1.14337254e+00 1.16064346e+00 5.68012655e-01 -2.55349874e-01 -9.26241636e-01 -8.40383232e-01 -1.07987630e+00 -4.67205882e-01 4.16241109e-01 -6.12033248e-01 9.95369375e-01 -9.57404137e-01 -1.46526539e+00 1.02116120e+00 -1.20581292e-01 -5.67403376e-01 4.98556256e-01 -1.98020369e-01 -5.47071040e-01 9.88190807e-03 7.79636502e-02 7.38386691e-01 1.25721407e+00 -1.45763564e+00 -7.73759365e-01 -4.82463986e-01 -3.81638631e-02 5.55352807e-01 -1.25229657e-01 -4.18166190e-01 -2.27045268e-01 -5.46554863e-01 4.03197482e-02 -9.95319724e-01 -1.36939436e-01 2.20825195e-01 -1.02721594e-01 9.98365059e-02 1.20420420e+00 -4.84464467e-01 4.93353337e-01 -2.39718556e+00 1.64881125e-01 1.77417621e-01 2.42776833e-02 2.39564911e-01 -2.15804756e-01 -3.07459887e-02 7.26460367e-02 -3.89166802e-01 -5.94371140e-01 -2.62597710e-01 2.07402539e-02 6.16792440e-01 -4.38222766e-01 6.65818155e-01 7.82199025e-01 5.50256193e-01 -7.51902938e-01 -3.24573040e-01 4.20137405e-01 4.37448770e-01 -2.99021661e-01 2.62959510e-01 -2.17656806e-01 7.63330221e-01 -3.63252997e-01 6.86109006e-01 1.05309725e+00 1.07362211e-01 -1.28240719e-01 -8.44535232e-02 1.08480543e-01 3.46429080e-01 -1.22834027e+00 1.71297503e+00 -3.53935719e-01 6.60405874e-01 2.67565995e-01 -1.11370206e+00 1.25807405e+00 -1.56217471e-01 5.11058629e-01 -1.04613137e+00 3.02267335e-02 2.91873485e-01 -4.97676209e-02 -4.16094899e-01 5.52180886e-01 -5.05122066e-01 -3.52492213e-01 8.95424038e-02 -7.17308298e-02 -5.31264126e-01 -3.11715990e-01 -6.99694753e-02 9.18683648e-01 3.43783438e-01 3.59001338e-01 2.76364898e-03 4.60467130e-01 2.25219011e-01 8.87548923e-01 6.81636453e-01 -6.87168181e-01 7.26739168e-01 1.49012640e-01 -1.47290409e-01 -1.07274461e+00 -1.25198781e+00 -1.64540306e-01 9.89813864e-01 6.49418950e-01 3.82140666e-01 -2.55926400e-01 -7.75379121e-01 4.22688901e-01 6.77720070e-01 -5.21819949e-01 -5.80593467e-01 -4.60750192e-01 -6.64477527e-01 6.84007704e-01 7.62656450e-01 8.77934575e-01 -5.15784144e-01 -9.94395554e-01 -1.71292976e-01 -2.27794662e-01 -1.49959755e+00 -1.75073743e-01 5.20658493e-01 -6.85629427e-01 -9.50548530e-01 -7.24669814e-01 -4.96375650e-01 3.02748233e-01 4.74248409e-01 9.59841847e-01 -7.17887998e-01 -1.07087821e-01 5.79192102e-01 -2.99835622e-01 -6.70068979e-01 -4.24557328e-01 -2.43325122e-02 2.43313625e-01 1.92149505e-01 6.37865126e-01 -5.02050221e-01 -3.93198013e-01 3.75334412e-01 -9.25678015e-01 -1.98451862e-01 7.02330828e-01 7.28702068e-01 6.14110231e-01 -1.82589874e-01 4.74249214e-01 -3.08432400e-01 1.73402369e-01 -5.36223054e-01 -6.92072034e-01 -1.40000001e-01 -5.43917596e-01 2.25139588e-01 4.41206276e-01 -6.70156300e-01 -1.24594438e+00 3.93280566e-01 1.23039134e-01 -6.11908913e-01 -6.09137535e-01 1.14190601e-01 -4.87638980e-01 -1.68539196e-01 8.25147390e-01 2.05672145e-01 1.37834564e-01 -4.09595728e-01 3.31382453e-01 6.56603515e-01 7.76389182e-01 -5.34301043e-01 1.36691654e+00 7.28701830e-01 1.17706627e-01 -7.32260644e-01 -7.07267463e-01 -6.52193427e-01 -6.68621957e-01 -1.11006312e-01 9.97563243e-01 -1.21557117e+00 -3.62847932e-02 5.03835618e-01 -8.07525635e-01 -4.08877641e-01 -4.92310554e-01 5.42173147e-01 -5.39392591e-01 2.84952253e-01 3.07138473e-01 -8.29926610e-01 2.30505720e-01 -9.94294584e-01 1.19201660e+00 4.14989889e-01 1.16331585e-01 -7.31422663e-01 1.56159192e-01 3.35110366e-01 4.31937665e-01 5.44483721e-01 6.37956977e-01 -7.11469650e-01 -3.15812141e-01 -6.56266436e-02 -4.42648321e-01 4.91053849e-01 3.76901716e-01 -3.61989349e-01 -1.21791089e+00 -3.03660959e-01 -4.98408303e-02 -4.86510128e-01 1.06089222e+00 2.30102256e-01 8.57270062e-01 2.73101449e-01 -3.15189183e-01 7.25937128e-01 1.19583535e+00 2.31387198e-01 3.97421271e-01 6.12717390e-01 6.82019234e-01 6.68766439e-01 8.58753979e-01 3.15033942e-01 5.07273138e-01 6.28557384e-01 7.29591727e-01 -1.60076514e-01 -4.00563329e-01 -1.19902231e-01 5.19543469e-01 5.04662916e-02 2.61902690e-01 -7.18698651e-02 -1.06489396e+00 7.24459112e-01 -1.63710511e+00 -8.12177956e-01 2.44782731e-01 2.32087994e+00 6.34042501e-01 2.98990816e-01 3.57816219e-01 6.13787323e-02 5.95810473e-01 2.70832002e-01 -1.24940574e+00 -1.81643009e-01 -4.93179202e-01 -1.79252438e-02 9.57032800e-01 2.04356000e-01 -1.34473383e+00 6.48652434e-01 5.51421499e+00 5.18692195e-01 -1.34828544e+00 7.26063922e-02 2.32002944e-01 -1.07914589e-01 -2.49668702e-01 -1.48321107e-01 -7.46894658e-01 2.94945627e-01 8.02022040e-01 1.30129233e-03 2.21328616e-01 8.51263165e-01 9.24141146e-03 -7.21760616e-02 -8.97744596e-01 1.09917593e+00 6.07204176e-02 -7.75284231e-01 -3.52160662e-01 1.37897015e-01 6.91403627e-01 3.95281255e-01 3.13925534e-01 4.03613567e-01 3.12170148e-01 -6.67238235e-01 8.32956135e-01 2.68383980e-01 8.79291177e-01 -5.59540272e-01 4.52436507e-01 3.54065031e-01 -1.13823223e+00 -3.49530518e-01 -2.94703454e-01 -2.53989603e-02 -1.31355943e-02 4.49541688e-01 -9.19126034e-01 6.88283622e-01 9.51271236e-01 7.30664194e-01 -5.20950496e-01 9.03924823e-01 1.41225025e-01 3.16778451e-01 -5.95899880e-01 4.14539784e-01 1.30688041e-01 5.14813438e-02 8.56762052e-01 9.97295201e-01 2.94452071e-01 -2.97640599e-02 1.31840363e-01 7.46160209e-01 3.77523713e-02 -4.11256611e-01 -1.04688954e+00 1.10570319e-01 5.64293802e-01 9.93539572e-01 -3.77700210e-01 -2.53551036e-01 -4.84785438e-01 9.25722241e-01 1.57169923e-02 5.65503418e-01 -1.01959538e+00 -2.57178694e-01 1.33729374e+00 2.01235823e-02 5.61882257e-01 -3.87624055e-01 -6.38301671e-01 -1.14621079e+00 1.01617619e-01 -8.09017420e-01 3.75750542e-01 -6.50416851e-01 -1.52836096e+00 2.57214904e-01 2.59082556e-01 -1.59027100e+00 -1.82917982e-01 -7.02092469e-01 -2.49393895e-01 1.04425883e+00 -2.14815831e+00 -1.21598577e+00 -5.38294077e-01 8.75449359e-01 4.77525234e-01 -1.54018953e-01 4.91594434e-01 2.72879690e-01 -3.10611010e-01 5.88429093e-01 1.89915538e-01 -9.59142298e-02 1.15669262e+00 -1.19698882e+00 2.78829962e-01 1.04295242e+00 -2.59648651e-01 1.15837090e-01 8.01602125e-01 -5.68535984e-01 -1.24399674e+00 -1.42314410e+00 3.39266002e-01 -4.86409277e-01 4.32079583e-01 -4.05356199e-01 -1.03000617e+00 3.54366899e-01 -6.77022114e-02 3.27679694e-01 5.90164363e-01 -2.28060231e-01 -8.35090160e-01 -4.58833218e-01 -1.43830979e+00 2.68658757e-01 9.12804246e-01 -7.68686473e-01 -6.94805682e-01 -4.62132320e-02 6.47868693e-01 -6.04293644e-01 -7.72337556e-01 7.99347997e-01 4.71844137e-01 -8.76040816e-01 1.11029196e+00 -4.46628630e-01 2.03412756e-01 -6.04777217e-01 -6.58575058e-01 -1.28731644e+00 -1.12001657e-01 -2.73873210e-01 -2.12049022e-01 1.09937799e+00 1.60887703e-01 -9.05183434e-01 6.72882020e-01 5.39112151e-01 -2.40371495e-01 -1.25969946e-01 -1.25591516e+00 -1.15125942e+00 3.20556968e-01 -5.94411016e-01 7.09056079e-01 8.44543934e-01 -6.48438573e-01 2.57824719e-01 -2.14462131e-01 6.27715588e-01 6.83510005e-01 2.18200058e-01 9.68143940e-01 -1.38815272e+00 -1.60233602e-01 -3.94586086e-01 -4.77948934e-01 -1.09590769e+00 1.07152022e-01 -5.95474064e-01 4.15449440e-01 -1.26022935e+00 -8.78225863e-02 -5.27886212e-01 -5.24741888e-01 4.83194619e-01 -2.22997934e-01 3.72810781e-01 2.67338902e-01 1.55234426e-01 -3.26387078e-01 6.88003063e-01 9.73453045e-01 -3.44201714e-01 -2.28760958e-01 -9.69848633e-02 -6.96012139e-01 5.92898011e-01 8.50311518e-01 -4.16945875e-01 -5.61640441e-01 -5.60938120e-01 -8.21750909e-02 -4.46330816e-01 7.19260633e-01 -1.20982552e+00 -1.29834920e-01 -4.55539495e-01 4.85103339e-01 -5.89992046e-01 5.96679509e-01 -1.09692144e+00 -1.77970469e-01 1.93504363e-01 -1.58255607e-01 -3.65161926e-01 6.14095867e-01 8.65762472e-01 -1.22735649e-01 2.65967488e-01 1.16089022e+00 2.88571924e-01 -1.14720786e+00 1.40182421e-01 -2.02324092e-01 1.04231410e-01 1.10732520e+00 -6.04773641e-01 -3.35745066e-01 -1.64832503e-01 -3.65120977e-01 2.55197912e-01 7.78122962e-01 7.14130104e-01 5.11688471e-01 -1.34876835e+00 -5.74442267e-01 4.06068623e-01 6.14983499e-01 2.90429682e-01 1.64151996e-01 7.70729303e-01 5.21867312e-02 1.97003528e-01 -3.32573682e-01 -9.76695478e-01 -1.05991900e+00 3.29996616e-01 5.00081778e-01 -4.80630901e-03 -5.05508721e-01 8.64265740e-01 3.42996210e-01 -6.92418754e-01 7.12677538e-02 -3.92600328e-01 4.54439176e-03 7.28154033e-02 3.20094019e-01 1.26510710e-01 9.23643261e-02 -9.66623545e-01 -6.32316828e-01 5.92858613e-01 1.07205316e-01 5.82899190e-02 1.10104609e+00 -4.40702558e-01 5.28383374e-01 5.11144280e-01 1.02421284e+00 -2.68893659e-01 -1.93392503e+00 -5.16427100e-01 -2.47395560e-01 -5.03999591e-01 1.07097641e-01 -9.42960680e-01 -8.35276663e-01 1.01702833e+00 1.09841692e+00 3.25409435e-02 1.54395342e+00 8.58419761e-03 7.96087801e-01 3.03583264e-01 3.32736596e-02 -1.11927807e+00 1.00248195e-01 7.20130384e-01 5.17952144e-01 -1.73301411e+00 -1.85044020e-01 -2.22238507e-02 -9.52759922e-01 8.32096577e-01 7.19900310e-01 1.16015553e-01 3.20856899e-01 2.46266231e-01 2.11901769e-01 2.14991951e-03 -3.54570895e-01 -6.67384267e-01 3.69501412e-01 1.27063274e+00 -2.02326849e-01 -1.10902227e-01 4.09863710e-01 3.58630478e-01 1.95469692e-01 -1.14650264e-01 1.20711528e-01 1.02262402e+00 -4.99486774e-01 -8.70123029e-01 -7.21038699e-01 2.49741077e-01 4.46882844e-02 3.08494031e-01 -5.94505250e-01 8.55783403e-01 4.71006811e-01 8.77180994e-01 1.20230444e-01 -5.57240963e-01 5.21881998e-01 1.57646567e-01 4.39666510e-01 -3.92295629e-01 -3.70860770e-02 -1.09636970e-01 -1.27144232e-01 -5.25931776e-01 -6.46480143e-01 -8.69339228e-01 -1.10778618e+00 3.16469967e-02 -4.25316654e-02 -4.52235729e-01 7.13405728e-01 1.07538986e+00 4.58206266e-01 4.37125474e-01 5.47383964e-01 -1.11326814e+00 -6.26976371e-01 -7.88123369e-01 -3.92956376e-01 4.28796083e-01 8.94524276e-01 -1.17097640e+00 -3.36258471e-01 1.41582102e-01]
[8.297542572021484, -2.19661283493042]
97a0b32b-e192-4a7c-a8f1-10e89944c6f6
star-boosting-low-resource-event-extraction
2305.15090
null
https://arxiv.org/abs/2305.15090v1
https://arxiv.org/pdf/2305.15090v1.pdf
STAR: Boosting Low-Resource Event Extraction by Structure-to-Text Data Generation with Large Language Models
Structure prediction tasks such as event extraction require an in-depth understanding of the output structure and sub-task dependencies, thus they still heavily rely on task-specific training data to obtain reasonable performance. Due to the high cost of human annotation, low-resource event extraction, which requires minimal human cost, is urgently needed in real-world information extraction applications. We propose to synthesize data instances given limited seed demonstrations to boost low-resource event extraction performance. We propose STAR, a structure-to-text data generation method that first generates complicated event structures (Y) and then generates input passages (X), all with Large Language Models. We design fine-grained step-by-step instructions and the error cases and quality issues identified through self-reflection can be self-refined. Our experiments indicate that data generated by STAR can significantly improve the low-resource event extraction performance and they are even more effective than human-curated data points in some cases.
['Wei Wang', 'Nanyun Peng', 'P. Jeffrey Brantingham', 'Po-Nien Kung', 'Xiaoxuan Wang', 'Mingyu Derek Ma']
2023-05-24
null
null
null
null
['event-extraction']
['natural-language-processing']
[ 2.38390282e-01 2.75194377e-01 -6.57064468e-02 -3.91831994e-01 -1.32004082e+00 -7.25321770e-01 5.73396981e-01 5.34545124e-01 -5.10006666e-01 8.42518270e-01 5.31942725e-01 -2.28421345e-01 1.16411313e-01 -8.39806139e-01 -7.71670520e-01 4.94113900e-02 1.39749840e-01 5.17268240e-01 2.80362546e-01 -1.46585479e-01 1.85701195e-02 8.43510032e-02 -1.70763040e+00 7.23484755e-01 1.20206654e+00 6.72692657e-01 3.43594134e-01 6.35152161e-01 -3.48346323e-01 9.48319912e-01 -8.54469776e-01 -3.47904205e-01 1.10780997e-02 -7.04986095e-01 -7.65548170e-01 -2.08546579e-01 -1.79102063e-01 -2.94334263e-01 5.21642715e-02 5.36877513e-01 5.50886095e-01 1.01165399e-01 5.40769339e-01 -1.09722233e+00 -2.43521586e-01 1.26614499e+00 -1.08124480e-01 2.89402068e-01 6.09602034e-01 2.58198410e-01 1.11491954e+00 -9.79958653e-01 9.05381083e-01 8.43543828e-01 5.23645699e-01 4.37838882e-01 -1.21570432e+00 -7.62807548e-01 1.72859967e-01 1.61857247e-01 -1.21867633e+00 -5.24008274e-01 5.82310140e-01 -2.46586040e-01 1.51572585e+00 3.34552109e-01 5.32032669e-01 1.44842243e+00 -5.35562411e-02 8.80898297e-01 7.30889559e-01 -5.85317433e-01 1.25641525e-01 4.53432053e-02 5.22360764e-02 5.97231567e-01 3.99807513e-01 7.99739361e-03 -8.77775013e-01 -4.41147247e-03 6.13724113e-01 -3.11845064e-01 -1.26621351e-01 3.53353232e-01 -1.43754423e+00 6.02014065e-01 1.96275767e-02 3.21820289e-01 -5.38267553e-01 -2.02125400e-01 5.84177732e-01 1.02655031e-01 3.44377875e-01 1.04359734e+00 -9.51007545e-01 -6.15078747e-01 -1.07196033e+00 5.22410154e-01 8.90137494e-01 1.48759210e+00 5.57943463e-01 -7.07101356e-03 -6.51496053e-01 6.49661601e-01 -1.63518459e-01 2.61644661e-01 4.65574056e-01 -6.20618641e-01 9.63066280e-01 8.25769365e-01 3.28877777e-01 -4.72850412e-01 -5.84005773e-01 -4.94993955e-01 -4.38691944e-01 -2.17161372e-01 4.90139723e-01 -4.09494430e-01 -6.68807983e-01 1.67778015e+00 2.62770325e-01 5.93063496e-02 8.01578239e-02 5.77882409e-01 9.20995295e-01 7.80140758e-01 4.43989903e-01 -3.60350817e-01 1.72533250e+00 -8.01360488e-01 -8.83283019e-01 -3.26735049e-01 8.26955199e-01 -6.92569554e-01 1.53297126e+00 2.95007944e-01 -1.18272448e+00 -4.79350626e-01 -9.75452185e-01 -1.86805651e-01 -2.29408622e-01 3.35941821e-01 6.82611525e-01 2.63889611e-01 -1.04202643e-01 6.85209334e-01 -9.85871136e-01 -1.15378574e-01 4.25862908e-01 8.01552832e-02 -2.27485135e-01 2.97941238e-01 -1.22013462e+00 8.03358257e-01 7.47909546e-01 -1.80339158e-01 -8.48920524e-01 -9.03070807e-01 -9.89726186e-01 2.38494217e-01 9.34825897e-01 -5.45251489e-01 1.60203958e+00 -4.59002733e-01 -1.29830289e+00 4.37361658e-01 -2.96965688e-01 -2.67740458e-01 3.11633587e-01 -6.16927683e-01 -5.48577011e-01 1.07404456e-01 2.75204301e-01 5.15787363e-01 4.44007337e-01 -8.43008876e-01 -8.90058219e-01 6.85610175e-02 -1.17903031e-01 1.18745349e-01 -5.02632201e-01 3.70839536e-01 -4.47509855e-01 -8.44662189e-01 -2.64279127e-01 -6.38951540e-01 -3.00097167e-01 -6.40749693e-01 -6.41151726e-01 -4.44155782e-01 4.34288025e-01 -8.00200164e-01 1.78118908e+00 -1.92016971e+00 -2.53647804e-01 -4.56813611e-02 7.96888769e-03 6.40382916e-02 -2.38231704e-01 4.79071409e-01 1.40088156e-01 2.40232706e-01 2.57298462e-02 -2.15247482e-01 -2.27045137e-02 4.08708863e-02 -3.86938810e-01 -3.62158567e-01 7.45622277e-01 1.00643921e+00 -1.19125259e+00 -9.21790302e-01 -1.75463175e-03 9.81848836e-02 -8.30700517e-01 6.64763451e-01 -6.32289290e-01 4.26757574e-01 -6.86334431e-01 5.09043634e-01 -1.11636259e-01 -5.56568742e-01 -1.04979672e-01 -4.17054236e-01 -2.00852647e-01 9.53484178e-01 -1.21359837e+00 1.75362384e+00 -7.83046126e-01 4.58953857e-01 -5.50579786e-01 -5.96685112e-01 7.61021674e-01 4.51737821e-01 2.43420273e-01 -7.11398244e-01 -3.38240750e-02 1.44020095e-02 -6.11084439e-02 -7.23447084e-01 8.32094133e-01 8.48204941e-02 -4.34486628e-01 6.13668561e-01 1.89633161e-01 -9.31826383e-02 8.12648058e-01 3.79152030e-01 1.38472104e+00 4.08555478e-01 4.94375080e-01 1.34107769e-01 -5.24445027e-02 4.18166578e-01 9.35938776e-01 7.11557686e-01 3.23953778e-01 8.08427393e-01 5.31296015e-01 -1.09677084e-01 -1.27304447e+00 -8.23109686e-01 -1.46481320e-02 1.10561562e+00 -2.14947805e-01 -1.10905206e+00 -8.87457788e-01 -9.27919507e-01 -4.19497013e-01 1.30038655e+00 -2.69117117e-01 1.40497822e-03 -8.78178060e-01 -7.60738313e-01 7.45147526e-01 8.90412688e-01 2.65776664e-01 -1.45842540e+00 -9.70175683e-01 7.88470685e-01 -7.08033502e-01 -1.32819462e+00 -5.30319571e-01 4.44243252e-01 -7.23097324e-01 -9.99103367e-01 -1.89186051e-01 -4.06011224e-01 5.91484785e-01 -2.62610883e-01 1.58634400e+00 -4.41599376e-02 -3.23871225e-01 -2.64520735e-01 -8.45501482e-01 -7.09950984e-01 -6.74289763e-01 4.16892141e-01 -1.93350598e-01 -4.97362792e-01 5.26255846e-01 -4.29953516e-01 -4.20624882e-01 3.27395797e-01 -8.92691135e-01 4.77512360e-01 6.47217453e-01 7.26651549e-01 5.95834076e-01 2.67660350e-01 8.84172559e-01 -1.16114545e+00 7.47592211e-01 -2.18787178e-01 -5.37434340e-01 2.97655642e-01 -6.26218677e-01 3.85601252e-01 9.17502284e-01 -6.78694129e-01 -1.36877286e+00 3.34745273e-02 -8.87395293e-02 4.13290672e-02 -2.51879156e-01 7.12301135e-01 -4.27252024e-01 8.69458795e-01 1.08758712e+00 -9.27835852e-02 -5.87945163e-01 -5.93012035e-01 4.78865862e-01 6.15087330e-01 5.04128993e-01 -9.28124189e-01 6.66318953e-01 -3.65680419e-02 -4.76072669e-01 -3.97797674e-01 -1.10222721e+00 -1.54056987e-02 -4.30221528e-01 3.99420150e-02 8.08586717e-01 -1.06936395e+00 -3.69188040e-01 -1.97248235e-02 -1.26200581e+00 -4.95703280e-01 -8.09809685e-01 4.78315234e-01 -3.73214453e-01 -8.99489820e-02 -6.09628201e-01 -6.03953898e-01 -5.34018159e-01 -8.35110247e-01 1.13059020e+00 2.17404887e-01 -8.94368470e-01 -4.12696540e-01 -9.29362923e-02 1.66067824e-01 1.37134954e-01 1.43811211e-01 9.96080041e-01 -1.03620589e+00 -7.49203801e-01 -1.23890616e-01 -8.09070840e-02 2.13508997e-02 2.07371250e-01 1.35881439e-01 -7.59893298e-01 2.29680493e-01 -2.85068452e-01 -3.50848436e-01 3.32470924e-01 5.44587560e-02 1.35172439e+00 -4.71926868e-01 -4.66771036e-01 2.13180289e-01 8.56264234e-01 1.39262006e-01 4.71496880e-01 2.30617717e-01 6.99854195e-01 5.95777452e-01 8.93224895e-01 7.88927972e-01 4.33557630e-01 5.79869628e-01 -1.69268712e-01 3.94449197e-02 -2.63976842e-01 -8.36042881e-01 3.71307611e-01 8.33912969e-01 2.01953435e-03 -3.74240100e-01 -7.45012164e-01 7.76452124e-01 -1.75901115e+00 -1.07990968e+00 -1.89621165e-01 1.86550534e+00 1.50234938e+00 5.09418011e-01 1.97483912e-01 3.35301042e-01 4.06524688e-01 -1.97305992e-01 -3.86328161e-01 1.84169109e-03 -2.28032377e-02 4.09410715e-01 2.04242975e-01 3.20835933e-02 -8.02927136e-01 9.96634483e-01 6.47721910e+00 1.02891731e+00 -6.56584263e-01 7.64242746e-03 4.05882299e-01 -3.46924871e-01 -6.21655822e-01 1.64757982e-01 -1.25686741e+00 5.36771476e-01 1.20756114e+00 -2.95092046e-01 1.96077809e-01 8.79218459e-01 5.27510285e-01 -6.29778951e-02 -1.58003640e+00 8.98596168e-01 -2.68021941e-01 -1.62915885e+00 1.63044840e-01 -1.87753156e-01 4.84104931e-01 -4.12391275e-01 -5.95041752e-01 6.50527954e-01 5.53015411e-01 -8.60531390e-01 9.22659993e-01 3.33125442e-01 1.00271153e+00 -6.27185643e-01 4.03852105e-01 5.78398705e-01 -1.36589515e+00 -3.64499055e-02 -1.15695052e-01 1.69446692e-02 7.19463170e-01 1.05749166e+00 -1.10909939e+00 5.31490028e-01 5.98036528e-01 5.07423937e-01 -6.84724450e-01 7.32546270e-01 -4.23301935e-01 1.02451277e+00 -5.12211025e-01 -3.07150781e-01 -2.55919904e-01 2.76878983e-01 4.25577402e-01 1.52008212e+00 4.33258295e-01 3.36668611e-01 2.74561197e-01 1.01047051e+00 -1.21937059e-01 2.27630049e-01 -4.55174893e-01 -2.94935495e-01 7.31534660e-01 1.36708236e+00 -7.97670662e-01 -6.04906023e-01 -4.30068970e-01 7.17621028e-01 3.48082483e-01 1.53287813e-01 -9.61025655e-01 -6.41583920e-01 3.17226261e-01 2.54905075e-01 2.34979898e-01 -7.95925781e-02 -5.79581141e-01 -1.32178640e+00 1.59655750e-01 -1.09674382e+00 4.59675997e-01 -8.40747237e-01 -1.16481471e+00 7.76741743e-01 2.43341044e-01 -1.39149666e+00 -7.65164137e-01 -2.04376087e-01 -4.98439163e-01 6.85687780e-01 -1.06644905e+00 -9.83359516e-01 -3.71820688e-01 3.73496711e-01 8.63138914e-01 -7.87385181e-02 9.37524140e-01 3.93674046e-01 -4.77249563e-01 7.41232991e-01 -6.84732378e-01 3.70985627e-01 6.10455096e-01 -1.18597472e+00 7.17790723e-01 9.71964955e-01 4.60746408e-01 5.46007574e-01 7.64225543e-01 -9.55349207e-01 -1.19753468e+00 -1.23830664e+00 1.29764664e+00 -8.16673458e-01 5.94938457e-01 -5.95477819e-01 -9.26903367e-01 6.22270942e-01 3.53414426e-03 -2.59139508e-01 7.43676960e-01 3.81862730e-01 -2.83627152e-01 -6.44196058e-03 -8.15124512e-01 8.12551558e-01 1.39118814e+00 -6.00265563e-01 -8.34519386e-01 2.80171990e-01 9.87029076e-01 -6.09643221e-01 -8.76901269e-01 5.11667728e-01 1.87219724e-01 -4.96156722e-01 6.74807966e-01 -8.12761128e-01 6.38824046e-01 -4.15131778e-01 1.94573969e-01 -1.23910797e+00 -7.87020996e-02 -7.17661023e-01 -2.27330700e-01 1.63805866e+00 1.06921935e+00 7.13998452e-03 5.73879719e-01 9.67739046e-01 -1.81746379e-01 -4.23857212e-01 -4.90982771e-01 -7.76755512e-01 -3.76547098e-01 -7.80555964e-01 8.21939826e-01 7.53172576e-01 2.47207016e-01 8.48774374e-01 -1.75032631e-01 1.38229374e-02 2.55531162e-01 1.75455213e-01 8.75811219e-01 -1.19234908e+00 -3.30452591e-01 -2.93228254e-02 4.32196170e-01 -8.76795292e-01 1.77708287e-02 -8.42533588e-01 2.74024934e-01 -1.48913324e+00 1.54497072e-01 -5.87038755e-01 -8.19312930e-02 7.74550915e-01 -5.23454726e-01 -2.64472425e-01 5.85610531e-02 4.14230563e-02 -7.32198119e-01 5.33908248e-01 1.12101269e+00 2.07203731e-01 -6.15646899e-01 -3.10809948e-02 -8.80800068e-01 5.58560371e-01 6.18048787e-01 -7.51468360e-01 -4.94818866e-01 -3.76862586e-01 4.97921735e-01 2.55906850e-01 1.31662013e-02 -9.28819776e-01 2.80876793e-02 -2.98979819e-01 4.83808100e-01 -7.68871725e-01 1.30320825e-02 -6.08609319e-01 1.83705688e-01 -2.66073570e-02 -6.42729759e-01 2.48782903e-01 2.38708630e-01 2.38554046e-01 -2.02842087e-01 -3.87324661e-01 3.10512483e-01 -2.51531452e-01 -4.13998663e-01 1.43739387e-01 -2.95079589e-01 5.06597996e-01 8.33983123e-01 -6.01777632e-04 -3.53995085e-01 -2.18598187e-01 -5.85938334e-01 6.49660975e-02 1.64708585e-01 5.04556537e-01 3.76397818e-01 -1.18685901e+00 -8.97485077e-01 1.95121139e-01 3.58531475e-01 3.77322912e-01 -4.64492962e-02 2.84966677e-01 -9.17963237e-02 8.96632522e-02 6.35903254e-02 -3.67552608e-01 -9.96963978e-01 4.81297702e-01 -2.99922794e-01 -7.18118787e-01 -8.68146181e-01 5.26471555e-01 -1.15703233e-01 -6.91765398e-02 1.42444819e-01 -6.42493904e-01 -2.24329203e-01 1.39264569e-01 8.35336804e-01 1.22233681e-01 2.29183465e-01 -4.67983680e-03 -1.69076979e-01 -5.18933460e-02 -1.62465408e-01 -3.74027789e-01 1.45401287e+00 2.24662930e-01 3.83408993e-01 2.84145594e-01 7.09058344e-01 1.64062545e-01 -1.44349110e+00 -2.15904191e-01 4.09795016e-01 -2.52421141e-01 -2.17970788e-01 -1.03963566e+00 -5.87191343e-01 5.74637890e-01 -9.17171538e-02 2.15596884e-01 1.14645064e+00 1.70422763e-01 1.01887786e+00 5.32605410e-01 4.08717901e-01 -1.40676761e+00 2.27140933e-01 4.62459803e-01 8.40748250e-01 -1.05179417e+00 -4.20935266e-02 -5.69877207e-01 -8.70532751e-01 7.45384514e-01 8.11585307e-01 1.87561080e-01 2.95546442e-01 7.20612288e-01 -1.93382949e-01 -1.03223789e-02 -1.10091257e+00 -2.50635654e-01 3.36553097e-01 5.11206388e-01 5.45268297e-01 -5.76966628e-02 -2.08659232e-01 1.30393744e+00 -5.28431356e-01 1.37804016e-01 4.19237345e-01 8.85331511e-01 -2.40528405e-01 -1.33155215e+00 -1.25551552e-01 7.22286403e-01 -5.62375844e-01 -3.48178118e-01 -2.03802083e-02 6.55911326e-01 1.74491797e-02 1.00539231e+00 -7.37215430e-02 -1.55739740e-01 7.31160522e-01 2.80850053e-01 4.32340503e-01 -8.80969286e-01 -8.55564415e-01 1.94782123e-01 8.06501269e-01 -5.17573595e-01 -8.67531672e-02 -7.26084888e-01 -1.66765809e+00 2.47775950e-02 -4.00742054e-01 2.73983806e-01 5.44947922e-01 1.01722300e+00 7.06295550e-01 8.07527483e-01 2.93264151e-01 -6.12167835e-01 -3.33268464e-01 -1.20962286e+00 -5.11859767e-02 7.15773821e-01 -7.61143789e-02 -5.33986866e-01 9.06156562e-03 5.06454289e-01]
[9.439888954162598, 9.016218185424805]
dd870455-40c9-482f-aaa7-0a52512da21c
learning-to-agree-on-vision-attention-for
2302.02117
null
https://arxiv.org/abs/2302.02117v2
https://arxiv.org/pdf/2302.02117v2.pdf
Learning to Agree on Vision Attention for Visual Commonsense Reasoning
Visual Commonsense Reasoning (VCR) remains a significant yet challenging research problem in the realm of visual reasoning. A VCR model generally aims at answering a textual question regarding an image, followed by the rationale prediction for the preceding answering process. Though these two processes are sequential and intertwined, existing methods always consider them as two independent matching-based instances. They, therefore, ignore the pivotal relationship between the two processes, leading to sub-optimal model performance. This paper presents a novel visual attention alignment method to efficaciously handle these two processes in a unified framework. To achieve this, we first design a re-attention module for aggregating the vision attention map produced in each process. Thereafter, the resultant two sets of attention maps are carefully aligned to guide the two processes to make decisions based on the same image regions. We apply this method to both conventional attention and the recent Transformer models and carry out extensive experiments on the VCR benchmark dataset. The results demonstrate that with the attention alignment module, our method achieves a considerable improvement over the baseline methods, evidently revealing the feasibility of the coupling of the two processes as well as the effectiveness of the proposed method.
['Kejie Wang', 'Mohan Kankanhalli', 'Liqiang Nie', 'Fan Liu', 'Yangyang Guo', 'Zhenyang Li']
2023-02-04
null
null
null
null
['visual-reasoning', 'visual-commonsense-reasoning', 'visual-reasoning']
['computer-vision', 'reasoning', 'reasoning']
[ 4.53244746e-01 1.10481717e-01 -6.88017625e-03 -2.21111789e-01 -6.67696357e-01 -4.71303374e-01 9.38124716e-01 -7.41634071e-02 -1.81552678e-01 2.65452713e-01 4.75148201e-01 -5.86317778e-01 3.53260823e-02 -5.77094793e-01 -5.27386069e-01 -5.64859629e-01 7.39764392e-01 2.76879728e-01 3.25811535e-01 -2.48936161e-01 5.55293679e-01 1.96489573e-01 -1.31963122e+00 3.60741347e-01 9.10866082e-01 8.60746264e-01 3.51407081e-01 2.85474926e-01 -3.77491742e-01 1.43912494e+00 -4.83847886e-01 -9.00659919e-01 -4.16748822e-02 -6.34658039e-01 -1.00167513e+00 2.77414739e-01 2.35820606e-01 -3.87448817e-01 -4.55200970e-01 1.28214240e+00 2.92157859e-01 1.49568543e-01 6.55720592e-01 -1.19222713e+00 -1.35752094e+00 5.86737096e-01 -9.75734770e-01 4.63291198e-01 3.18167925e-01 2.12927416e-01 1.33326221e+00 -9.12153006e-01 3.15431178e-01 1.34295392e+00 2.31878430e-01 4.16219682e-01 -1.02969778e+00 -4.66768652e-01 6.33769870e-01 7.25445867e-01 -1.09627616e+00 -4.68299270e-01 1.11368585e+00 -4.41153884e-01 7.69739628e-01 2.13528737e-01 6.30950689e-01 9.67815697e-01 5.18298522e-02 9.93882298e-01 1.13989520e+00 -2.76531965e-01 2.44029686e-02 1.34564668e-01 2.56116569e-01 4.32199448e-01 5.59801757e-02 -2.37850785e-01 -3.80613267e-01 1.18854538e-01 6.84323430e-01 1.70746267e-01 -4.35127020e-01 -2.43328229e-01 -1.33196592e+00 8.12056720e-01 7.44433403e-01 3.54019076e-01 -5.56057572e-01 1.75978929e-01 2.99760938e-01 -6.99243546e-02 1.41726956e-01 1.98124811e-01 1.93079844e-01 3.34362656e-01 -7.14607537e-01 9.98394042e-02 3.38522553e-01 8.96503866e-01 4.05350983e-01 -1.84942484e-01 -8.27020705e-01 7.69545972e-01 5.20570099e-01 1.08850636e-01 2.69450963e-01 -6.93603933e-01 6.40016913e-01 7.75185883e-01 2.69696712e-01 -1.54481077e+00 4.88670170e-02 -4.53510970e-01 -8.18808794e-01 2.34385440e-03 2.70572543e-01 3.08277279e-01 -8.60404253e-01 1.70409560e+00 3.44636589e-01 -4.38217446e-03 1.24096617e-01 1.14362442e+00 9.63981688e-01 6.71360970e-01 3.73098344e-01 -1.13621987e-01 1.67871344e+00 -1.45528936e+00 -1.00335479e+00 -4.08686697e-01 -3.83320637e-02 -7.87875056e-01 1.24948692e+00 9.97109860e-02 -1.23350096e+00 -5.57107925e-01 -1.18429816e+00 -6.82123840e-01 -5.07160500e-02 1.12174124e-01 4.89117116e-01 5.54704294e-02 -9.49471772e-01 2.27493554e-01 -3.53984296e-01 -1.93261713e-01 5.38645625e-01 -1.14466012e-01 2.48488057e-02 -1.20712332e-01 -1.18492830e+00 9.98980165e-01 4.55302261e-02 6.46061182e-01 -8.16847324e-01 -3.58568519e-01 -4.89888549e-01 2.72880554e-01 4.50442612e-01 -7.24801958e-01 1.26919281e+00 -9.22280967e-01 -1.16147411e+00 1.09533930e+00 -5.12206972e-01 -3.11430126e-01 8.43463778e-01 -2.81236321e-01 -2.41860554e-01 2.10450813e-01 2.72231638e-01 4.62970585e-01 8.63465250e-01 -1.55873752e+00 -7.70175517e-01 -3.72359186e-01 4.42741841e-01 4.71212268e-01 -1.06137559e-01 -2.97989906e-03 -8.09088528e-01 -6.08825684e-01 2.08381772e-01 -4.68546420e-01 -1.58265773e-02 -6.39356002e-02 -4.19475973e-01 -4.97081399e-01 6.24320984e-01 -7.93256819e-01 1.29107308e+00 -2.13680649e+00 4.78116602e-01 -1.38039991e-01 5.54216444e-01 1.30706817e-01 -5.85683100e-02 2.99369693e-01 -2.33667910e-01 3.91072920e-03 -8.64710510e-02 -2.35034466e-01 -2.27125250e-02 -4.84417826e-02 -8.06682289e-01 3.98966581e-01 3.06809723e-01 1.19961989e+00 -1.04399025e+00 -6.31734729e-01 1.64288133e-01 3.47559452e-01 -2.47256249e-01 4.21526670e-01 -1.75161958e-01 4.23395485e-01 -4.57161278e-01 5.80263555e-01 4.91784871e-01 -6.12879813e-01 2.86018163e-01 -5.15254021e-01 2.78480239e-02 1.61507249e-01 -6.71080649e-01 1.25111330e+00 -1.88358724e-01 6.91388428e-01 -2.22660229e-01 -1.13925278e+00 1.08621347e+00 3.02808285e-01 5.21469973e-02 -1.02645350e+00 2.50848234e-01 -3.79604474e-02 1.16636246e-01 -7.52482116e-01 4.06339794e-01 -4.12936270e-01 1.33882105e-01 4.97219652e-01 -1.72655135e-01 1.34082824e-01 8.32676813e-02 3.77056688e-01 7.09506035e-01 2.17366278e-01 5.99583805e-01 7.57677946e-04 8.56119335e-01 4.46682312e-02 3.99992973e-01 7.18544304e-01 -6.06555641e-01 5.95456481e-01 7.49435842e-01 -4.88753706e-01 -1.03954649e+00 -8.33216012e-01 2.79720277e-01 1.00576794e+00 7.50986218e-01 -2.31080860e-01 -5.73603451e-01 -7.28283346e-01 -1.97720617e-01 9.57197130e-01 -9.52395082e-01 -1.80211872e-01 -4.72787738e-01 -5.89346945e-01 2.00132146e-01 7.56988049e-01 6.39568985e-01 -1.23999393e+00 -6.67934597e-01 7.67465606e-02 -5.55998504e-01 -1.21772158e+00 -3.60749185e-01 -1.75436169e-01 -4.90362674e-01 -1.18340600e+00 -7.05255210e-01 -8.25706363e-01 5.91989577e-01 8.23036790e-01 1.08121061e+00 5.47343194e-01 8.35060999e-02 2.15401605e-01 -3.68657559e-01 -1.80665106e-01 -2.87066221e-01 -2.96443999e-01 -4.75671738e-01 3.51696461e-01 5.15950441e-01 -4.65892226e-01 -7.65984893e-01 1.54910251e-01 -7.57558703e-01 5.26340246e-01 6.77832663e-01 7.92443812e-01 5.75726867e-01 -1.87808886e-01 5.87826431e-01 -6.73236668e-01 7.31342673e-01 -4.68651295e-01 -3.95415843e-01 7.20538020e-01 -4.01256531e-01 1.14325978e-01 5.84033310e-01 -3.64148319e-01 -1.27503884e+00 -2.73015440e-01 5.65448869e-03 -5.93270183e-01 7.34425485e-02 3.16689461e-01 -3.42417240e-01 3.26603562e-01 1.45247757e-01 4.67906117e-01 -1.66536301e-01 -1.19510934e-01 5.48992991e-01 5.41945994e-01 7.13199496e-01 -4.83390927e-01 8.67656350e-01 5.71161866e-01 -4.23274547e-01 -2.69084930e-01 -1.14618075e+00 -3.10862035e-01 -4.60386306e-01 -4.31130528e-01 1.12567425e+00 -7.85350025e-01 -9.36985910e-01 2.15568379e-01 -1.43313575e+00 1.30057354e-02 -1.96013674e-02 -7.26238638e-02 -4.63352352e-01 4.77232635e-01 -4.92077500e-01 -8.80305648e-01 -3.82040441e-01 -1.33365667e+00 9.12602663e-01 3.31511736e-01 -9.96797383e-02 -8.00912857e-01 -8.43160823e-02 8.22282553e-01 2.53483504e-01 4.46288707e-03 1.17214561e+00 -6.40130997e-01 -7.33198404e-01 9.87527668e-02 -8.72965753e-01 3.14854048e-02 1.06834933e-01 3.04216519e-02 -9.54440296e-01 -7.98213179e-04 2.11833075e-01 -2.78551489e-01 9.59925413e-01 -4.22290750e-02 1.17375422e+00 -1.14798404e-01 -1.71363622e-01 2.43945658e-01 1.40552354e+00 4.77463305e-01 8.46129596e-01 4.77159411e-01 9.35297489e-01 7.31012344e-01 5.56917131e-01 -5.02994396e-02 6.87741518e-01 6.18072689e-01 6.86894715e-01 -3.07457507e-01 -1.78307846e-01 -4.59376663e-01 7.31102228e-02 8.70617986e-01 -3.30356956e-01 -1.45941198e-01 -9.42644358e-01 5.83363414e-01 -2.09145808e+00 -1.19186401e+00 -2.13506684e-01 1.86406589e+00 6.19051635e-01 3.62758115e-02 -2.10625023e-01 9.41675603e-02 1.01129389e+00 4.10833240e-01 -5.84239185e-01 -3.48880231e-01 8.69314596e-02 -1.99404463e-01 -1.91915184e-01 3.78297865e-01 -9.34258401e-01 9.18605685e-01 6.27774286e+00 7.18569934e-01 -9.20556784e-01 1.54092118e-01 7.61297584e-01 9.60054547e-02 -6.36089027e-01 2.11895093e-01 -5.09897232e-01 3.19902152e-01 2.48927906e-01 -2.51934022e-01 5.49398839e-01 6.29432976e-01 1.29233852e-01 -1.38783092e-02 -9.77996826e-01 1.05806983e+00 2.92265415e-01 -1.29585159e+00 4.93776649e-01 -8.99828523e-02 5.39123237e-01 -4.63572711e-01 8.32441747e-02 2.64452964e-01 2.49755502e-01 -1.11096323e+00 1.15420687e+00 4.50967729e-01 4.22358096e-01 -6.49398267e-01 6.30713999e-01 2.51064509e-01 -1.26409948e+00 -2.10718602e-01 -2.67129153e-01 -2.71417499e-02 3.51787478e-01 3.02727014e-01 -3.24228793e-01 7.43536949e-01 6.03696227e-01 7.25685060e-01 -6.61974013e-01 6.37601852e-01 -6.37500823e-01 2.64138669e-01 4.66553509e-01 -4.60047089e-03 3.04174125e-01 -3.16856802e-01 4.88386661e-01 7.79748321e-01 -6.33522198e-02 2.39105225e-01 -1.92588061e-01 1.20099580e+00 -1.10469654e-01 1.18713841e-01 -3.46015900e-01 -4.69646156e-02 4.08695579e-01 1.32958519e+00 -8.77088130e-01 -5.67424834e-01 -6.22709811e-01 1.02953744e+00 8.91243041e-01 5.10479808e-01 -1.32418108e+00 -1.96325064e-01 3.17335010e-01 -1.21423461e-01 4.01901901e-01 5.68660349e-02 -3.99554521e-01 -1.31543982e+00 1.51842013e-01 -1.03595412e+00 3.34370822e-01 -1.16655397e+00 -1.35320985e+00 7.41392791e-01 -1.88916698e-01 -1.13216031e+00 1.44846171e-01 -5.49723268e-01 -7.71102130e-01 9.02696192e-01 -1.76882148e+00 -1.19006097e+00 -5.29026151e-01 5.42376041e-01 7.45730162e-01 2.01274380e-01 4.13955003e-01 1.01830803e-01 -7.39704370e-01 2.81298965e-01 -3.57066035e-01 1.49734303e-01 4.49105799e-01 -1.21449578e+00 3.16741168e-01 1.17293632e+00 2.29865789e-01 8.17395926e-01 6.06799185e-01 -5.02740026e-01 -1.13123357e+00 -8.83555353e-01 8.80248249e-01 -4.88273859e-01 7.87579477e-01 -2.08034635e-01 -1.13786495e+00 7.66125500e-01 6.62644982e-01 -2.89156139e-01 5.96425772e-01 4.51648049e-02 -6.46045983e-01 -3.20779346e-02 -6.61392093e-01 9.96479809e-01 1.05600548e+00 -5.85584700e-01 -1.21238303e+00 7.45005757e-02 7.62812674e-01 -2.49909982e-01 -5.31535804e-01 3.42775196e-01 4.41678941e-01 -1.10468650e+00 8.50433588e-01 -6.52615666e-01 1.12228286e+00 -5.20896494e-01 -2.03204840e-01 -8.35393846e-01 -5.63451469e-01 -3.87299627e-01 -1.82646364e-01 1.48907471e+00 1.30381078e-01 -4.70336914e-01 6.71238527e-02 4.58533764e-01 1.56316072e-01 -8.86307657e-01 -5.32675743e-01 -2.00473636e-01 -1.19768113e-01 -1.74547151e-01 6.25253141e-01 1.01132357e+00 -5.77292442e-02 8.77419591e-01 -4.16455001e-01 1.60482436e-01 5.80522954e-01 6.24264836e-01 6.84137464e-01 -9.65235174e-01 -3.21401209e-01 -6.80712521e-01 -4.48225588e-02 -1.22030973e+00 1.15817405e-01 -7.66344726e-01 2.08997354e-01 -1.92454863e+00 8.59733462e-01 -1.58881724e-01 -3.42644423e-01 4.17008460e-01 -7.76496649e-01 1.61229908e-01 3.80815834e-01 5.62260866e-01 -6.61044896e-01 6.77800536e-01 1.47738171e+00 -1.52624846e-01 7.28755519e-02 -4.49240863e-01 -1.30293608e+00 7.44140685e-01 5.66851735e-01 -6.04096018e-02 -6.74153864e-01 -6.10467613e-01 1.22190118e-01 5.40934317e-02 7.27134109e-01 -5.58340073e-01 2.98253864e-01 -2.81005859e-01 3.51367295e-01 -6.27954841e-01 3.28038894e-02 -8.18517029e-01 -6.47580251e-02 1.79950356e-01 -5.49066901e-01 1.70332983e-01 -1.00131586e-01 7.73782790e-01 -2.96844006e-01 5.98415965e-03 7.34985888e-01 -1.10054672e-01 -8.52943897e-01 1.40204400e-01 1.66473966e-02 7.57386386e-02 1.18190432e+00 -2.46613130e-01 -5.33830702e-01 -3.82588714e-01 -6.35655761e-01 3.95600170e-01 2.26272687e-01 5.50682247e-01 6.48737133e-01 -1.31128013e+00 -6.36250734e-01 -1.39864281e-01 2.28596255e-01 -1.46777444e-02 5.07726789e-01 9.43635881e-01 -2.81899124e-01 4.03306425e-01 -1.94259256e-01 -4.84621435e-01 -1.05149519e+00 1.08037472e+00 3.10371727e-01 -4.32849854e-01 -7.71003783e-01 5.77637970e-01 7.00183213e-01 5.02694808e-02 2.29242593e-01 -8.00517127e-02 -6.84535861e-01 1.74547434e-01 7.13963151e-01 9.34345275e-03 -3.04755628e-01 -7.65061915e-01 -3.25562209e-01 5.13083518e-01 -2.27462322e-01 -5.77821918e-02 1.14391279e+00 -4.22635317e-01 -2.56704271e-01 4.91735846e-01 8.24087679e-01 -9.95312557e-02 -1.26524889e+00 -2.39485323e-01 -1.32053152e-01 -4.96768802e-01 -1.73070714e-01 -5.93149304e-01 -1.18217766e+00 1.08036983e+00 -6.08844683e-02 3.61897856e-01 1.27272964e+00 2.78599471e-01 4.86888736e-01 -3.65798697e-02 5.32740215e-03 -6.53459489e-01 3.22494298e-01 2.13315740e-01 1.14984000e+00 -1.10220182e+00 3.46163735e-02 -4.97909248e-01 -9.59847748e-01 9.63648856e-01 8.13994944e-01 -6.64456263e-02 5.16966954e-02 -1.88223645e-01 5.55952713e-02 -3.52502018e-01 -9.45129931e-01 -2.99952775e-01 3.76690328e-01 3.88114154e-01 5.00804484e-01 -1.54761463e-01 -4.15261954e-01 6.52077377e-01 1.84298635e-01 -1.08639644e-02 2.79720068e-01 7.02347219e-01 -2.51506776e-01 -6.32765651e-01 -3.41529191e-01 1.45951197e-01 -3.52312148e-01 -2.31473133e-01 -4.30759430e-01 7.60862291e-01 -2.26249471e-01 9.49678183e-01 3.50002535e-02 -3.49188119e-01 4.58603024e-01 -1.34190004e-02 3.64595979e-01 -2.39748403e-01 -5.05358040e-01 7.76299974e-03 -1.70183301e-01 -5.37618518e-01 -6.42416477e-01 -4.40835148e-01 -1.06412721e+00 -2.54236072e-01 -2.63547748e-01 -6.50583431e-02 9.51260924e-02 1.22921002e+00 2.26828188e-01 8.88493359e-01 4.72409099e-01 -5.61488867e-01 -6.08662248e-01 -7.09028065e-01 -2.19448239e-01 6.83603704e-01 2.24600762e-01 -7.37654209e-01 -3.72654527e-01 1.66653588e-01]
[10.67404842376709, 1.7343604564666748]
f13dc381-27ec-443c-a1bb-7889974f11a6
iterative-greedy-matching-for-3d-human-pose
2101.09745
null
https://arxiv.org/abs/2101.09745v1
https://arxiv.org/pdf/2101.09745v1.pdf
Iterative Greedy Matching for 3D Human Pose Tracking from Multiple Views
In this work we propose an approach for estimating 3D human poses of multiple people from a set of calibrated cameras. Estimating 3D human poses from multiple views has several compelling properties: human poses are estimated within a global coordinate space and multiple cameras provide an extended field of view which helps in resolving ambiguities, occlusions and motion blur. Our approach builds upon a real-time 2D multi-person pose estimation system and greedily solves the association problem between multiple views. We utilize bipartite matching to track multiple people over multiple frames. This proofs to be especially efficient as problems associated with greedy matching such as occlusion can be easily resolved in 3D. Our approach achieves state-of-the-art results on popular benchmarks and may serve as a baseline for future work.
['Juergen Gall', 'Julian Tanke']
2021-01-24
null
null
null
null
['3d-human-pose-tracking']
['computer-vision']
[-3.27591628e-01 -2.62512594e-01 -2.86655314e-03 -3.00258577e-01 -7.80268848e-01 -7.27739573e-01 4.33624059e-01 -2.26664618e-01 -5.28223932e-01 6.00564480e-01 4.50878918e-01 4.39403623e-01 1.57922417e-01 -3.35102886e-01 -6.30202830e-01 -2.27599591e-01 -4.29284610e-02 9.24776435e-01 3.34722877e-01 3.32345488e-03 -8.88581499e-02 5.68811178e-01 -1.33422983e+00 -1.50981992e-02 2.02076342e-02 3.40066016e-01 -2.86873758e-01 9.30790126e-01 4.77982938e-01 3.29184830e-01 -5.36632359e-01 -6.25432014e-01 7.42574811e-01 -2.12413341e-01 -6.42631114e-01 7.03580797e-01 1.31708539e+00 -7.04760253e-01 -5.38281977e-01 8.13494563e-01 7.32882559e-01 2.96619207e-01 2.35212773e-01 -1.43218780e+00 9.53171495e-03 -2.71195620e-01 -1.09304667e+00 1.79593056e-01 1.33630252e+00 -1.82496104e-02 7.91155279e-01 -9.91658926e-01 8.64588201e-01 1.70925391e+00 9.25609171e-01 4.83062267e-01 -1.27433765e+00 -2.99277544e-01 1.60265610e-01 -2.60910932e-02 -1.55900872e+00 -4.87086654e-01 3.54110062e-01 -3.82152557e-01 8.08011293e-01 3.43427867e-01 1.12098789e+00 1.13470685e+00 5.17217554e-02 7.04301536e-01 8.53932321e-01 -4.39255238e-01 -2.84354836e-01 -1.52330905e-01 1.08266778e-01 8.92918587e-01 6.47624016e-01 5.27711399e-02 -8.21602821e-01 -4.58294362e-01 1.19878852e+00 3.70893240e-01 -2.05143124e-01 -9.57819045e-01 -1.62653863e+00 6.17998838e-01 2.58854210e-01 -3.83990020e-01 -2.45008275e-01 3.48892003e-01 2.07891017e-01 1.68122903e-01 2.24938363e-01 1.29792050e-01 -1.55635148e-01 -1.13016907e-02 -6.62785947e-01 8.96330237e-01 7.45304704e-01 1.29579103e+00 5.98781168e-01 -5.80424368e-01 7.09983939e-03 4.87855285e-01 3.63287717e-01 7.20784962e-01 -2.22564921e-01 -1.44909334e+00 6.22630596e-01 5.67940950e-01 4.44076747e-01 -1.17467916e+00 -5.40496826e-01 4.36853059e-02 -6.23116434e-01 1.78294748e-01 7.94766128e-01 -2.17050061e-01 -4.34260249e-01 1.64900613e+00 8.22937787e-01 1.11762680e-01 -2.91719764e-01 1.26259077e+00 6.14933133e-01 1.31646886e-01 -4.39470619e-01 1.62230171e-02 1.75240111e+00 -1.12770355e+00 -5.72329104e-01 -6.71167076e-01 -6.59738854e-02 -8.03868830e-01 3.06854367e-01 2.85933852e-01 -1.28004205e+00 -5.62242031e-01 -7.03473628e-01 -1.63741991e-01 6.44718260e-02 -3.16403806e-02 5.41799247e-01 7.15649545e-01 -1.10381281e+00 1.78457618e-01 -9.77181256e-01 -8.74007225e-01 -1.10264998e-02 5.09868622e-01 -9.17111337e-01 -1.97878808e-01 -8.02207828e-01 1.13550162e+00 1.82519313e-02 4.33948152e-02 -5.74504256e-01 -2.52874702e-01 -9.70603645e-01 -4.64427859e-01 6.16078734e-01 -1.37447417e+00 1.18382728e+00 -3.60918939e-01 -1.06217253e+00 1.30329359e+00 -4.52212393e-01 -1.29622653e-01 8.63308072e-01 -7.89595962e-01 -6.96836486e-02 3.78759176e-01 2.86888480e-01 5.96543729e-01 5.61575234e-01 -1.05989015e+00 -5.73343515e-01 -8.09620082e-01 2.55475551e-01 6.67080581e-01 1.25701609e-03 2.52303809e-01 -1.25791645e+00 -5.42118669e-01 4.79540884e-01 -1.43257558e+00 -3.81804258e-01 2.93220907e-01 -4.76775795e-01 1.49963617e-01 4.11231399e-01 -6.09847903e-01 7.92576492e-01 -1.58400238e+00 6.43276989e-01 1.49319097e-01 5.32243848e-01 -2.40482137e-01 2.64574885e-01 4.05991226e-01 1.68105170e-01 -4.26788867e-01 5.62616229e-01 -7.14109838e-01 -2.54104231e-02 -3.67050506e-02 3.90524268e-01 9.90143120e-01 -3.74365151e-01 7.89840698e-01 -7.62366593e-01 -7.26510942e-01 3.60198736e-01 4.68760967e-01 -4.92926866e-01 2.89635748e-01 4.54742819e-01 5.48208058e-01 -2.08956644e-01 7.36903429e-01 6.30893469e-01 -4.32988107e-01 3.45845371e-01 -2.37781286e-01 1.22914851e-01 -1.12011150e-01 -1.87511957e+00 2.00529671e+00 2.16775745e-01 3.30633372e-01 1.88847885e-01 -3.73466969e-01 4.49444145e-01 5.56311488e-01 7.26016581e-01 4.33295555e-02 7.82636460e-03 -3.01773608e-01 -6.78919852e-01 -2.20328569e-01 5.69021463e-01 1.34339839e-01 -3.24866623e-01 5.20541430e-01 2.58946698e-02 2.14794651e-01 1.37844473e-01 3.56099367e-01 1.05722106e+00 3.72572184e-01 7.87536860e-01 -5.35265356e-02 3.14129025e-01 -1.11549534e-01 6.99458897e-01 7.70506561e-01 -4.80443627e-01 8.14369798e-01 1.63008466e-01 -9.03271794e-01 -1.17768860e+00 -1.50042093e+00 2.92504042e-01 8.00897181e-01 4.18356419e-01 -7.64537454e-01 -5.45034528e-01 -7.01281309e-01 2.33639106e-01 -4.10888046e-01 -5.41839778e-01 3.16543788e-01 -7.78941870e-01 -4.17001814e-01 3.85648042e-01 7.02364326e-01 3.31128478e-01 -1.62289903e-01 -8.10118973e-01 -5.60273193e-02 -7.03853786e-01 -1.55910432e+00 -9.62223351e-01 -3.43386471e-01 -7.54514694e-01 -1.49233425e+00 -1.08213615e+00 -6.03292346e-01 8.86237919e-01 9.43202317e-01 1.51136351e+00 3.00828367e-02 -3.58757913e-01 1.02616096e+00 -2.93535814e-02 -1.85922638e-01 2.34782249e-01 -3.29555035e-01 6.53986096e-01 -1.22616746e-01 6.52193487e-01 -3.10301572e-01 -7.49502063e-01 7.67587364e-01 -1.14914417e-01 5.07950112e-02 7.25556612e-02 5.42144001e-01 4.93413985e-01 -3.75533670e-01 -2.23726496e-01 -7.98652649e-01 1.14738502e-01 9.18626506e-03 -6.80076957e-01 3.12199533e-01 6.95342422e-02 -2.93618768e-01 -2.10165814e-01 -3.16100180e-01 -9.35373366e-01 5.95505238e-01 3.63285542e-01 -5.46411395e-01 -3.20574373e-01 -2.13581890e-01 -4.97222953e-02 -1.65296867e-01 6.07969344e-01 -3.37221980e-01 8.50247219e-02 -3.86422038e-01 2.24917248e-01 1.96576715e-01 8.01017761e-01 -6.34642959e-01 1.00687099e+00 7.90067673e-01 2.88485914e-01 -6.15019500e-01 -9.37976956e-01 -1.10372615e+00 -1.12413430e+00 -4.33762074e-01 9.26685631e-01 -1.56549668e+00 -1.09451604e+00 4.56642240e-01 -1.35182309e+00 3.98661494e-01 1.60254166e-01 5.84261358e-01 -5.08647919e-01 6.80126309e-01 -6.89184189e-01 -8.61942410e-01 -4.04798090e-02 -1.01657188e+00 1.52060330e+00 1.38441324e-01 -7.01064408e-01 -9.28829789e-01 3.47348154e-01 7.15280652e-01 -2.54534602e-01 6.10549450e-01 -3.59633774e-01 -1.61066353e-01 -7.92347729e-01 -5.33962786e-01 1.29463494e-01 -3.55637342e-01 -5.25569916e-02 -3.98852617e-01 -7.40834653e-01 -6.97624803e-01 -2.49584854e-01 -3.51931006e-01 5.29168427e-01 4.83738780e-01 2.56458074e-01 -2.49086283e-02 -6.14463687e-01 4.67994899e-01 1.11907554e+00 -4.25729901e-01 3.07572991e-01 3.46583843e-01 8.87514353e-01 6.00312352e-01 5.10113418e-01 5.82630575e-01 8.10517609e-01 1.27597797e+00 1.13382362e-01 -5.12304902e-02 5.08349128e-02 -1.45956576e-01 2.56588280e-01 4.15752739e-01 -4.62785274e-01 -3.91194560e-02 -8.49843919e-01 2.15752989e-01 -2.12953496e+00 -1.24697101e+00 -2.84161538e-01 2.39481068e+00 3.92603308e-01 -3.21685486e-02 8.67752671e-01 -1.51813537e-01 1.06680882e+00 7.35618398e-02 -1.56471491e-01 5.16513407e-01 -5.67475148e-02 -2.92245805e-01 6.25361502e-01 5.45052052e-01 -1.34206271e+00 6.24797165e-01 7.35632658e+00 -1.26557544e-01 -8.41792747e-02 9.30485427e-02 1.65525511e-01 -6.05542064e-01 2.86398888e-01 -7.84786567e-02 -1.31098223e+00 6.94480985e-02 2.35110402e-01 1.60677746e-01 3.63787591e-01 5.11496246e-01 -4.81956266e-02 -3.22799683e-01 -1.39164364e+00 1.51313317e+00 4.25952435e-01 -1.00369811e+00 -3.63161981e-01 4.81855541e-01 6.98911786e-01 -1.96064577e-01 -3.54240417e-01 -1.96164235e-01 4.75668967e-01 -5.56302905e-01 6.93622530e-01 5.77128947e-01 4.87030327e-01 -7.25041687e-01 5.75411856e-01 3.80024552e-01 -1.53838563e+00 2.58047432e-01 -4.15728539e-01 -3.02672803e-01 5.03655851e-01 3.98958594e-01 -5.49691796e-01 5.35886884e-01 9.50586259e-01 7.54540205e-01 -6.37171805e-01 1.05044484e+00 -2.00686585e-02 -3.42934102e-01 -6.02138400e-01 3.26598614e-01 -3.08915496e-01 -1.52988255e-01 6.91032708e-01 1.00539029e+00 2.46684104e-01 2.16719359e-01 7.75579333e-01 2.58801550e-01 6.73306882e-02 -2.93694466e-01 -7.36412466e-01 5.81667066e-01 4.08861667e-01 1.20195675e+00 -7.80518353e-01 -3.70042890e-01 -7.26040125e-01 1.27847195e+00 4.32510853e-01 2.62627780e-01 -9.06190932e-01 2.48713389e-01 7.26813138e-01 2.34816790e-01 2.00706065e-01 -5.31754315e-01 1.32135347e-01 -1.81667292e+00 2.29390264e-01 -9.93389249e-01 7.89188445e-01 -6.72725201e-01 -1.26605690e+00 3.05869162e-01 2.52101541e-01 -1.38778746e+00 -3.70542467e-01 -4.50398475e-01 -1.46541744e-01 6.82615876e-01 -7.81568110e-01 -1.18459690e+00 -5.75912595e-01 9.30739880e-01 4.33733135e-01 -9.38408524e-02 8.70795429e-01 3.85496110e-01 -3.77468884e-01 4.22768652e-01 -3.96519691e-01 3.22578430e-01 1.16663110e+00 -1.38683712e+00 6.83347285e-01 1.04323733e+00 3.85467768e-01 7.90773273e-01 7.29266465e-01 -7.18598783e-01 -1.69038916e+00 -6.31480217e-01 9.56832111e-01 -1.20035553e+00 5.07416166e-02 -4.95681137e-01 -1.95293218e-01 1.24026918e+00 3.18255238e-02 1.90138161e-01 7.58348346e-01 5.12166381e-01 -4.53840196e-01 1.73682277e-03 -1.02542603e+00 4.31380153e-01 1.39560568e+00 -3.62187177e-01 -6.31573439e-01 4.74674165e-01 2.03302577e-01 -1.13700461e+00 -7.13139832e-01 -1.31487632e-02 8.76534462e-01 -1.22292721e+00 1.63883996e+00 -4.62820262e-01 -2.61488914e-01 -3.53553116e-01 -2.04120398e-01 -8.63548577e-01 -5.90672731e-01 -7.57026017e-01 -3.20578784e-01 9.34925258e-01 -3.11240733e-01 -3.52690130e-01 1.08275819e+00 1.00965381e+00 5.00173271e-01 -1.56275913e-01 -8.19911540e-01 -7.45622098e-01 -6.76074326e-01 6.27872953e-03 2.51906484e-01 6.28611624e-01 -4.05924693e-02 4.07350838e-01 -9.39482272e-01 4.47097093e-01 1.34668911e+00 7.73756206e-02 1.45182335e+00 -1.29201329e+00 -5.41315138e-01 1.31638423e-01 -7.00465679e-01 -1.28096712e+00 -2.51029097e-02 -2.10415468e-01 -1.79722473e-01 -1.27307868e+00 6.80812538e-01 6.29752427e-02 1.60767570e-01 2.11969569e-01 -3.57410342e-01 6.68576300e-01 5.17674148e-01 2.58297026e-01 -1.17924380e+00 -6.40837625e-02 9.45691943e-01 4.68050353e-02 1.11575276e-01 2.87252367e-01 -5.48947752e-01 9.90440071e-01 3.44844073e-01 -4.58294541e-01 -4.94831167e-02 -6.09266877e-01 2.42346004e-01 4.71705496e-01 7.67594337e-01 -1.16117287e+00 5.77787161e-01 -1.10407509e-01 1.00088418e+00 -8.09388340e-01 8.97131920e-01 -9.29867446e-01 6.69748843e-01 4.10351247e-01 1.18125133e-01 6.48183644e-01 -1.04646794e-01 8.30690920e-01 3.40841785e-02 1.68726951e-01 7.09425807e-01 -8.00326645e-01 -6.43746376e-01 4.37193841e-01 -3.90341729e-02 2.49017671e-01 1.14132226e+00 -3.93898785e-01 -5.19747809e-02 -6.23981714e-01 -7.58122385e-01 4.65896815e-01 9.26618338e-01 4.60650921e-01 5.99824488e-01 -1.67654657e+00 -6.82941020e-01 7.09340200e-02 7.54362941e-02 -1.16941772e-01 1.44667864e-01 7.08364964e-01 -6.67522252e-01 3.37746650e-01 -2.79374182e-01 -9.38598752e-01 -1.84343851e+00 4.25252676e-01 3.11821282e-01 -2.37854540e-01 -7.41115987e-01 8.51327181e-01 3.16281803e-03 -4.86912906e-01 4.00877506e-01 3.30270141e-01 1.49644166e-01 -4.58059795e-02 8.26281905e-01 7.86049783e-01 -2.64375210e-01 -1.03121924e+00 -7.15482295e-01 9.81311321e-01 1.61807403e-01 -3.71566564e-01 1.13927400e+00 -6.90250516e-01 -2.15808097e-02 3.17750156e-01 9.64447141e-01 1.97672814e-01 -1.37259543e+00 -4.46313709e-01 -2.85950243e-01 -1.01015997e+00 -4.46050882e-01 -4.60888207e-01 -8.68098319e-01 4.15193409e-01 3.67240280e-01 -9.56708938e-02 7.62918413e-01 1.51484787e-01 7.38200188e-01 5.11964858e-01 7.17111945e-01 -9.54653502e-01 2.77107716e-01 3.17137659e-01 5.88344991e-01 -1.39867139e+00 5.64696014e-01 -5.64702034e-01 -5.07465422e-01 1.03888619e+00 7.69254327e-01 -1.86957553e-01 2.76836574e-01 3.36921215e-01 1.51162460e-01 -3.01186085e-01 -5.10036469e-01 -1.47725970e-01 5.11017919e-01 6.18216813e-01 3.60038221e-01 -1.00361936e-01 1.69490233e-01 5.47627285e-02 6.98197410e-02 -1.83667034e-01 3.77199054e-01 1.06388283e+00 -2.69008487e-01 -1.22203469e+00 -1.10523593e+00 -4.12779301e-02 -4.35828865e-01 4.24587637e-01 -4.43139344e-01 8.00507486e-01 -3.19395848e-02 9.46987927e-01 -7.14369307e-05 -9.73956510e-02 6.00302577e-01 -3.02338451e-02 1.08877432e+00 -5.95232189e-01 -4.17233139e-01 4.91376191e-01 1.85066536e-01 -9.89033222e-01 -9.09912586e-01 -1.12190652e+00 -6.45911574e-01 -5.86953819e-01 -2.43520930e-01 -1.09884925e-01 4.86474894e-02 7.41858423e-01 2.36557692e-01 6.84480295e-02 2.41718486e-01 -1.36974621e+00 -4.40413266e-01 -4.87791985e-01 -5.50714672e-01 7.69724846e-01 4.25171822e-01 -8.80085945e-01 -2.39883848e-02 2.67718226e-01]
[7.048717021942139, -0.9976739883422852]
0d13779f-a3e2-41b8-911f-5b4e5340429e
multi-task-text-classification-using-graph
2205.01204
null
https://arxiv.org/abs/2205.01204v1
https://arxiv.org/pdf/2205.01204v1.pdf
Multi-Task Text Classification using Graph Convolutional Networks for Large-Scale Low Resource Language
Graph Convolutional Networks (GCN) have achieved state-of-art results on single text classification tasks like sentiment analysis, emotion detection, etc. However, the performance is achieved by testing and reporting on resource-rich languages like English. Applying GCN for multi-task text classification is an unexplored area. Moreover, training a GCN or adopting an English GCN for Indian languages is often limited by data availability, rich morphological variation, syntax, and semantic differences. In this paper, we study the use of GCN for the Telugu language in single and multi-task settings for four natural language processing (NLP) tasks, viz. sentiment analysis (SA), emotion identification (EI), hate-speech (HS), and sarcasm detection (SAR). In order to evaluate the performance of GCN with one of the Indian languages, Telugu, we analyze the GCN based models with extensive experiments on four downstream tasks. In addition, we created an annotated Telugu dataset, TEL-NLP, for the four NLP tasks. Further, we propose a supervised graph reconstruction method, Multi-Task Text GCN (MT-Text GCN) on the Telugu that leverages to simultaneously (i) learn the low-dimensional word and sentence graph embeddings from word-sentence graph reconstruction using graph autoencoder (GAE) and (ii) perform multi-task text classification using these latent sentence graph embeddings. We argue that our proposed MT-Text GCN achieves significant improvements on TEL-NLP over existing Telugu pretrained word embeddings, and multilingual pretrained Transformer models: mBERT, and XLM-R. On TEL-NLP, we achieve a high F1-score for four NLP tasks: SA (0.84), EI (0.55), HS (0.83) and SAR (0.66). Finally, we show our model's quantitative and qualitative analysis on the four NLP tasks in Telugu.
['Radhika Mamidi', 'Venkata Charan Chinni', 'Lakshmi Sireesha Vakada', 'Subba Reddy Oota', 'Mounika Marreddy']
2022-05-02
null
null
null
null
['graph-reconstruction', 'xlm-r']
['graphs', 'natural-language-processing']
[ 6.78367242e-02 1.02781951e-01 6.31676316e-02 -3.11894089e-01 -7.27874279e-01 -6.48410559e-01 3.65912557e-01 2.96661407e-01 -4.00097817e-01 3.19380224e-01 3.72783840e-01 -6.91282034e-01 2.90213168e-01 -6.60569310e-01 -4.87420857e-01 -4.90940988e-01 7.37158209e-02 4.66021955e-01 -4.31325048e-01 -5.33378363e-01 -2.24160030e-02 1.51419327e-01 -8.78423750e-01 3.58882308e-01 9.88924563e-01 7.42799044e-01 2.94642933e-02 9.55728889e-01 -1.50222629e-01 8.60409677e-01 -5.75654745e-01 -9.60946500e-01 -2.56300986e-01 -2.87671268e-01 -9.26776052e-01 4.04988788e-03 3.14202696e-01 -1.77527741e-02 -1.06013671e-01 1.02251208e+00 5.10806799e-01 2.73052454e-01 5.95090747e-01 -1.23770130e+00 -1.19333375e+00 7.78358281e-01 -5.58265030e-01 -5.63339628e-02 2.96401024e-01 -9.31972861e-02 1.55945659e+00 -1.00440609e+00 6.88902617e-01 1.35071111e+00 8.54640424e-01 4.71114814e-01 -9.35957372e-01 -4.54427600e-01 8.75453204e-02 -5.84644005e-02 -1.11038637e+00 -1.19187109e-01 9.84817684e-01 -1.57853067e-01 1.57512605e+00 9.89190340e-02 4.09029037e-01 1.46534789e+00 5.07978916e-01 1.04092872e+00 8.99486363e-01 -4.84470904e-01 -8.97880420e-02 -6.61971048e-03 3.02069724e-01 1.07721543e+00 -1.78518638e-01 -4.80853647e-01 -5.86657941e-01 8.63394663e-02 1.45004496e-01 -1.93779990e-01 -3.83754581e-01 2.49754697e-01 -8.43029976e-01 1.27992666e+00 2.67193079e-01 4.28812593e-01 -7.51394257e-02 -1.14603927e-02 9.97326374e-01 5.38079083e-01 1.12051725e+00 2.50749558e-01 -8.23027790e-01 -1.91930279e-01 -5.89801848e-01 -1.88154146e-01 9.31143463e-01 7.84708858e-01 7.12504804e-01 4.95232314e-01 2.03004293e-03 1.35736549e+00 3.82325351e-01 5.78292131e-01 7.65885174e-01 -1.15323998e-01 9.40781534e-01 6.99349105e-01 -8.41510236e-01 -1.09716082e+00 -6.83883846e-01 -2.10420460e-01 -1.09734738e+00 -3.38924825e-01 4.32685018e-02 -5.66198826e-01 -8.75446498e-01 1.70764589e+00 4.73693907e-02 -2.95805663e-01 6.44152522e-01 6.06839836e-01 1.22556198e+00 1.03124130e+00 -1.51662184e-02 -4.89820354e-03 1.51273239e+00 -1.28238750e+00 -7.68380344e-01 -6.15711391e-01 1.24226046e+00 -7.12788165e-01 1.48554349e+00 2.54300654e-01 -5.16290545e-01 -3.36070836e-01 -7.21201658e-01 -3.89677346e-01 -7.95801282e-01 4.29142773e-01 6.34340465e-01 6.62253737e-01 -1.14216924e+00 2.36326858e-01 -5.94566107e-01 -6.81326449e-01 2.12765500e-01 2.48914272e-01 -6.48034871e-01 -1.60195336e-01 -1.35264421e+00 8.35078418e-01 4.22408462e-01 3.58540416e-01 -5.43149292e-01 -4.20058489e-01 -1.46462607e+00 1.13356784e-01 2.31736615e-01 -3.71077567e-01 7.77335346e-01 -9.13219512e-01 -1.62752593e+00 1.06425369e+00 4.93392013e-02 -2.76189983e-01 -6.17981292e-02 -2.49854207e-01 -5.99915922e-01 9.68394503e-02 -6.30308874e-03 3.69964212e-01 7.78643608e-01 -8.81649494e-01 -1.05022639e-01 -5.49826562e-01 -9.11969841e-02 3.37556601e-01 -5.82849145e-01 3.50343227e-01 -2.02904820e-01 -7.06865370e-01 -3.35073858e-01 -9.10106659e-01 5.39726838e-02 -6.39797151e-01 -6.89543903e-01 -5.62160015e-01 1.15321159e+00 -1.09749389e+00 1.06523287e+00 -2.27618647e+00 3.54973763e-01 -1.28993154e-01 2.29680881e-01 3.27088296e-01 -5.71072936e-01 6.93239689e-01 -1.52772531e-01 4.67193633e-01 -2.10197598e-01 -9.10633624e-01 7.66318804e-03 4.71980602e-01 -2.14164466e-01 3.40856522e-01 4.14876461e-01 1.28764224e+00 -6.43637419e-01 -4.09987360e-01 2.30868697e-01 6.27226532e-01 -4.71284896e-01 1.06570274e-01 -4.32311520e-02 1.87854692e-02 -2.63094991e-01 7.00769663e-01 4.71491933e-01 -1.06066629e-01 4.64105874e-01 -3.66782844e-01 1.11994527e-01 2.33847186e-01 -5.32444596e-01 1.61750555e+00 -1.02329409e+00 7.75214314e-01 1.62510291e-01 -1.12170839e+00 1.05269051e+00 3.94398719e-01 9.40602720e-02 -7.85325348e-01 3.44097316e-01 1.77431032e-01 -1.42370760e-01 -4.37721968e-01 7.12102532e-01 -2.77505279e-01 -4.71992493e-01 4.14901018e-01 7.29700565e-01 -3.70249242e-01 2.10161269e-01 4.39952999e-01 1.07428455e+00 -1.70065418e-01 3.13491940e-01 -2.03106076e-01 4.95676786e-01 -1.98800966e-01 2.41136894e-01 2.86591738e-01 -1.86670452e-01 6.27291620e-01 8.71542335e-01 -2.37672240e-01 -7.97420740e-01 -7.67912924e-01 2.14510575e-01 1.33551300e+00 -4.39270139e-01 -7.24872887e-01 -6.14784598e-01 -1.08423603e+00 -1.79132581e-01 8.64582300e-01 -6.49613321e-01 -1.59570575e-01 -7.27699280e-01 -1.11945415e+00 8.70760322e-01 4.10042107e-01 4.49740797e-01 -1.38906109e+00 1.41636312e-01 9.60046947e-02 -3.47706735e-01 -1.53490555e+00 -7.18944252e-01 3.92297268e-01 -5.89607477e-01 -8.67700994e-01 -3.19680631e-01 -1.14418089e+00 4.25033599e-01 -9.20398757e-02 1.14433706e+00 -6.28028959e-02 7.57779256e-02 4.77836996e-01 -8.00502419e-01 -1.75580293e-01 -5.37149549e-01 3.39682698e-01 -1.06525958e-01 6.21645078e-02 2.76620001e-01 -3.02042246e-01 5.83713017e-02 -1.93865046e-01 -9.86989498e-01 2.37576254e-02 3.50584358e-01 1.03462636e+00 3.88826758e-01 -3.56036946e-02 6.62849247e-01 -1.12998676e+00 1.06951261e+00 -3.23436290e-01 -2.39294872e-01 3.60765994e-01 -4.10203218e-01 -9.38903689e-02 1.10903895e+00 -3.62250000e-01 -9.84113812e-01 -3.40131283e-01 -5.93319118e-01 -3.38375241e-01 5.31568229e-02 1.02137661e+00 -1.49539262e-01 1.10433713e-01 3.48693401e-01 1.59141049e-01 -6.45996183e-02 -2.91273862e-01 6.19351685e-01 8.78617764e-01 2.05132619e-01 -2.74593621e-01 4.10839379e-01 1.71722360e-02 -2.92665005e-01 -1.25004387e+00 -1.11121917e+00 -4.28637326e-01 -4.78055537e-01 -7.58396238e-02 1.28416491e+00 -8.74822378e-01 -6.64084017e-01 6.24786556e-01 -1.30209565e+00 -6.06668532e-01 2.29925290e-02 2.80250847e-01 -2.19287708e-01 6.16126776e-01 -1.04320312e+00 -7.10790515e-01 -8.32385778e-01 -1.12192702e+00 1.44057715e+00 -1.25679731e-01 -1.00100406e-01 -1.74340665e+00 1.51832312e-01 7.06330121e-01 2.49257073e-01 9.70339105e-02 1.25772631e+00 -1.10430217e+00 2.69272238e-01 -2.88684033e-02 -3.47556740e-01 7.38842368e-01 1.31683066e-01 -7.87845328e-02 -9.94740188e-01 -4.26638186e-01 -1.69451916e-04 -8.15368831e-01 8.35598052e-01 3.40605110e-01 8.00305963e-01 -3.56061965e-01 1.22551084e-01 6.19300008e-01 1.50598800e+00 -2.70348161e-01 4.92381573e-01 1.04773000e-01 1.32419419e+00 6.78623736e-01 2.79484987e-01 1.03846230e-01 6.59952641e-01 2.80741215e-01 3.90558273e-01 -1.96084559e-01 -1.70718849e-01 -2.16349944e-01 9.06553984e-01 1.67268157e+00 2.89430380e-01 -9.40996706e-01 -1.10076714e+00 6.32993281e-01 -1.78686130e+00 -4.12479103e-01 -3.83631319e-01 1.48150301e+00 6.20922863e-01 -8.60693981e-04 -2.88544118e-01 -6.93367347e-02 4.82258409e-01 5.62287152e-01 -9.05777588e-02 -1.14000392e+00 -5.26317477e-01 3.69546324e-01 2.65439451e-01 5.41838169e-01 -1.20840108e+00 1.45486403e+00 4.76441908e+00 8.31484497e-01 -1.18552566e+00 2.78397441e-01 6.75240457e-01 4.33820128e-01 -3.76546532e-01 -1.96235776e-01 -7.68730462e-01 4.92701195e-02 1.18621325e+00 5.94757088e-02 4.77402657e-01 6.41654074e-01 8.81078392e-02 3.18144619e-01 -7.08742321e-01 1.06250250e+00 6.91801727e-01 -1.08409846e+00 3.59908670e-01 -1.91490114e-01 5.66459060e-01 5.34907818e-01 -3.63687016e-02 8.70262802e-01 4.31407183e-01 -1.08840108e+00 3.88807207e-01 -2.57209510e-01 8.87670338e-01 -7.98556328e-01 1.08806908e+00 1.77085429e-01 -1.28393030e+00 8.50285366e-02 -2.49161929e-01 8.08787793e-02 2.61451274e-01 6.84678018e-01 -8.14898610e-01 9.30654109e-01 6.62983775e-01 1.07094562e+00 -6.53247058e-01 -1.36756180e-02 -5.17084777e-01 1.04527330e+00 -1.71947435e-01 -3.06439519e-01 4.80572343e-01 -5.04385710e-01 4.13798660e-01 1.52277899e+00 8.06458965e-02 -2.96036184e-01 3.40772897e-01 6.37809157e-01 -5.89123011e-01 6.71944857e-01 -7.94659555e-01 -5.37678897e-01 -2.17982173e-01 1.62444317e+00 -7.65952170e-01 -1.47238165e-01 -6.10794127e-01 1.25899279e+00 7.58122444e-01 5.10088086e-01 -7.61255205e-01 -6.09234154e-01 3.62249911e-01 -7.42041051e-01 2.47238576e-01 -4.29314852e-01 -1.09582789e-01 -1.52003002e+00 -1.91138145e-02 -9.87651229e-01 4.64143783e-01 -7.20155001e-01 -1.54684627e+00 9.36293662e-01 -4.79854673e-01 -5.75329185e-01 -9.26901624e-02 -1.06780887e+00 -6.23382092e-01 8.04070175e-01 -1.60536039e+00 -1.83427942e+00 1.84711888e-01 5.83733678e-01 7.72246420e-01 -2.44498685e-01 9.65616584e-01 2.58104324e-01 -9.52399611e-01 6.48924291e-01 -1.77011658e-02 6.37203872e-01 5.65713763e-01 -1.52817488e+00 5.02446473e-01 8.13830674e-01 4.33015853e-01 1.70938849e-01 2.55851060e-01 -6.22471213e-01 -1.56628823e+00 -1.45655870e+00 1.23250163e+00 -2.95743674e-01 1.18145585e+00 -9.89238501e-01 -9.49901938e-01 1.04753232e+00 4.33451980e-01 -6.63461909e-02 7.86754966e-01 4.84708160e-01 -3.63354117e-01 1.84394002e-01 -8.69497657e-01 6.32286310e-01 5.99851429e-01 -9.45727468e-01 -4.88233149e-01 6.78855002e-01 1.02866817e+00 -1.99751571e-01 -1.02472138e+00 1.81073546e-01 2.36575708e-01 -6.10001147e-01 5.45740485e-01 -6.05846763e-01 6.07022703e-01 2.99018949e-01 -3.77650917e-01 -1.72163236e+00 6.13843426e-02 -4.40243930e-01 2.43087679e-01 1.47088850e+00 6.94323540e-01 -8.27504337e-01 4.52606082e-01 -1.92359276e-02 -5.49945056e-01 -8.32559466e-01 -8.82228196e-01 -5.00538349e-01 3.56287569e-01 -7.28193164e-01 1.23265170e-01 1.22344613e+00 1.50928333e-01 1.12699008e+00 -3.15903008e-01 1.17245696e-01 2.14869961e-01 2.20901240e-02 5.11895478e-01 -1.04856181e+00 -1.30248219e-01 -2.11056769e-01 -2.30521709e-01 -7.15727866e-01 9.27680969e-01 -1.40863872e+00 -5.69321699e-02 -1.76358688e+00 3.21780965e-02 8.58938470e-02 -2.98762489e-02 8.26311350e-01 -1.64317444e-01 1.83730781e-01 2.57289916e-01 -2.39644960e-01 -5.85984409e-01 8.37364554e-01 1.13392961e+00 -2.10049644e-01 -1.50188074e-01 -4.50832754e-01 -5.68634808e-01 5.47575116e-01 9.46096480e-01 -3.16831261e-01 -3.10406446e-01 -6.21244371e-01 6.66677654e-01 -2.96833497e-02 8.36320221e-02 -4.03735071e-01 -1.79307222e-01 2.82560050e-01 -5.93330972e-02 -4.20127690e-01 2.46277571e-01 -4.46471244e-01 -7.10114121e-01 9.14278254e-02 -2.14752574e-02 3.96974027e-01 4.38874006e-01 2.80879378e-01 -4.60944086e-01 -1.50359303e-01 5.17986894e-01 2.57579493e-03 -5.11747777e-01 2.09660664e-01 -5.84677517e-01 3.83421123e-01 4.91120517e-01 7.84066543e-02 -5.64787984e-01 -3.99096757e-01 -5.78559577e-01 2.96641976e-01 -1.28985476e-02 6.91927195e-01 8.76745343e-01 -9.26041424e-01 -8.27311873e-01 2.43788660e-01 2.08531916e-01 -1.41332418e-01 2.56491721e-01 8.67133498e-01 -4.87033576e-01 2.35812321e-01 2.58697003e-01 -3.99277031e-01 -1.40204096e+00 3.22906941e-01 2.56566733e-01 -8.04878235e-01 -5.31461239e-01 7.98459053e-01 2.87392586e-02 -1.31235611e+00 -1.85966760e-01 -5.60974479e-01 -4.71014738e-01 2.59706676e-01 -1.17020316e-01 2.82937121e-02 3.07889193e-01 -8.87954772e-01 -3.82982343e-01 5.86005151e-01 -1.92724675e-01 8.86391848e-02 1.49828684e+00 -8.94754082e-02 -4.51035082e-01 5.62312543e-01 1.68266344e+00 2.17238367e-01 -3.91843170e-01 1.49014458e-01 -3.47149558e-02 2.50403076e-01 2.42631868e-01 -7.24958658e-01 -1.17564082e+00 1.10780871e+00 1.42304108e-01 3.09015989e-01 1.06737065e+00 6.87949359e-02 1.05294025e+00 4.04971033e-01 -1.22699142e-01 -1.16152787e+00 2.18125135e-01 1.07937121e+00 9.23431873e-01 -1.37961268e+00 -2.30309859e-01 -4.31924701e-01 -1.10646999e+00 1.26403499e+00 4.62912619e-01 1.53354838e-01 7.32709229e-01 2.15664327e-01 2.36935273e-01 -6.37779415e-01 -7.40479946e-01 -1.16937563e-01 3.29491556e-01 4.45691884e-01 7.59341717e-01 1.94730014e-01 -7.90758133e-02 4.61103410e-01 -5.27005374e-01 -5.32446563e-01 6.80603981e-01 6.95574284e-01 3.92220728e-02 -9.96449590e-01 9.73602384e-02 5.43809712e-01 -7.12517977e-01 -6.16893589e-01 -5.84162951e-01 7.73220301e-01 -3.64789844e-01 1.17671573e+00 -4.60074190e-03 -3.94404233e-01 2.92853951e-01 2.59241521e-01 1.41895071e-01 -8.31758261e-01 -9.65956807e-01 -7.02927709e-02 5.64486980e-01 -2.77568132e-01 -3.42874706e-01 -3.40490341e-01 -1.30524671e+00 -8.66224989e-02 -5.50620258e-01 1.60416305e-01 7.34159946e-01 1.05619240e+00 1.93895757e-01 7.26095915e-01 5.15762568e-01 -5.55091202e-01 -2.05036759e-01 -1.13502693e+00 -8.02599609e-01 5.50465882e-01 2.46808842e-01 -1.23109244e-01 -5.78967214e-01 -2.25637078e-01]
[10.78431224822998, 9.555343627929688]
879c5240-8904-4867-b653-7d9576d1da3c
the-kriston-ai-system-for-the-voxceleb
2209.11433
null
https://arxiv.org/abs/2209.11433v1
https://arxiv.org/pdf/2209.11433v1.pdf
The Kriston AI System for the VoxCeleb Speaker Recognition Challenge 2022
This technical report describes our system for track 1, 2 and 4 of the VoxCeleb Speaker Recognition Challenge 2022 (VoxSRC-22). By combining several ResNet variants, our submission for track 1 attained a minDCF of 0:090 with EER 1:401%. By further incorporating three fine-tuned pre-trained models, our submission for track 2 achieved a minDCF of 0:072 with EER 1:119%. For track 4, our system consisted of voice activity detection (VAD), speaker embedding extraction, agglomerative hierarchical clustering (AHC) followed by a re-clustering step based on a Bayesian hidden Markov model and overlapped speech detection and handling. Our submission for track 4 achieved a diarisation error rate (DER) of 4.86%. The submissions all ranked the 2nd places for the corresponding tracks.
['Haizhou Li', 'Ximin Li', 'Zhijian Ye', 'Guoqiang Hong', 'Qutang Cai']
2022-09-23
null
null
null
null
['activity-detection']
['computer-vision']
[-2.56358415e-01 4.11242068e-01 5.96687123e-02 -2.98531890e-01 -1.26354909e+00 -3.23312283e-01 7.73223877e-01 -5.00369072e-02 -5.13745904e-01 2.61287719e-01 5.43815613e-01 -2.39405766e-01 3.25389892e-01 3.75852846e-02 -1.23461351e-01 -6.43021703e-01 -2.62914687e-01 1.48993477e-01 1.99507669e-01 1.23263158e-01 -1.52454913e-01 4.43543375e-01 -1.49315858e+00 1.59530416e-01 3.64746094e-01 9.98014331e-01 -2.90062129e-01 1.20456731e+00 -5.21055830e-04 6.86640501e-01 -9.13546443e-01 -2.19656199e-01 -7.30808079e-02 -3.22825342e-01 -5.16435683e-01 -1.13938905e-01 7.10280001e-01 -2.66362298e-02 -4.66168970e-01 7.98198760e-01 1.08361864e+00 4.25989777e-01 5.64634562e-01 -1.34149992e+00 -1.08034462e-01 9.46293056e-01 -4.16577578e-01 5.76477766e-01 2.48407066e-01 -6.19566813e-02 1.03436387e+00 -1.21891153e+00 2.09831655e-01 1.34667206e+00 8.12266707e-01 9.10297811e-01 -1.28451824e+00 -8.85301292e-01 -2.66742911e-02 3.88806283e-01 -1.71509027e+00 -1.31735647e+00 7.18913615e-01 -3.39562893e-01 1.32325637e+00 4.69787627e-01 4.31991667e-01 1.35603130e+00 -4.38036740e-01 9.42264497e-01 9.63278890e-01 -3.38993758e-01 4.03743953e-01 4.12075818e-01 2.84338117e-01 2.65742838e-01 -4.56094235e-01 1.24106050e-01 -7.39951134e-01 -1.80478007e-01 3.07060689e-01 -7.71128356e-01 -8.65189210e-02 5.08365571e-01 -1.11933303e+00 7.12710738e-01 2.77700108e-02 4.40346181e-01 -5.40459037e-01 6.49340823e-02 5.78038335e-01 2.30698019e-01 3.78537834e-01 7.05001354e-02 -2.06002891e-01 -3.79871339e-01 -1.57529020e+00 -8.01695418e-03 8.58084619e-01 1.00470865e+00 5.23714488e-03 7.52694726e-01 -4.05658692e-01 1.26826715e+00 7.03632832e-01 4.83570486e-01 5.37494779e-01 -8.79429460e-01 2.09892169e-01 -1.95587203e-01 -2.60022849e-01 -4.85208184e-01 -2.90356904e-01 -5.97384453e-01 -8.54385555e-01 -1.94885910e-01 1.26949340e-01 -3.32367718e-01 -1.03188896e+00 1.63903522e+00 2.96317190e-01 2.83383340e-01 1.75930470e-01 6.17773473e-01 1.33086288e+00 9.92259920e-01 2.49339104e-01 -3.20750922e-01 1.37359250e+00 -1.15200531e+00 -9.41428602e-01 2.54737049e-01 8.22508633e-02 -1.00015247e+00 6.29309833e-01 5.85626245e-01 -1.24222779e+00 -7.48024404e-01 -1.03920853e+00 2.88324475e-01 1.38003483e-01 8.65943544e-03 -9.90139842e-02 1.08487833e+00 -1.49807942e+00 1.60106599e-01 -8.31343055e-01 -4.12343353e-01 1.42681807e-01 3.64224195e-01 -1.32301837e-01 5.33492625e-01 -1.05676639e+00 5.77008665e-01 -1.11885019e-01 8.95114914e-02 -1.19559968e+00 -7.52858579e-01 -6.78098202e-01 -7.48007223e-02 -1.69714138e-01 -1.64368227e-01 1.37898088e+00 -4.66041952e-01 -2.01678038e+00 8.13645780e-01 -4.10042495e-01 -6.87653959e-01 6.49085224e-01 -2.36607894e-01 -1.10509241e+00 9.54453796e-02 -1.23535529e-01 7.45812058e-01 9.20533597e-01 -8.77215564e-01 -6.57221496e-01 -1.10222846e-01 -6.18958950e-01 8.73176530e-02 -2.69261330e-01 5.88810503e-01 -5.93257070e-01 -6.95321202e-01 8.62210393e-02 -7.57654428e-01 9.35610756e-02 -7.06290960e-01 -9.33185816e-01 -5.39211094e-01 6.37747765e-01 -1.16504669e+00 1.39313078e+00 -2.54293513e+00 2.03959960e-02 1.96231022e-01 4.15202320e-01 3.86833280e-01 -9.19316709e-02 2.36392885e-01 -2.34541893e-01 1.56277090e-01 9.73001868e-02 -8.88927698e-01 3.36008549e-01 -4.61865157e-01 -2.08243564e-01 4.72165436e-01 -2.51175854e-02 3.92521441e-01 -5.33649206e-01 -3.99677873e-01 3.94315332e-01 9.60520029e-01 -4.97477889e-01 3.79770815e-01 3.71605307e-01 5.04577644e-02 2.53139019e-01 4.83741462e-01 6.47771835e-01 3.55957925e-01 -1.12586934e-02 -2.11871967e-01 -2.95795768e-01 6.78096235e-01 -1.41403472e+00 1.09991539e+00 -2.66461462e-01 9.99076426e-01 4.11426038e-01 -4.15562570e-01 1.03791881e+00 8.62982035e-01 4.94405448e-01 -2.65756220e-01 8.75584781e-02 6.88386932e-02 -8.54686275e-02 -3.17270964e-01 3.12100023e-01 -1.44327894e-01 -1.53703149e-02 1.29935995e-01 3.81593198e-01 9.46677551e-02 -3.68762583e-01 2.39880025e-01 1.08669555e+00 -5.76624334e-01 -1.35405199e-03 -2.94513106e-01 5.35652339e-01 -5.06264508e-01 5.69990516e-01 8.17314982e-01 -8.72189820e-01 7.12535501e-01 8.51719528e-02 -2.27165725e-02 -9.34089839e-01 -1.40444148e+00 -3.20050776e-01 9.18247461e-01 -5.05075991e-01 -4.93179500e-01 -1.02879643e+00 -4.57469106e-01 -3.56383771e-01 8.21733415e-01 -3.40565801e-01 2.39877805e-01 -6.09084249e-01 -5.53308666e-01 1.26166523e+00 3.84521902e-01 5.84221661e-01 -1.04812431e+00 4.15185168e-02 2.77621448e-01 -2.93457568e-01 -1.27552986e+00 -7.86274612e-01 2.98365027e-01 -5.08987010e-01 -4.36344415e-01 -8.37854147e-01 -7.77110040e-01 -3.00741401e-02 -6.82461113e-02 7.75943816e-01 -2.30500624e-01 -8.59287679e-02 2.79595345e-01 -1.70833677e-01 -3.22475523e-01 -5.80122709e-01 3.35368186e-01 4.97886389e-01 1.42885029e-01 5.52803159e-01 -4.24100101e-01 -4.40659970e-01 2.45153368e-01 -2.86524653e-01 -3.04663420e-01 1.42096639e-01 7.50943303e-01 2.51670003e-01 -1.34505466e-01 6.61916196e-01 -3.74579370e-01 4.14958954e-01 -1.63967267e-01 -5.58439791e-01 -1.22476369e-01 -4.45803195e-01 -3.74056876e-01 2.89038807e-01 -4.67913300e-01 -9.06476915e-01 4.82142493e-02 -7.53882349e-01 -5.17504811e-01 -5.18379986e-01 -2.60575801e-01 -3.50081980e-01 3.87903988e-01 5.98877192e-01 2.26391256e-01 -2.57229269e-01 -6.54030621e-01 3.16245556e-01 1.25882387e+00 6.05098665e-01 2.56526358e-02 6.46735787e-01 -5.35657257e-02 -7.65995443e-01 -1.57589471e+00 -4.16614920e-01 -7.11416006e-01 -4.60917056e-01 -2.36286402e-01 1.06512105e+00 -1.34208798e+00 -8.69308650e-01 6.10607326e-01 -1.12372983e+00 -1.48055926e-01 -3.77438486e-01 8.04804683e-01 -1.65296420e-01 2.61323512e-01 -8.22789013e-01 -1.15680456e+00 -6.44131720e-01 -1.11474454e+00 9.00329053e-01 -5.82761355e-02 -7.11001337e-01 -8.09205949e-01 3.48607123e-01 7.75686502e-01 6.14860177e-01 -1.86351866e-01 3.67712617e-01 -1.11679637e+00 -4.53688353e-02 -3.83528620e-02 1.20369509e-01 6.42906725e-01 -1.21234342e-01 1.31513238e-01 -1.82308626e+00 -3.55641603e-01 -3.44251469e-02 1.76201239e-01 8.82893562e-01 4.72902417e-01 8.36115837e-01 -3.57522577e-01 -6.14414588e-02 4.01022851e-01 7.85240948e-01 3.07993442e-01 6.21154189e-01 -9.40408707e-02 5.29009819e-01 6.06106400e-01 -1.44239590e-01 2.88289517e-01 4.09812540e-01 1.10102451e+00 -9.03832465e-02 1.41880199e-01 -7.22125232e-01 -1.76229596e-01 7.83482611e-01 1.44122362e+00 1.86092079e-01 -2.65768588e-01 -8.82100403e-01 9.50524151e-01 -1.27467453e+00 -1.26580560e+00 -3.16842675e-01 2.17557740e+00 7.82690167e-01 5.03799319e-02 7.75923133e-01 5.88958085e-01 1.04028010e+00 2.80120343e-01 -2.61262864e-01 -5.94922841e-01 -6.20491132e-02 2.14973599e-01 1.69273555e-01 8.88774931e-01 -1.22147095e+00 1.04094207e+00 7.15118265e+00 9.24753308e-01 -1.05281961e+00 3.12262237e-01 4.21545923e-01 -3.69395107e-01 4.42357026e-02 -5.85784554e-01 -1.09457612e+00 4.65848744e-01 1.72428966e+00 -1.44484174e-02 3.55383724e-01 7.37798393e-01 2.13960841e-01 2.59009242e-01 -9.17170405e-01 1.28233016e+00 3.41722369e-01 -9.59549904e-01 -3.53076965e-01 2.20879644e-01 4.96746063e-01 4.98436689e-01 2.39849836e-02 5.24379373e-01 4.38560992e-01 -1.06176722e+00 8.35264921e-01 1.72595575e-01 7.02129126e-01 -7.76106954e-01 6.58796608e-01 -1.71675850e-02 -1.26700604e+00 1.15973748e-01 -4.02021743e-02 5.06587744e-01 2.33277425e-01 6.52689815e-01 -1.24056256e+00 2.12354675e-01 8.99143159e-01 3.39063019e-01 -1.07453175e-01 1.15922213e+00 -2.81864345e-01 1.26284468e+00 -5.03236353e-01 -1.34027883e-01 -1.66428804e-01 5.48164725e-01 1.08067834e+00 1.78155112e+00 3.05020250e-02 -1.44328177e-01 -2.11879924e-01 3.21336776e-01 -2.74664998e-01 1.42715648e-01 -5.10825440e-02 1.81818411e-01 1.03792131e+00 1.15346742e+00 -3.23430747e-01 -3.83074224e-01 1.12008899e-01 9.09288287e-01 -7.92263150e-02 4.10138190e-01 -9.30816472e-01 -7.22425938e-01 8.66858244e-01 -5.21777272e-02 4.06318188e-01 2.36858428e-02 -7.28186220e-02 -1.12499130e+00 -1.44444555e-01 -8.42369318e-01 3.02941829e-01 -2.30186448e-01 -1.21422791e+00 1.17851901e+00 -1.03465654e-01 -8.50134611e-01 -3.47314149e-01 -7.93882534e-02 -7.35130966e-01 9.34773088e-01 -1.22077942e+00 -8.42133820e-01 2.83305198e-02 5.01009405e-01 7.20978796e-01 -6.14836276e-01 9.63122070e-01 7.24417567e-01 -9.91311491e-01 1.30327618e+00 -1.17056118e-02 2.92969435e-01 5.98172009e-01 -1.30619454e+00 7.86521852e-01 8.04662406e-01 3.19841206e-01 4.11956787e-01 8.65763187e-01 -1.73103228e-01 -1.08409023e+00 -1.18346918e+00 1.44312000e+00 -4.78443146e-01 5.83848596e-01 -6.74028337e-01 -7.33480752e-01 5.35283566e-01 5.20202100e-01 -1.87445879e-01 8.87616456e-01 3.40282470e-01 -5.28433383e-01 -1.92693308e-01 -1.24223316e+00 2.77744353e-01 6.96280599e-01 -7.94460893e-01 -7.13449240e-01 -9.61123593e-03 7.86285460e-01 -9.78628993e-02 -1.01796031e+00 1.89865813e-01 5.56656182e-01 -8.13349843e-01 8.70981693e-01 -3.91067177e-01 -3.59485835e-01 -2.49482140e-01 -5.38271666e-01 -1.11975849e+00 -3.06899607e-01 -1.00386214e+00 -2.22912341e-01 1.64790213e+00 5.67101359e-01 -3.61049056e-01 6.76289380e-01 1.30116478e-01 -2.55926400e-01 -2.19395995e-01 -1.40232086e+00 -9.67806518e-01 -7.23393634e-02 -8.39647830e-01 2.67338693e-01 8.08850765e-01 -2.05312595e-02 4.69137311e-01 -3.92780304e-01 3.46329570e-01 8.78117859e-01 -4.91783410e-01 7.23968148e-01 -1.17768013e+00 -2.24605814e-01 -5.85756063e-01 -4.93268669e-01 -9.66924906e-01 4.57466505e-02 -7.47241199e-01 2.28570193e-01 -1.26108623e+00 4.36535338e-03 -1.86487497e-03 -4.85043257e-01 3.47216249e-01 9.20099169e-02 3.31918806e-01 3.58242214e-01 1.61430836e-01 -6.10652268e-01 5.84790230e-01 2.51673937e-01 -1.86372459e-01 -4.96382177e-01 9.25270095e-02 -4.68902916e-01 5.84301949e-01 7.36564279e-01 -5.34576774e-01 7.56273717e-02 -1.88364610e-02 -6.38706446e-01 -2.70572454e-02 1.60734251e-01 -1.14396453e+00 4.34085518e-01 4.67111409e-01 1.71416298e-01 -7.61227429e-01 7.32166052e-01 -3.93218726e-01 9.58678052e-02 3.52489740e-01 -3.51451039e-01 -2.79781491e-01 5.00267565e-01 1.26679614e-01 -3.36734653e-01 2.04505712e-01 9.42697465e-01 4.48392183e-01 -2.92188913e-01 -5.96571248e-03 -9.63297367e-01 1.26022294e-01 7.38538086e-01 -1.54888794e-01 4.03426178e-02 -4.29027528e-01 -1.28105128e+00 7.34163299e-02 -3.17029923e-01 6.15218878e-01 6.07797027e-01 -1.24776411e+00 -1.04968464e+00 3.73288304e-01 -9.60149541e-02 -5.09476066e-01 4.65864718e-01 7.53247142e-01 -6.47306144e-02 4.50593352e-01 3.37803394e-01 -7.33706772e-01 -1.77081847e+00 -2.33567595e-01 4.02752697e-01 -3.17205722e-03 -4.64928508e-01 1.22776067e+00 -2.86101907e-01 -4.66122359e-01 8.76641512e-01 1.04911849e-01 -2.52659947e-01 3.42156112e-01 8.41447949e-01 6.84068739e-01 3.65072131e-01 -1.06377220e+00 -7.51519203e-01 1.48175940e-01 -1.90987393e-01 -7.30954170e-01 1.29419112e+00 -8.05205777e-02 3.32998246e-01 6.04089200e-01 1.24140120e+00 2.63003677e-01 -9.66278851e-01 -1.48159176e-01 7.16821179e-02 3.68088633e-02 5.73121548e-01 -8.50329101e-01 -9.30571079e-01 1.10438144e+00 9.10789251e-01 1.38919145e-01 9.79155838e-01 5.10012321e-02 8.62818718e-01 7.29300454e-02 -1.51497602e-01 -1.05253947e+00 -2.07367450e-01 6.76708400e-01 8.12078118e-01 -9.34306562e-01 -4.43758398e-01 -1.36693344e-01 -5.69368303e-01 8.12455058e-01 3.72177750e-01 1.76724181e-01 8.87139976e-01 3.83989930e-01 3.85734826e-01 2.89065316e-02 -8.57817590e-01 7.09175915e-02 4.30431664e-01 4.95942861e-01 5.94946444e-01 2.69714236e-01 3.39414120e-01 6.02372408e-01 -6.22998893e-01 -5.74889362e-01 1.11299917e-01 3.50500405e-01 -4.55207795e-01 -7.24474072e-01 -4.48201805e-01 -3.47134955e-02 -5.70038021e-01 -2.37689763e-01 -4.03797239e-01 3.82794052e-01 -1.88341856e-01 1.39320850e+00 1.87911853e-01 -7.32650399e-01 4.97456312e-01 2.90241867e-01 1.45984337e-01 -5.81464827e-01 -1.05746245e+00 7.58921981e-01 3.35797489e-01 -4.32629138e-01 -1.76520526e-01 -9.90252018e-01 -1.08237040e+00 -4.32847083e-01 -2.60944337e-01 3.97390842e-01 1.04063666e+00 6.06410325e-01 4.15216327e-01 6.92661703e-01 8.43277991e-01 -4.85653847e-01 -4.24076349e-01 -1.32920146e+00 -5.77457368e-01 -2.09185392e-01 8.08133960e-01 -1.74641579e-01 -7.50109196e-01 8.87983665e-03]
[14.443395614624023, 6.025880813598633]
5a4fa934-d0ac-479b-bc15-a6ca3a24299a
introduction-to-core-sets-an-updated-survey
2011.09384
null
https://arxiv.org/abs/2011.09384v1
https://arxiv.org/pdf/2011.09384v1.pdf
Introduction to Core-sets: an Updated Survey
In optimization or machine learning problems we are given a set of items, usually points in some metric space, and the goal is to minimize or maximize an objective function over some space of candidate solutions. For example, in clustering problems, the input is a set of points in some metric space, and a common goal is to compute a set of centers in some other space (points, lines) that will minimize the sum of distances to these points. In database queries, we may need to compute such a some for a specific query set of $k$ centers. However, traditional algorithms cannot handle modern systems that require parallel real-time computations of infinite distributed streams from sensors such as GPS, audio or video that arrive to a cloud, or networks of weaker devices such as smartphones or robots. Core-set is a "small data" summarization of the input "big data", where every possible query has approximately the same answer on both data sets. Generic techniques enable efficient coreset \changed{maintenance} of streaming, distributed and dynamic data. Traditional algorithms can then be applied on these coresets to maintain the approximated optimal solutions. The challenge is to design coresets with provable tradeoff between their size and approximation error. This survey summarizes such constructions in a retrospective way, that aims to unified and simplify the state-of-the-art.
['Dan Feldman']
2020-11-18
null
null
null
null
['data-summarization']
['miscellaneous']
[-1.26188472e-01 -2.49088630e-01 -2.48598486e-01 -4.48021829e-01 -7.94200420e-01 -6.24836862e-01 -3.64645422e-01 8.99642766e-01 -5.20583570e-01 3.50312233e-01 -2.63467789e-01 6.93463087e-02 -7.90043831e-01 -1.18025076e+00 -9.83303428e-01 -6.08223915e-01 -5.96268177e-01 1.22428060e+00 2.07422987e-01 -1.58933043e-01 3.88770729e-01 4.02949154e-01 -1.90036118e+00 2.95565516e-01 6.08734608e-01 1.52001882e+00 4.37217027e-01 8.83389950e-01 -2.11590260e-01 2.05662176e-01 -7.50193417e-01 -3.43446672e-01 4.62802082e-01 5.12069464e-02 -9.06191409e-01 1.66899011e-01 -3.30992341e-02 -6.55003041e-02 -3.12222354e-02 1.11332428e+00 4.68871236e-01 5.34778424e-02 2.80046970e-01 -1.60008013e+00 -2.89604902e-01 7.77436972e-01 -7.84912407e-01 9.82376933e-02 5.32110333e-01 -2.24969760e-01 1.14467704e+00 -8.06353986e-01 3.88847351e-01 1.04922628e+00 3.71531576e-01 1.33139908e-01 -1.23379874e+00 -1.25050008e-01 -1.03644095e-01 4.90758330e-01 -1.64281976e+00 -3.59706193e-01 2.23090664e-01 1.91069245e-01 9.24994230e-01 8.01887989e-01 6.00133538e-01 -1.08516298e-01 -1.39657214e-01 6.80561423e-01 2.96947360e-02 -2.91815877e-01 9.43651199e-01 1.60027906e-01 1.79011058e-02 2.17151508e-01 5.64268351e-01 -4.55561638e-01 -8.16892445e-01 -7.11827457e-01 3.91301811e-02 5.21640658e-01 -2.63404045e-02 -4.19484913e-01 -1.24168432e+00 9.75905359e-01 3.21064353e-01 9.90428776e-02 -4.17643815e-01 2.24339798e-01 4.42691743e-01 5.86187303e-01 1.61858678e-01 2.70858258e-01 -6.36497259e-01 -1.71632677e-01 -9.67804193e-01 5.85332632e-01 1.24269760e+00 1.49301445e+00 9.87826943e-01 -6.69951260e-01 1.85308993e-01 5.65297604e-01 5.48308231e-02 7.37965107e-01 1.42841101e-01 -1.16920853e+00 7.40486383e-01 6.87968850e-01 3.23273033e-01 -1.16043007e+00 -4.04094875e-01 -1.98430978e-02 -9.02661383e-01 -3.02863926e-01 2.37664759e-01 -1.50129095e-01 -3.14254649e-02 1.40188360e+00 7.97391653e-01 -1.32589191e-01 -1.19272456e-01 1.17710686e+00 4.51250449e-02 1.03218031e+00 -7.24694848e-01 -5.72392702e-01 1.23416436e+00 -7.15839565e-01 -2.58315474e-01 5.71558513e-02 8.32753003e-01 -7.80465066e-01 8.21597397e-01 7.66786337e-01 -1.76742327e+00 -1.30017847e-01 -9.17468548e-01 2.51393672e-02 -3.53696048e-01 -4.62036073e-01 4.33215946e-01 5.51215112e-01 -1.24152124e+00 5.19436121e-01 -7.01791286e-01 -2.49887824e-01 1.47341013e-01 6.85820639e-01 7.76560903e-02 -3.90123606e-01 -6.37536108e-01 2.55009383e-01 2.59731472e-01 -1.66989386e-01 -5.58842063e-01 -8.13890457e-01 -3.48381519e-01 1.91475809e-01 4.58408296e-01 -8.37252736e-01 1.20501804e+00 -8.38058472e-01 -8.10525119e-01 7.43705809e-01 -2.74589986e-01 -5.36019146e-01 1.07793152e-01 -7.78341293e-02 -5.12478985e-02 3.69877577e-01 1.07636042e-01 3.60549420e-01 5.50399184e-01 -6.78224087e-01 -1.10010481e+00 -8.12644482e-01 1.43421220e-03 2.45994568e-01 -7.16709971e-01 2.01655984e-01 -7.24223077e-01 -5.04191555e-02 2.22868696e-01 -9.10654902e-01 -7.31384754e-01 1.24203078e-01 -2.85310835e-01 -4.59968209e-01 7.66909897e-01 1.14474535e-01 1.37703454e+00 -2.05380297e+00 2.40167931e-01 6.99118614e-01 2.81000584e-01 -3.42084527e-01 2.00010259e-02 7.42912233e-01 3.09396416e-01 -1.13544073e-02 -1.67094588e-01 -4.28616583e-01 1.26052245e-01 4.77381319e-01 -2.85824656e-01 7.81072199e-01 -3.58646333e-01 2.68271923e-01 -8.21186721e-01 -4.99860436e-01 -1.19122677e-01 -1.94151461e-01 -8.99404585e-01 2.59686023e-01 -6.24612331e-01 -4.48031247e-01 -3.69600922e-01 4.82331663e-01 8.78909111e-01 -4.73358929e-01 6.15888787e-03 3.42577219e-01 4.58998093e-03 1.09588891e-01 -1.93210530e+00 1.83930790e+00 -1.58803701e-01 1.45657569e-01 5.75624585e-01 -1.41112494e+00 8.47247243e-01 1.65805906e-01 1.18639731e+00 -3.24374765e-01 -2.12210879e-01 4.62510169e-01 -4.11812931e-01 -4.05069292e-01 7.19414651e-01 2.94051796e-01 -3.47637028e-01 8.53364706e-01 -5.55448890e-01 -1.56374946e-01 4.16426539e-01 4.44083095e-01 1.39774692e+00 -1.04939568e+00 -2.60113180e-01 -2.07167715e-01 2.81259030e-01 3.59274834e-01 4.57176834e-01 7.53098607e-01 2.33368620e-01 6.57711387e-01 4.58189905e-01 -5.20035803e-01 -1.35107470e+00 -9.84469891e-01 -3.13259102e-02 1.31368220e+00 3.57312322e-01 -7.66355276e-01 -8.08154285e-01 -6.34057820e-03 3.41867208e-01 2.15898126e-01 -7.66161606e-02 1.40508264e-01 -4.68773782e-01 -5.87147117e-01 7.47454390e-02 1.99725702e-01 -5.84143661e-02 -5.70609152e-01 -1.05475557e+00 5.08204639e-01 -1.92790076e-01 -8.43423069e-01 -8.31667185e-01 1.48907021e-01 -1.13702917e+00 -1.04265165e+00 -3.11078966e-01 -8.35526645e-01 6.55228496e-01 7.65137732e-01 1.29695153e+00 2.60481298e-01 -3.48513722e-01 4.51603115e-01 -3.39401960e-01 -6.09311461e-01 3.29829872e-01 4.08018567e-02 2.88393945e-01 1.02394456e-02 6.96864009e-01 -5.49958169e-01 -9.06363189e-01 5.44460833e-01 -1.21082318e+00 -4.82042432e-01 1.35354221e-01 2.83655733e-01 1.08335173e+00 5.04361749e-01 5.27594090e-01 -5.13443291e-01 6.54179752e-01 -1.03555608e+00 -7.86205888e-01 3.05556059e-01 -5.82200885e-01 -1.83557514e-02 7.88118839e-01 -2.44873554e-01 -1.44110480e-02 1.68976143e-01 2.67501861e-01 -5.45052052e-01 1.40424132e-01 4.36151415e-01 -2.46482790e-01 3.60897064e-01 6.11097574e-01 4.81566489e-02 6.58409894e-02 -3.41731519e-01 5.41960537e-01 8.42318475e-01 4.79621381e-01 -9.20523584e-01 2.43921846e-01 7.68771112e-01 1.24556623e-01 -8.32758307e-01 -4.92586136e-01 -1.01561975e+00 -2.98933864e-01 7.85048231e-02 1.93140894e-01 -5.47435880e-01 -1.21541905e+00 -2.81987824e-02 -1.14209616e+00 4.84960489e-02 -7.92371571e-01 1.85866013e-01 -9.20121253e-01 1.37451962e-01 -3.33624333e-01 -7.44118214e-01 -6.22149050e-01 -8.51342678e-01 1.04418337e+00 1.38972193e-01 -1.40401963e-02 -6.08078003e-01 1.12525895e-01 4.58305441e-02 4.47104275e-01 1.48828894e-01 5.92482865e-01 -7.76093423e-01 -9.18106556e-01 -5.42457342e-01 2.29302398e-03 -5.17538488e-02 -6.01538643e-02 -2.88080629e-02 -2.76489258e-01 -5.33897519e-01 2.91957855e-01 -2.69499868e-01 2.60042340e-01 5.43058157e-01 1.76729655e+00 -9.01004255e-01 -5.92523217e-01 6.18848979e-01 1.53636098e+00 -6.21019378e-02 2.92431444e-01 1.73359867e-02 5.33502698e-02 6.58869207e-01 9.29191351e-01 1.33790755e+00 4.75096643e-01 4.98929709e-01 6.36988223e-01 2.83902258e-01 9.20788169e-01 2.06478283e-01 1.20813370e-01 8.27838421e-01 4.12452132e-01 -3.54664564e-01 -7.00825930e-01 8.85033369e-01 -2.20325327e+00 -9.54590201e-01 -1.32901609e-01 2.57552695e+00 7.18036532e-01 7.69810081e-02 6.16433740e-01 4.99122292e-01 7.53755569e-01 -4.10371661e-01 -8.72494996e-01 -6.15727365e-01 -1.04011677e-01 1.28556088e-01 8.20555449e-01 1.88870225e-02 -6.43272102e-01 1.92657113e-01 6.16574383e+00 7.54457176e-01 -8.86307359e-01 -4.93195690e-02 7.42793918e-01 -9.50376272e-01 -4.43802804e-01 -1.62569836e-01 -7.63178229e-01 6.31484151e-01 1.51578355e+00 -7.28036106e-01 8.30882251e-01 1.07167506e+00 3.04540455e-01 -3.20588887e-01 -1.65956736e+00 1.34181237e+00 -1.66069001e-01 -1.62247348e+00 -4.64492261e-01 3.27518463e-01 7.76371479e-01 2.15056166e-01 1.10210851e-01 -2.30368197e-01 2.99743086e-01 -9.14574206e-01 5.90296566e-01 4.78526890e-01 5.48189700e-01 -1.10211408e+00 3.60076904e-01 7.70937324e-01 -1.20938313e+00 -3.48695606e-01 -8.09431970e-01 -7.98793510e-02 1.97073907e-01 9.08460498e-01 -5.97587168e-01 3.22511464e-01 1.29159784e+00 2.04218894e-01 9.85245965e-03 1.41337717e+00 8.25465918e-01 2.57377058e-01 -1.28888857e+00 -5.57813048e-01 1.68019727e-01 -4.22715873e-01 3.08316678e-01 1.08931017e+00 6.13880992e-01 3.76819849e-01 3.03242326e-01 5.40846527e-01 -2.99547911e-01 3.72588843e-01 -6.75354302e-01 3.30124140e-01 1.01482117e+00 1.22716522e+00 -6.20617807e-01 -5.24585307e-01 -4.56202209e-01 5.48434198e-01 2.30118215e-01 4.57170419e-02 -7.14954138e-01 -6.89023077e-01 9.89851475e-01 5.65869212e-01 2.19430313e-01 -3.06425363e-01 -5.59559226e-01 -7.08508790e-01 4.15362567e-01 -8.13621163e-01 9.88946557e-01 -4.67238963e-01 -1.33559954e+00 1.13093734e-01 -3.32541615e-02 -1.04777575e+00 -2.10734203e-01 -1.43888131e-01 -5.85813284e-01 4.75280315e-01 -7.93061018e-01 -1.56085581e-01 -1.55351281e-01 1.13402259e+00 4.73942995e-01 1.15775362e-01 5.27653396e-01 4.05773610e-01 -2.00121969e-01 5.05402029e-01 5.74171066e-01 -5.72105885e-01 3.67244452e-01 -1.28557050e+00 -1.03111817e-02 4.31507558e-01 1.14475012e-01 3.37862253e-01 7.77879715e-01 -1.72960415e-01 -2.13477349e+00 -9.79770660e-01 8.66063297e-01 -3.40245754e-01 5.05861402e-01 -2.87758589e-01 -6.17827475e-01 3.60806078e-01 -1.21037088e-01 3.56439739e-01 7.28066146e-01 -3.29304934e-02 7.26770386e-02 -7.13123441e-01 -1.37826443e+00 2.55981952e-01 8.79213631e-01 -3.46595794e-02 -1.43126264e-01 8.19036722e-01 9.82554018e-01 -2.65902400e-01 -1.03480697e+00 -6.78818077e-02 1.27427787e-01 -1.03524494e+00 9.83041227e-01 -7.78641105e-01 -1.68494843e-02 -3.45641345e-01 -6.02870286e-01 -9.34579253e-01 -4.88747936e-03 -9.48381305e-01 -4.27203149e-01 8.43061209e-01 3.67019892e-01 -2.81575978e-01 1.28170884e+00 1.02988434e+00 1.06528345e-02 -1.07652950e+00 -1.17881322e+00 -6.78632855e-01 -2.08284423e-01 -6.43372536e-01 1.08344066e+00 4.76937294e-01 5.27492642e-01 2.09874004e-01 5.62676322e-03 3.46566528e-01 9.46760654e-01 4.87218529e-01 9.36916828e-01 -1.17853463e+00 -1.63034603e-01 -1.75977930e-01 -2.13023856e-01 -1.30339360e+00 -5.58928907e-01 -7.16435254e-01 -1.25931859e-01 -1.35415649e+00 1.14395365e-01 -1.03408694e+00 9.73121971e-02 -1.23720199e-01 4.75185901e-01 -3.91296178e-01 1.24203078e-01 4.06767339e-01 -1.40889597e+00 2.65359819e-01 5.86320460e-01 1.02067823e-02 -4.26786959e-01 5.34307361e-01 -5.73037744e-01 4.69030291e-01 7.37731516e-01 -7.35023975e-01 -3.80953193e-01 -7.45805323e-01 7.68373609e-01 5.56312084e-01 -1.71959341e-01 -9.02167082e-01 1.13417840e+00 -3.65486205e-01 -2.54587997e-02 -1.05819416e+00 2.57732004e-01 -1.16409779e+00 2.06869036e-01 4.80334461e-01 -2.54919320e-01 7.18344629e-01 -3.05355757e-01 6.86665058e-01 -2.20926046e-01 -3.59302580e-01 5.08646131e-01 -1.00724764e-01 -5.53351864e-02 7.49012232e-01 -1.07942075e-01 3.57104331e-01 1.44498539e+00 -2.60160089e-01 -1.70419738e-01 -4.26936626e-01 -4.23636228e-01 8.91068518e-01 5.94878316e-01 1.41437709e-01 8.48870397e-01 -1.21741486e+00 -8.07114959e-01 -2.16381643e-02 -1.06353406e-02 7.92997897e-01 8.13851357e-02 7.74665833e-01 -7.00358093e-01 4.60554838e-01 2.45719910e-01 -9.13967788e-01 -1.01684451e+00 1.20332003e+00 4.72372957e-02 -2.97709256e-02 -2.18909159e-01 8.45059693e-01 -3.49014014e-01 -1.01043507e-01 5.81947863e-01 -3.95587146e-01 5.31857610e-01 -4.25081439e-02 8.11089993e-01 8.65286708e-01 3.50573629e-01 -7.33573288e-02 -4.18488562e-01 2.63159811e-01 9.61944982e-02 -1.88966021e-01 1.56334484e+00 -4.44164127e-01 -5.54239750e-01 2.80429959e-01 1.41197741e+00 -1.81801945e-01 -6.89617336e-01 -5.40315926e-01 3.66190523e-01 -6.17960334e-01 -5.16781747e-01 2.23668888e-01 -1.21930134e+00 5.17601788e-01 4.03673440e-01 8.65532458e-01 1.42657435e+00 3.92030865e-01 1.14431858e+00 7.20448792e-01 7.93575644e-01 -1.62485790e+00 1.80742010e-01 1.62517235e-01 6.13570511e-01 -8.79561782e-01 -9.45744216e-02 6.56595454e-03 -3.38614762e-01 1.28697050e+00 3.66734505e-01 -2.75792092e-01 1.07468140e+00 5.77145278e-01 -6.06429696e-01 -3.41030300e-01 -1.40487218e+00 9.02823806e-02 -2.35263765e-01 3.40742528e-01 -7.04800934e-02 2.25020036e-01 -2.25676700e-01 6.05253816e-01 -5.70729315e-01 -1.80282369e-01 3.73913765e-01 1.09213269e+00 -1.01001036e+00 -9.19768155e-01 -8.32640588e-01 7.76252389e-01 -4.99386072e-01 2.21037745e-01 -2.18419475e-03 8.80887266e-03 7.27625787e-02 1.35961616e+00 6.96792245e-01 -2.05590293e-01 4.36857134e-01 -5.28023124e-01 2.28233654e-02 -4.99557376e-01 -4.84208375e-01 -5.00975624e-02 -3.23569745e-01 -7.25469351e-01 -1.90962449e-01 -7.82476127e-01 -1.42081738e+00 -1.00631189e+00 -2.32663125e-01 6.23575509e-01 9.65426147e-01 5.14397442e-01 6.17688596e-01 -3.23245794e-01 1.17635393e+00 -4.53777075e-01 -8.27523649e-01 -3.90632510e-01 -8.32161427e-01 2.90870428e-01 2.54172951e-01 2.10837632e-01 -1.45338938e-01 9.57646966e-02]
[6.6469502449035645, 4.949954032897949]
b4f4fbad-950c-43d2-8fa4-3c97afbcd508
parameter-efficient-deep-probabilistic
2112.02905
null
https://arxiv.org/abs/2112.02905v2
https://arxiv.org/pdf/2112.02905v2.pdf
Parameter Efficient Deep Probabilistic Forecasting
Probabilistic time series forecasting is crucial in many application domains such as retail, ecommerce, finance, or biology. With the increasing availability of large volumes of data, a number of neural architectures have been proposed for this problem. In particular, Transformer-based methods achieve state-of-the-art performance on real-world benchmarks. However, these methods require a large number of parameters to be learned, which imposes high memory requirements on the computational resources for training such models. To address this problem, we introduce a novel Bidirectional Temporal Convolutional Network (BiTCN), which requires an order of magnitude less parameters than a common Transformer-based approach. Our model combines two Temporal Convolutional Networks (TCNs): the first network encodes future covariates of the time series, whereas the second network encodes past observations and covariates. We jointly estimate the parameters of an output distribution via these two networks. Experiments on four real-world datasets show that our method performs on par with four state-of-the-art probabilistic forecasting methods, including a Transformer-based approach and WaveNet, on two point metrics (sMAPE, NRMSE) as well as on a set of range metrics (quantile loss percentiles) in the majority of cases. Secondly, we demonstrate that our method requires significantly less parameters than Transformer-based methods, which means the model can be trained faster with significantly lower memory requirements, which as a consequence reduces the infrastructure cost for deploying these models.
['Maarten de Rijke', 'Sebastian Schelter', 'Olivier Sprangers']
2021-12-06
null
null
null
null
['probabilistic-time-series-forecasting']
['time-series']
[-2.39372283e-01 -2.98737556e-01 8.54955167e-02 -4.30515736e-01 -7.44057059e-01 -5.44833839e-01 7.97769129e-01 -1.32548865e-02 -2.72601336e-01 5.40486753e-01 7.67291561e-02 -5.30900955e-01 -3.88940573e-01 -8.20557356e-01 -7.68210530e-01 -9.06181335e-01 -4.79219824e-01 2.58887112e-01 2.77209729e-01 -1.58070147e-01 7.42549896e-02 4.10040230e-01 -1.39239144e+00 4.24679108e-02 4.94788587e-01 1.71286297e+00 -2.47829497e-01 4.03419614e-01 -1.28470674e-01 6.38578117e-01 -2.86421001e-01 -5.26587248e-01 6.53623343e-02 1.25266433e-01 -5.15038371e-01 -5.20602107e-01 4.77528684e-02 -2.90685773e-01 -6.06239140e-01 5.29272199e-01 3.64407986e-01 3.12131286e-01 4.95421946e-01 -1.35225511e+00 -3.38415295e-01 6.94266677e-01 -5.01197934e-01 2.20346555e-01 -2.62096792e-01 -7.76453540e-02 9.31167126e-01 -6.57194674e-01 5.86640686e-02 1.07147014e+00 1.12872899e+00 -7.27458820e-02 -1.31989229e+00 -7.87181377e-01 4.01720017e-01 3.39304000e-01 -1.27126813e+00 -1.93748474e-01 9.07834232e-01 -5.05656242e-01 1.00948417e+00 2.05210913e-02 4.20352966e-01 1.12274790e+00 4.03949946e-01 5.15400529e-01 8.87439847e-01 -1.18317241e-02 3.24263483e-01 -5.62844202e-02 -1.53093398e-01 1.85233444e-01 -2.83133358e-01 2.82164752e-01 -6.50217891e-01 -3.05444360e-01 5.96533656e-01 2.85686672e-01 -9.42786932e-02 -1.69228747e-01 -1.34820938e+00 8.53272557e-01 3.39688569e-01 4.75195080e-01 -5.71209073e-01 6.11797273e-01 5.09367883e-01 1.72458604e-01 1.04790211e+00 -1.05430849e-01 -7.34335780e-01 -4.38750118e-01 -1.20125079e+00 2.69456893e-01 8.04034889e-01 6.35449171e-01 3.29484165e-01 1.17509574e-01 -5.58626801e-02 7.03284383e-01 2.78509557e-01 5.75382888e-01 4.01344121e-01 -6.24122083e-01 5.84385395e-01 1.47748709e-01 1.62280947e-01 -1.08468091e+00 -5.93841255e-01 -6.86049938e-01 -1.26631343e+00 -2.67201602e-01 5.03149807e-01 -3.25266011e-02 -8.61795485e-01 1.92842889e+00 2.50350177e-01 5.62906623e-01 -1.59047350e-01 6.70851648e-01 2.63610899e-01 1.08034897e+00 5.18241860e-02 -2.49565169e-02 1.21144021e+00 -5.91910720e-01 -4.87195164e-01 3.93120758e-02 3.90296429e-01 -7.79245019e-01 5.91758311e-01 4.94965732e-01 -7.43612945e-01 -3.22009861e-01 -8.52231622e-01 7.19982982e-02 -5.56938648e-01 1.02073178e-01 7.73490489e-01 5.60780048e-01 -1.10770440e+00 9.53311026e-01 -1.19133806e+00 -2.08178014e-01 1.87043339e-01 3.52755666e-01 -4.86540422e-02 1.72115862e-01 -1.38737178e+00 6.75336003e-01 1.17052622e-01 5.58052480e-01 -7.26249695e-01 -1.01473331e+00 -6.62582278e-01 5.07136047e-01 -2.32085451e-01 -2.99515665e-01 1.36260283e+00 -3.39851618e-01 -1.56577158e+00 1.34842485e-01 -7.14485720e-02 -7.07730532e-01 5.38790882e-01 -2.16594562e-01 -6.00128233e-01 -2.97185451e-01 -2.88725406e-01 3.85194838e-01 6.46403730e-01 -6.47100508e-01 -6.71680033e-01 -1.73651367e-01 -1.06293581e-01 -3.63287330e-01 -6.08737767e-01 -6.39963076e-02 -2.22968355e-01 -8.35019767e-01 1.23587258e-01 -8.50834250e-01 -2.92894483e-01 9.53119025e-02 -1.89631730e-01 -5.07040799e-01 9.41341043e-01 -7.12239444e-01 1.24003255e+00 -2.27817106e+00 -1.03099659e-01 2.99485654e-01 2.01618418e-01 -1.00327939e-01 1.23813702e-03 6.87482059e-01 -1.18661627e-01 -7.27960933e-03 -2.94795781e-01 -5.60581684e-01 2.34237671e-01 5.80662265e-02 -9.78370249e-01 5.82811177e-01 1.33328050e-01 6.31712854e-01 -6.62657797e-01 8.79585929e-03 2.41879046e-01 8.96745205e-01 -2.66692847e-01 3.42153907e-02 -2.73528486e-01 3.55017185e-01 -2.97828138e-01 2.30870560e-01 5.91896951e-01 -4.11195368e-01 1.96578845e-01 -1.86121970e-01 -2.43850708e-01 5.23158550e-01 -9.65087295e-01 1.30242777e+00 -7.28911817e-01 8.84176314e-01 -4.35400218e-01 -1.22345006e+00 9.72835600e-01 6.15862310e-01 9.18285608e-01 -7.29939044e-01 1.05376564e-01 3.21404278e-01 -3.00664961e-01 3.52254622e-02 3.98347676e-01 -1.51379734e-01 -2.17159852e-01 5.87287903e-01 -4.73060124e-02 2.98183709e-01 7.13224383e-03 -9.03097540e-02 8.93323660e-01 1.19168915e-01 -3.24537814e-01 -1.07976288e-01 2.51783729e-01 -3.54799807e-01 6.30244136e-01 3.99559259e-01 1.48098767e-01 3.38865399e-01 6.15434229e-01 -8.82382989e-01 -1.11941493e+00 -1.03691041e+00 -1.61328852e-01 1.04070020e+00 -3.01527172e-01 -2.55801767e-01 -3.84874433e-01 -2.03141481e-01 1.33713976e-01 7.86977410e-01 -7.23516762e-01 -2.29363814e-02 -7.01211154e-01 -9.12068963e-01 5.32484114e-01 7.65411675e-01 2.64800429e-01 -7.38036692e-01 -5.94806969e-01 6.12980306e-01 -2.75241733e-01 -1.16954207e+00 -3.89030308e-01 1.95135161e-01 -1.02115858e+00 -6.07432365e-01 -7.83859611e-01 -3.41434211e-01 7.92383701e-02 3.44412923e-02 1.03160787e+00 -5.06526053e-01 1.25484452e-01 1.84066921e-01 -1.58223823e-01 -6.25705481e-01 9.90900695e-02 2.13087454e-01 8.95726085e-02 4.20108825e-01 3.19749057e-01 -1.16368926e+00 -6.29297435e-01 3.56817186e-01 -9.11640286e-01 7.24525098e-03 3.47050786e-01 8.13781321e-01 4.67930824e-01 3.48185092e-01 6.68143809e-01 -4.26317245e-01 4.63483214e-01 -8.29087794e-01 -1.06609380e+00 1.36092454e-01 -7.08273590e-01 1.92069039e-01 8.49415541e-01 -7.37529635e-01 -7.68554270e-01 -1.31327942e-01 2.71397866e-02 -6.39155388e-01 3.64172816e-01 9.35469270e-01 4.53999281e-01 2.98423350e-01 2.90342093e-01 4.79668528e-01 -1.91928476e-01 -6.71520948e-01 1.95280656e-01 5.64405978e-01 5.92521489e-01 -4.58137125e-01 6.71900809e-01 6.01307154e-01 1.28877148e-01 -4.47149128e-01 -7.29643703e-01 -3.46677393e-01 -4.17368323e-01 -2.09387749e-01 4.94559437e-01 -8.61496687e-01 -9.76788521e-01 7.65610754e-01 -1.30303001e+00 -2.99703747e-01 4.76328172e-02 7.42209971e-01 -4.19832706e-01 -8.51401538e-02 -5.56494594e-01 -9.72392499e-01 -4.28320467e-01 -8.13491881e-01 1.03405762e+00 -1.53364807e-01 6.37539551e-02 -1.12076652e+00 1.51695134e-02 -2.25832686e-01 9.57338691e-01 4.73029643e-01 9.94918883e-01 -5.14427006e-01 -5.92886984e-01 -3.82562190e-01 -2.77783155e-01 1.67442143e-01 -2.36115277e-01 -7.17226341e-02 -1.08287454e+00 -2.24767849e-01 6.06958941e-02 9.70596075e-02 8.81530583e-01 5.71981668e-01 1.51830721e+00 -2.70471871e-01 -4.61829811e-01 7.46218443e-01 1.25110972e+00 2.30900899e-01 5.53482533e-01 8.21300521e-02 5.85168958e-01 5.52575111e-01 2.90226400e-01 6.83276653e-01 6.54642761e-01 7.58666158e-01 3.46770465e-01 2.66149435e-02 3.91110331e-01 -1.36734948e-01 3.50384086e-01 1.03820240e+00 1.91447213e-02 -4.53839928e-01 -1.09584785e+00 7.60155082e-01 -2.12321973e+00 -8.56482208e-01 -2.69618002e-03 2.21209574e+00 6.39942229e-01 8.86313096e-02 5.93245439e-02 3.49095821e-01 4.08157706e-01 2.42027357e-01 -7.28902519e-01 -2.52521932e-01 1.66477531e-01 2.92368412e-01 6.13412201e-01 3.90028469e-02 -1.31494844e+00 4.58042651e-01 6.17834330e+00 7.93819487e-01 -1.60748911e+00 1.34541616e-01 9.33568537e-01 -1.77462772e-01 -2.87126660e-01 -1.59871176e-01 -6.41363800e-01 7.38830686e-01 1.66952860e+00 -3.23903531e-01 5.27737260e-01 7.99011827e-01 2.45397881e-01 2.15979069e-01 -1.23577631e+00 1.04396057e+00 -4.95851994e-01 -1.43174052e+00 -3.82832170e-01 6.26690239e-02 4.86359984e-01 4.36098337e-01 2.70075202e-01 4.35583621e-01 2.79599220e-01 -1.03026080e+00 9.22930717e-01 7.91955590e-01 8.01622093e-01 -9.01098251e-01 8.86041760e-01 2.53106594e-01 -1.45741236e+00 -1.24868415e-01 -2.40298972e-01 -2.02680901e-02 4.36647922e-01 1.25217807e+00 -4.08626199e-01 4.76265341e-01 1.14462185e+00 7.46589661e-01 -6.97451755e-02 1.09932935e+00 1.66372448e-01 1.03640962e+00 -7.25166500e-01 -3.85085084e-02 3.71485680e-01 8.43803864e-03 2.28674620e-01 1.04327607e+00 7.86459863e-01 -1.05560280e-01 -5.92160933e-02 7.34435201e-01 -7.09145442e-02 -2.28067860e-01 -2.17739090e-01 -2.23233551e-01 4.87541646e-01 1.11775327e+00 -4.64132994e-01 -2.19711870e-01 -3.86459827e-01 5.11426210e-01 2.16521233e-01 4.57612216e-01 -1.12036479e+00 -3.70739400e-01 7.21956372e-01 -5.37502579e-02 6.65757477e-01 -5.24362445e-01 -2.23302126e-01 -9.41595197e-01 2.53846318e-01 -4.58186239e-01 3.94966006e-01 -5.82054913e-01 -1.66659093e+00 7.82834709e-01 4.51403260e-02 -1.39165020e+00 -5.18113256e-01 -5.42255521e-01 -5.43622315e-01 1.07011497e+00 -1.75480199e+00 -1.10280573e+00 -1.46967888e-01 4.84856457e-01 1.12360746e-01 8.73396024e-02 7.44249761e-01 6.07163489e-01 -4.44122881e-01 4.81155664e-01 5.40655851e-01 1.13479756e-02 5.74774504e-01 -1.02378333e+00 8.10425341e-01 6.88433349e-01 3.10968515e-02 4.52971995e-01 5.45379221e-01 -2.17066586e-01 -1.30272293e+00 -1.27808511e+00 1.19346845e+00 -1.92892030e-01 9.55785751e-01 -5.48083782e-01 -9.07183230e-01 5.36870360e-01 -9.49354842e-02 2.05644801e-01 5.57468116e-01 4.15601939e-01 -6.22687042e-01 -6.01122975e-01 -8.50341380e-01 3.04960519e-01 5.89249492e-01 -5.63474417e-01 -3.44584994e-02 5.00283718e-01 8.66901338e-01 -3.98495913e-01 -1.23035944e+00 3.74266535e-01 9.36492622e-01 -7.72008717e-01 8.46393585e-01 -3.24246138e-01 4.36944216e-01 -2.69747674e-01 -1.17257021e-01 -1.29784918e+00 -4.10456061e-01 -6.84689403e-01 -4.64614362e-01 1.16903090e+00 4.46442366e-01 -1.01883280e+00 5.02409875e-01 6.36208594e-01 3.76976058e-02 -1.20130074e+00 -1.15118039e+00 -1.00031412e+00 2.96630770e-01 -8.45508993e-01 1.03250217e+00 8.20960701e-01 -3.03672075e-01 -2.30562426e-02 -5.47058821e-01 2.02215716e-01 4.61425841e-01 2.15180174e-01 3.68431956e-01 -1.45568955e+00 -1.42267659e-01 -6.16708219e-01 -3.79564077e-01 -1.00821483e+00 -8.52997676e-02 -5.29409051e-01 -2.45022196e-02 -1.28616488e+00 -1.82883963e-01 -8.83232892e-01 -7.24656165e-01 6.49020016e-01 2.15059042e-01 1.11016296e-01 -1.67900950e-01 2.90844530e-01 -1.28832757e-01 8.85381699e-01 5.08107781e-01 -1.22607157e-01 -7.09300786e-02 1.69290513e-01 -3.25945795e-01 5.00797927e-01 8.34173322e-01 -5.09025156e-01 -4.66736972e-01 -4.81257349e-01 3.64308953e-01 3.01231414e-01 5.36716104e-01 -1.08964419e+00 3.96923304e-01 -1.14953950e-01 4.46988255e-01 -9.08275425e-01 5.03914297e-01 -7.82174468e-01 3.61227602e-01 2.05063075e-01 -1.81822464e-01 3.88339877e-01 4.04748857e-01 7.19667494e-01 -3.28749210e-01 5.40914476e-01 5.30267417e-01 4.72593546e-01 -3.12347114e-01 5.66539049e-01 -3.63592148e-01 -3.23960871e-01 6.70557618e-01 2.23139375e-01 -2.21971244e-01 -6.22293532e-01 -3.43010873e-01 2.37896532e-01 -2.33966500e-01 5.41395187e-01 2.72143573e-01 -1.37109351e+00 -6.07070744e-01 1.64546259e-02 -1.21207334e-01 -1.15753874e-01 4.72531736e-01 1.12760842e+00 -1.26510218e-01 7.60109425e-01 2.42781609e-01 -8.31996322e-01 -6.61721170e-01 4.89638180e-01 2.88426787e-01 -6.00622892e-01 -6.28935695e-01 8.08243573e-01 1.94992661e-01 -5.10515451e-01 3.37501734e-01 -7.42069721e-01 4.10351111e-03 4.43987697e-02 4.47373837e-01 3.68046999e-01 3.09286386e-01 -3.85015070e-01 -4.12103534e-01 3.52196157e-01 1.51788853e-02 -2.37854049e-01 1.77575147e+00 4.82046828e-02 -7.21087232e-02 6.56153560e-01 1.24385107e+00 -4.37652528e-01 -1.38966000e+00 -3.97817045e-01 7.60745481e-02 -1.13112450e-01 3.41391385e-01 -7.71931708e-01 -1.15704548e+00 1.05435228e+00 6.18332922e-01 4.76310432e-01 1.39813566e+00 -1.87278509e-01 1.17574239e+00 2.77231127e-01 5.05730987e-01 -8.83126974e-01 -3.61008614e-01 6.26830637e-01 8.46145391e-01 -8.95497620e-01 -1.76175401e-01 -1.82654336e-01 -2.24524826e-01 1.13566232e+00 3.96370888e-02 -6.80420175e-03 1.16070056e+00 2.11379334e-01 -5.27334101e-02 -8.40041488e-02 -1.15627789e+00 2.88243383e-01 5.85780799e-01 1.68460414e-01 5.20628035e-01 1.82447016e-01 4.12378693e-03 7.19022632e-01 -4.74481672e-01 1.01125283e-04 1.04103558e-01 5.68058670e-01 1.03621008e-02 -9.78338540e-01 -1.71966314e-01 5.53087533e-01 -4.91517454e-01 -2.01242894e-01 2.89376318e-01 5.62662899e-01 -2.78312981e-01 9.76432621e-01 3.13913614e-01 -4.34393913e-01 1.49001509e-01 6.42529726e-02 -2.58369446e-02 5.67381196e-02 -5.35471439e-01 3.64497080e-02 -5.83770163e-02 -7.13319004e-01 -3.70062828e-01 -7.03340709e-01 -8.17718804e-01 -6.34962499e-01 -2.85856217e-01 7.96402842e-02 1.01279151e+00 1.00365901e+00 6.60357177e-01 5.90644658e-01 8.03482950e-01 -9.41722691e-01 -6.06073081e-01 -1.07039034e+00 -5.30053139e-01 1.80959497e-02 2.56771326e-01 -8.70536447e-01 -2.48428479e-01 -2.96630412e-02]
[6.970136642456055, 3.0271527767181396]
99adfa11-195c-482e-b01b-be4a371cce66
points2vec-unsupervised-object-level-feature
2102.04136
null
https://arxiv.org/abs/2102.04136v1
https://arxiv.org/pdf/2102.04136v1.pdf
Points2Vec: Unsupervised Object-level Feature Learning from Point Clouds
Unsupervised representation learning techniques, such as learning word embeddings, have had a significant impact on the field of natural language processing. Similar representation learning techniques have not yet become commonplace in the context of 3D vision. This, despite the fact that the physical 3D spaces have a similar semantic structure to bodies of text: words are surrounded by words that are semantically related, just like objects are surrounded by other objects that are similar in concept and usage. In this work, we exploit this structure in learning semantically meaningful low dimensional vector representations of objects. We learn these vector representations by mining a dataset of scanned 3D spaces using an unsupervised algorithm. We represent objects as point clouds, a flexible and general representation for 3D data, which we encode into a vector representation. We show that using our method to include context increases the ability of a clustering algorithm to distinguish different semantic classes from each other. Furthermore, we show that our algorithm produces continuous and meaningful object embeddings through interpolation experiments.
['Roland Siegwart', 'Julian Förster', 'Kenneth Blomqvist', 'Joël Bachmann']
2021-02-08
null
null
null
null
['learning-word-embeddings']
['methodology']
[-7.22633069e-03 9.83834341e-02 -1.99572202e-02 -5.53669572e-01 -1.06925227e-01 -6.30737126e-01 8.40034306e-01 8.93406332e-01 -3.82400513e-01 -5.12055233e-02 6.31490707e-01 -2.58096069e-01 -1.11282200e-01 -9.32908535e-01 -4.94279206e-01 -4.11229730e-01 -2.95477986e-01 4.26968366e-01 2.08770961e-01 -1.13852412e-01 2.46960849e-01 6.90045238e-01 -1.83658397e+00 1.28559515e-01 2.70052940e-01 7.28133142e-01 1.27570003e-01 4.65546191e-01 -8.78163159e-01 4.39668864e-01 -4.23839450e-01 2.18566790e-01 2.36118585e-01 -1.73902243e-01 -7.62123346e-01 3.62225115e-01 2.53765315e-01 1.94740146e-01 -1.69105455e-01 8.36826503e-01 8.48868787e-02 6.11265481e-01 1.20503390e+00 -1.07253015e+00 -1.09149027e+00 1.74062878e-01 -4.34301108e-01 -1.95714012e-01 4.75000173e-01 -4.28091705e-01 1.21372485e+00 -9.67543244e-01 6.92073286e-01 1.54609156e+00 5.99334538e-01 4.97003198e-01 -1.28379178e+00 1.20196857e-01 1.05073579e-01 1.38338357e-01 -1.44988143e+00 -5.10654114e-02 9.59727228e-01 -7.88840175e-01 1.09469903e+00 1.39108256e-01 6.59222066e-01 7.12348759e-01 -4.46408056e-02 5.04768431e-01 6.59315944e-01 -9.29484308e-01 6.09626174e-01 3.45884740e-01 4.00500238e-01 5.97827375e-01 3.49096090e-01 -2.12802619e-01 -1.77279100e-01 -1.00484774e-01 7.13914692e-01 5.07412553e-01 -2.96503082e-02 -1.06126869e+00 -1.18380582e+00 1.19182825e+00 6.84358180e-01 7.41151929e-01 -2.92868018e-01 4.24400330e-01 3.14901769e-01 4.05231901e-02 6.11500502e-01 5.02675951e-01 -1.95811465e-01 7.52518773e-02 -5.79187751e-01 2.06556946e-01 5.81106007e-01 8.77142668e-01 8.92852962e-01 -1.22797556e-01 3.31159830e-01 9.84330773e-01 5.31506360e-01 2.23564550e-01 6.50343776e-01 -8.30770612e-01 -2.41758153e-01 1.05555570e+00 -4.41692071e-03 -1.24691463e+00 -3.51123512e-01 1.01815417e-01 -5.04033208e-01 3.98156881e-01 9.80512500e-02 4.10919487e-01 -9.97402906e-01 1.45344913e+00 3.35332006e-01 7.15365633e-02 2.57095039e-01 9.07874584e-01 7.56281495e-01 7.82822073e-01 3.99529971e-02 2.81821132e-01 1.32688153e+00 -2.87258893e-01 -4.41282034e-01 1.81077030e-02 8.87626588e-01 -5.13541102e-01 1.14899075e+00 3.81737687e-02 -6.61024570e-01 -5.33061147e-01 -1.20008969e+00 -4.34265167e-01 -1.07223749e+00 -6.77252412e-01 8.91068280e-01 6.71997547e-01 -8.32483232e-01 4.86680567e-01 -7.74914622e-01 -8.77484381e-01 5.09996057e-01 5.29914275e-02 -5.57430089e-01 -2.25047320e-02 -7.75496662e-01 1.08126104e+00 6.48273051e-01 -5.73940158e-01 -3.44180346e-01 -5.07989466e-01 -1.33326888e+00 -7.72014558e-02 6.30585700e-02 -5.74131191e-01 9.89904761e-01 -6.66303039e-01 -8.10807288e-01 1.26717520e+00 -2.41799146e-01 -4.65210736e-01 -2.36390069e-01 -1.64599225e-01 -3.82290989e-01 1.07373118e-01 -5.75834289e-02 7.11983681e-01 8.30650806e-01 -1.52657986e+00 -2.36299440e-01 -6.02943480e-01 1.35040388e-01 1.05588153e-01 -5.80469728e-01 -1.45814821e-01 -1.61397129e-01 -6.81811094e-01 5.17123342e-01 -6.88527346e-01 -4.54285532e-01 6.15867853e-01 -8.42189882e-03 -5.71214855e-01 9.89977002e-01 -2.97303516e-02 8.18729818e-01 -2.38115501e+00 2.71789074e-01 4.15116727e-01 4.31692928e-01 -5.69615364e-02 4.29880172e-02 5.02568305e-01 -1.22782283e-01 3.30972701e-01 -5.69467127e-01 -9.10863653e-02 4.08900946e-01 8.12295258e-01 -2.16726243e-01 5.37105739e-01 4.27139789e-01 8.79506409e-01 -1.13357997e+00 -5.19440532e-01 5.12409270e-01 6.78167939e-01 -6.46865785e-01 -8.26688334e-02 -3.47583115e-01 -7.88300484e-02 -5.27923882e-01 3.67488384e-01 2.49807432e-01 -1.66612312e-01 1.07616941e-02 1.41648538e-02 -7.27649732e-03 2.47213125e-01 -1.17196560e+00 2.02548599e+00 -5.62205672e-01 8.66493821e-01 -5.39218605e-01 -1.42283845e+00 1.24760544e+00 1.12937480e-01 5.99736691e-01 -3.65508258e-01 1.31123498e-01 -1.47917852e-01 -2.27163583e-01 -4.80314523e-01 8.72762561e-01 -4.24249917e-01 -2.95727611e-01 7.39956141e-01 8.84538069e-02 -6.82035267e-01 -1.56515285e-01 3.61705124e-01 8.05905104e-01 -1.04766358e-02 3.23473126e-01 -2.89422244e-01 2.25718379e-01 1.93710133e-01 1.18939266e-01 4.01449949e-01 1.34010658e-01 6.03390694e-01 2.15251267e-01 -4.71391886e-01 -1.18199861e+00 -1.57212675e+00 -3.21028560e-01 7.51008868e-01 2.75955915e-01 -6.34235442e-01 -3.24464291e-01 -4.05073643e-01 3.91233683e-01 8.89643073e-01 -7.68771410e-01 -2.37017572e-01 -2.32967690e-01 -2.01288342e-01 -2.81435419e-02 6.85658514e-01 -3.11114520e-01 -7.86186635e-01 -9.64373767e-01 1.03353754e-01 5.17173767e-01 -9.23272789e-01 -7.03036925e-03 4.01468545e-01 -9.96024132e-01 -9.22703564e-01 -5.47827899e-01 -1.05194259e+00 8.41589808e-01 4.42440063e-01 1.35132456e+00 6.63767159e-02 -7.32885063e-01 1.05265164e+00 -7.01960444e-01 -7.83061147e-01 -4.43650216e-01 -4.71215904e-01 3.54613870e-01 -1.65023148e-01 9.38363969e-01 -6.15098238e-01 -9.31739062e-02 -4.15916927e-02 -1.15237212e+00 -2.35827431e-01 3.74243930e-02 4.95906055e-01 7.96212256e-01 2.48229336e-02 1.84908152e-01 -6.94336474e-01 6.03470087e-01 -6.28742993e-01 -2.09044755e-01 -3.78410071e-02 -2.26294652e-01 4.45064843e-01 1.96298361e-01 -4.72454548e-01 -3.94128084e-01 -6.54182024e-03 1.92852065e-01 -6.50610924e-01 -5.34870327e-01 4.49183792e-01 -1.36470320e-02 2.46345416e-01 8.54859471e-01 1.26185998e-01 2.07439736e-01 -6.44974947e-01 1.14227843e+00 8.05221736e-01 3.16804469e-01 -5.70897102e-01 8.95251155e-01 6.35861933e-01 6.87579364e-02 -1.47451437e+00 -4.65251148e-01 -6.42973125e-01 -8.91460955e-01 1.67212278e-01 1.16694736e+00 -6.02077007e-01 -1.31177992e-01 -2.78127819e-01 -1.10915935e+00 1.26819596e-01 -9.19047594e-01 6.51189387e-01 -7.04252362e-01 5.11989534e-01 -1.04463443e-01 -7.91053236e-01 3.03105593e-01 -6.74224675e-01 9.99794781e-01 -2.51082741e-02 -6.94307745e-01 -1.27159441e+00 2.41683364e-01 -1.30677700e-01 5.19706681e-02 4.69035357e-01 1.37882400e+00 -7.81050801e-01 -1.60156354e-01 -1.01108082e-01 -9.81381834e-02 4.19667840e-01 5.84049046e-01 -9.30223688e-02 -8.53547573e-01 5.39214946e-02 -6.72686845e-02 -8.82437155e-02 7.32775688e-01 2.64952302e-01 1.32138216e+00 -4.13836949e-02 -3.53818357e-01 3.11606407e-01 1.55061758e+00 1.04073249e-01 4.19282883e-01 2.03101486e-01 7.30457366e-01 8.67819488e-01 1.62886634e-01 3.11860085e-01 1.44291520e-01 4.52677578e-01 3.83478463e-01 -6.28211871e-02 6.29628194e-04 -2.73572415e-01 7.40068685e-03 8.46241832e-01 1.38187572e-01 6.95409849e-02 -1.12656462e+00 8.92712355e-01 -1.54896760e+00 -8.77098799e-01 -1.46569740e-02 1.98526609e+00 5.05677342e-01 9.70058218e-02 -8.40472244e-03 4.75054413e-01 4.90414292e-01 1.55414119e-01 -3.24329257e-01 -8.37330937e-01 7.54477158e-02 5.59678078e-01 2.47119904e-01 2.87653476e-01 -1.04483533e+00 8.00914705e-01 6.19513321e+00 2.60975927e-01 -8.03534210e-01 -4.07315977e-02 4.67392504e-02 6.20791735e-03 -7.23980784e-01 -1.54802203e-01 -1.34852216e-01 1.29988402e-01 7.55538940e-01 -2.54393637e-01 -5.77778034e-02 8.36234093e-01 1.38580650e-02 1.33887306e-01 -1.51604140e+00 1.28028989e+00 2.65543103e-01 -1.41532493e+00 4.35842544e-01 3.60456482e-02 5.14823318e-01 -2.80027688e-01 -2.91462038e-02 2.98056658e-02 3.44507307e-01 -1.36065793e+00 5.11122167e-01 4.62860525e-01 4.34233218e-01 -7.67722487e-01 2.46484563e-01 7.22059011e-02 -1.05041814e+00 1.19180910e-01 -6.97509944e-01 -2.14960411e-01 1.17295146e-01 6.21553421e-01 -7.95259893e-01 3.99807364e-01 6.42117560e-01 9.54281271e-01 -3.27378094e-01 9.17891383e-01 -4.97303382e-02 2.18218744e-01 -3.30853701e-01 -3.38860601e-01 4.90121037e-01 -3.49102885e-01 4.75856900e-01 1.16181636e+00 2.23454088e-01 8.59723762e-02 5.84822074e-02 1.02410567e+00 -3.77300009e-03 1.56809047e-01 -1.19652045e+00 -3.78815979e-01 3.59235406e-01 7.23465562e-01 -8.52754891e-01 -3.53761077e-01 -6.82796240e-01 8.20934534e-01 2.67440826e-02 1.35202110e-01 -4.63265657e-01 -5.48916757e-01 1.15828753e+00 1.84541658e-01 3.76766592e-01 -1.00496352e+00 -3.16758633e-01 -8.41061413e-01 -4.19743098e-02 -1.58198833e-01 4.46139798e-02 -8.83519232e-01 -1.56317043e+00 2.01942265e-01 1.63591772e-01 -1.32457888e+00 -1.90790161e-01 -9.28392768e-01 -3.38466048e-01 5.82465649e-01 -1.14108944e+00 -8.14944804e-01 -1.22229397e-01 7.03164935e-01 4.95851994e-01 -7.05276355e-02 1.19126451e+00 -1.07894354e-01 2.75265247e-01 8.67211074e-02 2.24138409e-01 2.91753262e-01 3.15104753e-01 -1.45425713e+00 4.65425521e-01 3.63920957e-01 1.10030913e+00 8.21965873e-01 5.67430139e-01 -2.24781811e-01 -1.55509424e+00 -1.02095890e+00 9.31467772e-01 -7.63239086e-01 7.65652537e-01 -7.22634673e-01 -1.06091392e+00 5.78237057e-01 -2.31816739e-01 1.72943756e-01 1.10360110e+00 3.39973032e-01 -7.85722077e-01 3.41198474e-01 -1.11005640e+00 6.37973607e-01 1.19691360e+00 -8.79759550e-01 -1.37402225e+00 4.32846993e-01 1.12040913e+00 4.57622819e-02 -9.03589308e-01 -9.99928564e-02 3.49363685e-01 -6.06358111e-01 1.34041631e+00 -1.01308274e+00 2.60591179e-01 -3.06063116e-01 -7.04083681e-01 -1.36151528e+00 -2.64724255e-01 4.90315780e-02 -1.57015204e-01 8.24348390e-01 1.56730190e-01 -4.85254407e-01 8.13612938e-01 4.07847881e-01 -1.73787773e-01 -5.37549615e-01 -7.94364750e-01 -1.04234481e+00 4.81572509e-01 -8.04492950e-01 6.66261196e-01 1.14558482e+00 1.08779937e-01 2.68912971e-01 3.07841003e-01 -4.43334952e-02 6.03030384e-01 3.80863190e-01 5.41534722e-01 -1.79731464e+00 -2.15446344e-03 -4.46108639e-01 -1.33675420e+00 -1.05322742e+00 2.97601104e-01 -1.34616888e+00 -6.01109341e-02 -1.77607334e+00 -9.68216509e-02 -7.28146911e-01 -3.44258666e-01 3.75569254e-01 3.38497311e-01 1.81201160e-01 2.53530502e-01 3.90823632e-02 -3.48040283e-01 5.93215823e-01 7.86226094e-01 -3.50409448e-01 -2.00133443e-01 -6.47799730e-01 -7.26429820e-01 8.22984040e-01 6.52728736e-01 -4.21487600e-01 -5.69356441e-01 -6.94879651e-01 6.92555532e-02 -5.83961427e-01 4.42586094e-01 -8.49200130e-01 -7.05770925e-02 -9.20137856e-03 4.85649645e-01 -3.87860119e-01 4.57136959e-01 -1.23417819e+00 -1.77367464e-01 1.90753639e-01 -4.03938383e-01 -1.53405830e-01 2.22372428e-01 6.71822608e-01 -8.95591304e-02 -3.46437752e-01 6.31212115e-01 -2.71688193e-01 -1.24854040e+00 1.08549632e-01 -5.09499431e-01 4.45563830e-02 1.11355531e+00 -7.35265791e-01 2.62312740e-01 -1.49134159e-01 -8.25440228e-01 -2.95881052e-02 8.73418212e-01 8.88743579e-01 9.67912078e-01 -1.42504680e+00 -4.32826459e-01 2.04245165e-01 5.67470908e-01 1.46945521e-01 -2.49952048e-01 -8.05810392e-02 -4.61174309e-01 2.48118579e-01 -2.03544155e-01 -9.69802797e-01 -9.95312989e-01 8.17789376e-01 1.13470443e-02 6.03056908e-01 -1.11252809e+00 6.91297591e-01 1.37446642e-01 -5.29757619e-01 1.50740162e-01 -6.75519109e-01 -2.57917255e-01 1.03695832e-01 4.24144506e-01 -5.63026220e-02 -9.87229049e-02 -7.38588750e-01 -5.55421710e-01 9.21044946e-01 1.85801715e-01 -1.65945478e-02 1.58029521e+00 1.27212152e-01 -3.70178260e-02 1.07999921e+00 1.53258109e+00 -2.02869967e-01 -6.22669518e-01 -3.03837925e-01 4.24831867e-01 -6.50975227e-01 2.89239641e-02 -1.41749904e-01 -5.58121860e-01 1.01862013e+00 7.10027099e-01 5.31427324e-01 6.06966615e-01 6.70447052e-01 5.92361927e-01 4.57593054e-01 3.77819926e-01 -8.60669732e-01 2.00349405e-01 5.66858232e-01 6.58386707e-01 -1.13489449e+00 7.61584789e-02 -2.47283489e-01 -3.50334167e-01 1.05275261e+00 -2.55421624e-02 -4.75318819e-01 8.34940553e-01 -7.70596862e-02 -1.25042796e-01 -5.92549205e-01 -3.93432379e-01 -4.05493915e-01 2.34203890e-01 1.16686618e+00 4.42959934e-01 2.55073130e-01 -1.48055684e-02 3.25448155e-01 -2.64619172e-01 -3.55372280e-01 4.32278693e-01 1.30902410e+00 -7.64218986e-01 -1.12809110e+00 -3.89657617e-01 3.78442258e-01 4.35064621e-02 6.32631108e-02 -5.55653214e-01 7.65358925e-01 1.96401164e-01 8.34850073e-01 7.10241973e-01 -2.00405017e-01 2.90309489e-01 3.30619007e-01 6.79701447e-01 -1.08081877e+00 -2.73073697e-03 -5.03303528e-01 -2.81832010e-01 -4.19451386e-01 -6.39345467e-01 -4.62802172e-01 -1.67367101e+00 -7.93981086e-03 5.49680665e-02 3.37311804e-01 1.11206532e+00 7.88579345e-01 2.46343657e-01 3.04296702e-01 4.68280792e-01 -9.47979033e-01 -2.02508122e-01 -5.33932149e-01 -8.00699353e-01 7.68526912e-01 2.90165871e-01 -1.05473340e+00 -2.93631643e-01 2.97733605e-01]
[10.321168899536133, 2.3803248405456543]
8fff9f12-ac4f-43b9-8614-b9c4764a292d
mia-cov19d-covid-19-detection-through-3-d
2106.07524
null
https://arxiv.org/abs/2106.07524v2
https://arxiv.org/pdf/2106.07524v2.pdf
MIA-COV19D: COVID-19 Detection through 3-D Chest CT Image Analysis
Early and reliable COVID-19 diagnosis based on chest 3-D CT scans can assist medical specialists in vital circumstances. Deep learning methodologies constitute a main approach for chest CT scan analysis and disease prediction. However, large annotated databases are necessary for developing deep learning models that are able to provide COVID-19 diagnosis across various medical environments in different countries. Due to privacy issues, publicly available COVID-19 CT datasets are highly difficult to obtain, which hinders the research and development of AI-enabled diagnosis methods of COVID-19 based on CT scans. In this paper we present the COV19-CT-DB database which is annotated for COVID-19, consisting of about 5,000 3-D CT scans, We have split the database in training, validation and test datasets. The former two datasets can be used for training and validation of machine learning models, while the latter will be used for evaluation of the developed models. We also present a deep learning approach, based on a CNN-RNN network and report its performance on the COVID19-CT-DB database.
['Stefanos Kollias', 'Levon Soukissian', 'Anastasios Arsenos', 'Dimitrios Kollias']
2021-06-14
null
null
null
null
['covid-19-detection']
['medical']
[-2.54774064e-01 -2.67307460e-01 -9.29984376e-02 -4.57860053e-01 -6.87931478e-01 -1.31279781e-01 5.97217791e-02 3.83625567e-01 -5.44866621e-01 6.34415030e-01 7.86170065e-02 -7.26100028e-01 -3.24543118e-01 -8.90915275e-01 -2.65286952e-01 -6.44015968e-01 -2.65520841e-01 1.28091633e+00 1.64441437e-01 2.63847142e-01 -4.49766576e-01 7.92976320e-01 -1.03680003e+00 4.12738174e-01 3.18606973e-01 1.15977681e+00 4.20622021e-01 8.95716369e-01 1.29666820e-01 9.21647310e-01 -3.95463973e-01 -3.41537088e-01 2.56190777e-01 -3.42890739e-01 -8.08463097e-01 -2.71874517e-01 -7.58074597e-02 -7.44135082e-01 -4.18535590e-01 4.38003510e-01 8.81256640e-01 -2.88052946e-01 9.88559425e-01 -8.31004739e-01 -2.15792343e-01 3.89301479e-01 -2.53932685e-01 5.32840788e-01 8.11874717e-02 1.47921190e-01 7.38450050e-01 -7.56205499e-01 8.33508432e-01 6.80256963e-01 8.71095002e-01 6.49575353e-01 -4.51405942e-01 -5.14446259e-01 -6.08038664e-01 2.95367569e-01 -1.28806317e+00 4.51454878e-01 2.84282058e-01 -6.96827590e-01 8.94885182e-01 2.95882344e-01 1.05796683e+00 1.27562451e+00 6.21703744e-01 7.36272395e-01 8.42668355e-01 -1.04954436e-01 -3.43807787e-02 -3.33828330e-02 9.93354395e-02 8.67376447e-01 4.47551101e-01 2.17626959e-01 1.36439219e-01 -1.96041062e-01 8.37092638e-01 3.94276202e-01 -1.64580360e-01 -1.95148423e-01 -1.06734467e+00 1.14639854e+00 7.53069043e-01 6.13766074e-01 -6.21035337e-01 -1.01062737e-01 7.78527319e-01 1.29386291e-01 3.26283962e-01 2.02012658e-01 -4.79834914e-01 1.51360840e-01 -8.39701235e-01 4.87380236e-01 5.90479434e-01 5.81151545e-01 -2.08323419e-01 -9.59107245e-04 -2.06302345e-01 8.18432748e-01 4.36054796e-01 6.14672601e-01 8.43112171e-01 -2.00870603e-01 4.68967140e-01 5.02614141e-01 -2.29325995e-01 -8.69066179e-01 -9.98924851e-01 -3.92518610e-01 -1.28738809e+00 -2.66389161e-01 1.32667765e-01 -3.04828495e-01 -1.21655476e+00 1.09301412e+00 2.89408684e-01 -5.24699427e-02 4.68705632e-02 1.05524623e+00 1.37910748e+00 3.18921387e-01 3.80824767e-02 -1.75678924e-01 1.47217631e+00 -6.25312924e-01 -5.32624900e-01 4.61326152e-01 7.21275926e-01 -5.09070516e-01 5.72116256e-01 4.93355393e-01 -9.18190241e-01 -3.58255446e-01 -8.72271478e-01 1.82765186e-01 -4.32888418e-01 2.43032485e-01 4.24637765e-01 5.56486547e-01 -8.83195877e-01 3.28400016e-01 -1.07601154e+00 -3.60470742e-01 7.35961378e-01 4.36850578e-01 -2.27978036e-01 -2.59433150e-01 -1.40786123e+00 1.14640975e+00 5.29127538e-01 1.65231172e-02 -1.40843070e+00 -4.80967700e-01 -5.35716653e-01 -2.28339627e-01 1.61837861e-01 -1.00395322e+00 1.29151499e+00 -2.31955796e-01 -7.52330959e-01 1.11061466e+00 4.04961884e-01 -7.54294574e-01 8.30728769e-01 1.19611673e-01 -6.56422198e-01 3.00912648e-01 9.26793963e-02 3.48430961e-01 7.98755348e-01 -9.46355760e-01 -5.86222768e-01 -3.07432622e-01 -3.51810426e-01 -5.89277185e-02 -7.27371797e-02 9.90420878e-02 -4.93613571e-01 -7.74043143e-01 -1.08929515e-01 -9.78008151e-01 -4.85134602e-01 -7.48441219e-02 -4.14941907e-01 -2.21716717e-01 8.87673855e-01 -8.48087013e-01 1.03085852e+00 -1.78847206e+00 -2.49616101e-01 2.97861457e-01 7.47136116e-01 7.02520013e-01 2.52162248e-01 9.18525681e-02 -3.84199589e-01 2.01499104e-01 -2.80149192e-01 -3.66124101e-02 -4.91737753e-01 4.58996356e-01 2.62664020e-01 4.75793689e-01 3.18101346e-01 7.98893571e-01 -4.90568042e-01 -7.85669923e-01 4.45940107e-01 3.87711942e-01 -3.87362927e-01 5.43874323e-01 -2.28254691e-01 6.11841798e-01 -8.17241132e-01 7.97831416e-01 6.22861445e-01 -4.53968942e-01 -9.84691232e-02 2.11507156e-02 2.51576841e-01 -6.84854165e-02 -5.81753671e-01 1.33251512e+00 -3.97230476e-01 5.07289708e-01 -1.70257583e-01 -1.09481299e+00 6.99636519e-01 7.83334315e-01 9.82751787e-01 -6.33694828e-01 5.73791981e-01 2.50349283e-01 2.98668206e-01 -1.08042717e+00 1.01342790e-01 -3.01154375e-01 3.35352942e-02 7.32675314e-01 -1.67330250e-01 -2.00925305e-01 6.48187175e-02 -8.29364210e-02 1.16458464e+00 -6.75513625e-01 3.35599363e-01 6.39366359e-02 5.24620831e-01 2.92522848e-01 3.46419066e-01 6.72238648e-01 -2.62944728e-01 7.57447124e-01 2.24150732e-01 -1.02333391e+00 -1.12565958e+00 -1.04499185e+00 -8.17436337e-01 4.90274012e-01 -3.99965972e-01 3.78234079e-04 -4.33400482e-01 -9.42631900e-01 -1.45766966e-03 3.77913147e-01 -6.84319794e-01 2.16468811e-01 -6.77893877e-01 -1.01080024e+00 8.95618141e-01 8.47715974e-01 4.09062862e-01 -1.14726532e+00 -9.97962773e-01 3.33071917e-01 -1.79054111e-01 -8.35285723e-01 2.64132529e-01 3.84367079e-01 -8.47804129e-01 -1.41980731e+00 -1.10403168e+00 -7.71428406e-01 3.64420563e-01 -1.13816120e-01 1.24630213e+00 5.14525950e-01 -8.36699486e-01 8.83115828e-02 -4.66210008e-01 -8.91490102e-01 -6.03749275e-01 2.30248868e-01 1.00802131e-01 -6.15053594e-01 2.48550639e-01 -2.99454957e-01 -5.13471663e-01 1.92890212e-01 -9.38090324e-01 9.40410979e-03 7.19234407e-01 1.09551537e+00 8.27965915e-01 3.02343480e-02 4.47353184e-01 -1.09168422e+00 6.77513719e-01 -9.38565075e-01 -3.97274166e-01 1.57248318e-01 -5.81889868e-01 -3.04484099e-01 4.76870984e-01 2.20769979e-02 -8.36294293e-01 -1.72457248e-02 -7.67187536e-01 -7.38273084e-01 -2.66067475e-01 8.27595711e-01 5.63014627e-01 1.95735976e-01 7.03145564e-01 1.23020835e-01 -2.82225847e-01 -5.41322112e-01 -1.76156223e-01 9.73398745e-01 4.09880221e-01 -1.37718871e-01 4.47204560e-01 2.40941867e-01 1.53039411e-01 -6.37985051e-01 -7.48766065e-01 -4.54390734e-01 -8.54858577e-01 -1.38807863e-01 1.34990215e+00 -8.54157865e-01 -4.38386083e-01 3.31191838e-01 -9.69045103e-01 1.41933829e-01 -7.25704879e-02 7.06679165e-01 -2.91080117e-01 -1.01000899e-02 -7.93616951e-01 -3.29648226e-01 -8.36565256e-01 -1.41792500e+00 9.02717829e-01 -8.62689614e-02 -1.58886358e-01 -1.08871496e+00 3.90791357e-01 4.08977151e-01 4.77517247e-01 5.94371974e-01 1.21513426e+00 -1.08274341e+00 -3.75986576e-01 -6.08159900e-01 -3.20701510e-01 2.90990263e-01 1.67950038e-02 -4.96937409e-02 -8.80952656e-01 -1.82543740e-01 1.43150672e-01 -6.40522957e-01 8.41996133e-01 6.48496091e-01 1.73624039e+00 8.31509903e-02 -4.43676502e-01 7.09033132e-01 1.50650191e+00 4.77120340e-01 2.56626815e-01 1.17398821e-01 8.11294496e-01 5.66371577e-03 5.00598252e-01 6.25836432e-01 2.84510672e-01 2.12964371e-01 7.19335377e-01 -4.13890272e-01 4.51469868e-02 2.17614785e-01 -5.27320921e-01 1.01342666e+00 -3.89529377e-01 -4.85879332e-01 -1.58772850e+00 5.95034242e-01 -1.31754494e+00 -5.54880261e-01 -5.52965581e-01 1.57554853e+00 5.49412608e-01 -1.32649094e-02 1.18528552e-01 2.67003655e-01 4.16711450e-01 -1.31625265e-01 -5.44191420e-01 -4.47915941e-01 2.64854342e-01 6.20954275e-01 2.60402888e-01 -3.04195553e-01 -1.29215038e+00 4.04097885e-01 7.03785944e+00 6.09760463e-01 -1.52325535e+00 3.48266393e-01 6.04123414e-01 -1.76009871e-02 2.13112161e-02 -8.72676492e-01 -4.40393358e-01 3.38928908e-01 9.37300742e-01 2.18445718e-01 -2.67751813e-01 1.03003001e+00 1.97643906e-01 1.04952017e-02 -1.03336024e+00 1.00962293e+00 -1.36317939e-01 -1.48754275e+00 -3.42903621e-02 1.18397195e-02 4.93587792e-01 6.54718459e-01 4.34514843e-02 1.67242333e-01 3.18222463e-01 -1.33093321e+00 1.77302673e-01 2.43887752e-01 1.22698629e+00 -7.13665783e-01 1.42155385e+00 3.72766703e-01 -1.02523077e+00 1.08434953e-01 -4.82852012e-01 4.53690261e-01 1.06890211e-02 5.04704416e-01 -1.55966294e+00 8.51084352e-01 9.68705416e-01 7.40827262e-01 -5.64930081e-01 9.60329652e-01 -5.22200987e-02 7.93552577e-01 -1.37838721e-01 -1.35905385e-01 2.40937874e-01 2.22054318e-01 3.02569181e-01 1.28864682e+00 3.85402828e-01 2.40679994e-01 2.37183958e-01 7.40558147e-01 -7.10098892e-02 1.70434475e-01 -8.41776550e-01 -5.36191761e-02 9.36990306e-02 1.10409307e+00 -7.57377088e-01 -4.73422289e-01 -3.80335093e-01 4.57554400e-01 -5.64605556e-02 -1.69427678e-01 -1.08046770e+00 1.95287690e-02 1.32803604e-01 1.16286300e-01 2.48104990e-01 1.44226223e-01 -2.92467088e-01 -9.52910125e-01 -2.91713685e-01 -1.00534320e+00 9.06418264e-01 -8.07486296e-01 -1.51165247e+00 9.74554121e-01 9.51841101e-02 -1.30984092e+00 -6.19384229e-01 -7.96481013e-01 -5.23157477e-01 7.43943214e-01 -1.26887059e+00 -1.19601083e+00 -5.62448144e-01 8.73768687e-01 4.04205054e-01 -4.25632566e-01 1.16709745e+00 4.24588442e-01 -6.60235167e-01 5.20694554e-01 1.64443552e-01 6.21964216e-01 4.15729225e-01 -1.13871610e+00 1.85223132e-01 3.95562440e-01 -1.30128130e-01 1.25099868e-01 1.82498515e-01 -6.93513870e-01 -1.08971393e+00 -1.53064907e+00 7.24515975e-01 -3.75939369e-01 2.66498178e-01 1.20317280e-01 -8.36600482e-01 7.33833611e-01 -2.19200309e-02 2.29784861e-01 8.31446052e-01 -4.09869224e-01 1.63708135e-01 1.53667778e-01 -1.50942874e+00 6.62191734e-02 7.07784951e-01 -2.47913480e-01 -6.68821990e-01 5.12280166e-01 6.29768908e-01 -6.60037637e-01 -1.31453240e+00 6.03626370e-01 4.18201566e-01 -7.78358281e-01 1.05209506e+00 -7.50969172e-01 7.40711868e-01 1.25510097e-01 2.89774667e-02 -1.20692170e+00 -2.25173578e-01 4.08559799e-01 1.35759845e-01 4.64109391e-01 3.57229263e-01 -4.52410668e-01 8.27031910e-01 2.08675727e-01 -7.02550113e-02 -1.19324088e+00 -9.20465231e-01 -4.07102704e-01 3.00606281e-01 -8.15390468e-01 6.64229453e-01 1.07939887e+00 -6.96654975e-01 -7.50729218e-02 -1.59452170e-01 -7.89261833e-02 2.21710861e-01 1.08704790e-01 4.43994939e-01 -1.24104691e+00 -3.02632958e-01 -2.26554081e-01 -4.86407906e-01 -3.46282810e-01 -3.91668111e-01 -8.70224059e-01 -2.80214995e-01 -1.63610244e+00 4.29746091e-01 -8.20738256e-01 -2.66103506e-01 5.35611391e-01 1.60216495e-01 3.74605000e-01 -2.79335547e-02 2.54770607e-01 -8.29038173e-02 1.58648863e-01 1.49411333e+00 -1.82832316e-01 1.49761423e-01 2.95869052e-01 -4.45092916e-02 7.91869760e-01 9.04007316e-01 -7.95158446e-01 -3.58183086e-01 -3.92344058e-01 1.34916017e-02 6.85597003e-01 1.86753094e-01 -1.11970270e+00 -1.08227536e-01 -6.14287443e-02 8.68966997e-01 -1.33475626e+00 1.85472012e-01 -1.08359516e+00 2.21727744e-01 1.12023342e+00 -2.47202262e-01 3.27592909e-01 1.25543505e-01 4.20924217e-01 -3.96653980e-01 -3.14807355e-01 8.31070423e-01 -5.23052573e-01 -4.24393535e-01 7.94543922e-01 -7.79536963e-01 1.14589900e-01 1.20611191e+00 -1.55721642e-02 1.16355233e-01 -2.40311742e-01 -8.64720702e-01 1.28371999e-01 -1.12422211e-02 1.15244038e-01 9.10503268e-01 -1.25141430e+00 -1.05992091e+00 3.69899511e-01 1.86189309e-01 6.12161636e-01 3.39263290e-01 9.61367905e-01 -1.34263146e+00 7.11354375e-01 -4.55011725e-01 -9.97683585e-01 -1.48743391e+00 6.41945660e-01 5.51696837e-01 -8.71165514e-01 -7.32841015e-01 9.28958178e-01 4.90448624e-02 -2.97847688e-01 3.19900036e-01 -6.00212157e-01 -4.71667618e-01 -9.05093774e-02 2.82264084e-01 -3.39556374e-02 4.46024626e-01 -4.91488069e-01 -4.69554991e-01 2.62492806e-01 -2.59068131e-01 2.47386634e-01 1.78048503e+00 2.77803659e-01 4.37276736e-02 1.90104797e-01 1.27685487e+00 -5.34125090e-01 -2.95870781e-01 -1.69846967e-01 -1.81984290e-01 -2.55626291e-01 1.38388976e-01 -9.78768945e-01 -1.38832581e+00 1.12084007e+00 1.11940861e+00 2.20357589e-02 1.25216377e+00 2.68355235e-02 1.00888503e+00 4.21576649e-01 1.95106983e-01 -6.14310145e-01 1.48740351e-01 3.95229965e-01 7.99690366e-01 -1.42093933e+00 3.36682536e-02 -5.51752709e-02 -6.78349793e-01 1.20028353e+00 4.32318270e-01 -8.92772432e-03 8.63653243e-01 3.03352267e-01 2.56362826e-01 -6.71548605e-01 -7.46067226e-01 2.73448462e-03 2.43556827e-01 6.95857525e-01 5.48580766e-01 4.37656373e-01 -1.72117099e-01 8.19534838e-01 -1.92353532e-01 2.11802706e-01 3.52109224e-01 9.30273056e-01 -1.53021529e-01 -1.12032223e+00 -4.40435588e-01 1.07192922e+00 -8.97720158e-01 -2.89680380e-02 -3.90174687e-01 1.33096206e+00 5.61338842e-01 4.44551289e-01 -5.03395647e-02 -4.88218755e-01 1.07449301e-01 -1.63073316e-01 2.78636962e-01 -5.37126422e-01 -7.23395169e-01 -6.63945153e-02 1.32857904e-01 -2.02424705e-01 -3.47510695e-01 -5.93547404e-01 -1.21995473e+00 -3.40192556e-01 -3.17729264e-01 -1.34492382e-01 6.11508310e-01 8.54227543e-01 -1.28174797e-01 8.37260365e-01 5.49140334e-01 -2.81377017e-01 -4.75544870e-01 -1.06292808e+00 -6.05122924e-01 2.92244554e-01 4.50000674e-01 -7.11770236e-01 1.82359830e-01 -1.66962873e-02]
[15.362744331359863, -1.876570701599121]
dc2d8a21-4a35-48d0-b663-15b6ec82819d
towards-unsupervised-speech-recognition-and
1910.12729
null
https://arxiv.org/abs/1910.12729v2
https://arxiv.org/pdf/1910.12729v2.pdf
Towards Unsupervised Speech Recognition and Synthesis with Quantized Speech Representation Learning
In this paper we propose a Sequential Representation Quantization AutoEncoder (SeqRQ-AE) to learn from primarily unpaired audio data and produce sequences of representations very close to phoneme sequences of speech utterances. This is achieved by proper temporal segmentation to make the representations phoneme-synchronized, and proper phonetic clustering to have total number of distinct representations close to the number of phonemes. Mapping between the distinct representations and phonemes is learned from a small amount of annotated paired data. Preliminary experiments on LJSpeech demonstrated the learned representations for vowels have relative locations in latent space in good parallel to that shown in the IPA vowel chart defined by linguistics experts. With less than 20 minutes of annotated speech, our method outperformed existing methods on phoneme recognition and is able to synthesize intelligible speech that beats our baseline model.
['Lin-shan Lee', 'Hung-Yi Lee', 'Tao Tu', 'Alexander H. Liu']
2019-10-28
null
null
null
null
['unsupervised-speech-recognition']
['speech']
[ 2.10003942e-01 5.83831906e-01 -5.78095131e-02 -6.22113705e-01 -1.07760692e+00 -8.17712188e-01 4.75318253e-01 -2.66904272e-02 -1.15462482e-01 5.98214626e-01 6.03042901e-01 -4.16464716e-01 1.75568268e-01 -4.63910103e-01 -5.03240585e-01 -4.17877585e-01 -3.45452093e-02 7.64136672e-01 3.99930403e-02 -2.16719374e-01 2.87439674e-02 2.42390692e-01 -1.84660959e+00 6.20214283e-01 4.89832699e-01 6.28377676e-01 4.49260056e-01 1.22829270e+00 -4.03304338e-01 4.90703344e-01 -8.91804636e-01 2.94309780e-02 2.71953195e-01 -7.33790100e-01 -8.63760114e-01 2.79608220e-01 4.10863519e-01 -2.97927231e-01 -1.69416681e-01 9.27644491e-01 3.71116132e-01 4.85806912e-01 1.03646374e+00 -9.95341539e-01 -7.73127437e-01 1.13897729e+00 -1.91826206e-02 1.08745612e-01 3.87313008e-01 -4.08560514e-01 1.12784684e+00 -8.68207216e-01 3.88253063e-01 1.47789276e+00 4.91614163e-01 5.57237744e-01 -1.22487378e+00 -5.68041384e-01 -1.65043354e-01 3.74089256e-02 -1.42564929e+00 -8.16721439e-01 5.41461647e-01 -4.89395291e-01 1.43111706e+00 3.13053310e-01 3.42637509e-01 1.14568961e+00 -1.88195780e-01 4.10808712e-01 7.00514972e-01 -8.63942206e-01 2.49252513e-01 2.92772919e-01 1.42974174e-02 3.34032178e-01 -5.49609423e-01 9.05143917e-02 -3.83681267e-01 1.05492719e-01 9.82373834e-01 -3.54130745e-01 -2.16683611e-01 6.43974170e-02 -1.07809281e+00 9.59020376e-01 -7.52098858e-02 6.59543812e-01 -4.20235515e-01 5.19015230e-02 4.98131275e-01 3.14798862e-01 4.07517180e-02 2.70196706e-01 -5.25213599e-01 -4.62256163e-01 -1.04421163e+00 -1.36495933e-01 7.59515107e-01 1.02536654e+00 5.67493737e-01 8.16708207e-01 2.58375853e-01 1.06804740e+00 2.24189118e-01 1.53647959e-01 1.05223691e+00 -1.40132570e+00 4.90522325e-01 -1.22482769e-01 -1.01105586e-01 -7.41421521e-01 1.97263524e-01 -1.24958545e-01 -6.83161259e-01 2.08485022e-01 3.53010595e-01 -7.26606622e-02 -9.99467254e-01 1.59518659e+00 -1.48756877e-01 2.53919601e-01 5.92171490e-01 4.87776399e-01 6.57178640e-01 1.40822458e+00 -1.73184872e-01 -4.79513854e-01 1.21735489e+00 -8.28795850e-01 -1.12977350e+00 -1.06486566e-01 3.67091060e-01 -8.71901214e-01 1.19693410e+00 6.07841849e-01 -1.05636311e+00 -1.18483222e+00 -1.16642690e+00 -1.00315049e-01 -2.89406627e-01 2.19857529e-01 3.53889525e-01 7.83542454e-01 -1.12087762e+00 5.60767949e-01 -7.64101088e-01 -1.04375251e-01 -1.09933369e-01 4.38670725e-01 -4.02980149e-01 4.70373333e-01 -1.18208218e+00 5.83569288e-01 9.06179905e-01 -5.15169613e-02 -1.18136871e+00 -3.29009622e-01 -1.09091246e+00 1.71130121e-01 -2.72201478e-01 -4.87747677e-02 1.48693871e+00 -1.16275680e+00 -1.94160974e+00 5.40586233e-01 -2.91244358e-01 -7.46482730e-01 -1.60980925e-01 -1.51501849e-01 -7.88068652e-01 4.27375406e-01 -7.91728497e-02 1.12364721e+00 1.12716603e+00 -1.28301895e+00 -7.16067076e-01 1.70808822e-01 -5.40129185e-01 3.29383105e-01 -3.90051305e-01 4.55785580e-02 -2.24146530e-01 -7.32318282e-01 1.83905959e-01 -6.33121848e-01 -1.53418317e-01 -6.51710629e-01 -2.25292400e-01 -5.02314746e-01 8.05366635e-01 -9.12063956e-01 1.17286849e+00 -2.34503293e+00 8.18722472e-02 4.12966087e-02 -1.86715066e-01 1.58119313e-02 -7.59548992e-02 5.77764988e-01 -3.62822175e-01 3.22598815e-02 -2.95121461e-01 -5.45495331e-01 1.18152341e-02 7.29722202e-01 -8.80662680e-01 1.46140009e-01 5.37123047e-02 4.47540760e-01 -8.69072139e-01 -4.28734094e-01 2.75285751e-01 6.42751038e-01 -5.02342105e-01 4.38385665e-01 -2.52283439e-02 3.31745744e-01 2.87135333e-01 1.88471004e-01 2.35628948e-01 4.07650799e-01 2.26304114e-01 9.90818515e-02 -7.68433064e-02 9.70540345e-01 -1.32123709e+00 1.62869132e+00 -5.40288210e-01 8.39541197e-01 1.66493312e-01 -9.90804315e-01 1.27662849e+00 1.12959361e+00 2.13880956e-01 -2.10428193e-01 -2.07930058e-02 1.99431121e-01 1.04925677e-01 -1.73773795e-01 6.08011186e-01 -4.25712913e-01 -1.38776258e-01 3.73460501e-01 6.16387904e-01 -5.08822620e-01 -1.07335396e-01 -2.84943474e-03 4.34606284e-01 -1.08254634e-01 2.94242948e-01 -7.51754940e-02 2.28652835e-01 -2.20995307e-01 6.53548837e-01 5.36189973e-01 -1.82873085e-01 9.05797303e-01 8.15399960e-02 -5.35296686e-02 -1.07912040e+00 -1.41861689e+00 -2.04869449e-01 1.20955777e+00 -4.35024112e-01 -6.30156159e-01 -9.55071330e-01 -2.62941957e-01 -4.95580167e-01 9.07744229e-01 -3.34188432e-01 8.01173821e-02 -6.64755344e-01 -5.72810275e-03 7.72555709e-01 8.14746261e-01 -1.38161197e-01 -1.45512164e+00 -2.03621477e-01 6.36402726e-01 -1.82126597e-01 -1.02782643e+00 -3.61466259e-01 8.51686835e-01 -8.30394208e-01 -5.65086484e-01 -6.38669133e-01 -1.46407342e+00 2.92343557e-01 -2.29293957e-01 1.07630527e+00 -6.03683293e-01 -2.30781138e-02 -5.82705587e-02 -5.91567636e-01 -3.18881422e-01 -8.31236184e-01 2.83701695e-03 4.60177481e-01 -1.25187844e-01 3.46976399e-01 -8.07571769e-01 -6.59211800e-02 -3.28758694e-02 -7.46988833e-01 -3.86458486e-01 2.03785554e-01 7.95992792e-01 7.74719715e-01 5.19797742e-01 7.63954937e-01 -5.57266355e-01 7.08143353e-01 -4.17100728e-01 -3.40483576e-01 -3.04687351e-01 -1.37575731e-01 -1.96406655e-02 8.77213061e-01 -4.56841737e-01 -9.36026514e-01 4.26429480e-01 -4.93509740e-01 -5.40622234e-01 -6.86225414e-01 2.47667626e-01 -1.96144357e-01 8.35012555e-01 6.74522102e-01 1.91714704e-01 -7.04874517e-03 -5.70189595e-01 8.95255744e-01 1.21186411e+00 1.08485353e+00 -3.47732961e-01 4.01078403e-01 -1.11343428e-01 -8.84069741e-01 -1.17853463e+00 -2.02001333e-01 -4.21908826e-01 -8.06726813e-01 2.38102436e-01 9.71817493e-01 -9.45942163e-01 -3.50264341e-01 -8.13755095e-02 -1.20734811e+00 -1.13275595e-01 -6.68004274e-01 8.98338616e-01 -8.69649231e-01 3.17420185e-01 -8.59332800e-01 -1.04125643e+00 -1.37154594e-01 -1.04768682e+00 9.69641030e-01 -4.36568595e-02 -8.13485444e-01 -9.17418122e-01 3.03130835e-01 1.50623351e-01 5.55719435e-03 -1.40152961e-01 9.02250707e-01 -8.67798626e-01 -8.17287266e-02 2.81106345e-02 4.98656750e-01 9.22855973e-01 6.20752752e-01 1.82366192e-01 -1.41106987e+00 -1.83148205e-01 8.24174061e-02 -4.36138779e-01 7.89905846e-01 6.06017113e-01 1.06159365e+00 -3.76420289e-01 4.84639173e-03 4.24369246e-01 9.75610971e-01 8.63760889e-01 5.43776751e-01 -2.50150293e-01 4.78414834e-01 8.43624532e-01 3.52518916e-01 2.40353242e-01 1.91192031e-02 3.65540832e-01 1.41071528e-01 1.43358395e-01 -2.41420254e-01 -4.74539191e-01 5.98430753e-01 2.01940942e+00 2.95390576e-01 -2.75060385e-01 -7.87505269e-01 9.89301682e-01 -1.45660675e+00 -1.00246453e+00 1.74995348e-01 1.93629944e+00 9.00503278e-01 3.24742258e-01 2.41690457e-01 6.95368588e-01 7.83686817e-01 8.65766704e-02 6.51238114e-02 -1.31766474e+00 5.42338984e-03 5.58891118e-01 5.38516119e-02 9.79173839e-01 -9.08986986e-01 1.14559901e+00 8.07289886e+00 9.16128933e-01 -7.66587555e-01 1.45135015e-01 4.16903168e-01 2.45273218e-01 -5.38221121e-01 -1.34264916e-01 -8.26712310e-01 3.42171907e-01 1.64789069e+00 1.63416266e-01 5.22838533e-01 8.81563365e-01 1.07612245e-01 4.20297593e-01 -1.23995852e+00 1.10025585e+00 -1.46121169e-02 -1.26502025e+00 1.85121730e-01 -1.45539880e-01 7.00191140e-01 -1.40271276e-01 2.17243165e-01 4.75397736e-01 7.04022527e-01 -1.44175422e+00 7.50275910e-01 1.32316351e-01 9.34319854e-01 -1.04385889e+00 4.75907326e-01 3.61581624e-01 -1.52277660e+00 1.52468532e-02 -5.21497428e-01 -2.17306674e-01 1.86493561e-01 7.73314461e-02 -1.62629604e+00 3.09049428e-01 5.62199175e-01 5.91564119e-01 -4.70554158e-02 3.88843775e-01 -1.39863655e-01 1.14380395e+00 -3.08402836e-01 2.11547568e-01 3.71817797e-01 -1.74206212e-01 1.88083768e-01 1.33037913e+00 4.60088104e-01 3.44087444e-02 1.28174633e-01 6.02986455e-01 1.34750053e-01 1.95298001e-01 -8.07928979e-01 -5.12364447e-01 1.02386153e+00 7.18230009e-01 -5.92850804e-01 -5.86519480e-01 -5.88863529e-02 1.18651259e+00 5.56245260e-02 4.29143846e-01 -3.84602696e-01 -7.24145114e-01 7.55865633e-01 -3.63808692e-01 6.20382726e-01 -4.19243604e-01 -1.75890904e-02 -6.24819517e-01 -3.02813739e-01 -9.34499860e-01 8.39357004e-02 -6.75904751e-01 -1.27194107e+00 1.19278729e+00 -1.02354683e-01 -1.35228968e+00 -1.30581892e+00 -5.57185054e-01 -6.32339537e-01 1.07995498e+00 -8.54260862e-01 -6.45773828e-01 5.94572723e-01 5.41782498e-01 1.03561509e+00 -6.09913945e-01 1.57258856e+00 1.08786924e-02 -1.94021866e-01 5.21123528e-01 2.46133149e-01 3.36590290e-01 4.08879548e-01 -1.61866117e+00 6.53741717e-01 6.94357216e-01 9.97263432e-01 6.76497698e-01 6.97414041e-01 -3.33313525e-01 -5.93163073e-01 -8.29092681e-01 1.10697901e+00 -5.62133014e-01 3.79465163e-01 -6.03109479e-01 -1.00098622e+00 8.62213910e-01 6.72562182e-01 -1.56484246e-01 1.04939747e+00 5.66449985e-02 -3.23389441e-01 -6.83079809e-02 -7.15715468e-01 2.90826827e-01 6.21751070e-01 -1.29037535e+00 -1.36025119e+00 1.18512966e-01 1.09885430e+00 -1.40363947e-01 -8.16110134e-01 -5.91823310e-02 4.14380193e-01 -7.54063427e-01 8.70244801e-01 -4.53658879e-01 1.89320758e-01 -3.70410860e-01 -6.32216334e-01 -1.39726424e+00 -1.63975790e-01 -8.24093461e-01 -2.78377831e-02 1.59881747e+00 4.31193799e-01 -1.79900140e-01 6.33409977e-01 -3.00024122e-01 -5.23895264e-01 -2.23431170e-01 -1.00765514e+00 -8.77792537e-01 1.51435122e-01 -7.16853321e-01 4.89453822e-01 9.41328347e-01 1.34521183e-02 4.48021322e-01 -2.55427599e-01 3.96439999e-01 2.97342569e-01 1.19832605e-01 3.11844170e-01 -1.05987883e+00 -7.43921518e-01 -2.34542936e-01 -3.72369528e-01 -1.21000051e+00 4.14247572e-01 -9.44068909e-01 4.92208928e-01 -1.30797267e+00 -6.58197522e-01 -2.14165822e-01 -4.63944763e-01 4.36997592e-01 2.03229576e-01 1.55320928e-01 4.40597394e-03 -9.54635069e-02 4.65473980e-02 6.02127850e-01 7.14446843e-01 -1.53652713e-01 -4.61769938e-01 -1.57001361e-01 -4.34539139e-01 7.33447909e-01 8.05259228e-01 -4.83464599e-01 -8.48905385e-01 -3.04507673e-01 -3.76973927e-01 3.71643543e-01 -3.02365869e-01 -1.08485210e+00 -6.09342987e-03 1.90766796e-01 4.59444165e-01 -9.29034293e-01 8.18073630e-01 -6.66409373e-01 9.00301412e-02 1.07037447e-01 -6.25483394e-01 8.02651644e-02 1.93659723e-01 4.35697854e-01 -8.89275074e-01 -4.18631673e-01 4.40064758e-01 -1.83173165e-01 -8.14733624e-01 -2.26503298e-01 -1.00073850e+00 -1.64226949e-01 5.66799939e-01 -5.07980227e-01 3.62572551e-01 -6.58080220e-01 -1.09886503e+00 -2.37788498e-01 -9.65096895e-03 6.37556493e-01 7.08677530e-01 -1.56402922e+00 -5.58656573e-01 6.16959572e-01 -1.44917339e-01 -1.06428102e-01 -1.27531081e-01 -1.62591398e-01 -4.61194634e-01 6.06727719e-01 -3.93736273e-01 -5.88813245e-01 -1.17017758e+00 4.35760111e-01 1.37881309e-01 2.98825264e-01 -6.50483608e-01 1.17168868e+00 1.07335776e-01 -7.26227045e-01 7.31792033e-01 -7.78395832e-01 -5.29802561e-01 2.76936859e-01 4.97487634e-01 5.86020276e-02 -2.01843809e-02 -8.53572488e-01 -2.88666904e-01 3.56046796e-01 -8.98882523e-02 -8.11177373e-01 1.19032240e+00 -2.30435669e-01 2.47718677e-01 1.12681556e+00 1.39357293e+00 3.48707825e-01 -1.43692470e+00 3.98615152e-01 -1.05642155e-02 -4.20183539e-02 -5.15042990e-02 -3.52468997e-01 -5.92684925e-01 1.29390502e+00 6.65080965e-01 3.93822879e-01 9.45601404e-01 3.67904790e-02 9.56797838e-01 3.03299993e-01 5.94250374e-02 -1.15147114e+00 1.57835692e-01 6.41229510e-01 9.31450367e-01 -8.73730779e-01 -6.78658545e-01 -3.94845068e-01 -8.63602161e-01 1.26952040e+00 2.55222976e-01 -3.18031609e-01 6.20662808e-01 3.35647225e-01 4.29478765e-01 2.47932479e-01 -7.36807108e-01 -1.07873574e-01 2.29452655e-01 1.12033367e+00 5.82065225e-01 3.05379897e-01 3.89170974e-01 7.25936532e-01 -9.62135613e-01 -5.87357044e-01 4.62748826e-01 6.22115850e-01 -7.18810916e-01 -1.28323364e+00 -4.42650676e-01 -3.00059468e-02 -3.80451411e-01 -2.30024248e-01 -3.12812716e-01 5.37606120e-01 2.93596059e-01 1.17647696e+00 7.56940365e-01 -4.43533868e-01 3.14027071e-02 4.73990828e-01 1.71291605e-01 -1.04968333e+00 -4.80756938e-01 6.08635962e-01 1.51813388e-01 -3.15143675e-01 -1.19274937e-01 -4.61332262e-01 -1.66221523e+00 4.09567654e-01 -8.82198513e-02 7.03193069e-01 5.91971517e-01 8.16001594e-01 4.80118841e-02 6.58851624e-01 7.80331254e-01 -9.21308637e-01 -5.54087818e-01 -1.11743689e+00 -8.57764840e-01 1.86879337e-01 5.89195549e-01 -1.59017086e-01 -4.20422971e-01 6.18280590e-01]
[14.629858016967773, 6.644370079040527]
dac530a2-805f-4833-90ef-dc70b9710e23
knowledge-acquisition-and-completion-for-long
2301.06834
null
https://arxiv.org/abs/2301.06834v1
https://arxiv.org/pdf/2301.06834v1.pdf
Knowledge Acquisition and Completion for Long-Term Human-Robot Interactions using Knowledge Graph Embedding
In Human-Robot Interaction (HRI) systems, a challenging task is sharing the representation of the operational environment, fusing symbolic knowledge and perceptions, between users and robots. With the existing HRI pipelines, users can teach the robots some concepts to increase their knowledge base. Unfortunately, the data coming from the users are usually not enough dense for building a consistent representation. Furthermore, the existing approaches are not able to incrementally build up their knowledge base, which is very important when robots have to deal with dynamic contexts. To this end, we propose an architecture to gather data from users and environments in long-runs of continual learning. We adopt Knowledge Graph Embedding techniques to generalize the acquired information with the goal of incrementally extending the robot's inner representation of the environment. We evaluate the performance of the overall continual learning architecture by measuring the capabilities of the robot of learning entities and relations coming from unknown contexts through a series of incremental learning sessions.
['D. Nardi', 'V. Suriani', 'F. Argenziano', 'E. Bartoli']
2023-01-17
null
null
null
null
['knowledge-graph-embedding']
['graphs']
[-2.18519464e-01 5.86113453e-01 1.53895840e-01 -4.04069424e-01 -8.65616743e-03 -5.99470317e-01 4.69620615e-01 6.57893181e-01 -4.57911819e-01 6.24780059e-01 6.12725616e-02 3.15251164e-02 -1.76369205e-01 -8.59202802e-01 -8.98779929e-01 -6.04868717e-02 -3.91103655e-01 8.69795978e-01 4.91410255e-01 -5.59845924e-01 -1.97015777e-01 4.30599749e-01 -1.69445121e+00 1.45940885e-01 5.29813290e-01 5.19312441e-01 6.97822154e-01 4.29700822e-01 -1.32476643e-01 1.10854840e+00 -1.02576010e-01 -1.95678174e-02 1.07633904e-01 -3.04697491e-02 -1.17853677e+00 -3.17913443e-02 5.65106375e-03 -4.89699841e-01 -4.56235737e-01 8.31266582e-01 -4.51320484e-02 6.18506849e-01 3.86667401e-01 -1.63865066e+00 -7.88517594e-01 1.13483441e+00 1.52237684e-01 -2.97918499e-01 7.47139692e-01 6.45762086e-02 8.88766289e-01 -9.57906425e-01 9.13554013e-01 1.47497940e+00 4.67429489e-01 4.75885719e-01 -9.74035382e-01 -2.71632373e-01 5.15014172e-01 6.64326012e-01 -1.51629388e+00 -2.23307416e-01 6.81249082e-01 -4.19783920e-01 1.06831825e+00 -1.06088690e-01 6.49303079e-01 9.23651874e-01 -4.91544634e-01 8.09197366e-01 4.34323728e-01 -4.10535425e-01 3.55876952e-01 7.25274026e-01 4.90873277e-01 6.26258910e-01 2.44130760e-01 -1.28017172e-01 -6.55666292e-01 2.30596438e-01 6.71581328e-01 3.09909344e-01 -5.51345088e-02 -8.94850194e-01 -1.16320932e+00 3.16851199e-01 9.29433107e-01 7.26284206e-01 -4.44484204e-01 8.09829906e-02 2.44170040e-01 6.16043091e-01 -3.12897325e-01 8.17050755e-01 -5.59081495e-01 -1.59806788e-01 8.36397186e-02 7.40169287e-02 9.66531336e-01 1.50341356e+00 1.26617169e+00 -4.63730961e-01 4.96342361e-01 5.19587159e-01 2.77358770e-01 2.00534821e-01 6.40767574e-01 -9.31387603e-01 2.25064546e-01 9.88892674e-01 3.65939200e-01 -9.47889030e-01 -4.71139818e-01 1.10908724e-01 -2.77695358e-01 1.46752317e-03 3.17177456e-03 -2.07570150e-01 -5.35988390e-01 1.70881522e+00 4.45702076e-01 2.76773423e-01 4.87220228e-01 5.44982612e-01 6.02377713e-01 3.65086347e-01 1.10111848e-01 1.83094501e-01 1.01745510e+00 -1.07256222e+00 -4.21460658e-01 -5.44158757e-01 9.35595870e-01 9.41547230e-02 9.53973651e-01 2.37886384e-01 -5.25545716e-01 -1.03882682e+00 -9.90109146e-01 -1.94263637e-01 -8.11441243e-01 -2.22146809e-01 6.05706096e-01 1.58809442e-02 -1.05163991e+00 7.31258273e-01 -8.28808784e-01 -7.90258646e-01 4.75938544e-02 4.75243866e-01 -7.81547368e-01 -4.15893078e-01 -1.05525053e+00 1.17768800e+00 9.56292510e-01 1.62733898e-01 -1.05090714e+00 -3.41081530e-01 -1.20083189e+00 4.44667749e-02 7.46521235e-01 -4.99838442e-01 1.32255197e+00 -6.36313617e-01 -1.29822373e+00 1.70873225e-01 3.17440718e-01 -2.65194029e-01 1.05470136e-01 -5.13566494e-01 -3.90708335e-02 -2.16266453e-01 -1.37609601e-01 6.79786205e-01 4.93721873e-01 -1.55841315e+00 -8.16343784e-01 -6.82475507e-01 8.13052475e-01 5.81627965e-01 -4.33631539e-01 -4.92220521e-01 -4.81001318e-01 3.25719297e-01 1.53779373e-01 -1.26989067e+00 -4.46255118e-01 -2.70258218e-01 8.08719918e-03 -3.22065681e-01 1.03767705e+00 -4.36326146e-01 6.35238528e-01 -2.36979008e+00 6.45548820e-01 2.73112446e-01 1.63074210e-01 6.32214472e-02 -3.54317486e-01 5.90942562e-01 3.54782231e-02 -1.58591256e-01 2.83382565e-01 -4.65095401e-01 7.49506876e-02 6.54345334e-01 -1.70473665e-01 -1.82479143e-01 -3.72398235e-02 9.41574872e-01 -1.42311645e+00 -1.40656337e-01 4.06968027e-01 3.31989557e-01 -4.88778025e-01 5.82049489e-01 -3.70373964e-01 5.34049451e-01 -3.92432064e-01 6.45685866e-02 9.23656374e-02 -2.26102814e-01 8.00100982e-01 -1.33304492e-01 1.80678010e-01 1.04140706e-01 -1.32505465e+00 2.09867930e+00 -7.52844810e-01 4.89769846e-01 -7.09399059e-02 -8.88577461e-01 7.45776296e-01 3.03872406e-01 3.73365194e-01 -4.21163261e-01 -9.62650850e-02 -1.02811530e-01 -1.41396716e-01 -6.30015373e-01 7.82262206e-01 1.26294538e-01 -2.38063455e-01 3.19998384e-01 4.97904986e-01 -2.50517666e-01 -9.61943343e-02 4.00776654e-01 1.16442275e+00 2.08151177e-01 3.35969269e-01 4.21338260e-01 3.00557941e-01 7.45556653e-02 1.77886963e-01 6.53075933e-01 5.86506038e-04 -1.94852814e-01 2.23869324e-01 -5.15336394e-01 -7.21107423e-01 -8.86716068e-01 4.92140740e-01 1.44566476e+00 5.27212203e-01 -5.45273125e-01 -3.39406192e-01 -9.06734765e-01 -5.66768646e-02 9.80058193e-01 -6.58482850e-01 -4.48381126e-01 -4.00692642e-01 1.07959874e-01 9.12033468e-02 7.20777392e-01 2.43407935e-01 -1.31524646e+00 -1.01728058e+00 2.93972075e-01 -6.62733093e-02 -1.16330063e+00 1.11594073e-01 4.08529222e-01 -5.27128041e-01 -1.04277050e+00 1.24244966e-01 -1.00913835e+00 9.15198386e-01 3.93189341e-01 8.53318214e-01 9.32215750e-02 -2.11954981e-01 1.11065662e+00 -7.03707755e-01 -4.18350577e-01 -5.91305077e-01 1.37792766e-01 3.64266574e-01 -3.73551726e-01 2.69344240e-01 -8.05667520e-01 -1.09683402e-01 3.02493840e-01 -7.30156660e-01 6.94952384e-02 6.12888157e-01 5.47960401e-01 2.83421278e-01 4.87437010e-01 5.31400025e-01 -8.50113809e-01 5.15238762e-01 -7.46413112e-01 -4.67383832e-01 5.06734788e-01 -5.37059009e-01 3.13278794e-01 4.71660584e-01 -6.11008883e-01 -1.18761992e+00 3.68895382e-01 3.85956913e-01 -4.35743392e-01 -3.99862617e-01 9.21981871e-01 -2.65364558e-01 1.24454908e-01 8.44153702e-01 -3.95623706e-02 -1.59331635e-02 -5.26147485e-01 1.08473217e+00 6.34969413e-01 7.28863120e-01 -6.94421172e-01 7.64681935e-01 6.14289455e-02 -3.87852967e-01 -6.19381011e-01 -7.62854815e-01 -8.12147021e-01 -1.14952958e+00 -1.27421230e-01 5.84649920e-01 -9.00632858e-01 -8.32679987e-01 2.23228931e-01 -1.16815102e+00 -8.13916683e-01 -6.82573080e-01 4.90829110e-01 -5.68111956e-01 2.39606678e-01 -3.76914591e-01 -7.59062469e-01 2.27671161e-01 -1.12557054e+00 6.93616748e-01 1.17833562e-01 -2.99555093e-01 -9.73521411e-01 1.88878283e-01 -7.21977204e-02 3.40177149e-01 -1.02356598e-01 8.68124127e-01 -9.35297012e-01 -5.04634500e-01 -1.32372648e-01 -4.52119447e-02 2.03765675e-01 3.55248690e-01 -5.56444049e-01 -8.74124885e-01 -3.63931507e-01 -2.71206975e-01 -6.90285206e-01 8.91813561e-02 -5.99548161e-01 8.51911068e-01 -2.02280372e-01 -6.45835817e-01 -1.73696101e-01 1.23880291e+00 2.07360849e-01 3.87931228e-01 2.15919733e-01 8.32148910e-01 8.59746933e-01 8.49045694e-01 3.82624686e-01 9.41263914e-01 5.49262702e-01 4.21148121e-01 4.45232064e-01 5.92804886e-02 -5.53414226e-01 3.64164203e-01 7.05288768e-01 -6.04188256e-02 2.32867777e-01 -1.07699871e+00 7.94038355e-01 -2.23484421e+00 -8.32390070e-01 5.02587795e-01 2.02901602e+00 7.63582110e-01 -1.16238780e-01 -1.89229280e-01 -1.37291104e-01 2.36501694e-01 -4.05088902e-01 -8.32123697e-01 -5.31786494e-02 6.37811422e-01 -3.54933351e-01 1.73145026e-01 6.14844382e-01 -9.00177002e-01 1.15416217e+00 6.05437183e+00 3.18938233e-02 -7.74047375e-01 7.11031184e-02 -1.01580828e-01 2.71620482e-01 -1.08731568e-01 1.57939643e-01 -6.88311934e-01 -4.73957472e-02 1.08529997e+00 -7.79096335e-02 7.59887874e-01 1.43455422e+00 -5.27796388e-01 -1.45362243e-01 -1.79623818e+00 9.93441999e-01 7.40004405e-02 -8.96001697e-01 -1.61078483e-01 -1.52550936e-01 3.16228598e-01 2.58446693e-01 -1.70776606e-01 1.12279689e+00 8.16765845e-01 -8.04591477e-01 6.94109261e-01 6.55986607e-01 3.93291831e-01 -5.02347469e-01 6.93711340e-01 8.69868040e-01 -1.11866724e+00 -5.54624736e-01 -2.64810711e-01 -1.68273106e-01 1.34838760e-01 -9.25682783e-02 -1.54402900e+00 7.35349536e-01 7.95610547e-01 7.95734107e-01 -8.19808424e-01 5.52590072e-01 -3.65092248e-01 -1.51695907e-01 -4.63281304e-01 6.07883036e-02 -7.80168846e-02 -1.42384723e-01 2.18214214e-01 6.66725934e-01 3.00426692e-01 2.04736099e-01 5.51441610e-01 7.01236427e-01 -1.91073492e-01 -1.19737647e-01 -1.13270497e+00 -7.00503737e-02 8.05988252e-01 1.08035862e+00 -4.07672852e-01 -4.52395499e-01 -6.78875625e-01 1.09880996e+00 9.58899140e-01 2.50697196e-01 -3.86622995e-01 -2.45755911e-01 3.63523871e-01 -2.59726673e-01 2.05347374e-01 -5.62966108e-01 3.09530795e-01 -9.17454183e-01 -3.70960380e-03 -8.14487755e-01 3.01350117e-01 -1.04395628e+00 -9.27719772e-01 4.00169402e-01 3.09011430e-01 -8.83089662e-01 -5.27324557e-01 -6.24394834e-01 -8.99833962e-02 3.47685575e-01 -1.25313699e+00 -1.39867854e+00 -7.15471864e-01 5.90653658e-01 4.46108073e-01 -8.93277004e-02 1.05119908e+00 5.52502573e-02 -2.99045086e-01 2.13910580e-01 -2.93929398e-01 1.68564916e-02 6.26401544e-01 -1.15544164e+00 2.40114704e-01 2.86196828e-01 5.31206727e-01 9.47873950e-01 6.21603012e-01 -6.91748619e-01 -1.71261811e+00 -1.05885863e+00 4.46874946e-01 -9.44539428e-01 7.48929262e-01 -3.97846729e-01 -1.19744384e+00 1.42201567e+00 -7.39172027e-02 3.29109654e-02 6.06139123e-01 6.87033415e-01 -6.03586674e-01 -1.97215099e-02 -8.93971920e-01 5.35920680e-01 1.28977764e+00 -7.08551407e-01 -1.06432450e+00 1.68266132e-01 1.06421280e+00 -3.79061908e-01 -1.07016790e+00 2.69170612e-01 5.04494905e-01 -5.08252084e-01 9.00760114e-01 -5.99233270e-01 -1.24792553e-01 -4.11943287e-01 -3.27119291e-01 -1.57596135e+00 -1.71558455e-01 -3.36267143e-01 -1.65788904e-01 1.04207957e+00 5.33235908e-01 -4.27738935e-01 4.00337577e-01 1.02803934e+00 -1.04350924e-01 -2.16255426e-01 -4.56918925e-01 -7.16207862e-01 -3.80546302e-01 -6.24672890e-01 9.81181800e-01 9.95250404e-01 7.49921679e-01 7.07790792e-01 -9.52665210e-02 5.30258894e-01 1.29230544e-01 -1.38478547e-01 1.25028861e+00 -1.37849569e+00 -4.41767424e-01 2.46046260e-01 -6.11723483e-01 -8.53356719e-01 3.55236888e-01 -7.53821015e-01 4.00707453e-01 -1.70711362e+00 1.62459075e-01 -7.47756541e-01 -4.91043240e-01 9.17523086e-01 -1.91532932e-02 -5.68804979e-01 3.50356907e-01 2.35921249e-01 -1.16572154e+00 5.90956688e-01 7.57926881e-01 -1.58211380e-01 -6.13147557e-01 -4.46429074e-01 -5.33404231e-01 9.17195916e-01 5.99245369e-01 -1.84652433e-01 -1.04009330e+00 -7.11860478e-01 7.02896774e-01 -2.42495731e-01 4.57566649e-01 -1.32026625e+00 6.46204591e-01 -1.65944368e-01 -5.72087653e-02 -3.70986611e-01 5.33126831e-01 -1.47941196e+00 4.11133140e-01 7.95710757e-02 -3.75924975e-01 -2.10158691e-01 3.52482736e-01 7.82446623e-01 -2.68513113e-01 -3.09366703e-01 1.35823891e-01 -3.47092062e-01 -1.50403702e+00 1.74621269e-01 -1.50997534e-01 -4.17341560e-01 1.22273779e+00 5.10155298e-02 -1.63084064e-02 -3.55397254e-01 -1.11858404e+00 6.32798731e-01 6.86849535e-01 7.29952812e-01 7.31219351e-01 -1.12700987e+00 1.60494857e-02 8.58540908e-02 6.97481453e-01 5.31490922e-01 1.82175353e-01 3.53517115e-01 -9.27345827e-02 6.45301342e-02 -2.85800546e-01 -2.90212005e-01 -1.02231085e+00 1.08356011e+00 1.24331914e-01 -6.66477382e-02 -7.39943385e-01 6.46441221e-01 1.51681662e-01 -9.51007485e-01 4.73277599e-01 -4.75437194e-01 -5.37040234e-01 1.30313516e-01 5.17420173e-01 2.56092459e-01 -3.65397818e-02 -5.29048264e-01 -1.02448948e-01 1.37545601e-01 -1.27993912e-01 -1.88352764e-01 1.42159820e+00 -5.15082240e-01 -2.56040901e-01 9.13861394e-01 9.55690026e-01 -3.38900656e-01 -1.01050687e+00 -7.08130956e-01 3.20223391e-01 -8.73369798e-02 -3.65252733e-01 -5.48695028e-01 -3.77938569e-01 6.29243135e-01 5.32976210e-01 4.75047678e-02 5.67724228e-01 4.32061821e-01 4.18875158e-01 1.40224874e+00 1.14855707e+00 -1.25682199e+00 3.52732480e-01 6.96558535e-01 1.00631309e+00 -1.29154921e+00 -1.39523268e-01 -2.72116512e-01 -7.88680255e-01 9.38885570e-01 9.35094297e-01 2.60103613e-01 6.89753056e-01 -1.15460530e-01 -6.83655515e-02 -3.70755225e-01 -7.80187249e-01 -3.18484038e-01 5.61787421e-03 1.04356980e+00 -7.32380748e-02 1.81679741e-01 6.24000788e-01 6.90073311e-01 -2.29012012e-01 -5.04484363e-02 5.00485003e-01 1.08876562e+00 -5.58165371e-01 -1.05575716e+00 4.84113544e-02 -2.85193864e-02 5.95348239e-01 4.14692044e-01 -4.81039703e-01 7.49027848e-01 2.96577662e-01 9.45331037e-01 -1.98090941e-01 -6.20685399e-01 7.74311185e-01 2.88087755e-01 4.27281797e-01 -1.19684517e+00 -1.08687431e-01 -7.72756100e-01 1.45225257e-01 -9.87077713e-01 -3.03980649e-01 -6.23810291e-01 -1.70657873e+00 1.72596171e-01 -2.40571916e-01 1.14772223e-01 7.57651031e-01 9.30354774e-01 4.36737686e-01 5.05215347e-01 3.82526994e-01 -8.96766663e-01 -3.87143791e-01 -9.44827735e-01 -3.49709392e-01 6.99743450e-01 2.72277862e-01 -8.38940859e-01 -3.55329132e-03 2.06132203e-01]
[4.517464637756348, 0.8066277503967285]
7cc9d6e6-a012-4fb7-a6c1-ed6ca58b898c
reader-aware-multi-document-summarization-via
1504.07324
null
http://arxiv.org/abs/1504.07324v1
http://arxiv.org/pdf/1504.07324v1.pdf
Reader-Aware Multi-Document Summarization via Sparse Coding
We propose a new MDS paradigm called reader-aware multi-document summarization (RA-MDS). Specifically, a set of reader comments associated with the news reports are also collected. The generated summaries from the reports for the event should be salient according to not only the reports but also the reader comments. To tackle this RA-MDS problem, we propose a sparse-coding-based method that is able to calculate the salience of the text units by jointly considering news reports and reader comments. Another reader-aware characteristic of our framework is to improve linguistic quality via entity rewriting. The rewriting consideration is jointly assessed together with other summarization requirements under a unified optimization model. To support the generation of compressive summaries via optimization, we explore a finer syntactic unit, namely, noun/verb phrase. In this work, we also generate a data set for conducting RA-MDS. Extensive experiments on this data set and some classical data sets demonstrate the effectiveness of our proposed approach.
['Piji Li', 'Hang Li', 'Yi Liao', 'Wai Lam', 'Lidong Bing']
2015-04-28
null
null
null
null
['reader-aware-summarization']
['natural-language-processing']
[ 3.17650586e-01 2.08564833e-01 -1.52347043e-01 -2.57557988e-01 -1.12832749e+00 -4.41959113e-01 7.28349805e-01 7.64503419e-01 -2.31123626e-01 7.36181855e-01 1.45087016e+00 3.19756150e-01 -2.88434267e-01 -7.14539349e-01 -3.48981410e-01 -3.90907764e-01 3.12825620e-01 2.71134347e-01 2.01849323e-02 -3.54816407e-01 7.43938744e-01 1.76991999e-01 -1.53174424e+00 6.21148884e-01 1.47718465e+00 5.43764591e-01 5.67998350e-01 6.46290123e-01 -3.96956921e-01 6.71447933e-01 -8.73847425e-01 -3.52092624e-01 -6.04028516e-02 -6.03912652e-01 -5.68891048e-01 5.74096918e-01 7.38233477e-02 -3.17223787e-01 1.69758126e-02 9.25700963e-01 5.87952554e-01 4.03053403e-01 7.58124292e-01 -7.61465490e-01 -5.66130519e-01 1.10014224e+00 -7.73759723e-01 3.41765344e-01 7.70712137e-01 -4.90724713e-01 1.45529580e+00 -8.39912713e-01 7.29814529e-01 1.25986123e+00 1.03807412e-01 1.47248060e-01 -7.17948377e-01 -1.70964926e-01 4.26998049e-01 8.00933838e-02 -1.12345457e+00 -5.96080303e-01 1.03201509e+00 -1.46377638e-01 5.45794606e-01 6.57837689e-01 3.78937989e-01 6.14054859e-01 1.03164330e-01 9.44555223e-01 5.63153863e-01 -4.10025358e-01 4.09642905e-01 -4.59431410e-02 3.11966866e-01 2.55266488e-01 4.98296559e-01 -7.27764010e-01 -6.70417547e-01 -4.10405725e-01 4.86236624e-03 -6.48178384e-02 -2.98803031e-01 2.16274917e-01 -1.43804550e+00 9.11792338e-01 -3.33508849e-02 4.50867087e-01 -7.80148327e-01 -2.59434104e-01 5.50098181e-01 -1.89041182e-01 7.12070286e-01 3.54781330e-01 -5.35036474e-02 6.11817650e-02 -1.20404208e+00 4.21873182e-01 8.35400283e-01 1.02241206e+00 5.68088710e-01 -3.90804000e-02 -7.79664636e-01 8.54154587e-01 3.19312692e-01 4.30852294e-01 5.38678765e-01 -8.00053596e-01 1.05275226e+00 8.37105334e-01 2.39260137e-01 -1.58874619e+00 -3.31806213e-01 -6.65269494e-01 -1.02996635e+00 -6.11367345e-01 -3.10062170e-01 -3.46227735e-01 -2.75669992e-01 1.49692166e+00 3.57143253e-01 1.03340387e-01 4.66659814e-01 6.55243337e-01 1.07953143e+00 1.05730569e+00 -3.64754081e-01 -8.85207951e-01 1.46602786e+00 -8.66556227e-01 -1.02749157e+00 -7.25932270e-02 6.61515534e-01 -6.92411065e-01 6.62263691e-01 2.53778517e-01 -1.31653214e+00 -3.52693707e-01 -1.13474357e+00 -1.19184762e-01 3.20006281e-01 6.59714878e-01 1.14149719e-01 2.18668789e-01 -7.87485957e-01 2.36045703e-01 -3.83498669e-01 -3.86557102e-01 9.11341384e-02 1.81788094e-02 -1.23631567e-01 4.62586619e-02 -1.00114965e+00 6.41404152e-01 5.28409958e-01 -2.09545732e-01 -4.31002915e-01 -5.18884420e-01 -8.02770376e-01 4.36951220e-01 4.43089783e-01 -8.13592196e-01 9.72883403e-01 -5.47779262e-01 -1.15074849e+00 2.89128929e-01 -6.33368909e-01 -4.07091230e-01 2.13166922e-01 -1.66396707e-01 -4.56210971e-01 4.35413092e-01 3.92268151e-01 1.64307371e-01 6.23796105e-01 -1.45675623e+00 -9.64088976e-01 -1.71180129e-01 1.00295439e-01 5.86614788e-01 -6.75228953e-01 1.86824560e-01 -4.88697559e-01 -9.94507015e-01 8.45848098e-02 -6.32633388e-01 -2.44536728e-01 -6.80756927e-01 -8.45582783e-01 -2.36965120e-01 3.42113763e-01 -8.53934050e-01 1.96514010e+00 -2.13184071e+00 4.51026261e-01 2.42137596e-01 4.16294068e-01 -1.72927473e-02 -2.97190249e-01 8.34575474e-01 2.43458271e-01 1.42869785e-01 -3.77335966e-01 -6.37046516e-01 -7.88907111e-02 -6.47763535e-02 -4.87556696e-01 1.69510484e-01 7.58597404e-02 4.56860840e-01 -8.22123110e-01 -7.33061492e-01 -2.84378201e-01 4.82695177e-02 -8.06153655e-01 9.69723836e-02 -2.54351139e-01 4.39058691e-01 -7.20297098e-01 2.56663054e-01 6.59177959e-01 -2.16126651e-01 7.27885514e-02 -4.33190256e-01 -4.43046957e-01 2.77554333e-01 -1.36880362e+00 1.72626579e+00 -4.08421934e-01 1.85843602e-01 -1.07241757e-01 -9.21093047e-01 1.16633737e+00 2.54047781e-01 6.72964752e-01 -3.89721990e-01 1.10971041e-01 1.14866167e-01 -2.38580763e-01 -4.72092301e-01 1.33399212e+00 1.96671993e-01 -3.73803914e-01 7.58679748e-01 -2.73788661e-01 7.46702701e-02 7.24935949e-01 7.28055596e-01 9.55788910e-01 -5.35288990e-01 6.56132340e-01 -1.87426805e-01 8.81896019e-01 1.03138864e-01 7.23383486e-01 5.73993266e-01 3.95566791e-01 7.77902246e-01 6.15127802e-01 7.16247633e-02 -1.08305693e+00 -3.97009850e-01 2.44704291e-01 8.88644814e-01 2.18667328e-01 -9.53991234e-01 -6.73939049e-01 -4.51660991e-01 -1.39856905e-01 1.09648228e+00 -5.20387173e-01 -1.29152253e-01 -5.04305124e-01 -6.84663117e-01 2.25903660e-01 1.32324383e-01 3.09493184e-01 -6.64916515e-01 -4.00549352e-01 4.94976938e-01 -6.67968094e-01 -1.06156611e+00 -7.81519473e-01 -2.97814071e-01 -5.68682253e-01 -7.41477191e-01 -7.70863533e-01 -6.34770215e-01 7.33073771e-01 4.84173268e-01 6.36675835e-01 6.36229338e-03 3.90557051e-01 3.54274094e-01 -8.97329271e-01 -2.11513087e-01 -7.46686339e-01 3.09458315e-01 6.27983883e-02 4.80932534e-01 -2.05512583e-01 -5.66806436e-01 -3.54327172e-01 -1.35202454e-02 -1.13934362e+00 2.09457293e-01 5.98430812e-01 5.03378332e-01 5.94300389e-01 1.65321618e-01 1.01697624e+00 -7.89154708e-01 1.28327286e+00 -8.12471032e-01 1.51395500e-02 4.98501211e-01 -1.51914179e-01 2.76074529e-01 7.62860656e-01 -2.42208228e-01 -1.35656488e+00 -2.47532502e-01 -2.91492809e-02 1.31657571e-01 1.79137364e-01 9.99499083e-01 -2.65454859e-01 6.52284741e-01 4.17641699e-01 4.25033957e-01 -2.94484735e-01 -3.70153517e-01 4.43206310e-01 9.09663260e-01 4.59983557e-01 -4.53968495e-01 6.93490386e-01 4.95498806e-01 -2.30938390e-01 -8.45359802e-01 -9.58973289e-01 -6.31943405e-01 -3.46592426e-01 -2.17871770e-01 7.35114813e-01 -1.06077886e+00 -4.16872412e-01 -1.59088984e-01 -1.59792888e+00 7.20476449e-01 -3.60676259e-01 5.43405652e-01 -4.33553398e-01 7.49839306e-01 -1.29478306e-01 -7.80975997e-01 -6.24506831e-01 -1.06949031e+00 1.09115934e+00 1.85492381e-01 -4.51484919e-01 -8.00305724e-01 1.73435196e-01 2.11079985e-01 1.72837988e-01 3.24399799e-01 8.30002129e-01 -1.13131618e+00 -2.67298788e-01 -9.71739292e-02 -2.30930075e-01 4.94029447e-02 4.79026914e-01 6.70882836e-02 -4.94297922e-01 -1.47871926e-01 1.58267900e-01 2.35210314e-01 9.85488176e-01 4.39467758e-01 7.57896721e-01 -8.35435271e-01 -1.59437805e-01 1.64045647e-01 1.18557799e+00 -1.83390584e-04 3.28009337e-01 1.16837099e-01 6.82693541e-01 6.67858005e-01 9.67955649e-01 1.37043357e+00 7.76488006e-01 6.04062557e-01 2.08578914e-01 2.60567904e-01 -5.48011996e-03 -1.32005066e-01 4.64324951e-01 1.64185667e+00 1.12788700e-01 -8.28822136e-01 -5.28768778e-01 5.90545237e-01 -1.99160707e+00 -1.07581306e+00 -3.97287816e-01 1.68622625e+00 8.14572036e-01 -7.77870044e-02 4.62726466e-02 2.71640331e-01 9.31254566e-01 5.14477015e-01 -2.79659778e-01 -4.25935417e-01 -2.83924609e-01 -3.14144224e-01 7.80039504e-02 4.00916427e-01 -7.68698096e-01 4.37276006e-01 5.22266150e+00 9.26124156e-01 -6.57994151e-01 5.28254248e-02 2.46392116e-01 -8.92711133e-02 -1.12158942e+00 1.54583557e-02 -9.92150366e-01 5.74172556e-01 7.35783696e-01 -9.60597336e-01 7.20119849e-02 4.86319274e-01 7.50989914e-01 -3.63123357e-01 -8.08067858e-01 7.77038991e-01 6.10414088e-01 -1.74203622e+00 5.23249388e-01 -1.69991087e-02 9.87001896e-01 -5.45011938e-01 -1.78915069e-01 -2.28138223e-01 7.13989511e-02 -2.82521605e-01 9.03028965e-01 6.84144974e-01 6.55970275e-01 -9.71102297e-01 6.56165123e-01 6.34111583e-01 -1.27515078e+00 -1.32449955e-01 -3.28479975e-01 1.82797194e-01 4.68314797e-01 9.40785229e-01 -7.14852929e-01 1.13959563e+00 9.12918001e-02 1.13507462e+00 -5.36903083e-01 9.16147530e-01 -2.91923154e-03 4.33532387e-01 -8.16319659e-02 -1.21033736e-01 1.26298934e-01 -1.87892616e-01 9.68887806e-01 1.32888222e+00 7.80509055e-01 3.56138557e-01 2.93550670e-01 7.16389596e-01 -1.64196029e-01 5.62658787e-01 -3.23737770e-01 2.40535419e-02 6.84570968e-01 1.20077825e+00 -5.57815850e-01 -5.53558946e-01 -2.68314153e-01 7.55855918e-01 1.47867963e-01 1.86417729e-01 -5.99490643e-01 -3.33182096e-01 2.01369002e-01 -1.46279007e-01 3.53615582e-01 -1.59787744e-01 -4.43994492e-01 -1.40396321e+00 2.53220767e-01 -8.70036006e-01 2.85586804e-01 -5.62380314e-01 -9.06907558e-01 5.38727820e-01 1.14456825e-01 -1.63548267e+00 -1.19929679e-01 4.13526386e-01 -8.15800846e-01 5.64053655e-01 -1.55754876e+00 -8.65683496e-01 -2.68435329e-01 3.50730896e-01 8.40039432e-01 -2.68359482e-01 5.63070774e-01 2.43059814e-01 -6.44979596e-01 2.87371516e-01 2.23533705e-01 -3.33985001e-01 6.35658741e-01 -9.17595327e-01 2.40489081e-01 1.15156901e+00 -7.23179337e-03 5.62943518e-01 8.72324705e-01 -9.34254587e-01 -1.29050803e+00 -1.12788928e+00 1.24786162e+00 2.38254443e-01 5.20081460e-01 9.83531326e-02 -8.35658193e-01 3.47679138e-01 4.80794698e-01 -8.42844844e-01 9.01216745e-01 -1.17210634e-01 1.64132223e-01 -1.54881984e-01 -9.91185606e-01 6.70268893e-01 8.78421664e-01 -1.38106778e-01 -1.03782022e+00 3.56070936e-01 1.02881777e+00 -3.20892721e-01 -7.78216898e-01 1.04288690e-01 1.57496873e-02 -7.10504651e-01 6.82339370e-01 -1.57357782e-01 8.44891727e-01 -5.10909259e-01 -2.52750367e-01 -1.59925401e+00 -4.35152203e-01 -6.27491772e-01 -2.65223086e-01 1.80458987e+00 2.83110112e-01 -2.06763417e-01 2.42452070e-01 2.48471886e-01 -4.67270404e-01 -3.48683476e-01 -7.40355670e-01 -3.40755343e-01 -4.96705800e-01 -3.06226552e-01 8.38660181e-01 7.08909512e-01 3.41371208e-01 4.47378695e-01 -6.39247239e-01 3.48602772e-01 4.17455703e-01 2.78512925e-01 6.88513279e-01 -1.15053642e+00 2.53627216e-03 -2.68689781e-01 9.51501727e-03 -1.14453506e+00 1.13964841e-01 -9.41666126e-01 -7.87448734e-02 -2.11422515e+00 3.80678892e-01 -1.85720697e-01 1.21284120e-01 -2.12616939e-02 -3.56858790e-01 -4.83726829e-01 3.63340408e-01 3.84768665e-01 -9.36578870e-01 8.74624252e-01 1.23835886e+00 -1.09229341e-01 -4.63279396e-01 1.49773005e-02 -1.28569210e+00 4.08613861e-01 6.87954307e-01 -5.66765010e-01 -3.87331456e-01 -4.40552771e-01 4.07483160e-01 4.05179769e-01 -1.27034098e-01 -9.11392391e-01 6.19328678e-01 -2.96180844e-01 -1.66718200e-01 -1.16851866e+00 2.58617960e-02 -5.52384615e-01 1.30913764e-01 2.16761515e-01 -7.95806408e-01 2.30524868e-01 -1.56732291e-01 7.95279920e-01 -4.90927160e-01 -3.54462892e-01 2.48554677e-01 6.70321509e-02 -3.49142253e-01 5.98702468e-02 -4.69004750e-01 1.95897877e-01 9.12350237e-01 -3.11654229e-02 -4.73925829e-01 -6.15855038e-01 -4.88146424e-01 5.00371695e-01 2.78707981e-01 1.96145758e-01 8.29572558e-01 -1.41981840e+00 -1.35616231e+00 -1.54089034e-01 3.15847635e-01 1.08757578e-01 3.75649482e-01 7.77478635e-01 -1.32373214e-01 3.12493831e-01 7.61499926e-02 -1.87901095e-01 -1.18755257e+00 4.61275071e-01 -5.37674367e-01 -5.22713482e-01 -6.24524295e-01 3.03137124e-01 3.65412119e-03 1.75052032e-01 6.42785849e-03 -7.19175994e-01 -8.85576010e-01 7.46154487e-01 8.97704780e-01 5.75358510e-01 -1.87023208e-02 -8.59470785e-01 -1.64201409e-01 4.13487583e-01 -6.80229068e-02 -2.32586414e-01 1.54880142e+00 -6.88748002e-01 -2.72511125e-01 3.53446007e-01 1.01951206e+00 6.75644875e-01 -7.07415998e-01 -3.83087486e-01 2.75206000e-01 -2.34324172e-01 -5.43813873e-03 -2.72232920e-01 -8.48671615e-01 2.31932491e-01 -4.00167316e-01 3.38011682e-01 1.19244862e+00 6.25251699e-03 8.50695610e-01 3.19108456e-01 2.26869783e-03 -1.13033724e+00 1.47056088e-01 4.54143643e-01 1.31789207e+00 -8.91381621e-01 3.92633617e-01 -4.34436947e-01 -1.10422945e+00 1.09223604e+00 1.18866101e-01 -4.70445119e-02 3.09544265e-01 2.63170749e-02 -3.85060221e-01 -2.02823132e-02 -8.83408010e-01 -2.48654231e-01 4.92048681e-01 1.70003712e-01 2.50285029e-01 -7.58846998e-02 -8.96664858e-01 9.75592375e-01 -2.18423903e-01 -2.29877830e-01 1.06542361e+00 8.52961421e-01 -9.03344870e-01 -8.99285018e-01 -5.51934481e-01 5.90795457e-01 -3.13722163e-01 -6.97987229e-02 -2.39444837e-01 -5.38537130e-02 -1.30279928e-01 1.44741130e+00 1.58907827e-02 -3.97289783e-01 4.35826242e-01 -3.09291005e-01 -2.34452575e-01 -9.04821336e-01 -7.42765903e-01 3.14290345e-01 4.11653101e-01 -9.56577286e-02 -7.68146396e-01 -9.74918962e-01 -1.46343553e+00 -3.89387608e-01 -3.80407184e-01 4.99146134e-01 5.96213758e-01 1.05964446e+00 7.04940975e-01 9.45374489e-01 1.18628716e+00 -7.15726018e-01 -4.96553570e-01 -9.18741107e-01 -6.29765034e-01 2.76222378e-01 4.97105479e-01 -2.48253420e-01 -4.29838747e-01 1.28117368e-01]
[12.585785865783691, 9.5249662399292]
4653c094-147f-4ffe-95b5-39b4f7d00661
hipool-modeling-long-documents-using-graph
2305.03319
null
https://arxiv.org/abs/2305.03319v2
https://arxiv.org/pdf/2305.03319v2.pdf
HiPool: Modeling Long Documents Using Graph Neural Networks
Encoding long sequences in Natural Language Processing (NLP) is a challenging problem. Though recent pretraining language models achieve satisfying performances in many NLP tasks, they are still restricted by a pre-defined maximum length, making them challenging to be extended to longer sequences. So some recent works utilize hierarchies to model long sequences. However, most of them apply sequential models for upper hierarchies, suffering from long dependency issues. In this paper, we alleviate these issues through a graph-based method. We first chunk the sequence with a fixed length to model the sentence-level information. We then leverage graphs to model intra- and cross-sentence correlations with a new attention mechanism. Additionally, due to limited standard benchmarks for long document classification (LDC), we propose a new challenging benchmark, totaling six datasets with up to 53k samples and 4034 average tokens' length. Evaluation shows our model surpasses competitive baselines by 2.6% in F1 score, and 4.8% on the longest sequence dataset. Our method is shown to outperform hierarchical sequential models with better performance and scalability, especially for longer sequences.
['Rex Ying', 'Dragomir Radev', 'Aosong Feng', 'Irene Li']
2023-05-05
null
null
null
null
['document-classification']
['natural-language-processing']
[ 2.94490904e-01 -1.70215949e-01 -5.22039115e-01 -3.85211319e-01 -9.64966893e-01 -6.89086199e-01 3.41772079e-01 5.24076462e-01 -6.83855891e-01 7.00311720e-01 4.89947975e-01 -5.11668563e-01 3.13965976e-01 -5.17087162e-01 -8.01877975e-01 -4.26289558e-01 -3.06431532e-01 3.40867490e-01 4.68794554e-01 -1.36352107e-01 2.82209426e-01 1.16433755e-01 -1.11497545e+00 7.99775362e-01 9.27208662e-01 6.30742967e-01 3.73554200e-01 8.74070227e-01 -5.23929060e-01 7.95688689e-01 -6.91290200e-01 -4.07813728e-01 -6.07507024e-03 -3.43389153e-01 -9.55976844e-01 -8.75658989e-02 4.62722182e-01 -5.10971062e-02 -2.98490644e-01 1.01204455e+00 5.48969448e-01 1.27775356e-01 3.45571309e-01 -8.73288155e-01 -6.93045735e-01 1.05716598e+00 -8.16826522e-01 3.24380815e-01 5.53344846e-01 3.18486392e-02 1.54176605e+00 -7.57857144e-01 6.01841867e-01 1.39533734e+00 6.85518980e-01 6.22258663e-01 -1.17866659e+00 -6.40445650e-01 5.61807871e-01 1.73819691e-01 -1.16164923e+00 -3.57204944e-01 3.91361952e-01 -2.96053618e-01 1.62960827e+00 -3.12830918e-02 3.04511309e-01 1.17787433e+00 4.86227661e-01 1.05581963e+00 8.65642071e-01 -4.67105269e-01 2.26977430e-02 -3.52940977e-01 7.59807050e-01 5.93186677e-01 6.48101494e-02 -3.18333060e-01 -4.83697653e-01 -6.99586123e-02 1.47962496e-01 -2.28185043e-01 -2.92274147e-01 1.64666802e-01 -1.14681888e+00 8.91295016e-01 3.16171587e-01 4.81584638e-01 -1.80175275e-01 6.52703345e-02 7.17392564e-01 3.43171656e-01 5.02314866e-01 3.96808505e-01 -5.59632003e-01 -2.80975848e-01 -7.78306067e-01 2.70679235e-01 1.00339174e+00 1.15535033e+00 3.95870388e-01 -1.03746369e-01 -4.82973218e-01 1.09798968e+00 8.81503746e-02 1.89330280e-01 7.09777951e-01 -3.88364822e-01 1.05622065e+00 5.08068383e-01 -2.97132254e-01 -1.05835557e+00 -5.52953303e-01 -6.33456707e-01 -1.06964993e+00 -5.51264226e-01 2.25114658e-01 -1.12800620e-01 -9.25963759e-01 1.64396095e+00 -9.63589475e-02 6.45002648e-02 -3.30267139e-02 7.22815156e-01 6.40584946e-01 1.24021900e+00 2.25074053e-01 -3.75594079e-01 1.36411655e+00 -1.45135045e+00 -6.20569825e-01 -4.93836671e-01 1.16268420e+00 -6.16835296e-01 1.48802102e+00 4.45686519e-01 -9.95184839e-01 -4.42566514e-01 -9.79943037e-01 -2.58527905e-01 -2.16049477e-01 -2.07473755e-01 5.02196431e-01 5.68512261e-01 -1.05704141e+00 5.56108356e-01 -6.28362715e-01 -3.17752242e-01 2.45606527e-01 2.31258348e-01 -9.59449485e-02 -3.35993618e-01 -1.34680521e+00 6.13519430e-01 6.98051929e-01 -5.09396195e-02 -4.79725838e-01 -7.90552378e-01 -9.40790415e-01 2.13007092e-01 3.67433310e-01 -5.31620145e-01 1.18551517e+00 -5.33477187e-01 -1.45187879e+00 5.26339471e-01 -3.31656307e-01 -8.71762991e-01 3.46468717e-01 -4.36817855e-01 -3.80009085e-01 1.00955039e-01 -6.77926093e-02 5.87866366e-01 3.70085597e-01 -9.50509369e-01 -4.93346542e-01 -1.38425529e-01 1.23714425e-01 2.07657576e-01 -5.93101740e-01 2.47653097e-01 -7.36114681e-01 -7.69338608e-01 -3.00668925e-01 -9.18561757e-01 -5.01368344e-01 -7.63970196e-01 -4.54905182e-01 -3.95109713e-01 5.53047776e-01 -6.25247836e-01 1.67554867e+00 -2.02884269e+00 4.82827425e-02 -7.46811628e-02 1.29188016e-01 4.58342493e-01 -6.61923707e-01 6.70062244e-01 1.71117082e-01 4.96642798e-01 -3.48698020e-01 -7.44016528e-01 7.29705999e-03 3.55973244e-01 -3.35779607e-01 1.81615546e-01 1.90862700e-01 9.87546682e-01 -9.92722034e-01 -6.24204457e-01 -3.35587502e-01 2.50394821e-01 -7.25536942e-01 7.85282552e-02 -4.89944935e-01 1.14637382e-01 -2.17903346e-01 2.98109651e-01 5.67496240e-01 -4.51501608e-01 4.48844403e-01 2.44129151e-01 1.09616600e-01 7.15251565e-01 -6.58339739e-01 1.97335291e+00 -5.67165315e-01 4.12580580e-01 -1.89711109e-01 -1.01489663e+00 7.71931708e-01 1.33379579e-01 2.34530032e-01 -6.92793548e-01 -1.71258703e-01 1.03301108e-01 2.38967761e-01 -4.16485846e-01 7.60752797e-01 -9.06719714e-02 -2.32934177e-01 3.59649956e-01 -3.79657075e-02 8.52013156e-02 6.63452983e-01 4.95897770e-01 1.38391674e+00 -2.50378400e-01 3.09116453e-01 -2.75806785e-01 5.43495774e-01 -2.07154036e-01 6.42056644e-01 9.04599249e-01 -6.26356080e-02 7.12185085e-01 8.92883122e-01 -2.94103801e-01 -1.03886628e+00 -5.86689532e-01 1.60347655e-01 1.33584583e+00 -1.66919693e-01 -8.85436594e-01 -6.02030694e-01 -1.06291866e+00 2.49260366e-02 6.35916173e-01 -3.87393266e-01 -7.67940432e-02 -7.98285425e-01 -9.26887870e-01 6.57517493e-01 6.83433235e-01 2.07024187e-01 -1.06848073e+00 -2.79843360e-02 5.16990006e-01 -2.99370944e-01 -1.55023539e+00 -8.56821716e-01 4.04823758e-02 -8.11150908e-01 -7.01967061e-01 -7.14558184e-01 -9.92667198e-01 3.11468661e-01 2.74401277e-01 1.31052232e+00 2.27129072e-01 -1.85507704e-02 -1.24655284e-01 -7.34122097e-01 -1.60384238e-01 -5.12010992e-01 7.10060477e-01 -1.04179837e-01 -2.86718488e-01 3.40899348e-01 -3.66183609e-01 -3.35746258e-01 2.76132766e-02 -8.00614119e-01 5.51725067e-02 7.62471139e-01 1.06458604e+00 3.85999560e-01 -1.29674956e-01 8.44799817e-01 -1.03203154e+00 9.26974952e-01 -4.30876851e-01 -4.48204488e-01 4.27381337e-01 -5.52958965e-01 1.64795682e-01 1.06016529e+00 -3.98903072e-01 -8.28276217e-01 -1.39396310e-01 -3.46648008e-01 -5.72221801e-02 -1.36020407e-01 8.95506680e-01 -1.46828130e-01 2.16900706e-01 3.70091498e-01 3.25053066e-01 -2.15085238e-01 -5.21484315e-01 1.66012734e-01 7.13377714e-01 1.61485240e-01 -6.28952324e-01 3.38742703e-01 -1.12962849e-01 -2.70166337e-01 -9.03793693e-01 -1.31274974e+00 -7.21735597e-01 -6.97997987e-01 3.40476543e-01 7.19091535e-01 -9.32358801e-01 -6.05642736e-01 3.26780081e-01 -1.40926039e+00 -5.89379668e-01 2.13131070e-01 4.37883675e-01 -8.25888664e-02 8.12976182e-01 -1.22975230e+00 -5.89042902e-01 -6.53361499e-01 -1.03134537e+00 1.07597613e+00 -3.56611133e-01 -1.53706804e-01 -1.02858746e+00 6.04490079e-02 3.43365103e-01 1.86401442e-01 -7.03102127e-02 1.06062329e+00 -7.37983584e-01 -2.17228860e-01 -1.09171093e-01 -3.03432643e-01 5.09657621e-01 -2.10608020e-01 -2.15355083e-01 -5.09669363e-01 -5.86795092e-01 -2.69822955e-01 -5.10844707e-01 1.28548157e+00 3.57314362e-03 1.41513455e+00 -3.98552507e-01 -2.89182484e-01 4.67549056e-01 1.39676285e+00 1.35227278e-01 4.72199112e-01 1.96772456e-01 8.68928254e-01 5.93580961e-01 4.64217395e-01 4.27519143e-01 4.08395648e-01 4.45316464e-01 1.27448082e-01 2.77099699e-01 -8.32754597e-02 -3.41506630e-01 6.45517111e-01 1.50968635e+00 3.08559746e-01 -7.87037849e-01 -1.26955128e+00 5.69486976e-01 -1.77860343e+00 -7.46380806e-01 -3.08865100e-01 1.89618635e+00 9.78010952e-01 5.95691025e-01 2.02202741e-02 1.51317984e-01 4.75056589e-01 4.74521130e-01 -2.36333475e-01 -6.42928720e-01 -1.33395329e-01 1.53145239e-01 4.85789239e-01 6.45401716e-01 -1.01420259e+00 1.16822207e+00 6.24721003e+00 9.99324083e-01 -9.20856357e-01 -9.98111144e-02 6.39329970e-01 -8.15638751e-02 -3.61941099e-01 -1.30389020e-01 -1.33349669e+00 6.33077562e-01 1.33472407e+00 -1.98309675e-01 1.17064463e-02 5.34693360e-01 2.41772048e-02 1.46464154e-01 -1.00842094e+00 7.85543859e-01 2.22242385e-01 -1.31669533e+00 4.50642705e-01 2.39617210e-02 8.13932419e-01 2.14316174e-01 -2.66697675e-01 7.30870843e-01 2.56121337e-01 -1.04354727e+00 4.07143623e-01 4.52437811e-03 6.56335771e-01 -9.07586873e-01 8.49558890e-01 6.91613674e-01 -1.23284686e+00 1.03664608e-03 -6.68251991e-01 -2.08037987e-01 2.81266540e-01 7.84299195e-01 -8.66182327e-01 5.93580425e-01 4.38337028e-01 8.90935838e-01 -6.85076356e-01 8.43894780e-01 -2.37546206e-01 1.00310731e+00 -1.66233420e-01 -5.15518904e-01 6.87785685e-01 6.53292760e-02 3.11431020e-01 1.96153331e+00 1.19399741e-01 8.77272163e-04 5.33575594e-01 2.42125586e-01 -3.75779450e-01 4.70506042e-01 -5.21813869e-01 -2.63145179e-01 3.18620592e-01 9.95795727e-01 -5.89590251e-01 -5.67795813e-01 -6.34064376e-01 9.93804634e-01 7.30964184e-01 4.06559169e-01 -8.41298401e-01 -6.63035572e-01 3.30346018e-01 -1.27959028e-01 2.75803983e-01 -5.54213881e-01 -1.85226709e-01 -1.42108214e+00 1.55851796e-01 -9.76664901e-01 6.67377651e-01 -2.75258750e-01 -1.41629040e+00 7.46689141e-01 -2.18000904e-01 -8.95829499e-01 -2.32444629e-01 -6.70626998e-01 -2.25610584e-01 7.61133015e-01 -1.66348195e+00 -9.19935882e-01 4.33788896e-02 2.51467705e-01 9.20863152e-01 -1.83638595e-02 7.48854995e-01 4.35861856e-01 -6.72012508e-01 8.17602158e-01 2.17930391e-01 2.82625705e-01 7.36197293e-01 -1.35326290e+00 8.29003274e-01 9.00444806e-01 3.69024038e-01 6.82549894e-01 4.48442370e-01 -6.00079119e-01 -1.39158881e+00 -1.17529464e+00 1.48191750e+00 -1.85020879e-01 8.81745219e-01 -9.25904930e-01 -1.32934642e+00 7.53667235e-01 3.81319225e-01 1.21260047e-01 7.75296926e-01 3.38994056e-01 -5.80626607e-01 5.56907803e-03 -5.55197835e-01 6.05754316e-01 1.30275476e+00 -4.56157446e-01 -6.33817673e-01 4.55295861e-01 1.32298529e+00 -4.29955125e-01 -8.12710404e-01 3.55302721e-01 3.79980326e-01 -6.78708076e-01 6.81504846e-01 -8.78879428e-01 7.05357909e-01 5.31401811e-03 7.60536119e-02 -1.29680836e+00 -4.68916357e-01 -6.32245302e-01 -1.95537075e-01 1.26293385e+00 7.10354686e-01 -5.05921543e-01 8.56139123e-01 4.53342609e-02 -3.88502628e-01 -1.02520239e+00 -5.33976555e-01 -1.22094977e+00 4.18596298e-01 -6.18489206e-01 4.54553038e-01 9.22207892e-01 3.25638562e-01 8.89630318e-01 -4.77468342e-01 4.26270142e-02 4.29481477e-01 2.54621267e-01 5.11574149e-01 -7.66196907e-01 -4.55413342e-01 -5.28441787e-01 -1.69558764e-01 -1.62182164e+00 6.18237317e-01 -1.20919895e+00 2.75611103e-01 -1.60839784e+00 3.96152139e-01 -2.42956787e-01 -3.12931508e-01 4.29278076e-01 -4.41104800e-01 -7.75938258e-02 2.77272701e-01 3.99381667e-02 -9.56919849e-01 5.91279745e-01 1.04345083e+00 -1.51316971e-01 -1.41962260e-01 -3.21756095e-01 -4.39625114e-01 3.73394519e-01 1.05124819e+00 -4.12854761e-01 -3.73819977e-01 -8.88042808e-01 1.83392361e-01 -2.42315996e-02 -1.68564454e-01 -8.89994204e-01 3.91776174e-01 -9.64335799e-02 -1.94222368e-02 -7.49694288e-01 -2.22255439e-02 -3.54096323e-01 -5.54828644e-01 5.28149128e-01 -8.00556064e-01 2.66568035e-01 2.51173586e-01 7.01395631e-01 -4.44773704e-01 -2.97944069e-01 5.50642967e-01 -3.66599262e-02 -6.52077556e-01 5.06235659e-01 -3.66527349e-01 4.40790385e-01 8.27243090e-01 1.99610621e-01 -3.89945477e-01 -2.84856439e-01 -4.20997262e-01 6.59195304e-01 9.84747112e-02 5.82491159e-01 5.78316987e-01 -1.07550526e+00 -9.15135562e-01 -6.82827011e-02 1.83884472e-01 1.27906814e-01 2.86586821e-01 6.19081616e-01 -5.25273323e-01 7.18424857e-01 2.71497488e-01 -4.91162747e-01 -1.37024415e+00 8.10124457e-01 -1.60920590e-01 -9.15323794e-01 -7.31601238e-01 9.15116251e-01 1.35660291e-01 -3.00479561e-01 4.29619730e-01 -5.82341373e-01 -1.64737016e-01 4.05729674e-02 6.57930434e-01 -8.55707191e-03 1.59135893e-01 -4.46656674e-01 -3.85943115e-01 5.37593901e-01 -4.50783283e-01 1.58844203e-01 1.24265909e+00 -2.63437629e-02 -6.93106055e-02 4.47927207e-01 1.59278798e+00 6.19492121e-02 -9.02822673e-01 -5.21895468e-01 6.36900485e-01 -2.36979574e-01 -3.90543520e-01 -5.70111811e-01 -7.84697950e-01 1.16463995e+00 -1.34964556e-01 1.26411214e-01 8.47977102e-01 -1.22584216e-01 1.21796155e+00 5.14700890e-01 3.31039429e-01 -8.53712738e-01 2.76690632e-01 1.28541493e+00 8.78553629e-01 -1.20734990e+00 -7.42591172e-02 -4.82587308e-01 -5.86908162e-01 1.05969381e+00 6.16074860e-01 4.22429387e-03 3.84644508e-01 5.16781449e-01 -1.52778894e-01 2.75467336e-01 -1.26114178e+00 1.19037628e-02 3.50954294e-01 2.49981552e-01 9.61937964e-01 -4.30999286e-02 -6.41601264e-01 6.01673007e-01 -3.41043741e-01 -2.20251694e-01 4.14639592e-01 8.09687138e-01 -4.31246459e-01 -1.36307180e+00 1.15860492e-01 4.44138199e-01 -8.24516356e-01 -5.04743159e-01 -1.33185565e-01 6.62955940e-01 -2.65350014e-01 8.61258268e-01 9.17604342e-02 -2.83739209e-01 3.15499604e-01 1.36906892e-01 2.69141555e-01 -9.91038442e-01 -7.17281818e-01 -2.61956267e-03 4.26539510e-01 -5.33552587e-01 -1.66584507e-01 -6.31167233e-01 -1.30758870e+00 -2.52116591e-01 -9.80886221e-02 2.60597408e-01 3.12877625e-01 6.66038454e-01 4.52269435e-01 5.40195823e-01 3.76155168e-01 -4.07092690e-01 -8.14405918e-01 -1.12617123e+00 -5.20310938e-01 4.17103022e-01 2.67998040e-01 -4.77538556e-02 -3.07675213e-01 -3.40811908e-02]
[10.981687545776367, 8.614027976989746]
8451b021-eed5-431d-b82f-758dc6baeca3
codim-learning-with-noisy-labels-via
2111.11652
null
https://arxiv.org/abs/2111.11652v1
https://arxiv.org/pdf/2111.11652v1.pdf
CoDiM: Learning with Noisy Labels via Contrastive Semi-Supervised Learning
Labels are costly and sometimes unreliable. Noisy label learning, semi-supervised learning, and contrastive learning are three different strategies for designing learning processes requiring less annotation cost. Semi-supervised learning and contrastive learning have been recently demonstrated to improve learning strategies that address datasets with noisy labels. Still, the inner connections between these fields as well as the potential to combine their strengths together have only started to emerge. In this paper, we explore further ways and advantages to fuse them. Specifically, we propose CSSL, a unified Contrastive Semi-Supervised Learning algorithm, and CoDiM (Contrastive DivideMix), a novel algorithm for learning with noisy labels. CSSL leverages the power of classical semi-supervised learning and contrastive learning technologies and is further adapted to CoDiM, which learns robustly from multiple types and levels of label noise. We show that CoDiM brings consistent improvements and achieves state-of-the-art results on multiple benchmarks.
['Xiao Han', 'Dimitris Samaras', 'Wei Yang', 'Junzhou Huang', 'Tian Shen', 'Kaiwen Xiao', 'Zixuan Liu', 'Xin Zhang']
2021-11-23
null
null
null
null
['learning-with-noisy-labels', 'learning-with-noisy-labels']
['computer-vision', 'natural-language-processing']
[ 4.00321960e-01 1.49617836e-01 -3.39956760e-01 -6.28281593e-01 -1.33734667e+00 -7.52304375e-01 7.16598332e-01 2.98516899e-01 -4.73417610e-01 6.14588678e-01 1.40056051e-02 2.22567972e-02 -1.82212874e-01 -1.48812458e-01 -3.64739746e-01 -7.85521328e-01 3.78907546e-02 6.55648947e-01 9.08612534e-02 2.04326794e-01 -1.85526367e-02 1.46569014e-01 -1.75173867e+00 4.25634831e-01 6.76308334e-01 9.78513420e-01 -1.30037680e-01 5.87343037e-01 -4.12630171e-01 1.29633605e+00 -5.69865525e-01 -2.44939968e-01 2.11423948e-01 -5.66459000e-01 -1.37158620e+00 2.38254681e-01 7.59017408e-01 2.13725135e-01 1.16093725e-01 9.40373659e-01 6.58142149e-01 -1.12059735e-01 6.04329586e-01 -1.30443811e+00 -2.91993946e-01 9.92310107e-01 -5.48221648e-01 6.37724772e-02 9.92369354e-02 1.49683371e-01 1.09289181e+00 -9.65358675e-01 6.84675395e-01 1.28946590e+00 1.03373146e+00 8.28241110e-01 -1.47141302e+00 -6.44369483e-01 2.45798394e-01 -1.17652364e-01 -1.06383300e+00 -4.28974390e-01 7.20955074e-01 -4.87398475e-01 6.31099999e-01 2.85132051e-01 2.48993143e-01 1.18455255e+00 -4.62170839e-01 1.32809997e+00 1.97331715e+00 -8.32153857e-01 2.45694652e-01 1.51064262e-01 5.99943697e-01 9.05684292e-01 -4.74416465e-03 2.28212222e-01 -8.65637839e-01 -1.54444143e-01 -5.18827550e-02 -1.02601230e-01 -1.66043445e-01 -2.72988409e-01 -1.12696695e+00 5.74784458e-01 1.59568951e-01 1.93432853e-01 3.04315776e-01 1.96987107e-01 7.03183591e-01 4.77000564e-01 8.77694130e-01 6.89385593e-01 -7.24508286e-01 -2.38656878e-01 -1.19998825e+00 -8.27571228e-02 9.00724351e-01 1.12644517e+00 9.95335400e-01 -2.08177969e-01 -3.43083531e-01 8.91606033e-01 3.55522782e-01 3.34968090e-01 2.98718572e-01 -1.34127235e+00 1.11979663e-01 6.39559031e-01 -8.70176479e-02 -1.38329387e-01 -7.06908047e-01 -5.84993303e-01 -7.97281563e-01 3.04865569e-01 4.85240966e-01 -1.11439042e-01 -1.05570805e+00 1.59248555e+00 1.84127137e-01 2.00514317e-01 -8.59899446e-02 5.57321787e-01 9.54591751e-01 2.66114771e-01 3.13423306e-01 -4.75343466e-01 1.02573419e+00 -1.51124668e+00 -9.33164835e-01 -2.60146230e-01 1.12754214e+00 -7.91665852e-01 1.32906592e+00 7.60197639e-01 -1.05055809e+00 -5.21395743e-01 -9.64605749e-01 -1.70709983e-01 -5.10020196e-01 2.38556918e-02 5.75522065e-01 7.18748152e-01 -9.88880455e-01 8.34553957e-01 -8.03661585e-01 -9.83315408e-02 8.30580890e-01 1.82896137e-01 -1.28512815e-01 -3.03694993e-01 -9.17928040e-01 7.64014900e-01 3.87931913e-01 -1.13864101e-01 -1.07835972e+00 -5.60836494e-01 -7.18110502e-01 -2.25597158e-01 7.36085236e-01 -2.83781677e-01 1.61213398e+00 -9.45481777e-01 -1.31616545e+00 1.41338575e+00 -6.92815408e-02 -2.13404357e-01 6.31978333e-01 -3.75196069e-01 -2.13425711e-01 3.61629911e-02 1.12774603e-01 7.54697800e-01 6.68148339e-01 -1.72006702e+00 -8.75045121e-01 -3.39962870e-01 -4.06855494e-01 1.55934989e-01 -4.01235253e-01 1.76170483e-01 -2.06948161e-01 -5.62711179e-01 2.68635869e-01 -1.01272380e+00 -1.03522129e-01 4.28952724e-02 -5.44834256e-01 -5.87643862e-01 1.04486430e+00 -7.42253661e-03 1.01387012e+00 -2.22264504e+00 1.14659049e-01 2.89334003e-02 5.61127245e-01 4.78729010e-01 -8.25641677e-02 1.18457638e-01 -1.92821231e-02 4.73741621e-01 -3.93857598e-01 -8.57147992e-01 1.07544519e-01 4.80721712e-01 3.63744535e-02 3.57813448e-01 3.67663264e-01 9.84103203e-01 -1.55361748e+00 -7.20002353e-01 -2.89184954e-02 2.07636252e-01 -4.55471091e-02 2.08524421e-01 -2.46409699e-01 4.71720308e-01 -5.21507300e-02 9.12685812e-01 5.55282593e-01 -3.55049133e-01 2.51492947e-01 -1.36062667e-01 -2.46460941e-02 3.10180098e-01 -1.34580934e+00 1.72229755e+00 -3.39197308e-01 5.04130065e-01 1.10803165e-01 -9.05166626e-01 7.95141459e-01 3.19360882e-01 3.95874709e-01 -3.99315983e-01 3.63667943e-02 6.47781670e-01 -6.00588858e-01 -6.34492159e-01 1.44764557e-01 -1.94214463e-01 -1.43718287e-01 6.86614931e-01 6.33861959e-01 -3.07434142e-01 4.63044316e-01 1.93924963e-01 1.17005718e+00 5.41832209e-01 2.55990803e-01 -3.34766865e-01 3.30404609e-01 1.50258495e-02 6.17019951e-01 1.09768641e+00 -5.31027853e-01 7.25674629e-01 4.24657941e-01 -3.29812527e-01 -5.72051585e-01 -9.85520363e-01 -1.51130378e-01 1.53191948e+00 1.03176147e-01 -5.77971637e-01 -6.25026524e-01 -1.42972410e+00 -1.59351632e-01 3.10342461e-01 -6.25670552e-01 -3.85325141e-02 -3.95706803e-01 -7.89762318e-01 7.00482845e-01 5.76320946e-01 4.84516233e-01 -1.00104082e+00 -1.90839127e-01 3.80779095e-02 -1.97981223e-01 -9.97053444e-01 -2.71653622e-01 1.19626033e+00 -8.02942753e-01 -1.24262917e+00 -3.38286638e-01 -1.14497554e+00 6.35326445e-01 3.86330396e-01 1.64516068e+00 1.81792259e-01 -3.40694264e-02 4.80250448e-01 -6.29968107e-01 -4.37099904e-01 -6.81835234e-01 3.38455170e-01 2.38103736e-02 -1.83548525e-01 3.67608935e-01 -4.06376451e-01 -1.76117480e-01 3.85543555e-01 -1.00489438e+00 -1.78776383e-01 3.97853523e-01 1.15877342e+00 7.14845836e-01 7.69308433e-02 6.37369812e-01 -1.74653590e+00 3.56576234e-01 -3.76536936e-01 -2.67129302e-01 2.89628893e-01 -1.10576022e+00 2.04180792e-01 3.81580621e-01 -3.50617677e-01 -1.24813902e+00 3.40767145e-01 -5.19254915e-02 -5.55475391e-02 -4.65497971e-01 3.45713615e-01 -1.30699024e-01 -2.17850879e-03 1.14501226e+00 -2.08014309e-01 -1.78219259e-01 -7.74163246e-01 6.88057721e-01 9.82591331e-01 4.76751566e-01 -7.06113398e-01 6.26675069e-01 6.33142531e-01 -5.21574132e-02 -2.31149778e-01 -1.78902042e+00 -8.99225771e-01 -8.66924286e-01 -2.48241067e-01 4.93698329e-01 -1.05588078e+00 -3.34351301e-01 7.79205978e-01 -7.92682707e-01 -6.23268187e-01 -8.03209066e-01 3.40459347e-02 -6.04437768e-01 3.22325379e-01 -9.99424934e-01 -6.92804635e-01 -2.61686057e-01 -1.07253230e+00 1.18211424e+00 2.34185472e-01 -1.65455937e-01 -1.04322731e+00 7.84282461e-02 5.75492680e-01 1.80561975e-01 1.53819665e-01 3.92983675e-01 -9.59547937e-01 -1.56120434e-01 -3.02219540e-02 -1.21402167e-01 8.32106590e-01 1.42473772e-01 -1.28261670e-01 -1.51577902e+00 -2.97667742e-01 -1.22481406e-01 -1.25531006e+00 1.25728595e+00 3.11098117e-02 9.50426877e-01 -1.96073446e-02 -3.37903410e-01 3.72766167e-01 1.30245435e+00 -3.08135897e-01 2.25030795e-01 3.24408889e-01 9.71451342e-01 7.29618073e-01 7.71796882e-01 1.75195992e-01 1.93328857e-01 3.32018465e-01 2.67889977e-01 -3.39449257e-01 -5.59735596e-01 -1.69469908e-01 2.36963153e-01 1.07311225e+00 2.01228604e-01 4.49823551e-02 -1.03622389e+00 3.32582265e-01 -1.90717065e+00 -7.32298791e-01 -5.40400684e-01 1.77852201e+00 1.38960254e+00 3.73509049e-01 3.95009555e-02 5.24551511e-01 5.69333553e-01 8.46645012e-02 -4.39622849e-01 -5.93559258e-02 -4.96273905e-01 2.86744028e-01 3.13217968e-01 2.96878874e-01 -1.55184519e+00 9.39155579e-01 7.18248224e+00 1.11809337e+00 -7.33691514e-01 5.67876637e-01 8.42943013e-01 -5.98332435e-02 -8.21145624e-02 3.17324549e-02 -8.06996107e-01 2.97584951e-01 8.19402277e-01 6.24212086e-01 1.49686441e-01 8.97776842e-01 -1.35944530e-01 -2.63440281e-01 -1.32266724e+00 8.77545178e-01 8.07677060e-02 -1.13581145e+00 -4.57913667e-01 -3.07854205e-01 1.37788451e+00 2.34014913e-01 3.80096324e-02 5.73691905e-01 7.81263649e-01 -8.91203880e-01 8.39927733e-01 3.59426111e-01 6.74558401e-01 -5.71090281e-01 1.06608522e+00 5.38576126e-01 -9.17671204e-01 -2.25180089e-01 7.70869702e-02 -5.71276434e-02 -6.57076761e-02 9.85444248e-01 -3.77093077e-01 4.32736397e-01 9.36968625e-01 8.54653597e-01 -9.66198444e-01 9.89724934e-01 -6.29961371e-01 1.15794396e+00 -1.70832932e-01 3.03429306e-01 2.59480983e-01 2.32375219e-01 1.74030423e-01 1.67400014e+00 -2.21038163e-01 -3.70052099e-01 6.72270715e-01 5.38581431e-01 -2.86201566e-01 -6.83571026e-02 -3.58216047e-01 1.08115830e-01 5.78292429e-01 1.55414772e+00 -9.53585148e-01 -6.63031518e-01 -4.81269270e-01 7.38418579e-01 5.46515405e-01 1.59763992e-01 -3.77567202e-01 4.36529852e-02 8.56760368e-02 -4.03292477e-02 -2.41949335e-02 1.11330666e-01 -6.06851041e-01 -9.20294464e-01 -2.71052599e-01 -1.14673841e+00 6.05280936e-01 -5.36908090e-01 -1.63970280e+00 3.02521467e-01 -1.66983783e-01 -1.28781259e+00 7.72607625e-02 -4.97468561e-01 -4.05104309e-02 4.12510246e-01 -1.89902449e+00 -1.32872808e+00 -4.98736143e-01 2.88297653e-01 7.31796086e-01 -7.74119273e-02 9.08351123e-01 1.75048754e-01 -5.62642157e-01 4.67989326e-01 3.01640570e-01 4.65966128e-02 1.14838791e+00 -1.85035896e+00 9.80167910e-02 5.45418561e-01 4.56296414e-01 9.31884646e-02 4.40122247e-01 -3.22769880e-01 -7.28924096e-01 -1.22860193e+00 8.67163956e-01 -7.66002357e-01 4.38485533e-01 -4.09993857e-01 -8.92608941e-01 6.63110077e-01 1.66105136e-01 4.50112343e-01 8.97105038e-01 3.31591100e-01 -8.08303058e-01 -7.02671260e-02 -1.05703819e+00 1.90795466e-01 1.25573921e+00 -6.31797254e-01 -3.67318839e-01 6.79618359e-01 6.20127976e-01 -4.06793863e-01 -8.13144207e-01 4.65331554e-01 1.75485492e-01 -1.09778225e+00 6.27773762e-01 -3.72966796e-01 2.96574980e-01 -3.64506572e-01 -1.10277729e-02 -1.34478569e+00 -3.09089690e-01 -8.92781556e-01 -3.63170654e-01 1.68265724e+00 4.98063475e-01 -1.78245530e-01 7.99996555e-01 3.52399945e-02 -2.95604706e-01 -7.47626007e-01 -6.03130996e-01 -1.00985539e+00 1.67748645e-01 -4.89033788e-01 8.20043012e-02 1.35139740e+00 7.42746517e-02 4.81118321e-01 -4.28326845e-01 -2.55691022e-01 8.12796891e-01 -2.23302647e-01 4.89769310e-01 -1.66741645e+00 -1.84470654e-01 -3.67526054e-01 -2.32849400e-02 -1.00245166e+00 3.29901040e-01 -1.25467348e+00 5.56826770e-01 -1.28887904e+00 5.27495623e-01 -6.53969824e-01 -5.82648218e-01 9.17855918e-01 -5.49615622e-01 6.71433032e-01 1.24900937e-01 5.63894928e-01 -1.25520575e+00 1.29642650e-01 1.07101548e+00 -4.11843032e-01 -1.88179836e-01 -6.46249726e-02 -7.91309536e-01 8.79116774e-01 8.59552085e-01 -9.11684692e-01 -3.03485036e-01 -2.47871757e-01 4.03203845e-01 -7.37974465e-01 -1.55638403e-03 -9.36110675e-01 2.79602319e-01 1.03576869e-01 1.32109702e-01 -3.14325213e-01 -1.09517336e-01 -6.62964463e-01 -2.93936223e-01 3.01241964e-01 -8.81075919e-01 -3.44899744e-01 -2.27598846e-01 6.43620014e-01 -2.59852082e-01 -5.74287355e-01 9.82153475e-01 -3.66345853e-01 -7.80608654e-01 -1.44648507e-01 -3.06900203e-01 6.58194005e-01 7.44551599e-01 1.41713992e-01 -4.27468032e-01 -4.91573326e-02 -9.67618704e-01 4.61907715e-01 2.33310923e-01 1.68391168e-01 2.79407620e-01 -1.21629584e+00 -6.78646386e-01 -1.34147227e-01 4.10860866e-01 3.19581479e-01 -1.99337769e-02 9.04943943e-01 -1.71002582e-01 -5.21900691e-02 3.35582703e-01 -8.47380102e-01 -1.33530903e+00 5.36108851e-01 2.82687813e-01 -6.81481540e-01 -2.40718648e-01 1.09324086e+00 -5.09293497e-01 -9.61728990e-01 6.85780585e-01 -1.68604076e-01 -8.64730850e-02 4.93150145e-01 3.30253035e-01 6.69843197e-01 2.22697601e-01 -4.07352298e-01 -1.14799537e-01 4.49151397e-01 -2.42507026e-01 9.89022031e-02 1.20392144e+00 -2.39941105e-01 -1.38179556e-01 9.52532291e-01 1.13268244e+00 -1.21218354e-01 -1.47456551e+00 -9.04174328e-01 7.10777223e-01 6.54490292e-02 2.41248772e-01 -1.24939167e+00 -9.35991466e-01 7.26522684e-01 8.26615870e-01 4.14656907e-01 1.11032343e+00 4.36077118e-01 5.04065931e-01 4.33465481e-01 2.81832159e-01 -1.62125814e+00 5.73545754e-01 6.02075994e-01 1.74559161e-01 -1.83922851e+00 1.61831990e-01 -7.25970089e-01 -5.09933949e-01 9.34849560e-01 5.40353060e-01 3.02524239e-01 7.88397253e-01 7.42036521e-01 6.25341654e-01 -3.60881656e-01 -7.74230003e-01 -7.35229671e-01 1.03042610e-01 7.90082276e-01 6.02443039e-01 -8.69535729e-02 -2.13024095e-01 4.35484141e-01 2.77630091e-01 -2.85735335e-02 3.54713291e-01 1.45898390e+00 -5.32649696e-01 -1.25880337e+00 -3.15592140e-01 3.83149475e-01 -4.82827425e-01 2.60315668e-02 -5.76786160e-01 6.28033817e-01 7.53818512e-01 1.20446610e+00 -2.54279047e-01 -3.01884264e-01 3.64148766e-01 4.73358721e-01 3.95028859e-01 -9.75388288e-01 -8.33438694e-01 2.14589477e-01 1.66864023e-01 -4.18349504e-01 -1.10573781e+00 -5.63106656e-01 -1.20114470e+00 2.40421653e-01 -7.08565533e-01 1.71691719e-02 5.05035162e-01 1.12061608e+00 5.66137694e-02 5.12885988e-01 7.37260163e-01 -8.68270397e-01 -7.77322590e-01 -1.11503613e+00 -7.27677286e-01 6.62161648e-01 3.35002065e-01 -5.93521655e-01 -7.27420628e-01 2.99415350e-01]
[9.459659576416016, 3.9394540786743164]
eb6a2827-e10a-44d7-8828-656fb976119d
clustering-by-maximizing-mutual-information
2107.11635
null
https://arxiv.org/abs/2107.11635v1
https://arxiv.org/pdf/2107.11635v1.pdf
Clustering by Maximizing Mutual Information Across Views
We propose a novel framework for image clustering that incorporates joint representation learning and clustering. Our method consists of two heads that share the same backbone network - a "representation learning" head and a "clustering" head. The "representation learning" head captures fine-grained patterns of objects at the instance level which serve as clues for the "clustering" head to extract coarse-grain information that separates objects into clusters. The whole model is trained in an end-to-end manner by minimizing the weighted sum of two sample-oriented contrastive losses applied to the outputs of the two heads. To ensure that the contrastive loss corresponding to the "clustering" head is optimal, we introduce a novel critic function called "log-of-dot-product". Extensive experimental results demonstrate that our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets, improving over the best baseline by about 5-7% in accuracy on CIFAR10/20, STL10, and ImageNet-Dogs. Further, the "two-stage" variant of our method also achieves better results than baselines on three challenging ImageNet subsets.
['Svetha Venkatesh', 'Truyen Tran', 'Kien Do']
2021-07-24
null
http://openaccess.thecvf.com//content/ICCV2021/html/Do_Clustering_by_Maximizing_Mutual_Information_Across_Views_ICCV_2021_paper.html
http://openaccess.thecvf.com//content/ICCV2021/papers/Do_Clustering_by_Maximizing_Mutual_Information_Across_Views_ICCV_2021_paper.pdf
iccv-2021-1
['image-clustering']
['computer-vision']
[-2.57876694e-01 -5.28299846e-02 -3.51382233e-02 -6.90228224e-01 -1.09022951e+00 -1.88224062e-01 3.42446506e-01 1.42398998e-01 -5.61759233e-01 1.61956564e-01 -7.23420316e-03 8.78135338e-02 1.38071701e-01 -3.95058125e-01 -9.43913162e-01 -1.02161300e+00 -2.18592778e-01 5.25295556e-01 2.69142121e-01 1.92882180e-01 1.50607631e-01 1.69016242e-01 -1.40489054e+00 5.93199790e-01 7.09533811e-01 1.14090598e+00 3.99512112e-01 2.60529190e-01 2.36616299e-01 1.00814199e+00 -4.06716198e-01 -1.55857652e-01 2.95647353e-01 -2.45304897e-01 -7.69882500e-01 4.65199023e-01 3.72013658e-01 -2.67868359e-02 -4.33833838e-01 1.16880131e+00 3.73499423e-01 3.20176840e-01 7.47108519e-01 -9.50178623e-01 -7.46064484e-01 7.52297938e-01 -1.08505297e+00 2.94597805e-01 -2.77412802e-01 2.63259739e-01 1.14285600e+00 -8.89361262e-01 3.38947535e-01 1.43856490e+00 5.25742412e-01 4.43793625e-01 -1.60144961e+00 -7.72410810e-01 7.22491145e-01 8.39096978e-02 -1.50509024e+00 -3.25681061e-01 6.61499143e-01 -6.30497694e-01 7.18715727e-01 -3.09984356e-01 1.50911063e-01 5.86621583e-01 -2.53377497e-01 1.06862640e+00 9.65143144e-01 -2.03508422e-01 2.69453466e-01 1.02142654e-01 4.93856728e-01 8.33909690e-01 3.25594470e-03 -2.39225507e-01 -1.14577729e-02 7.48747885e-02 6.18739128e-01 7.93615580e-02 -1.44033149e-01 -4.82320726e-01 -9.33816016e-01 1.06804752e+00 1.08745956e+00 6.59264699e-02 -5.19462109e-01 4.41019952e-01 3.14135253e-01 7.63389990e-02 6.13743484e-01 1.55851662e-01 -2.73092210e-01 5.32608151e-01 -9.42175448e-01 1.39270604e-01 4.73598152e-01 8.61570835e-01 9.37192738e-01 -1.53196096e-01 -3.19468796e-01 1.04854691e+00 5.12733400e-01 1.40224054e-01 4.62157875e-01 -1.00644040e+00 6.08743250e-01 7.18946874e-01 -1.04033522e-01 -6.89594626e-01 -2.42447183e-01 -7.69397080e-01 -9.09785569e-01 1.46122202e-01 2.25298226e-01 -8.74803588e-02 -1.15125108e+00 1.94059658e+00 1.79500163e-01 3.73367697e-01 -2.97509223e-01 1.11206150e+00 6.19789720e-01 7.96867847e-01 4.38228965e-01 1.47689417e-01 1.42963910e+00 -1.30166125e+00 -1.78230122e-01 -3.41598928e-01 4.56432223e-01 -4.51536119e-01 1.06083143e+00 2.50267506e-01 -1.15819824e+00 -7.25332975e-01 -8.82474363e-01 -7.68286660e-02 -2.49941498e-01 4.46448743e-01 3.85163724e-01 1.66351065e-01 -1.13354158e+00 5.85145473e-01 -9.02740121e-01 -2.58251894e-02 7.38895476e-01 4.72899944e-01 -8.21294934e-02 -1.37952849e-01 -5.88934362e-01 4.71133411e-01 2.24511743e-01 1.86297577e-02 -1.26379704e+00 -8.16708565e-01 -7.08496988e-01 2.06891865e-01 1.92115143e-01 -6.23199761e-01 9.90327239e-01 -1.00684190e+00 -1.22101378e+00 1.16824865e+00 -1.26473308e-01 -7.11311162e-01 3.64273876e-01 -3.66322964e-01 6.13288321e-02 2.79526234e-01 4.11253780e-01 1.14146280e+00 8.01274538e-01 -1.64881885e+00 -7.81493604e-01 -4.27006841e-01 -3.13647181e-01 2.19631582e-01 -2.72731353e-02 1.26379624e-01 -9.75147009e-01 -7.28113711e-01 -8.29182416e-02 -9.96259093e-01 -6.15738869e-01 -1.55484036e-01 -4.87967461e-01 -4.77732062e-01 6.64375186e-01 -4.50632215e-01 1.05463922e+00 -2.39981437e+00 1.71219528e-01 2.22922787e-01 2.35669032e-01 1.94659397e-01 -2.59923518e-01 -1.14873657e-02 -1.09673396e-01 -1.28984479e-02 -3.29268336e-01 -7.79919088e-01 3.84983309e-02 7.37754581e-03 -2.93540508e-01 5.88072717e-01 1.73818260e-01 7.40057588e-01 -7.25503147e-01 -2.82243818e-01 2.94732600e-01 5.01698673e-01 -6.66357100e-01 3.77736866e-01 -3.69678587e-01 3.54224920e-01 -3.02215397e-01 3.18330407e-01 5.82875073e-01 -8.11822534e-01 1.38822660e-01 -2.71376073e-01 2.74163783e-02 2.79202938e-01 -9.67046916e-01 1.72604525e+00 -4.66735177e-02 3.35342735e-01 1.42054334e-01 -1.21075082e+00 6.61941350e-01 2.15769410e-02 2.41211414e-01 -6.50413096e-01 2.27279797e-01 -2.65536398e-01 -4.36802991e-02 -1.91338032e-01 1.73011258e-01 2.56318510e-01 -1.47534266e-01 3.54384392e-01 1.15987279e-01 4.00127769e-01 3.55727434e-01 4.11903918e-01 8.98532271e-01 -6.08811304e-02 -1.49877846e-01 -5.09347737e-01 4.37295318e-01 -2.64213383e-01 7.03253627e-01 6.69798851e-01 -2.73891747e-01 7.25777626e-01 5.74210107e-01 -2.58249104e-01 -7.82037854e-01 -1.12757850e+00 1.62531048e-01 1.35926795e+00 1.16427504e-01 -1.77341804e-01 -9.54322517e-01 -7.52616763e-01 3.39017287e-02 4.98806149e-01 -9.04419482e-01 -1.07853338e-01 -5.95278203e-01 -1.01845646e+00 4.62329835e-01 7.69808650e-01 7.64514565e-01 -1.06724989e+00 -3.41225475e-01 2.11703181e-01 -2.82058835e-01 -1.25328052e+00 -6.25544429e-01 4.64193106e-01 -8.06165755e-01 -1.06999624e+00 -5.52214146e-01 -1.17639327e+00 9.54915762e-01 5.76374054e-01 1.20051968e+00 1.58403531e-01 -3.62408400e-01 -2.55236365e-02 -2.85757840e-01 -4.05747145e-02 9.47754756e-02 7.00542331e-02 -3.19973528e-01 3.10153514e-01 3.49033922e-01 -3.75192374e-01 -9.51821446e-01 3.17979276e-01 -5.59190750e-01 -4.41085756e-01 7.27121353e-01 5.89609325e-01 9.43895817e-01 9.68517736e-02 4.70568061e-01 -9.26381528e-01 1.97749510e-01 -7.62139559e-01 -7.33415544e-01 1.69714555e-01 -4.14357632e-01 2.00098768e-01 8.18403006e-01 -3.39611590e-01 -8.29944611e-01 3.01111013e-01 1.54137716e-01 -9.27076995e-01 -2.03591928e-01 1.80292040e-01 -2.23306119e-01 3.38507116e-01 4.71071899e-01 3.84556130e-02 -2.00776696e-01 -7.01243401e-01 6.16193831e-01 3.08449239e-01 9.72289741e-01 -6.08909667e-01 5.83260059e-01 6.78493917e-01 -5.31291187e-01 -5.37597597e-01 -1.00821221e+00 -8.39654863e-01 -5.51587045e-01 1.51039794e-01 1.20785403e+00 -1.47050643e+00 -6.29803896e-01 4.55772936e-01 -8.16852093e-01 -5.60879707e-01 -2.23323584e-01 3.94840986e-01 -4.46086168e-01 1.69053614e-01 -9.28197920e-01 -4.52489883e-01 -3.34740609e-01 -1.37131572e+00 1.06843126e+00 2.48302802e-01 1.57285437e-01 -7.69444704e-01 -9.72023234e-02 5.03235221e-01 5.26648425e-02 1.18345320e-01 1.11000800e+00 -5.52900612e-01 -7.32565701e-01 8.77161920e-02 -5.82646132e-01 5.39751768e-01 -2.98587978e-01 -6.88133612e-02 -1.02926457e+00 -4.12201703e-01 -1.79787874e-01 -5.50197542e-01 1.52778912e+00 6.04919910e-01 1.53441322e+00 -2.34723374e-01 -4.53362852e-01 8.01607013e-01 1.60395181e+00 9.94921401e-02 6.91485703e-01 3.28049250e-02 8.17985833e-01 5.05699754e-01 1.92789063e-01 2.69562453e-01 6.60676718e-01 5.56645393e-01 4.45010543e-01 -2.30484053e-01 -3.24408114e-01 -9.80129167e-02 3.21407408e-01 6.84815228e-01 2.60318130e-01 -9.12716910e-02 -5.86097062e-01 8.73936653e-01 -2.15364909e+00 -1.00057530e+00 1.42647550e-01 2.00473905e+00 7.42193818e-01 1.46050140e-01 4.84800458e-01 -1.03504978e-01 9.30150807e-01 1.94565445e-01 -6.52186096e-01 1.04350887e-01 1.83831781e-01 2.25783400e-02 3.77400279e-01 2.79993594e-01 -1.45207322e+00 1.18358457e+00 5.78592634e+00 7.58759856e-01 -9.58061755e-01 -6.03922689e-03 9.71192777e-01 8.91250968e-02 1.06849752e-01 -3.76174273e-03 -7.90011227e-01 6.87455058e-01 7.07463682e-01 4.32630271e-01 4.55010206e-01 9.99685526e-01 1.22508526e-01 -5.28066643e-02 -1.13786137e+00 8.86203408e-01 -1.12446748e-01 -1.28013778e+00 -1.26168234e-02 1.14872478e-01 8.25882673e-01 5.93520999e-01 3.28320861e-01 3.10349464e-01 8.80214930e-01 -9.21654403e-01 7.80906856e-01 2.44929835e-01 5.00111163e-01 -8.39944243e-01 3.90668511e-01 2.18551949e-01 -1.35345924e+00 -1.56441852e-01 -4.83256668e-01 2.34024942e-01 -2.22521499e-01 6.55781686e-01 -5.25799930e-01 1.59659371e-01 1.00179672e+00 7.26159096e-01 -6.08135819e-01 1.13018644e+00 -3.19620699e-01 8.18988323e-01 -2.26885706e-01 3.53925616e-01 5.89735091e-01 -3.22329164e-01 1.96459945e-02 1.48059392e+00 -3.03579599e-01 2.22604424e-01 5.02911568e-01 9.95184302e-01 -6.03457034e-01 -2.24881142e-01 -9.14138258e-02 2.07132101e-01 6.81928635e-01 1.41493022e+00 -1.13081992e+00 -5.06049275e-01 -2.73503184e-01 8.28369796e-01 7.80819178e-01 3.98194402e-01 -8.86714220e-01 -3.65265399e-01 4.54758644e-01 2.62257829e-02 8.74541461e-01 3.30804884e-02 -2.47737125e-01 -9.13723052e-01 -1.40887767e-01 -7.90309966e-01 5.87671876e-01 -5.21684885e-01 -1.53614223e+00 7.01998532e-01 -4.25556935e-02 -9.30508554e-01 -3.77142578e-02 -2.81033218e-01 -7.43987203e-01 5.88817239e-01 -1.46761072e+00 -1.15066111e+00 -2.54207343e-01 8.81081641e-01 6.17659032e-01 -1.32554665e-01 4.51716542e-01 4.11186934e-01 -8.23693573e-01 6.78665340e-01 1.57946214e-01 6.35714412e-01 5.05652726e-01 -1.33366346e+00 2.60174543e-01 8.72089744e-01 5.91566116e-02 5.44940889e-01 3.05593431e-01 -3.98519874e-01 -7.76165545e-01 -1.56110406e+00 4.67296332e-01 -2.58860648e-01 3.45435023e-01 -5.12534440e-01 -9.99806225e-01 8.60501409e-01 3.08836997e-01 2.36001387e-01 3.69107783e-01 1.17115434e-02 -1.00240016e+00 -2.16927975e-01 -1.11792064e+00 4.03175503e-01 7.30513155e-01 -3.99542481e-01 -5.19180059e-01 3.70164007e-01 8.80461991e-01 4.56227958e-02 -7.17313349e-01 3.07597876e-01 1.99818239e-01 -8.95024538e-01 1.01315129e+00 -3.61634344e-01 3.71106088e-01 -4.98558372e-01 -2.93588817e-01 -1.31131077e+00 -7.90283978e-01 -3.82103264e-01 1.68125987e-01 1.08716750e+00 2.93691039e-01 -1.85313910e-01 7.51882613e-01 1.53309733e-01 -2.97976345e-01 -7.74701893e-01 -4.73288625e-01 -6.71617210e-01 2.09538102e-01 -5.46880625e-02 3.21463853e-01 7.95996189e-01 -3.32244366e-01 6.42741501e-01 -4.63986658e-02 2.44186535e-01 1.08290327e+00 6.59624860e-02 6.23447955e-01 -1.17307174e+00 -3.43290180e-01 -6.84706986e-01 -1.65892616e-01 -1.26938510e+00 2.89269328e-01 -9.96551812e-01 2.69876808e-01 -1.37046599e+00 6.00083470e-01 -4.89000559e-01 -6.10725284e-01 5.28329074e-01 -3.37686151e-01 2.60107815e-01 3.08236659e-01 5.72901666e-01 -1.21205652e+00 4.49461520e-01 7.59037554e-01 -2.04053968e-01 -1.73159525e-01 -4.88528796e-02 -9.56472397e-01 9.08393562e-01 5.95465481e-01 -6.38966978e-01 -4.93240744e-01 -6.17797017e-01 -2.56853521e-01 -2.75807679e-01 4.06845599e-01 -1.15035975e+00 4.11941558e-01 2.57351577e-01 4.99770582e-01 -7.74218202e-01 2.18057752e-01 -5.19328356e-01 -2.92563558e-01 2.83394516e-01 -6.35376990e-01 2.55388133e-02 -1.88425362e-01 7.84429610e-01 -1.95335105e-01 2.62877852e-01 1.40179503e+00 -2.52203375e-01 -6.48493528e-01 4.33450460e-01 -1.36340722e-01 3.46016288e-01 1.07672465e+00 2.21551657e-01 -3.40698749e-01 -1.79270282e-01 -5.68118095e-01 6.51115596e-01 3.48675728e-01 2.40165874e-01 4.95293617e-01 -1.05227399e+00 -7.46728301e-01 1.65697992e-01 -1.39375161e-02 3.64635110e-01 1.35980174e-01 7.37721801e-01 -3.59492928e-01 3.16237330e-01 5.52984588e-02 -7.31786013e-01 -8.78075600e-01 7.22296715e-01 4.27873194e-01 -5.67768514e-01 -6.97077990e-01 1.25686955e+00 7.44310915e-01 -2.57380038e-01 7.44260252e-01 -2.12668702e-01 -2.95221759e-03 -1.40309092e-02 5.05145371e-01 3.00961405e-01 -5.91698401e-02 -6.79603338e-01 -5.02539635e-01 5.83025455e-01 -6.75193548e-01 -4.73358296e-02 1.39935231e+00 -1.98661551e-01 -2.95890328e-02 2.55477905e-01 1.58572066e+00 -5.84192574e-01 -1.69903922e+00 -4.01536822e-01 7.32647162e-03 -8.22692215e-02 -2.21832208e-02 -8.20019841e-01 -1.49108195e+00 9.52527523e-01 6.05182886e-01 -8.25345963e-02 1.14236021e+00 2.93078125e-01 7.98542380e-01 2.44347453e-01 1.42449558e-01 -1.15540481e+00 3.94341022e-01 3.13981861e-01 6.17971539e-01 -1.19315374e+00 -1.07457884e-01 -2.03154638e-01 -8.83001804e-01 3.66543233e-01 7.24044502e-01 -8.45595777e-01 8.18928003e-01 1.65697411e-01 1.12483740e-01 -3.83005977e-01 -9.83790398e-01 -4.38996643e-01 3.39039981e-01 4.70976204e-01 2.97762066e-01 1.54583991e-01 9.46362391e-02 4.41693127e-01 1.38149336e-01 -2.06976637e-01 -2.94988807e-02 5.85554719e-01 -6.61452174e-01 -7.17941582e-01 -1.87163785e-01 4.01735276e-01 -7.11279511e-01 2.14656368e-02 -1.84290200e-01 8.07378590e-01 1.54396594e-01 1.10263658e+00 4.24414754e-01 -3.74945015e-01 6.68447390e-02 -1.55291706e-01 3.34872127e-01 -6.17978871e-01 -7.52339423e-01 4.96843547e-01 -3.76856267e-01 -7.46174097e-01 -5.90685904e-01 -4.70529616e-01 -1.53392935e+00 -1.21547118e-01 -2.76796162e-01 2.68894404e-01 5.10064721e-01 8.60411823e-01 4.47353035e-01 4.43436831e-01 9.30189669e-01 -8.80137384e-01 -5.84235132e-01 -8.13839257e-01 -5.49672842e-01 7.84574568e-01 2.41461352e-01 -4.14606035e-01 -3.36134583e-01 1.82085186e-01]
[9.261744499206543, 3.137939453125]
474399f8-2634-4acf-9a35-6579050dc4de
albmore-a-corpus-of-movie-reviews-for
2306.08526
null
https://arxiv.org/abs/2306.08526v1
https://arxiv.org/pdf/2306.08526v1.pdf
AlbMoRe: A Corpus of Movie Reviews for Sentiment Analysis in Albanian
Lack of available resources such as text corpora for low-resource languages seriously hinders research on natural language processing and computational linguistics. This paper presents AlbMoRe, a corpus of 800 sentiment annotated movie reviews in Albanian. Each text is labeled as positive or negative and can be used for sentiment analysis research. Preliminary results based on traditional machine learning classifiers trained with the AlbMoRe samples are also reported. They can serve as comparison baselines for future research experiments.
['Erion Çano']
2023-06-14
null
null
null
null
['sentiment-analysis']
['natural-language-processing']
[-5.07563762e-02 8.64642486e-02 -6.94227815e-01 -9.77628946e-01 -6.48498893e-01 -6.16871476e-01 5.52459180e-01 6.90075696e-01 -8.80022109e-01 6.74643874e-01 5.01752853e-01 -4.56354886e-01 6.35046482e-01 -3.20372820e-01 -1.48626819e-01 -1.65049270e-01 2.21581217e-02 3.54791194e-01 -3.08502704e-01 -8.21480453e-01 6.63132787e-01 1.82044342e-01 -1.20257282e+00 7.49716222e-01 5.34698725e-01 4.64544505e-01 -5.21748997e-02 5.02568722e-01 -1.22424170e-01 9.74462748e-01 -9.53753948e-01 -9.62011337e-01 6.14801608e-02 -3.06912810e-01 -8.53100836e-01 1.78232342e-01 6.24706030e-01 -2.68436279e-02 4.90282238e-01 1.01199591e+00 3.67826879e-01 1.18230134e-01 6.64380074e-01 -9.18407083e-01 -9.15910780e-01 7.88079798e-01 -6.91974819e-01 5.80342889e-01 4.08720016e-01 -5.48902333e-01 1.54651737e+00 -1.28791416e+00 9.99381244e-01 1.35402727e+00 3.66793126e-01 5.98794699e-01 -4.48405564e-01 -5.83331764e-01 1.04372896e-01 2.31030565e-02 -7.08928168e-01 -4.02349085e-01 9.26680028e-01 -4.57224071e-01 1.25740254e+00 -4.18295451e-02 8.25925410e-01 7.24642813e-01 5.42907298e-01 9.08906102e-01 1.21375608e+00 -9.40577626e-01 1.08389877e-01 7.71711111e-01 4.84085530e-01 4.42392647e-01 5.21671534e-01 -8.14883411e-01 -7.90551364e-01 -1.32586449e-01 1.83350034e-02 -4.21063989e-01 2.42328748e-01 3.09277982e-01 -6.86668277e-01 1.37795103e+00 4.35340703e-02 4.97150391e-01 -3.05141360e-01 -4.17838603e-01 9.68817830e-01 7.60373473e-01 1.42120826e+00 8.33062708e-01 -9.94354010e-01 -2.11603925e-01 -6.03026569e-01 4.09109950e-01 7.50533581e-01 9.67067719e-01 4.94004548e-01 1.95872664e-01 4.38258797e-01 1.26042271e+00 4.77271616e-01 8.37075770e-01 6.80558503e-01 -4.53494102e-01 7.01042175e-01 8.38529825e-01 5.80543987e-02 -1.27083278e+00 -5.89287281e-01 2.44133830e-01 1.48139983e-01 -3.65773976e-01 1.06498480e-01 -6.61900163e-01 -5.37472844e-01 1.11582625e+00 1.87857673e-01 -9.08473909e-01 6.41619802e-01 8.86757255e-01 1.10333431e+00 7.69725382e-01 3.44465613e-01 -4.63021815e-01 1.70581567e+00 -1.10941887e+00 -9.39789295e-01 -1.01300144e+00 1.03763843e+00 -1.39245677e+00 1.59596884e+00 5.63628554e-01 -1.11090183e+00 4.01477935e-03 -9.60729837e-01 -3.75773042e-01 -8.01014423e-01 4.28099096e-01 1.16746831e+00 1.10067904e+00 -8.95913303e-01 -1.02186911e-01 -6.58019841e-01 -6.69007659e-01 3.47747624e-01 2.15764314e-01 -3.47209692e-01 5.01776524e-02 -1.15415835e+00 9.48735297e-01 -1.64722458e-01 1.05152920e-01 -5.63893095e-02 -1.36150792e-01 -1.39011824e+00 -7.39202261e-01 -1.89049467e-01 5.43063283e-01 1.73122418e+00 -1.45864689e+00 -9.25264299e-01 1.70037258e+00 -6.76582277e-01 -2.72629291e-01 -2.28499293e-01 -4.49432582e-01 -8.31948996e-01 2.23566800e-01 5.93396306e-01 3.44485968e-01 5.15577495e-01 -7.06864059e-01 -7.69065797e-01 -6.02450728e-01 1.00136362e-01 4.32988197e-01 -1.09913135e+00 1.20230031e+00 -5.24434522e-02 -8.99617791e-01 -3.08209546e-02 -8.39745224e-01 -2.43258253e-01 -7.31344461e-01 2.80110985e-02 -5.01079798e-01 5.05809009e-01 -6.52511120e-01 1.11239505e+00 -1.76304674e+00 -4.20002818e-01 -1.73500627e-01 -3.64550620e-01 4.84936908e-02 -7.10752830e-02 7.67255723e-01 -3.57690342e-02 2.82327980e-01 3.26531947e-01 -3.48506927e-01 -3.51224810e-01 1.07723251e-02 -3.56369346e-01 6.10869765e-01 4.69602346e-01 4.95471030e-01 -9.50033188e-01 -6.95796490e-01 -2.25903034e-01 1.34571403e-01 -3.58206213e-01 -2.70012826e-01 1.47879347e-01 -5.04559651e-02 -5.87045670e-01 8.39273393e-01 2.65648633e-01 1.81525320e-01 3.13850194e-01 1.32434800e-01 -2.55581737e-01 8.33505213e-01 -3.72270018e-01 1.03347278e+00 -6.80708528e-01 1.06113636e+00 8.39105397e-02 -8.44304264e-01 1.31995296e+00 1.92285538e-01 -7.41634797e-03 -6.70160890e-01 4.16855782e-01 3.04681957e-01 3.42854089e-03 -5.70824564e-01 1.18036580e+00 -5.18840969e-01 -5.16589701e-01 5.44775844e-01 -1.33045450e-01 -5.18906891e-01 8.22368860e-01 4.08259779e-01 4.13493782e-01 -3.11911821e-01 5.04131138e-01 -7.25278914e-01 7.99901545e-01 7.98740745e-01 5.49970329e-01 9.66951847e-02 -4.05560255e-01 2.16328532e-01 5.72002828e-01 -5.44526458e-01 -9.97272015e-01 -1.80254892e-01 -5.05803287e-01 1.75578821e+00 -2.83026427e-01 -8.37509811e-01 -6.09030366e-01 -7.18218088e-01 -3.62722605e-01 5.70206523e-01 -6.19744837e-01 3.31409335e-01 -6.44116819e-01 -8.99617076e-01 2.04048008e-01 5.67956686e-01 -1.43555313e-01 -1.35089672e+00 -3.74436498e-01 -3.33020128e-02 -9.58028659e-02 -1.28402877e+00 -1.28405184e-01 8.63504112e-02 -7.51018167e-01 -1.07255483e+00 -3.16541046e-01 -1.43915522e+00 7.58046091e-01 3.85221988e-01 1.30439794e+00 5.69168963e-02 1.44161984e-01 1.44227356e-01 -9.38865840e-01 -1.37342000e+00 -3.42465550e-01 1.06812663e-01 2.64945596e-01 -3.83374095e-01 1.37905955e+00 2.98109889e-01 -1.36490554e-01 -7.43325129e-02 -5.96856236e-01 -3.65824163e-01 3.57892290e-02 7.33406425e-01 1.49545416e-01 -1.52064815e-01 1.08065784e+00 -1.68131292e+00 1.00832522e+00 -5.67926168e-01 -2.16048822e-01 -1.42007545e-01 -4.83552277e-01 -8.02841961e-01 7.58790910e-01 -1.69435233e-01 -1.19555211e+00 -2.91985601e-01 -2.00093105e-01 6.50649428e-01 8.37706700e-02 9.19830918e-01 3.96277875e-01 2.80543983e-01 8.34619701e-01 -6.43548191e-01 -1.62183985e-01 -8.31884667e-02 -4.18070853e-02 1.40267277e+00 -1.15063585e-01 -2.91854411e-01 1.76558286e-01 3.94326746e-01 -6.20230496e-01 -1.33575487e+00 -1.37663114e+00 -7.07824707e-01 -5.80079973e-01 -3.66258115e-01 6.39594078e-01 -1.18121016e+00 8.31134766e-02 3.27007860e-01 -7.69868076e-01 -1.30121112e-01 -1.32157385e-01 6.57165527e-01 -4.06805538e-02 -8.48198384e-02 -9.93987203e-01 -1.02237189e+00 -6.19621217e-01 -7.48244107e-01 9.17935908e-01 3.04894835e-01 -7.19948947e-01 -1.52481031e+00 2.95675099e-01 8.82773876e-01 -8.31457451e-02 -2.13675767e-01 5.87713122e-01 -1.14634120e+00 9.01363552e-01 -8.77859533e-01 3.62687230e-01 6.23558402e-01 1.05357833e-01 2.96195745e-01 -9.02939022e-01 -2.63499290e-01 2.56757170e-01 -1.17399478e+00 4.18391258e-01 1.88554391e-01 4.04723912e-01 -5.20833969e-01 1.74617857e-01 -5.07783532e-01 1.08544672e+00 1.21250212e-01 1.69894069e-01 6.47092760e-01 3.05242985e-01 1.25146198e+00 1.39137053e+00 4.61716264e-01 7.72326350e-01 -1.36452511e-01 -3.80189687e-01 3.41118500e-02 4.99956995e-01 -2.40131766e-02 9.30222332e-01 1.38626027e+00 3.42175871e-01 -2.32108340e-01 -1.28125477e+00 1.08204031e+00 -1.42195892e+00 -6.65954411e-01 -3.72183710e-01 1.44686639e+00 9.79531407e-01 7.82569572e-02 -6.27183635e-03 2.47697249e-01 6.98389471e-01 5.29863596e-01 -6.73822537e-02 -1.21326971e+00 -3.99923980e-01 4.39002275e-01 1.50075719e-01 4.18379813e-01 -1.35039914e+00 1.51017368e+00 7.28310013e+00 4.07912791e-01 -1.12915468e+00 2.18453795e-01 8.13374877e-01 -7.97051117e-02 -1.76619217e-01 -9.84348431e-02 -1.03334451e+00 -1.86607316e-01 1.18614328e+00 -2.52453059e-01 -1.83138102e-01 1.21742785e+00 4.00964946e-01 -4.14734930e-01 -4.99321193e-01 4.21630353e-01 7.57643521e-01 -9.55708385e-01 -1.15690313e-01 -3.50446939e-01 1.05944240e+00 4.12115604e-01 -5.12489453e-02 4.51662809e-01 1.78002313e-01 -7.38481104e-01 7.28160858e-01 -3.59889954e-01 5.34165323e-01 -8.25352728e-01 1.40323424e+00 2.10462630e-01 -7.59349406e-01 1.30628467e-01 -7.88887858e-01 -9.17396903e-01 2.10426793e-01 2.70180047e-01 -8.49525869e-01 -2.94347405e-02 8.75723958e-01 1.25482595e+00 -9.26859796e-01 7.42780641e-02 -4.80463684e-01 1.21720505e+00 -7.06457794e-02 -9.02882755e-01 4.35140580e-01 -3.65212321e-01 1.53014600e-01 1.49395084e+00 -3.32962096e-01 1.45465553e-01 2.94777185e-01 -2.17250571e-01 -5.85118271e-02 1.24929500e+00 -7.57144511e-01 -6.84142590e-01 1.76110640e-01 1.77474463e+00 -1.30132473e+00 -3.52201849e-01 -1.11668599e+00 3.90945673e-01 4.20765311e-01 2.30363011e-01 1.92305539e-02 -5.81379890e-01 1.23459652e-01 1.38385504e-01 -1.86662927e-01 -5.06885275e-02 -5.81946313e-01 -1.42298758e+00 3.61707583e-02 -1.11218393e+00 4.48127955e-01 -7.23992288e-01 -1.70036912e+00 7.43014395e-01 -1.88515440e-01 -7.70682871e-01 -2.35795811e-01 -9.94456828e-01 -4.60463077e-01 6.39970839e-01 -1.37579668e+00 -1.19664741e+00 1.84289649e-01 2.98751265e-01 9.45767105e-01 -6.98415816e-01 7.55182445e-01 1.67697057e-01 -5.38427413e-01 3.89111638e-01 -3.13422620e-01 3.43359739e-01 1.02535892e+00 -1.18556893e+00 3.94305110e-01 7.30827928e-01 5.51931970e-02 7.57616103e-01 7.06771016e-01 -9.52738941e-01 -1.21585047e+00 -7.97412515e-01 1.71340442e+00 -5.76298833e-01 1.23525238e+00 -2.74198413e-01 -5.27032673e-01 8.22853148e-01 6.22732520e-01 -4.12472516e-01 1.36213005e+00 6.08587444e-01 -1.94138616e-01 3.56879123e-02 -1.10371029e+00 6.96000278e-01 2.95153201e-01 -5.52217126e-01 -8.15766394e-01 8.98651600e-01 3.83178294e-01 -1.36618435e-01 -7.69197702e-01 2.00885683e-01 3.10158402e-01 -4.42856669e-01 1.77127719e-01 -1.10549283e+00 8.65201890e-01 2.77568251e-01 -1.45286724e-01 -1.13482547e+00 2.53670692e-01 -3.53393257e-01 6.41379297e-01 1.31421959e+00 9.98312354e-01 -5.07730663e-01 7.51466393e-01 7.24328399e-01 -1.95913747e-01 -6.98482037e-01 -2.77678996e-01 -2.31308252e-01 6.22409701e-01 -8.65090668e-01 6.76872507e-02 1.28152144e+00 9.07344580e-01 1.15260375e+00 -6.16480671e-02 -5.00471175e-01 -1.44687638e-01 -7.73389637e-02 7.01449990e-01 -1.05780208e+00 5.46908319e-01 -1.51834205e-01 -3.56535405e-01 -4.44011569e-01 6.87108576e-01 -7.37466216e-01 -6.31142175e-03 -1.55344951e+00 9.06917080e-02 -1.47319317e-01 3.59466791e-01 5.68415046e-01 -2.47050542e-02 9.16797280e-01 -6.24917708e-02 4.01507504e-03 -3.54010791e-01 3.08966339e-01 1.02314055e+00 1.18813492e-01 -2.53147840e-01 -2.53113419e-01 -1.11906743e+00 1.30153394e+00 1.16674626e+00 -4.44028020e-01 -4.20411080e-01 -3.45562607e-01 1.02989507e+00 -5.40274501e-01 -6.08703017e-01 -4.00058836e-01 -1.86542556e-01 -4.38585371e-01 1.23321220e-01 -5.35168290e-01 1.37288466e-01 -4.23617393e-01 -1.07413888e+00 -9.61476490e-02 -5.51795900e-01 7.92504787e-01 3.32977384e-01 -1.40112564e-01 -5.57103217e-01 -8.70977759e-01 5.93354523e-01 -1.52364209e-01 -4.54420805e-01 -1.96226910e-01 -9.54293132e-01 4.70134288e-01 9.60606873e-01 7.93578401e-02 -4.26900625e-01 -5.25901735e-01 -3.17455947e-01 2.93106169e-01 6.19154334e-01 7.56901622e-01 5.72595417e-01 -8.61965537e-01 -8.93958211e-01 -8.29405244e-03 5.07464826e-01 -5.30831337e-01 -1.47857174e-01 4.75182503e-01 -9.82096314e-01 4.92691040e-01 -6.53935075e-02 6.66365027e-02 -1.31709802e+00 2.32979864e-01 -3.77407312e-01 -7.95724895e-03 -2.73354173e-01 7.31607199e-01 -2.85944253e-01 -6.20294750e-01 -1.51420370e-01 2.36447081e-01 -1.08625126e+00 6.56104386e-01 8.46457541e-01 1.04597032e-01 9.43231285e-02 -1.41262352e+00 -3.59463185e-01 2.33647674e-01 -4.12297964e-01 -6.49976254e-01 1.41561389e+00 -3.40840697e-01 -7.34678209e-01 1.19673705e+00 9.31528687e-01 5.68334103e-01 1.11487947e-01 9.37263891e-02 3.32295626e-01 -3.88998240e-01 1.17968515e-01 -4.39531296e-01 -9.37468231e-01 6.49588048e-01 1.62893988e-03 4.22286659e-01 8.99532795e-01 7.25793242e-02 4.94892776e-01 8.79030883e-01 1.26206353e-01 -1.66805470e+00 -4.04727086e-02 8.30467880e-01 9.38209176e-01 -1.60697818e+00 2.90420145e-01 -3.88037145e-01 -1.40452456e+00 1.11142278e+00 8.85945261e-01 -4.50050026e-01 1.01489115e+00 3.00180137e-01 8.92864823e-01 -6.17098451e-01 -8.68829966e-01 -3.00524980e-02 2.31291607e-01 3.94339681e-01 1.37362599e+00 -1.54369593e-01 -1.36330128e+00 8.58586192e-01 -8.90523553e-01 -5.00577390e-01 1.10569751e+00 1.13661754e+00 -4.16367829e-01 -1.08629644e+00 -2.49577478e-01 7.14429915e-01 -1.37666285e+00 -3.86321038e-01 -8.98198724e-01 7.99902976e-01 -3.92432243e-01 1.56934094e+00 3.56195450e-01 -6.48733135e-03 1.45463720e-01 -9.15452838e-02 -7.66134709e-02 -1.24586320e+00 -1.03524399e+00 3.34502041e-01 8.85672390e-01 1.03288433e-02 -1.11430097e+00 -1.11450756e+00 -1.31520772e+00 -1.89760432e-01 -4.99796748e-01 7.59233713e-01 8.01165223e-01 9.01218176e-01 -7.80508444e-02 -2.40344033e-01 5.38030028e-01 -5.00949681e-01 -6.61790296e-02 -1.47930622e+00 -7.83955097e-01 2.78052121e-01 5.29375970e-02 -2.12239176e-01 -3.91276032e-01 3.58057529e-01]
[11.206375122070312, 6.872526168823242]
0c8a81bd-fd6e-4620-949f-0191183f77a5
a-novel-blaschke-unwinding-adaptive-fourier
1803.06441
null
http://arxiv.org/abs/1803.06441v1
http://arxiv.org/pdf/1803.06441v1.pdf
A Novel Blaschke Unwinding Adaptive Fourier Decomposition based Signal Compression Algorithm with Application on ECG Signals
This paper presents a novel signal compression algorithm based on the Blaschke unwinding adaptive Fourier decomposition (AFD). The Blaschke unwinding AFD is a newly developed signal decomposition theory. It utilizes the Nevanlinna factorization and the maximal selection principle in each decomposition step, and achieves a faster convergence rate with higher fidelity. The proposed compression algorithm is applied to the electrocardiogram signal. To assess the performance of the proposed compression algorithm, in addition to the generic assessment criteria, we consider the less discussed criteria related to the clinical needs -- for the heart rate variability analysis purpose, how accurate the R peak information is preserved is evaluated. The experiments are conducted on the MIT-BIH arrhythmia benchmark database. The results show that the proposed algorithm performs better than other state-of-the-art approaches. Meanwhile, it also well preserves the R peak information.
['Hau-Tieng Wu', 'Liming Zhang', 'Chunyu Tan']
2018-03-17
null
null
null
null
['heart-rate-variability']
['medical']
[ 3.87436897e-01 -3.18511486e-01 -1.51495054e-01 2.51171850e-02 -5.07969379e-01 -2.05036610e-01 -3.40859443e-02 2.87745029e-01 -2.84416914e-01 8.15707624e-01 2.65023440e-01 -2.46518880e-01 -6.93752468e-01 -2.63903141e-01 -2.07646787e-02 -8.92435014e-01 -3.43441457e-01 6.62311018e-02 -2.43693292e-01 -4.26823609e-02 1.64580807e-01 4.61393625e-01 -1.15540063e+00 5.94970807e-02 1.03743088e+00 1.21940506e+00 -4.40278873e-02 6.52491748e-01 6.39977217e-01 4.78598118e-01 -4.02617991e-01 -6.51557371e-02 3.84121954e-01 -8.33109021e-01 -5.46578526e-01 -1.50499910e-01 -3.58059227e-01 -5.07368684e-01 -1.53662562e-01 8.88961852e-01 7.91231334e-01 -1.00253455e-01 6.24153376e-01 -7.05959558e-01 2.37408996e-01 5.05905867e-01 -6.24326468e-01 7.52763212e-01 3.51774007e-01 -2.77497858e-01 6.50895000e-01 -8.18744838e-01 5.98213434e-01 6.12622559e-01 1.00786972e+00 -5.52625433e-02 -1.26237345e+00 -4.56597060e-01 -6.18364751e-01 3.94456565e-01 -1.59077442e+00 -2.16513529e-01 1.11141396e+00 -3.23280424e-01 6.08956456e-01 5.54504514e-01 8.42094183e-01 5.45379817e-01 4.97078508e-01 2.86915570e-01 1.07354844e+00 -6.43396497e-01 3.23620364e-02 -3.96058261e-01 5.41674316e-01 4.62400973e-01 5.04029393e-01 1.83231980e-01 -5.37856758e-01 -5.49152553e-01 6.33578539e-01 -1.10319205e-01 -7.57543445e-01 -1.26780123e-01 -1.39346480e+00 5.34599841e-01 -1.51941955e-01 6.97013080e-01 -6.63318515e-01 1.37905190e-02 7.87130952e-01 2.86760271e-01 3.79143447e-01 1.23349801e-01 -1.86199509e-02 -3.35000604e-01 -1.48045754e+00 3.97479683e-01 5.37877560e-01 4.64417964e-01 1.81371287e-01 2.83395797e-01 -3.11741501e-01 4.86724436e-01 3.56295019e-01 4.07224745e-01 7.31908739e-01 -9.57935035e-01 3.19570243e-01 1.42100304e-01 -6.95988759e-02 -1.34139359e+00 -6.19448125e-01 -8.69972348e-01 -1.42461145e+00 -5.37071191e-02 2.07536966e-01 -1.18034340e-01 -2.99207270e-01 1.66055298e+00 2.51404047e-01 3.61587614e-01 2.65669107e-01 9.47221756e-01 7.00009942e-01 5.72071373e-01 -2.62047917e-01 -1.19962049e+00 1.32846177e+00 -3.40944529e-01 -1.34490979e+00 3.14562351e-01 1.59547120e-01 -8.63181055e-01 5.10281563e-01 8.12556624e-01 -1.29308164e+00 -8.26357663e-01 -1.39279556e+00 2.94328302e-01 4.64768350e-01 3.90138268e-01 3.85408312e-01 8.97293150e-01 -8.26713681e-01 8.24652970e-01 -7.59780467e-01 -2.04017296e-01 1.51722562e-02 7.94528723e-02 -2.91708797e-01 6.08374812e-02 -1.32007372e+00 7.38604546e-01 4.21268612e-01 3.51918340e-02 -4.85306859e-01 -7.60716319e-01 -4.80302185e-01 2.39804536e-01 -6.37041256e-02 -7.79384613e-01 8.90413105e-01 -4.91333693e-01 -1.19538212e+00 5.58692694e-01 -1.89103469e-01 -7.70417035e-01 6.12541139e-01 -1.60946578e-01 -5.23926556e-01 7.26087511e-01 -2.03090772e-01 -2.69280672e-01 1.04553759e+00 -8.45309675e-01 -6.40623197e-02 -5.02504408e-01 -6.63085878e-01 2.44642228e-01 -9.53276455e-02 -1.57545641e-01 -1.02038756e-01 -1.21250153e+00 6.69376552e-01 -6.29521906e-01 -5.71772642e-02 -3.37395608e-01 -1.48233280e-01 3.95685583e-01 6.01435661e-01 -9.91621375e-01 1.90240335e+00 -2.60702229e+00 2.90048480e-01 6.87288880e-01 3.87700558e-01 2.20373765e-01 4.42813933e-01 6.00781381e-01 -3.72139871e-01 -1.55981347e-01 -5.30916452e-01 4.45480905e-02 -3.93559098e-01 -5.50167263e-02 -3.08588505e-01 7.78133571e-01 -4.92187381e-01 3.30259025e-01 -5.08977413e-01 -4.50182974e-01 1.96235612e-01 5.76154649e-01 -4.16342914e-01 5.88210151e-02 7.66468525e-01 5.11098325e-01 -1.65376335e-01 2.86880761e-01 7.93028057e-01 8.13571438e-02 4.81077760e-01 -7.92637050e-01 4.11008857e-03 -4.37053218e-02 -1.35310876e+00 1.71211386e+00 2.46923149e-01 3.27390581e-01 2.75076795e-02 -1.15860486e+00 1.14618742e+00 8.06485355e-01 9.66958702e-01 -3.51111412e-01 1.72333792e-01 4.60833669e-01 3.10673594e-01 -6.04917347e-01 1.69191033e-01 -3.76311064e-01 2.72619784e-01 3.58999997e-01 -4.56205243e-03 -1.08665479e-02 4.22094822e-01 1.68807968e-01 9.51145828e-01 -4.62588929e-02 1.03171825e+00 -8.27659488e-01 7.56467044e-01 -3.36248159e-01 7.34478593e-01 4.85429406e-01 -3.78508955e-01 6.83660567e-01 4.61141288e-01 -4.23996955e-01 -8.49187911e-01 -9.29598868e-01 -4.81054366e-01 2.25867704e-01 2.36600135e-02 -7.92335272e-01 -8.45122576e-01 -7.12076724e-02 -1.45649955e-01 4.41593319e-01 -3.70244354e-01 -1.39180958e-01 -4.31675881e-01 -1.04657924e+00 7.18748808e-01 2.87856400e-01 5.57115972e-01 -5.80168724e-01 -1.16364384e+00 4.56581503e-01 -6.10255659e-01 -9.36197937e-01 -3.57678652e-01 -1.47918954e-01 -1.44989622e+00 -1.01141500e+00 -9.55858111e-01 -3.50350320e-01 3.45518112e-01 3.49288285e-02 9.07536626e-01 5.63336909e-02 -4.50534075e-01 3.49950671e-01 -6.34412706e-01 -2.47544110e-01 -4.75429386e-01 -2.31866226e-01 2.14925051e-01 2.66839385e-01 -7.06675882e-03 -1.03914487e+00 -8.11547995e-01 9.25301835e-02 -8.36563051e-01 -1.15300557e-02 5.35612404e-01 8.08680832e-01 8.23074102e-01 3.28498393e-01 6.90702379e-01 -8.02910268e-01 1.06890452e+00 -9.00669172e-02 -2.62079656e-01 -4.92444187e-02 -1.05497348e+00 -2.14810953e-01 5.52253842e-01 -1.16172142e-01 -7.02060878e-01 -2.57406011e-02 -2.05574632e-01 -4.18408364e-01 3.29564899e-01 6.25824690e-01 1.26257360e-01 -5.29590324e-02 7.10493028e-01 5.36228001e-01 2.25277573e-01 -4.47879672e-01 -7.83943236e-02 4.44620460e-01 7.61776686e-01 -5.12442052e-01 4.61967856e-01 3.86995733e-01 3.41278821e-01 -9.68256712e-01 -6.31522611e-02 -6.00621283e-01 -5.77615023e-01 -3.30214202e-01 7.31659293e-01 -5.87971985e-01 -7.28197455e-01 3.34955364e-01 -1.01384389e+00 3.93750995e-01 -3.75216454e-01 8.98552179e-01 -8.09438229e-01 9.78092015e-01 -5.87198019e-01 -9.35754538e-01 -9.95989978e-01 -8.73659492e-01 4.24956411e-01 -1.11380495e-01 -4.12491739e-01 -4.75165427e-01 3.66138190e-01 -3.05735003e-02 3.72377038e-01 7.39976585e-01 1.07639289e+00 -4.77981001e-01 4.23726216e-02 -3.12426388e-01 3.26435983e-01 4.74044204e-01 -3.66429836e-02 -1.73256293e-01 -6.18394852e-01 -5.03196776e-01 6.20189488e-01 3.29763383e-01 6.28468752e-01 6.28740728e-01 1.00856733e+00 -2.19627857e-01 -1.38953164e-01 8.05999517e-01 1.41991425e+00 3.54691535e-01 8.95843148e-01 4.04337049e-02 -9.64652449e-02 1.63304225e-01 5.49087584e-01 9.44110572e-01 -1.92286342e-01 4.84578490e-01 1.88447595e-01 -6.62227646e-02 -7.64606595e-02 9.24699232e-02 8.29816684e-02 1.44597566e+00 -6.75590277e-01 7.45790452e-02 -6.64129376e-01 3.68240267e-01 -1.85720932e+00 -1.17768610e+00 -3.38019818e-01 2.29409695e+00 5.63935935e-01 1.25600561e-01 1.87095627e-01 1.16205907e+00 5.63045681e-01 2.24135444e-01 -3.10871154e-01 -3.89346093e-01 -1.49227351e-01 4.32531059e-01 1.47912800e-01 3.71459603e-01 -8.09801757e-01 -1.65222719e-01 6.70214272e+00 7.04718232e-01 -9.65272725e-01 2.73578048e-01 3.85418385e-01 2.09845275e-01 9.37938169e-02 -1.72752634e-01 -2.52588749e-01 3.91226441e-01 9.59082544e-01 -6.07811809e-01 3.38084430e-01 4.99985218e-01 5.49008369e-01 -6.69105947e-02 -6.56347036e-01 1.44683409e+00 1.02857299e-01 -1.10725236e+00 -2.34395176e-01 -1.45516828e-01 1.90615937e-01 -5.09649158e-01 -1.88317373e-01 -2.13914469e-01 -1.02263236e+00 -6.89766586e-01 5.72846651e-01 7.19362438e-01 1.04285896e+00 -9.11348522e-01 8.40488315e-01 4.35060918e-01 -1.44453311e+00 -1.04457833e-01 -3.19516122e-01 1.01180650e-01 4.50003773e-01 1.19757974e+00 -5.78052044e-01 1.17551219e+00 4.11211520e-01 6.05583191e-01 -1.92921489e-01 1.10921741e+00 -1.20212048e-01 8.69633198e-01 -2.78363585e-01 4.58014190e-01 -3.49158257e-01 -4.27949458e-01 9.13853884e-01 1.18291748e+00 7.14732170e-01 6.12102330e-01 -9.30299461e-02 5.63952625e-01 3.36573839e-01 5.75596869e-01 -4.44164544e-01 6.40627891e-02 3.87262821e-01 1.01967132e+00 -5.32246053e-01 -4.59666371e-01 -1.69842303e-01 6.31413460e-01 -5.50326049e-01 1.75136179e-01 -6.57074213e-01 -6.29058838e-01 1.32488459e-01 3.48562777e-01 -8.68835002e-02 -2.19013274e-01 -4.45147842e-01 -1.04124415e+00 9.77371559e-02 -1.15245783e+00 6.35088325e-01 -6.14538908e-01 -8.33711982e-01 8.05783033e-01 2.35846564e-01 -1.60720980e+00 -4.49691772e-01 -1.37795702e-01 -4.45218742e-01 9.82712746e-01 -1.07471812e+00 -5.98519862e-01 -1.98976308e-01 7.16160417e-01 2.48013213e-01 -1.87154591e-01 1.05874729e+00 6.11739397e-01 -1.43168688e-01 5.73909581e-01 9.75231901e-02 -2.38698646e-01 4.39797789e-01 -7.15939879e-01 -2.58281499e-01 1.16634130e+00 -1.97706595e-01 6.70401096e-01 9.45831478e-01 -5.83103061e-01 -1.11828685e+00 -5.06134450e-01 9.19544041e-01 4.76733536e-01 2.92006675e-02 2.65639365e-01 -8.94317091e-01 2.18850300e-01 2.62535512e-01 -6.56960383e-02 8.40553761e-01 -2.83292443e-01 2.07485780e-02 -5.45027971e-01 -1.35196280e+00 -4.65175621e-02 5.34746349e-01 -3.88546526e-01 -9.70757782e-01 6.64559230e-02 1.80810764e-01 -4.41327423e-01 -1.32988715e+00 8.54983151e-01 8.04939508e-01 -1.22504508e+00 1.02142572e+00 -2.20208719e-01 2.55484253e-01 -4.72025931e-01 -2.41740167e-01 -9.41359878e-01 -6.04598165e-01 -1.10009027e+00 -3.13511431e-01 1.04444242e+00 6.88973367e-02 -5.91281772e-01 3.39839399e-01 1.67222135e-02 -5.29761836e-02 -7.21403837e-01 -1.19996202e+00 -7.04857111e-01 -5.02493799e-01 -2.55716622e-01 2.72583365e-01 8.80716622e-01 5.19283891e-01 2.68293798e-01 -7.15738952e-01 -8.85262489e-02 8.68368030e-01 1.61413744e-01 2.62544394e-01 -1.29336703e+00 -6.07651949e-01 -1.81673303e-01 -5.20203888e-01 -4.39117432e-01 -5.25207937e-01 -8.11206877e-01 -3.91613424e-01 -1.20293486e+00 2.50185728e-01 -3.53668667e-02 -6.63256347e-01 1.69191379e-02 -1.54803082e-01 4.09721792e-01 3.54744554e-01 4.12051558e-01 5.64913452e-02 2.63598353e-01 1.02304375e+00 1.85935453e-01 -2.85122454e-01 2.24975482e-01 -5.36620200e-01 5.04320979e-01 6.98262751e-01 -4.06632602e-01 -7.16280937e-01 2.11474404e-01 -7.03953626e-03 6.55059099e-01 9.22732463e-04 -1.41850221e+00 -1.08498007e-01 4.88639176e-01 2.33166263e-01 -8.48733664e-01 2.30361342e-01 -8.23958158e-01 7.44496942e-01 1.04439032e+00 -2.34384164e-01 5.13682544e-01 5.49784228e-02 4.71200377e-01 -3.75838459e-01 -2.97247708e-01 1.07619846e+00 1.14887841e-01 -3.37594636e-02 3.86872031e-02 -4.50459450e-01 -5.65157682e-02 9.57069159e-01 -1.92381084e-01 8.04460049e-02 -2.96169311e-01 -9.66627479e-01 -4.49847728e-01 -4.79862234e-03 -2.90124893e-01 8.72112393e-01 -1.36868703e+00 -1.02394056e+00 4.53321040e-01 -9.14934874e-02 -5.22034824e-01 6.43834591e-01 1.45233572e+00 -7.92183757e-01 3.59632045e-01 -4.69977349e-01 -6.82138920e-01 -1.42268145e+00 5.02422035e-01 2.06138089e-01 -5.60100138e-01 -1.06179070e+00 2.51903415e-01 -1.82977021e-01 4.61326391e-01 -6.63031638e-02 -3.25371623e-01 -3.85175973e-01 3.72747816e-02 7.12087691e-01 7.94593751e-01 3.64709198e-01 -5.83515167e-01 -4.37478185e-01 7.45842218e-01 4.67754722e-01 -2.88569272e-01 1.09867847e+00 -2.49909833e-01 -3.15568298e-01 3.04776818e-01 9.19590652e-01 2.27794439e-01 -4.59806919e-01 6.81833923e-02 -2.69634008e-01 -4.91995424e-01 1.78821519e-01 -7.04657555e-01 -9.75885570e-01 8.62702966e-01 1.02460420e+00 3.52939457e-01 1.73064327e+00 -9.18694437e-01 7.21158147e-01 -2.78551001e-02 3.88406992e-01 -8.03581119e-01 -2.90521473e-01 -5.22877313e-02 8.84674907e-01 -2.24165127e-01 5.68610251e-01 -4.23113793e-01 -4.92401212e-01 1.43580067e+00 -2.81365514e-01 -1.72086194e-01 9.09259677e-01 2.47635186e-01 -1.26205966e-01 1.34392187e-01 -3.34905326e-01 2.37168893e-01 2.72776514e-01 5.52329004e-01 5.52549362e-01 4.74184602e-02 -1.52812219e+00 9.60899472e-01 -1.18034460e-01 4.43299949e-01 4.55997229e-01 5.45937657e-01 -3.91784102e-01 -1.08327878e+00 -6.62294030e-01 4.73475218e-01 -8.08702528e-01 1.13578692e-01 1.30307540e-01 6.69261336e-01 6.88522682e-02 9.14686322e-01 -5.56299686e-01 -3.02773893e-01 3.21268171e-01 2.11189657e-01 4.79768842e-01 1.02803456e-02 -6.11066759e-01 5.58923781e-01 6.73116371e-02 -5.40869594e-01 -7.02557564e-01 -7.98503816e-01 -1.21080530e+00 -2.22347632e-01 -9.31924284e-02 4.93989766e-01 5.66298723e-01 7.21717894e-01 3.50812376e-01 8.32550883e-01 6.41780734e-01 -4.99208868e-01 -6.55224502e-01 -9.30581570e-01 -1.04802465e+00 3.99111569e-01 3.33273947e-01 -4.35274541e-01 -2.80506223e-01 3.04585636e-01]
[14.20455265045166, 3.225172996520996]
6f73aacf-dab5-40fa-a0fb-f5adca378f1f
distilling-knowledge-from-deep-networks-with
1512.03542
null
http://arxiv.org/abs/1512.03542v1
http://arxiv.org/pdf/1512.03542v1.pdf
Distilling Knowledge from Deep Networks with Applications to Healthcare Domain
Exponential growth in Electronic Healthcare Records (EHR) has resulted in new opportunities and urgent needs for discovery of meaningful data-driven representations and patterns of diseases in Computational Phenotyping research. Deep Learning models have shown superior performance for robust prediction in computational phenotyping tasks, but suffer from the issue of model interpretability which is crucial for clinicians involved in decision-making. In this paper, we introduce a novel knowledge-distillation approach called Interpretable Mimic Learning, to learn interpretable phenotype features for making robust prediction while mimicking the performance of deep learning models. Our framework uses Gradient Boosting Trees to learn interpretable features from deep learning models such as Stacked Denoising Autoencoder and Long Short-Term Memory. Exhaustive experiments on a real-world clinical time-series dataset show that our method obtains similar or better performance than the deep learning models, and it provides interpretable phenotypes for clinical decision making.
['Sanjay Purushotham', 'Zhengping Che', 'Yan Liu', 'Robinder Khemani']
2015-12-11
null
null
null
null
['computational-phenotyping']
['medical']
[ 2.50635684e-01 2.48222932e-01 2.80568246e-02 -8.50016832e-01 -5.64240873e-01 6.47310093e-02 -1.76905259e-01 3.37411761e-01 1.70869097e-01 7.90564358e-01 3.90127718e-01 -4.12123233e-01 -6.05899513e-01 -5.47103822e-01 -6.02014244e-01 -7.19419003e-01 -3.43827069e-01 8.67212057e-01 -7.71796882e-01 1.62184075e-01 -2.96557397e-01 2.80607313e-01 -1.18888032e+00 9.80969846e-01 9.34464455e-01 1.13997746e+00 2.27436516e-02 6.97026789e-01 7.05453306e-02 1.29224539e+00 -4.51604307e-01 -4.55391139e-01 -5.20787165e-02 -4.08539504e-01 -6.98031545e-01 -1.76715717e-01 -2.49354810e-01 -3.13963324e-01 -2.06519186e-01 7.08173037e-01 7.36784697e-01 -5.71554184e-01 5.79078853e-01 -1.03429770e+00 -1.02001178e+00 5.12149036e-01 -2.26442702e-03 1.24241427e-01 2.10069567e-01 2.00701922e-01 7.57418692e-01 -4.07080382e-01 4.11897629e-01 1.30986750e+00 1.22244489e+00 6.43240392e-01 -1.29800582e+00 -3.24999899e-01 -8.15096274e-02 4.10288304e-01 -1.02756536e+00 -1.79403022e-01 3.87665123e-01 -7.23210573e-01 9.69629288e-01 4.65047479e-01 6.08769655e-01 1.43086791e+00 7.59409785e-01 6.33660853e-01 8.84820342e-01 -6.43689781e-02 2.95203269e-01 -2.82044470e-01 4.69948441e-01 8.29589844e-01 3.47144872e-01 1.75010398e-01 -3.01654816e-01 -8.43383789e-01 5.91748357e-01 8.11769128e-01 -2.06878275e-01 1.55271992e-01 -1.21090293e+00 7.32502341e-01 3.67823839e-01 7.77721703e-02 -9.57431376e-01 6.63094893e-02 4.53290254e-01 4.57029372e-01 6.37624323e-01 5.34914076e-01 -9.44736660e-01 8.88298303e-02 -4.37862128e-01 1.56146407e-01 5.88789105e-01 4.07046348e-01 2.94932395e-01 3.39009166e-02 -3.66082400e-01 6.62048280e-01 1.86189920e-01 4.75536793e-01 8.74505043e-01 -7.18230665e-01 1.83720794e-02 1.04424942e+00 -5.09048700e-02 -9.59235013e-01 -7.80417085e-01 -5.00406086e-01 -1.36226165e+00 -2.63660073e-01 1.28738031e-01 -2.44631678e-01 -1.00854445e+00 1.46707749e+00 3.27170253e-01 4.36693281e-01 2.84666359e-01 6.78502917e-01 8.46972406e-01 4.33192939e-01 4.55518067e-01 4.40090932e-02 1.47671556e+00 -4.08697218e-01 -8.91330481e-01 2.22841740e-01 8.35024118e-01 -2.32829988e-01 7.01175272e-01 5.91282785e-01 -7.47122645e-01 -4.06409025e-01 -7.89511204e-01 -1.38094306e-01 -2.47999430e-01 2.30354309e-01 9.70244229e-01 4.06382799e-01 -6.80505335e-01 9.58558381e-01 -1.09563696e+00 -1.24317169e-01 8.13201725e-01 4.57499623e-01 -3.60306591e-01 -2.36844756e-02 -1.01010180e+00 5.09330392e-01 3.39686126e-01 2.23580629e-01 -7.45492518e-01 -1.10305583e+00 -6.67176664e-01 1.75590962e-01 -2.07434505e-01 -1.49272013e+00 1.11520314e+00 -1.07305670e+00 -1.27701116e+00 7.84384787e-01 -2.93105721e-01 -8.07694137e-01 3.28956306e-01 -2.84696579e-01 -6.01436079e-01 -6.01824000e-02 -1.63832188e-01 2.81308144e-01 7.38234341e-01 -6.23929501e-01 -3.53906810e-01 -9.48376298e-01 -5.81651449e-01 -3.77556562e-01 -2.72035986e-01 3.45790386e-02 2.63266832e-01 -7.75818825e-01 -3.77366804e-02 -7.98906028e-01 -4.86995578e-01 -1.14752613e-01 -6.65779591e-01 -2.97966212e-01 6.43355370e-01 -1.17431080e+00 1.14110732e+00 -1.94154406e+00 1.67012289e-02 -5.84713928e-02 7.83246934e-01 3.03081781e-01 -1.06408253e-01 1.75281063e-01 -4.60751832e-01 4.49526012e-02 -1.78738326e-01 -1.05727233e-01 -3.59236985e-01 4.42788333e-01 -2.73649216e-01 2.41409555e-01 6.59037411e-01 1.19433367e+00 -7.78603077e-01 -7.29231685e-02 1.42875314e-01 6.77572906e-01 -5.09144723e-01 6.06896996e-01 -2.77936459e-01 7.65725076e-01 -9.19461071e-01 7.52580464e-01 4.95875955e-01 -1.04514825e+00 5.01209617e-01 4.68301810e-02 6.64317548e-01 1.71079874e-01 -5.04435420e-01 1.30574048e+00 -3.65632802e-01 2.40116701e-01 -3.47220510e-01 -1.30107999e+00 8.74917328e-01 5.23410141e-01 5.86253226e-01 -4.71649200e-01 1.28539383e-01 -3.79487127e-03 2.83247918e-01 -1.02172565e+00 -5.32593131e-01 -2.33537987e-01 1.81461498e-01 1.96423039e-01 -2.87557513e-01 7.20669568e-01 -5.58447540e-01 -3.28783751e-01 1.56494415e+00 -6.58607408e-02 5.38606167e-01 -2.52254069e-01 4.20031250e-01 4.57501337e-02 1.07758904e+00 5.81518948e-01 -1.36246085e-01 5.77362418e-01 4.04863209e-01 -1.55637193e+00 -9.03027058e-01 -9.19736922e-01 -4.55722541e-01 8.59182417e-01 -5.26902020e-01 -1.34045005e-01 -6.28302097e-01 -7.00559378e-01 5.22940278e-01 3.89251202e-01 -9.60430145e-01 -2.70845711e-01 -4.51877028e-01 -1.31656957e+00 6.78271651e-01 6.57912552e-01 4.69739065e-02 -1.25309706e+00 -6.09713256e-01 4.59516227e-01 -1.10733606e-01 -7.85315037e-01 1.57539815e-01 2.73813635e-01 -1.24168229e+00 -1.41451502e+00 -4.65749204e-01 -5.57175100e-01 7.13896692e-01 -4.92715418e-01 1.36089003e+00 1.59247279e-01 -8.96940410e-01 -1.87198356e-01 -2.02351153e-01 -9.10508990e-01 -6.20400012e-01 -2.65958548e-01 2.04948470e-01 2.78975874e-01 9.09874082e-01 -5.07042885e-01 -7.95354724e-01 -6.39786422e-02 -7.30046809e-01 1.98651269e-01 7.28608370e-01 1.36146522e+00 8.20098341e-01 -1.46991387e-01 1.15002739e+00 -1.22912431e+00 7.28204310e-01 -9.50242102e-01 -1.96194381e-01 3.60679597e-01 -8.93409431e-01 4.39627707e-01 1.13726091e+00 -1.01568475e-01 -1.01282382e+00 -3.95417251e-02 -4.29756373e-01 -3.38138133e-01 -5.20214736e-01 5.86655915e-01 -2.72764601e-02 3.19005221e-01 6.42578483e-01 2.99408019e-01 1.66206792e-01 -1.00066507e+00 -1.76967114e-01 1.03370452e+00 2.23870546e-01 -2.31863305e-01 3.95793207e-02 5.19052744e-01 5.31860329e-02 -4.23996568e-01 -9.05178249e-01 -1.78071558e-01 -3.19009751e-01 4.00659114e-01 9.55633581e-01 -1.06333518e+00 -1.00072765e+00 4.43661153e-01 -1.06622064e+00 2.06803493e-02 -2.17503548e-01 3.94991159e-01 -6.32252216e-01 2.43196070e-01 -9.37567592e-01 -4.12478745e-01 -9.33692813e-01 -1.14166427e+00 1.24976826e+00 -8.59863535e-02 -6.35604501e-01 -1.24031734e+00 3.26930732e-01 5.47012389e-01 2.40663707e-01 6.73256636e-01 1.59099972e+00 -1.01976728e+00 -3.22103441e-01 -3.29687953e-01 -2.55213320e-01 3.51439387e-01 2.76487947e-01 -3.25185448e-01 -1.19867492e+00 -1.22256547e-01 1.22837134e-01 -2.81078964e-01 7.58996367e-01 6.92918241e-01 2.08151913e+00 -5.53608418e-01 -4.84707206e-01 1.11788702e+00 1.19477630e+00 4.07194525e-01 5.78874290e-01 -1.95567474e-01 6.53149068e-01 5.13154507e-01 7.30272755e-02 6.76600099e-01 4.79051679e-01 1.80393219e-01 5.59644103e-02 -4.47607636e-01 6.33658096e-02 -2.53500372e-01 -1.63882658e-01 8.85065317e-01 -1.40815198e-01 -9.06423777e-02 -1.04180002e+00 2.64941514e-01 -2.16916442e+00 -6.66525841e-01 -2.27738708e-01 1.82275224e+00 7.77290404e-01 -4.72523689e-01 -6.26254901e-02 4.17658165e-02 4.83149320e-01 -5.17337263e-01 -1.03098691e+00 -5.67010641e-01 -1.69955179e-01 3.34230334e-01 -5.79066463e-02 -1.95673108e-02 -9.07533109e-01 1.96001738e-01 6.97891378e+00 4.61778343e-01 -1.09154367e+00 1.88542500e-01 1.50143993e+00 7.37187490e-02 -1.84384823e-01 -5.70794344e-01 -2.26865038e-01 7.18547642e-01 1.30105603e+00 4.44254726e-02 1.14998922e-01 9.48013306e-01 5.48232257e-01 4.98320520e-01 -1.56097901e+00 1.25462091e+00 -4.01897907e-01 -1.64835501e+00 2.71242797e-01 1.39940932e-01 5.26749253e-01 1.29623115e-01 1.25312895e-01 4.46912944e-02 5.30449927e-01 -1.45674229e+00 -2.02935115e-01 9.38882947e-01 6.26138687e-01 -5.42460501e-01 1.05440104e+00 2.86382765e-01 -4.89957750e-01 -4.23894823e-01 -4.55870390e-01 -4.42793608e-01 -3.21275681e-01 1.07414711e+00 -1.21691608e+00 5.37909091e-01 7.70873368e-01 9.99064863e-01 -2.35955864e-01 7.33842790e-01 1.75329804e-01 8.43659580e-01 1.29386619e-01 6.33457527e-02 -1.90342531e-01 -9.08274949e-02 1.45244807e-01 1.09269774e+00 2.08105668e-01 1.46085009e-01 3.72696891e-02 9.56781983e-01 -1.28856048e-01 1.12793140e-01 -6.31361902e-01 -2.79693127e-01 3.26606221e-02 1.00125468e+00 -1.54713854e-01 -5.55246711e-01 -2.16715083e-01 8.70730698e-01 4.93858963e-01 2.53398776e-01 -6.55311763e-01 -6.33636937e-02 9.90049243e-01 1.04625359e-01 1.00381605e-01 4.92495447e-01 -6.51675105e-01 -1.24751163e+00 -5.96342348e-02 -1.20952189e+00 8.14055383e-01 -4.65643167e-01 -1.88468385e+00 6.87894762e-01 -6.36837602e-01 -8.91014338e-01 -3.61197501e-01 -8.03927481e-01 -5.37223577e-01 9.42701697e-01 -1.50744200e+00 -9.08372521e-01 -1.82587132e-01 5.00604212e-01 2.82680064e-01 -3.79883826e-01 1.39018774e+00 1.81766197e-01 -8.81596923e-01 5.28418183e-01 5.94145536e-01 1.57637358e-01 4.04819518e-01 -1.21506357e+00 4.33984846e-01 2.46013492e-01 -2.15555727e-01 7.48913646e-01 4.15311247e-01 -7.08200872e-01 -1.60390878e+00 -1.57732129e+00 1.04115069e+00 -6.70269430e-01 2.84008294e-01 7.41922669e-03 -1.00044119e+00 8.31628561e-01 -7.85259455e-02 7.39267468e-02 1.52232134e+00 3.75552654e-01 -2.79735744e-01 -3.24452490e-01 -1.40373397e+00 2.00236782e-01 8.59204412e-01 -2.98912048e-01 -5.99653721e-01 6.50194466e-01 5.03488660e-01 8.67676958e-02 -1.31406200e+00 7.19931304e-01 6.85941219e-01 -8.58242869e-01 1.03718460e+00 -1.48182452e+00 6.14387035e-01 -6.70857681e-03 2.43267715e-01 -1.33165944e+00 -7.44279742e-01 -5.01823068e-01 -4.86760139e-01 3.48784685e-01 3.78846377e-01 -8.83261204e-01 8.68442655e-01 7.79326022e-01 3.86713929e-02 -1.28966975e+00 -7.46496260e-01 -3.38282228e-01 -4.51415293e-02 -2.37753645e-01 1.06026304e+00 1.13706076e+00 2.71178409e-02 3.09613109e-01 -4.83410299e-01 2.72698760e-01 6.03128076e-01 3.50254685e-01 4.27152187e-01 -1.50084889e+00 -6.86919928e-01 -8.44047517e-02 -7.72076249e-01 -5.32497644e-01 4.13040854e-02 -9.31250572e-01 -4.84579831e-01 -1.36705470e+00 6.33272052e-01 -4.55243796e-01 -7.17739284e-01 7.32664287e-01 -6.72183514e-01 -6.17050529e-02 -3.27275187e-01 7.12924525e-02 -4.48167503e-01 3.60918909e-01 1.05362487e+00 -2.83544093e-01 -9.36957821e-02 1.66696161e-01 -9.24967349e-01 9.00252879e-01 8.55390429e-01 -5.16502738e-01 -2.95387030e-01 -6.65692866e-01 1.25871196e-01 3.68490756e-01 4.33547288e-01 -7.21808434e-01 -2.60431677e-01 2.22028838e-03 9.94797587e-01 -2.50409096e-01 7.96761438e-02 -5.81890523e-01 5.31883836e-01 9.86548245e-01 -4.01662916e-01 2.24777356e-01 3.08853621e-03 7.87311077e-01 -1.96530864e-01 3.07313412e-01 4.06459272e-01 -8.12742710e-02 -4.06227082e-01 4.12602246e-01 -4.65785950e-01 -1.35281488e-01 8.76224637e-01 -3.46773565e-02 -4.94787879e-02 -1.53088495e-01 -1.14419365e+00 2.16443658e-01 -5.67175597e-02 3.47741574e-01 8.19192410e-01 -1.16106188e+00 -1.07797658e+00 4.41060066e-01 1.96627736e-01 -1.80739418e-01 5.05330682e-01 6.76475763e-01 -7.39803910e-01 6.21639073e-01 -1.46259993e-01 -6.64365351e-01 -1.17482543e+00 7.08740592e-01 5.36551476e-01 -6.04905784e-01 -8.23591709e-01 7.88806498e-01 5.10033786e-01 -5.55598319e-01 9.02114138e-02 -7.52814531e-01 4.60319109e-02 -5.52477598e-01 8.99208784e-01 3.36821437e-01 3.11245620e-01 -5.85911497e-02 -3.99442077e-01 1.34402499e-01 -2.10182533e-01 1.05484378e+00 1.66534555e+00 3.34361553e-01 -1.24262273e-01 2.34476596e-01 1.13393307e+00 -7.66147375e-01 -8.76437843e-01 -6.14251709e-03 2.45614424e-01 -1.22118115e-01 1.96733885e-03 -1.24723482e+00 -9.31474566e-01 9.77042019e-01 8.79908741e-01 1.73596799e-01 1.31410515e+00 -2.17261031e-01 1.06550837e+00 7.95046747e-01 9.93133634e-02 -5.45655906e-01 -3.74822617e-01 4.08037864e-02 6.16341650e-01 -1.47014225e+00 -2.62330413e-01 -2.38338485e-01 -5.21920323e-01 1.17996466e+00 1.97437599e-01 -5.87664619e-02 7.96390533e-01 2.50871330e-01 3.91422719e-01 -3.09558392e-01 -1.14035189e+00 3.20880860e-01 1.71727449e-01 7.85700619e-01 6.20197177e-01 6.26936495e-01 -4.71735708e-02 1.21061540e+00 -7.05059431e-03 6.03377044e-01 -6.58088252e-02 5.13925314e-01 -7.14784637e-02 -1.10492074e+00 -2.98455387e-01 1.02813208e+00 -9.09778118e-01 -2.20644355e-01 -3.19504380e-01 1.67722732e-01 2.78917670e-01 7.84454346e-01 6.52173832e-02 -3.94079626e-01 7.69553781e-02 4.44008797e-01 2.47348502e-01 -4.26694900e-01 -6.81962311e-01 -2.75857091e-01 6.77141920e-02 -7.36681044e-01 -3.50788683e-02 -3.84739757e-01 -1.21270967e+00 -2.98602819e-01 2.42648393e-01 2.53001936e-02 2.51422107e-01 1.00335085e+00 1.43701899e+00 7.49670088e-01 5.17913640e-01 -1.64616540e-01 -8.72685671e-01 -8.74284267e-01 -6.15280747e-01 8.65158319e-01 5.83261907e-01 -2.85776645e-01 2.29539335e-01 4.28145945e-01]
[7.930600166320801, 6.307981014251709]
b895801f-15c1-4745-bffa-953c40c5b50a
turing-at-semeval-2017-task-8-sequential
1704.07221
null
http://arxiv.org/abs/1704.07221v1
http://arxiv.org/pdf/1704.07221v1.pdf
Turing at SemEval-2017 Task 8: Sequential Approach to Rumour Stance Classification with Branch-LSTM
This paper describes team Turing's submission to SemEval 2017 RumourEval: Determining rumour veracity and support for rumours (SemEval 2017 Task 8, Subtask A). Subtask A addresses the challenge of rumour stance classification, which involves identifying the attitude of Twitter users towards the truthfulness of the rumour they are discussing. Stance classification is considered to be an important step towards rumour verification, therefore performing well in this task is expected to be useful in debunking false rumours. In this work we classify a set of Twitter posts discussing rumours into either supporting, denying, questioning or commenting on the underlying rumours. We propose a LSTM-based sequential model that, through modelling the conversational structure of tweets, which achieves an accuracy of 0.784 on the RumourEval test set outperforming all other systems in Subtask A.
['Maria Liakata', 'Isabelle Augenstein', 'Elena Kochkina']
2017-04-24
turing-at-semeval-2017-task-8-sequential-1
https://aclanthology.org/S17-2083
https://aclanthology.org/S17-2083.pdf
semeval-2017-8
['rumour-detection']
['natural-language-processing']
[-2.47471675e-01 3.41291487e-01 -1.22026302e-01 -3.50927591e-01 -3.01248610e-01 -1.44236535e-01 1.27315795e+00 4.59551424e-01 -1.05106227e-01 8.47607374e-01 7.94469535e-01 -5.80049455e-01 4.15707737e-01 -6.25832856e-01 -4.66328084e-01 -3.80655676e-01 -7.35717043e-02 6.36252940e-01 7.35821277e-02 -8.18760276e-01 8.07253778e-01 -1.89212888e-01 -1.35874462e+00 1.06595051e+00 3.20966482e-01 1.03283989e+00 -4.70476210e-01 6.28098965e-01 -1.97796077e-01 2.17879653e+00 -9.60467935e-01 -4.52521771e-01 -4.28372443e-01 -6.12074673e-01 -1.70134056e+00 6.66251257e-02 5.06064117e-01 -3.64441574e-01 -1.33147493e-01 9.90776896e-01 2.02872843e-01 -8.00007731e-02 4.81643140e-01 -1.12247682e+00 -4.32158798e-01 1.22568679e+00 -3.01576048e-01 6.84138834e-01 6.16253257e-01 -1.12065442e-01 1.01025867e+00 -9.81956899e-01 4.30899501e-01 1.21143317e+00 9.97214139e-01 4.45714325e-01 -1.06463265e+00 -6.86397493e-01 -2.46408150e-01 6.31815016e-01 -6.53816819e-01 -6.40748799e-01 6.69439852e-01 -9.41598892e-01 6.33226871e-01 4.47344452e-01 4.29162085e-01 1.69159150e+00 4.27450210e-01 8.35185528e-01 1.86816633e+00 1.67637676e-01 1.45489156e-01 6.48117542e-01 7.11652994e-01 5.32074690e-01 -1.53561793e-02 -2.63766587e-01 -9.50422525e-01 -6.27843380e-01 6.33582324e-02 -3.89047354e-01 -4.36800182e-01 5.19302011e-01 -1.17509532e+00 1.23177814e+00 7.18158185e-01 1.93641543e-01 -9.22347844e-01 -3.79120439e-01 9.28651631e-01 1.11649561e+00 1.24484003e+00 6.19022131e-01 5.14655635e-02 -3.53363082e-02 -1.23820496e+00 6.13363624e-01 1.39399469e+00 2.53627419e-01 3.53876621e-01 2.37580448e-01 -1.24059372e-01 1.08666253e+00 -5.88949062e-02 5.02951853e-02 7.95558333e-01 -5.39164841e-01 3.18708032e-01 4.88915235e-01 5.44817209e-01 -1.13528526e+00 -8.70923102e-01 -4.82503951e-01 -8.87843132e-01 -3.21131982e-02 1.74682006e-01 -1.54208109e-01 -3.17531228e-01 1.17285776e+00 1.54124901e-01 -8.50380436e-02 6.97996691e-02 9.60733891e-01 1.35863543e+00 6.06405199e-01 -3.47948253e-01 -4.92154807e-01 1.48288691e+00 -8.38358164e-01 -8.02455425e-01 -2.53537625e-01 3.76613498e-01 -9.97136950e-01 5.91380239e-01 5.62901914e-01 -1.24528861e+00 -8.43357146e-02 -1.06295967e+00 1.73704535e-01 -8.22274834e-02 -5.83126128e-01 1.44621536e-01 2.45363325e-01 -9.11591589e-01 6.88880503e-01 -1.87643766e-01 -3.79977524e-02 4.03436720e-01 -1.66735068e-01 1.49988785e-01 1.41889557e-01 -1.80303299e+00 1.37694395e+00 2.44177178e-01 6.59914538e-02 -1.22551370e+00 -2.94518352e-01 -6.04210079e-01 -3.01058710e-01 1.40819669e-01 -3.79828215e-01 1.75881648e+00 -1.06193793e+00 -1.29445922e+00 1.33656454e+00 -1.20625816e-01 -1.26108205e+00 1.03827834e+00 -1.07948497e-01 -4.62317646e-01 -3.48973215e-01 2.06085086e-01 -2.19791695e-01 1.33058763e+00 -1.09071231e+00 -5.42771399e-01 -2.61080801e-01 -1.42495230e-01 -4.79226373e-02 4.37855348e-02 5.31328440e-01 9.80399489e-01 -9.61713195e-02 1.84815809e-01 -7.29722738e-01 3.70818526e-01 -1.16142976e+00 -8.27653766e-01 -5.11098862e-01 6.66638911e-01 -9.48740005e-01 1.08362806e+00 -1.42759395e+00 -2.53776163e-01 -1.82587653e-01 5.83672941e-01 3.11324865e-01 5.51775873e-01 6.49418354e-01 1.78098995e-02 -5.10842428e-02 1.69101283e-01 -4.58781660e-01 -9.57747921e-02 -1.50302216e-01 -1.02180910e+00 8.58989894e-01 -2.09231302e-01 6.68168604e-01 -9.69142318e-01 -8.82718489e-02 -3.37558955e-01 6.39300793e-02 -9.54406220e-04 4.96333390e-01 -2.61772513e-01 4.37896401e-01 9.23026726e-03 2.97886103e-01 5.76514542e-01 -4.06797767e-01 7.28873014e-02 2.82876134e-01 -4.15100455e-01 1.44270372e+00 -2.44434729e-01 2.72469968e-01 -3.54180932e-01 1.14357173e+00 3.10813040e-01 -6.07386172e-01 1.23003161e+00 7.25213170e-01 -1.10713176e-01 -4.57054794e-01 5.45718491e-01 4.53015029e-01 -6.50104359e-02 -5.60594320e-01 1.07343411e+00 -8.43917906e-01 -1.81969985e-01 1.12162352e+00 -4.81725216e-01 -1.37022868e-01 -3.77689809e-01 3.04187000e-01 7.82762766e-01 -5.63733160e-01 6.41027212e-01 -4.80796069e-01 6.80006623e-01 1.35284767e-01 9.56430882e-02 8.12646210e-01 -3.62841338e-01 3.27900082e-01 9.28215683e-01 -7.79029489e-01 -9.73317325e-01 -3.21069807e-01 -1.26895726e-01 1.29092598e+00 -2.74199009e-01 1.11417994e-01 -5.47179520e-01 -6.19387269e-01 1.62437372e-02 1.26614285e+00 -1.06683910e+00 1.53748319e-01 -5.35738826e-01 -8.59461606e-01 7.25526392e-01 -1.20201319e-01 5.56851029e-01 -1.28454602e+00 -3.62719506e-01 3.81141007e-01 -8.81874502e-01 -1.05495381e+00 -1.68562412e-01 1.33011927e-04 -5.36382794e-01 -1.18038082e+00 -3.67889404e-01 -5.39382577e-01 -2.49053184e-02 5.67748368e-01 1.35485601e+00 4.20734704e-01 6.09212816e-01 -3.59158546e-01 -3.92106742e-01 -5.54200411e-01 -1.23945522e+00 -6.57080039e-02 1.58841178e-01 1.12226032e-01 3.53994399e-01 -4.84055758e-01 -2.15063035e-01 5.63666999e-01 -4.86471683e-01 7.44005218e-02 -1.51869193e-01 9.28874850e-01 -4.36635017e-01 -4.58602548e-01 1.07741451e+00 -1.35504067e+00 1.35925519e+00 -1.28281415e+00 4.75326143e-02 -5.74770272e-01 -6.90736115e-01 -5.46633601e-01 6.45697474e-01 -8.40734988e-02 -8.54354680e-01 -1.24690342e+00 -3.39134127e-01 1.87584177e-01 3.98174077e-02 6.22409165e-01 8.34040344e-01 2.23213524e-01 1.09467602e+00 4.60550398e-01 2.20524386e-01 -4.21157658e-01 -1.34603322e-01 1.37477720e+00 3.63411605e-01 -2.76005603e-02 2.35646948e-01 5.75789094e-01 -4.06420887e-01 -9.36853230e-01 -1.88656688e+00 -7.15003610e-01 -1.73669159e-01 -3.31714660e-01 2.58357257e-01 -8.81872535e-01 -1.04022813e+00 7.11671054e-01 -1.47057843e+00 -2.21734658e-01 3.93283159e-01 -1.18510984e-01 -5.11519909e-01 2.87959039e-01 -1.22341847e+00 -9.97134984e-01 -8.40368807e-01 -6.33571565e-01 7.92277381e-02 -4.84020919e-01 -9.38760817e-01 -1.06966078e+00 3.40961576e-01 9.86793160e-01 7.11928189e-01 3.04479539e-01 5.86008072e-01 -1.39971459e+00 2.29608864e-01 -2.53230751e-01 -2.69889832e-01 4.50500816e-01 -2.04554483e-01 -5.66613376e-01 -1.13424754e+00 -3.63951981e-01 7.42130578e-01 -1.01315796e+00 1.18186283e+00 -8.85384083e-02 5.28743267e-01 -1.22346222e+00 3.72008532e-01 -1.16043791e-01 6.82965338e-01 -7.75990009e-01 4.98186678e-01 9.12665188e-01 3.57492357e-01 9.88128066e-01 4.81218636e-01 6.68664157e-01 8.01892519e-01 4.05345738e-01 9.52513158e-01 4.38770324e-01 1.84114166e-02 -2.04585686e-01 9.30935264e-01 9.26999331e-01 6.27645105e-02 -9.19701345e-03 -8.48201156e-01 7.53986478e-01 -1.72200549e+00 -1.25290668e+00 -1.15907240e+00 1.94072843e+00 1.02481484e+00 3.93838614e-01 5.62582195e-01 2.00133458e-01 8.04051399e-01 8.34596932e-01 -6.19802848e-02 -1.08177722e+00 -1.25572652e-01 -5.72102487e-01 5.96215837e-02 8.82892430e-01 -9.19814467e-01 7.12964773e-01 5.50228643e+00 -2.06352565e-02 -1.21514082e+00 6.09034479e-01 4.13211793e-01 -1.61211103e-01 -1.38967738e-01 -3.34865928e-01 -6.35414422e-01 6.57226384e-01 1.37351227e+00 -1.17548294e-01 3.58392119e-01 6.63277686e-01 5.96643984e-01 -4.64984067e-02 -1.04807305e+00 3.81911159e-01 5.80714703e-01 -1.40874362e+00 -1.74068715e-02 -9.61281285e-02 9.29515660e-01 6.94642127e-01 5.45198610e-03 5.65646291e-01 4.39609438e-01 -1.15452218e+00 1.14015484e+00 1.99575961e-01 -1.14867901e-02 -5.66898823e-01 1.31631625e+00 1.09492230e+00 2.41037846e-01 -3.39090861e-02 -3.93025309e-01 -7.16398001e-01 2.87087917e-01 7.09621489e-01 -1.90019047e+00 -1.32396324e-02 5.59359908e-01 7.24003315e-01 -2.11039141e-01 6.05120242e-01 -5.99146426e-01 1.22522712e+00 3.83095026e-01 -1.11676104e-01 5.29749453e-01 4.00309443e-01 1.04930997e+00 1.52084017e+00 -1.94000393e-01 -3.49991679e-01 9.81042907e-02 9.25286591e-01 -5.45790970e-01 -9.40988734e-02 -3.27891290e-01 1.02853984e-01 3.46302897e-01 1.03210795e+00 1.96527932e-02 -5.75679898e-01 8.47204477e-02 8.70907843e-01 4.40602869e-01 -2.49963209e-01 -5.86802900e-01 3.34151655e-01 4.51901913e-01 3.95621598e-01 -9.36437678e-03 3.34121317e-01 -4.14571136e-01 -1.00178397e+00 -4.48244601e-01 -1.25828218e+00 4.05144960e-01 -5.90317547e-01 -1.41715753e+00 9.39976692e-01 -6.22732699e-01 -8.09296668e-01 -4.70602959e-01 -1.65035412e-01 -1.11327553e+00 8.99413228e-01 -1.91427302e+00 -1.20981467e+00 -5.38295805e-01 2.61847913e-01 7.78092444e-01 6.07694201e-02 6.18488014e-01 -1.48040563e-01 -3.90045583e-01 4.36653234e-02 -2.29457736e-01 8.80423188e-02 8.90352786e-01 -1.18744230e+00 6.71140254e-01 4.93259802e-02 -4.18831617e-01 4.23463106e-01 1.70614314e+00 -5.65764785e-01 -6.49720252e-01 -1.02725482e+00 1.47187269e+00 -7.82501161e-01 1.35406637e+00 7.95804113e-02 -1.47723162e+00 9.69786942e-01 5.10426521e-01 -6.93047166e-01 6.22016609e-01 4.71491933e-01 -6.10226393e-01 6.22750580e-01 -1.07235360e+00 1.18025787e-01 2.50263751e-01 -6.83140814e-01 -1.22570479e+00 6.85410261e-01 3.14498276e-01 -3.96298617e-01 -7.21288681e-01 -2.07317293e-01 2.93272644e-01 -1.55420446e+00 5.08865952e-01 -1.10536838e+00 1.15069151e+00 2.11528689e-01 8.48824903e-02 -1.66416335e+00 -1.98672965e-01 -6.36026800e-01 -2.71847457e-01 8.24048102e-01 3.15553427e-01 -9.25284982e-01 5.61765790e-01 -1.98987976e-01 1.62052624e-02 -5.31581521e-01 -7.86175728e-01 -4.12830800e-01 3.55572730e-01 -3.47317368e-01 3.77963066e-01 1.64003527e+00 6.05195701e-01 8.43552232e-01 -1.14296758e+00 -7.25792572e-02 7.80909538e-01 4.22185868e-01 8.03701282e-01 -1.36252451e+00 9.15658176e-02 -6.21461868e-01 1.00107398e-02 -9.25702810e-01 3.68320018e-01 -1.08235633e+00 8.12129229e-02 -1.45474899e+00 4.39382941e-01 6.47173002e-02 -1.86030343e-01 1.18313812e-01 -6.23459406e-02 4.61723447e-01 -1.35923490e-01 8.42596292e-01 -5.51167667e-01 4.90429878e-01 9.37247157e-01 -1.52144596e-01 5.57660833e-02 6.46347106e-01 -8.59724164e-01 1.09742522e+00 9.44608927e-01 -5.38033426e-01 4.22883481e-01 1.47020981e-01 7.53427327e-01 4.29207355e-01 7.09741890e-01 -3.01538050e-01 2.27231592e-01 4.33377549e-02 -3.69918823e-01 -7.59403169e-01 4.99422789e-01 9.24621895e-02 -5.06169140e-01 5.35677075e-01 -7.95443654e-01 -1.42408624e-01 -1.87662959e-01 5.15760422e-01 -2.74686396e-01 -3.22797716e-01 9.84184444e-01 -3.71078253e-01 -2.52726227e-01 -2.65279144e-01 -9.20564055e-01 3.05279940e-01 3.04336041e-01 3.38788360e-01 -8.91642272e-01 -1.09616733e+00 -6.84387743e-01 1.90942377e-01 4.24354136e-01 3.96320641e-01 6.36207402e-01 -7.52095222e-01 -1.75266147e+00 -2.66939819e-01 2.09084842e-02 -6.80698752e-01 2.01797366e-01 1.59099424e+00 -1.38054237e-01 4.03075010e-01 -1.19358793e-01 -2.86291867e-01 -1.53925514e+00 2.85656571e-01 3.63604397e-01 -2.18651965e-01 -5.58986902e-01 9.50134099e-01 -3.49063575e-01 -3.84798139e-01 -2.29157984e-01 2.81913966e-01 -6.83595181e-01 5.19971728e-01 1.11868525e+00 8.73743296e-01 3.15841973e-01 -1.06232309e+00 1.13395823e-03 -7.33817458e-01 -6.11333609e-01 2.06270307e-01 1.24770582e+00 -3.42374951e-01 -9.83911157e-01 1.04554415e+00 9.21519756e-01 -2.73875035e-02 -4.86707449e-01 -6.58292770e-01 3.77891958e-01 -2.82203674e-01 3.74592245e-01 -1.00627327e+00 -1.23293132e-01 7.43502200e-01 -4.89557236e-01 1.17194664e+00 -3.02171689e-02 6.04178198e-02 1.09701443e+00 3.44401658e-01 2.11229980e-01 -8.36304367e-01 7.17043206e-02 1.26578832e+00 1.36351609e+00 -1.52574158e+00 2.76675016e-01 -2.63312738e-02 -9.76670623e-01 9.78873730e-01 1.77979663e-01 -1.82515919e-01 1.73519745e-01 -4.00388569e-01 2.18641266e-01 -7.21527576e-01 -1.23847091e+00 3.22940588e-01 1.49977878e-01 -1.71919838e-01 7.57022321e-01 4.25065160e-01 -4.39032882e-01 4.37054306e-01 -8.52669835e-01 -2.91146278e-01 1.36913264e+00 3.15582246e-01 -1.03005993e+00 -7.51125664e-02 -5.94399512e-01 5.35610914e-01 -9.28071618e-01 -2.31509715e-01 -1.00579810e+00 3.50791514e-01 -4.61976618e-01 1.32473266e+00 -1.80646688e-01 -6.14712536e-01 -1.42985824e-02 3.09502780e-01 -3.46887745e-02 -6.25439286e-01 -1.30251992e+00 -5.88514209e-01 1.15352130e+00 -3.46518487e-01 -3.00600886e-01 -7.85781920e-01 -7.94663846e-01 -1.16847551e+00 -2.92189598e-01 5.74273467e-01 6.38739645e-01 1.32123995e+00 -2.08659098e-01 3.01524013e-01 9.60649371e-01 -6.25710785e-01 -1.32833338e+00 -1.64284229e+00 -4.52513754e-01 4.55822021e-01 1.12058902e+00 -3.96638066e-01 -7.51929104e-01 -4.56646502e-01]
[8.219131469726562, 10.11571979522705]
b58be912-63c0-42ec-96d0-c0843a196fc0
discovering-dynamic-causal-space-for-dag
2306.02822
null
https://arxiv.org/abs/2306.02822v1
https://arxiv.org/pdf/2306.02822v1.pdf
Discovering Dynamic Causal Space for DAG Structure Learning
Discovering causal structure from purely observational data (i.e., causal discovery), aiming to identify causal relationships among variables, is a fundamental task in machine learning. The recent invention of differentiable score-based DAG learners is a crucial enabler, which reframes the combinatorial optimization problem into a differentiable optimization with a DAG constraint over directed graph space. Despite their great success, these cutting-edge DAG learners incorporate DAG-ness independent score functions to evaluate the directed graph candidates, lacking in considering graph structure. As a result, measuring the data fitness alone regardless of DAG-ness inevitably leads to discovering suboptimal DAGs and model vulnerabilities. Towards this end, we propose a dynamic causal space for DAG structure learning, coined CASPER, that integrates the graph structure into the score function as a new measure in the causal space to faithfully reflect the causal distance between estimated and ground truth DAG. CASPER revises the learning process as well as enhances the DAG structure learning via adaptive attention to DAG-ness. Grounded by empirical visualization, CASPER, as a space, satisfies a series of desired properties, such as structure awareness and noise robustness. Extensive experiments on both synthetic and real-world datasets clearly validate the superiority of our CASPER over the state-of-the-art causal discovery methods in terms of accuracy and robustness.
['Tat-Seng Chua', 'Yueqi Duan', 'Xiang Wang', 'An Zhang', 'Wenchang Ma', 'Fangfu Liu']
2023-06-05
null
null
null
null
['causal-discovery', 'combinatorial-optimization']
['knowledge-base', 'methodology']
[ 7.26402923e-02 2.32044056e-01 -4.54371572e-01 -2.68591523e-01 -2.94372648e-01 -7.67619967e-01 8.06868196e-01 4.54993755e-01 1.60105169e-01 8.68039370e-01 3.51587474e-01 -7.08220065e-01 -9.65962648e-01 -9.83598292e-01 -8.65568042e-01 -6.85838044e-01 -6.37309849e-01 2.49280557e-01 1.44941643e-01 6.77846074e-02 2.79145718e-01 3.33398223e-01 -1.15013945e+00 -2.33766958e-01 1.36482990e+00 6.23991966e-01 -1.22742258e-01 2.72735268e-01 -3.62656116e-02 8.87444973e-01 -3.40215623e-01 -6.58764601e-01 -1.42997339e-01 -4.49872643e-01 -6.51915789e-01 -6.15226805e-01 2.97976404e-01 1.82209834e-01 -3.81737113e-01 1.13774049e+00 2.05739006e-01 -2.85885543e-01 5.74830294e-01 -1.48833001e+00 -7.08498478e-01 9.21580613e-01 -6.37838244e-01 2.36760631e-01 3.50564808e-01 2.12109461e-01 1.50675166e+00 -6.77970290e-01 5.01683056e-01 1.58981264e+00 4.45208728e-01 6.77710697e-02 -1.45005751e+00 -8.93503189e-01 5.35309374e-01 3.58588278e-01 -1.08748543e+00 7.22305551e-02 1.11280155e+00 -6.09789014e-01 3.28385919e-01 4.69482332e-01 5.53096175e-01 1.30777800e+00 4.18350935e-01 5.29033065e-01 1.01823354e+00 -5.95352128e-02 4.05587196e-01 -5.69033504e-01 2.24899009e-01 9.94190514e-01 7.23468125e-01 7.45823920e-01 -7.75435507e-01 -4.22195762e-01 7.25760758e-01 -1.88417986e-01 -1.90468863e-01 -6.91083610e-01 -1.34279668e+00 8.33689153e-01 5.90020597e-01 -1.84170797e-01 -1.76843271e-01 1.70398846e-01 3.40146720e-01 1.52052119e-01 3.33030760e-01 7.52301574e-01 -4.75832701e-01 1.25898138e-01 -3.52692097e-01 3.29966277e-01 5.54267347e-01 4.85899746e-01 4.48480666e-01 1.42719492e-01 -2.92285323e-01 1.90825522e-01 4.11618710e-01 3.18088830e-01 -7.52623081e-02 -4.75322694e-01 3.95608604e-01 1.27152717e+00 -3.30868624e-02 -1.32690334e+00 -5.98263741e-01 -7.42366970e-01 -1.12931144e+00 2.42028072e-01 5.81979096e-01 -1.71268761e-01 -6.30775034e-01 2.08488727e+00 6.70465052e-01 4.90853786e-01 -3.89101982e-01 1.01491332e+00 6.98942900e-01 2.98723608e-01 2.63413340e-01 -4.87626612e-01 1.01971626e+00 -2.41871163e-01 -6.94943786e-01 8.67546815e-03 3.18253845e-01 -1.17026515e-01 1.31846142e+00 4.14124221e-01 -5.36148965e-01 -2.59760857e-01 -1.25167191e+00 3.34167957e-01 -2.28433952e-01 -3.27904075e-01 1.11362350e+00 5.49283087e-01 -5.04694343e-01 7.45204091e-01 -8.12596083e-01 1.26176074e-01 4.41193134e-01 1.93009511e-01 -2.21855015e-01 2.63288647e-01 -1.50504887e+00 4.61330682e-01 3.41027737e-01 5.64081520e-02 -1.20013261e+00 -1.02055478e+00 -5.99464655e-01 2.68540621e-01 9.95746315e-01 -8.66977274e-01 6.60713017e-01 -4.14126843e-01 -1.15494931e+00 2.65128016e-01 -2.08553448e-02 -2.40989000e-01 6.47134066e-01 -1.16232395e-01 -5.94354987e-01 -2.86855698e-01 -5.72202429e-02 -1.73108965e-01 7.49667406e-01 -1.29996347e+00 -5.17810524e-01 -4.91306245e-01 1.35730401e-01 -3.51556480e-01 -2.80344903e-01 -3.31913412e-01 1.77061796e-01 -7.41712213e-01 1.62979662e-01 -4.78364468e-01 -1.48917675e-01 -2.55130082e-01 -7.80688584e-01 -5.42292893e-01 6.12621844e-01 -2.85141677e-01 1.71275675e+00 -1.74105680e+00 3.72850984e-01 5.09000957e-01 9.45217788e-01 -2.10255697e-01 -8.45673084e-02 4.33000982e-01 -4.56163824e-01 5.22042155e-01 -3.81841183e-01 2.81059146e-01 2.14068918e-03 1.55875152e-02 -4.17784452e-01 5.71663976e-01 5.44882357e-01 9.68394279e-01 -1.54403555e+00 -4.21819836e-01 -5.38533479e-02 4.26825844e-02 -4.74258751e-01 4.13562208e-01 -4.12524849e-01 6.98619783e-01 -7.09753811e-01 5.64439058e-01 4.56153661e-01 -3.73322248e-01 6.11214578e-01 -2.18638126e-02 -3.62664640e-01 4.62608457e-01 -1.23256326e+00 1.38041902e+00 2.71003675e-02 1.54861897e-01 -2.65596390e-01 -1.19881403e+00 1.12371659e+00 1.01377703e-01 3.68752211e-01 -7.75034070e-01 -2.53032923e-01 2.29343817e-01 2.99808502e-01 -3.62842709e-01 -1.40636683e-01 1.07942916e-01 -1.62049234e-01 2.62649924e-01 -6.52123317e-02 4.44972187e-01 2.74370402e-01 3.42506826e-01 1.25588036e+00 2.40686983e-01 4.62599456e-01 -4.96825039e-01 3.58644605e-01 -5.15062548e-02 9.89931107e-01 6.67339563e-01 1.95465431e-01 3.49312238e-02 1.33355594e+00 -5.21745145e-01 -6.27937376e-01 -1.40882528e+00 1.26596373e-02 8.46103728e-01 2.53468543e-01 -4.94257927e-01 -3.52382541e-01 -1.11907375e+00 4.15247291e-01 5.99775672e-01 -1.00127780e+00 -5.56681752e-01 -6.75900757e-01 -9.73765612e-01 3.76270354e-01 3.24623108e-01 6.30211160e-02 -5.94131589e-01 -3.56051445e-01 1.71670690e-02 5.65473177e-02 -4.20252949e-01 -4.23231155e-01 2.30850860e-01 -8.61776769e-01 -1.68364131e+00 3.63980210e-03 -2.43885189e-01 4.53605980e-01 -1.25480801e-01 1.23118663e+00 -1.91851147e-02 -2.72385329e-01 -1.33025840e-01 -1.88684091e-01 -3.00611049e-01 -3.98539960e-01 -6.32858649e-02 4.75536622e-02 1.35029182e-01 -5.50584048e-02 -1.10100305e+00 -5.73310733e-01 2.14131191e-01 -5.90849936e-01 -2.72953119e-02 6.70391440e-01 1.05094743e+00 6.12424612e-01 1.31280124e-01 8.82641256e-01 -9.53808308e-01 7.24102318e-01 -8.11746061e-01 -1.11286843e+00 5.05096197e-01 -1.12657297e+00 6.07804477e-01 8.01463008e-01 -3.40434283e-01 -9.11829412e-01 -2.20073119e-01 4.79509950e-01 -2.12279364e-01 1.98110804e-01 1.04790628e+00 -6.40554965e-01 2.58798927e-01 6.95940077e-01 -1.49639443e-01 -2.23364398e-01 -5.08048892e-01 5.06688356e-01 -2.10404560e-01 6.37443423e-01 -7.66712606e-01 9.79716063e-01 2.79031426e-01 6.61479294e-01 -1.62355870e-01 -7.54934669e-01 -4.22586538e-02 -5.44188201e-01 -2.59192228e-01 5.11809468e-01 -4.13202614e-01 -1.34263957e+00 1.95931438e-02 -1.18125916e+00 -1.48355052e-01 -6.85345232e-02 3.45782548e-01 -1.82326183e-01 2.30569988e-01 4.14546169e-02 -9.75002944e-01 -6.01965468e-03 -8.39686275e-01 7.38138199e-01 6.52783141e-02 -1.08231589e-01 -1.13933074e+00 3.40066731e-01 -2.50493735e-01 -2.13885978e-01 9.22476470e-01 1.60043669e+00 -4.11560893e-01 -6.80276215e-01 9.37993601e-02 -4.15531605e-01 -4.15593147e-01 2.93715298e-01 2.62309670e-01 -7.42666781e-01 -3.71840373e-02 -3.97815257e-01 1.32203057e-01 9.39115226e-01 3.16071868e-01 1.36551476e+00 -6.02621615e-01 -5.26340544e-01 6.34618640e-01 1.14929414e+00 1.85865149e-01 3.23619604e-01 2.58913133e-02 9.34034944e-01 6.87846422e-01 5.19754469e-01 4.75909114e-01 4.55043554e-01 4.96561766e-01 1.04921556e+00 -2.56907493e-01 -8.94316807e-02 -9.94886398e-01 1.55446440e-01 4.94507849e-01 -1.76537275e-01 -2.67462522e-01 -1.02977359e+00 1.89457357e-01 -2.11064267e+00 -9.07749772e-01 -6.34668529e-01 2.48847270e+00 9.85595942e-01 2.77347505e-01 3.55696708e-01 1.27466366e-01 6.54006124e-01 1.75268486e-01 -8.68739247e-01 6.27796128e-02 -2.29273468e-01 -2.33333260e-02 4.31127757e-01 4.59325761e-01 -9.97934818e-01 5.77721000e-01 5.33492184e+00 6.16474450e-01 -1.06604874e+00 -1.20406538e-01 5.89399099e-01 1.47962928e-01 -8.52204740e-01 2.54978180e-01 -2.02851132e-01 5.24583280e-01 6.62285030e-01 -5.04393637e-01 4.21542645e-01 4.77873504e-01 5.63816726e-01 1.72219113e-01 -1.30083048e+00 6.61197007e-01 -6.94021761e-01 -1.63979447e+00 1.58735335e-01 1.86724752e-01 6.60445273e-01 -4.27106529e-01 1.27175106e-02 1.81160308e-02 8.98067653e-01 -1.22233522e+00 8.60786736e-01 7.95834005e-01 8.13984454e-01 -8.69332552e-01 4.62504387e-01 1.05163656e-01 -1.18047726e+00 -3.00080419e-01 -1.50186699e-02 -1.26339465e-01 1.40235517e-02 1.02977085e+00 -7.45339334e-01 1.04325020e+00 5.29744685e-01 7.93422878e-01 -6.05061114e-01 9.55713272e-01 -6.46198988e-01 1.05786586e+00 1.19406119e-01 -1.86597601e-01 -1.42273484e-02 -3.46047461e-01 8.03502440e-01 9.68616784e-01 -4.87364223e-03 2.72402121e-05 1.34500772e-01 1.34522307e+00 -1.01015590e-01 -1.25046760e-01 -4.73800868e-01 -1.29481733e-01 7.43814409e-01 1.01411641e+00 -5.10368049e-01 8.48903283e-02 8.08454957e-03 2.73605287e-01 4.97937948e-01 5.06614923e-01 -8.61943722e-01 -2.36026615e-01 8.16003144e-01 1.16635375e-01 -2.12960631e-01 -2.76928127e-01 -7.46245861e-01 -8.75134468e-01 8.33406597e-02 -9.21866000e-01 6.91297233e-01 -1.63024142e-01 -1.41858292e+00 1.71325207e-01 3.06715686e-02 -9.97650266e-01 -9.06004533e-02 -4.72005486e-01 -8.86347115e-01 6.88645422e-01 -1.46729243e+00 -9.54160869e-01 -3.41883034e-01 3.76217186e-01 1.18601257e-02 8.31757560e-02 6.09811604e-01 1.02454320e-01 -9.41661000e-01 5.77777386e-01 -1.17545463e-01 -9.33060050e-02 5.73772192e-01 -1.65641487e+00 4.48668599e-01 9.02076364e-01 2.02858657e-01 8.22596014e-01 8.23301733e-01 -1.01683104e+00 -1.75930667e+00 -1.02820158e+00 6.08640552e-01 -4.99866307e-01 1.27330077e+00 -5.93358994e-01 -1.05264592e+00 2.81559676e-01 -2.13754773e-01 -1.78477969e-02 3.11867982e-01 7.09768534e-01 -7.06259787e-01 -3.07738245e-01 -6.84844077e-01 7.33209193e-01 1.74176002e+00 -2.13193700e-01 -4.11931008e-01 1.15592510e-01 1.01825011e+00 -7.20300246e-03 -8.24140310e-01 6.72755539e-01 4.81813282e-01 -9.07479823e-01 1.00914872e+00 -1.12804747e+00 5.59695661e-01 -4.87020075e-01 2.73243934e-01 -1.36105919e+00 -5.38800597e-01 -9.98300493e-01 -4.71479982e-01 1.30448020e+00 4.08098519e-01 -8.25530648e-01 5.44722438e-01 1.57074198e-01 -4.60070781e-02 -7.44708896e-01 -1.04255629e+00 -8.95224750e-01 1.62217822e-02 -3.45065325e-01 9.77524579e-01 1.34586751e+00 1.14493266e-01 4.91952688e-01 -1.90080613e-01 5.13510883e-01 1.05735981e+00 3.87851030e-01 6.04235053e-01 -1.97990894e+00 -2.02525675e-01 -8.48725259e-01 -1.93359032e-01 -4.96681333e-01 2.35616282e-01 -1.07912886e+00 -3.85918915e-01 -1.37408400e+00 1.62426606e-01 -6.14676535e-01 -3.97612363e-01 4.56428349e-01 -7.59381056e-01 -5.46710551e-01 -1.15967311e-01 1.73094980e-02 -2.28595942e-01 7.71725416e-01 1.24787283e+00 -2.13069588e-01 -1.99012414e-01 -7.69759938e-02 -9.06516016e-01 6.56498671e-01 5.93341887e-01 -6.66500747e-01 -5.88002324e-01 -8.04630145e-02 7.07079589e-01 2.46737123e-01 8.41623306e-01 -3.94769162e-01 7.07987547e-02 -7.22164989e-01 8.91598836e-02 -3.35102767e-01 -4.29555565e-01 -4.57475632e-01 3.44757050e-01 5.28445840e-01 -4.79243040e-01 9.44151357e-02 -2.22481675e-02 9.53540802e-01 -1.14485160e-01 3.75114322e-01 3.31470400e-01 2.86957800e-01 -6.35588586e-01 4.07579333e-01 3.55332881e-01 1.61037311e-01 6.72034562e-01 7.39493892e-02 -6.90783560e-01 -6.49132729e-02 -3.84858578e-01 6.25656843e-01 -3.71115953e-02 4.77582544e-01 5.15600562e-01 -1.23754907e+00 -9.97654021e-01 7.47443829e-03 1.75146937e-01 -5.05490378e-02 1.03912592e-01 1.00260544e+00 2.48146251e-01 3.16744059e-01 1.77900851e-01 -5.23416162e-01 -9.48881686e-01 7.27090657e-01 1.38192251e-01 -5.91036558e-01 -3.92638922e-01 7.02950776e-01 5.90931892e-01 -3.56065929e-01 1.75833210e-01 -4.18914557e-01 -1.21188775e-01 1.41422957e-01 2.29850695e-01 6.34138703e-01 -6.20704852e-02 3.86663795e-01 -5.38734019e-01 1.69799298e-01 4.57104921e-01 1.79765046e-01 1.33889759e+00 1.35778874e-01 -2.94307888e-01 4.94257808e-01 6.64909780e-01 1.69910744e-01 -1.52901721e+00 5.90698719e-02 6.45271540e-01 -5.04040837e-01 -1.72993485e-02 -1.23348975e+00 -8.55905354e-01 7.23257482e-01 2.79032618e-01 4.60302711e-01 9.66499448e-01 1.47845969e-01 5.09322062e-02 5.45541495e-02 3.32851350e-01 -5.85029006e-01 2.57873803e-01 2.73198217e-01 1.12220919e+00 -1.11878335e+00 3.90221104e-02 -4.62436736e-01 -2.14648411e-01 1.12010813e+00 5.53576291e-01 -7.05978647e-02 4.97895658e-01 1.24634489e-01 -4.50722426e-01 -4.58481103e-01 -9.48561907e-01 -3.50259021e-02 5.19699275e-01 6.02621078e-01 4.45698082e-01 3.73282522e-01 -4.90520418e-01 8.46405029e-01 -2.92733788e-01 -3.12198251e-01 2.23535001e-01 2.16738716e-01 -9.92470384e-02 -9.89117503e-01 -2.69896865e-01 3.66546452e-01 -1.18956961e-01 -1.12810552e-01 -7.30403721e-01 9.48506296e-01 4.58072759e-02 9.27864969e-01 -1.57471478e-01 -4.36935097e-01 4.76542801e-01 -2.29952544e-01 1.85221165e-01 -2.68462986e-01 -3.61624718e-01 -2.24639460e-01 7.65773878e-02 -7.27610230e-01 -5.82970381e-02 -6.75248921e-01 -1.24220228e+00 -3.81561160e-01 -2.28450537e-01 1.90777406e-01 3.57857198e-01 8.12810183e-01 5.17542124e-01 9.60355163e-01 9.33563828e-01 -9.78610143e-02 -6.66600823e-01 -6.44931674e-01 -4.55999345e-01 9.35724154e-02 4.98468190e-01 -1.08666193e+00 -3.17207366e-01 -2.26256251e-01]
[7.776580333709717, 5.3696513175964355]
c630b647-8a6e-49ca-a18a-03fb6eb39791
icnn-input-conditioned-feature-representation
null
null
https://openreview.net/forum?id=SJecKyrKPH
https://openreview.net/pdf?id=SJecKyrKPH
ICNN: INPUT-CONDITIONED FEATURE REPRESENTATION LEARNING FOR TRANSFORMATION-INVARIANT NEURAL NETWORK
We propose a novel framework, ICNN, which combines the input-conditioned filter generation module and a decoder based network to incorporate contextual information present in images into Convolutional Neural Networks (CNNs). In contrast to traditional CNNs, we do not employ the same set of learned convolution filters for all input image instances. And our proposed decoder network serves the purpose of reducing the transformation present in the input image by learning to construct a representative image of the input image class. Our proposed joint supervision of input-aware framework when combined with techniques inspired by Multi-instance learning and max-pooling, results in a transformation-invariant neural network. We investigated the performance of our proposed framework on three MNIST variations, which covers both rotation and scaling variance, and achieved 0.98% error on MNIST-rot-12k, 1.12% error on Half-rotated MNIST and 0.68% error on Scaling MNIST, which is significantly better than the state-of-the-art results. Our proposed model also showcased consistent improvement on the CIFAR dataset. We make use of visualization to further prove the effectiveness of our input-aware convolution filters. Our proposed convolution filter generation framework can also serve as a plugin for any CNN based architecture and enhance its modeling capacity.
['Abhay Kumar', 'Chirag Singh', 'Suraj Tripathi']
2019-09-25
null
null
null
null
['rotated-mnist']
['computer-vision']
[ 4.37276751e-01 -6.40166178e-03 2.59126097e-01 -4.35275018e-01 -4.04597282e-01 -5.27836382e-01 6.45855010e-01 -3.96461248e-01 -9.17986810e-01 5.76088309e-01 3.11879236e-02 -1.56724870e-01 -2.00711221e-01 -8.42117071e-01 -1.17974079e+00 -7.00364113e-01 3.49958688e-01 -1.54862143e-02 2.16641963e-01 -1.64772183e-01 4.03114893e-02 7.78145373e-01 -1.49100375e+00 7.69672811e-01 6.36004686e-01 1.02548397e+00 4.22750086e-01 6.53621972e-01 2.00441569e-01 7.64092684e-01 -6.14011765e-01 -4.20855165e-01 4.81647223e-01 -8.15965310e-02 -5.86469293e-01 2.09447574e-02 8.51785839e-01 -2.63535202e-01 -6.70988441e-01 9.72601652e-01 5.88795781e-01 2.57739037e-01 4.80177611e-01 -8.27087104e-01 -9.15170074e-01 7.15006053e-01 -2.62486160e-01 2.87568957e-01 -2.49581814e-01 3.11083764e-01 6.37068212e-01 -9.14719999e-01 6.56025708e-01 1.14256299e+00 4.08955038e-01 4.74665821e-01 -1.16689324e+00 -7.35151529e-01 2.70291090e-01 2.13753000e-01 -1.16485333e+00 -2.89360017e-01 5.75776458e-01 -3.19072962e-01 1.19120932e+00 1.92334652e-01 4.89419788e-01 1.01461649e+00 2.38633856e-01 6.18643701e-01 1.21650648e+00 -4.29579288e-01 -1.94641933e-01 2.26064891e-01 1.09443739e-01 6.33142650e-01 1.84050754e-01 1.89191774e-01 -3.18652928e-01 4.52053159e-01 1.04426026e+00 2.71385521e-01 -2.60780573e-01 9.41371620e-02 -1.37883997e+00 6.34154677e-01 9.46188450e-01 2.29838833e-01 -2.56300420e-01 4.73114371e-01 1.97085679e-01 4.24516618e-01 2.27605194e-01 3.24712783e-01 -6.01941943e-01 2.54998922e-01 -9.66727376e-01 1.68207586e-01 4.84178185e-01 9.15122509e-01 8.08821321e-01 2.37929821e-01 -4.39678669e-01 8.17682445e-01 2.08551083e-02 4.71521586e-01 6.09572530e-01 -6.75746620e-01 6.04674459e-01 6.03760242e-01 -2.13505819e-01 -8.11719000e-01 -5.11141241e-01 -1.00204802e+00 -9.22310352e-01 4.22551513e-01 5.04074872e-01 -2.93628097e-01 -1.30259824e+00 1.75102592e+00 -1.83779240e-01 2.91538566e-01 2.58855522e-01 9.69658613e-01 9.52594697e-01 5.13243318e-01 -9.57899168e-02 1.95829540e-01 1.27564979e+00 -1.26694477e+00 -5.38591683e-01 -2.11282417e-01 2.17471868e-01 -1.06685960e+00 1.08542764e+00 5.20900786e-01 -1.01778817e+00 -9.69474435e-01 -1.22469008e+00 -1.34392366e-01 -6.19250000e-01 8.76596510e-01 5.35008430e-01 4.51007545e-01 -1.11353493e+00 7.99165905e-01 -8.05024028e-01 -2.51342595e-01 5.73097408e-01 6.11485660e-01 -5.48337638e-01 7.32328594e-02 -8.60225439e-01 9.05924499e-01 5.56016624e-01 3.16464812e-01 -1.03159153e+00 -7.21867204e-01 -4.51908439e-01 2.79150307e-01 2.38172770e-01 -5.92142105e-01 1.02125156e+00 -1.12579107e+00 -1.45546949e+00 4.97404546e-01 -1.88728012e-02 -7.04534233e-01 6.02136016e-01 -5.27987838e-01 -6.22954249e-01 2.34247074e-02 -4.08189595e-01 8.57594132e-01 9.51269925e-01 -9.48446870e-01 -5.67387044e-01 -3.82239632e-02 2.02975944e-01 1.40114380e-02 -4.38670993e-01 -7.50535503e-02 -5.03770590e-01 -8.33748996e-01 9.19917598e-02 -9.33852971e-01 -2.00392514e-01 -9.68479179e-03 -4.95829195e-01 2.37758696e-01 8.55868399e-01 -5.26659667e-01 9.81713831e-01 -2.15146112e+00 3.63079160e-02 1.47523388e-01 -3.09680942e-02 6.07188880e-01 -3.59661043e-01 2.19659448e-01 -4.15714025e-01 -1.35151977e-02 -1.04981758e-01 -3.80610764e-01 -1.47454515e-01 7.04238787e-02 -3.78057212e-01 3.81905019e-01 6.08135283e-01 7.71120429e-01 -4.77320910e-01 1.09779008e-01 3.92631173e-01 8.72270763e-01 -7.27233648e-01 4.16257739e-04 -5.26175313e-02 2.87986219e-01 9.53677446e-02 1.84031680e-01 9.64937210e-01 -1.19754255e-01 2.07534526e-02 -7.15994656e-01 -2.28923753e-01 8.33298042e-02 -1.38557220e+00 1.88737726e+00 -6.06707871e-01 7.84419179e-01 -3.36478472e-01 -9.11370754e-01 1.03086257e+00 2.38340497e-01 3.97639647e-02 -7.37900555e-01 1.71761557e-01 5.78276254e-02 3.66490811e-01 -3.29675525e-01 3.17018360e-01 3.45170677e-01 3.60012829e-01 2.72369206e-01 6.39776468e-01 2.72092938e-01 1.82858720e-01 2.08578147e-02 9.09950614e-01 2.73790807e-01 -7.14166164e-02 -3.79534692e-01 6.46304786e-01 -3.91786963e-01 2.85524189e-01 8.43298912e-01 1.22292727e-01 8.85418236e-01 3.44750166e-01 -6.39382780e-01 -1.10096502e+00 -9.79379475e-01 -2.71749049e-01 9.63948548e-01 -6.25089630e-02 -2.34028280e-01 -7.80889630e-01 -5.64936817e-01 -1.79217756e-01 5.60610414e-01 -7.48423040e-01 -9.20348838e-02 -7.46605515e-01 -9.84012365e-01 5.84889114e-01 6.26703262e-01 9.49055254e-01 -1.13839650e+00 -4.77639198e-01 1.73842251e-01 2.56380051e-01 -1.31420612e+00 -2.98640132e-01 5.76103926e-01 -7.96039641e-01 -9.09107029e-01 -5.89129269e-01 -8.77855062e-01 7.37954021e-01 7.07004741e-02 7.66870618e-01 -1.78658292e-01 -2.34394193e-01 -3.96370590e-02 -1.20555148e-01 -3.34025115e-01 -8.82774219e-02 2.74556309e-01 -1.98085591e-01 2.69120723e-01 4.42228862e-04 -7.36154974e-01 -8.72433484e-01 3.40080202e-01 -9.55222249e-01 2.86666423e-01 8.77341270e-01 8.59464705e-01 5.92407823e-01 -1.97245162e-02 5.02603531e-01 -1.08609343e+00 3.48821491e-01 -1.44794285e-01 -6.34904623e-01 2.88448781e-01 -3.32742780e-01 3.49685162e-01 9.38290417e-01 -6.48142636e-01 -1.14059663e+00 4.19999003e-01 -1.64506063e-01 -4.25160110e-01 -2.76991546e-01 2.45092168e-01 -7.65389204e-02 -2.19507530e-01 8.28053176e-01 1.48970440e-01 -2.48462915e-01 -6.35985613e-01 5.83437860e-01 4.33431923e-01 8.78211379e-01 -3.55118752e-01 8.18396866e-01 5.73183835e-01 -1.33734187e-02 -5.37300527e-01 -6.00073099e-01 -1.01471990e-01 -7.79926002e-01 -3.02286516e-03 8.98874581e-01 -1.09643650e+00 -7.15548217e-01 5.83007097e-01 -1.28965425e+00 -3.15665603e-01 -1.71943128e-01 6.31523490e-01 -2.41980717e-01 -1.84085667e-01 -5.10635376e-01 -4.36040282e-01 -4.06108975e-01 -1.59012926e+00 6.28642976e-01 3.64053041e-01 3.03709626e-01 -7.13358581e-01 -3.34852606e-01 7.57429078e-02 7.92840958e-01 2.42043868e-01 6.60516977e-01 -7.21221805e-01 -7.78737783e-01 -4.34118472e-02 -5.65384924e-01 8.09892297e-01 6.01120777e-02 1.25229850e-01 -1.40964544e+00 -3.97224963e-01 -2.42031217e-01 -2.44318858e-01 1.30252075e+00 2.76929229e-01 1.37000334e+00 -2.12242529e-01 5.32770641e-02 9.42057073e-01 1.73505211e+00 1.50727838e-01 7.93028951e-01 3.25129092e-01 6.94844842e-01 1.23179860e-01 -3.16437031e-03 2.91694224e-01 -5.07435240e-02 6.57423854e-01 5.75070381e-01 -5.20815194e-01 -5.85621893e-01 2.20662039e-02 1.87572360e-01 5.55718422e-01 -3.41434479e-01 -2.37372920e-01 -5.82947969e-01 3.46621484e-01 -1.76645362e+00 -8.34258735e-01 -1.78546570e-02 1.93891418e+00 5.74905992e-01 3.74545991e-01 -2.12122843e-01 1.11822270e-01 6.00613594e-01 9.25700832e-03 -3.92836869e-01 -5.00237107e-01 -3.31396073e-01 8.19164097e-01 8.67067993e-01 4.16712701e-01 -1.28356719e+00 9.80431795e-01 5.67231798e+00 8.27745080e-01 -1.49713957e+00 1.06389523e-01 4.94583845e-01 -2.25097582e-01 7.24438950e-02 -1.63994104e-01 -8.91331851e-01 1.58950165e-01 8.78707051e-01 2.43209720e-01 5.94920158e-01 7.35312045e-01 2.42320746e-01 1.40969560e-01 -1.06516540e+00 9.48287725e-01 6.59962520e-02 -1.53946841e+00 2.34120876e-01 -1.40833884e-01 9.29041147e-01 3.10560822e-01 3.87882888e-01 2.49378994e-01 2.18677700e-01 -1.21373951e+00 8.88632655e-01 6.90425098e-01 8.68159354e-01 -9.04374480e-01 7.05836594e-01 2.19160970e-02 -1.05517769e+00 -1.68489546e-01 -6.34992599e-01 -2.01373130e-01 -2.92088598e-01 4.49555397e-01 -8.80058169e-01 5.34899592e-01 7.44100213e-01 6.41744614e-01 -7.73879409e-01 1.12785387e+00 -3.24058861e-01 4.99621570e-01 -3.45413536e-01 1.69864044e-01 4.72848296e-01 9.46523696e-02 1.05876960e-01 1.48959446e+00 2.52119511e-01 -2.03033522e-01 -4.85870391e-02 8.18325937e-01 -3.96921307e-01 2.84783524e-02 -2.83555686e-01 1.53379321e-01 2.24287093e-01 1.51270711e+00 -8.30020785e-01 -4.18618292e-01 -5.37682414e-01 1.07463241e+00 4.85809952e-01 6.66810393e-01 -9.78061497e-01 -6.59444630e-01 6.71428442e-01 -1.25043795e-01 8.49968135e-01 -1.85479045e-01 -3.15598816e-01 -1.23441315e+00 7.50861689e-02 -7.96229184e-01 3.20755169e-02 -6.54493690e-01 -7.61724710e-01 1.04106283e+00 -1.94039285e-01 -1.13773167e+00 5.20552695e-02 -9.80360031e-01 -6.03244841e-01 1.07119727e+00 -1.64339626e+00 -1.31520319e+00 -5.12671769e-01 7.64806449e-01 3.56808096e-01 -3.55713606e-01 8.27667058e-01 6.30669475e-01 -6.78930521e-01 8.60336423e-01 1.74687847e-01 3.10601741e-01 7.63575494e-01 -1.08012187e+00 4.65313256e-01 1.16344059e+00 4.30022031e-01 8.04893136e-01 3.99666160e-01 -2.30124727e-01 -1.18761015e+00 -1.48849106e+00 4.81138319e-01 -7.56055191e-02 3.87329519e-01 -5.22347093e-01 -7.23375797e-01 7.93779731e-01 4.27868247e-01 4.18301851e-01 2.00970247e-01 -2.33915061e-01 -5.20272732e-01 -4.66007560e-01 -1.01651049e+00 5.77494562e-01 1.06285846e+00 -4.68990147e-01 -3.50660235e-01 3.40795845e-01 8.59650612e-01 -6.04869246e-01 -6.69693828e-01 4.42101628e-01 4.95523304e-01 -1.04665840e+00 1.01427805e+00 -5.17316818e-01 5.32067180e-01 -4.67270553e-01 -1.77993923e-01 -1.31736851e+00 -5.70613682e-01 -3.54841202e-01 2.51532048e-01 9.68916059e-01 6.72817171e-01 -5.91229618e-01 5.71263850e-01 1.83046043e-01 -4.38803732e-01 -7.38482714e-01 -6.46688402e-01 -5.98488212e-01 1.54474182e-02 -7.09289074e-01 6.23383760e-01 5.09939313e-01 -7.65569866e-01 5.52938916e-02 -4.02420759e-01 3.98123354e-01 3.55243504e-01 -1.02879316e-01 7.15345085e-01 -7.26445615e-01 -4.82607633e-01 -3.79665613e-01 -5.05093873e-01 -9.26928580e-01 -9.10192654e-02 -1.03447878e+00 -3.53279710e-01 -1.35267258e+00 2.96868253e-02 -1.22415304e-01 -6.76446617e-01 7.71664679e-01 8.20776671e-02 6.87212527e-01 4.66619998e-01 -5.56737743e-02 -2.45631173e-01 2.05284774e-01 1.46313083e+00 -1.08676687e-01 -6.93034902e-02 -1.39740288e-01 -6.83527112e-01 6.37943268e-01 7.36194015e-01 -3.80666465e-01 -5.53158700e-01 -8.28083813e-01 -1.58110615e-02 -4.37244296e-01 5.83607852e-01 -1.49940467e+00 4.08085525e-01 1.21549152e-01 8.20858300e-01 -5.66963911e-01 1.95270926e-01 -8.84885728e-01 2.94889122e-01 5.26765168e-01 -4.84511524e-01 2.22512661e-03 5.42278349e-01 2.22148463e-01 -2.69248247e-01 -3.54605690e-02 8.69523883e-01 -6.35149106e-02 -7.29200125e-01 2.29215577e-01 -8.42977390e-02 -3.09170663e-01 7.07889855e-01 -7.96729475e-02 -5.44546247e-01 -1.14189973e-02 -9.52263832e-01 -2.67084271e-01 -2.69750748e-02 2.76599646e-01 6.45767808e-01 -1.21978951e+00 -7.58607090e-01 5.91815412e-01 -6.14834353e-02 -7.29887709e-02 2.77227879e-01 5.64897954e-01 -6.43092096e-01 4.05217797e-01 -5.41408241e-01 -4.54814970e-01 -9.29628432e-01 3.82466137e-01 4.27573681e-01 -1.55516475e-01 -6.34691477e-01 9.68293607e-01 2.41346791e-01 -4.05595869e-01 2.86558241e-01 -8.16985965e-01 -1.14251435e-01 -1.42222136e-01 5.86536705e-01 1.97623074e-01 5.36016226e-01 -3.41638625e-01 -2.76556551e-01 4.61751163e-01 -3.24450940e-01 -6.04644045e-02 1.51399446e+00 3.35175484e-01 1.08593650e-01 2.43846811e-02 1.33712506e+00 -2.71117538e-01 -1.42967606e+00 -4.05774474e-01 -3.30795169e-01 -2.14246273e-01 1.18747592e-01 -1.15243030e+00 -1.54547739e+00 9.89158034e-01 9.54366088e-01 -3.04277629e-01 1.36957920e+00 -5.02672315e-01 4.59738910e-01 6.81303144e-01 -1.37613356e-01 -9.32335019e-01 9.00427997e-02 6.19248271e-01 1.09812129e+00 -1.16228604e+00 -1.28313974e-01 -2.30183706e-01 -3.62547576e-01 1.50253808e+00 8.24654281e-01 -6.98072791e-01 7.04160988e-01 4.22346979e-01 9.78941247e-02 3.89832072e-02 -7.72855759e-01 -1.95772380e-01 5.59566438e-01 3.99347097e-01 5.47733486e-01 -1.16747245e-01 -1.55595779e-01 5.93537271e-01 -3.70141596e-01 1.07952558e-01 4.16863441e-01 6.89989626e-01 -3.30588937e-01 -9.59739566e-01 -2.68444240e-01 3.95999908e-01 -4.48131174e-01 -3.43945831e-01 4.83856499e-02 9.32061434e-01 5.31376302e-01 6.27275467e-01 1.21775292e-01 -5.47278821e-01 5.20132184e-01 7.86838401e-03 5.92949390e-01 -4.88683790e-01 -9.67735112e-01 1.38376027e-01 -1.97392091e-01 -5.82253933e-01 -5.20186305e-01 -2.46049643e-01 -1.06264651e+00 -1.33532181e-01 -2.57811993e-01 -3.87609929e-01 7.62254596e-01 8.73023152e-01 2.24702343e-01 1.07384884e+00 4.10872519e-01 -8.12512338e-01 -3.60699236e-01 -1.09677517e+00 -2.95011073e-01 5.28700531e-01 3.40753078e-01 -5.01340210e-01 -2.11880729e-01 2.79043078e-01]
[9.119053840637207, 2.1820895671844482]
cb68bc2a-b1a6-4752-a0f8-87e514019928
main-multi-attention-instance-network-for
1904.05847
null
http://arxiv.org/abs/1904.05847v1
http://arxiv.org/pdf/1904.05847v1.pdf
MAIN: Multi-Attention Instance Network for Video Segmentation
Instance-level video segmentation requires a solid integration of spatial and temporal information. However, current methods rely mostly on domain-specific information (online learning) to produce accurate instance-level segmentations. We propose a novel approach that relies exclusively on the integration of generic spatio-temporal attention cues. Our strategy, named Multi-Attention Instance Network (MAIN), overcomes challenging segmentation scenarios over arbitrary videos without modelling sequence- or instance-specific knowledge. We design MAIN to segment multiple instances in a single forward pass, and optimize it with a novel loss function that favors class agnostic predictions and assigns instance-specific penalties. We achieve state-of-the-art performance on the challenging Youtube-VOS dataset and benchmark, improving the unseen Jaccard and F-Metric by 6.8% and 12.7% respectively, while operating at real-time (30.3 FPS).
['Bernard Ghanem', 'Maria A. Bravo', 'Thomas Brox', 'Pablo Arbelaez', 'Juan Leon Alcazar', 'Guillaume Jeanneret', 'Ali K. Thabet']
2019-04-11
null
null
null
null
['one-shot-visual-object-segmentation']
['computer-vision']
[ 4.34158325e-01 -1.78675145e-01 -3.85754138e-01 -4.55445647e-01 -1.09980810e+00 -6.27248168e-01 3.73465568e-01 1.14943244e-01 -6.67729437e-01 7.06232071e-01 -3.83441806e-01 -1.36195883e-01 -1.12684950e-01 -3.72988433e-01 -8.83102000e-01 -4.95677412e-01 -1.55286521e-01 4.79670763e-01 6.90280974e-01 1.13609672e-01 3.46856296e-01 2.89454430e-01 -1.65648782e+00 6.38096452e-01 1.08992672e+00 1.21549511e+00 2.97878951e-01 1.05547333e+00 -1.76233381e-01 6.61813855e-01 -6.26614988e-01 -4.10865188e-01 4.24719423e-01 -2.90394843e-01 -8.83724570e-01 3.24884772e-01 6.32604301e-01 -7.95140937e-02 -4.59617674e-02 7.00086653e-01 2.57526368e-01 2.32663542e-01 4.16040987e-01 -1.12555993e+00 -1.92288235e-01 1.40183643e-01 -7.03149378e-01 4.89461929e-01 1.05467029e-01 4.78184193e-01 1.06113160e+00 -5.41477144e-01 6.81539237e-01 7.12681055e-01 7.63525724e-01 5.10189295e-01 -1.21551013e+00 -3.23426813e-01 4.95374560e-01 4.06634152e-01 -1.23636699e+00 -3.22546124e-01 6.06809855e-01 -5.78470349e-01 9.67910111e-01 3.23405504e-01 6.74888551e-01 1.02260852e+00 -1.11858040e-01 9.94666398e-01 8.90591383e-01 -3.59302983e-02 1.87522724e-01 -9.27336216e-02 -3.98623981e-02 5.43870509e-01 -1.73395172e-01 -2.00685188e-01 -4.54224974e-01 3.18741113e-01 6.94634497e-01 -2.44284654e-03 -3.46596390e-01 -4.47978944e-01 -1.15062213e+00 4.86613721e-01 3.51544589e-01 1.71557114e-01 -4.50517684e-01 1.77100301e-01 5.99144459e-01 -3.80993262e-02 6.81414187e-01 3.70133132e-01 -8.46345186e-01 -5.58031023e-01 -1.50989509e+00 4.15123440e-02 6.72979414e-01 9.27471459e-01 6.62901402e-01 -1.33282796e-01 -4.89081532e-01 7.51952946e-01 -3.36367614e-03 2.41813615e-01 3.89593810e-01 -1.21627271e+00 5.44326365e-01 4.50168312e-01 2.31989563e-01 -7.55904734e-01 -2.42937490e-01 -7.12166429e-01 -2.75416195e-01 2.69347359e-03 5.44559002e-01 -1.77433640e-01 -1.33294952e+00 1.66961312e+00 4.42591876e-01 7.43017733e-01 -3.25587064e-01 1.05307996e+00 6.47552311e-01 6.39089763e-01 2.89627045e-01 -1.72633469e-01 1.00548029e+00 -1.40009868e+00 -3.67661744e-01 -1.71108067e-01 5.54453373e-01 -4.67880577e-01 1.24907839e+00 3.78605843e-01 -1.15049005e+00 -6.71851337e-01 -9.04131114e-01 6.27133325e-02 -3.60979944e-01 9.71127078e-02 3.04455101e-01 5.63951850e-01 -9.39151525e-01 9.05787110e-01 -9.58964229e-01 -2.13459268e-01 7.30395734e-01 6.41455233e-01 -2.21643969e-01 9.90240276e-02 -7.08173335e-01 3.40801984e-01 3.73501241e-01 3.64319561e-03 -9.39360738e-01 -1.17651653e+00 -6.33184254e-01 3.29957195e-02 7.86385655e-01 -6.41667724e-01 1.17326033e+00 -1.33765817e+00 -1.60374439e+00 7.70561278e-01 -1.38026223e-01 -6.28018439e-01 8.65429878e-01 -5.03951132e-01 -1.55399442e-01 4.31553304e-01 9.60694179e-02 9.92605865e-01 9.35073376e-01 -1.19649124e+00 -8.12083006e-01 -1.81292146e-01 3.37111801e-01 1.54214770e-01 -1.56213775e-01 -1.02039047e-01 -8.96642268e-01 -5.26380181e-01 -2.83773184e-01 -7.94327140e-01 -2.61405498e-01 -2.19013374e-02 -2.16558009e-01 2.32222900e-02 9.68024552e-01 -7.77775705e-01 1.16221130e+00 -2.10036254e+00 2.46117502e-01 -1.52964190e-01 8.55433568e-02 7.94218481e-01 -3.05794507e-01 -3.49645177e-03 2.39867121e-01 1.92325503e-01 -5.67172348e-01 -5.65329432e-01 -1.51956007e-01 1.84040487e-01 2.63805926e-01 2.94974238e-01 4.15584475e-01 9.48632479e-01 -1.12938631e+00 -6.54403985e-01 4.22848374e-01 6.54950738e-01 -8.82213533e-01 2.49965504e-01 -5.97089469e-01 5.45004427e-01 -1.70127258e-01 6.23250663e-01 4.46218431e-01 -3.89346361e-01 6.51104078e-02 -2.45926157e-01 -1.44894302e-01 9.43229496e-02 -9.79312181e-01 2.07851529e+00 -4.66474086e-01 6.93262517e-01 -5.51256500e-02 -1.20850646e+00 4.77456808e-01 2.26900980e-01 7.63145864e-01 -6.26121163e-01 -1.24510296e-01 1.84442729e-01 -2.26149380e-01 -6.91168010e-01 3.80517989e-01 2.31898397e-01 1.41467541e-01 -8.88894871e-02 2.50854045e-01 4.13690925e-01 4.71324801e-01 8.39923620e-02 1.09646451e+00 7.63439119e-01 -5.07936254e-02 -2.28076205e-01 5.54898620e-01 5.09895645e-02 8.24885964e-01 7.90732563e-01 -5.15498221e-01 9.88958836e-01 5.32360256e-01 -4.79338557e-01 -9.77971256e-01 -8.98539305e-01 5.91631196e-02 1.15782714e+00 2.29926229e-01 -4.66913819e-01 -9.61139023e-01 -1.15805018e+00 -1.17660932e-01 4.92754996e-01 -6.60867691e-01 2.46836424e-01 -6.26559794e-01 -6.37771964e-01 2.76777923e-01 5.98732173e-01 4.18515474e-01 -1.01475608e+00 -8.06643128e-01 4.74261791e-01 -2.34562755e-01 -1.46738946e+00 -5.68353593e-01 2.22386792e-02 -8.69699419e-01 -1.17807114e+00 -9.38161850e-01 -3.02457482e-01 3.98332953e-01 6.51364401e-02 1.34659624e+00 2.15243245e-03 -5.27996719e-01 3.46590191e-01 -4.00794804e-01 9.17997360e-02 1.24470703e-01 4.50575650e-01 -4.57951337e-01 3.77610981e-01 2.01117754e-01 -5.04799962e-01 -8.27242732e-01 2.65541315e-01 -7.85278797e-01 6.58778474e-02 5.57008684e-01 8.22994351e-01 8.30348730e-01 -4.01266992e-01 5.92730999e-01 -1.03351605e+00 9.87371728e-02 -4.47259247e-01 -6.47011459e-01 2.97376126e-01 -3.72942746e-01 -1.68723956e-01 7.17404068e-01 -4.17397380e-01 -8.68882477e-01 2.18719780e-01 -2.70150043e-02 -7.65233278e-01 -4.75437373e-01 2.34876439e-01 -1.11665756e-01 -2.10571453e-01 4.06414986e-01 2.27617785e-01 -2.14137316e-01 -5.19900560e-01 2.30946720e-01 4.48655307e-01 6.08692646e-01 -5.29941499e-01 3.21961492e-01 4.48481888e-01 -2.06852153e-01 -7.62983024e-01 -1.03183937e+00 -8.39118779e-01 -8.92172515e-01 -4.08842027e-01 1.13928854e+00 -8.21984589e-01 -5.54438412e-01 3.37757587e-01 -1.08467317e+00 -7.92264640e-01 -3.00834537e-01 2.37865195e-01 -7.58697927e-01 3.33637953e-01 -5.84387898e-01 -6.52002752e-01 -2.08230197e-01 -1.25110674e+00 1.23526835e+00 2.27542460e-01 2.37829667e-02 -8.90902102e-01 -1.28888115e-01 6.07627094e-01 2.71786690e-01 4.53074604e-01 2.88451016e-01 -6.30822122e-01 -1.06238580e+00 1.20661780e-02 -5.12820780e-01 3.48573685e-01 -1.14876948e-01 2.64338464e-01 -9.02441680e-01 -1.15370989e-01 -4.67605829e-01 -2.14133728e-02 8.78074586e-01 4.69470352e-01 1.54347348e+00 -2.90293187e-01 -1.95122376e-01 8.55944633e-01 1.69331932e+00 1.25771761e-01 5.38897812e-01 4.10823286e-01 8.06574821e-01 4.84233171e-01 7.82945812e-01 5.02719104e-01 4.16074187e-01 9.14410949e-01 5.17098129e-01 1.42568490e-02 -2.36303896e-01 5.17719984e-02 5.98678440e-02 3.63455057e-01 -3.26132774e-01 -3.58069032e-01 -8.04833233e-01 9.50382590e-01 -2.10622454e+00 -1.06341600e+00 -1.42796114e-01 2.23612857e+00 7.34727800e-01 2.53015012e-01 4.88824159e-01 7.66828880e-02 7.35523760e-01 2.31832460e-01 -6.12907887e-01 -3.64943564e-01 1.75793931e-01 1.40922382e-01 5.92654407e-01 4.52628762e-01 -1.44926035e+00 1.05628717e+00 5.88215256e+00 7.96991289e-01 -1.19049060e+00 1.54753104e-01 8.73935163e-01 -5.02763987e-01 -1.39415915e-05 -2.28075966e-01 -6.81312561e-01 8.26819599e-01 1.16547859e+00 2.80856907e-01 3.55020702e-01 7.27656126e-01 2.21037105e-01 5.17659485e-02 -9.88674939e-01 9.46118593e-01 -8.34442582e-03 -1.44626999e+00 -1.35237411e-01 -9.14226174e-02 8.12107444e-01 1.49034128e-01 -2.02626979e-04 3.21483999e-01 -1.53593063e-01 -8.48962307e-01 6.27172053e-01 5.06780744e-01 6.40077889e-01 -7.17866361e-01 6.61332071e-01 1.57339334e-01 -1.15969300e+00 -1.13968439e-02 4.17423807e-02 1.70185432e-01 4.43963528e-01 6.05223119e-01 -5.76679885e-01 5.75441957e-01 9.22864795e-01 9.03309405e-01 -4.04852778e-01 1.48159492e+00 3.76398414e-02 6.77831531e-01 -4.56157446e-01 2.40457729e-01 6.85467541e-01 -3.46002094e-02 5.52406192e-01 1.58273721e+00 3.70001830e-02 7.12785944e-02 3.47829193e-01 5.71165204e-01 -6.28804341e-02 1.36252716e-01 -2.07269564e-02 1.47679567e-01 1.13240220e-01 1.28105021e+00 -8.60092521e-01 -4.18630570e-01 -4.54384029e-01 1.26257932e+00 2.83684224e-01 3.94859403e-01 -1.25229716e+00 -2.80088961e-01 7.77330399e-01 1.83438182e-01 9.35204327e-01 -1.33323982e-01 -3.66036773e-01 -1.04060543e+00 2.50702560e-01 -6.69908464e-01 3.93324643e-01 -5.02684414e-01 -1.04260826e+00 5.68858147e-01 -6.51883259e-02 -1.08665001e+00 -1.39881238e-01 -5.24788678e-01 -4.78040457e-01 5.15968144e-01 -1.91772592e+00 -9.91467714e-01 -3.97771716e-01 4.49222594e-01 8.78143132e-01 2.00921863e-01 3.73938918e-01 6.45969152e-01 -8.16984594e-01 7.46089697e-01 -4.40375134e-02 5.40438443e-02 5.73585153e-01 -1.45264339e+00 3.14272821e-01 7.38203526e-01 2.39153534e-01 5.19357882e-02 6.63908422e-01 -4.00010496e-01 -9.56066370e-01 -1.33744264e+00 8.26631427e-01 -3.97495896e-01 4.75820422e-01 -2.95643151e-01 -1.01695490e+00 5.12939930e-01 9.03807208e-02 5.20703852e-01 6.38177276e-01 1.03815250e-01 -2.91668355e-01 -2.14543849e-01 -1.24544394e+00 5.65337896e-01 1.34705234e+00 -2.99407572e-01 -2.37069353e-01 3.96076232e-01 7.44574130e-01 -3.97701502e-01 -9.34095085e-01 6.04662716e-01 4.97062862e-01 -1.24822128e+00 1.01985085e+00 -8.17383051e-01 3.83909971e-01 -3.86978656e-01 4.70380373e-02 -9.08601940e-01 -2.06658140e-01 -7.73175895e-01 -3.45209926e-01 9.42004502e-01 5.36088407e-01 -2.55196512e-01 1.13475990e+00 6.15721166e-01 -3.54791611e-01 -1.22951555e+00 -8.53190720e-01 -8.85450423e-01 -2.99488395e-01 -5.24989307e-01 3.63773763e-01 6.77146614e-01 -2.77065873e-01 -2.05095112e-02 -3.81054312e-01 1.86653480e-01 6.17154300e-01 1.74725696e-01 5.98290682e-01 -1.00313687e+00 -4.41365004e-01 -5.07714212e-01 -6.48059487e-01 -1.21246970e+00 1.61796406e-01 -5.21858573e-01 1.57843098e-01 -1.45487034e+00 5.19662835e-02 -4.41857815e-01 -6.16577089e-01 3.93374264e-01 -4.23495114e-01 5.96447766e-01 4.00794029e-01 9.35911462e-02 -1.33510303e+00 3.91435951e-01 1.05626619e+00 7.24159107e-02 -2.23898187e-01 -1.70706399e-02 -2.25737646e-01 5.82388163e-01 8.49975944e-01 -4.54071641e-01 -4.00290102e-01 -5.44753194e-01 -3.24816853e-01 5.84381633e-04 3.50943774e-01 -1.31202877e+00 1.15903027e-01 -2.54951924e-01 2.31595904e-01 -5.42327762e-01 4.84373897e-01 -7.37050653e-01 -1.73685178e-02 1.53859124e-01 -3.89107674e-01 -1.59950063e-01 3.56701940e-01 8.05935383e-01 -1.77014574e-01 -1.42434448e-01 7.84940779e-01 -2.33611509e-01 -1.08107233e+00 6.19374990e-01 8.38492066e-02 4.20827478e-01 1.34577823e+00 -4.80218321e-01 -3.44077721e-02 -6.15983047e-02 -8.94023538e-01 2.57221818e-01 5.48835993e-01 3.88002872e-01 3.06480736e-01 -8.37821722e-01 -6.19605541e-01 -9.71448049e-03 -3.91091360e-03 -2.55406871e-02 5.07124841e-01 9.35168266e-01 -6.39161766e-01 4.57601875e-01 -6.65517300e-02 -1.02568424e+00 -1.14721382e+00 5.18356979e-01 4.21748906e-01 -3.78206611e-01 -5.53102374e-01 1.03038967e+00 5.30311465e-02 -1.77595913e-01 1.59451038e-01 1.02515295e-02 -1.09587006e-01 -6.53921664e-02 2.95002073e-01 3.54065686e-01 9.27876160e-02 -6.17285848e-01 -4.27685291e-01 6.42884672e-01 -7.01587126e-02 -4.63293605e-02 1.26153576e+00 -4.04641666e-02 4.52920109e-01 3.94529492e-01 1.31373298e+00 -3.47099423e-01 -2.12323499e+00 1.09111458e-01 1.30597770e-01 -7.42636025e-01 -3.50449756e-02 -9.44213033e-01 -1.36332548e+00 9.60262775e-01 4.08407807e-01 1.15444809e-01 1.12966847e+00 -1.47960976e-01 1.03507090e+00 -1.24843702e-01 1.61844552e-01 -1.07125366e+00 1.13200396e-01 2.77949125e-01 4.13898915e-01 -1.39450681e+00 -2.53356636e-01 -5.02269566e-01 -6.00681603e-01 8.38954806e-01 7.85044551e-01 -1.79959223e-01 3.83492857e-01 3.88784446e-02 3.52575406e-02 1.53980047e-01 -8.06951582e-01 -3.00551981e-01 5.94429076e-01 5.81159472e-01 4.16257322e-01 -1.16045900e-01 -2.64472932e-01 4.19493288e-01 4.34765249e-01 1.72367930e-01 1.35714591e-01 7.63535798e-01 -3.15879226e-01 -1.12564719e+00 1.06744476e-01 4.67542112e-01 -8.22360218e-01 -8.78014490e-02 1.06313996e-01 6.36168659e-01 2.12351114e-01 7.35603333e-01 2.19184309e-01 -2.65470266e-01 1.76022455e-01 7.15094209e-02 3.87618333e-01 -5.01541793e-01 -7.30298042e-01 2.05989718e-03 8.52102786e-02 -1.01168859e+00 -6.89678967e-01 -7.67169833e-01 -1.03955889e+00 -1.29758418e-01 -3.21026854e-02 3.26228179e-02 7.29182124e-01 9.69440222e-01 8.43641818e-01 7.09502995e-01 4.10824448e-01 -1.09812641e+00 -1.24174036e-01 -5.92223644e-01 -7.13269338e-02 6.65231526e-01 3.79177302e-01 -4.99290645e-01 -2.90700018e-01 2.15726867e-01]
[9.116019248962402, -0.03024616837501526]
65bd9b46-7022-4bff-80c3-2b6384b70b48
instance-smoothed-contrastive-learning-for
2305.07424
null
https://arxiv.org/abs/2305.07424v2
https://arxiv.org/pdf/2305.07424v2.pdf
Instance Smoothed Contrastive Learning for Unsupervised Sentence Embedding
Contrastive learning-based methods, such as unsup-SimCSE, have achieved state-of-the-art (SOTA) performances in learning unsupervised sentence embeddings. However, in previous studies, each embedding used for contrastive learning only derived from one sentence instance, and we call these embeddings instance-level embeddings. In other words, each embedding is regarded as a unique class of its own, whichmay hurt the generalization performance. In this study, we propose IS-CSE (instance smoothing contrastive sentence embedding) to smooth the boundaries of embeddings in the feature space. Specifically, we retrieve embeddings from a dynamic memory buffer according to the semantic similarity to get a positive embedding group. Then embeddings in the group are aggregated by a self-attention operation to produce a smoothed instance embedding for further analysis. We evaluate our method on standard semantic text similarity (STS) tasks and achieve an average of 78.30%, 79.47%, 77.73%, and 79.42% Spearman's correlation on the base of BERT-base, BERT-large, RoBERTa-base, and RoBERTa-large respectively, a 2.05%, 1.06%, 1.16% and 0.52% improvement compared to unsup-SimCSE.
['Yue Zhang', 'Zhenzhong Lan', 'Junlei Zhang', 'Hongliang He']
2023-05-12
null
null
null
null
['sentence-embeddings', 'sentence-embeddings', 'semantic-textual-similarity', 'semantic-similarity']
['methodology', 'natural-language-processing', 'natural-language-processing', 'natural-language-processing']
[ 1.06146231e-01 3.14100645e-02 1.01145342e-01 -4.29185569e-01 -6.73298717e-01 -3.19547802e-01 7.77069628e-01 7.37107754e-01 -8.33062530e-01 5.13858616e-01 3.89336854e-01 -5.49764521e-02 -1.32468045e-01 -6.41945422e-01 -5.58817506e-01 -5.59057713e-01 -7.77602717e-02 2.17529297e-01 4.54471767e-01 -4.08521354e-01 4.54561472e-01 6.95240349e-02 -1.49934638e+00 5.23085058e-01 1.11430693e+00 8.42255235e-01 1.90354526e-01 6.15789533e-01 -5.34895122e-01 4.01478648e-01 -6.45396769e-01 -3.84873509e-01 -1.24164641e-01 -4.22567070e-01 -6.37974441e-01 -4.13313895e-01 3.68088514e-01 1.04926407e-01 -3.70392531e-01 1.06895840e+00 5.10893703e-01 4.20224071e-01 9.66281652e-01 -1.16300273e+00 -1.08998120e+00 7.06712067e-01 -4.88924444e-01 4.95673954e-01 2.33794093e-01 -2.38171101e-01 1.15293050e+00 -1.30506778e+00 3.96991402e-01 1.23169196e+00 6.31586432e-01 5.72678506e-01 -1.00945783e+00 -6.30524278e-01 2.03199416e-01 3.74568909e-01 -1.16179836e+00 -4.09383237e-01 6.99057281e-01 -3.12990040e-01 1.30045557e+00 4.17904347e-01 3.95890653e-01 7.42573500e-01 2.24910855e-01 7.91835546e-01 1.01899803e+00 -5.38235962e-01 2.61710316e-01 3.49961996e-01 5.15912056e-01 4.22594726e-01 1.48288697e-01 -2.84738958e-01 -5.07993460e-01 6.90785870e-02 1.88021511e-01 2.22070560e-01 6.00564219e-02 3.43185253e-02 -1.02517962e+00 8.49883437e-01 8.20727289e-01 5.13257742e-01 -2.83962697e-01 -8.98694396e-02 7.34869897e-01 3.97616625e-01 7.09134161e-01 4.61266309e-01 -4.27470267e-01 -2.91726887e-01 -7.08365381e-01 1.89401343e-01 4.83301848e-01 8.31875622e-01 7.51622438e-01 -1.04363352e-01 -2.28385285e-01 1.12108219e+00 2.61920154e-01 4.55121577e-01 1.00345087e+00 -3.48098636e-01 4.68517393e-01 6.29661202e-01 -1.76225901e-01 -1.23321259e+00 -3.03901613e-01 -4.75170851e-01 -8.18412721e-01 -3.24124753e-01 -1.66959375e-01 1.76860198e-01 -7.07960665e-01 1.68574774e+00 1.03214331e-01 4.45105016e-01 2.59490788e-01 7.00463593e-01 9.46563125e-01 8.62779498e-01 2.00594202e-01 -1.44788653e-01 1.37913060e+00 -1.20788932e+00 -7.56558120e-01 -3.67846429e-01 9.43027198e-01 -6.84391856e-01 1.46902275e+00 1.04700774e-01 -9.31657374e-01 -7.10635364e-01 -1.14124894e+00 -2.84655727e-02 -6.74704254e-01 -1.30097508e-01 2.05310583e-01 3.48560184e-01 -9.28770900e-01 7.39113331e-01 -5.73862970e-01 -4.63573784e-01 2.27846995e-01 1.04614668e-01 -3.99968415e-01 -2.51787845e-02 -1.51541007e+00 9.69514191e-01 6.71566844e-01 -2.80100197e-01 -2.85182625e-01 -8.44854593e-01 -8.86703849e-01 2.23302796e-01 1.05954241e-02 -3.75490785e-01 8.22416306e-01 -6.51955545e-01 -1.17315185e+00 7.60117829e-01 -2.93072760e-01 -6.25165224e-01 8.05191044e-03 -4.67966884e-01 -6.40672386e-01 8.10064673e-02 1.78723827e-01 7.21509755e-01 5.57379425e-01 -9.93824482e-01 -4.40127343e-01 -3.74523550e-01 4.68917610e-03 3.69178921e-01 -1.09786808e+00 4.75430228e-02 -1.35950536e-01 -8.58807504e-01 1.10121883e-01 -7.44190037e-01 3.58958878e-02 -1.83618590e-01 -8.46307129e-02 -5.61192334e-01 7.70968258e-01 -7.09828496e-01 1.72410440e+00 -2.44036174e+00 1.34709984e-01 -1.48356557e-01 3.48479152e-02 5.34020305e-01 -3.36162329e-01 5.89625955e-01 -1.22779369e-01 2.41247371e-01 -3.28849196e-01 -4.64433491e-01 5.22827953e-02 1.19998343e-01 -1.21384919e-01 1.23690046e-01 3.73401284e-01 7.88072407e-01 -1.18227899e+00 -5.57604730e-01 1.76496089e-01 2.61613697e-01 -7.49799967e-01 2.67004699e-01 1.91423133e-01 -3.06990772e-01 -1.08178034e-01 2.77341008e-01 5.64364493e-01 5.05415797e-02 1.03980690e-01 -1.71594009e-01 3.38192098e-02 3.63367677e-01 -1.03020942e+00 1.67931402e+00 -7.39767075e-01 6.11051142e-01 -5.48862040e-01 -1.05619264e+00 1.26590896e+00 3.79108824e-02 2.03236148e-01 -7.12735236e-01 -6.20989539e-02 3.19712579e-01 1.25499651e-01 -4.15519476e-01 9.19182599e-01 -3.37183714e-01 -2.42543593e-01 4.04274613e-01 1.39057741e-01 1.04957238e-01 1.87137023e-01 4.30268675e-01 1.08324623e+00 -4.53479320e-01 2.14473203e-01 -4.56957191e-01 7.39221752e-01 -4.80587721e-01 2.65995413e-01 4.90889281e-01 -2.49884576e-01 6.12377048e-01 4.07470077e-01 -3.16456072e-02 -1.03775215e+00 -1.33704245e+00 -2.02015162e-01 1.18219554e+00 7.66779035e-02 -7.77175426e-01 -6.73205912e-01 -7.53515601e-01 1.79707021e-01 9.66285884e-01 -5.72857678e-01 -7.82259047e-01 -4.70229238e-01 -5.70163667e-01 2.77177542e-01 7.53440678e-01 4.41416472e-01 -1.06447637e+00 -7.16038197e-02 1.67234167e-01 9.19202566e-02 -7.98030615e-01 -7.00276911e-01 -1.01774978e-02 -8.86790872e-01 -6.46585166e-01 -5.07652462e-01 -9.76658821e-01 7.11866200e-01 3.33908826e-01 1.00298727e+00 3.64390798e-02 2.79999934e-02 4.20908444e-02 -7.18981087e-01 -1.26003429e-01 -2.54674882e-01 1.37385771e-01 3.30160141e-01 2.78340057e-02 6.80291653e-01 -4.77410108e-01 -3.79506886e-01 -2.21701562e-02 -1.00251818e+00 -3.79204422e-01 4.84408200e-01 1.18531954e+00 3.95475537e-01 -6.30491972e-02 9.26285446e-01 -7.03649282e-01 1.07674468e+00 -7.43755639e-01 5.63654292e-04 7.24611506e-02 -8.23519409e-01 4.13443744e-02 8.50024819e-01 -4.75381047e-01 -5.98332822e-01 -4.89301682e-01 3.77263241e-02 -3.77897680e-01 8.16210136e-02 6.49491787e-01 2.31493618e-02 4.76341546e-01 5.65210104e-01 3.98092896e-01 1.12240583e-01 -4.18867677e-01 4.94483650e-01 1.21951151e+00 2.07953706e-01 -2.28403211e-01 7.14325011e-01 1.58742424e-02 -5.76103389e-01 -9.97245967e-01 -8.40137780e-01 -6.19015872e-01 -5.97455204e-01 7.99239278e-02 7.74640143e-01 -6.12817585e-01 -2.15604335e-01 3.18349838e-01 -1.15753937e+00 1.63917422e-01 -2.67573237e-01 6.03340328e-01 -1.45818278e-01 5.64271629e-01 -4.90129083e-01 -7.92395413e-01 -5.57824671e-01 -8.44541013e-01 7.32389987e-01 4.07243609e-01 -4.72665727e-01 -1.16905820e+00 4.90846187e-02 8.20544437e-02 5.76762080e-01 -2.16190070e-01 9.44459260e-01 -1.11176026e+00 6.69262409e-02 -2.51317620e-01 -2.38713846e-01 7.86592543e-01 2.22936496e-01 -4.14112918e-02 -8.84434521e-01 -3.77861410e-01 -7.08674639e-02 -1.03176892e-01 7.86408484e-01 4.12670970e-02 1.18255711e+00 -2.28120640e-01 -1.48392960e-01 2.24812955e-01 1.32777643e+00 2.20883518e-01 5.65743744e-01 5.10942519e-01 4.92000729e-01 3.77122343e-01 7.70630717e-01 4.50636476e-01 3.75815928e-01 4.77939248e-01 1.17482059e-01 2.18879089e-01 -8.75190422e-02 -2.76938796e-01 6.11005008e-01 1.60501730e+00 4.32316929e-01 -4.56915013e-02 -8.17287862e-01 7.51473069e-01 -1.65766037e+00 -8.21851373e-01 -5.55380173e-02 2.14508986e+00 9.20213223e-01 5.10678232e-01 -4.70517315e-02 3.64027113e-01 8.52342308e-01 4.04692650e-01 -3.03802967e-01 -8.70469391e-01 1.21142520e-02 4.06222582e-01 1.08963989e-01 5.69551885e-01 -1.07618940e+00 9.25759614e-01 5.29941940e+00 9.32494760e-01 -8.97464454e-01 2.11580992e-01 4.05916125e-01 -4.80523221e-02 -4.94895250e-01 -6.38280511e-02 -7.08318174e-01 9.39192295e-01 1.24798834e+00 -5.60797393e-01 1.89960539e-01 7.69028068e-01 -2.57220268e-02 1.15033604e-01 -9.12151754e-01 9.57217515e-01 4.16363955e-01 -1.10475409e+00 2.39347592e-01 -3.64006460e-01 6.71278059e-01 -1.73104256e-01 1.55136108e-01 7.43740201e-01 -2.10668817e-01 -8.75071049e-01 3.59963298e-01 5.13686895e-01 4.66537416e-01 -9.91572261e-01 1.16548264e+00 2.97775686e-01 -1.22216356e+00 -6.55063018e-02 -6.34453833e-01 -5.94470836e-02 6.75545707e-02 7.14241326e-01 -7.43387878e-01 6.91994607e-01 5.84745109e-01 1.06466556e+00 -7.12246478e-01 6.94987714e-01 -2.09489271e-01 6.21517718e-01 -3.85460779e-02 -6.13208532e-01 4.18504447e-01 -1.91785082e-01 4.20561552e-01 1.41413438e+00 2.15726286e-01 -6.15549088e-02 1.26793040e-02 6.23983026e-01 -1.96299866e-01 3.18340391e-01 -4.03780520e-01 -1.89603180e-01 9.30640221e-01 1.06205571e+00 -2.85059452e-01 -6.73642457e-01 -3.94189835e-01 1.10751963e+00 4.96751517e-01 3.28747220e-02 -1.00096798e+00 -1.16590273e+00 7.37949789e-01 -5.81375249e-02 3.25147748e-01 -1.97408721e-01 -2.83477604e-01 -1.10371685e+00 2.50590950e-01 -5.11053085e-01 3.59570503e-01 -6.90317154e-01 -1.68174803e+00 6.65590763e-01 -3.06204371e-02 -1.24227071e+00 -9.67464894e-02 -4.85955983e-01 -8.03096056e-01 9.40265715e-01 -1.50701642e+00 -6.44913018e-01 -3.05335253e-01 1.02036074e-01 5.96784711e-01 -3.53880137e-01 9.22780395e-01 3.16974014e-01 -5.26911020e-01 9.60817516e-01 5.32074988e-01 9.53871310e-02 8.40900064e-01 -1.34036374e+00 5.01249492e-01 6.33611083e-01 1.16011731e-01 8.67887259e-01 5.29024541e-01 -3.60843629e-01 -1.24255228e+00 -1.13604593e+00 1.36510229e+00 -3.57897490e-01 9.66172814e-01 -4.49495316e-01 -1.32523000e+00 3.28768730e-01 3.52859139e-01 6.87224120e-02 8.15861225e-01 3.05160940e-01 -4.49998707e-01 -3.92200559e-01 -1.04230356e+00 7.41091788e-01 9.91078854e-01 -8.91312957e-01 -1.21390378e+00 1.15308285e-01 1.02615416e+00 1.21113859e-01 -1.09254777e+00 1.36635721e-01 2.07859978e-01 -8.11813772e-01 8.31116319e-01 -7.60578156e-01 6.47749662e-01 -1.70204371e-01 -2.29476020e-01 -1.58261204e+00 -4.76628304e-01 -1.90108314e-01 -2.32535750e-01 1.43349385e+00 3.66456360e-01 -8.64589334e-01 4.82824981e-01 2.15290263e-01 -4.78459865e-01 -9.68929350e-01 -8.73268425e-01 -1.20515215e+00 4.67688918e-01 -1.37963504e-01 5.48897803e-01 1.12304378e+00 3.94540250e-01 5.02808213e-01 7.53630400e-02 -7.26523995e-02 3.76072437e-01 -1.62508145e-01 5.15408218e-01 -9.82389987e-01 -7.65762776e-02 -4.66461658e-01 -6.74702704e-01 -1.00556278e+00 2.81847179e-01 -1.34650147e+00 -1.58495367e-01 -1.52170146e+00 3.21226746e-01 -3.48520577e-01 -8.95179868e-01 2.71971554e-01 -6.11118674e-01 -5.16375452e-02 1.94865227e-01 -2.60117073e-02 -5.41655898e-01 8.55469108e-01 9.54577625e-01 -2.07700372e-01 -2.14157477e-02 -5.99054933e-01 -6.70393050e-01 3.07336479e-01 1.06660914e+00 -5.37428856e-01 -5.00884771e-01 -4.62813765e-01 -1.45942628e-01 -5.19478619e-01 7.59788975e-02 -9.54823136e-01 2.62544692e-01 1.93451166e-01 1.24465741e-01 -5.33607006e-01 3.44500244e-01 -4.14887637e-01 -3.74157846e-01 6.61819160e-01 -5.67773104e-01 2.06653655e-01 1.85201481e-01 5.12613654e-01 -4.97115344e-01 -6.01381838e-01 6.50410652e-01 1.56503320e-01 -8.09548378e-01 4.42545786e-02 -7.45319501e-02 4.49406981e-01 8.71751249e-01 -2.38075897e-01 -3.46447825e-01 -2.27726880e-03 -5.34714997e-01 8.48860145e-02 2.01345161e-01 7.67386138e-01 8.90182436e-01 -1.75070405e+00 -8.23450506e-01 2.10761815e-01 3.67786735e-01 -2.06845939e-01 4.27931339e-01 6.76419377e-01 -1.11894146e-01 2.69927293e-01 -7.51194060e-02 -4.83016998e-01 -1.34915864e+00 5.97104073e-01 -1.65056631e-01 -4.71101217e-02 -4.76078331e-01 8.39753926e-01 -2.78191771e-02 -5.39736331e-01 -4.99804243e-02 -3.76174390e-01 -2.96609610e-01 3.28142822e-01 5.65410495e-01 4.11848217e-01 8.67379308e-02 -4.69203174e-01 -6.43779755e-01 5.43792248e-01 -4.03819710e-01 8.63977969e-02 1.30094969e+00 4.59819622e-02 -2.09654242e-01 6.22067690e-01 1.73462391e+00 -8.80983546e-02 -6.34389639e-01 -2.87076175e-01 2.84127593e-01 -5.44180870e-01 -9.97226760e-02 -5.42125762e-01 -6.96799457e-01 9.48867917e-01 6.03402078e-01 4.16645318e-01 8.54335666e-01 3.34201045e-02 9.44133818e-01 3.27814102e-01 1.91282090e-02 -1.26711893e+00 3.47403467e-01 7.84584820e-01 9.05293226e-01 -1.14418459e+00 -1.72668919e-01 -8.01590681e-02 -7.08407700e-01 1.13292694e+00 6.21391833e-01 -4.61608917e-01 6.87444925e-01 -2.82502770e-02 -2.44239524e-01 6.53090551e-02 -9.54760373e-01 2.24387217e-02 3.22353750e-01 3.75338942e-01 5.60043693e-01 1.33216679e-01 -7.12036848e-01 8.47362936e-01 -2.49329716e-01 -4.64837164e-01 3.23950112e-01 1.01453686e+00 -8.54532361e-01 -9.11334991e-01 9.40991342e-02 5.32340825e-01 1.34536820e-02 -4.19953734e-01 -1.96772113e-01 6.83014750e-01 -1.76498488e-01 9.09875214e-01 3.83609325e-01 -6.60457611e-01 6.07000113e-01 2.81314760e-01 1.46942809e-01 -8.85589242e-01 -6.13908947e-01 -3.22442919e-01 1.15329072e-01 -1.08646423e-01 -1.09676696e-01 -5.88988483e-01 -1.53593290e+00 -2.10128278e-01 -4.11284834e-01 3.92760813e-01 5.78810394e-01 7.55629539e-01 5.26712000e-01 7.26554215e-01 8.63560498e-01 -3.79492015e-01 -9.00740325e-01 -1.29475200e+00 -5.15282154e-01 7.20906913e-01 -3.61322761e-02 -6.05610430e-01 -8.15286160e-01 -3.04866225e-01]
[10.885794639587402, 8.646835327148438]
6a31ad63-aad0-4d00-bccd-813189198da4
fight-fire-with-fire-reversing-skin
2208.10373
null
https://arxiv.org/abs/2208.10373v2
https://arxiv.org/pdf/2208.10373v2.pdf
Reversing Skin Cancer Adversarial Examples by Multiscale Diffusive and Denoising Aggregation Mechanism
Reliable skin cancer diagnosis models play an essential role in early screening and medical intervention. Prevailing computer-aided skin cancer classification systems employ deep learning approaches. However, recent studies reveal their extreme vulnerability to adversarial attacks -- often imperceptible perturbations to significantly reduce the performances of skin cancer diagnosis models. To mitigate these threats, this work presents a simple, effective, and resource-efficient defense framework by reverse engineering adversarial perturbations in skin cancer images. Specifically, a multiscale image pyramid is first established to better preserve discriminative structures in the medical imaging domain. To neutralize adversarial effects, skin images at different scales are then progressively diffused by injecting isotropic Gaussian noises to move the adversarial examples to the clean image manifold. Crucially, to further reverse adversarial noises and suppress redundant injected noises, a novel multiscale denoising mechanism is carefully designed that aggregates image information from neighboring scales. We evaluated the defensive effectiveness of our method on ISIC 2019, a largest skin cancer multiclass classification dataset. Experimental results demonstrate that the proposed method can successfully reverse adversarial perturbations from different attacks and significantly outperform some state-of-the-art methods in defending skin cancer diagnosis models.
['Zhiqi Shen', 'Yuan Li', 'Yongwei Wang']
2022-08-22
null
null
null
null
['skin-cancer-classification']
['medical']
[ 7.53150523e-01 -1.46026582e-01 7.04735285e-03 -1.54547710e-02 -9.74027574e-01 -9.25089359e-01 4.85937983e-01 -9.06962603e-02 -3.64237726e-01 5.46149492e-01 4.44378033e-02 -2.73137212e-01 1.34024262e-01 -8.06671083e-01 -5.09349704e-01 -1.34259427e+00 1.34378031e-01 -4.77299541e-01 1.94663510e-01 -4.64986920e-01 2.52300408e-02 6.78337872e-01 -8.27652872e-01 4.88007039e-01 1.06472409e+00 7.60608852e-01 -6.03340864e-01 1.08495343e+00 1.68984249e-01 8.84378433e-01 -6.85019970e-01 -8.18589449e-01 2.88400054e-01 -4.92427409e-01 -5.68904281e-01 -6.30952492e-02 5.57859361e-01 -2.71672577e-01 -5.98213375e-01 1.69190466e+00 8.84187341e-01 -4.61949766e-01 6.99985981e-01 -1.03723741e+00 -9.76598263e-01 2.75379747e-01 -7.48489261e-01 1.87488914e-01 2.91549772e-01 4.42111015e-01 2.74477541e-01 -3.66860718e-01 4.80645388e-01 1.09517062e+00 7.46915519e-01 1.17765892e+00 -1.05232704e+00 -8.52317810e-01 -2.79926900e-02 4.09376323e-02 -1.16124475e+00 -2.07552105e-01 1.02579772e+00 -4.12612334e-02 1.25488024e-02 9.22156453e-01 4.50516790e-01 1.87454784e+00 7.93886483e-01 6.20881021e-01 1.45405602e+00 -1.85693815e-01 2.26036564e-01 1.29040971e-01 -2.83769280e-01 7.46846378e-01 2.52654612e-01 2.13216662e-01 -2.06466988e-01 -5.68887174e-01 5.80972910e-01 2.91313026e-02 -3.31324875e-01 1.39289483e-01 -6.33890629e-01 6.84553385e-01 7.84883618e-01 2.90831476e-01 -3.36674541e-01 7.56520852e-02 6.07126236e-01 2.56099224e-01 3.17458719e-01 3.17681015e-01 9.38049406e-02 5.32913864e-01 -3.33693355e-01 -1.72965124e-01 5.36361039e-01 2.69386023e-01 -4.10757633e-03 1.30471155e-01 -2.47906625e-01 6.17003322e-01 -1.25407562e-01 7.07017839e-01 4.99419183e-01 -6.04885519e-01 2.62332618e-01 3.19896728e-01 -2.59826273e-01 -1.30105877e+00 -1.04784705e-01 -5.81266642e-01 -1.53861964e+00 2.43045658e-01 2.09962949e-01 -4.33452539e-02 -1.03407109e+00 1.44138396e+00 7.09043860e-01 5.80841601e-01 3.88872117e-01 7.31820226e-01 5.68859756e-01 6.84519708e-02 5.25425315e-01 -5.00193126e-02 1.33465958e+00 -5.35470605e-01 -7.84062028e-01 -8.23476389e-02 3.11987102e-01 -8.08073759e-01 7.33257711e-01 4.76695269e-01 -8.87627363e-01 -4.01861399e-01 -1.13542831e+00 2.52177715e-01 -3.86841923e-01 -3.43953639e-01 5.95149517e-01 1.27609134e+00 -6.67775452e-01 4.18576628e-01 -1.02697980e+00 -1.96801126e-01 8.87375653e-01 1.90266222e-01 -6.03919446e-01 -3.39055002e-01 -1.45634317e+00 6.77244663e-01 -1.95036322e-01 2.01867849e-01 -1.13952374e+00 -8.73070896e-01 -7.70806491e-01 -4.44497228e-01 -4.87324037e-02 -6.59693241e-01 6.69285953e-01 -1.38258266e+00 -1.41338539e+00 9.81500685e-01 2.81843334e-01 -6.57238543e-01 8.30161929e-01 -1.77359536e-01 -7.51835525e-01 7.02863395e-01 -1.97546184e-01 7.65252039e-02 1.36023104e+00 -1.35979414e+00 -3.52959782e-01 -5.42875171e-01 -1.48744762e-01 -4.11366597e-02 -1.12094009e+00 1.59334257e-01 -1.69077545e-01 -1.06247556e+00 -2.32144341e-01 -9.44568455e-01 -7.28706598e-01 3.25937033e-01 -7.04289079e-01 5.38959682e-01 7.23669767e-01 -8.09934676e-01 1.16159916e+00 -2.15570688e+00 1.51449785e-01 4.13696676e-01 2.36432895e-01 6.26030862e-01 -4.50661004e-01 1.55930802e-01 -2.42955193e-01 4.22062963e-01 -4.24327224e-01 -5.63373603e-02 -4.57432419e-01 2.36536518e-01 -3.18314761e-01 8.78214002e-01 3.83573025e-01 8.64238143e-01 -9.83689785e-01 -6.63608015e-01 1.91605598e-01 8.01020265e-01 -3.28130603e-01 5.80380931e-02 3.12627673e-01 5.06380379e-01 -7.84528434e-01 1.07210672e+00 1.11269212e+00 2.28602707e-01 1.01345636e-01 -3.36484343e-01 6.55246556e-01 -7.26823568e-01 -7.80448914e-01 1.22902167e+00 -2.18220770e-01 9.58629027e-02 5.02331614e-01 -9.23325717e-01 5.25709808e-01 3.06967884e-01 5.27422130e-01 -4.14156735e-01 2.81057626e-01 2.75727548e-02 -1.37159243e-01 -6.34727299e-01 -1.50974914e-01 -2.54472017e-01 -2.54693568e-01 -2.62742370e-01 -3.43214869e-01 -2.20360249e-01 -4.55724895e-01 2.79287815e-01 1.39724171e+00 -5.03177285e-01 2.76262522e-01 -1.62437633e-01 9.88785028e-01 -1.28529221e-01 6.93394065e-01 7.43664682e-01 -7.25579679e-01 4.89181519e-01 3.08966339e-01 -3.39488357e-01 -5.42415202e-01 -1.47763944e+00 -1.80608541e-01 7.07124114e-01 2.81212211e-01 1.13325655e-01 -1.19153488e+00 -1.24531949e+00 6.63806051e-02 2.87586361e-01 -1.14770532e+00 -7.29577661e-01 -4.03400540e-01 -9.85478044e-01 1.39961302e+00 5.09373248e-01 7.49377608e-01 -6.20510161e-01 1.70834810e-01 -1.11706682e-01 8.64044651e-02 -8.63122642e-01 -5.83253920e-01 -1.58361316e-01 -5.48794329e-01 -1.44871092e+00 -7.77185023e-01 -8.02092731e-01 1.08924556e+00 1.40783846e-01 6.61748707e-01 2.97414213e-01 -9.87480879e-01 4.24277425e-01 -3.25834602e-01 -3.70614886e-01 -1.06236660e+00 -3.31245542e-01 1.96393937e-01 3.65342915e-01 2.03107968e-01 -3.54685605e-01 -7.23235011e-01 2.10938767e-01 -1.44069076e+00 -5.46110988e-01 5.89228094e-01 1.15935814e+00 6.32352114e-01 5.77814579e-01 3.32871467e-01 -1.08919287e+00 6.34700716e-01 -4.74352837e-01 -6.57355040e-02 3.74304652e-01 9.48240682e-02 -3.32770705e-01 1.12839425e+00 -8.52351487e-01 -1.08885181e+00 2.56120354e-01 -4.27441776e-01 -5.20227849e-01 -2.30326056e-01 1.35267809e-01 -3.40310395e-01 -7.95974612e-01 1.08668983e+00 4.44771588e-01 3.24188247e-02 -3.33314016e-02 2.46241271e-01 5.43442130e-01 8.38277698e-01 -3.00450206e-01 1.41466606e+00 9.28335488e-01 3.75872254e-01 -1.00639892e+00 -7.00467706e-01 -5.70519976e-02 -3.36255372e-01 -1.57751709e-01 8.80657732e-01 -8.86198640e-01 -4.90492880e-01 1.12255144e+00 -6.93337321e-01 4.34551351e-02 1.59648225e-01 -6.25142828e-02 -3.45348418e-02 7.93321967e-01 -1.09536064e+00 -6.16423666e-01 -6.55227065e-01 -8.53812277e-01 8.55234027e-01 4.32628989e-01 1.85869753e-01 -1.18876815e+00 6.84389891e-03 5.50314963e-01 5.04706740e-01 1.00989890e+00 6.88535333e-01 -3.88774663e-01 -6.84151426e-02 -7.53517210e-01 1.91375569e-01 7.76863813e-01 6.39407635e-01 2.33107671e-01 -1.02933240e+00 -6.57800198e-01 2.19938576e-01 -3.69140178e-01 8.52302551e-01 -1.31740104e-02 1.54957342e+00 -5.49165487e-01 -4.29255158e-01 9.24811244e-01 1.38250363e+00 -9.32296067e-02 8.27502906e-01 1.75604582e-01 7.52934456e-01 5.27120471e-01 4.44832742e-01 2.03016281e-01 -1.67866290e-01 -3.47030573e-02 7.83744812e-01 -5.89722633e-01 -3.30894031e-02 -1.34183124e-01 4.25333560e-01 3.45445961e-01 1.41681775e-01 -5.74114472e-02 -5.39050937e-01 3.67422163e-01 -1.22405696e+00 -1.04516077e+00 1.40151680e-01 1.99699104e+00 1.04745233e+00 1.58730343e-01 -2.71257192e-01 1.76180616e-01 7.76566327e-01 1.66850671e-01 -7.84323215e-01 -2.42209569e-01 -3.95518005e-01 4.93654698e-01 7.28907228e-01 3.71441275e-01 -1.66135192e+00 8.48238945e-01 6.07765532e+00 1.21473241e+00 -1.29756200e+00 1.15279080e-02 7.82105029e-01 5.14521711e-02 -2.37261131e-01 -6.61115706e-01 -2.49924883e-01 5.03458738e-01 5.46755552e-01 7.67591521e-02 1.10205948e-01 8.96998167e-01 -5.28963171e-02 3.82221192e-01 -5.60297012e-01 5.81994057e-01 9.43530723e-02 -1.27119684e+00 2.36521050e-01 -5.66870384e-02 8.24963927e-01 -5.48478484e-01 6.39642835e-01 -1.71867043e-01 4.78966683e-01 -1.16403246e+00 7.99005032e-02 5.88082492e-01 8.86640072e-01 -1.08946407e+00 7.86814630e-01 1.08895563e-01 -1.04672945e+00 -1.11938566e-01 -2.77319610e-01 5.31873822e-01 -3.75470519e-01 3.53412211e-01 -4.20107126e-01 6.60931945e-01 7.00973332e-01 4.72966552e-01 -1.01138890e+00 4.51560944e-01 -4.08338159e-01 7.52255380e-01 2.28710454e-02 5.87677099e-02 1.08848035e-01 2.00253084e-01 5.10725796e-01 1.31217396e+00 -3.65209430e-02 1.44012421e-01 4.54063974e-02 2.59668350e-01 -1.20145986e-02 -1.38069421e-01 -7.95910358e-01 6.64725015e-03 3.90160769e-01 1.39176953e+00 -5.41612983e-01 -7.63230841e-04 -8.20231289e-02 1.61039340e+00 -1.27790913e-01 3.28623444e-01 -1.03005552e+00 -4.64228243e-01 1.12864172e+00 -1.55371577e-01 -8.84127468e-02 2.71979392e-01 -2.46372163e-01 -1.09200370e+00 -1.58296645e-01 -1.41104543e+00 6.48187041e-01 -2.39662752e-01 -1.85809851e+00 6.70390546e-01 -6.46970034e-01 -1.27662957e+00 2.87917554e-01 -6.71804547e-01 -9.41646099e-01 6.45049393e-01 -1.41129196e+00 -1.58650994e+00 -3.64869297e-01 1.06607568e+00 1.44858971e-01 -2.44294256e-01 1.03989017e+00 3.43332961e-02 -8.07074666e-01 1.28667343e+00 2.20522523e-01 4.75449383e-01 8.08189094e-01 -1.23491263e+00 2.79765934e-01 1.24206924e+00 -2.94408232e-01 6.66502714e-01 5.60459733e-01 -7.47750044e-01 -1.65040410e+00 -1.36790562e+00 2.97435839e-03 -4.06846374e-01 9.26558971e-01 -2.04913184e-01 -9.57048476e-01 1.64006203e-01 2.31170848e-01 5.61406314e-01 1.11826968e+00 -7.41114914e-01 -6.27951860e-01 -3.64923865e-01 -1.78896201e+00 1.02694368e+00 8.02746236e-01 -8.28819454e-01 -2.69528419e-01 4.95465130e-01 5.95209956e-01 -2.78217167e-01 -1.06458855e+00 5.25803447e-01 4.81135249e-01 -7.40716398e-01 1.48370147e+00 -9.23604846e-01 5.27769864e-01 -1.66717663e-01 -9.89835560e-02 -1.28604960e+00 -2.82419235e-01 -9.52209294e-01 7.06058089e-03 1.05455208e+00 -1.94274247e-01 -7.46062458e-01 9.80075777e-01 2.58461267e-01 3.21702480e-01 -7.24233150e-01 -1.01440370e+00 -5.76931417e-01 4.86722440e-01 -6.32614174e-05 2.00036898e-01 1.12997353e+00 -3.97408247e-01 -5.36288381e-01 -3.67891103e-01 8.70309830e-01 1.19856679e+00 -6.02970898e-01 5.28009295e-01 -4.80740994e-01 -2.04044402e-01 -2.23254502e-01 -5.89325249e-01 -8.39590281e-02 1.30309120e-01 -5.36671340e-01 -1.65924296e-01 -7.02666938e-01 -1.83084644e-02 -1.13514006e-01 -8.39473665e-01 4.08826083e-01 -9.16189313e-01 8.30487430e-01 -3.58787589e-02 -1.48364618e-01 -1.75262436e-01 1.43097907e-01 1.44282746e+00 -6.12044871e-01 2.77098179e-01 9.85639989e-02 -9.42455947e-01 8.77171040e-01 8.42763662e-01 -4.97522414e-01 -1.66061565e-01 -3.48816849e-02 -3.73402178e-01 -1.83153078e-01 5.71257949e-01 -9.62297201e-01 2.63344496e-01 -4.74394590e-01 6.96139336e-01 4.05155215e-03 1.15855731e-01 -9.41863596e-01 4.12630513e-02 1.19970286e+00 -3.96903366e-01 -4.28229451e-01 2.42164120e-01 8.15181136e-01 -2.05452234e-01 1.08266652e-01 1.35277331e+00 -6.90210387e-02 -3.79237294e-01 3.39657634e-01 -4.42976922e-01 -3.34590554e-01 1.47517359e+00 -1.76555701e-02 -4.32123363e-01 3.23652215e-02 -6.88774765e-01 6.04942590e-02 5.15208542e-01 2.99914688e-01 9.32981789e-01 -1.28180635e+00 -9.40951228e-01 3.72536600e-01 2.76931450e-02 -4.28326488e-01 7.26887763e-01 5.45282602e-01 -6.88428402e-01 -3.70589197e-01 -3.26549441e-01 -3.25131297e-01 -1.81871641e+00 9.05546546e-01 6.98619723e-01 -4.50048506e-01 -1.96956038e-01 1.17524242e+00 2.01401830e-01 -1.46716058e-01 1.94435477e-01 1.64518028e-01 7.16234595e-02 -3.11843514e-01 8.35029125e-01 2.35816851e-01 -1.56182051e-01 -3.83172154e-01 -5.11399746e-01 6.48636281e-01 -4.24561471e-01 4.47455376e-01 1.00351357e+00 1.26511887e-01 -2.44267136e-01 -5.25091052e-01 1.22367966e+00 2.84353673e-01 -1.18319714e+00 -2.84772422e-02 -4.43686187e-01 -5.45189023e-01 -6.11810684e-02 -8.97825480e-01 -1.23289824e+00 7.27066934e-01 8.94471765e-01 4.01404172e-01 1.79460120e+00 -5.42623222e-01 8.97624075e-01 2.29031757e-01 1.53555259e-01 -8.65791798e-01 4.29574639e-01 -1.61053926e-01 8.80833089e-01 -1.18289840e+00 6.04754239e-02 -7.35358477e-01 -6.56679332e-01 9.46835637e-01 6.94513977e-01 -4.30307537e-01 6.16955876e-01 6.66028559e-01 5.59793472e-01 1.50204852e-01 -2.05167711e-01 3.33258092e-01 1.83988869e-01 9.23483014e-01 -1.52536020e-01 5.00059947e-02 -8.87044296e-02 6.31450534e-01 2.79113114e-01 -3.14954132e-01 3.34549278e-01 9.73026633e-01 -2.17262525e-02 -1.14376521e+00 -8.02872658e-01 1.66551128e-01 -1.03026533e+00 -4.43710163e-02 -7.72027969e-01 6.37307465e-01 1.47234201e-01 8.81940663e-01 -5.15381098e-01 -5.91000021e-01 1.37212411e-01 -4.18495536e-01 3.51849347e-01 -1.56508088e-01 -9.31690097e-01 -9.74405333e-02 -2.52485752e-01 -7.12601006e-01 -2.00852022e-01 -3.30590785e-01 -7.82797635e-01 -2.22482279e-01 -1.02735534e-01 -8.63915160e-02 4.46299702e-01 5.05239010e-01 1.61475092e-01 7.16329455e-01 1.23162889e+00 -5.23418009e-01 -1.09426844e+00 -5.31419873e-01 -4.64501858e-01 7.71548688e-01 5.24353385e-01 -7.82433525e-02 -6.26192927e-01 1.99429065e-01]
[5.505206108093262, 7.94072961807251]
98dd6362-cd27-45c2-b31d-4b9bc91d19ce
conditional-support-alignment-for-domain
2305.18458
null
https://arxiv.org/abs/2305.18458v1
https://arxiv.org/pdf/2305.18458v1.pdf
Conditional Support Alignment for Domain Adaptation with Label Shift
Unsupervised domain adaptation (UDA) refers to a domain adaptation framework in which a learning model is trained based on the labeled samples on the source domain and unlabelled ones in the target domain. The dominant existing methods in the field that rely on the classical covariate shift assumption to learn domain-invariant feature representation have yielded suboptimal performance under the label distribution shift between source and target domains. In this paper, we propose a novel conditional adversarial support alignment (CASA) whose aim is to minimize the conditional symmetric support divergence between the source's and target domain's feature representation distributions, aiming at a more helpful representation for the classification task. We also introduce a novel theoretical target risk bound, which justifies the merits of aligning the supports of conditional feature distributions compared to the existing marginal support alignment approach in the UDA settings. We then provide a complete training process for learning in which the objective optimization functions are precisely based on the proposed target risk bound. Our empirical results demonstrate that CASA outperforms other state-of-the-art methods on different UDA benchmark tasks under label shift conditions.
['Toan Tran', 'Tuan-Duy H. Nguyen', 'Anh Tong', 'Lam Tran', 'Anh T Nguyen']
2023-05-29
null
null
null
null
['unsupervised-domain-adaptation']
['methodology']
[ 6.47300601e-01 1.30491123e-01 -2.70553201e-01 -5.95281303e-01 -1.02918053e+00 -4.67606455e-01 7.62553990e-01 1.18402079e-01 -3.91372979e-01 9.57918823e-01 3.05063035e-02 -4.41873185e-02 -2.16394350e-01 -6.86719239e-01 -8.23543191e-01 -1.08546209e+00 3.43425751e-01 4.99805093e-01 1.22330382e-01 3.96129265e-02 1.20392598e-01 2.37388298e-01 -1.25883210e+00 -6.52390122e-02 1.13991916e+00 9.67244208e-01 1.61915999e-02 3.44676264e-02 1.89531855e-02 2.69275755e-01 -6.69079185e-01 -4.00811523e-01 4.95092630e-01 -6.08113229e-01 -7.23066211e-01 1.16884559e-01 2.51854628e-01 2.58695595e-02 1.50530729e-02 1.19664252e+00 5.15310466e-01 2.36463189e-01 1.39158130e+00 -1.37221611e+00 -6.83476269e-01 1.92271441e-01 -6.10961497e-01 1.26815766e-01 1.78151838e-02 -1.31174400e-01 7.64943779e-01 -8.26388299e-01 5.50575614e-01 1.00746143e+00 7.09595084e-01 7.13662565e-01 -1.55754757e+00 -8.87126863e-01 3.25777024e-01 1.14208080e-01 -1.35848057e+00 -1.91171825e-01 1.01739991e+00 -6.98613465e-01 3.31311256e-01 -1.74254641e-01 3.16264518e-02 1.42287612e+00 2.34476104e-01 5.59876382e-01 1.30906963e+00 -6.97139740e-01 6.74392164e-01 4.59493607e-01 1.25155807e-01 1.50263295e-01 3.52766395e-01 1.00217193e-01 -3.77011538e-01 -4.94453281e-01 4.21482861e-01 -1.07750699e-01 3.06952931e-02 -1.20715749e+00 -1.00304842e+00 1.13006866e+00 1.52176633e-01 9.95512009e-02 -5.25369644e-01 -4.46763396e-01 5.55471957e-01 2.96455085e-01 7.18959451e-01 2.10466906e-01 -4.65344489e-01 4.19517875e-01 -6.94814444e-01 4.13154542e-01 4.81558859e-01 1.01460350e+00 6.87155128e-01 -4.02179994e-02 -3.20531577e-01 8.91652346e-01 5.22953033e-01 5.62542737e-01 6.05093539e-01 -6.67018175e-01 4.64989096e-01 5.51733434e-01 2.87211925e-01 -5.60244262e-01 -7.86951855e-02 -5.41069329e-01 -7.45227456e-01 4.03742850e-01 8.39373231e-01 -2.15385437e-01 -8.24695408e-01 2.10687137e+00 6.58257306e-01 3.48758548e-01 5.51483512e-01 5.95271230e-01 2.19604835e-01 4.60249960e-01 3.07869613e-01 -2.58850366e-01 1.10628080e+00 -6.62843406e-01 -7.04347014e-01 -2.35841647e-01 5.81595421e-01 -7.26050913e-01 1.23440969e+00 2.05410883e-01 -6.78584337e-01 -5.38946033e-01 -1.31386638e+00 2.17509985e-01 -3.07458967e-01 5.29588610e-02 1.04110338e-01 8.12752068e-01 -5.84051788e-01 5.15255332e-01 -5.88367522e-01 -4.87599194e-01 6.13355756e-01 2.59660751e-01 -3.99382114e-01 -1.40080228e-01 -1.32341528e+00 9.85217869e-01 4.64265853e-01 -5.11744320e-01 -9.57391024e-01 -7.55996168e-01 -8.74812305e-01 -7.35192075e-02 3.34727883e-01 -6.72371745e-01 1.28198802e+00 -1.05186605e+00 -1.60298383e+00 1.10649252e+00 -1.93667151e-02 -7.37649262e-01 5.92777252e-01 -2.43356422e-01 -2.49415696e-01 -1.57675207e-01 2.54677206e-01 2.53438860e-01 1.25810349e+00 -1.34145808e+00 -6.08650744e-01 -4.86828059e-01 -3.85665894e-01 3.04540873e-01 -4.30361450e-01 -1.96558341e-01 1.53063565e-01 -1.00612450e+00 -1.87965393e-01 -7.58209229e-01 -9.46792886e-02 -1.22167416e-01 -1.93073690e-01 -4.55058962e-01 8.62543881e-01 -4.02353644e-01 1.08593690e+00 -2.32606363e+00 3.24560732e-01 2.88733780e-01 -2.27503762e-01 3.69957864e-01 1.06885843e-01 3.47320408e-01 -3.26009691e-01 -3.88407677e-01 -6.66956425e-01 -3.77531767e-01 2.57598519e-01 1.11174636e-01 -7.13158607e-01 7.47053027e-01 1.59923241e-01 2.28743866e-01 -8.49906445e-01 -4.87971842e-01 6.18816800e-02 3.29759002e-01 -5.27459562e-01 4.35871810e-01 -8.60420763e-02 7.00482249e-01 -5.15236378e-01 3.82166207e-01 9.48481083e-01 5.72255626e-03 1.88893095e-01 6.49579391e-02 4.07147437e-01 6.59800693e-02 -1.07581842e+00 1.68839264e+00 -2.75928289e-01 9.09983963e-02 -6.13562856e-03 -1.48729122e+00 1.31563497e+00 2.48315483e-01 4.22257781e-01 -3.13684911e-01 1.15360610e-01 3.68098199e-01 -1.66033998e-01 -4.62029278e-02 4.62681390e-02 -7.26569295e-01 -4.07957792e-01 2.68055618e-01 2.71342188e-01 -3.98955680e-02 -3.18378806e-01 -2.57357117e-02 7.95567453e-01 3.40413541e-01 6.83023751e-01 -5.50423145e-01 7.84456313e-01 -1.99761078e-01 8.23505461e-01 6.52068317e-01 -4.94231403e-01 5.13719916e-01 4.46714699e-01 -1.29255295e-01 -1.13885379e+00 -1.35133469e+00 -4.60836321e-01 1.11684585e+00 7.05714077e-02 2.20058724e-01 -8.99896562e-01 -1.26616132e+00 2.16250718e-01 1.15459633e+00 -8.47174764e-01 -5.17025471e-01 -2.55735278e-01 -5.92303932e-01 4.14049625e-01 4.50935215e-01 5.99075615e-01 -7.90767848e-01 -1.46169558e-01 6.60682172e-02 6.24190159e-02 -7.13937938e-01 -5.62395692e-01 3.78670990e-01 -8.61101866e-01 -1.00637162e+00 -1.15506506e+00 -9.47592974e-01 7.26755679e-01 -8.50521922e-02 7.69151807e-01 -8.68741333e-01 2.46652678e-01 3.02461028e-01 -4.29387033e-01 -5.97336650e-01 -5.62626898e-01 1.60807654e-01 3.80735099e-01 3.80412996e-01 6.44182503e-01 -6.69803441e-01 -3.77492607e-01 4.60681200e-01 -1.00767589e+00 -3.02227020e-01 4.73571569e-01 9.79552627e-01 7.32075095e-01 2.79177316e-02 1.23408604e+00 -1.29666781e+00 5.66100597e-01 -8.65757942e-01 -4.28257614e-01 3.90442878e-01 -8.41326356e-01 2.51287520e-01 7.12658703e-01 -6.40621543e-01 -1.34138322e+00 2.00640559e-01 1.16904914e-01 -4.05632526e-01 -3.70485723e-01 1.68963343e-01 -5.88203847e-01 1.96227223e-01 9.80989099e-01 3.47892582e-01 1.01593062e-01 -5.09779692e-01 2.90045351e-01 6.69537723e-01 6.28933907e-01 -8.72436404e-01 1.07983220e+00 5.41048527e-01 8.81026462e-02 -3.21245223e-01 -9.90686476e-01 -5.23326635e-01 -9.15413082e-01 2.34284729e-01 7.03432262e-01 -8.82485151e-01 7.08496617e-03 6.31802738e-01 -8.45668614e-01 -2.14776918e-01 -6.52779162e-01 6.18995726e-01 -9.11995530e-01 4.31010962e-01 9.26888585e-02 -5.77762902e-01 -2.64344692e-01 -9.31171894e-01 8.34818006e-01 2.11044237e-01 -1.95616767e-01 -1.18030298e+00 3.31835657e-01 1.21834099e-01 2.58466601e-01 4.38492805e-01 1.15801001e+00 -1.29383755e+00 2.76860714e-01 -2.27592230e-01 -2.41016820e-02 9.03123081e-01 4.80299413e-01 -6.85697377e-01 -8.93892348e-01 -6.69479489e-01 3.33974242e-01 -2.79099971e-01 6.79198444e-01 4.49811012e-01 8.55144322e-01 -1.97846428e-01 -4.03009385e-01 4.19890881e-01 1.22663987e+00 3.38244259e-01 3.66555929e-01 5.36711812e-01 2.55086809e-01 6.67485476e-01 1.18721533e+00 5.57823300e-01 -2.51945704e-02 6.73327088e-01 2.47099161e-01 7.35270604e-02 6.47572204e-02 -3.83181930e-01 4.32156622e-01 4.14023459e-01 4.77556080e-01 -1.28377616e-01 -7.03949094e-01 7.36337423e-01 -1.80831206e+00 -6.41561449e-01 4.30542052e-01 2.54305649e+00 1.05852842e+00 2.51468480e-01 3.39062303e-01 4.29228134e-02 1.07727075e+00 -5.01154810e-02 -9.60272610e-01 -3.20743293e-01 8.12798738e-02 2.43956894e-01 5.12454152e-01 4.25115287e-01 -1.41591668e+00 5.65878093e-01 5.94281769e+00 1.07213020e+00 -8.66716146e-01 2.59726763e-01 3.72954428e-01 2.11920232e-01 -1.93327546e-01 -8.87108371e-02 -7.70475566e-01 6.17718577e-01 8.43668520e-01 -6.67396724e-01 2.65350286e-02 1.27198291e+00 -1.38688862e-01 1.72903672e-01 -1.27769208e+00 6.55897081e-01 7.21806586e-02 -7.31731772e-01 1.96516067e-02 1.33030459e-01 8.89914215e-01 -4.31144685e-01 3.40160936e-01 5.95348716e-01 3.52322727e-01 -6.92551076e-01 5.39870441e-01 3.15584213e-01 1.02539694e+00 -9.28963423e-01 8.30041766e-01 4.86475915e-01 -7.24135637e-01 -6.98157772e-02 -3.75648469e-01 2.32518539e-01 -3.28639448e-02 4.41808075e-01 -9.88147259e-01 6.91513836e-01 4.27418262e-01 6.51366591e-01 -3.62068892e-01 8.11547041e-01 -1.37972414e-01 8.30912948e-01 -6.31138831e-02 3.38869959e-01 -2.54965145e-02 -3.14760298e-01 7.93244243e-01 9.89848495e-01 3.37426007e-01 -2.50606149e-01 6.03022575e-02 7.32388020e-01 -1.37923747e-01 3.16101760e-01 -8.81503999e-01 2.02981040e-01 6.66944146e-01 7.06280231e-01 -4.89977896e-01 -2.59852916e-01 -4.66719747e-01 1.03649306e+00 2.28958413e-01 3.68889987e-01 -8.73514235e-01 -5.11169910e-01 6.96375787e-01 2.94116974e-01 4.45031315e-01 1.85218036e-01 -3.76294464e-01 -1.00723529e+00 -3.19514535e-02 -8.34438443e-01 6.76982880e-01 -2.98831254e-01 -1.81455076e+00 3.83401453e-01 4.06684637e-01 -1.62185955e+00 -3.54934275e-01 -5.31580746e-01 -5.96750557e-01 1.14241076e+00 -1.49244356e+00 -1.15835822e+00 9.77499709e-02 9.03973520e-01 4.30353671e-01 -5.26365876e-01 1.00390530e+00 2.80902416e-01 -3.76938134e-01 9.34513986e-01 7.59924293e-01 -2.44295597e-02 1.32087743e+00 -1.31040311e+00 1.31705523e-01 8.01436603e-01 -4.12530005e-01 6.03223562e-01 8.03035378e-01 -6.34414673e-01 -6.21120334e-01 -1.21635032e+00 6.78277791e-01 -3.71035665e-01 4.43316579e-01 -3.97681355e-01 -1.14287603e+00 8.69998753e-01 7.13038594e-02 1.26169577e-01 8.58645499e-01 7.87397027e-02 -5.84955513e-01 -2.52216130e-01 -1.67274594e+00 2.13463530e-01 6.34236217e-01 -3.95993173e-01 -1.00771284e+00 2.25265503e-01 6.32247210e-01 -2.06451416e-01 -8.50111246e-01 5.72511852e-01 2.67623425e-01 -5.53780317e-01 9.89718795e-01 -8.88454735e-01 1.81760892e-01 -3.37682635e-01 -3.02047879e-01 -1.56526268e+00 -3.13446611e-01 -2.90960550e-01 6.22476172e-03 1.50128460e+00 2.52413712e-02 -9.27119672e-01 6.37203276e-01 3.04862976e-01 8.36184714e-03 -5.71055472e-01 -1.25393569e+00 -1.05490792e+00 6.07211053e-01 2.34355833e-02 5.07191896e-01 1.19271779e+00 -2.02594057e-01 3.52391750e-01 -2.48132601e-01 2.62732387e-01 9.00515556e-01 -1.36086019e-02 6.55607164e-01 -1.46789742e+00 -1.73388079e-01 -9.43862051e-02 -2.85178244e-01 -6.15150154e-01 4.82227176e-01 -1.05878878e+00 8.34408328e-02 -1.04474103e+00 2.20072702e-01 -5.02404451e-01 -6.68768466e-01 3.33768338e-01 -2.47580171e-01 -2.04548120e-01 -4.75707017e-02 2.88604826e-01 -3.42280507e-01 7.70469368e-01 1.00720870e+00 -3.91135849e-02 -2.36964375e-01 3.56864482e-01 -8.13107014e-01 8.03528666e-01 7.71444976e-01 -6.99311852e-01 -7.85767734e-01 6.53392151e-02 -3.86212438e-01 -3.45967174e-01 1.67997703e-01 -9.70102787e-01 -1.07109748e-01 -3.00166816e-01 3.16870660e-01 -3.31328511e-01 6.17500655e-02 -1.01062036e+00 -1.29544377e-01 3.75732690e-01 -6.14719510e-01 -5.01160860e-01 1.44897968e-01 9.71121848e-01 -1.64951220e-01 -4.31053251e-01 1.31742322e+00 3.20683211e-01 -4.99020427e-01 5.08375876e-02 -1.59546763e-01 2.51018018e-01 1.46026862e+00 -1.17048837e-01 -3.46557721e-02 -1.45469427e-01 -7.37313569e-01 -1.78576494e-03 4.76239771e-01 3.09193313e-01 3.07220489e-01 -1.66315663e+00 -8.82639945e-01 3.36029530e-01 3.47607702e-01 1.83980033e-01 2.46789888e-01 4.50042576e-01 -3.46980654e-02 2.96417147e-01 -3.92961323e-01 -4.75748003e-01 -1.09051478e+00 8.55289042e-01 2.40017742e-01 -5.28024554e-01 -4.42526489e-01 6.97308302e-01 7.08835125e-01 -7.38433123e-01 2.88944066e-01 3.88558544e-02 -1.62515968e-01 -2.86446437e-02 2.95562088e-01 3.37435365e-01 1.52798072e-02 -6.31398499e-01 -3.75506341e-01 4.27125007e-01 -3.50150913e-01 -6.03061058e-02 1.10274780e+00 -1.72461465e-01 4.94507253e-01 3.80174845e-01 1.17294538e+00 2.42516939e-02 -1.58027005e+00 -8.20889652e-01 5.53882234e-02 -5.75515687e-01 -3.03843409e-01 -8.19089413e-01 -5.07143855e-01 8.37605357e-01 9.71368670e-01 -4.46565114e-02 1.22007275e+00 -7.13989511e-03 4.77834791e-01 -2.77062710e-02 3.04790854e-01 -1.23160326e+00 1.48072228e-01 2.24760130e-01 9.24313903e-01 -1.11617696e+00 -6.40720427e-02 -4.10241693e-01 -9.32592571e-01 6.72351718e-01 5.65512419e-01 -3.77594471e-01 6.45428896e-01 -1.94487676e-01 4.11926173e-02 3.18116099e-01 -2.97195703e-01 5.62905222e-02 2.19948918e-01 1.08086991e+00 1.07426435e-01 -2.32490320e-02 -4.71054554e-01 1.11153746e+00 1.04580969e-01 -1.20054901e-01 6.75326586e-02 8.25823069e-01 -2.77971655e-01 -1.48696828e+00 -6.09767079e-01 1.76526517e-01 -4.47035968e-01 2.67876357e-01 -1.92332566e-01 7.69021094e-01 1.94837779e-01 6.75029397e-01 -2.35970363e-01 -1.88443303e-01 5.43524086e-01 6.11099362e-01 3.23547572e-01 -7.50598013e-01 -3.49229649e-02 -1.52169112e-02 -4.05088931e-01 -8.56335461e-02 -4.52812761e-01 -1.06366253e+00 -1.11057627e+00 9.51869264e-02 -2.88847208e-01 2.48032659e-01 4.49862331e-01 9.75745320e-01 2.94373125e-01 3.24088156e-01 8.67146969e-01 -6.44054770e-01 -1.25904000e+00 -1.15841186e+00 -9.08697486e-01 6.83186948e-01 2.60242552e-01 -1.14391530e+00 -5.18365145e-01 1.92172766e-01]
[10.367227554321289, 3.156066417694092]
6e975359-76d3-43a7-bfd9-a7911c45782c
gae-isumm-unsupervised-graph-based
2212.12937
null
https://arxiv.org/abs/2212.12937v1
https://arxiv.org/pdf/2212.12937v1.pdf
GAE-ISumm: Unsupervised Graph-Based Summarization of Indian Languages
Document summarization aims to create a precise and coherent summary of a text document. Many deep learning summarization models are developed mainly for English, often requiring a large training corpus and efficient pre-trained language models and tools. However, English summarization models for low-resource Indian languages are often limited by rich morphological variation, syntax, and semantic differences. In this paper, we propose GAE-ISumm, an unsupervised Indic summarization model that extracts summaries from text documents. In particular, our proposed model, GAE-ISumm uses Graph Autoencoder (GAE) to learn text representations and a document summary jointly. We also provide a manually-annotated Telugu summarization dataset TELSUM, to experiment with our model GAE-ISumm. Further, we experiment with the most publicly available Indian language summarization datasets to investigate the effectiveness of GAE-ISumm on other Indian languages. Our experiments of GAE-ISumm in seven languages make the following observations: (i) it is competitive or better than state-of-the-art results on all datasets, (ii) it reports benchmark results on TELSUM, and (iii) the inclusion of positional and cluster information in the proposed model improved the performance of summaries.
['Radhika Mamidi', 'Subba Reddy Oota', 'Mounika Marreddy', 'Anudeep Ch', 'Lakshmi Sireesha Vakada']
2022-12-25
null
null
null
null
['document-summarization']
['natural-language-processing']
[ 2.14290693e-01 2.90591598e-01 -2.06315249e-01 -2.00721145e-01 -9.37523484e-01 -4.49900031e-01 6.04285598e-01 5.11009753e-01 -1.86008528e-01 8.91462028e-01 1.09877670e+00 -3.12294215e-01 9.27771255e-02 -6.50862455e-01 -6.34967387e-01 -2.57248312e-01 4.49516512e-02 4.39140588e-01 4.28443588e-02 -3.57916206e-01 5.19151032e-01 1.04540521e-02 -9.21060205e-01 3.04203719e-01 1.63646996e+00 3.07439834e-01 3.47160220e-01 1.04877353e+00 -3.16400558e-01 1.01686907e+00 -1.19347858e+00 -4.91489559e-01 -2.50490755e-01 -1.08129609e+00 -9.90538239e-01 1.78304598e-01 8.41521263e-01 -4.31173056e-01 -7.19354391e-01 9.51598108e-01 8.76572073e-01 4.13196623e-01 9.83286023e-01 -6.94787085e-01 -1.07897937e+00 1.39453983e+00 -6.97447598e-01 2.07987502e-01 3.05254638e-01 -1.92593545e-01 1.18491805e+00 -5.27596772e-01 6.96283579e-01 1.01946974e+00 5.66911519e-01 5.96320331e-01 -8.18941593e-01 -3.39757293e-01 1.82519928e-01 7.03730583e-02 -9.31356728e-01 -5.99047363e-01 8.73507142e-01 1.80357337e-01 1.39030790e+00 4.92817312e-01 4.80899274e-01 8.81535411e-01 4.86408800e-01 1.25238287e+00 3.97520512e-01 -2.21148387e-01 3.02482218e-01 -3.93263102e-01 6.42266631e-01 5.93169093e-01 7.25516558e-01 -8.73326242e-01 -3.82157683e-01 -6.83633238e-02 2.09559917e-01 -3.15436214e-01 -3.35068405e-01 3.00452977e-01 -1.08813190e+00 1.06874585e+00 4.04293150e-01 3.12461942e-01 -6.17891848e-01 -5.29701598e-02 9.57949340e-01 1.35631189e-01 7.04506695e-01 4.98246610e-01 -9.69900712e-02 -4.63627744e-03 -1.34125686e+00 1.94207281e-01 9.55500782e-01 9.93519008e-01 3.15714329e-01 7.59910762e-01 -3.94888848e-01 1.12057972e+00 -2.10964590e-01 3.21184993e-01 9.28779900e-01 -7.54382432e-01 9.27843034e-01 5.59011579e-01 -4.39565986e-01 -1.00362444e+00 -4.62128580e-01 -4.17024851e-01 -1.58178961e+00 -7.14099705e-01 -4.50841337e-01 -5.15072703e-01 -9.23891723e-01 1.32856250e+00 -2.58445472e-01 -1.98777556e-01 7.37893045e-01 4.33401912e-01 1.91603124e+00 1.34068918e+00 -2.69992411e-01 -4.78392243e-01 8.85241807e-01 -1.37282121e+00 -8.72711480e-01 -3.56706232e-01 6.68404460e-01 -5.01179755e-01 8.56051922e-01 1.01280883e-01 -1.31125319e+00 -4.59694684e-01 -1.17223012e+00 -3.84899914e-01 -1.20097563e-01 5.00370443e-01 6.19926274e-01 2.29247361e-01 -1.29690337e+00 6.43284798e-01 -8.09621632e-01 -7.37288296e-01 3.08733255e-01 8.61355215e-02 -2.98666984e-01 1.18391730e-01 -8.95848811e-01 6.91962481e-01 9.59703624e-01 -1.40288966e-02 -3.09955746e-01 -3.30743462e-01 -1.28534567e+00 4.98112351e-01 1.64927885e-01 -1.02266467e+00 1.23846424e+00 -6.38161778e-01 -1.64670932e+00 4.69140261e-01 -2.66230583e-01 -8.02531242e-01 1.86515972e-01 -2.19345883e-01 -2.83338934e-01 4.05436337e-01 2.30125129e-01 5.21132350e-01 4.09258932e-01 -1.19442689e+00 -3.36228848e-01 -2.54020452e-01 -5.38841665e-01 3.74572575e-01 -3.33745897e-01 2.23065214e-03 -3.83464485e-01 -9.54486132e-01 -5.61860614e-02 -5.51072955e-01 -2.53718466e-01 -1.37113512e+00 -1.06829679e+00 -4.79526490e-01 8.39099407e-01 -1.36045313e+00 1.68495858e+00 -1.71489477e+00 3.12456250e-01 -3.73336613e-01 1.49670899e-01 6.05541706e-01 -4.27462071e-01 9.82509553e-01 2.04688355e-01 3.05628121e-01 -6.03876233e-01 -6.09164000e-01 9.88926739e-03 1.11742295e-01 -4.68326569e-01 1.01903915e-01 1.72529012e-01 1.13406229e+00 -7.88428903e-01 -8.48335147e-01 -3.70620489e-02 3.57829407e-02 -4.15516824e-01 1.71509579e-01 -2.21352905e-01 9.13123265e-02 -4.76064682e-01 4.37140852e-01 5.00436008e-01 9.59709063e-02 1.82249531e-01 4.83858846e-02 -5.16355457e-03 5.58662951e-01 -6.77943408e-01 1.82251930e+00 -1.51959121e-01 8.12114179e-01 -3.65563840e-01 -1.17349684e+00 9.95743930e-01 9.81070548e-02 9.02127549e-02 -5.21659136e-01 3.53562236e-01 2.48113826e-01 -1.15804054e-01 -3.25058341e-01 1.51823902e+00 4.29696560e-01 -3.80423754e-01 5.99245071e-01 3.45762044e-01 -6.43338859e-01 8.73642743e-01 8.55830908e-01 1.04686999e+00 -1.78162336e-01 7.13418424e-01 -2.00499117e-01 3.47902477e-01 -3.43810245e-02 5.12638450e-01 9.64389801e-01 9.84334424e-02 9.16435838e-01 7.11689413e-01 -4.53503430e-02 -9.86531496e-01 -7.12724686e-01 3.86852264e-01 8.23414266e-01 -7.66902640e-02 -8.03349555e-01 -1.02046204e+00 -7.41278052e-01 -4.87303734e-01 1.21607852e+00 -2.57853419e-01 -2.19955072e-01 -8.15567434e-01 -8.36956680e-01 8.05700898e-01 7.38043904e-01 9.01908100e-01 -1.34743512e+00 -2.04070479e-01 3.17546487e-01 -3.43923241e-01 -9.85232592e-01 -8.11847568e-01 -1.18615195e-01 -1.17300344e+00 -6.70237064e-01 -9.58418489e-01 -1.08358550e+00 3.91885579e-01 2.18062043e-01 1.19370353e+00 -5.95080331e-02 2.83290893e-01 1.81618974e-01 -5.38182020e-01 -5.96943557e-01 -7.60257363e-01 8.25340986e-01 -1.43012643e-01 -3.88132066e-01 -1.54119264e-02 -4.36357498e-01 -2.13803396e-01 -5.82893670e-01 -9.57769513e-01 1.66026279e-01 6.75494432e-01 6.95390046e-01 3.32176298e-01 9.00318697e-02 1.13679242e+00 -9.01624739e-01 1.43199849e+00 -3.12134802e-01 7.73284361e-02 3.94670784e-01 -2.28444248e-01 5.86941652e-02 9.17306185e-01 -1.67605594e-01 -1.04817986e+00 -6.14903390e-01 -2.56197214e-01 1.60450503e-01 2.12061107e-01 1.05220044e+00 -2.36349389e-01 7.61641920e-01 4.93548185e-01 7.19853878e-01 -2.86537558e-01 -4.05728161e-01 4.67018574e-01 1.07792687e+00 1.01737273e+00 -2.32451737e-01 2.38886788e-01 2.37135496e-02 -4.21377361e-01 -1.51662648e+00 -7.85298347e-01 -2.32590511e-01 -4.51294571e-01 2.99267232e-01 8.42273772e-01 -8.32969427e-01 -1.22622833e-01 6.46404266e-01 -1.29605460e+00 -2.77197272e-01 -2.56691009e-01 3.87337029e-01 -4.53524411e-01 9.92957413e-01 -9.01881754e-01 -5.77048361e-01 -1.40718031e+00 -6.21381879e-01 9.53018308e-01 6.59788370e-01 -4.40179735e-01 -1.14935100e+00 2.23414555e-01 3.98185402e-01 2.68437415e-01 3.09703737e-01 1.00403094e+00 -1.21538377e+00 6.94676712e-02 -2.76744485e-01 -1.84983268e-01 6.43937647e-01 2.69354999e-01 2.71211535e-01 -3.95446807e-01 -3.11425328e-01 -2.07093731e-01 -2.94076532e-01 1.52997708e+00 8.43888342e-01 1.06167924e+00 -8.22845161e-01 6.99311867e-02 2.84257233e-01 1.02390110e+00 -2.95990892e-02 6.07742548e-01 1.80448711e-01 9.07202542e-01 2.81369835e-01 2.06595019e-01 3.23843807e-01 7.95404077e-01 -6.67140707e-02 4.25348394e-02 -8.91695917e-03 -3.37951988e-01 -4.21845764e-01 5.86283386e-01 1.98604333e+00 -1.34082101e-02 -9.05168891e-01 -6.29559517e-01 7.92436123e-01 -2.14089251e+00 -9.95523810e-01 -1.91605628e-01 1.70089185e+00 9.39755321e-01 2.17588563e-02 1.09317034e-01 -7.63729662e-02 7.00033605e-01 6.89018846e-01 -5.08142352e-01 -1.03629935e+00 -5.00172794e-01 2.08530203e-01 3.63076717e-01 3.75235468e-01 -1.08878374e+00 1.21794200e+00 5.62032223e+00 9.10743058e-01 -1.02134788e+00 -2.55815029e-01 4.77145225e-01 1.30820617e-01 -3.05491716e-01 -2.55367428e-01 -4.98256415e-01 2.87195235e-01 8.64503682e-01 -5.74561119e-01 2.72323191e-02 5.85458338e-01 1.40905902e-01 -1.10842898e-01 -8.48837316e-01 7.28471041e-01 7.94137895e-01 -1.53878725e+00 7.31757760e-01 -3.71784687e-01 1.13098669e+00 1.55478433e-01 -3.37604284e-01 6.64327800e-01 5.87042749e-01 -8.87577891e-01 3.94281596e-01 3.14691067e-01 5.22367179e-01 -1.09815538e+00 9.97811019e-01 5.26401877e-01 -7.95463264e-01 2.33696833e-01 -6.89704061e-01 5.64294681e-03 1.65038764e-01 3.86054575e-01 -7.91617334e-01 1.20104599e+00 2.44125143e-01 1.11860394e+00 -9.29098308e-01 9.29334342e-01 -4.55922812e-01 1.09223509e+00 2.32230108e-02 -3.79245549e-01 5.65674543e-01 -4.47102100e-01 8.00732911e-01 1.72392774e+00 4.05877024e-01 -3.74222919e-02 2.95887649e-01 4.94569570e-01 -5.42468250e-01 4.00601625e-01 -4.49101269e-01 -5.50300241e-01 2.47785509e-01 1.04497492e+00 -7.10533261e-01 -8.12746108e-01 -7.57072642e-02 1.15744293e+00 2.36116573e-01 5.54171145e-01 -5.06577671e-01 -9.87577319e-01 3.05154640e-03 -4.42829072e-01 3.61684352e-01 -2.07766220e-01 -3.27362776e-01 -1.48561823e+00 -7.04579502e-02 -9.66508806e-01 5.29276431e-01 -8.22508156e-01 -1.04571271e+00 7.62175202e-01 -5.11922836e-02 -7.76253641e-01 -4.70902711e-01 8.12761337e-02 -1.31121647e+00 5.28020501e-01 -1.19985712e+00 -1.34433496e+00 1.84042882e-02 2.12231487e-01 1.23509729e+00 -6.32495284e-01 7.46116042e-01 -1.93589419e-01 -1.05539870e+00 4.76813465e-01 4.43455279e-01 3.81009459e-01 6.41423821e-01 -1.47334898e+00 8.85164976e-01 1.25104415e+00 2.08727941e-01 4.77905333e-01 8.34618390e-01 -9.18027401e-01 -1.17780721e+00 -1.38766861e+00 1.05048895e+00 -9.74629745e-02 5.31554282e-01 -2.92485785e-02 -1.07252312e+00 9.87893164e-01 1.07964659e+00 -8.36266637e-01 6.38348818e-01 -5.63625805e-02 1.14460498e-01 2.43335664e-01 -6.52217627e-01 8.36816430e-01 6.96543038e-01 -1.22672707e-01 -1.22252512e+00 2.80880362e-01 9.99621689e-01 -4.09522057e-01 -4.96006042e-01 2.44669050e-01 1.08818486e-01 -6.96325302e-01 4.34962094e-01 -6.85950637e-01 1.03415072e+00 -5.40808402e-02 -5.93944453e-02 -1.91862547e+00 -1.57089025e-01 -6.88380778e-01 -4.66505349e-01 1.73907137e+00 2.68399656e-01 -5.32555938e-01 4.36305553e-01 -1.13596037e-01 -6.91948056e-01 -6.36746407e-01 -5.22049129e-01 -6.02048278e-01 3.66769165e-01 3.54768410e-02 5.74879467e-01 8.12588751e-01 2.25455798e-02 9.67032552e-01 -3.81091177e-01 -1.83282658e-01 4.34953392e-01 3.12697172e-01 9.73926425e-01 -9.22244668e-01 2.32552029e-02 -7.57385612e-01 -9.60404947e-02 -1.04856455e+00 6.25262856e-01 -1.14199495e+00 -9.44699124e-02 -2.65480375e+00 5.75370610e-01 4.87556905e-01 1.16488107e-01 2.78909117e-01 -6.07794225e-01 -2.22982526e-01 1.77237689e-01 -3.65528725e-02 -9.13192630e-01 9.64521825e-01 1.02882290e+00 -5.22616386e-01 -5.28319895e-01 -3.17642242e-02 -1.16888869e+00 7.72053242e-01 1.03557348e+00 -1.73671052e-01 -3.56649280e-01 -5.82936168e-01 4.38119024e-02 1.32596925e-01 -2.56326228e-01 -7.44176328e-01 3.72873068e-01 5.58665320e-02 3.20458502e-01 -1.28658056e+00 -1.45073757e-01 2.45422900e-01 -6.02300823e-01 2.73639709e-01 -4.67409313e-01 7.77536780e-02 2.01360822e-01 3.67663175e-01 -4.19396579e-01 -5.08582950e-01 3.37567031e-01 -2.13128358e-01 -6.58756852e-01 9.07145217e-02 -6.05162203e-01 3.51146817e-01 3.55203986e-01 -1.43326089e-01 -5.12720883e-01 -6.98514819e-01 -2.69291289e-02 5.48902810e-01 3.11770052e-01 3.91489536e-01 6.70954227e-01 -9.92509902e-01 -1.46340835e+00 -2.83955365e-01 -9.07352269e-02 3.10878903e-01 3.39163512e-01 4.68958527e-01 -8.54130507e-01 5.21903694e-01 8.17787461e-03 -2.29452729e-01 -1.38415086e+00 3.44444484e-01 -1.72724485e-01 -5.03858984e-01 -9.41188931e-01 4.34591025e-01 4.70859446e-02 -6.25836492e-01 1.28562376e-01 -4.81641352e-01 -5.42191207e-01 2.50105143e-01 4.92245227e-01 6.45546019e-01 7.87178576e-02 -6.36814594e-01 -1.15712835e-02 2.46741325e-01 -3.32852781e-01 7.52257258e-02 1.49094021e+00 -1.35315716e-01 -4.49368328e-01 3.55845183e-01 9.48543072e-01 3.12633395e-01 -5.46289563e-01 -8.85711014e-02 9.49348211e-02 3.30911547e-01 5.85381836e-02 -5.82335353e-01 -9.02971804e-01 7.39215434e-01 -3.85669798e-01 2.61689693e-01 1.11980700e+00 -1.14925936e-01 1.26453781e+00 8.10171187e-01 -3.72961789e-01 -1.23461950e+00 -2.28263251e-02 8.73972237e-01 1.24180245e+00 -1.01447093e+00 4.65745032e-01 1.57578409e-01 -1.14636517e+00 1.07949150e+00 4.12995189e-01 -3.19661230e-01 -1.39185056e-01 -2.19534725e-01 -1.82424232e-01 -6.93691298e-02 -6.69416130e-01 -2.48952154e-02 3.71736854e-01 4.09502506e-01 5.55305123e-01 2.15380207e-01 -7.36304760e-01 9.84361351e-01 -8.53770792e-01 -3.42020810e-01 1.13649869e+00 8.08152139e-01 -6.22624695e-01 -5.72449088e-01 -9.22461003e-02 7.60811806e-01 -5.65807045e-01 -2.36408487e-01 -1.00545967e+00 6.96897388e-01 -7.73881912e-01 1.18827927e+00 6.59556240e-02 -6.34666458e-02 3.58232468e-01 -1.25343114e-01 2.83752978e-01 -8.59490991e-01 -6.49482846e-01 7.71922395e-02 3.15085322e-01 6.25728741e-02 -1.90397352e-01 -5.47100604e-01 -1.41979086e+00 -3.96813065e-01 -2.10071459e-01 4.08571541e-01 6.27262354e-01 7.08177388e-01 4.93016541e-01 9.59457457e-01 5.33213794e-01 -9.45427656e-01 -6.17187560e-01 -1.58252811e+00 -6.82673812e-01 1.04654886e-01 2.91878670e-01 2.88982302e-01 -1.17080972e-01 -8.20728838e-02]
[12.529449462890625, 9.516813278198242]
d7d56e45-7efe-41ae-883b-49a36ec0ace2
joint-learning-for-aspect-and-polarity
2201.06313
null
https://arxiv.org/abs/2201.06313v3
https://arxiv.org/pdf/2201.06313v3.pdf
A Deep Convolutional Neural Networks Based Multi-Task Ensemble Model for Aspect and Polarity Classification in Persian Reviews
Aspect-based sentiment analysis is of great importance and application because of its ability to identify all aspects discussed in the text. However, aspect-based sentiment analysis will be most effective when, in addition to identifying all the aspects discussed in the text, it can also identify their polarity. Most previous methods use the pipeline approach, that is, they first identify the aspects and then identify the polarities. Such methods are unsuitable for practical applications since they can lead to model errors. Therefore, in this study, we propose a multi-task learning model based on Convolutional Neural Networks (CNNs), which can simultaneously detect aspect category and detect aspect category polarity. creating a model alone may not provide the best predictions and lead to errors such as bias and high variance. To reduce these errors and improve the efficiency of model predictions, combining several models known as ensemble learning may provide better results. Therefore, the main purpose of this article is to create a model based on an ensemble of multi-task deep convolutional neural networks to enhance sentiment analysis in Persian reviews. We evaluated the proposed method using a Persian language dataset in the movie domain. Jacquard index and Hamming loss measures were used to evaluate the performance of the developed models. The results indicate that this new approach increases the efficiency of the sentiment analysis model in the Persian language.
['Sepideh Saeedi Majd', 'Fatemeh Sadat Masoumi', 'Milad Vazan']
2022-01-17
null
null
null
null
['aspect-based-sentiment-analysis', 'aspect-category-polarity', 'persian-sentiment-anlysis', 'aspect-category-detection']
['natural-language-processing', 'natural-language-processing', 'natural-language-processing', 'natural-language-processing']
[-1.35482559e-02 -2.16560245e-01 3.28587629e-02 -4.80263174e-01 -4.18551534e-01 -5.67349911e-01 5.17667472e-01 6.08450472e-01 -5.40404618e-01 7.14350224e-01 1.23027347e-01 -1.62558645e-01 -3.61192636e-02 -9.44732487e-01 -2.49312133e-01 -5.74739456e-01 2.69200802e-01 3.44895154e-01 6.79396987e-02 -5.45150280e-01 7.52354443e-01 1.13429710e-01 -1.55911958e+00 5.24504900e-01 1.06077194e+00 1.06858826e+00 6.60282373e-02 2.97244340e-01 -5.17264366e-01 7.79230475e-01 -7.58476257e-01 -5.86904705e-01 5.87005205e-02 -2.34982148e-01 -5.07319272e-01 -2.64915109e-01 -1.12516761e-01 3.82137708e-02 5.24774075e-01 9.56562340e-01 5.88987172e-01 9.97164547e-02 6.91245675e-01 -1.09517372e+00 -3.73239040e-01 6.04400516e-01 -5.92216372e-01 -8.82635918e-03 1.87669963e-01 -4.28852379e-01 1.28102279e+00 -8.19528461e-01 2.12921113e-01 8.96282613e-01 8.32143724e-01 6.65320549e-03 -8.07921767e-01 -7.19409943e-01 1.95165321e-01 4.24904525e-01 -8.31965983e-01 7.62320608e-02 1.03868437e+00 -3.61053854e-01 9.78900909e-01 4.55088727e-02 8.00446749e-01 5.88100135e-01 7.24957407e-01 8.09008241e-01 1.39136100e+00 -2.83660382e-01 2.35007614e-01 5.29917300e-01 3.99689853e-01 3.12880337e-01 3.54635686e-01 -2.87044823e-01 -5.44926703e-01 -7.29954615e-02 -2.22631693e-01 2.32087150e-02 6.88592643e-02 -6.62654117e-02 -8.17878544e-01 1.06497467e+00 2.98182935e-01 3.79826039e-01 -6.06845379e-01 -4.15503651e-01 6.32988811e-01 7.48243108e-02 8.08130383e-01 6.68215573e-01 -7.56807029e-01 -1.74185634e-01 -1.02183962e+00 3.04195225e-01 9.06516314e-01 2.05687344e-01 7.47898757e-01 1.12242708e-02 -4.85300049e-02 8.47221792e-01 4.02682245e-01 4.36241001e-01 6.57508731e-01 -1.93673357e-01 3.40494782e-01 1.21994889e+00 -6.91749305e-02 -1.37011719e+00 -6.46097958e-01 -5.74424744e-01 -8.07162642e-01 4.24472481e-01 -9.82981268e-03 -5.10890067e-01 -8.34408402e-01 1.24511611e+00 1.27985492e-01 -5.15100241e-01 3.26366216e-01 7.49727428e-01 1.09855103e+00 8.15636694e-01 1.24598987e-01 -2.00075358e-02 1.71966207e+00 -7.75860965e-01 -9.41743910e-01 -3.90085906e-01 3.85507196e-01 -1.14936304e+00 7.52278090e-01 6.63955510e-01 -6.33509040e-01 -6.35526717e-01 -1.27183735e+00 2.82295138e-01 -7.42636263e-01 4.73973662e-01 6.54040992e-01 6.82606757e-01 -8.21056724e-01 5.49682856e-01 -5.63701272e-01 -1.55072093e-01 2.79115498e-01 3.78249139e-01 -3.62188756e-01 3.28058600e-01 -1.36234093e+00 1.05823898e+00 5.03493071e-01 2.83603340e-01 -3.29374552e-01 -2.26442114e-01 -8.46568167e-01 2.81789094e-01 3.08861043e-02 -2.10148871e-01 9.54665899e-01 -1.41272938e+00 -1.12802577e+00 4.02035773e-01 -2.04327151e-01 -4.28319842e-01 7.37890750e-02 -2.82804161e-01 -3.72052431e-01 -1.85429439e-01 -2.52828840e-02 4.21733528e-01 5.45964241e-01 -1.08586395e+00 -9.54135776e-01 -4.64417666e-01 1.39182195e-01 3.11196625e-01 -6.55843139e-01 8.85550082e-02 -2.38663152e-01 -5.15695155e-01 -1.67504903e-02 -1.11533546e+00 -2.06448361e-01 -7.43017733e-01 -2.70099282e-01 -1.68510631e-01 9.48002219e-01 -8.91289055e-01 1.17333925e+00 -1.88744915e+00 -2.50729650e-01 2.07124516e-01 6.51415884e-02 4.75616693e-01 8.16792324e-02 4.05920863e-01 -7.80724809e-02 6.93187341e-02 -2.79358059e-01 -2.93434054e-01 -2.84163743e-01 -1.53688595e-01 1.43402722e-02 7.35330060e-02 3.61169994e-01 6.22403622e-01 -2.25531071e-01 -2.89392352e-01 4.76172790e-02 7.08321929e-01 -3.47039163e-01 9.81563702e-02 -2.27654517e-01 2.23485366e-01 -1.87779382e-01 4.87015814e-01 8.26982856e-01 9.37032774e-02 9.24127847e-02 -4.96732384e-01 -2.18332529e-01 2.72964537e-01 -1.23050141e+00 9.47246432e-01 -7.22625196e-01 7.60740101e-01 -3.37126762e-01 -1.07609320e+00 1.35787642e+00 2.98444778e-01 4.81586933e-01 -6.06982410e-01 3.60394478e-01 2.10660815e-01 2.82286227e-01 -2.88273096e-01 8.28746557e-01 -1.92580879e-01 -1.05187893e-01 4.66718376e-01 -9.23501179e-02 -1.03918932e-01 3.78627777e-01 -5.66734597e-02 5.04872322e-01 3.39139090e-03 5.31819880e-01 -2.36080691e-01 8.89081657e-01 7.44648948e-02 7.51967371e-01 8.63567293e-02 -4.55129482e-02 3.96519184e-01 8.39335799e-01 -6.41552210e-01 -8.87057900e-01 -4.58983064e-01 -6.31025210e-02 8.80908191e-01 7.26336846e-03 -5.17370701e-01 -3.97932470e-01 -7.84957170e-01 -3.49427819e-01 8.16461325e-01 -6.57867432e-01 4.68555652e-02 -2.38160595e-01 -1.19058418e+00 8.37480053e-02 3.88210744e-01 7.73313165e-01 -1.28598201e+00 -6.68396235e-01 1.49181023e-01 -3.20097327e-01 -8.73511493e-01 9.07514319e-02 4.14007217e-01 -8.32895458e-01 -1.12626135e+00 -6.47204101e-01 -6.40172958e-01 5.63017845e-01 5.02732536e-03 9.42087173e-01 -2.37860471e-01 1.90331474e-01 -1.52799770e-01 -6.71481371e-01 -1.02891159e+00 -2.74450064e-01 3.06452274e-01 -3.13606173e-01 2.44760036e-01 8.77424121e-01 -2.03221604e-01 -6.09487593e-01 9.47981253e-02 -8.97644758e-01 -1.97112888e-01 7.30433345e-01 7.93374836e-01 5.15631080e-01 4.62962389e-01 6.24688268e-01 -1.07700384e+00 1.01504672e+00 -4.76832747e-01 -5.73899746e-01 4.72953804e-02 -1.07114363e+00 9.20770168e-02 8.99403691e-01 -4.75568920e-02 -1.23778844e+00 5.17956391e-02 -3.70974034e-01 2.73236096e-01 6.44146279e-02 1.00778806e+00 -2.94994954e-02 1.29831657e-01 4.29146230e-01 2.68625081e-01 1.62324291e-02 -2.64098078e-01 -2.34989554e-01 9.14059758e-01 -2.44333968e-01 4.71714772e-02 2.08626732e-01 2.39844441e-01 8.30962136e-02 -6.82524621e-01 -8.64719808e-01 -5.80497265e-01 -4.51587528e-01 -3.26775700e-01 8.13281476e-01 -9.74489570e-01 -5.91666341e-01 6.63329303e-01 -1.16973376e+00 3.78816932e-01 2.73723871e-01 5.19603789e-01 -1.02284580e-01 4.27597761e-01 -2.68214554e-01 -9.35197473e-01 -9.42493200e-01 -1.49236834e+00 8.48612607e-01 4.52363312e-01 -4.58275735e-01 -1.02533376e+00 1.73973963e-01 4.10614014e-01 7.04955697e-01 -1.04831043e-03 8.66248965e-01 -1.17832077e+00 -2.14961153e-02 -4.36382234e-01 -6.92552999e-02 7.17841208e-01 2.24168330e-01 1.12310745e-01 -9.98196363e-01 -1.89621672e-02 1.06620520e-01 -2.27010064e-02 8.64921093e-01 4.82824087e-01 8.38526666e-01 -1.79473877e-01 -1.40206544e-02 2.11848810e-01 1.51681256e+00 6.34446263e-01 6.61752462e-01 8.01554322e-01 4.97750968e-01 8.37859631e-01 9.04048502e-01 4.93609816e-01 5.54458499e-01 4.53700423e-01 4.31308240e-01 -6.17221445e-02 2.89993584e-01 2.08688408e-01 4.89230841e-01 7.95307040e-01 -3.08940038e-02 -2.43488044e-01 -1.02738452e+00 5.78767359e-01 -1.69274414e+00 -7.41352916e-01 -3.56471956e-01 1.91344798e+00 4.68289495e-01 3.36116850e-01 7.28889480e-02 5.32051802e-01 5.93939304e-01 2.01044142e-01 -2.43237332e-01 -1.03164542e+00 -2.14960501e-01 2.56702900e-01 2.91016281e-01 2.69950390e-01 -1.38232112e+00 7.06192195e-01 5.18819427e+00 6.24544322e-01 -1.35829437e+00 4.84198369e-02 7.92759717e-01 1.58999637e-01 -4.14501220e-01 -1.62841678e-02 -9.22730744e-01 4.65036273e-01 8.37112665e-01 -5.65756187e-02 -7.12473318e-02 1.08457041e+00 1.62022069e-01 -4.47697341e-01 -4.30464834e-01 6.84339106e-01 4.35247391e-01 -9.03033793e-01 2.07079314e-02 -1.61116928e-01 8.02467585e-01 -9.39726643e-03 1.95181593e-02 2.99679250e-01 6.16894476e-02 -8.94124568e-01 3.33506197e-01 2.64737815e-01 1.21101491e-01 -1.20937395e+00 1.69696093e+00 1.94178149e-01 -1.06296766e+00 -1.48839459e-01 -3.21350336e-01 -1.55856952e-01 6.40282631e-02 9.14744198e-01 -8.87004495e-01 5.78570843e-01 7.76681364e-01 7.73545027e-01 -6.50485396e-01 1.06804752e+00 -2.99718112e-01 5.46578705e-01 -5.76182716e-02 -6.86644614e-01 1.75620183e-01 -3.40173423e-01 4.25175875e-01 1.13902009e+00 5.07625937e-01 -3.95375222e-01 -1.16972886e-01 3.52177769e-01 2.88775951e-01 8.56219947e-01 -5.92798471e-01 -1.46637913e-02 -1.01610333e-01 1.59069777e+00 -1.02949965e+00 -2.28568107e-01 -5.18695593e-01 6.10986829e-01 1.92515031e-02 4.04381752e-03 -5.64687669e-01 -6.98530138e-01 4.95861322e-01 -1.56890526e-01 4.10894394e-01 7.37340376e-03 -8.46122742e-01 -9.80125606e-01 4.54700552e-02 -1.08582532e+00 3.09902787e-01 -5.08806825e-01 -9.48672593e-01 1.03432930e+00 -3.44391227e-01 -1.43763661e+00 -1.96270585e-01 -6.79831266e-01 -7.19852686e-01 9.09380496e-01 -1.59174216e+00 -1.13988626e+00 -2.67465413e-01 2.23733306e-01 7.28720725e-01 -5.17994642e-01 7.04531074e-01 2.23878041e-01 -3.72374117e-01 3.93183887e-01 1.63838249e-02 -1.05320541e-02 7.59101093e-01 -1.29583585e+00 1.87372882e-02 8.64382505e-01 1.00717433e-02 4.47579533e-01 8.60839128e-01 -6.97054148e-01 -8.81431997e-01 -9.29115653e-01 1.20084381e+00 -1.40741020e-01 4.11316961e-01 -8.14887360e-02 -6.86123490e-01 2.90311992e-01 4.06144589e-01 -7.78229356e-01 9.64134872e-01 4.28081095e-01 -3.18155885e-02 -5.88989437e-01 -1.02452314e+00 3.77879739e-01 -1.72241807e-01 -1.68673709e-01 -6.76153362e-01 -7.98124000e-02 2.49252573e-01 2.22195568e-03 -6.59226000e-01 5.75497210e-01 7.58899033e-01 -1.21157956e+00 4.28328931e-01 -1.22374691e-01 8.57907832e-01 -3.17437321e-01 -9.04338583e-02 -1.84785962e+00 -1.65475562e-01 3.31369758e-01 3.57663006e-01 1.43712759e+00 9.04521942e-01 -7.43644059e-01 6.90091789e-01 3.98487985e-01 1.59498692e-01 -8.86408985e-01 -5.46897531e-01 -1.04894541e-01 -2.70198286e-02 -6.25653863e-01 6.65176272e-01 5.88235438e-01 7.67982155e-02 6.93603456e-01 -3.59621584e-01 -1.13960549e-01 1.87364921e-01 2.78106511e-01 5.53988099e-01 -1.40703022e+00 -1.68483816e-02 -5.25957942e-01 -4.46928799e-01 -1.82375506e-01 2.11134180e-01 -6.30739868e-01 1.33127525e-01 -1.72996438e+00 2.44774804e-01 -2.60630369e-01 -5.25456131e-01 4.58275437e-01 -4.04735595e-01 2.95110226e-01 2.54696518e-01 -5.32473158e-03 -4.22635943e-01 6.09926522e-01 8.95733178e-01 -3.27304929e-01 -1.94484159e-01 4.53710675e-01 -1.04880905e+00 7.60239482e-01 1.18847692e+00 -4.48773682e-01 -4.76180941e-01 -1.19852670e-01 8.65955591e-01 -2.66587675e-01 -2.40640879e-01 -1.00015128e+00 1.27262101e-01 2.43698806e-01 5.39848924e-01 -9.24331367e-01 2.48963863e-01 -8.86816084e-01 -1.06134757e-01 4.91973430e-01 -2.18092903e-01 3.25195253e-01 4.20214802e-01 2.18827859e-01 -7.88415372e-01 -3.91961604e-01 5.93159497e-01 -1.38728335e-01 -7.17299759e-01 -2.65646651e-02 -5.94003379e-01 -5.21993160e-01 1.07202971e+00 8.87455698e-03 -2.15818271e-01 -4.96594846e-01 -3.39219004e-01 1.81442827e-01 1.10257693e-01 4.95543510e-01 6.19952798e-01 -9.10761118e-01 -7.18641818e-01 1.23191006e-01 2.40848124e-01 -2.79647410e-01 3.37447613e-01 8.37721229e-01 -6.00718558e-01 5.41197956e-01 -4.41274524e-01 -3.43094140e-01 -1.59318888e+00 2.98820764e-01 1.88776910e-01 -5.87665021e-01 8.26656595e-02 5.54684043e-01 -1.32187847e-02 -7.51599491e-01 -1.40482381e-01 -5.23311384e-02 -1.41966295e+00 7.69856811e-01 4.51511621e-01 2.00914443e-01 4.91991013e-01 -7.15386450e-01 -4.47498798e-01 7.16216683e-01 -2.68686593e-01 -6.56414852e-02 1.45746672e+00 5.79589419e-02 -5.21864176e-01 4.27675009e-01 9.59254801e-01 2.18014956e-01 -4.94157612e-01 2.36058116e-01 5.65736704e-02 -1.83694527e-01 3.48692089e-01 -9.89597261e-01 -1.09093988e+00 1.03714597e+00 6.98815167e-01 3.43667775e-01 1.44550860e+00 -5.20062923e-01 6.97517633e-01 3.53974372e-01 2.12842077e-02 -1.23375809e+00 -2.48976171e-01 7.13777661e-01 5.77107906e-01 -1.56206381e+00 7.37898573e-02 -9.10416469e-02 -1.11104190e+00 1.37904620e+00 7.13810682e-01 -2.91461330e-02 9.00746226e-01 1.61514997e-01 3.88673872e-01 -1.90890223e-01 -7.52529621e-01 -2.05620036e-01 4.51703876e-01 4.15344864e-01 9.25622165e-01 -9.19742092e-07 -1.00456607e+00 9.32388365e-01 -4.79705185e-01 -5.79756275e-02 6.50588930e-01 6.56431317e-01 -3.78642499e-01 -1.19089067e+00 -4.68171597e-01 7.50381112e-01 -1.07136619e+00 -2.15874568e-01 -3.66249889e-01 3.66839170e-01 1.56933889e-01 1.33741903e+00 -6.07183091e-02 -6.70106232e-01 3.95139962e-01 4.86682430e-02 -2.99281776e-01 -3.78105193e-01 -8.35464656e-01 -1.34266419e-02 3.61153781e-01 -1.88007683e-01 -6.37460589e-01 -5.97067952e-01 -8.83302271e-01 -1.19322658e-01 -3.37282330e-01 4.84272480e-01 1.15900421e+00 1.09744763e+00 3.47793281e-01 6.65088296e-01 8.41750622e-01 -5.08634508e-01 -2.50190049e-01 -1.23738611e+00 -3.88457119e-01 2.90009916e-01 5.39757647e-02 -4.85490203e-01 -2.76221693e-01 -2.51238078e-01]
[11.163753509521484, 6.740555286407471]
b23b9ec3-bf3f-4990-b0d8-e1462f70dc2c
invaastcluster-on-applying-invariant-based
2206.14175
null
https://arxiv.org/abs/2206.14175v2
https://arxiv.org/pdf/2206.14175v2.pdf
InvAASTCluster: On Applying Invariant-Based Program Clustering to Introductory Programming Assignments
Due to the vast number of students enrolled in Massive Open Online Courses (MOOCs), there has been an increasing number of automated program repair techniques focused on introductory programming assignments (IPAs). Such state-of-the-art techniques use program clustering to take advantage of previous correct student implementations to repair a given new incorrect submission. Usually, these repair techniques use clustering methods since analyzing all available correct student submissions to repair a program is not feasible. The clustering methods use program representations based on several features such as abstract syntax tree (AST), syntax, control flow, and data flow. However, these features are sometimes brittle when representing semantically similar programs. This paper proposes InvAASTCluster, a novel approach for program clustering that takes advantage of dynamically generated program invariants observed over several program executions to cluster semantically equivalent IPAs. Our main objective is to find a more suitable representation of programs using a combination of the program's semantics, through its invariants, and its structure, through its anonymized abstract syntax tree. The evaluation of InvAASTCluster shows that the proposed program representation outperforms syntax-based representations when clustering a set of different correct IPAs. Furthermore, we integrate InvAASTCluster into a state-of-the-art clustering-based program repair tool and evaluate it on a set of IPAs. Our results show that InvAASTCluster advances the current state-of-the-art when used by clustering-based program repair tools by repairing a larger number of students' programs in a shorter amount of time.
['Vasco Manquinho', 'Mikoláš Janota', 'Pedro Orvalho']
2022-06-28
null
null
null
null
['program-repair', 'program-repair']
['computer-code', 'reasoning']
[-4.29372162e-01 -1.38208956e-01 2.49178782e-02 -3.16922605e-01 -3.95722598e-01 -9.04096723e-01 1.17998406e-01 1.03603852e+00 -2.81381235e-02 1.17877983e-01 -2.66992569e-01 -6.30681038e-01 -2.48613313e-01 -1.07778203e+00 -7.89641082e-01 -1.73416972e-01 1.69583693e-01 2.31937438e-01 7.25254178e-01 -2.23800465e-01 5.69029987e-01 6.51906729e-01 -2.22800875e+00 3.14983219e-01 1.41818595e+00 1.13498174e-01 1.80079907e-01 7.42926896e-01 -7.38554835e-01 6.68965042e-01 -7.73198843e-01 -4.54043359e-01 5.23120165e-03 -4.46510166e-01 -1.09641588e+00 -2.84122944e-01 6.58796787e-01 4.27272886e-01 -1.19985621e-02 1.41803563e+00 -1.22011915e-01 5.23943782e-01 1.83079839e-01 -1.36011446e+00 -4.22123641e-01 8.44167590e-01 -2.63008475e-01 -1.22667059e-01 6.65112317e-01 -1.72180399e-01 8.05904508e-01 -3.33665550e-01 7.27908432e-01 9.54754353e-01 6.08404636e-01 2.89774954e-01 -1.56608558e+00 -6.43378675e-01 -1.25512660e-01 1.50876015e-01 -1.42675912e+00 3.82823795e-01 6.68550372e-01 -9.09432828e-01 7.73547471e-01 7.27668345e-01 6.82989776e-01 2.71547318e-01 8.71564895e-02 5.21227539e-01 1.12114525e+00 -7.51351058e-01 3.81404668e-01 5.98004520e-01 1.00562871e+00 1.10508096e+00 2.70249516e-01 -2.84931988e-01 2.37536300e-02 -4.51863557e-01 1.63802765e-02 9.84431580e-02 -2.51249522e-01 -6.16560519e-01 -7.64745176e-01 7.22472429e-01 1.13302551e-01 7.94137776e-01 4.01746511e-01 -2.53172647e-02 4.85530019e-01 4.85963672e-01 -1.77933022e-01 7.52868950e-01 -1.75464094e-01 -4.36673880e-01 -1.26176822e+00 4.70097750e-01 1.05422235e+00 1.09528339e+00 1.09175110e+00 -1.10425569e-01 1.54496402e-01 5.42638898e-01 2.32319906e-01 -2.21477062e-01 7.36494541e-01 -5.66018343e-01 3.47429186e-01 1.51599646e+00 -6.17539942e-01 -1.30027533e+00 -4.89585102e-02 -1.54610336e-01 -2.70277500e-01 4.70287085e-01 4.70860660e-01 3.35546196e-01 -4.86708701e-01 1.46344876e+00 3.48823339e-01 2.42092282e-01 -1.43833369e-01 3.87555301e-01 8.38011324e-01 5.39797246e-01 -1.62209153e-01 2.75685072e-01 1.21349621e+00 -1.10912955e+00 -3.19160253e-01 4.22643334e-01 1.36207557e+00 -9.49925721e-01 1.25695443e+00 5.72817147e-01 -7.40677655e-01 -7.78138280e-01 -1.02031672e+00 1.56371742e-01 -8.13335121e-01 9.17951167e-02 3.39942515e-01 1.48049462e+00 -1.09925020e+00 9.98495221e-01 -7.28985310e-01 -4.03895706e-01 1.15099184e-01 5.15574396e-01 -5.27726173e-01 -1.30594701e-01 -3.65314037e-01 4.61908489e-01 4.65140224e-01 -6.41504407e-01 -4.79659140e-01 -1.02469945e+00 -8.24647784e-01 5.19983828e-01 1.68957472e-01 -4.18998182e-01 9.84491110e-01 -7.71538615e-01 -1.49143434e+00 8.17703664e-01 7.43355155e-02 -3.28538828e-02 1.98270008e-01 2.14761272e-01 -1.84663326e-01 2.12859106e-03 -3.17436665e-01 -5.58498837e-02 2.98314005e-01 -1.25077391e+00 -3.77940178e-01 -2.33982533e-01 -1.01072654e-01 -4.12261128e-01 -5.35347939e-01 2.69725591e-01 -1.00838736e-01 -3.94300848e-01 1.72712758e-01 -1.06478274e+00 -2.13193208e-01 -5.18448532e-01 -4.61312801e-01 -2.50442445e-01 9.31637108e-01 -4.07476693e-01 1.59801483e+00 -2.20643163e+00 3.84948999e-01 6.74700379e-01 1.99124485e-01 4.71826315e-01 -1.23703359e-02 3.96387100e-01 -5.17148614e-01 6.77582681e-01 -2.22371608e-01 -4.34759587e-01 2.21473664e-01 9.07564014e-02 -3.45685899e-01 2.53890455e-01 -5.80320835e-01 1.05879441e-01 -8.41917276e-01 -5.98954499e-01 4.75144506e-01 -8.53760764e-02 -9.50829744e-01 4.38584000e-01 -2.16718569e-01 2.27011457e-01 -3.80970269e-01 4.42223907e-01 7.60264277e-01 4.77504134e-01 1.77820593e-01 4.71819401e-01 -5.53330839e-01 5.83761148e-02 -1.48795831e+00 1.74477720e+00 -3.82131875e-01 5.46354294e-01 -8.99100304e-02 -1.09801447e+00 1.39923799e+00 2.29453132e-01 3.73807400e-01 1.20415956e-01 -1.67858191e-02 1.33636311e-01 -9.94429290e-02 -4.78422076e-01 7.55207658e-01 5.09247422e-01 -3.75312269e-01 7.45213151e-01 2.35401884e-01 -3.40180904e-01 4.30578768e-01 5.31585217e-01 1.48018563e+00 9.56360772e-02 6.12129048e-02 -4.54802006e-01 9.89224136e-01 1.96814641e-01 4.51144785e-01 7.45546758e-01 -9.40949097e-02 5.46008885e-01 8.28608811e-01 -4.29897785e-01 -7.73710907e-01 -8.56811941e-01 1.79091752e-01 9.50981557e-01 -3.91181201e-01 -1.23361158e+00 -1.22492087e+00 -8.58682513e-01 -1.02641605e-01 7.32962847e-01 -2.73624629e-01 -3.11026394e-01 -5.21038413e-01 -1.08797267e-01 7.91371882e-01 -5.65478876e-02 3.63759995e-01 -6.89702511e-01 -5.51672578e-01 2.19400204e-03 1.99084505e-01 -6.61159933e-01 -1.97115660e-01 -1.09238051e-01 -9.13947642e-01 -1.18434203e+00 2.73453910e-02 -9.87930179e-01 1.01063776e+00 2.70476907e-01 1.07931900e+00 8.59505177e-01 -5.39013028e-01 6.21651173e-01 -4.85348910e-01 -6.26646057e-02 -9.10247505e-01 2.91087985e-01 -5.65669797e-02 -2.28115126e-01 3.26103657e-01 -8.89071345e-01 1.36099130e-01 4.69610170e-02 -1.09068668e+00 -4.00214612e-01 -5.99884428e-02 4.09075111e-01 4.04464185e-01 6.74178481e-01 -7.62840435e-02 -1.42868757e+00 5.46869814e-01 -4.44692701e-01 -1.19886482e+00 5.55388153e-01 -5.79198480e-01 2.56010920e-01 1.04234540e+00 -3.16047430e-01 -8.60317230e-01 2.09531829e-01 -4.03128378e-02 -7.25971103e-01 -5.73622346e-01 6.80428922e-01 -2.37251282e-01 -5.62804103e-01 8.18796754e-01 1.37797117e-01 -2.78194875e-01 -6.26138031e-01 9.39305723e-02 3.59223932e-01 4.34773922e-01 -1.16896057e+00 9.63341951e-01 -2.92186499e-01 1.08343638e-01 -6.84096873e-01 -1.30150735e-01 -6.80544317e-01 -8.24715614e-01 -2.62433231e-01 6.39527619e-01 -4.67171788e-01 -1.01969516e+00 2.79950351e-01 -1.14049828e+00 -9.44720432e-02 -2.09081754e-01 2.49858558e-01 -1.01770110e-01 8.24200749e-01 -4.25955147e-01 -4.34672564e-01 2.32845787e-02 -1.76654363e+00 3.49627614e-01 3.83571833e-01 -3.69673669e-01 -8.89293849e-01 4.78271037e-01 5.75372517e-01 1.62766293e-01 4.07137752e-01 1.39416659e+00 -9.47166860e-01 -7.75913715e-01 -3.58009666e-01 4.06513304e-01 2.03935727e-01 -1.84950456e-01 8.60551894e-01 -7.50315666e-01 -9.69133079e-02 -1.50582999e-01 3.20087552e-01 3.58206183e-01 -3.01352888e-01 1.47804189e+00 -2.37159580e-01 -2.36795187e-01 6.62782013e-01 1.74034417e+00 -3.20366323e-02 7.05904365e-01 4.68220979e-01 9.66333449e-01 6.69213593e-01 3.24652314e-01 1.25492766e-01 2.14730144e-01 6.29153013e-01 3.52954268e-01 5.17016768e-01 8.58491510e-02 -2.97573775e-01 4.94650900e-01 1.04607451e+00 2.58140355e-01 2.71467209e-01 -1.22390020e+00 6.74077332e-01 -1.74699676e+00 -9.51209843e-01 -7.67219722e-01 2.43310285e+00 6.38168335e-01 -1.64808735e-01 2.23446310e-01 3.94267976e-01 7.30472386e-01 -3.24588597e-01 3.55014354e-01 -1.30625856e+00 4.60582942e-01 6.81312680e-01 2.31506541e-01 3.32375377e-01 -7.66906083e-01 7.74364948e-01 5.08668470e+00 7.99000978e-01 -8.72717023e-01 3.93039584e-02 -5.04117906e-02 3.62816781e-01 -5.24349689e-01 5.04792929e-01 -7.68631101e-01 6.17992282e-01 1.19961274e+00 -2.25877568e-01 4.97736514e-01 1.29141605e+00 -2.46678427e-01 -2.38210097e-01 -1.20894444e+00 5.86475074e-01 8.94006900e-03 -1.46725440e+00 -2.21970394e-01 -2.39243377e-02 1.05267358e+00 -5.09841442e-01 -1.33470088e-01 6.10866070e-01 5.68976104e-01 -9.57312644e-01 6.27860606e-01 3.16239148e-01 -3.09044924e-02 -1.05290151e+00 6.64355278e-01 3.65919352e-01 -1.33755612e+00 -8.89040455e-02 -3.04116458e-01 6.92139864e-02 -7.71652699e-01 6.39073074e-01 -7.70927548e-01 6.88465655e-01 8.47062826e-01 2.68150926e-01 -1.24648523e+00 1.40426517e+00 -2.82974422e-01 7.29148269e-01 -1.12519056e-01 -1.06149331e-01 -6.54033497e-02 -5.56052387e-01 6.17582560e-01 1.40674007e+00 6.23315930e-01 -9.36221890e-03 4.89191115e-01 1.46641588e+00 1.05043463e-01 4.41937089e-01 -7.38411069e-01 -5.45622921e-03 6.97263181e-01 1.42688107e+00 -8.01097274e-01 -2.62419939e-01 -2.69199759e-01 4.95691240e-01 4.26292658e-01 -6.87879026e-02 -7.04082072e-01 -8.95643890e-01 6.68145776e-01 7.03945979e-02 1.83180392e-01 -3.74526054e-01 -4.61723536e-01 -9.35689509e-01 -3.93589474e-02 -9.05726433e-01 4.38928068e-01 -5.36933124e-01 -4.85718757e-01 4.62005556e-01 -5.03640175e-02 -1.11627388e+00 3.99533734e-02 -2.39902273e-01 -1.24418557e+00 8.25981736e-01 -8.55087459e-01 -8.29390883e-01 -5.23828566e-01 6.84115469e-01 5.48454858e-02 -3.16062629e-01 1.08222747e+00 3.30422521e-01 -1.00489676e+00 9.92970586e-01 1.26848862e-01 9.49579924e-02 6.46795034e-01 -1.49467492e+00 -2.26611063e-01 1.23376763e+00 7.30957240e-02 9.20171082e-01 7.84381986e-01 -5.36844850e-01 -1.51577508e+00 -1.05225778e+00 9.06723022e-01 -3.19010615e-01 6.63098633e-01 -3.24523270e-01 -1.32516706e+00 7.10794091e-01 1.21523269e-01 4.77382205e-02 9.06664133e-01 2.70484030e-01 -5.88274658e-01 -1.53431401e-01 -1.36172235e+00 4.78039622e-01 3.59148264e-01 -5.19116044e-01 -7.45311618e-01 1.64405793e-01 7.14617014e-01 -4.93233323e-01 -1.35536575e+00 -2.72791058e-01 1.16760973e-02 -1.16501677e+00 6.45990610e-01 -3.56547624e-01 5.07726312e-01 -6.13678217e-01 1.57437902e-02 -1.30355346e+00 5.70792034e-02 -7.10107923e-01 2.17959940e-01 1.65537202e+00 1.57228690e-02 -3.70808989e-01 9.76353168e-01 1.02760506e+00 -5.93315125e-01 -2.47000962e-01 -6.14261210e-01 -7.64649928e-01 2.56986350e-01 -1.29536077e-01 8.91063571e-01 1.50164366e+00 5.87234557e-01 -1.37082338e-01 5.02897978e-01 2.44257286e-01 5.60996711e-01 5.25639296e-01 1.18819523e+00 -1.59161472e+00 -3.38581383e-01 -6.39064729e-01 -8.77638996e-01 4.83917408e-02 5.66748083e-01 -1.37340248e+00 -2.03733459e-01 -9.12054598e-01 -1.38945440e-02 -7.11942911e-01 1.56622499e-01 6.55401349e-01 4.50488590e-02 -3.85909766e-01 4.00852501e-01 -1.09293789e-01 -4.28498089e-01 7.55642483e-04 5.92980444e-01 4.27251123e-03 -4.94092405e-01 -8.38270336e-02 -2.86716014e-01 6.70176983e-01 7.76666224e-01 -8.47524226e-01 -1.94455311e-01 2.50308476e-02 9.06736851e-02 -1.12196676e-01 2.29760587e-01 -1.62931657e+00 6.45167410e-01 -2.70854205e-01 -2.32148632e-01 -3.75987023e-01 -4.26081032e-01 -1.04233706e+00 5.14609814e-01 6.18712723e-01 -3.23314220e-01 2.72421211e-01 4.39163953e-01 2.81516284e-01 -4.20774847e-01 -9.88188922e-01 7.76657224e-01 -2.09761843e-01 -6.91175878e-01 -2.49626502e-01 -8.30010056e-01 -3.01306099e-01 1.39453030e+00 -3.07351440e-01 -3.49532485e-01 2.88411021e-01 -5.83845258e-01 -1.57754451e-01 8.11272264e-01 2.18595311e-01 4.50276345e-01 -1.10242271e+00 -1.21487677e-01 3.73176426e-01 5.07574975e-02 8.65254328e-02 3.27315122e-01 5.82586348e-01 -1.01972985e+00 2.34988049e-01 -4.20428306e-01 -7.14732468e-01 -2.08072066e+00 8.05601060e-01 3.72733735e-02 -4.79556948e-01 -4.64723051e-01 5.24800301e-01 -3.85103881e-01 -1.17391264e+00 1.43722117e-01 -6.19840264e-01 -1.49656489e-01 -2.43899569e-01 3.59904647e-01 4.72973853e-01 4.72335726e-01 -2.03378737e-01 -1.70356669e-02 5.56455374e-01 2.33165659e-02 2.90244997e-01 1.20228112e+00 4.01541233e-01 -6.20803714e-01 1.15645751e-01 1.25403953e+00 5.32929063e-01 -3.31255287e-01 1.06240295e-01 3.12344193e-01 -7.46913016e-01 -1.87430587e-02 -3.87211591e-01 -1.17050362e+00 8.49477530e-01 5.03933728e-01 2.43446320e-01 8.89772356e-01 -4.91820306e-01 4.57182944e-01 4.74175662e-01 4.24584895e-01 -8.79765630e-01 2.66054198e-02 6.08200014e-01 1.54771864e-01 -7.86705136e-01 1.24898076e-01 -7.24689960e-01 -5.69942370e-02 1.45697784e+00 8.88482392e-01 -1.37064040e-01 5.63891947e-01 2.20434338e-01 -4.71487641e-01 -8.27026591e-02 -2.96922088e-01 3.17873478e-01 1.79919168e-01 4.04273748e-01 4.76456463e-01 2.26909906e-01 -7.18477964e-02 9.08015311e-01 -5.18694699e-01 -1.71412587e-01 1.21269596e+00 1.10223210e+00 -6.12788796e-01 -1.64828134e+00 -9.05715346e-01 1.08309552e-01 -2.35596552e-01 1.26089901e-01 -4.56388175e-01 8.29340935e-01 2.63287246e-01 8.63483608e-01 -1.37230158e-01 -7.42443085e-01 3.95929337e-01 3.48553807e-01 4.96546090e-01 -1.00218689e+00 -1.55707157e+00 -7.66242802e-01 -3.21167290e-01 -5.56183517e-01 -9.63170379e-02 -7.06457198e-01 -1.40961909e+00 -1.02547491e+00 -2.74014682e-01 4.84237343e-01 8.13421667e-01 7.15060771e-01 5.79741478e-01 6.20710313e-01 5.52054226e-01 -2.55509466e-01 -3.10658276e-01 -2.14014694e-01 -4.64100808e-01 4.82643723e-01 -1.42858952e-01 -4.20051366e-01 -1.63464740e-01 1.14003755e-02]
[7.861756324768066, 7.700655937194824]
cf3f70c5-3f2c-4463-b27d-38a248dc246a
on-attention-modules-for-audio-visual
1812.06071
null
http://arxiv.org/abs/1812.06071v1
http://arxiv.org/pdf/1812.06071v1.pdf
On Attention Modules for Audio-Visual Synchronization
With the development of media and networking technologies, multimedia applications ranging from feature presentation in a cinema setting to video on demand to interactive video conferencing are in great demand. Good synchronization between audio and video modalities is a key factor towards defining the quality of a multimedia presentation. The audio and visual signals of a multimedia presentation are commonly managed by independent workflows - they are often separately authored, processed, stored and even delivered to the playback system. This opens up the possibility of temporal misalignment between the two modalities - such a tendency is often more pronounced in the case of produced content (such as movies). To judge whether audio and video signals of a multimedia presentation are synchronized, we as humans often pay close attention to discriminative spatio-temporal blocks of the video (e.g. synchronizing the lip movement with the utterance of words, or the sound of a bouncing ball at the moment it hits the ground). At the same time, we ignore large portions of the video in which no discriminative sounds exist (e.g. background music playing in a movie). Inspired by this observation, we study leveraging attention modules for automatically detecting audio-visual synchronization. We propose neural network based attention modules, capable of weighting different portions (spatio-temporal blocks) of the video based on their respective discriminative power. Our experiments indicate that incorporating attention modules yields state-of-the-art results for the audio-visual synchronization classification problem.
['Shervin Ardeshir', 'Naji Khosravan', 'Rohit Puri']
2018-12-14
null
null
null
null
['audio-visual-synchronization', 'audio-visual-synchronization']
['audio', 'computer-vision']
[ 1.68535545e-01 -4.37533528e-01 4.31424826e-02 1.94859337e-02 -6.66096866e-01 -6.96317732e-01 5.85825503e-01 6.59677505e-01 -3.01067829e-01 9.84874219e-02 1.17305666e-01 8.53453670e-03 -1.15341626e-01 -3.29493642e-01 -5.72440028e-01 -7.08842158e-01 -2.99645245e-01 -1.19180650e-01 4.21213597e-01 -1.24603868e-01 3.52901936e-01 3.85531276e-01 -1.97819901e+00 5.99545658e-01 9.54345986e-02 1.19107878e+00 6.15977228e-01 9.98246014e-01 -1.66347891e-01 7.25121379e-01 -7.36315370e-01 -3.32937278e-02 -1.92402527e-01 -3.77697676e-01 -5.16444266e-01 1.52467906e-01 4.63071853e-01 -1.32512450e-01 -3.92369747e-01 9.97778475e-01 5.40334225e-01 2.59054393e-01 2.95411170e-01 -1.23463190e+00 -5.27795404e-02 5.91893554e-01 -4.27734643e-01 7.41224706e-01 7.52390325e-01 -2.37213206e-02 1.04442871e+00 -7.47843564e-01 7.17190146e-01 8.43709588e-01 2.96232373e-01 3.86165269e-02 -9.14423525e-01 -3.05887222e-01 2.95287192e-01 5.86275876e-01 -1.23644018e+00 -7.73553312e-01 9.89811420e-01 -6.42618299e-01 6.10829711e-01 5.15772581e-01 5.67447186e-01 1.14755571e+00 2.28281587e-01 5.71251631e-01 4.25590366e-01 -4.26682144e-01 1.60610035e-01 1.27402067e-01 -1.15812257e-01 7.94568136e-02 -5.06079376e-01 -2.71340281e-01 -8.41797829e-01 1.54706106e-01 4.04905826e-01 -1.06089271e-03 -4.64066178e-01 -8.85438174e-02 -1.12971556e+00 2.59926349e-01 -8.01327378e-02 7.94688523e-01 -5.18993855e-01 7.67521411e-02 5.67805886e-01 3.68378818e-01 1.45781845e-01 2.98900921e-02 -3.48380134e-02 -4.50395077e-01 -1.06864357e+00 2.16277838e-02 5.33596575e-01 6.67425573e-01 2.46717587e-01 -1.83066621e-01 -2.93733358e-01 5.47277093e-01 7.61027932e-02 2.18683407e-02 4.28622246e-01 -7.52700329e-01 4.15141016e-01 1.35865673e-01 1.63982332e-01 -1.33008599e+00 -2.32402325e-01 -5.38676642e-02 -4.98137027e-01 -3.07273469e-03 4.08608496e-01 1.49721786e-01 -3.47030222e-01 1.73864913e+00 2.84820646e-01 3.70508492e-01 -3.43892932e-01 1.08442116e+00 7.79048026e-01 8.15331697e-01 1.18873872e-01 -5.65991998e-01 1.53410757e+00 -4.62967485e-01 -9.50471103e-01 5.49756661e-02 6.88002631e-02 -1.02072358e+00 8.25210333e-01 4.66344327e-01 -1.20999765e+00 -9.94615674e-01 -8.40695977e-01 1.70519263e-01 -2.19335750e-01 -1.11727253e-01 -1.54266641e-01 1.28245220e-01 -7.78643847e-01 6.71284199e-01 -6.14018977e-01 -4.03855503e-01 -1.64942771e-01 7.34450072e-02 -5.12652695e-01 3.46922994e-01 -1.07104719e+00 3.91868830e-01 1.23201393e-01 1.69750720e-01 -9.27202880e-01 -4.70978916e-01 -6.28100574e-01 3.04542869e-01 4.02292639e-01 -9.94707737e-03 1.28897297e+00 -1.48855233e+00 -1.38631022e+00 8.34514081e-01 -8.70826319e-02 -1.92660317e-01 5.37033439e-01 -2.51721740e-01 -8.40658486e-01 5.05847216e-01 -2.75127292e-02 3.47748727e-01 1.37409890e+00 -1.07325637e+00 -8.15860510e-01 -1.15510099e-01 2.27703080e-01 1.49048001e-01 -4.22477514e-01 5.23039341e-01 -7.03473330e-01 -6.77020609e-01 -2.37663053e-02 -6.26900971e-01 3.90841961e-01 -9.60600674e-02 -2.55805731e-01 -5.86151481e-02 1.17122793e+00 -5.82229674e-01 1.41597891e+00 -2.45751023e+00 2.56122142e-01 1.53059661e-01 2.87417937e-02 1.77490100e-01 -1.30792081e-01 6.01110935e-01 -3.73281538e-01 -1.06321514e-01 2.90695339e-01 -3.33732933e-01 -2.53096551e-01 -1.66870117e-01 -3.97310436e-01 5.42174935e-01 5.95647581e-02 2.43807584e-01 -8.80472660e-01 -5.14749885e-01 2.01030642e-01 6.18115604e-01 -3.09550375e-01 5.05982339e-01 -8.30741748e-02 8.06383014e-01 -1.43401816e-01 4.27760154e-01 2.65357256e-01 -1.20160878e-01 2.27902725e-01 -3.45603973e-01 -4.50139791e-01 3.17459017e-01 -1.30110908e+00 1.67580211e+00 -4.52460080e-01 1.09706688e+00 1.85224563e-01 -9.68673646e-01 7.18121290e-01 7.97421098e-01 5.40747285e-01 -8.31300318e-01 2.93628186e-01 -1.30115241e-01 1.73856512e-01 -1.03052878e+00 7.26628423e-01 1.79044172e-01 2.54260246e-02 3.69506627e-01 6.91467524e-02 2.08529443e-01 3.68686676e-01 6.18216284e-02 9.75674272e-01 -5.68670146e-02 1.74182832e-01 1.02363691e-01 6.31537080e-01 -6.19665802e-01 2.24828437e-01 5.73729575e-01 -3.23788911e-01 8.56775165e-01 7.07772970e-01 -1.16762936e-01 -9.89849091e-01 -7.59990036e-01 1.11999929e-01 1.47923601e+00 2.15226367e-01 -6.71898246e-01 -6.30308628e-01 -1.65451512e-01 -2.73969114e-01 3.47753227e-01 -5.06339729e-01 -4.99412417e-02 -5.55901766e-01 8.74244869e-02 2.68937081e-01 2.92988479e-01 -7.49803483e-02 -1.20721543e+00 -1.00597358e+00 3.63428295e-01 -2.64702529e-01 -1.31162441e+00 -4.06878471e-01 1.32122338e-01 -4.75737393e-01 -9.98562872e-01 -6.66523039e-01 -6.44686043e-01 2.72936314e-01 3.82893234e-01 9.84319568e-01 -7.08354488e-02 -1.91065565e-01 5.75805664e-01 -4.65824902e-01 1.03777479e-02 -5.00820696e-01 -2.90876061e-01 1.76591665e-01 5.58012187e-01 -7.86271021e-02 -5.51832736e-01 -6.24278486e-01 3.55804920e-01 -1.04097974e+00 -1.11605413e-01 -7.41405413e-02 3.09482843e-01 4.19168949e-01 2.37193555e-01 2.38540724e-01 -1.90611884e-01 5.92112362e-01 -7.55693138e-01 -4.41623628e-01 1.39737666e-01 3.20902348e-01 -4.25322503e-01 7.57121921e-01 -8.78014565e-01 -6.17397606e-01 -1.99057102e-01 6.04989182e-05 -7.86554158e-01 -4.91095543e-01 4.97449428e-01 -1.13472894e-01 2.73553669e-01 3.51619363e-01 2.95716859e-02 -2.27040991e-01 -4.24428731e-01 1.82795059e-02 7.17044532e-01 7.63108075e-01 -2.86077708e-01 3.09392989e-01 4.19342846e-01 -1.99595049e-01 -1.15873373e+00 -3.25241804e-01 -6.87281370e-01 -4.36978549e-01 -8.64175379e-01 9.35207129e-01 -6.01991415e-01 -9.45768833e-01 3.82369697e-01 -1.33624494e+00 1.32455342e-02 3.00615337e-02 5.30688345e-01 -4.68716413e-01 4.82047856e-01 -4.18509305e-01 -9.01598513e-01 1.89288720e-01 -1.28307247e+00 9.86546516e-01 2.59425908e-01 -5.50672472e-01 -6.04714274e-01 1.36314943e-01 2.07659617e-01 1.17085919e-01 3.39250118e-02 6.74791455e-01 -5.54264069e-01 -2.88285226e-01 -3.53566825e-01 1.33165404e-01 1.82111427e-01 2.70740718e-01 5.04213512e-01 -1.21902335e+00 -1.01838060e-01 5.71663640e-02 1.92300454e-02 3.99388015e-01 5.07334352e-01 1.23031294e+00 -1.87801093e-01 -7.35337287e-02 1.36057556e-01 9.95854378e-01 4.32134748e-01 5.98964691e-01 5.74484169e-02 3.39032799e-01 9.28483665e-01 6.04147434e-01 6.78535938e-01 -3.55243497e-02 1.20616841e+00 5.98637938e-01 1.94312558e-01 3.23673673e-02 2.83391941e-02 6.82032049e-01 8.40999484e-01 -6.99297860e-02 -6.54902756e-01 -7.59468079e-01 5.51397026e-01 -1.70643592e+00 -1.23801684e+00 -2.35039487e-01 2.53961420e+00 4.92489189e-01 2.26380020e-01 2.93459833e-01 6.12471521e-01 1.04774117e+00 3.57128590e-01 -1.06665410e-01 -4.55920279e-01 3.86741087e-02 -2.44982988e-02 -2.61063099e-01 2.83359587e-01 -1.20132959e+00 3.52116555e-01 5.36888313e+00 7.89178014e-01 -1.53649282e+00 6.35819659e-02 3.75473171e-01 -4.38110769e-01 -4.32056822e-02 -1.84106603e-01 -3.73850226e-01 8.75514507e-01 1.05628109e+00 1.27683297e-01 2.17119500e-01 4.22339648e-01 6.13322377e-01 -4.10592943e-01 -1.38439643e+00 1.22421527e+00 9.52404886e-02 -1.08174777e+00 -2.40338057e-01 -2.53217638e-01 2.05343261e-01 -3.74755263e-01 2.28862360e-01 -1.91407949e-01 -6.79578424e-01 -9.08268511e-01 1.33930135e+00 4.22553092e-01 6.64952219e-01 -5.49830198e-01 5.33547461e-01 9.67940539e-02 -1.48343301e+00 -3.09274886e-02 2.17433050e-01 9.25744846e-02 4.37995791e-01 2.80503660e-01 -4.78720754e-01 3.82773429e-01 9.09115732e-01 4.77962047e-01 -1.80695981e-01 1.04793572e+00 -8.36327299e-02 4.08031166e-01 -2.68147618e-01 2.23799929e-01 3.12558077e-02 4.68408614e-02 9.68176305e-01 1.31121767e+00 5.09194314e-01 -5.71321025e-02 -1.35456055e-01 5.65119088e-01 8.33460689e-02 1.17576420e-01 -7.19281197e-01 -1.58854127e-01 3.40837330e-01 1.24216402e+00 -8.53601575e-01 -1.52639866e-01 -5.06448090e-01 9.47621644e-01 -1.54907957e-01 3.11049968e-01 -1.00566041e+00 -2.57939190e-01 6.61797643e-01 1.93939060e-01 5.55727482e-01 -1.54840156e-01 4.01499927e-01 -7.60822892e-01 2.35018700e-01 -8.30420196e-01 3.35023612e-01 -1.03360701e+00 -8.36365044e-01 6.62470400e-01 -2.19982713e-01 -1.58084130e+00 -2.98626602e-01 -2.07969517e-01 -7.49096155e-01 5.81693530e-01 -1.05540907e+00 -5.38621426e-01 -3.75773460e-01 6.22976124e-01 6.44606113e-01 7.30727240e-02 5.05257487e-01 7.47746348e-01 -4.95527864e-01 3.12019050e-01 -1.04047082e-01 -2.19842959e-02 8.97037864e-01 -7.95813560e-01 -9.01900902e-02 7.98802316e-01 5.25637567e-01 3.37490678e-01 9.31737065e-01 -3.87982935e-01 -1.30997133e+00 -5.00335157e-01 9.82517719e-01 -1.54204259e-03 8.18842053e-01 -3.46358210e-01 -9.63159740e-01 1.18092537e-01 3.42441589e-01 -9.81795564e-02 6.90940857e-01 -1.11249536e-01 -3.03308785e-01 -3.50684404e-01 -5.79422891e-01 4.83017385e-01 4.11440551e-01 -1.00973141e+00 -5.44540524e-01 2.43859738e-02 3.40206146e-01 -1.84880659e-01 -5.10537922e-01 1.08344525e-01 6.89011216e-01 -1.31873536e+00 7.81304896e-01 -5.87343991e-01 5.12982070e-01 -3.71874958e-01 -1.67763904e-01 -8.76652122e-01 -8.53589624e-02 -8.46014678e-01 -1.56450987e-01 1.40612328e+00 -1.62090778e-01 1.70162901e-01 2.07473904e-01 1.03861906e-01 9.61618051e-02 -8.65224525e-02 -1.10737610e+00 -5.28928816e-01 -8.00422370e-01 -7.26541877e-01 7.01085031e-02 8.86904657e-01 2.91458696e-01 1.66752085e-01 -3.89354289e-01 2.87323087e-01 1.77446306e-02 6.15951233e-02 5.56544185e-01 -1.11834872e+00 -3.67993683e-01 -6.47656560e-01 -7.10740983e-01 -7.80748010e-01 -4.17317962e-04 -4.29665297e-01 1.67349145e-01 -8.98392498e-01 -5.83883226e-02 -3.76646072e-02 -4.88551259e-01 -2.91691795e-02 1.18038319e-01 2.57553518e-01 3.77408326e-01 2.68805742e-01 -7.29358077e-01 1.53857961e-01 6.95137203e-01 -9.82516930e-02 -2.52031922e-01 1.86218899e-02 5.39795607e-02 6.58098817e-01 3.75291288e-01 -3.88354212e-01 -1.66830242e-01 -2.07575366e-01 3.15451056e-01 6.08777165e-01 4.92625058e-01 -1.19103515e+00 4.23388541e-01 7.71081224e-02 -9.67415888e-03 -4.61299866e-01 4.32907194e-01 -1.10335982e+00 3.89351338e-01 1.82208508e-01 -5.18499076e-01 2.06818074e-01 2.80678511e-01 5.59189796e-01 -6.14992440e-01 -2.35495239e-01 7.04692423e-01 1.43957898e-01 -6.68759167e-01 2.88890935e-02 -8.39433372e-01 -1.46653131e-01 1.00860393e+00 -2.80963838e-01 -7.11962283e-02 -7.40755022e-01 -8.94439161e-01 -2.80794203e-01 1.19871475e-01 6.98145866e-01 4.45163965e-01 -1.10005760e+00 -3.51583570e-01 1.79584354e-01 7.06228986e-02 -4.03315842e-01 6.50524437e-01 1.06287789e+00 -2.96675473e-01 2.93785483e-01 -2.62590677e-01 -7.59559393e-01 -1.62341261e+00 5.60298502e-01 1.55359581e-01 1.48359463e-01 -4.49468821e-01 7.44028866e-01 2.40226433e-01 6.92168593e-01 6.99410796e-01 -4.62050617e-01 -5.60625434e-01 7.78355956e-01 7.59329081e-01 3.33292067e-01 2.71191180e-01 -8.04986656e-01 -4.10540283e-01 4.83507603e-01 1.56042606e-01 -2.35644937e-01 1.16282570e+00 -3.30956429e-01 3.08859367e-02 1.02322948e+00 1.19432044e+00 2.98035979e-01 -1.15137720e+00 2.68804580e-02 -1.14321150e-01 -3.60644341e-01 7.56545272e-03 -2.06571847e-01 -1.03043079e+00 1.12077415e+00 6.27209246e-01 8.67282093e-01 1.19287479e+00 9.36234817e-02 5.11914313e-01 -1.00499019e-01 4.42878082e-02 -1.25426280e+00 3.70950222e-01 3.21117520e-01 8.82325470e-01 -9.76515651e-01 -1.98453724e-01 -1.41804833e-02 -6.13578320e-01 1.34895468e+00 1.40889600e-01 1.22731000e-01 4.92745250e-01 3.51552457e-01 1.23244468e-02 -7.26230890e-02 -8.08817804e-01 -1.52294561e-01 4.41828042e-01 3.19566131e-01 4.58817571e-01 -2.28422612e-01 9.04727206e-02 5.39268851e-01 1.19725525e-01 -2.57825673e-01 3.85497630e-01 8.17749619e-01 -3.09959203e-01 -7.51793325e-01 -5.92687786e-01 -1.92678720e-01 -6.96936488e-01 -2.66392995e-02 -2.57875204e-01 4.38461214e-01 1.15527362e-01 1.03244781e+00 5.79194188e-01 -4.24287379e-01 2.48851091e-01 1.00412734e-01 3.79120678e-01 -2.37119421e-01 -9.19458568e-01 5.26751339e-01 -1.27573431e-01 -6.44423783e-01 -6.55147016e-01 -7.21445680e-01 -8.98265421e-01 -4.02522162e-02 -6.71717897e-02 8.05004463e-02 6.89271867e-01 8.57389390e-01 2.49369189e-01 6.94943368e-01 6.55031025e-01 -1.12403882e+00 2.49334238e-02 -7.35545337e-01 -4.61385429e-01 6.85265958e-01 6.12406552e-01 -5.01169801e-01 -4.15995985e-01 4.38940167e-01]
[14.59400463104248, 5.027501106262207]
4704f449-830f-4a2a-97cd-26478ef39827
event-causality-identification-via-derivative
null
null
https://aclanthology.org/2022.coling-1.200
https://aclanthology.org/2022.coling-1.200.pdf
Event Causality Identification via Derivative Prompt Joint Learning
This paper studies event causality identification, which aims at predicting the causality relation for a pair of events in a sentence. Regarding event causality identification as a supervised classification task, most existing methods suffer from the problem of insufficient annotated data. In this paper, we propose a new derivative prompt joint learning model for event causality identification, which leverages potential causal knowledge in the pre-trained language model to tackle the data scarcity problem. Specifically, rather than external data or knowledge augmentation, we derive two relevant prompt tasks from event causality identification to enhance the model’s ability to identify explicit and implicit causality. We evaluate our model on two benchmark datasets and the results show that our model has great advantages over previous methods.
['Guilin Qi', 'Tongtong Wu', 'Heng Zhou', 'Shirong Shen']
null
null
null
null
coling-2022-10
['event-causality-identification']
['natural-language-processing']
[ 2.14523330e-01 1.08221039e-01 -5.83728433e-01 -3.86537552e-01 -7.49889672e-01 -4.22194093e-01 8.62934530e-01 5.96593142e-01 -2.81037331e-01 1.17021823e+00 7.81893909e-01 -3.97639722e-01 -2.36527190e-01 -6.32439554e-01 -6.20951116e-01 -3.03325772e-01 -3.18194449e-01 5.55090234e-02 2.94151604e-01 2.98192829e-01 1.27544522e-01 8.87019113e-02 -7.09235847e-01 3.10440958e-01 8.87597501e-01 7.31136322e-01 -1.05381191e-01 3.45341265e-01 5.32223321e-02 1.88430941e+00 -4.78471041e-01 -3.04446816e-01 -3.69641989e-01 -5.73360920e-01 -1.19137967e+00 -6.36500239e-01 -2.38246188e-01 -4.59117591e-01 -4.25931931e-01 6.02126122e-01 3.36416483e-01 -7.23715201e-02 7.71558285e-01 -1.48437023e+00 -5.87821245e-01 1.04773617e+00 -4.58279967e-01 7.93991327e-01 6.59289122e-01 -2.05280676e-01 1.38839459e+00 -9.30158913e-01 3.18405271e-01 1.34421682e+00 5.90296507e-01 2.78265804e-01 -9.50602770e-01 -8.46142530e-01 5.06757677e-01 7.39799678e-01 -1.14755571e+00 -2.18574330e-01 1.03742492e+00 -5.28650045e-01 8.96984339e-01 6.43893406e-02 1.02336489e-01 1.41824627e+00 1.05016708e-01 1.01063609e+00 7.50674963e-01 -3.42261106e-01 2.84043998e-01 -4.92716432e-01 3.42919856e-01 3.15882713e-01 7.69797526e-03 1.90710723e-01 -8.04664552e-01 -5.17764688e-01 5.75398743e-01 -2.39956096e-01 -2.70779669e-01 3.02970737e-01 -1.36123359e+00 7.42122233e-01 2.44573012e-01 3.60835530e-02 -6.56128287e-01 2.53906250e-01 5.40244043e-01 -3.77020538e-02 7.08463252e-01 2.30676502e-01 -7.42669463e-01 -9.99061391e-02 -4.12423790e-01 3.45370322e-01 7.67572880e-01 4.78144765e-01 3.15391980e-02 -2.25000948e-01 -6.79517925e-01 5.90348125e-01 3.59846115e-01 -6.58745179e-03 2.00116098e-01 -3.06004643e-01 5.21350086e-01 8.10310066e-01 2.76729137e-01 -1.02590764e+00 -6.06630206e-01 -1.54521242e-01 -6.48944497e-01 -5.01054347e-01 4.21043098e-01 -5.03110588e-01 -3.93123329e-01 1.97844338e+00 4.13320869e-01 1.08963990e+00 9.80262011e-02 9.30403352e-01 9.81560647e-01 7.64933586e-01 7.33746588e-01 -7.49750137e-01 1.14923358e+00 -7.00054646e-01 -1.18683791e+00 -1.61480248e-01 6.15307510e-01 -5.88869274e-01 7.73180366e-01 2.93267667e-01 -7.81266689e-01 -2.45926172e-01 -7.85721242e-01 1.17665477e-01 -9.05187149e-03 4.84187230e-02 9.11583841e-01 -2.52430458e-02 -3.66923183e-01 2.79343903e-01 -6.92333639e-01 -1.89840689e-01 3.30481470e-01 1.44343346e-01 4.19350481e-03 1.53148279e-01 -2.02433443e+00 7.09203541e-01 8.84083092e-01 1.47069932e-03 -8.99771810e-01 -1.02029395e+00 -6.85013771e-01 -2.18025707e-02 7.14407384e-01 -6.13472581e-01 1.38731980e+00 -5.52667558e-01 -1.07685387e+00 3.37723166e-01 -4.29838181e-01 -5.74326992e-01 3.29812706e-01 -6.63422346e-01 -6.90185249e-01 -6.44171908e-02 2.80407906e-01 7.74038360e-02 6.34600997e-01 -1.13016152e+00 -9.26079929e-01 1.61276497e-02 1.29953176e-01 4.74479701e-03 -4.87903237e-01 5.89881182e-01 -2.42831826e-01 -1.01666880e+00 -3.55263203e-01 -3.25022697e-01 -2.59297609e-01 -5.01853347e-01 -6.04135156e-01 -9.88224864e-01 7.79629350e-01 -5.88042676e-01 1.73875570e+00 -1.87808526e+00 -6.75338209e-02 -2.27208138e-01 2.42114395e-01 -9.33461636e-03 1.03249989e-01 4.89465475e-01 -6.53994083e-01 1.27720088e-01 -1.49549112e-01 -1.08422175e-01 -1.57981068e-01 2.37537622e-01 -9.30616856e-01 2.08984107e-01 6.92060411e-01 9.68170941e-01 -1.50280190e+00 -8.16397905e-01 -3.21970522e-01 2.16971844e-01 -2.53992528e-01 6.48293316e-01 -2.69406259e-01 6.03593647e-01 -6.91599607e-01 3.21310908e-01 2.53441393e-01 -4.50869113e-01 3.26743096e-01 -1.81138620e-01 -8.22303295e-02 7.73531079e-01 -1.18731737e+00 1.27870488e+00 -1.17106393e-01 -1.38105992e-02 -6.70888841e-01 -1.11051619e+00 5.94890594e-01 9.49234545e-01 6.66817427e-01 -6.97034836e-01 -9.19938534e-02 5.90505414e-02 -2.06992000e-01 -7.72385716e-01 3.00951879e-02 -1.05616100e-01 -1.49289742e-01 4.71635818e-01 -1.88538238e-01 5.91096520e-01 2.31160566e-01 3.28943700e-01 1.33350456e+00 1.07606888e-01 5.62692285e-01 3.25523615e-02 5.72494566e-01 -1.78423356e-02 1.11564696e+00 6.59114778e-01 -1.99319661e-01 2.46266082e-01 9.24434602e-01 -5.08366704e-01 -3.84594858e-01 -1.24622190e+00 -1.09499492e-01 7.33107448e-01 -2.79933512e-02 -6.23213887e-01 -1.38992935e-01 -1.33700383e+00 -8.87937769e-02 8.81147981e-01 -6.83349788e-01 -2.44618163e-01 -8.15706372e-01 -1.34813809e+00 6.12244070e-01 1.00004590e+00 3.45927447e-01 -9.70525980e-01 -4.02020544e-01 2.24930584e-01 -5.87856889e-01 -1.26584506e+00 -3.27489763e-01 1.26449481e-01 -6.67222440e-01 -1.33380413e+00 -1.15890756e-01 -6.28655851e-01 3.66389424e-01 -1.65038228e-01 1.15082657e+00 -2.68626571e-01 5.66331483e-02 1.58301935e-01 -4.15675074e-01 -5.75812578e-01 -1.62193269e-01 -2.99016476e-01 2.18596160e-01 1.67464331e-01 4.57848310e-01 -5.43058932e-01 -4.83418941e-01 -5.44808172e-02 -7.33614087e-01 -1.26567390e-02 4.64831203e-01 9.76069152e-01 4.68672395e-01 3.31863731e-01 1.36698937e+00 -9.27296519e-01 8.10477078e-01 -1.04075849e+00 -2.70174026e-01 1.68679044e-01 -7.91805267e-01 9.84664634e-03 6.30541146e-01 -5.31785727e-01 -1.45866513e+00 1.78525224e-02 2.42849037e-01 -7.77311921e-02 -1.62530780e-01 1.17961061e+00 -3.10637176e-01 7.64533937e-01 3.79013807e-01 -1.80809230e-01 -7.38629162e-01 -3.47699583e-01 3.29770774e-01 2.01607212e-01 6.00780189e-01 -6.39814317e-01 7.15122342e-01 3.22701186e-01 -8.29294547e-02 -1.09832212e-01 -1.37022972e+00 -4.44196969e-01 -6.05731606e-01 -3.51143368e-02 9.13278162e-01 -9.72667098e-01 -7.90491760e-01 1.50542855e-01 -1.69583130e+00 -2.46037722e-01 -4.29107919e-02 8.55516672e-01 -1.46316200e-01 2.86621422e-01 -6.80072963e-01 -1.04387355e+00 -1.79374859e-01 -4.04646486e-01 7.85584807e-01 3.95138636e-02 -6.56769454e-01 -1.30942297e+00 4.65774387e-01 -9.48702730e-03 -2.63845503e-01 3.47484082e-01 1.15074563e+00 -8.60398412e-01 -3.05147469e-01 -1.45885095e-01 -4.72366780e-01 -1.54905394e-01 4.54720467e-01 -1.87071890e-01 -8.42617214e-01 2.75580823e-01 -6.79868609e-02 -3.33348870e-01 8.94866943e-01 1.44273773e-01 1.17341435e+00 -6.26765668e-01 -6.15103185e-01 3.02829836e-02 9.02415037e-01 3.54259104e-01 3.04054528e-01 1.66726246e-01 8.97266150e-01 6.56638265e-01 7.16175914e-01 7.05400169e-01 7.91499197e-01 5.23485720e-01 3.58744472e-01 -1.83218583e-01 8.57254714e-02 -5.88107288e-01 2.35944539e-01 5.20516992e-01 1.76997352e-02 -3.69277537e-01 -1.02170336e+00 8.76570463e-01 -2.26561737e+00 -9.71742451e-01 -6.51579618e-01 1.82571602e+00 1.48235321e+00 1.88046455e-01 1.52876377e-01 2.72396863e-01 5.16765594e-01 9.55344141e-02 -3.64487082e-01 -5.14189377e-02 -1.30259618e-01 -2.76966672e-02 8.86606425e-02 4.21040446e-01 -1.52965379e+00 7.26260304e-01 6.56844425e+00 5.87891936e-01 -7.48650253e-01 2.03365654e-01 5.77599227e-01 -2.72843204e-02 -2.27187976e-01 2.16359258e-01 -5.66780984e-01 5.78186452e-01 8.82670283e-01 -3.68745536e-01 -2.99180388e-01 2.94228226e-01 6.67464018e-01 9.72977281e-03 -1.50374353e+00 7.39185929e-01 -2.80112475e-01 -1.22974801e+00 1.47148117e-01 -3.97222579e-01 5.98719001e-01 -4.89243358e-01 -2.98246711e-01 2.49323100e-01 5.30426085e-01 -1.08539021e+00 5.51920116e-01 6.80863738e-01 2.15049833e-01 -7.06068873e-01 6.76641822e-01 2.42475688e-01 -1.16177416e+00 -2.50365883e-01 3.09523910e-01 -5.91751754e-01 5.14844298e-01 1.04559851e+00 -9.80195165e-01 1.00409281e+00 5.65382957e-01 1.12028706e+00 -3.92871171e-01 8.22123528e-01 -7.73195207e-01 1.39857924e+00 -1.20849580e-01 1.43770590e-01 -1.85783193e-01 4.58514154e-01 4.69760388e-01 1.30157733e+00 -1.52900234e-01 4.50735569e-01 4.03584272e-01 1.06865239e+00 -1.29845008e-01 5.48782274e-02 -4.08070654e-01 -4.77065630e-02 5.89880228e-01 8.60650599e-01 -3.78703058e-01 -3.04814607e-01 -5.81943691e-01 7.98394799e-01 4.06573474e-01 4.33604300e-01 -1.15849853e+00 -3.55949774e-02 2.26492941e-01 -3.46845537e-01 -2.46546164e-01 -1.03696994e-01 -6.20013297e-01 -1.09319055e+00 3.28694284e-02 -3.38229150e-01 1.09519553e+00 -5.73249996e-01 -1.56948221e+00 8.59304592e-02 3.06910634e-01 -8.69287252e-01 -3.48636210e-01 -2.09681466e-01 -1.09091604e+00 8.33253980e-01 -1.82294130e+00 -1.28180301e+00 8.42511505e-02 5.05069137e-01 3.39678526e-01 3.10977191e-01 6.99364007e-01 5.78745723e-01 -9.96291578e-01 5.03695548e-01 -6.36703908e-01 5.02397835e-01 1.00031400e+00 -1.44620252e+00 2.27528319e-01 1.16988981e+00 -1.62019338e-02 5.87611854e-01 6.36403501e-01 -1.18447793e+00 -1.20045650e+00 -1.29171228e+00 1.60469699e+00 -7.43335366e-01 1.09811962e+00 -1.52434841e-01 -9.37913716e-01 8.24509561e-01 1.51235327e-01 1.37535352e-02 7.38481224e-01 5.39582193e-01 -4.03441221e-01 3.31854485e-02 -5.20695269e-01 5.34242570e-01 1.03256547e+00 -3.47835392e-01 -1.04130256e+00 3.39383125e-01 9.44538653e-01 -1.62119135e-01 -7.16297805e-01 7.41884172e-01 1.99331746e-01 -5.73927686e-02 1.02990949e+00 -1.09105623e+00 9.05646861e-01 -3.80712688e-01 1.49881408e-01 -1.08546901e+00 -3.75122428e-01 -6.06096387e-01 -6.85479462e-01 1.74073911e+00 5.49819350e-01 -4.54595268e-01 2.60806769e-01 6.29280984e-01 1.34705096e-01 -4.44195807e-01 -8.52617860e-01 -7.03118682e-01 -2.50336099e-02 -5.65059662e-01 4.68618989e-01 1.53179216e+00 4.68878567e-01 9.76968348e-01 -4.90206987e-01 7.11633444e-01 5.96412003e-01 1.76547274e-01 3.03393871e-01 -1.28313231e+00 -2.55925655e-01 -2.48405531e-01 1.81570396e-01 -6.68975234e-01 5.01824856e-01 -7.92231798e-01 -7.35123456e-02 -1.61542594e+00 4.21489716e-01 -3.37197125e-01 -7.49168515e-01 8.40150535e-01 -9.69758570e-01 -1.79119393e-01 -3.44701231e-01 7.88360089e-02 -7.81934977e-01 7.20558465e-01 9.21934068e-01 -2.62164976e-02 -2.61196345e-01 -1.31047577e-01 -5.41661322e-01 8.80460322e-01 5.62021255e-01 -6.37902915e-01 -6.75255775e-01 -4.51541156e-01 5.40257752e-01 2.63489902e-01 9.15207684e-01 -4.04035360e-01 3.71194750e-01 -5.18143475e-01 2.75132477e-01 -6.29425287e-01 -2.91568071e-01 -5.19464374e-01 -2.22925201e-01 3.39619279e-01 -6.53211474e-01 2.69721523e-02 1.45534590e-01 8.49700511e-01 -4.49612588e-01 1.63037837e-01 1.05647944e-01 2.16807947e-01 -9.17291224e-01 2.00500116e-01 -2.55873322e-01 1.81034490e-01 9.35336947e-01 6.09375298e-01 -3.48212719e-01 -1.64147377e-01 -5.31815529e-01 6.18211865e-01 -4.75707024e-01 6.72442853e-01 6.91922188e-01 -1.54246640e+00 -1.04981112e+00 -3.13329995e-01 2.15781003e-01 6.23380989e-02 1.11018931e-02 1.10948694e+00 3.83406103e-01 5.58875859e-01 5.43752909e-01 -2.01968089e-01 -9.07639086e-01 9.14128602e-01 3.32261622e-02 -5.92047751e-01 -5.32305062e-01 8.78933132e-01 5.12240887e-01 -1.47042135e-02 3.78858745e-01 -3.18537712e-01 -7.09847927e-01 1.76577732e-01 6.39198899e-01 2.20301241e-01 -2.27163821e-01 -9.58418660e-03 -6.38485670e-01 -6.17930144e-02 -1.29548073e-01 -6.00614361e-02 1.18532765e+00 1.89964343e-02 -3.94102931e-01 7.98956931e-01 7.92616308e-01 -8.02963898e-02 -1.11361051e+00 -4.61883217e-01 6.78775966e-01 -1.19075708e-01 9.29404050e-02 -1.21837783e+00 -5.92747390e-01 5.41948378e-01 1.81458622e-01 1.34176478e-01 1.24760044e+00 2.32879907e-01 7.74016023e-01 -2.80156434e-02 -4.98477817e-02 -8.51259351e-01 2.42512107e-01 7.27826774e-01 9.88146186e-01 -1.39221489e+00 -1.75109446e-01 -5.00056446e-01 -4.96735811e-01 9.53950703e-01 6.47636712e-01 2.78028380e-02 7.34829068e-01 3.82862270e-01 -1.39758676e-01 -1.89199403e-01 -1.18857503e+00 -2.16111884e-01 4.04083401e-01 2.21096545e-01 7.82895446e-01 -7.61083188e-03 -7.72688866e-01 1.34762383e+00 2.54594356e-01 3.86987090e-01 1.91897243e-01 7.83544421e-01 1.85465083e-01 -1.05982065e+00 -2.42023602e-01 1.48761228e-01 -7.48034239e-01 -3.54120344e-01 -5.69552183e-01 4.29973751e-01 6.83687329e-02 1.29663825e+00 -1.06146187e-01 -2.47664705e-01 4.00952339e-01 1.89387038e-01 1.69109926e-01 -4.57450479e-01 -2.94359505e-01 2.29406618e-02 4.55436319e-01 -5.26451468e-01 -7.48732507e-01 -7.73201585e-01 -1.64703345e+00 2.14514792e-01 -6.64149076e-02 2.16032669e-01 -1.59977451e-01 1.43894422e+00 1.27702668e-01 1.06475353e+00 7.12519109e-01 5.17693534e-02 -3.40754449e-01 -8.35090160e-01 -2.24569708e-01 4.49454874e-01 5.29929698e-01 -8.22696269e-01 -1.21472031e-01 4.91526932e-01]
[9.073692321777344, 9.11007308959961]
d7d2d099-0fd0-4e25-be2d-17411ce14044
deep-neural-network-for-blind-visual-quality
2206.04363
null
https://arxiv.org/abs/2206.04363v1
https://arxiv.org/pdf/2206.04363v1.pdf
Deep Neural Network for Blind Visual Quality Assessment of 4K Content
The 4K content can deliver a more immersive visual experience to consumers due to the huge improvement of spatial resolution. However, existing blind image quality assessment (BIQA) methods are not suitable for the original and upscaled 4K contents due to the expanded resolution and specific distortions. In this paper, we propose a deep learning-based BIQA model for 4K content, which on one hand can recognize true and pseudo 4K content and on the other hand can evaluate their perceptual visual quality. Considering the characteristic that high spatial resolution can represent more abundant high-frequency information, we first propose a Grey-level Co-occurrence Matrix (GLCM) based texture complexity measure to select three representative image patches from a 4K image, which can reduce the computational complexity and is proven to be very effective for the overall quality prediction through experiments. Then we extract different kinds of visual features from the intermediate layers of the convolutional neural network (CNN) and integrate them into the quality-aware feature representation. Finally, two multilayer perception (MLP) networks are utilized to map the quality-aware features into the class probability and the quality score for each patch respectively. The overall quality index is obtained through the average pooling of patch results. The proposed model is trained through the multi-task learning manner and we introduce an uncertainty principle to balance the losses of the classification and regression tasks. The experimental results show that the proposed model outperforms all compared BIQA metrics on four 4K content quality assessment databases.
['Guangtao Zhai', 'Tao Wang', 'ZiCheng Zhang', 'Qiyuan Wang', 'Jun He', 'Quan Zhou', 'Wenhan Zhu', 'Xiongkuo Min', 'Wei Sun', 'Wei Lu']
2022-06-09
null
null
null
null
['blind-image-quality-assessment']
['computer-vision']
[-1.67882010e-01 -5.96043348e-01 1.77953586e-01 -2.93056101e-01 -1.07367921e+00 -7.63209388e-02 1.84708774e-01 9.86896008e-02 -2.51263976e-01 4.87504989e-01 3.72488379e-01 8.68192539e-02 -6.64517164e-01 -9.12220001e-01 -6.07629120e-01 -9.22864139e-01 -1.95745558e-01 -4.44041878e-01 2.00058937e-01 -4.29000370e-02 4.19568539e-01 2.15103611e-01 -1.89118254e+00 8.03835034e-01 1.27732146e+00 1.74685836e+00 3.08644414e-01 6.37918472e-01 1.17600381e-01 8.11541259e-01 -6.23685241e-01 -2.68146425e-01 2.55367994e-01 -3.78132969e-01 -5.79819977e-01 -6.13440685e-02 4.33933437e-01 -5.96159518e-01 -2.88330734e-01 1.31848204e+00 8.72629285e-01 4.74755317e-02 6.21976376e-01 -9.72410262e-01 -9.05515730e-01 5.66668026e-02 -4.11840677e-01 2.72788912e-01 2.37814218e-01 1.64188534e-01 7.57520974e-01 -8.23807776e-01 1.15931004e-01 1.13906634e+00 5.25469303e-01 2.03339569e-02 -8.29802155e-01 -4.65346009e-01 -9.16262195e-02 9.47308004e-01 -1.24761498e+00 -4.06905830e-01 9.92788613e-01 -3.11120301e-01 7.50716090e-01 3.55748236e-01 9.04314995e-01 6.18516564e-01 4.59972203e-01 7.94808507e-01 1.82922137e+00 -3.09077591e-01 1.70307547e-01 1.94065690e-01 -1.83502913e-01 7.57173359e-01 -4.55199815e-02 7.75431842e-02 -5.07346570e-01 1.31953344e-01 8.51256192e-01 -8.56736526e-02 -6.16005123e-01 -1.34105235e-01 -1.10784423e+00 5.67570329e-01 9.27526712e-01 2.40974098e-01 -4.10374343e-01 2.75775641e-02 3.10298681e-01 3.55358481e-01 1.83662906e-01 2.00734317e-01 -4.32483703e-01 6.31443635e-02 -7.04963923e-01 1.81848392e-01 1.65055767e-01 3.74459386e-01 8.17969024e-01 -1.43125355e-01 -4.71936226e-01 1.06149614e+00 4.81444091e-01 6.48484707e-01 7.17906237e-01 -9.64716852e-01 2.77824819e-01 5.83055854e-01 1.24049909e-01 -1.34147823e+00 -2.97390819e-01 -5.18549323e-01 -9.59731638e-01 7.40616739e-01 2.45432496e-01 2.18672395e-01 -9.36010182e-01 1.21012437e+00 4.75252932e-03 -7.84734040e-02 1.95230916e-01 1.30312788e+00 1.10385036e+00 9.23887849e-01 6.26218691e-02 -3.11223119e-01 1.43733823e+00 -8.02994430e-01 -7.90189624e-01 6.78947940e-02 3.86453979e-02 -7.98554182e-01 1.15654230e+00 6.22121811e-01 -9.64269936e-01 -8.76160502e-01 -1.26806819e+00 2.40928456e-02 -3.85620773e-01 4.95167375e-01 4.04383123e-01 6.56112134e-01 -1.04317319e+00 5.74841380e-01 -2.87145317e-01 3.66161019e-02 5.65135777e-01 1.55445203e-01 -3.69354784e-01 -3.14970195e-01 -1.27279770e+00 8.41664076e-01 3.01827282e-01 3.90119731e-01 -7.30918288e-01 -4.55430090e-01 -6.52538300e-01 7.47965500e-02 5.70756532e-02 -4.07559544e-01 8.01003993e-01 -1.14569461e+00 -1.68802249e+00 4.69526470e-01 1.23656638e-01 1.76134855e-02 1.46171212e-01 2.56346129e-02 -6.83731496e-01 4.45769548e-01 -6.63413033e-02 2.48611555e-01 1.03677511e+00 -1.37291193e+00 -8.27409446e-01 -3.14254135e-01 1.41553760e-01 4.37068671e-01 -4.05341804e-01 -8.52666721e-02 -5.79106569e-01 -6.24489784e-01 1.81500018e-01 -1.70196965e-01 5.06387092e-02 1.02760993e-01 -1.73991010e-01 -2.48575043e-02 3.75461847e-01 -1.18681812e+00 1.15539551e+00 -2.12647581e+00 2.02917576e-01 2.35912830e-01 1.63746238e-01 3.14166278e-01 -1.20704450e-01 4.19878364e-02 2.54697293e-01 -8.38684961e-02 -5.86460046e-02 9.36640948e-02 -2.11354524e-01 -2.73999751e-01 3.25147033e-01 3.57741952e-01 2.71406025e-01 7.01489747e-01 -6.28007829e-01 -5.42388022e-01 6.17089510e-01 5.48062444e-01 -4.00075018e-01 3.01108509e-01 3.20093073e-02 1.86376527e-01 -3.50960433e-01 6.34957492e-01 1.16856170e+00 -1.05909742e-01 -2.44002789e-01 -7.41010964e-01 -1.31688630e-02 -1.95239633e-01 -1.35359311e+00 1.64743066e+00 -7.39095569e-01 3.71815532e-01 -8.97966623e-02 -8.54094386e-01 1.00212204e+00 1.17543973e-01 8.35316777e-02 -1.41385019e+00 9.42659080e-02 3.37943941e-01 -1.19259536e-01 -8.25729907e-01 2.68273532e-01 -3.26884389e-02 7.98418820e-02 -8.59127194e-02 4.26513925e-02 2.97842652e-01 -4.25014585e-01 -2.18232334e-01 6.76025987e-01 -1.58639312e-01 1.71834067e-01 -1.26747355e-01 8.43563497e-01 -3.80312681e-01 6.27120554e-01 4.53370690e-01 -4.05001760e-01 5.19392490e-01 3.56252223e-01 -3.48522991e-01 -1.08772850e+00 -1.16052938e+00 -2.98306227e-01 5.89820325e-01 6.03971124e-01 -5.66298068e-02 -5.12098551e-01 -4.50206876e-01 2.73632333e-02 1.41705006e-01 -5.33513606e-01 -2.55216241e-01 -2.56416798e-01 -8.26693773e-01 5.85460402e-02 3.21716011e-01 1.05579519e+00 -1.15324795e+00 -3.73551607e-01 1.04890458e-01 -3.33060622e-01 -7.15466201e-01 -2.38538105e-02 -2.29579419e-01 -4.71058339e-01 -9.16216969e-01 -1.06398118e+00 -8.82831573e-01 2.64789343e-01 2.73121893e-01 6.83458388e-01 -1.27874747e-01 -2.97623843e-01 3.52118641e-01 -5.48598111e-01 -5.99960275e-02 -1.90442756e-01 -4.52379107e-01 1.83761842e-03 4.14138705e-01 2.65814930e-01 -4.77843434e-01 -1.13463163e+00 1.01462655e-01 -8.06450129e-01 -5.66801913e-02 9.48720634e-01 7.95349181e-01 7.96189487e-01 6.76525652e-01 8.56343508e-01 5.25780097e-02 6.67126775e-01 -1.22739099e-01 -4.20507640e-01 4.58371252e-01 -5.42413533e-01 -1.41152576e-01 6.63595855e-01 -2.47963130e-01 -1.19548869e+00 -4.97659057e-01 -4.70509939e-02 -3.16378236e-01 1.00139432e-01 4.27399307e-01 -5.82840741e-01 -5.24187148e-01 3.92171532e-01 5.14942646e-01 -3.68597321e-02 -6.23635709e-01 2.91309327e-01 9.87843275e-01 4.14949119e-01 -1.90197900e-01 5.20602345e-01 2.99554676e-01 -1.08117491e-01 -7.29932666e-01 -4.35527831e-01 -2.85714209e-01 -4.03361209e-02 -5.93933403e-01 9.82257724e-01 -1.12370145e+00 -9.37254131e-01 1.03721404e+00 -8.97761822e-01 -6.29572049e-02 -5.67120500e-02 7.19664931e-01 -4.11716551e-01 6.23372614e-01 -7.01376557e-01 -7.84211934e-01 -4.52568501e-01 -1.49924052e+00 9.03239310e-01 5.55530667e-01 7.79096484e-01 -4.68129605e-01 -3.00446898e-01 3.72841507e-01 4.92274970e-01 9.11704302e-02 1.08101451e+00 2.33820826e-01 -7.84447789e-01 -1.66816890e-01 -8.20290148e-01 9.14130926e-01 9.78206396e-02 -3.71397197e-01 -1.04334128e+00 -2.11357877e-01 2.19520591e-02 -3.91303748e-01 9.24599588e-01 7.35103130e-01 1.38780224e+00 -3.54133904e-01 1.86566651e-01 7.57228315e-01 2.04303527e+00 2.72897899e-01 9.78892922e-01 5.71841478e-01 6.51654363e-01 6.38310850e-01 6.24038815e-01 2.73042262e-01 2.90196002e-01 7.66096056e-01 5.23600817e-01 -1.20503508e-01 -3.21672887e-01 -9.88552496e-02 2.69965976e-01 9.84266460e-01 -1.29115492e-01 -9.29332972e-02 -4.43688810e-01 4.65511560e-01 -1.54065168e+00 -8.68257642e-01 -4.37260792e-03 2.12832832e+00 6.39186144e-01 5.95192499e-02 -1.32933870e-01 4.12526697e-01 6.49536669e-01 1.15318276e-01 -4.38621789e-01 -2.95430005e-01 -4.06631321e-01 2.59654969e-01 6.08299792e-01 3.49711150e-01 -1.20672071e+00 4.34303135e-01 5.53870726e+00 1.39361393e+00 -9.71120834e-01 5.95570393e-02 7.19037175e-01 -1.64906830e-01 -3.25803727e-01 -3.30747545e-01 -2.46174499e-01 6.49311483e-01 5.57487726e-01 8.84005427e-02 5.83368421e-01 6.48694873e-01 3.02427888e-01 -2.86314994e-01 -4.86700386e-01 1.49222434e+00 1.60979763e-01 -1.14188731e+00 3.09649289e-01 -7.59026268e-03 6.36080265e-01 -3.37932676e-01 5.16610920e-01 5.19398525e-02 -2.84110934e-01 -1.22630095e+00 7.04019845e-01 1.15835202e+00 9.78937745e-01 -8.26187849e-01 9.27127481e-01 -8.95425007e-02 -1.16829896e+00 -5.24761200e-01 -7.15142429e-01 8.39773566e-02 -6.17991053e-02 6.13515377e-01 5.42148277e-02 7.97046423e-01 1.32184529e+00 5.31579137e-01 -7.17135847e-01 1.53544319e+00 3.31229940e-02 2.86751390e-01 8.94504935e-02 -6.28638715e-02 8.49755853e-02 -2.15460509e-01 4.42420602e-01 8.70401144e-01 5.84606588e-01 9.40715522e-02 -1.76020265e-01 5.76856196e-01 2.48498291e-01 4.85795617e-01 -4.89957742e-02 4.11830515e-01 1.64713815e-01 1.27320373e+00 -4.80096281e-01 -3.06343228e-01 -5.39353371e-01 1.14086115e+00 7.22233057e-02 4.58648026e-01 -4.98551190e-01 -7.51543462e-01 6.25234962e-01 -1.33238971e-01 4.76690650e-01 1.31875336e-01 -2.56353378e-01 -1.10295165e+00 4.68097240e-01 -9.80382085e-01 7.39952475e-02 -1.12676716e+00 -1.38905334e+00 6.07793689e-01 -4.42351073e-01 -1.47291648e+00 4.30489153e-01 -8.08733821e-01 -3.40521097e-01 1.35564387e+00 -1.88162637e+00 -1.09109902e+00 -7.79959738e-01 5.74694693e-01 1.61559135e-01 -2.21683681e-01 7.00172603e-01 4.99244422e-01 -4.76965368e-01 6.25034928e-01 4.98843551e-01 6.38636872e-02 6.74319983e-01 -1.20152211e+00 -2.51177520e-01 7.45766103e-01 -4.69859898e-01 1.53838918e-01 3.80507320e-01 -3.17900389e-01 -1.27739584e+00 -9.04930174e-01 2.76666105e-01 -6.70131072e-02 1.23199664e-01 2.17494108e-02 -9.67291713e-01 -1.43698677e-01 -6.35349229e-02 4.52720597e-02 4.73965377e-01 -1.92503735e-01 -3.81462604e-01 -7.23743677e-01 -1.29669356e+00 2.40112156e-01 6.58954024e-01 -6.65205657e-01 -3.97732794e-01 6.84624724e-03 7.49190092e-01 -6.87799677e-02 -1.26715147e+00 5.72475433e-01 8.18136096e-01 -1.33861899e+00 9.98110354e-01 -2.46092528e-02 6.45576537e-01 -5.22348523e-01 -3.94070387e-01 -1.30812407e+00 -5.95527589e-01 2.52641112e-01 1.42797694e-01 1.23128760e+00 2.21765041e-01 -4.67831492e-01 4.05544400e-01 6.99123889e-02 -7.38924146e-02 -8.88747573e-01 -1.08613312e+00 -5.37423790e-01 -1.83958367e-01 -3.56423974e-01 7.54443944e-01 6.13510847e-01 -1.84107229e-01 -7.05804750e-02 -6.11212373e-01 4.13289934e-01 7.04266965e-01 7.93266445e-02 2.03333750e-01 -1.04479074e+00 -3.97807062e-01 -5.33383489e-01 -8.84626746e-01 -7.62428045e-01 -4.64598119e-01 -7.03635216e-01 -1.08932741e-01 -2.01076865e+00 2.01815873e-01 -5.67607880e-01 -7.19296515e-01 1.03366226e-02 -3.34817290e-01 5.09417593e-01 -6.44970089e-02 2.63525784e-01 -5.80540061e-01 7.81038821e-01 1.57212794e+00 -3.29907447e-01 -2.67573744e-01 -1.66254848e-01 -6.63595498e-01 3.01129997e-01 5.52259743e-01 1.96858391e-01 -3.20057452e-01 -4.64566469e-01 3.93838912e-01 2.39429295e-01 6.45666480e-01 -1.41213667e+00 -6.14791326e-02 5.12428470e-02 9.84297812e-01 -2.39853188e-01 3.59446734e-01 -8.22460115e-01 -1.29458115e-01 3.16985995e-01 -1.72032993e-02 -5.36678016e-01 1.34869978e-01 7.01865554e-01 -4.55617011e-01 5.65080084e-02 9.60238755e-01 -1.11017101e-01 -1.11221802e+00 4.23993886e-01 -1.33353651e-01 -4.92786646e-01 8.70987833e-01 -2.56062746e-01 -3.48044157e-01 -2.78038472e-01 -6.34182334e-01 -2.53560562e-02 3.73330444e-01 3.40711057e-01 1.01954067e+00 -1.72201502e+00 -7.57197618e-01 1.94201499e-01 4.16546911e-01 -3.74066263e-01 1.13506162e+00 5.07417262e-01 -7.38854706e-01 3.51946838e-02 -6.69079363e-01 -5.48280180e-01 -1.07584071e+00 6.88854694e-01 6.91227078e-01 -3.67368124e-02 -5.93227506e-01 7.88988948e-01 2.13092919e-02 7.36030331e-03 4.86243255e-02 -2.51725793e-01 -8.88971508e-01 1.07459351e-02 8.13994467e-01 4.94598389e-01 2.36589015e-01 -8.27073693e-01 -3.48576277e-01 1.01672769e+00 8.62426013e-02 5.33527993e-02 1.12315786e+00 -2.86254108e-01 -2.33922049e-01 1.80980682e-01 1.50588477e+00 -1.29455313e-01 -1.18892813e+00 -3.45980972e-01 -4.73161638e-01 -6.91408753e-01 4.69845563e-01 -1.09207702e+00 -1.13561976e+00 9.19497907e-01 1.44799459e+00 1.75365880e-01 1.77412820e+00 -1.61564097e-01 7.73265123e-01 -8.88128877e-02 2.87977278e-01 -1.04830146e+00 2.52703637e-01 -3.53082895e-01 9.66594398e-01 -1.22262335e+00 -6.66443333e-02 -2.19943896e-01 -5.05011380e-01 1.00531411e+00 5.21085680e-01 -1.80936068e-01 6.27129853e-01 -3.31091404e-01 2.33895242e-01 -1.40346348e-01 -1.97859764e-01 -2.07131982e-01 5.31469762e-01 8.72803986e-01 -1.27207279e-01 2.88240194e-01 -3.34370136e-01 7.98466444e-01 -1.00962438e-01 -1.63806658e-02 3.95588756e-01 2.29921028e-01 -6.43794656e-01 -6.16162479e-01 -4.01400805e-01 8.24727714e-01 -4.12532270e-01 -5.89471348e-02 3.02713752e-01 1.37002766e-01 6.08927310e-01 1.22021961e+00 -8.33248645e-02 -7.36112237e-01 4.64636743e-01 -1.83107898e-01 5.72256923e-01 3.96359060e-03 -1.73263147e-01 -3.72032784e-02 -2.96095520e-01 -7.54187465e-01 -4.73089218e-01 -2.90355057e-01 -5.97675085e-01 -1.75628051e-01 -1.87422484e-01 6.93520531e-02 6.32369399e-01 6.31961405e-01 1.43065184e-01 8.38333547e-01 8.34577203e-01 -6.99562311e-01 -2.25735068e-01 -1.08750725e+00 -9.77007687e-01 3.64508599e-01 5.99140882e-01 -6.99791789e-01 -5.19373894e-01 -2.94983894e-01]
[11.758156776428223, -1.9264256954193115]
123e3cca-0b78-4bee-a3cd-ae3cad995ea3
eye-movements-biometrics-a-bibliometric
2006.01310
null
https://arxiv.org/abs/2006.01310v1
https://arxiv.org/pdf/2006.01310v1.pdf
Eye Movements Biometrics: A Bibliometric Analysis from 2004 to 2019
Person identification based on eye movements is getting more and more attention, as it is anti-spoofing resistant and can be useful for continuous authentication. Therefore, it is noteworthy for researchers to know who and what is relevant in the field, including authors, journals, conferences, and institutions. This paper presents a comprehensive quantitative overview of the field of eye movement biometrics using a bibliometric approach. All data and analyses are based on documents written in English published between 2004 and 2019. Scopus was used to perform information retrieval. This research focused on temporal evolution, leading authors, most cited papers, leading journals, competitions and collaboration networks.
['Karin Satie Komati', 'Jefferson Oliveira Andrade', 'Antonio Ricardo Alexandre Brasil']
2020-06-01
null
null
null
null
['person-identification']
['computer-vision']
[-3.55009586e-01 -4.98787612e-01 -6.46744132e-01 4.49682176e-01 2.32544124e-01 -4.31446731e-01 3.81360114e-01 4.83738750e-01 -8.23280334e-01 7.71477759e-01 1.69391721e-01 -4.34956104e-01 -2.58018792e-01 -5.24143219e-01 -1.35911509e-01 -3.19383681e-01 2.97780573e-01 -2.10032225e-01 2.18323022e-01 4.08715680e-02 1.04467404e+00 7.96992660e-01 -1.57082367e+00 -3.65828723e-01 9.18438494e-01 7.31038690e-01 -1.09644629e-01 1.18467435e-01 -2.96785414e-01 4.18285668e-01 -9.88014519e-01 -8.16966891e-01 -1.13628037e-01 -5.38664818e-01 -3.62124085e-01 -4.99937862e-01 1.16221812e-02 -6.57908618e-02 -6.31593913e-02 1.10949779e+00 5.97542226e-01 -4.31090266e-01 4.26497787e-01 -1.19102073e+00 -1.25188923e+00 9.29516461e-03 -8.77795160e-01 6.57351077e-01 9.62352276e-01 4.54611555e-02 3.09616774e-01 -6.95131719e-01 7.19498932e-01 1.04496384e+00 4.50454235e-01 4.27688211e-01 -6.55675054e-01 -1.07786131e+00 -1.74736530e-01 4.26427335e-01 -1.45995581e+00 -2.35026792e-01 7.02355802e-01 -7.63665974e-01 8.66304576e-01 2.78213084e-01 1.03263330e+00 1.05912375e+00 4.57380772e-01 -8.53921622e-02 1.49404943e+00 -8.53404224e-01 2.95912400e-02 6.55164301e-01 5.34205556e-01 2.25746617e-01 1.46527958e+00 1.05649762e-01 -8.22047293e-01 -1.23690769e-01 3.61155152e-01 2.36124113e-01 -2.68867314e-01 2.12742776e-01 -8.75727117e-01 4.13593769e-01 -1.39108803e-02 4.97669190e-01 -5.56944430e-01 -5.71776509e-01 1.65065214e-01 3.55839670e-01 2.96461254e-01 2.75369197e-01 -6.70738816e-02 -4.33013290e-01 -9.17299032e-01 -9.48218107e-02 9.59781945e-01 3.61349791e-01 1.70583501e-01 -1.25703096e-01 1.27751321e-01 3.33164126e-01 8.35774899e-01 6.46820188e-01 4.88385201e-01 -5.78930914e-01 2.00216155e-02 7.51875162e-01 3.49119827e-02 -1.19464874e+00 -1.81063354e-01 3.89980003e-02 -6.10001385e-01 2.56784856e-01 1.52985409e-01 -3.07530016e-01 -5.56174338e-01 1.12501776e+00 1.24991715e-01 -4.81450669e-02 -1.48145989e-01 6.68497324e-01 1.19047773e+00 2.15722069e-01 2.67967969e-01 -6.69706643e-01 1.67969906e+00 -4.40514535e-01 -1.11799443e+00 2.42064640e-01 7.23927468e-02 -9.67240572e-01 4.69778746e-01 4.50333506e-01 -1.02600789e+00 -2.01938659e-01 -6.41053081e-01 3.22302610e-01 -7.53653586e-01 -1.54829562e-01 3.40240955e-01 1.50403953e+00 -9.96958256e-01 2.20994696e-01 -5.74680030e-01 -1.02803493e+00 3.90839964e-01 3.26404482e-01 -3.80459547e-01 1.66023076e-01 -1.10962617e+00 1.21090555e+00 2.85512134e-02 -8.79127756e-02 3.57840151e-01 -5.66266954e-01 -4.29858178e-01 -6.05290771e-01 4.23973240e-02 -6.15333974e-01 4.97003794e-01 -5.15696168e-01 -1.51163650e+00 1.28671515e+00 -7.04064131e-01 -3.25653493e-01 1.21381618e-01 3.41355391e-02 -1.00044501e+00 3.10683459e-01 1.95420533e-01 -1.03440449e-01 3.99569452e-01 -7.56963611e-01 -9.18555379e-01 -9.89526153e-01 -4.19802547e-01 -3.09960872e-01 -8.00623059e-01 1.15058768e+00 -4.60269839e-01 -6.45169556e-01 -1.76550537e-01 -7.92530656e-01 1.92863077e-01 -3.59595656e-01 -1.01380274e-01 -5.97866118e-01 6.79093361e-01 -1.09499609e+00 1.78959835e+00 -1.99934638e+00 -2.84140050e-01 3.85799378e-01 3.62176090e-01 5.03112197e-01 7.17905164e-01 6.23852193e-01 2.03235656e-01 6.71312571e-01 3.62190366e-01 7.22235888e-02 -2.66447693e-01 -4.67729807e-01 1.25179172e-01 7.89628208e-01 -4.11849588e-01 7.44807124e-01 -4.68638748e-01 -5.36464274e-01 2.50524461e-01 6.07924044e-01 8.82439762e-02 -1.90873653e-01 8.59400868e-01 3.99139792e-01 -5.96217394e-01 1.01137757e+00 7.69182026e-01 -2.32568696e-01 -1.33876175e-01 -1.04448413e-02 -7.87256241e-01 8.25956613e-02 -9.63677347e-01 9.53297138e-01 -9.75706801e-02 1.12499833e+00 -2.17227295e-01 -4.42183971e-01 1.05661428e+00 5.66440761e-01 5.51211536e-01 -7.44243383e-01 2.97748148e-01 3.76869142e-01 -3.92424315e-02 -6.45158231e-01 2.69124746e-01 1.18793204e-01 4.58779514e-01 4.16287839e-01 -2.78209448e-01 5.74897230e-01 4.12229419e-01 1.17822096e-01 3.23121041e-01 -2.08383515e-01 5.44763267e-01 -1.26281261e-01 8.82647038e-01 -2.82755315e-01 3.75034600e-01 4.50165659e-01 -5.02490282e-01 -1.11772716e-01 3.38294983e-01 -1.39114574e-01 -6.15995467e-01 -5.45507431e-01 -5.38884282e-01 3.14177722e-01 2.45125338e-01 -3.56768847e-01 -8.85120988e-01 1.07066974e-01 -1.40735209e-02 1.83881491e-01 -5.01218617e-01 2.89629344e-02 -1.30783021e-01 -4.55830127e-01 4.37192380e-01 -1.44442581e-02 8.23215485e-01 -1.27867818e+00 -8.36541891e-01 -2.29620427e-01 2.71258444e-01 -1.01008701e+00 -1.92930419e-02 -8.83947372e-01 -8.57504666e-01 -1.41944325e+00 -1.20839107e+00 -7.47794390e-01 5.15871465e-01 1.95887357e-01 6.32009685e-01 9.32444185e-02 -4.32130367e-01 5.04341602e-01 -2.46509761e-01 -9.45465028e-01 1.49388108e-02 2.92600933e-02 3.60414565e-01 -5.49178496e-02 1.42277205e+00 4.00133468e-02 -5.08948803e-01 1.50841475e-01 -3.85188669e-01 -6.63498104e-01 3.74930054e-01 1.79298401e-01 1.19653948e-01 5.85451797e-02 5.00248075e-01 -2.72858709e-01 9.88730252e-01 -4.44781363e-01 -8.39066803e-01 2.32121006e-01 -1.27755737e+00 -5.38491607e-01 -2.22385377e-01 -1.04708299e-01 -8.94048810e-01 -8.37203801e-01 3.52585584e-01 1.38896480e-01 -3.78226519e-01 5.27486742e-01 -1.38502151e-01 -5.18476188e-01 5.96517205e-01 -5.86644895e-02 4.11634892e-01 -5.65282524e-01 -4.96314019e-01 1.24144506e+00 1.39554292e-01 -8.00332576e-02 5.54153025e-01 4.85397756e-01 4.32853736e-02 -1.20086551e+00 -3.37249525e-02 -7.30908811e-01 -3.36641043e-01 -5.36096215e-01 8.79301727e-01 -5.82449138e-01 -1.45386291e+00 9.41385865e-01 -1.17382538e+00 4.19077396e-01 3.49451452e-01 1.01471257e+00 5.31356037e-01 4.75759983e-01 -4.62009698e-01 -1.12919867e+00 -4.45122868e-01 -1.08199012e+00 2.16447026e-01 9.73541617e-01 -3.00784230e-01 -1.04548371e+00 1.90013707e-01 3.90303373e-01 4.78166014e-01 2.17180908e-01 9.04954672e-02 -3.86532456e-01 -3.08430910e-01 -4.61896062e-01 -2.74351478e-01 -4.59722243e-02 3.96684915e-01 4.71588165e-01 -6.43104374e-01 -2.21854463e-01 2.89255138e-02 4.39203471e-01 6.21819258e-01 7.43162811e-01 8.36862087e-01 -5.11722147e-01 -8.10751557e-01 3.40762496e-01 1.34142148e+00 7.78312147e-01 8.77151072e-01 1.09703839e+00 4.74171638e-01 9.98196423e-01 2.79782921e-01 4.24610943e-01 4.83926922e-01 6.64522111e-01 2.63851639e-02 2.60332584e-01 1.51589289e-01 3.90363485e-02 2.41949394e-01 4.09324110e-01 -7.72065818e-01 -8.46187547e-02 -1.21599317e+00 5.19132555e-01 -1.19332123e+00 -1.13954127e+00 -5.46799421e-01 2.54651904e+00 4.78978515e-01 1.57989580e-02 7.61197507e-01 1.95323348e-01 1.08672404e+00 -1.63089544e-01 -6.49997517e-02 -4.32036877e-01 -2.04584643e-01 2.38660783e-01 7.90435433e-01 1.13098808e-01 -6.94915771e-01 7.42248416e-01 6.74199343e+00 2.96987236e-01 -1.14503837e+00 8.74321163e-02 2.94341803e-01 -1.16220765e-01 1.39763975e-03 2.62753852e-02 -9.64134753e-01 8.92618895e-01 1.23393476e+00 -7.61833072e-01 2.34893635e-01 3.85815322e-01 4.71171945e-01 -3.31501305e-01 -9.15681645e-02 1.18759584e+00 3.20917845e-01 -1.58165693e+00 -1.81593105e-01 7.52224863e-01 7.40971208e-01 -4.28551614e-01 4.84675050e-01 -5.37281275e-01 -1.67202026e-01 -7.97653437e-01 3.77482116e-01 8.77654672e-01 8.09297740e-01 -6.92125916e-01 9.99802709e-01 -1.11326598e-01 -8.15576196e-01 -3.25020589e-02 -8.32150355e-02 -2.07851961e-01 3.01882356e-01 3.59626293e-01 -5.46955243e-02 5.60966432e-01 1.19885361e+00 8.00458133e-01 -5.83739758e-01 1.61278808e+00 -1.94564909e-01 6.36804581e-01 5.39533701e-03 -5.25752842e-01 -2.28816435e-01 -3.71118933e-01 5.07502317e-01 9.84776139e-01 3.48586500e-01 1.84504673e-01 -5.56849003e-01 4.79111820e-01 1.49495274e-01 3.78783673e-01 -8.02194476e-01 -4.40325081e-01 7.86144853e-01 8.32883179e-01 -8.75082910e-01 -7.52381757e-02 -8.45677018e-01 6.81846857e-01 -6.15872741e-01 4.93456781e-01 -1.35278970e-01 -6.96159184e-01 6.24885857e-01 4.87304628e-01 -2.82182842e-01 -7.73687363e-02 -4.48537856e-01 -7.36222744e-01 -7.01320097e-02 -7.52615333e-01 4.62936223e-01 -2.85778075e-01 -8.56168926e-01 3.38541418e-01 1.32922366e-01 -9.77039337e-01 5.26923910e-02 -7.89242446e-01 -2.82848954e-01 1.33559954e+00 -1.08154881e+00 -7.18941748e-01 -3.44190180e-01 3.34399790e-01 -2.94287056e-01 -8.51950049e-01 4.36413020e-01 2.07828701e-01 -9.39373195e-01 6.15851402e-01 -1.90038444e-03 1.37648657e-01 7.62949347e-01 -7.17648923e-01 6.13068752e-02 6.80762112e-01 -4.28176880e-01 1.19370115e+00 4.15170819e-01 -1.09159636e+00 -1.04086626e+00 -1.49575070e-01 1.52239931e+00 -5.90236127e-01 6.51427567e-01 4.62551653e-01 -5.36989987e-01 3.25102299e-01 5.72681248e-01 -3.69583786e-01 1.14660621e+00 -5.02810208e-03 -9.48146135e-02 -1.06438302e-01 -1.24809062e+00 6.91979766e-01 7.21293449e-01 -5.15225291e-01 -4.91364568e-01 -1.40788788e-02 1.84546620e-01 -6.73827752e-02 -8.61058235e-01 1.05054654e-01 9.67002213e-01 -8.74666989e-01 9.16688383e-01 -4.52368081e-01 -1.60355903e-02 -9.55895483e-02 4.38626707e-01 -5.43680072e-01 -1.99047506e-01 -9.07399476e-01 -1.12802394e-01 1.35417736e+00 1.03683304e-02 -1.33600926e+00 7.21633017e-01 7.56058514e-01 3.99887264e-01 -5.07173002e-01 -8.08422744e-01 -7.98743963e-01 -4.93277423e-02 1.64978221e-01 5.96961915e-01 9.58295524e-01 2.64955580e-01 -4.66442332e-02 -1.52283415e-01 -1.44443825e-01 9.48274732e-01 -3.92000198e-01 6.21412873e-01 -1.78412569e+00 4.53791767e-01 -1.04523408e+00 -6.74858809e-01 -1.36083350e-01 3.97354923e-02 -4.10422891e-01 -1.08600485e+00 -1.87870204e+00 6.87679723e-02 1.43990517e-01 -3.39261770e-01 6.71319142e-02 -1.83696732e-01 2.66940117e-01 4.38180566e-02 5.61126769e-01 7.22599104e-02 -2.58895069e-01 9.38705564e-01 1.47989765e-01 -4.22989070e-01 1.73017532e-01 -1.09964526e+00 6.59178674e-01 9.37349081e-01 -3.15535456e-01 2.32801288e-01 2.17537969e-01 4.10665035e-01 -3.56389195e-01 3.46714348e-01 -6.81567311e-01 5.71426988e-01 -4.58896548e-01 2.24102333e-01 -6.92930698e-01 -1.26349628e-01 -8.06171536e-01 3.11429322e-01 6.57076776e-01 7.57395327e-02 4.38037425e-01 3.99075866e-01 1.84868366e-01 -2.30247512e-01 -3.75856251e-01 3.16030651e-01 9.20015574e-02 -5.41015267e-01 2.80961275e-01 -5.01427710e-01 -2.72697717e-01 1.23811769e+00 -8.93739045e-01 -3.58730435e-01 -2.38237053e-01 -3.57213974e-01 -1.61100447e-01 8.13467681e-01 4.21908885e-01 6.16294563e-01 -1.24532092e+00 -4.74255264e-01 -7.24192634e-02 2.17706263e-01 -1.01272166e+00 1.75090611e-01 1.10928619e+00 -7.09074855e-01 8.19864988e-01 -5.77386856e-01 4.67646904e-02 -1.51122332e+00 6.96313381e-01 -1.20306171e-01 3.20698351e-01 -4.91957456e-01 4.55022097e-01 -5.01765728e-01 3.75073135e-01 5.02799988e-01 4.21999305e-01 -9.16490257e-01 3.83745492e-01 9.78537261e-01 1.01260734e+00 -2.41844788e-01 -9.92501736e-01 -9.13619399e-01 8.37973237e-01 1.36824057e-01 -5.13609767e-01 8.22087288e-01 -2.19398275e-01 -7.44061828e-01 5.84025681e-01 9.69478965e-01 3.77971441e-01 -2.26115867e-01 1.40357360e-01 2.82049507e-01 -7.00623274e-01 -1.13458775e-01 -6.10625684e-01 -9.77232933e-01 6.07601941e-01 9.03723001e-01 3.11367601e-01 9.08638418e-01 -2.07489371e-01 4.14600462e-01 -1.41738340e-01 4.17064071e-01 -1.23765910e+00 -6.55939579e-02 8.84991288e-02 5.59304655e-01 -9.55486715e-01 3.95016260e-02 -2.06926852e-01 -3.58230829e-01 1.04384780e+00 3.05437803e-01 2.93144375e-01 1.28455591e+00 -1.37850523e-01 2.16515347e-01 -2.08815813e-01 7.61942714e-02 -1.25348508e-01 4.23485219e-01 8.44867706e-01 8.33758652e-01 -1.15748145e-01 -1.39292574e+00 6.54730856e-01 -1.51441442e-02 4.57063913e-01 2.99998581e-01 8.06178868e-01 -2.30809808e-01 -1.39134061e+00 -8.32055807e-01 7.23873615e-01 -1.09759641e+00 -7.46295750e-02 -7.16294110e-01 7.56135881e-01 -8.83755460e-02 1.28224945e+00 -6.85811937e-02 -3.78691375e-01 2.00294465e-01 -3.29024047e-01 3.21006298e-01 -1.20110728e-01 -4.92084116e-01 -2.50796080e-01 -2.60370374e-01 -1.51026025e-01 -8.85657966e-01 -1.04366243e+00 -9.17244911e-01 -8.32471073e-01 -4.00019348e-01 4.62910742e-01 1.07352376e+00 8.48219514e-01 4.65157986e-01 1.84061676e-01 4.13449019e-01 -1.16211012e-01 3.07326317e-01 -8.94143939e-01 -6.14129543e-01 -6.83548898e-02 2.53796220e-01 -7.38229096e-01 -4.72579211e-01 -3.01009446e-01]
[13.34234619140625, 0.8238323926925659]
31e16417-02ff-4e31-b95a-af8960ae63be
masked-contrastive-pre-training-for-efficient
2212.00986
null
https://arxiv.org/abs/2212.00986v2
https://arxiv.org/pdf/2212.00986v2.pdf
Masked Contrastive Pre-Training for Efficient Video-Text Retrieval
We present a simple yet effective end-to-end Video-language Pre-training (VidLP) framework, Masked Contrastive Video-language Pretraining (MAC), for video-text retrieval tasks. Our MAC aims to reduce video representation's spatial and temporal redundancy in the VidLP model by a mask sampling mechanism to improve pre-training efficiency. Comparing conventional temporal sparse sampling, we propose to randomly mask a high ratio of spatial regions and only feed visible regions into the encoder as sparse spatial sampling. Similarly, we adopt the mask sampling technique for text inputs for consistency. Instead of blindly applying the mask-then-prediction paradigm from MAE, we propose a masked-then-alignment paradigm for efficient video-text alignment. The motivation is that video-text retrieval tasks rely on high-level alignment rather than low-level reconstruction, and multimodal alignment with masked modeling encourages the model to learn a robust and general multimodal representation from incomplete and unstable inputs. Coupling these designs enables efficient end-to-end pre-training: reduce FLOPs (60% off), accelerate pre-training (by 3x), and improve performance. Our MAC achieves state-of-the-art results on various video-text retrieval datasets, including MSR-VTT, DiDeMo, and ActivityNet. Our approach is omnivorous to input modalities. With minimal modifications, we achieve competitive results on image-text retrieval tasks.
['Si Liu', 'Jinqiao Wang', 'Yousong Zhu', 'Xiaobo Li', 'Wenyu Sun', 'Shuwen Xiao', 'Yue Liao', 'Biaolong Chen', 'Fangxun Shu']
2022-12-02
null
null
null
null
['video-text-retrieval']
['computer-vision']
[ 3.22082102e-01 -4.39520925e-01 -6.29363179e-01 -3.08811069e-01 -1.16102695e+00 -3.65015715e-01 6.73261046e-01 -3.85880053e-01 -6.63475633e-01 1.50065646e-01 4.53349978e-01 -1.95459783e-01 1.81488827e-01 -1.42467812e-01 -9.05005276e-01 -4.81592119e-01 9.66494456e-02 2.80546516e-01 -2.46365368e-02 1.05540030e-01 1.01942830e-01 1.43972874e-01 -1.68940783e+00 1.03747702e+00 4.74518180e-01 9.22338665e-01 7.00301528e-01 9.89668429e-01 -1.09592527e-01 1.25379598e+00 -2.00825900e-01 -1.85192615e-01 2.94684350e-01 -3.84097964e-01 -7.80912161e-01 1.33446231e-01 1.00308549e+00 -7.09808111e-01 -1.05210376e+00 6.73937857e-01 5.93505085e-01 2.63613582e-01 6.72710478e-01 -1.01158381e+00 -5.13368309e-01 4.77721125e-01 -8.22096646e-01 1.58545732e-01 4.33183938e-01 1.11253396e-01 9.43924487e-01 -1.42027867e+00 7.10027456e-01 1.38340867e+00 3.98180962e-01 7.95809627e-01 -1.05800056e+00 -6.81590557e-01 3.74920994e-01 3.22726190e-01 -1.72048783e+00 -9.76231456e-01 4.18651938e-01 -2.51668692e-01 1.08317912e+00 3.43203157e-01 4.96721774e-01 1.20887196e+00 7.41715431e-02 1.35046077e+00 5.26317835e-01 -4.31823313e-01 -5.05840331e-02 -3.57389376e-02 -2.94699460e-01 8.56034696e-01 -2.87714213e-01 -2.55308840e-02 -1.08571088e+00 -1.75465252e-02 7.81933904e-01 2.66445339e-01 -3.35307568e-01 -3.16719264e-01 -1.38111174e+00 4.20711190e-01 2.85327524e-01 1.58465728e-01 -3.89344811e-01 5.69678783e-01 4.29138303e-01 4.66080457e-01 3.26464444e-01 2.37519736e-03 -2.18260720e-01 -3.30077350e-01 -1.80451620e+00 -3.42922360e-02 3.68402690e-01 1.07990551e+00 8.13894987e-01 2.63334930e-01 -4.53396171e-01 9.59292710e-01 4.41045731e-01 8.75143766e-01 6.60054803e-01 -1.07952416e+00 7.81719029e-01 1.15815118e-01 -2.62109935e-01 -9.35514569e-01 5.22593781e-02 -2.30939507e-01 -8.00950527e-01 -2.50187248e-01 -9.57128853e-02 2.60125726e-01 -1.43930316e+00 1.70762467e+00 -1.41967803e-01 3.12469155e-01 5.19081987e-02 1.19950581e+00 9.54004228e-01 9.17010725e-01 6.69493824e-02 -2.00799853e-01 1.08222640e+00 -1.33246899e+00 -7.50309110e-01 -3.85519356e-01 8.26340139e-01 -8.62040997e-01 1.21275342e+00 3.17958176e-01 -1.37939394e+00 -5.20693839e-01 -8.05047214e-01 -3.44312221e-01 -2.08443683e-02 4.01753247e-01 4.03868943e-01 2.67290056e-01 -1.25287008e+00 3.48289967e-01 -9.77812052e-01 -3.54122728e-01 3.68079871e-01 4.39189583e-01 -4.89836067e-01 -5.59852660e-01 -7.31415629e-01 5.37004709e-01 2.59625167e-01 2.74010766e-02 -1.30452096e+00 -6.12592995e-01 -8.96884024e-01 1.54814273e-01 3.94611299e-01 -8.07835340e-01 1.11830449e+00 -1.40725434e+00 -1.51447058e+00 9.40214157e-01 -6.66796088e-01 -4.61887062e-01 4.45568532e-01 -3.74118537e-01 -2.50239372e-01 8.31464589e-01 -2.38065720e-02 1.40591502e+00 1.41205418e+00 -1.22282398e+00 -3.05472314e-01 2.89682485e-02 -2.97175258e-01 5.81291318e-01 -5.49530864e-01 1.58650458e-01 -1.37069571e+00 -9.04773712e-01 1.03279769e-01 -8.72800171e-01 -1.36126488e-01 1.58960313e-01 -1.00337025e-02 2.30608553e-01 9.78324711e-01 -7.38172948e-01 1.43050909e+00 -2.38663816e+00 4.05164003e-01 9.96895432e-02 3.86952460e-01 2.47448146e-01 -6.80093884e-01 3.60110641e-01 -1.29104346e-01 -5.07277846e-02 -1.38855148e-02 -9.20399189e-01 -1.63918510e-01 1.89377591e-01 -5.17100811e-01 5.04756212e-01 6.61145449e-02 1.16056550e+00 -6.75298274e-01 -8.25948119e-01 4.99948531e-01 5.21991611e-01 -9.37121570e-01 3.91133577e-01 -3.26089203e-01 2.94116847e-02 -1.38742194e-01 9.35097218e-01 5.21659136e-01 -4.82405037e-01 1.09744549e-01 -3.87428492e-01 1.57887056e-01 1.23564862e-01 -9.12484825e-01 2.31979418e+00 -4.55333412e-01 9.62856293e-01 3.30379814e-01 -7.91340947e-01 3.00861686e-01 2.96053767e-01 6.11085534e-01 -1.04754829e+00 4.71676402e-02 5.01722023e-02 -4.81529772e-01 -4.70048994e-01 8.68045568e-01 3.72388393e-01 7.03171194e-02 4.01482314e-01 3.59100014e-01 2.57318497e-01 9.02211294e-02 7.18490124e-01 9.99776900e-01 2.30355546e-01 -1.64079458e-01 5.54678142e-02 3.64159703e-01 -5.95647879e-02 1.48957595e-01 8.91649783e-01 1.70051694e-01 1.04669988e+00 3.11205368e-02 -2.31666014e-01 -9.91053522e-01 -9.67520058e-01 2.00317994e-01 1.51225555e+00 2.28208974e-01 -9.65115070e-01 -4.56368715e-01 -4.61837441e-01 -2.68595904e-01 2.52298057e-01 -3.15512836e-01 -1.12705573e-01 -7.04863966e-01 -2.95989037e-01 5.99976122e-01 4.21218306e-01 4.79770690e-01 -8.76195490e-01 -2.30965629e-01 -1.16946111e-02 -5.22307515e-01 -1.45467949e+00 -1.05235064e+00 2.23642122e-02 -8.24234247e-01 -6.48235798e-01 -9.64626968e-01 -9.04252887e-01 7.75582373e-01 9.35198545e-01 1.08368683e+00 2.49537691e-01 -3.02984238e-01 8.50636959e-01 -4.34971035e-01 3.22603106e-01 -2.30349466e-01 -1.38530126e-02 1.27741262e-01 1.22554645e-01 5.63846789e-02 -4.10350591e-01 -7.97375619e-01 4.33186710e-01 -1.17624080e+00 3.31612319e-01 8.31208885e-01 9.69185650e-01 6.81778908e-01 -4.52281445e-01 -1.26257882e-01 -2.33368784e-01 1.31477460e-01 -4.00179476e-01 -2.89645553e-01 3.76852661e-01 -3.24487835e-01 -4.43818606e-02 4.49258804e-01 -8.48418593e-01 -6.11283004e-01 1.42394051e-01 7.09773824e-02 -1.45362437e+00 2.29308605e-01 5.68444610e-01 1.19415507e-01 -2.57504582e-01 4.56350863e-01 6.05434418e-01 1.12430125e-01 -3.56206447e-01 5.31276405e-01 6.42163932e-01 6.32372677e-01 -6.45903409e-01 7.25294709e-01 5.22081256e-01 -2.98753083e-01 -1.02594733e+00 -4.76769269e-01 -7.23268628e-01 -3.11615139e-01 -2.48668641e-01 7.94950962e-01 -1.67879868e+00 -5.49278915e-01 1.62214577e-01 -9.15052533e-01 -5.45736670e-01 3.21415402e-02 5.79586565e-01 -4.32066262e-01 6.45181835e-01 -7.21125841e-01 -6.76801741e-01 -5.84975958e-01 -1.21718371e+00 1.52395499e+00 -1.60741508e-01 -5.01670688e-02 -5.59236705e-01 -2.69276679e-01 4.34485137e-01 4.68358576e-01 -5.88650584e-01 4.06571567e-01 -2.69829631e-01 -9.72032666e-01 6.95906021e-03 -3.95075619e-01 2.47355551e-01 -3.16062063e-01 -1.90974608e-01 -9.90638554e-01 -7.93081224e-01 -3.89361054e-01 -6.65143371e-01 1.28261971e+00 4.31171983e-01 1.38967955e+00 -4.63911384e-01 -3.15155447e-01 9.57284629e-01 1.31484628e+00 -1.90607831e-01 8.35226536e-01 1.02628045e-01 1.00450909e+00 2.68742621e-01 5.89150906e-01 3.22777987e-01 3.72022182e-01 8.25833142e-01 2.65104562e-01 -3.26565444e-01 -4.62115854e-01 -4.65016335e-01 9.02514219e-01 9.62748110e-01 3.21972132e-01 -5.09929717e-01 -6.65891469e-01 6.21064067e-01 -2.04876161e+00 -1.14951754e+00 3.73126745e-01 2.12215948e+00 7.11835563e-01 -2.25280687e-01 1.48775920e-01 -3.06580752e-01 4.17915136e-01 4.20836240e-01 -2.81113535e-01 1.22043297e-01 -3.12879324e-01 1.60379633e-01 5.28645396e-01 6.46401286e-01 -9.71712947e-01 1.32110822e+00 6.44672298e+00 1.25830269e+00 -1.34420991e+00 1.81969449e-01 5.37100077e-01 -8.15871716e-01 -3.13859820e-01 -5.20077199e-02 -6.87880814e-01 4.37255740e-01 8.55399430e-01 2.44227067e-01 7.82215655e-01 6.66733444e-01 2.45214179e-01 -7.00186938e-02 -1.23501289e+00 1.60999382e+00 4.57377404e-01 -1.62403107e+00 4.84415144e-01 -7.01527297e-02 5.69346368e-01 3.09886813e-01 2.23848388e-01 3.80943626e-01 -1.82927787e-01 -1.10876024e+00 9.88215804e-01 3.68086904e-01 1.31084180e+00 -3.77856553e-01 3.21371615e-01 1.15759306e-01 -1.42671466e+00 -6.03153221e-02 -2.43237987e-01 3.24852854e-01 1.11554533e-01 2.81911522e-01 -5.37982821e-01 4.84247983e-01 8.03966343e-01 8.78866255e-01 -5.39669514e-01 7.59748936e-01 2.52283871e-01 5.64155161e-01 -4.71846372e-01 1.91672713e-01 4.05122072e-01 1.41802430e-01 4.75799352e-01 1.63220787e+00 2.09409922e-01 -4.19664234e-02 4.19511378e-01 5.21852791e-01 -2.70151824e-01 9.53769684e-02 -5.72407663e-01 -2.22977653e-01 4.38574731e-01 8.93552363e-01 -3.38617206e-01 -4.29725766e-01 -3.67360055e-01 1.42698443e+00 8.91652480e-02 7.13018298e-01 -9.20079112e-01 9.07772705e-02 5.47122419e-01 7.22611099e-02 5.38816273e-01 -2.99233168e-01 1.18623085e-01 -1.53318560e+00 2.24001974e-01 -1.24981058e+00 3.48138124e-01 -1.03877127e+00 -8.88313949e-01 5.09563088e-01 7.93278366e-02 -1.35630035e+00 -2.76753962e-01 -3.72833371e-01 -1.17238171e-01 5.98363757e-01 -1.59515798e+00 -1.35487497e+00 -3.54549080e-01 9.84863043e-01 9.30770576e-01 -3.73366684e-01 5.84382892e-01 6.58188522e-01 -4.60265338e-01 9.46504772e-01 4.33673859e-02 9.00028050e-02 9.26619112e-01 -5.94713211e-01 5.04085682e-02 9.07403171e-01 4.15833771e-01 6.68952703e-01 3.04038227e-01 -5.32136381e-01 -2.06480765e+00 -1.09837174e+00 6.00364923e-01 -2.66486108e-01 4.94710565e-01 -5.79984665e-01 -6.76948071e-01 6.32200897e-01 4.44773138e-01 7.98581690e-02 4.04148191e-01 -1.81059524e-01 -5.43013990e-01 -1.69844136e-01 -6.87325656e-01 8.85948539e-01 1.04231012e+00 -1.03182673e+00 -3.43026519e-01 3.72925401e-01 7.58014560e-01 -5.81422746e-01 -5.27491152e-01 3.63219291e-01 7.63972104e-01 -5.57513952e-01 1.11399245e+00 -3.93940479e-01 5.13328731e-01 -3.50291103e-01 -5.33837855e-01 -6.68308020e-01 -2.34184295e-01 -1.05125189e+00 -4.63809311e-01 8.91049743e-01 1.78472266e-01 8.82447138e-02 9.78239596e-01 2.21151546e-01 -1.26092449e-01 -6.87957704e-01 -9.49274123e-01 -5.16710520e-01 -3.16218495e-01 -6.43263400e-01 -5.80690987e-02 9.35685754e-01 -1.29651129e-01 2.65664726e-01 -8.97575617e-01 1.54979751e-01 5.21484494e-01 -1.96129128e-01 8.94540191e-01 -4.35499579e-01 -5.03691494e-01 -5.10693967e-01 -1.97659671e-01 -1.87105334e+00 2.72444367e-01 -9.30232167e-01 4.02879305e-02 -1.29101300e+00 4.16791558e-01 -1.30671874e-01 -1.77620396e-01 5.86029172e-01 -3.53872031e-02 5.08040428e-01 5.35874903e-01 5.74256122e-01 -1.12672579e+00 6.45648956e-01 1.03227007e+00 -3.19809169e-01 -1.46918148e-01 -5.84980309e-01 -2.93294132e-01 2.96743929e-01 2.66978145e-01 -4.69296783e-01 -5.25348127e-01 -9.61912155e-01 1.79610759e-01 3.39873523e-01 4.09536064e-01 -9.27383959e-01 4.78443176e-01 7.88166560e-03 4.74249899e-01 -9.51379001e-01 7.49644518e-01 -9.07549441e-01 2.54000947e-02 7.88058043e-02 -4.61274624e-01 2.71194130e-01 4.30167198e-01 4.65593219e-01 -3.54813844e-01 2.92687248e-02 5.20341098e-01 -6.83707967e-02 -7.91451693e-01 4.49974000e-01 -5.91395438e-01 -6.19264282e-02 5.40232480e-01 -2.70686775e-01 -2.54825026e-01 -7.52072573e-01 -5.98214686e-01 5.63356042e-01 5.69134831e-01 4.50158805e-01 1.05913901e+00 -1.33032095e+00 -6.65452778e-01 2.56363034e-01 1.42126054e-01 -1.56033069e-01 4.88532126e-01 9.79747713e-01 -5.29249728e-01 4.48633015e-01 1.74252063e-01 -1.10865748e+00 -1.60661912e+00 5.02574801e-01 2.93726951e-01 -1.58396691e-01 -6.52524650e-01 8.95900726e-01 3.64228547e-01 1.67167038e-02 7.94698358e-01 -4.56804670e-02 2.93326795e-01 -1.81853354e-01 7.88231611e-01 -1.11879416e-01 -9.56096798e-02 -4.84862924e-01 -3.59611839e-01 7.67747998e-01 -4.28852797e-01 -3.97504419e-01 1.06329334e+00 -3.03403437e-01 9.58997011e-02 1.20494291e-01 1.50961316e+00 -6.80402061e-03 -1.16845763e+00 -4.32012200e-01 -4.86527234e-01 -6.13177538e-01 3.91441315e-01 -6.05787039e-01 -1.06354582e+00 8.95405412e-01 6.32695913e-01 -4.85008031e-01 1.30055463e+00 -3.74810747e-03 7.66232967e-01 7.27165937e-01 6.29871488e-02 -1.04272008e+00 5.18283069e-01 5.54401696e-01 7.75441647e-01 -1.16407788e+00 1.98348179e-01 -1.05674885e-01 -7.66089737e-01 9.47700024e-01 5.72988451e-01 6.10565655e-02 3.42292905e-01 2.55309701e-01 -3.46286520e-02 -8.54408890e-02 -1.13788819e+00 -2.51199931e-01 6.10839725e-01 2.74092734e-01 3.25011194e-01 -3.88505965e-01 2.59651303e-01 4.93426174e-02 1.96727082e-01 -7.52715254e-03 5.84952980e-02 9.68394756e-01 -2.68287599e-01 -8.14883173e-01 -3.49271566e-01 2.69780695e-01 -4.39082325e-01 -6.10496342e-01 -2.01371640e-01 6.36744022e-01 -3.85539979e-01 7.92919755e-01 1.94669574e-01 -6.51844859e-01 -7.06824660e-02 -1.01225033e-01 7.04361260e-01 -3.85130674e-01 -4.28195357e-01 6.40383184e-01 5.65696992e-02 -1.00176239e+00 -5.52339852e-01 -3.27844143e-01 -1.04736781e+00 -4.65349227e-01 -1.85114712e-01 2.07975563e-02 5.89478195e-01 9.24699545e-01 6.73775136e-01 3.35355341e-01 6.61238074e-01 -1.19975793e+00 -1.28449008e-01 -8.44846368e-01 -3.94526571e-02 3.13677251e-01 5.18327832e-01 -3.50760788e-01 -3.24361354e-01 2.59272218e-01]
[10.300466537475586, 0.9696208834648132]
15b30588-84db-4257-b0b9-b4d1d4c4e451
spoof-face-detection-via-semi-supervised
2005.10999
null
https://arxiv.org/abs/2005.10999v1
https://arxiv.org/pdf/2005.10999v1.pdf
Spoof Face Detection Via Semi-Supervised Adversarial Training
Face spoofing causes severe security threats in face recognition systems. Previous anti-spoofing works focused on supervised techniques, typically with either binary or auxiliary supervision. Most of them suffer from limited robustness and generalization, especially in the cross-dataset setting. In this paper, we propose a semi-supervised adversarial learning framework for spoof face detection, which largely relaxes the supervision condition. To capture the underlying structure of live faces data in latent representation space, we propose to train the live face data only, with a convolutional Encoder-Decoder network acting as a Generator. Meanwhile, we add a second convolutional network serving as a Discriminator. The generator and discriminator are trained by competing with each other while collaborating to understand the underlying concept in the normal class(live faces). Since the spoof face detection is video based (i.e., temporal information), we intuitively take the optical flow maps converted from consecutive video frames as input. Our approach is free of the spoof faces, thus being robust and general to different types of spoof, even unknown spoof. Extensive experiments on intra- and cross-dataset tests show that our semi-supervised method achieves better or comparable results to state-of-the-art supervised techniques.
['Xuequan Lu', 'Wang Yuan', 'Chengwei Chen', 'Lizhuang Ma']
2020-05-22
null
null
null
null
['face-presentation-attack-detection', 'gan-image-forensics']
['computer-vision', 'computer-vision']
[ 5.52106321e-01 -1.56313162e-02 -2.25260571e-01 -2.16920510e-01 -9.59891677e-02 -6.52043760e-01 6.73193872e-01 -4.67598081e-01 -3.94038297e-02 4.11760479e-01 -1.25910088e-01 -2.89598852e-01 2.27881387e-01 -8.26734424e-01 -7.68715024e-01 -1.02770948e+00 -2.15077907e-01 1.82205960e-01 3.04274447e-02 -1.10217698e-01 1.92272589e-02 5.89006066e-01 -1.33795381e+00 4.23876613e-01 5.78416705e-01 9.92200553e-01 -2.37696037e-01 6.75299346e-01 2.52018690e-01 9.94998991e-01 -8.30654621e-01 -6.82928622e-01 3.78342986e-01 -5.84074974e-01 -6.02343202e-01 3.01091611e-01 5.21257997e-01 -4.64464992e-01 -8.54540825e-01 1.27358508e+00 4.18888360e-01 -3.87965649e-01 4.62740690e-01 -1.78736246e+00 -6.08629525e-01 2.82216966e-01 -4.93394315e-01 1.38307467e-01 5.76226175e-01 2.32749850e-01 4.24874187e-01 -6.52658045e-01 4.81414407e-01 1.53730333e+00 4.02776212e-01 9.95055497e-01 -1.10205925e+00 -1.14189589e+00 -1.14888065e-01 1.01281472e-01 -1.19793606e+00 -1.04455590e+00 1.27159178e+00 -4.37178969e-01 2.56495059e-01 2.49821180e-03 2.46856272e-01 1.75643444e+00 3.97977196e-02 7.16551065e-01 9.73631918e-01 -2.26436019e-01 -1.54128656e-01 2.96215534e-01 -3.79425436e-01 8.78200233e-01 3.23389262e-01 6.23776793e-01 -4.86260653e-01 -2.58691072e-01 8.56289029e-01 1.65866271e-01 -5.35775006e-01 -5.09631872e-01 -9.26118076e-01 9.72660482e-01 3.66574943e-01 1.35211974e-01 -1.17712490e-01 -6.80591017e-02 5.46658754e-01 5.87113976e-01 2.77458847e-01 -2.98235975e-02 -1.35503694e-01 4.06404138e-01 -1.09780216e+00 -1.02839507e-01 8.82138014e-01 6.42107487e-01 5.77471018e-01 1.92044377e-01 1.10824168e-01 4.49020088e-01 5.57117224e-01 6.60834372e-01 4.81264353e-01 -6.14002407e-01 6.22813284e-01 1.42909139e-01 -8.69959295e-02 -1.54827476e+00 -1.95148122e-02 -2.75486887e-01 -9.56007719e-01 2.19421640e-01 3.67069870e-01 -1.24511451e-01 -9.01344597e-01 1.83440626e+00 2.47688070e-01 6.49467528e-01 1.41187236e-01 6.69476509e-01 4.91710365e-01 4.02184248e-01 -1.65218055e-01 -4.62538093e-01 1.04801261e+00 -1.11603701e+00 -6.94234192e-01 -1.65848359e-01 4.67617244e-01 -8.28273594e-01 4.04019803e-01 3.41159701e-01 -5.85217118e-01 -6.51347816e-01 -9.89916861e-01 4.49248314e-01 -3.55823845e-01 -2.53078877e-03 3.86969388e-01 1.26908267e+00 -8.85773480e-01 5.25097549e-01 -8.33773136e-01 -1.83361620e-02 9.18052614e-01 5.44628203e-01 -7.67114282e-01 -2.81540960e-01 -1.31573331e+00 4.05982196e-01 3.60481262e-01 1.01566389e-01 -1.69268024e+00 -2.64762282e-01 -1.06784022e+00 -1.43540859e-01 2.12624609e-01 -3.96031350e-01 5.43792248e-01 -1.28822815e+00 -1.61050487e+00 9.93972301e-01 -5.17547093e-02 -3.70134622e-01 7.51996279e-01 -2.10601296e-02 -8.19108009e-01 5.36777794e-01 6.67260066e-02 3.93166006e-01 1.71075606e+00 -1.48569942e+00 -2.23164439e-01 -5.07520795e-01 1.23618968e-01 -5.41721225e-01 -6.69783473e-01 2.47400865e-01 -1.87705353e-01 -7.80529916e-01 2.95043942e-02 -1.01090586e+00 3.35166931e-01 1.61894932e-01 -4.79172617e-01 1.08217590e-01 1.64616525e+00 -8.06951344e-01 9.41304147e-01 -2.28362942e+00 -6.40629381e-02 1.53012693e-01 2.01365232e-01 9.07214284e-01 -2.89029509e-01 2.05027759e-01 -4.44442272e-01 1.63345471e-01 -3.40844154e-01 -6.44058108e-01 -4.38501507e-01 2.08944455e-01 -4.46163028e-01 1.09360194e+00 4.27533507e-01 6.62137866e-01 -1.24422252e+00 -6.50549114e-01 2.19355419e-01 9.86861944e-01 -5.19313276e-01 4.21494991e-01 2.23361969e-01 9.53391731e-01 -4.11348850e-01 7.43644774e-01 1.12508380e+00 -7.23977759e-02 1.76910371e-01 -6.67280033e-02 6.00580156e-01 2.47383118e-01 -1.02279699e+00 1.46660686e+00 -5.13933063e-01 7.31696546e-01 4.92530942e-01 -1.25229549e+00 9.38161552e-01 7.00327635e-01 5.02341866e-01 -2.51836330e-01 2.02086926e-01 2.11498305e-01 -8.05918798e-02 -7.12044418e-01 -2.72369325e-01 1.48667479e-02 3.66062254e-01 4.75232154e-01 4.58895922e-01 2.86657929e-01 -1.35474443e-01 1.37466103e-01 1.07491612e+00 1.40545025e-01 -1.14457577e-01 -1.22281648e-02 1.09240329e+00 -7.77733564e-01 6.36600971e-01 5.71551621e-01 -6.08238280e-01 3.77415478e-01 5.19677937e-01 -3.63491654e-01 -7.57162154e-01 -8.70205224e-01 -2.06987724e-01 8.28727543e-01 3.61868143e-01 -4.97231483e-01 -7.92394578e-01 -1.39811742e+00 1.72900222e-02 -3.50052752e-02 -6.84262872e-01 -4.35424030e-01 -7.34749138e-01 -4.22941864e-01 1.01857722e+00 1.44382730e-01 7.35973060e-01 -1.03936124e+00 -4.00572300e-01 7.56541565e-02 -2.00254440e-01 -1.49514377e+00 -2.28726968e-01 -2.96795934e-01 -6.67818904e-01 -1.39196789e+00 -5.28457761e-01 -8.02507162e-01 8.09756279e-01 5.39317846e-01 6.54805958e-01 4.16587532e-01 -1.61473960e-01 2.83049401e-02 -2.55531460e-01 -5.46476319e-02 -7.23079801e-01 -4.39680815e-01 3.55357140e-01 7.24513412e-01 1.02748714e-01 -5.42071164e-01 -5.15325069e-01 6.10954404e-01 -9.41353858e-01 -3.42920333e-01 2.32508838e-01 1.06655312e+00 -8.85895938e-02 3.75892073e-01 2.12741882e-01 -9.40083802e-01 7.66806751e-02 -6.21025503e-01 -3.06580633e-01 1.59411207e-01 -3.83977681e-01 -1.23553008e-01 7.47511983e-01 -5.58797002e-01 -8.71446609e-01 5.93884401e-02 1.07241005e-01 -9.43297386e-01 -3.90272468e-01 -1.85021624e-01 -6.59946799e-01 -4.97570187e-01 4.59486306e-01 2.38889024e-01 1.96399286e-01 -2.84238249e-01 2.40787640e-02 8.00491691e-01 4.95167226e-01 -2.26811603e-01 1.31184876e+00 9.36356783e-01 8.79146233e-02 -8.68440211e-01 -4.84481663e-01 -3.23468536e-01 -6.94131076e-01 -1.75532997e-01 5.01901984e-01 -8.27990234e-01 -7.83337116e-01 9.51120138e-01 -1.36503875e+00 3.66034023e-02 2.10605904e-01 3.46656561e-01 -4.01811033e-01 6.93719387e-01 -7.63082862e-01 -8.54409158e-01 -1.06294952e-01 -1.35389721e+00 1.20356488e+00 6.99434280e-02 4.13061500e-01 -1.21679568e+00 -4.91760634e-02 4.76022005e-01 3.37407798e-01 4.74853694e-01 2.90609270e-01 -7.75039732e-01 -1.97715521e-01 -4.71732497e-01 -2.23966494e-01 7.05700636e-01 5.19823074e-01 1.73529494e-03 -1.41298759e+00 -8.04380298e-01 4.41028446e-01 -4.01024103e-01 1.09176910e+00 -1.84837997e-01 1.23868823e+00 -5.78532279e-01 -5.27614534e-01 9.25157547e-01 1.01070559e+00 3.53545584e-02 6.80003941e-01 -1.16631299e-01 1.01285279e+00 1.00463712e+00 1.88768968e-01 3.00593525e-01 -8.31395909e-02 6.50209963e-01 7.74267495e-01 1.00484550e-01 -8.43350440e-02 -3.83728683e-01 9.53189909e-01 3.51951838e-01 9.82848778e-02 -5.47564149e-01 -7.11987138e-01 2.41300717e-01 -1.47404802e+00 -1.19306457e+00 3.05083990e-01 2.14892030e+00 5.27628899e-01 1.17130235e-01 4.30649519e-02 5.78704476e-01 1.16845286e+00 5.86787522e-01 -3.15336764e-01 -3.28629129e-02 -1.32527173e-01 1.56384304e-01 3.60772938e-01 5.42025089e-01 -1.48811018e+00 1.07853484e+00 5.19674253e+00 7.06219912e-01 -1.48930848e+00 2.99113244e-01 4.57199186e-01 1.76266551e-01 1.50382549e-01 -6.51188865e-02 -6.84598744e-01 6.76683664e-01 8.80573332e-01 4.43622798e-01 5.51954865e-01 5.36723793e-01 -3.02973352e-02 6.51469111e-01 -1.02467358e+00 1.08964264e+00 5.25773346e-01 -9.32066381e-01 9.29203480e-02 3.30323815e-01 6.37836516e-01 -3.24559629e-01 1.70429260e-01 -6.36866838e-02 1.13633402e-01 -1.14874542e+00 3.89299482e-01 1.01692148e-01 9.72722352e-01 -5.52725971e-01 6.82796359e-01 2.78913468e-01 -1.16316926e+00 -1.66105300e-01 -2.20277473e-01 2.77854204e-01 1.47074595e-01 4.25755560e-01 -5.53665519e-01 5.92095733e-01 4.18342173e-01 9.99657512e-01 -4.27123368e-01 4.60869491e-01 -5.80262244e-01 7.79682994e-01 -2.19211847e-01 7.94044435e-01 2.78947991e-03 2.81393111e-01 7.52331078e-01 1.24764645e+00 2.32047737e-02 -3.55088472e-01 2.59661376e-01 7.02209294e-01 -2.52439886e-01 -3.21626365e-01 -9.67731774e-01 -2.70884961e-01 3.57386172e-01 1.06985104e+00 -5.42783499e-01 -2.35102743e-01 -3.06759864e-01 1.37794685e+00 4.18852363e-03 2.80280352e-01 -7.70704508e-01 -4.48404014e-01 8.15728307e-01 6.13051280e-02 3.63777161e-01 -1.19116098e-01 2.99574971e-01 -1.43823314e+00 -2.65508946e-02 -9.69692171e-01 4.58080441e-01 -1.65907130e-01 -1.22239614e+00 7.15784609e-01 -3.93816024e-01 -1.21369195e+00 -3.58796000e-01 -7.93131649e-01 -7.10677207e-01 5.94770551e-01 -1.87881291e+00 -1.32295334e+00 -3.84333044e-01 1.19465649e+00 2.44060948e-01 -5.51507592e-01 8.03477108e-01 4.76658344e-01 -7.61833966e-01 9.58911419e-01 -2.67809480e-01 7.85822153e-01 8.84139776e-01 -6.21327579e-01 2.99607962e-01 1.06760657e+00 3.44844937e-01 7.28906095e-01 3.83460313e-01 -6.90988779e-01 -1.46101069e+00 -1.09439552e+00 7.13471115e-01 -2.67373979e-01 6.34573281e-01 -4.21534121e-01 -8.92942965e-01 6.02234244e-01 2.78991479e-02 8.57853830e-01 6.74741864e-01 -6.24112666e-01 -9.57129121e-01 -6.93854541e-02 -1.47077644e+00 -1.69816669e-02 1.13504827e+00 -1.17898560e+00 -2.01718017e-01 4.61973339e-01 5.76377928e-01 -1.36915356e-01 -4.57287997e-01 4.20550734e-01 6.75276518e-01 -1.16260743e+00 1.16027725e+00 -8.16426575e-01 4.71284181e-01 -1.91358536e-01 -9.44519192e-02 -1.04459822e+00 2.51909979e-02 -1.02723372e+00 -6.24909222e-01 1.29439282e+00 -1.29530832e-01 -7.03633249e-01 9.25517023e-01 -2.27694318e-01 3.93390775e-01 -3.31992388e-01 -9.42686856e-01 -9.47003067e-01 -1.66552380e-01 -2.83604801e-01 6.61342919e-01 1.21695697e+00 -1.77498505e-01 -6.70360401e-02 -8.37698519e-01 6.48676097e-01 1.02506399e+00 -1.56527147e-01 7.30849385e-01 -1.16852355e+00 -3.91043365e-01 -1.40807405e-01 -7.49826372e-01 -1.07715881e+00 6.86489820e-01 -7.48767138e-01 -2.44070992e-01 -4.84101772e-01 -1.25381306e-01 -3.50495785e-01 -4.91398692e-01 3.21330160e-01 -4.24823537e-02 7.02637911e-01 1.75989687e-01 4.30591226e-01 -1.48997337e-01 3.93558472e-01 1.29810619e+00 -4.15882200e-01 1.71543472e-02 1.96257055e-01 -2.69873083e-01 7.01898515e-01 7.23290026e-01 -6.76697850e-01 -3.77852350e-01 -4.50117201e-01 -4.05321091e-01 2.03270257e-01 7.66708612e-01 -1.05650985e+00 2.49515027e-01 -3.79457399e-02 3.87194812e-01 1.70026541e-01 2.88281292e-01 -9.95858967e-01 -2.43581399e-01 8.24110627e-01 -2.42049381e-01 -3.11744958e-01 -1.33585766e-01 6.62944674e-01 -3.14519733e-01 -8.43724534e-02 1.04143810e+00 6.56016171e-02 -1.86116695e-01 6.94553792e-01 1.09821588e-01 -1.74383357e-01 1.01910782e+00 -1.76158339e-01 -4.78726953e-01 -4.12657678e-01 -7.55094409e-01 -1.31960198e-01 4.96180028e-01 6.61794364e-01 7.68863797e-01 -1.22188365e+00 -7.53027081e-01 8.90789747e-01 6.71342239e-02 -4.06185299e-01 -2.85075214e-02 5.37705421e-01 -3.42640907e-01 4.10249174e-01 -4.55998331e-01 -5.81855655e-01 -1.22212827e+00 1.00831485e+00 3.64728302e-01 -1.67231128e-01 -2.85915971e-01 9.40594435e-01 2.87155986e-01 -1.78054020e-01 2.39101201e-01 5.73093295e-01 -2.72404432e-01 6.62600473e-02 7.91285753e-01 3.18521887e-01 -2.37455547e-01 -1.33953667e+00 -5.62348068e-01 4.65953827e-01 1.01980148e-02 1.06097832e-01 9.89876330e-01 -7.15664104e-02 -1.80969238e-01 -1.01351902e-01 1.73529005e+00 1.27593443e-01 -1.37532818e+00 -3.71928424e-01 -2.99299538e-01 -9.02371228e-01 -1.32627059e-02 -1.69719398e-01 -1.65040469e+00 1.22032130e+00 6.86917901e-01 3.05379540e-01 1.06184483e+00 -1.80099055e-01 7.74630547e-01 5.98844700e-02 5.21048725e-01 -3.69393229e-01 3.59355509e-01 1.25639305e-01 6.15272939e-01 -1.49921477e+00 -3.44116151e-01 -7.30233252e-01 -2.29955927e-01 1.19095659e+00 5.63282073e-01 -1.49801567e-01 9.37017441e-01 1.62085757e-01 3.21874209e-02 -9.65760276e-02 -3.03239107e-01 1.99863881e-01 -5.74856400e-02 9.58205700e-01 1.36389419e-01 -6.92778081e-02 3.26131910e-01 -3.41880769e-02 -1.46685898e-01 -1.01302065e-01 1.65598273e-01 9.72572267e-01 7.88905695e-02 -1.37446105e+00 -5.35287797e-01 -2.83344891e-02 -6.61289096e-01 2.46263742e-01 -3.38604420e-01 3.31999779e-01 4.52264398e-01 1.35603368e+00 -4.13652323e-02 -7.25109875e-01 -1.99748501e-01 -9.68226567e-02 4.72679079e-01 -4.51405615e-01 -3.23478222e-01 -1.78273574e-01 -3.80712301e-01 -7.72750258e-01 -6.85212374e-01 -5.22277474e-01 -6.88155293e-01 -5.32766223e-01 -5.88307619e-01 1.45569116e-01 5.86088538e-01 9.05978203e-01 1.83020890e-01 1.90428138e-01 1.43469989e+00 -9.49553609e-01 -4.87506539e-01 -8.22772026e-01 -4.74816561e-01 6.55170321e-01 1.12668347e+00 -8.32216740e-01 -7.25673795e-01 2.97724843e-01]
[13.039645195007324, 1.1734243631362915]
1f3fbe2d-fb73-4466-9374-6b3bd03cc421
neural-face-editing-with-intrinsic-image
1704.04131
null
http://arxiv.org/abs/1704.04131v1
http://arxiv.org/pdf/1704.04131v1.pdf
Neural Face Editing with Intrinsic Image Disentangling
Traditional face editing methods often require a number of sophisticated and task specific algorithms to be applied one after the other --- a process that is tedious, fragile, and computationally intensive. In this paper, we propose an end-to-end generative adversarial network that infers a face-specific disentangled representation of intrinsic face properties, including shape (i.e. normals), albedo, and lighting, and an alpha matte. We show that this network can be trained on "in-the-wild" images by incorporating an in-network physically-based image formation module and appropriate loss functions. Our disentangling latent representation allows for semantically relevant edits, where one aspect of facial appearance can be manipulated while keeping orthogonal properties fixed, and we demonstrate its use for a number of facial editing applications.
['Eli Shechtman', 'Sunil Hadap', 'Ersin Yumer', 'Kalyan Sunkavalli', 'Zhixin Shu', 'Dimitris Samaras']
2017-04-13
neural-face-editing-with-intrinsic-image-1
http://openaccess.thecvf.com/content_cvpr_2017/html/Shu_Neural_Face_Editing_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/papers/Shu_Neural_Face_Editing_CVPR_2017_paper.pdf
cvpr-2017-7
['facial-editing']
['computer-vision']
[ 5.84918082e-01 4.12596226e-01 4.12285239e-01 -5.94012678e-01 -5.19583642e-01 -6.94788694e-01 6.00100398e-01 -6.33021593e-01 -6.97583109e-02 6.69776857e-01 -4.18100208e-02 2.63712313e-02 5.53464442e-02 -7.04764009e-01 -8.99309456e-01 -8.43704998e-01 7.98254982e-02 4.02174085e-01 -3.89401793e-01 -2.74516940e-01 -3.27153224e-03 9.43555355e-01 -1.37786472e+00 -1.14283644e-01 5.01497567e-01 6.33982897e-01 -4.06014770e-01 9.26488519e-01 4.40382630e-01 5.79137146e-01 -4.88363385e-01 -7.87473083e-01 6.40010118e-01 -5.69090307e-01 -3.46918046e-01 2.30554730e-01 1.00659728e+00 -5.31481981e-01 -4.70205486e-01 1.00014639e+00 5.14583707e-01 2.17473194e-01 8.17909300e-01 -1.32607341e+00 -8.59509945e-01 -1.29247248e-01 -6.46206081e-01 -4.68249142e-01 3.40899944e-01 3.44887137e-01 6.38595760e-01 -9.43937898e-01 7.65457153e-01 1.35543311e+00 7.59310007e-01 8.09086680e-01 -1.80870140e+00 -9.21358407e-01 -2.73691684e-01 -5.32570124e-01 -1.34580207e+00 -8.39637995e-01 1.11348939e+00 -5.25653422e-01 4.71664041e-01 3.96804899e-01 5.84096909e-01 1.16405189e+00 2.40735143e-01 -4.48160851e-03 1.11226714e+00 -5.06648362e-01 -4.07274552e-02 -2.64986306e-02 -6.88840568e-01 1.25006866e+00 1.53741539e-01 2.47165784e-01 -4.21934694e-01 -2.12282956e-01 1.28611588e+00 -1.09539129e-01 -2.76113242e-01 -7.78425097e-01 -8.07601333e-01 8.30105245e-01 1.38958842e-01 -4.00206327e-01 -1.16958752e-01 5.08685172e-01 -8.29377323e-02 3.74710828e-01 7.53734052e-01 5.32371342e-01 -2.18983918e-01 2.25265563e-01 -1.08745492e+00 4.46100205e-01 8.44220459e-01 7.13468611e-01 1.03713274e+00 2.13759080e-01 -4.21494506e-02 8.92348468e-01 3.27998221e-01 7.19596386e-01 -1.66278660e-01 -1.39308393e+00 6.64086714e-02 7.65603632e-02 9.57203433e-02 -1.12661362e+00 -1.47798760e-02 1.38171706e-02 -7.27234662e-01 1.01825917e+00 3.67496789e-01 -3.58312190e-01 -1.28637052e+00 2.20273256e+00 3.82887632e-01 2.87141889e-01 -3.29335183e-01 6.20445549e-01 5.03100574e-01 2.88315475e-01 -1.66563764e-01 -3.64822149e-02 1.17913520e+00 -7.28442371e-01 -6.66672707e-01 -1.98253632e-01 -2.43472993e-01 -1.12738287e+00 9.41459596e-01 1.76190197e-01 -1.59438217e+00 -2.50042975e-01 -1.10059643e+00 -5.47950327e-01 -1.48926198e-01 1.61090493e-01 5.38335145e-01 7.70785332e-01 -1.28215611e+00 8.42556953e-01 -8.84467244e-01 -1.94296136e-01 4.96648014e-01 6.30537629e-01 -7.44649708e-01 4.36382182e-02 -7.31579363e-01 8.35100114e-01 -2.32936054e-01 1.84532017e-01 -1.07841885e+00 -9.33106899e-01 -1.02443671e+00 3.77390422e-02 2.65824020e-01 -1.20108569e+00 1.00911820e+00 -1.12789011e+00 -2.06329942e+00 1.07534683e+00 -1.06691331e-01 3.26349199e-01 7.47771263e-01 -1.29997477e-01 -1.11622572e-01 2.98893213e-01 -8.21853802e-02 7.18497396e-01 1.58625090e+00 -1.45682859e+00 2.30712071e-01 -4.77871716e-01 9.73473266e-02 1.99871004e-01 -1.93234578e-01 1.28695354e-01 -5.22902369e-01 -1.04331481e+00 4.16355021e-03 -1.10831249e+00 2.39623562e-02 9.86772954e-01 -4.21380103e-01 6.39173627e-01 9.83406842e-01 -9.21956480e-01 4.87270474e-01 -2.11004782e+00 3.71563405e-01 3.42202395e-01 3.94078314e-01 1.12155847e-01 -3.68128330e-01 1.94863170e-01 -4.10142779e-01 1.85582414e-01 -3.05445939e-01 -7.45080352e-01 -8.35578740e-02 2.08185181e-01 -2.11228222e-01 6.02420092e-01 4.87000078e-01 8.48703325e-01 -7.69844472e-01 -3.10829043e-01 1.37972906e-01 1.04486609e+00 -7.97603428e-01 3.74370635e-01 -2.45120764e-01 7.73344874e-01 -9.95333716e-02 4.01188642e-01 8.30547869e-01 1.87627137e-01 1.06800236e-01 -3.42072278e-01 2.59194076e-01 1.44671891e-02 -8.40293407e-01 1.77761829e+00 -6.47995234e-01 7.99992323e-01 5.46844065e-01 -4.30802464e-01 7.65686929e-01 3.88297737e-01 3.80600601e-01 -1.36394635e-01 2.29096085e-01 -8.59589130e-02 -2.09053844e-01 -3.34087104e-01 1.71104804e-01 -4.30262566e-01 3.18955719e-01 5.91764390e-01 1.42783746e-01 -6.53503299e-01 -2.37091839e-01 6.71300068e-02 9.14003491e-01 4.30153161e-01 -2.99817584e-02 -2.35661909e-01 1.27493694e-01 -6.17551386e-01 4.10346180e-01 2.74308592e-01 2.56491989e-01 9.85821009e-01 6.36852503e-01 -2.52109915e-01 -1.31815088e+00 -1.35562932e+00 5.11024147e-02 8.45390379e-01 -2.72698551e-01 -3.17535065e-02 -9.75732803e-01 -4.24907386e-01 2.09302574e-01 5.29583037e-01 -9.16347384e-01 -3.91527861e-01 -5.56828558e-01 -3.46129447e-01 7.47210741e-01 3.48358363e-01 2.63106853e-01 -7.03481317e-01 -1.65823981e-01 -1.36316672e-01 1.66456908e-01 -1.06088769e+00 -8.82320583e-01 -2.00554699e-01 -6.21526122e-01 -1.01573503e+00 -5.61876416e-01 -5.45463622e-01 1.20072389e+00 2.94557959e-02 1.09271610e+00 9.65325683e-02 -5.09164631e-01 3.68491739e-01 2.59656280e-01 -4.60518271e-01 -4.82954293e-01 -3.78278404e-01 2.89179683e-02 3.18347573e-01 -4.20779526e-01 -1.14847207e+00 -6.90299571e-01 2.67782182e-01 -8.67483020e-01 1.57362223e-01 8.21768641e-02 7.73217261e-01 4.56296951e-01 -2.81105489e-01 1.83235601e-01 -1.07845843e+00 5.10692239e-01 9.58338752e-02 -6.79719985e-01 1.87191293e-01 -2.74108142e-01 9.63682011e-02 4.51262265e-01 -4.37519908e-01 -1.30059659e+00 2.64201730e-01 -8.18075016e-02 -7.14425266e-01 1.03573337e-01 -6.99363947e-02 -5.88702202e-01 -6.85437679e-01 6.94965363e-01 -1.32118776e-01 5.82986236e-01 -2.33885601e-01 6.92768097e-01 1.34958578e-02 7.57156610e-01 -8.28003645e-01 1.36745715e+00 7.45305300e-01 3.42468143e-01 -7.78293431e-01 -7.48327136e-01 3.72095644e-01 -7.32622325e-01 -5.55259921e-02 8.27541947e-01 -8.42757940e-01 -6.52779579e-01 6.76051736e-01 -1.19539070e+00 -4.35884088e-01 -4.47874010e-01 1.23275369e-01 -6.47056460e-01 2.62273997e-01 -5.33638120e-01 -4.94808793e-01 -2.61893749e-01 -1.10092020e+00 1.21203065e+00 1.87521800e-01 -1.80289939e-01 -9.68135834e-01 2.98191868e-02 3.56764376e-01 4.06360209e-01 6.94557190e-01 8.11742067e-01 1.51765481e-01 -7.32851446e-01 -1.46458805e-01 -2.62455136e-01 5.17333031e-01 3.46334547e-01 4.71374243e-01 -1.19344807e+00 -4.32299525e-01 -6.41244948e-02 -2.60616273e-01 6.28090978e-01 2.06352606e-01 1.24154747e+00 -6.32601976e-01 -1.64502747e-02 1.25277019e+00 1.17588639e+00 -1.61287606e-01 8.20875585e-01 -4.04394418e-01 1.00861764e+00 4.26566333e-01 -5.15089072e-02 3.38527560e-01 -2.85863765e-02 6.96146905e-01 3.74717921e-01 -2.93969721e-01 -3.85361880e-01 -2.93826729e-01 3.20302725e-01 3.66216451e-01 -3.19282651e-01 -1.25031814e-01 -2.72906333e-01 1.30061418e-01 -1.43852007e+00 -1.03410017e+00 3.78224164e-01 2.11395264e+00 1.04748762e+00 -1.47657186e-01 -1.73114359e-01 -3.40882182e-01 4.85578656e-01 2.96684384e-01 -6.49094880e-01 -4.43849534e-01 8.49448293e-02 9.92166877e-01 3.22519481e-01 8.59127641e-01 -8.95490229e-01 9.57611799e-01 6.85087585e+00 4.49196219e-01 -1.28274238e+00 1.26679316e-02 4.72498745e-01 -3.56667161e-01 -7.38354623e-01 1.53091833e-01 -2.85782486e-01 1.53102472e-01 3.93075943e-01 1.81558952e-02 8.90728176e-01 4.95065510e-01 1.99056596e-01 1.24536611e-01 -1.20130622e+00 8.50305378e-01 4.16569084e-01 -1.29059327e+00 1.71779960e-01 1.69230998e-01 6.66886210e-01 -4.63746756e-01 4.12679315e-01 -2.42112920e-01 4.83596981e-01 -1.32377970e+00 7.16190875e-01 7.85899758e-01 1.46193504e+00 -6.94263935e-01 -1.03160545e-01 -1.19737372e-01 -7.61639535e-01 4.04434115e-01 -4.04202379e-02 2.40531147e-01 7.62357339e-02 5.11396825e-01 -4.98154134e-01 1.98944271e-01 3.21563005e-01 2.83606857e-01 -3.00520301e-01 3.78668010e-01 -6.30067170e-01 2.83713192e-01 -4.24896598e-01 5.53278804e-01 -3.84708881e-01 -5.24942160e-01 7.26721585e-01 8.35436344e-01 3.60781640e-01 2.09183186e-01 -2.21156612e-01 1.26250291e+00 -5.51112771e-01 -3.49152178e-01 -7.56740093e-01 -2.00163387e-02 2.73931623e-01 1.49428356e+00 -4.92878258e-01 6.47969618e-02 -1.02089606e-02 1.38645291e+00 3.46802324e-01 6.49837077e-01 -8.55225503e-01 -4.92840827e-01 1.11976087e+00 2.89510041e-01 2.42660433e-01 -3.89635444e-01 -2.13155672e-01 -1.29221904e+00 8.92859697e-02 -8.99528384e-01 -2.76888430e-01 -1.07379401e+00 -1.18860877e+00 3.88606519e-01 -8.87045860e-02 -6.45288885e-01 -3.10346872e-01 -6.54298902e-01 -7.98814178e-01 1.15174925e+00 -1.31797206e+00 -1.56306219e+00 -4.16204900e-01 7.36059248e-01 3.22729424e-02 -9.57797319e-02 8.69469345e-01 2.94258595e-01 -6.20507360e-01 9.96827960e-01 -4.45479378e-02 2.91877002e-01 8.94817233e-01 -1.02672184e+00 4.88507718e-01 8.15275133e-01 1.01022087e-01 8.87620986e-01 8.40801060e-01 -4.38284218e-01 -1.44688857e+00 -1.06570375e+00 5.86771131e-01 -5.39033115e-01 3.29339355e-01 -7.34542251e-01 -6.06043875e-01 9.67501104e-01 2.41737634e-01 3.43430847e-01 6.23581707e-01 -1.44234434e-01 -7.93610394e-01 -1.87551662e-01 -1.45886922e+00 9.41695213e-01 1.14660180e+00 -9.29052532e-01 -5.60697801e-02 4.25589949e-01 6.10227346e-01 -6.36695027e-01 -7.60918498e-01 1.23092160e-01 9.97952640e-01 -9.04480159e-01 1.20948160e+00 -6.72702789e-01 3.18229049e-01 -2.76920289e-01 1.32946046e-02 -1.45260191e+00 -1.98224425e-01 -1.22772551e+00 4.82268520e-02 1.15799129e+00 1.73676625e-01 -6.82793260e-01 8.19505274e-01 8.81182373e-01 1.78957749e-02 -5.76289117e-01 -7.08762884e-01 -4.46616203e-01 -8.86261649e-03 -6.80866688e-02 6.37589037e-01 1.02470016e+00 -6.88808799e-01 2.25062504e-01 -5.41961074e-01 2.94511765e-01 7.24239528e-01 -1.07757956e-01 1.02129483e+00 -1.15376329e+00 -3.09746623e-01 -1.85894102e-01 -3.18009704e-01 -6.26867771e-01 4.07140046e-01 -6.74647391e-01 -1.01648375e-01 -8.77552569e-01 8.07389691e-02 -2.41433978e-01 3.24695021e-01 7.01381505e-01 -2.13288739e-02 5.53506136e-01 9.49044004e-02 -5.94264641e-02 2.88485080e-01 6.53508067e-01 1.48380744e+00 1.92686766e-02 2.08766814e-02 -2.11989895e-01 -7.32074738e-01 9.54034388e-01 5.87657034e-01 -4.36230212e-01 -6.40568674e-01 -5.45102060e-01 2.05632836e-01 2.83394586e-02 7.21347094e-01 -7.92143345e-01 -6.36443868e-02 -2.99810618e-01 6.48864686e-01 1.16900653e-01 9.42551255e-01 -7.06652820e-01 4.17183131e-01 -7.79657736e-02 -2.43218243e-01 7.70933321e-03 2.56197959e-01 3.86376262e-01 1.80326328e-01 -3.76891047e-02 1.13936114e+00 -4.44080532e-02 1.60666957e-01 7.09470809e-01 1.17714226e-01 1.14183351e-01 9.53337371e-01 -2.72636294e-01 -1.35816425e-01 -6.44001544e-01 -7.93301761e-01 -3.65702480e-01 9.02938426e-01 1.20238163e-01 6.72082663e-01 -1.34275973e+00 -7.89611995e-01 7.65158117e-01 -2.96618730e-01 6.18625544e-02 8.97399783e-02 3.37609887e-01 -9.80726123e-01 -5.43210924e-01 -4.29856181e-01 -1.99103504e-01 -1.43868256e+00 2.53388077e-01 7.14662433e-01 -3.48909833e-02 -4.40503120e-01 9.08086598e-01 2.84446716e-01 -5.37906766e-01 -1.77164301e-01 2.21958309e-01 5.22772014e-01 -1.92003772e-01 1.89719975e-01 2.55247280e-02 -4.58784141e-02 -6.56793416e-01 -3.73107046e-02 8.41288090e-01 7.11471364e-02 -4.50113922e-01 1.33983004e+00 -4.11388204e-02 -4.14644748e-01 -1.28016815e-01 1.37996638e+00 3.81705880e-01 -1.74924028e+00 1.84870228e-01 -8.38581800e-01 -7.93963253e-01 5.30602075e-02 -6.68791533e-01 -1.52959776e+00 9.73402262e-01 2.99631029e-01 -2.16774926e-01 1.17894900e+00 -3.99344116e-01 6.52546704e-01 1.48076385e-01 1.46929353e-01 -7.59962142e-01 2.22805575e-01 2.39192605e-01 1.30227506e+00 -8.02554846e-01 2.97265828e-01 -7.42128015e-01 -2.04279274e-01 9.92736280e-01 3.82282376e-01 -2.68465668e-01 9.82547522e-01 4.49333936e-01 1.00499921e-01 -2.47895449e-01 -3.89686108e-01 3.25955719e-01 4.82696265e-01 7.28058994e-01 3.48043084e-01 -1.56750288e-02 2.70954102e-01 -1.81548879e-01 -3.66290987e-01 -1.45617500e-01 3.61215651e-01 8.06093991e-01 1.57683417e-01 -1.32777500e+00 -2.42965966e-01 2.69288272e-01 -3.78858149e-01 -5.00177406e-02 -4.22579855e-01 7.75595307e-01 2.52792388e-01 5.20502806e-01 3.03785726e-02 -1.58635825e-01 2.01730892e-01 1.27390280e-01 1.13367343e+00 -7.14224637e-01 -3.93174469e-01 -4.20049690e-02 2.14499468e-03 -7.06403553e-01 -3.00444037e-01 -5.99000514e-01 -9.59223449e-01 -6.33997977e-01 -2.32131183e-01 -5.02336442e-01 6.64817035e-01 6.85536623e-01 6.08079314e-01 3.31794173e-01 6.98349893e-01 -1.16148591e+00 -3.96979094e-01 -6.36002541e-01 -5.96392930e-01 5.80401838e-01 5.29040575e-01 -8.39281917e-01 -3.34002316e-01 4.18543130e-01]
[12.617537498474121, -0.3037738800048828]
ca8d7db6-de26-4798-a330-1f1d76e0acda
improving-video-text-retrieval-by-multi
2109.04290
null
https://arxiv.org/abs/2109.04290v3
https://arxiv.org/pdf/2109.04290v3.pdf
Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss
Employing large-scale pre-trained model CLIP to conduct video-text retrieval task (VTR) has become a new trend, which exceeds previous VTR methods. Though, due to the heterogeneity of structures and contents between video and text, previous CLIP-based models are prone to overfitting in the training phase, resulting in relatively poor retrieval performance. In this paper, we propose a multi-stream Corpus Alignment network with single gate Mixture-of-Experts (CAMoE) and a novel Dual Softmax Loss (DSL) to solve the two heterogeneity. The CAMoE employs Mixture-of-Experts (MoE) to extract multi-perspective video representations, including action, entity, scene, etc., then align them with the corresponding part of the text. In this stage, we conduct massive explorations towards the feature extraction module and feature alignment module. DSL is proposed to avoid the one-way optimum-match which occurs in previous contrastive methods. Introducing the intrinsic prior of each pair in a batch, DSL serves as a reviser to correct the similarity matrix and achieves the dual optimal match. DSL is easy to implement with only one-line code but improves significantly. The results show that the proposed CAMoE and DSL are of strong efficiency, and each of them is capable of achieving State-of-The-Art (SOTA) individually on various benchmarks such as MSR-VTT, MSVD, and LSMDC. Further, with both of them, the performance is advanced to a big extend, surpassing the previous SOTA methods for around 4.6\% R@1 in MSR-VTT.
['Dong Shen', 'Fan Yang', 'Xiangyu Wu', 'Hezheng Lin', 'Xing Cheng']
2021-09-09
null
null
null
null
['video-text-retrieval']
['computer-vision']
[ 1.25461131e-01 -6.22507572e-01 -1.79200828e-01 -1.05276167e-01 -1.12496352e+00 -3.32293868e-01 7.97524333e-01 -8.40762928e-02 -4.71054614e-01 2.30366990e-01 2.36601070e-01 6.85337465e-03 -1.49852872e-01 -2.26461962e-01 -5.65832436e-01 -6.50600970e-01 2.93095708e-01 4.61194605e-01 2.44533852e-01 -2.70245701e-01 3.70597899e-01 1.32187292e-01 -1.53854859e+00 5.33617079e-01 7.24785805e-01 1.19041610e+00 5.28000653e-01 5.29760778e-01 -3.41048747e-01 7.96958089e-01 -3.40863645e-01 -6.08371198e-01 4.70583409e-01 -1.38316095e-01 -5.57854712e-01 9.73497797e-03 5.53550601e-01 -4.90257770e-01 -8.07252228e-01 9.02891695e-01 7.54671097e-01 1.86226293e-01 7.28119373e-01 -1.11501396e+00 -4.46044475e-01 5.05069792e-01 -1.11824608e+00 1.84559479e-01 4.64738578e-01 4.08343971e-02 1.25517154e+00 -1.33683383e+00 6.26879930e-01 1.25065351e+00 4.24755603e-01 3.04987431e-01 -6.23905957e-01 -6.56323016e-01 3.56701732e-01 3.59319210e-01 -1.70353889e+00 -6.37156606e-01 5.98857701e-01 -2.87833720e-01 1.11160743e+00 3.23936790e-01 4.53327507e-01 1.08032954e+00 1.23845182e-01 1.41027474e+00 5.71213961e-01 -2.84291565e-01 -8.73257145e-02 1.37057394e-01 -1.03690356e-01 6.58933520e-01 -1.92204192e-02 -4.77821887e-01 -7.26699173e-01 -4.73806262e-02 6.75646782e-01 1.96086675e-01 -3.13056260e-01 -1.67077750e-01 -1.30290699e+00 4.97350395e-01 3.75749357e-02 4.27311361e-01 -2.32787043e-01 5.95621914e-02 5.84885836e-01 3.49002033e-01 4.41529393e-01 2.44422749e-01 -3.28719139e-01 -2.88134277e-01 -1.34828901e+00 1.50746927e-01 5.17239332e-01 1.20373547e+00 4.11933899e-01 -3.87916751e-02 -4.67812002e-01 1.14969432e+00 4.06553000e-01 6.40487373e-01 7.59188294e-01 -6.26346648e-01 1.01610005e+00 6.11075044e-01 -5.09695187e-02 -1.18333709e+00 -9.32456404e-02 -5.54212689e-01 -8.76792252e-01 -4.49907124e-01 2.05393918e-02 1.96041733e-01 -1.03558481e+00 1.37031472e+00 1.42601833e-01 3.17768097e-01 3.68456542e-02 9.80785131e-01 9.54369009e-01 1.00918746e+00 -2.04357490e-01 -3.49321365e-01 1.27749145e+00 -1.28678954e+00 -7.62232661e-01 -3.95161659e-01 6.93966806e-01 -1.12688541e+00 1.01021135e+00 4.18802649e-01 -1.22685635e+00 -5.94619989e-01 -1.00965011e+00 -2.09270209e-01 -1.47488564e-01 4.89044249e-01 4.08901453e-01 1.66942343e-01 -9.90457416e-01 3.94502312e-01 -6.87297285e-01 -2.55964756e-01 3.76313269e-01 2.26175934e-01 -4.31369096e-01 -3.16781312e-01 -1.16176558e+00 6.52085006e-01 2.57722497e-01 2.07873300e-01 -7.84295440e-01 -6.01915061e-01 -6.50587440e-01 1.90584943e-01 5.23662567e-01 -7.07585156e-01 1.01618195e+00 -8.04390371e-01 -1.43292499e+00 7.52382696e-01 -3.11134666e-01 -8.27489197e-02 6.33770943e-01 -4.77286607e-01 -5.68047762e-01 3.50118697e-01 1.13625318e-01 6.63061500e-01 1.20609462e+00 -1.08621562e+00 -7.79976010e-01 -2.09406391e-01 -9.79064032e-03 5.29511154e-01 -6.51690781e-01 3.15104693e-01 -1.32887387e+00 -9.02103841e-01 1.64919659e-01 -8.01787078e-01 -3.03938258e-02 -3.68836783e-02 -2.99416572e-01 -2.55345196e-01 6.15941167e-01 -7.76113391e-01 1.89421701e+00 -2.38219523e+00 4.06099945e-01 5.24336137e-02 2.85276592e-01 5.69161296e-01 -3.53226066e-01 5.37403166e-01 6.19671047e-02 -5.68701997e-02 -3.60355377e-02 -7.16674805e-01 1.33048803e-01 -9.05230120e-02 -4.03992504e-01 4.15002137e-01 4.43164408e-02 8.58299136e-01 -7.86338747e-01 -9.21251833e-01 1.88931137e-01 2.74286360e-01 -5.05842090e-01 2.86834002e-01 -2.08370522e-01 -5.91651350e-02 -6.43436313e-01 7.25729525e-01 6.77746177e-01 -4.80705768e-01 1.88570246e-02 -4.21541959e-01 -7.95881078e-02 8.10668170e-02 -1.41705394e+00 1.94758964e+00 -3.22113723e-01 5.91429353e-01 -2.65614521e-02 -9.72657979e-01 7.82552421e-01 4.54006672e-01 6.95528686e-01 -8.03695798e-01 2.57605165e-01 3.05670708e-01 -3.02151620e-01 -7.36074328e-01 7.57566750e-01 3.35824519e-01 -6.42063469e-02 4.88508791e-01 1.87552258e-01 2.50815719e-01 3.71928453e-01 4.71256286e-01 1.03418493e+00 1.52328357e-01 1.70878664e-01 7.05194846e-02 7.08394051e-01 -3.03504437e-01 6.23834014e-01 7.58381486e-01 -1.13746291e-02 8.74876678e-01 1.94179669e-01 -2.15927705e-01 -1.01453364e+00 -7.92493284e-01 1.03238121e-01 1.01953661e+00 4.04622644e-01 -7.53393590e-01 -5.83346963e-01 -5.59740663e-01 -2.03449383e-01 3.69426370e-01 -2.70388067e-01 -2.30887234e-01 -7.71624684e-01 -7.11645067e-01 5.07907331e-01 4.24540669e-01 6.56808794e-01 -7.62352228e-01 -1.79203361e-01 1.14770740e-01 -5.30477464e-01 -1.44474697e+00 -8.60300124e-01 -2.31880754e-01 -6.26016974e-01 -7.29337275e-01 -9.85949099e-01 -7.95192003e-01 4.36717004e-01 6.80418551e-01 9.41687047e-01 1.81296378e-01 -2.07269475e-01 3.36788774e-01 -7.19512463e-01 -1.76664554e-02 -2.24437546e-02 1.14268512e-01 3.47518064e-02 2.89768547e-01 4.35673833e-01 -3.73867542e-01 -7.40382731e-01 4.47841346e-01 -1.10678148e+00 8.12641382e-02 6.73013926e-01 7.65517294e-01 6.93779409e-01 -1.29122660e-01 2.19706923e-01 -4.98708695e-01 4.09035981e-01 -6.18705273e-01 -3.53070468e-01 5.59287786e-01 -5.89268148e-01 -1.56901866e-01 6.72298312e-01 -6.18357718e-01 -9.51710820e-01 -2.05357954e-01 -2.83097941e-02 -8.60160351e-01 2.19560698e-01 6.71567678e-01 -2.04109728e-01 1.24485850e-01 1.38970435e-01 4.75908726e-01 -2.81407237e-01 -5.25711834e-01 1.39266342e-01 9.11405027e-01 2.59835094e-01 -4.78169560e-01 8.74233007e-01 3.15175921e-01 -2.55664647e-01 -6.96981788e-01 -8.37680459e-01 -8.27012897e-01 -4.49480325e-01 -1.72082141e-01 6.07455432e-01 -1.26433003e+00 -3.10922384e-01 6.28030241e-01 -9.41523552e-01 -9.83765721e-02 1.22075506e-01 5.76492608e-01 -3.73977125e-01 6.97323680e-01 -6.71298325e-01 -5.09239435e-01 -5.46985865e-01 -1.33712339e+00 1.29578435e+00 1.60269916e-01 1.00751795e-01 -6.89458728e-01 -6.79804534e-02 5.21630347e-01 2.78788418e-01 -3.53203207e-01 6.57117009e-01 -8.19392800e-01 -7.03632593e-01 -4.34112608e-01 -3.87532800e-01 2.33442158e-01 -1.38817921e-01 1.59149557e-01 -7.76643932e-01 -6.55160189e-01 -9.52324942e-02 -1.99613690e-01 8.57383251e-01 2.83617944e-01 1.14708018e+00 -1.39300391e-01 -4.98155028e-01 7.63261259e-01 1.41779590e+00 3.05652022e-01 7.69329190e-01 3.73897314e-01 7.10552931e-01 2.19279587e-01 9.64718878e-01 6.82220161e-01 4.17026848e-01 1.02185798e+00 2.15367511e-01 -7.94271678e-02 -1.49222270e-01 -1.88938648e-01 5.96571863e-01 1.33221114e+00 -2.83012781e-02 -6.54309988e-01 -6.34017229e-01 4.78464127e-01 -1.99155509e+00 -8.83141577e-01 3.36395786e-03 2.08220649e+00 6.75780654e-01 5.44122644e-02 -6.66545630e-02 -6.41030446e-02 6.68863177e-01 4.65605706e-01 -3.45043987e-01 -2.96126995e-02 -2.28669181e-01 1.22687437e-01 2.21991956e-01 2.10997403e-01 -1.10867333e+00 1.08038366e+00 5.64323282e+00 1.43855727e+00 -1.14347613e+00 6.51418194e-02 2.77270377e-01 -4.85125989e-01 -1.37261018e-01 -7.15140104e-02 -1.02646041e+00 5.68785429e-01 6.61750078e-01 -1.17700463e-02 5.72241545e-01 4.45968181e-01 1.05305009e-01 -1.39660398e-02 -1.08712971e+00 1.37852383e+00 4.05178905e-01 -1.13882172e+00 3.48971277e-01 -1.42224178e-01 6.95570350e-01 4.71780188e-02 9.80391428e-02 4.58892018e-01 -1.50085360e-01 -6.92981362e-01 6.90631747e-01 5.43580711e-01 8.55669260e-01 -5.22471666e-01 7.85951316e-01 3.03135425e-01 -1.56682789e+00 -1.29929349e-01 -4.03507382e-01 4.24455941e-01 2.80115545e-01 4.38687742e-01 -3.21338356e-01 9.17586625e-01 7.47085512e-01 8.56480360e-01 -6.15624368e-01 1.02863014e+00 9.42228734e-02 4.24308628e-01 -4.08583701e-01 -6.15670392e-03 4.17539597e-01 -1.33430138e-01 7.35409498e-01 1.36802876e+00 4.76841033e-01 -1.34373307e-02 3.46428692e-01 4.14825439e-01 -2.20090151e-01 4.16206956e-01 -1.88406900e-01 -1.24268845e-01 4.76020306e-01 1.30307245e+00 -5.67788124e-01 -4.70743924e-01 -5.93831241e-01 1.11944807e+00 2.19415694e-01 4.17857230e-01 -1.01847255e+00 -4.20355350e-01 4.34062630e-01 -2.24851761e-02 5.95625818e-01 -3.13586220e-02 1.14845142e-01 -1.49649191e+00 4.80851859e-01 -1.18911624e+00 3.88496250e-01 -7.43447542e-01 -1.12139273e+00 7.03436613e-01 1.14168497e-02 -1.71874583e+00 -1.44193932e-01 -3.60230535e-01 -3.06962818e-01 6.15452409e-01 -1.57431424e+00 -1.19953334e+00 -2.16373190e-01 6.51518583e-01 9.24701750e-01 -4.32677448e-01 4.49591696e-01 9.48551178e-01 -9.06682491e-01 1.13175797e+00 3.45139623e-01 1.29152760e-01 1.16491926e+00 -8.06570172e-01 2.44606331e-01 9.19581831e-01 3.11440408e-01 6.07725322e-01 4.28022385e-01 -5.64188480e-01 -1.69361091e+00 -1.00259268e+00 7.54383087e-01 -1.75264701e-01 6.16585433e-01 -2.66209662e-01 -9.43130672e-01 5.15988231e-01 1.13489166e-01 -1.41480268e-04 4.47401136e-01 -2.41981015e-01 -4.39098746e-01 -3.18093985e-01 -7.73233891e-01 7.13932276e-01 1.04777265e+00 -6.41617119e-01 -4.36865538e-01 2.78959543e-01 8.04403365e-01 -4.87403244e-01 -9.35216248e-01 4.78238344e-01 7.17798471e-01 -7.29400873e-01 9.58414197e-01 -3.92048568e-01 6.94131672e-01 -4.13467407e-01 -3.98971021e-01 -9.01778281e-01 -2.96591282e-01 -7.20645428e-01 -3.41660947e-01 1.44920576e+00 2.81169116e-01 -3.00277442e-01 5.10063231e-01 3.11607569e-01 -3.14245194e-01 -8.97029877e-01 -8.89338553e-01 -6.77182198e-01 -2.61270672e-01 -3.84967685e-01 4.50275898e-01 9.67271864e-01 -7.29870647e-02 5.19690692e-01 -6.91263795e-01 2.71889027e-02 3.89563560e-01 2.20336661e-01 7.68345594e-01 -8.50655258e-01 -4.60553139e-01 -5.70381582e-01 -1.21027514e-01 -1.64484453e+00 2.07056012e-02 -9.30898964e-01 -3.44594521e-03 -1.48263717e+00 4.57603395e-01 -3.59442413e-01 -4.12019819e-01 2.26720050e-01 -4.16780144e-01 1.32858843e-01 4.17034715e-01 4.11234617e-01 -1.08862603e+00 6.96865618e-01 1.26100922e+00 -2.14138508e-01 -1.88835397e-01 -1.25405192e-01 -4.83985364e-01 6.14252210e-01 4.93435830e-01 -4.23886508e-01 -3.55538577e-01 -7.21109986e-01 2.65894294e-01 2.15270281e-01 3.93033847e-02 -8.87023032e-01 5.23359776e-01 3.93713973e-02 2.61338592e-01 -9.60127056e-01 5.23531020e-01 -8.44696939e-01 1.81058973e-01 -2.84888931e-02 -2.50049353e-01 9.29507390e-02 7.47218654e-02 4.96154875e-01 -5.34505069e-01 -4.03852701e-01 4.87973064e-01 -2.02868506e-02 -7.30346680e-01 5.50542831e-01 -2.69123912e-01 1.14164613e-01 6.68658257e-01 -2.74267614e-01 -1.92384958e-01 -3.91287327e-01 -2.59215057e-01 6.10940814e-01 2.75512546e-01 5.55832744e-01 7.92961240e-01 -1.23028398e+00 -7.31750429e-01 4.46521603e-02 2.17790008e-01 5.70385605e-02 5.13303041e-01 9.32367206e-01 -2.68353015e-01 3.98047090e-01 9.81614366e-02 -6.39057398e-01 -1.33717585e+00 5.93584538e-01 -2.89655440e-02 -6.83167994e-01 -6.36426151e-01 8.06286156e-01 2.67529249e-01 -3.46674360e-02 4.62959439e-01 6.76574856e-02 -3.47262144e-01 2.50966519e-01 6.26486361e-01 2.94647068e-01 1.88459307e-02 -7.36794531e-01 -1.97795391e-01 8.91120791e-01 -6.07195497e-01 1.64203241e-01 1.25293541e+00 -4.00113612e-01 -8.08802173e-02 1.94521204e-01 1.40497220e+00 -2.88335420e-02 -9.98716891e-01 -4.55715656e-01 -2.28393719e-01 -6.07812285e-01 1.38164312e-01 -4.52839285e-01 -1.17012358e+00 8.45033109e-01 4.72223580e-01 -1.87567025e-01 1.25143611e+00 -1.67577267e-01 1.20305657e+00 5.25808632e-01 2.44729131e-01 -1.27692223e+00 3.66985470e-01 5.20010769e-01 7.86400437e-01 -1.14343464e+00 2.84005105e-01 -3.43727946e-01 -6.24549210e-01 9.20046449e-01 6.78877354e-01 -1.31885409e-01 5.23604512e-01 1.59522966e-01 -1.52379394e-01 -6.46519661e-02 -9.35752213e-01 -1.15798227e-01 5.18167794e-01 3.11825741e-02 1.92101657e-01 -3.37517291e-01 -2.32838154e-01 4.47231591e-01 2.14235470e-01 -4.80344892e-02 1.50426999e-01 9.89164293e-01 -2.70797223e-01 -1.04032242e+00 -9.66185182e-02 5.36329031e-01 -6.25694394e-01 -3.11109096e-01 -1.24493390e-01 7.06431329e-01 -2.15565696e-01 7.93182909e-01 -3.17422189e-02 -6.39584780e-01 3.40367705e-01 -1.07245855e-01 4.25649166e-01 -2.52880991e-01 -6.07288957e-01 6.02477908e-01 -5.95573373e-02 -6.63014174e-01 -4.56397474e-01 -5.89897871e-01 -9.01407719e-01 -1.79041535e-01 -6.41027272e-01 1.93615463e-02 3.78308654e-01 1.02588296e+00 4.88328785e-01 3.75358582e-01 8.70274484e-01 -7.80137658e-01 -6.14276707e-01 -1.04229951e+00 -4.06686634e-01 3.86239856e-01 1.66656941e-01 -6.46825433e-01 -3.28781545e-01 1.51688922e-02]
[10.324411392211914, 0.9434652328491211]
229aab39-6405-4b69-b18b-96d3ccf97d17
detecting-and-tracking-small-and-dense-moving
2111.12960
null
https://arxiv.org/abs/2111.12960v1
https://arxiv.org/pdf/2111.12960v1.pdf
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark
Satellite video cameras can provide continuous observation for a large-scale area, which is important for many remote sensing applications. However, achieving moving object detection and tracking in satellite videos remains challenging due to the insufficient appearance information of objects and lack of high-quality datasets. In this paper, we first build a large-scale satellite video dataset with rich annotations for the task of moving object detection and tracking. This dataset is collected by the Jilin-1 satellite constellation and composed of 47 high-quality videos with 1,646,038 instances of interest for object detection and 3,711 trajectories for object tracking. We then introduce a motion modeling baseline to improve the detection rate and reduce false alarms based on accumulative multi-frame differencing and robust matrix completion. Finally, we establish the first public benchmark for moving object detection and tracking in satellite videos, and extensively evaluate the performance of several representative approaches on our dataset. Comprehensive experimental analyses and insightful conclusions are also provided. The dataset is available at https://github.com/QingyongHu/VISO.
['Yulan Guo', 'Wei An', 'Zaiping Lin', 'Yingqian Wang', 'Feng Zhang', 'Hao liu', 'Qingyong Hu', 'Qian Yin']
2021-11-25
null
null
null
null
['moving-object-detection']
['computer-vision']
[ 1.35702584e-02 -9.38183188e-01 -2.25328520e-01 -1.53877407e-01 -9.29822028e-01 -7.00603485e-01 3.87734026e-01 -4.17484283e-01 -4.60890651e-01 5.62232375e-01 8.62262100e-02 -8.15451145e-04 -3.73793952e-02 -7.11323977e-01 -7.53691673e-01 -1.04943168e+00 -6.21370077e-01 -9.07658637e-02 5.91529548e-01 7.74673522e-02 -2.36958280e-01 4.50237215e-01 -1.51374090e+00 1.82981845e-02 8.12223136e-01 9.71875906e-01 3.69942933e-01 7.70401299e-01 6.77921236e-01 6.55739963e-01 -2.10378513e-01 1.36084557e-01 4.56366509e-01 -6.14338964e-02 -4.83169198e-01 4.82630223e-01 9.02076364e-01 -9.64366376e-01 -7.66957760e-01 1.23830128e+00 3.63723069e-01 4.04653579e-01 2.85853863e-01 -1.28574371e+00 -4.44185853e-01 2.01185748e-01 -6.56976819e-01 9.21663344e-01 -8.40911525e-04 5.47888339e-01 1.01785684e+00 -9.61935520e-01 5.16033828e-01 1.00651777e+00 5.31684577e-01 2.38323972e-01 -8.78099501e-01 -7.30189025e-01 2.44603932e-01 3.73554498e-01 -1.71509290e+00 -5.71917951e-01 6.45757690e-02 -5.78745365e-01 4.25751239e-01 4.71247017e-01 8.96458983e-01 6.06481731e-01 -3.81355345e-01 8.40220273e-01 5.92434704e-01 1.77705675e-01 -1.26100183e-01 -4.44479227e-01 3.17162089e-02 5.16598701e-01 3.97426963e-01 1.63730383e-01 -1.79478467e-01 -8.50522146e-02 7.28710711e-01 3.86561960e-01 -7.95715630e-01 8.92802477e-02 -1.44217122e+00 5.94866514e-01 6.99690640e-01 1.64108902e-01 -3.49167287e-01 9.03356373e-02 1.20085880e-01 5.75075373e-02 4.83578920e-01 -4.26281691e-01 -2.21699417e-01 1.32767260e-01 -1.08017564e+00 1.43472269e-01 1.57909155e-01 8.97751570e-01 6.39264345e-01 3.22528005e-01 -2.81555742e-01 5.17840922e-01 3.78886610e-01 1.30316734e+00 8.24483335e-02 -8.95191789e-01 5.44954240e-01 3.62145245e-01 4.12235528e-01 -1.18111098e+00 -4.57095861e-01 -2.96518087e-01 -8.34130943e-01 -1.94566801e-01 2.72947252e-01 -1.66909307e-01 -6.95890367e-01 1.12071002e+00 7.03716159e-01 7.37286210e-01 -7.97505230e-02 1.40089476e+00 1.04464126e+00 1.18366754e+00 -9.79441702e-02 -2.20654771e-01 1.42044544e+00 -9.85299826e-01 -5.36959648e-01 -2.31946081e-01 5.40428698e-01 -3.97734255e-01 7.07515657e-01 7.99015388e-02 -4.72966045e-01 -4.93606508e-01 -5.79749286e-01 1.51723236e-01 1.76410645e-01 7.10916996e-01 5.28709173e-01 2.64264762e-01 -7.84777284e-01 5.55115715e-02 -1.17047143e+00 -3.87387127e-01 6.93920732e-01 3.89842801e-02 -3.40363890e-01 -3.72059494e-01 -9.50568199e-01 4.14179444e-01 3.65107596e-01 6.62948191e-01 -1.34054589e+00 -7.01455355e-01 -7.84036756e-01 -9.07246321e-02 4.50456917e-01 -2.32616082e-01 1.03659701e+00 -8.77016008e-01 -7.37514615e-01 6.51138842e-01 -2.08569523e-02 -4.21174794e-01 4.75331396e-01 -3.00363034e-01 -7.43469179e-01 3.58983636e-01 2.08179608e-01 6.43562675e-01 7.17425525e-01 -8.34320188e-01 -1.21332383e+00 -2.88653135e-01 -6.04240559e-02 8.25650617e-02 -3.83018434e-01 2.83909500e-01 -9.13224816e-01 -8.61263454e-01 1.38561979e-01 -1.17631853e+00 -1.99559882e-01 3.84017557e-01 -4.79826741e-02 1.60506651e-01 1.12878036e+00 -9.52565134e-01 1.28150141e+00 -2.30768466e+00 3.72534506e-02 -1.95484206e-01 1.09836943e-01 5.06441474e-01 -3.06682616e-01 2.24938706e-01 1.30479977e-01 -7.38807991e-02 -3.87307465e-01 8.83427858e-02 -5.06074786e-01 -4.42777425e-02 -3.28448176e-01 9.52288389e-01 1.30380422e-01 6.91105604e-01 -9.57533777e-01 -3.78179461e-01 2.89777011e-01 3.82538468e-01 -2.41601527e-01 -4.25691344e-03 -8.78284276e-02 6.70971274e-01 -6.54917359e-01 1.27121723e+00 9.29466128e-01 -3.78180355e-01 4.74680029e-02 -4.17649716e-01 -2.47053042e-01 -1.69802547e-01 -1.24040782e+00 1.28608012e+00 7.70521909e-02 1.11429477e+00 2.74210721e-01 -5.37743330e-01 5.04915714e-01 4.17536870e-02 7.41461277e-01 -3.25565964e-01 -4.70602773e-02 1.23196214e-01 -2.58478463e-01 -7.13765323e-01 6.95865273e-01 1.14170499e-01 1.28977954e-01 3.25788371e-03 -4.25230622e-01 2.72123784e-01 4.91814971e-01 2.62043267e-01 9.19236898e-01 -2.09218245e-02 9.84796882e-02 -1.10487580e-01 5.55836082e-01 4.06686068e-01 9.30289268e-01 5.36614776e-01 -3.51075262e-01 4.64865953e-01 -2.46255428e-01 -4.89846826e-01 -6.44447744e-01 -7.83657849e-01 -4.04093921e-01 8.20481777e-01 4.55539286e-01 -2.20219746e-01 -2.24479228e-01 -3.68373573e-01 1.72854885e-02 1.66746885e-01 -4.33344573e-01 2.59551585e-01 -4.08602417e-01 -1.23155046e+00 4.76399779e-01 3.93107116e-01 6.41267002e-01 -7.56991148e-01 -3.28268647e-01 1.41456321e-01 -7.79201806e-01 -1.31100714e+00 -5.81653118e-01 -6.41389608e-01 -1.12095714e+00 -1.17229056e+00 -7.47184396e-01 -5.79342902e-01 5.59748709e-01 1.35079598e+00 7.88363636e-01 3.99257243e-01 -4.02917475e-01 3.03480238e-01 -6.21964872e-01 1.65404782e-01 1.39782190e-01 -2.76912034e-01 2.28763372e-01 2.30147824e-01 2.03020543e-01 -1.78138286e-01 -7.55365133e-01 7.48764873e-01 -1.18360448e+00 -2.16792122e-01 4.35825258e-01 4.66383696e-01 4.71621901e-01 2.26080745e-01 -1.25350147e-01 -2.47640107e-02 -4.98854995e-01 -7.48586595e-01 -1.13236141e+00 6.35212138e-02 1.71863273e-01 -6.98194563e-01 1.20253107e-02 -4.04754072e-01 -7.36652017e-01 3.92641455e-01 1.51126623e-01 -4.60320383e-01 6.61777332e-02 5.54336071e-01 1.93591937e-02 -2.72912681e-01 3.40959728e-01 5.20381987e-01 -1.56674370e-01 -4.44128513e-01 1.08366512e-01 7.56134868e-01 5.77567697e-01 -1.09030940e-01 1.10749328e+00 1.01163507e+00 -3.50157976e-01 -1.36274529e+00 -9.00185645e-01 -8.12112927e-01 -4.78966951e-01 -5.16898990e-01 7.52493620e-01 -1.85564172e+00 -5.21116853e-01 7.09400058e-01 -6.70387745e-01 -3.74047726e-01 2.16697469e-01 8.52922976e-01 3.94380949e-02 6.30231977e-01 -5.66967964e-01 -7.18163431e-01 -3.26956302e-01 -9.61947143e-01 1.12628710e+00 4.39760208e-01 6.39681458e-01 -4.96634662e-01 -9.00671855e-02 4.55227107e-01 3.39456320e-01 1.45341173e-01 -2.48245269e-01 -4.29337770e-02 -1.26256573e+00 -2.28132457e-01 -3.12470287e-01 2.31791347e-01 2.09592562e-02 3.62464130e-01 -4.98481542e-01 -7.56105125e-01 -3.70147765e-01 -1.15080290e-01 1.26980841e+00 6.59247220e-01 8.56792808e-01 -1.79706365e-01 -4.97264713e-01 9.24049973e-01 1.58152044e+00 -8.05202406e-03 6.76066875e-01 5.03952026e-01 9.71222341e-01 2.71983057e-01 1.05869699e+00 6.53190076e-01 5.16287804e-01 8.52094710e-01 6.17760837e-01 1.59955457e-01 7.02041686e-02 2.09140852e-01 8.16309154e-01 5.08492768e-01 -4.05273288e-01 -2.42091462e-01 -9.14233804e-01 8.37882817e-01 -1.76497138e+00 -1.37921381e+00 -7.96984613e-01 2.16788673e+00 2.53822565e-01 -4.51253176e-01 2.66174108e-01 -3.37216467e-01 1.01639378e+00 4.32862103e-01 -4.68711555e-01 1.39872634e+00 -4.54852283e-01 -7.29498267e-01 9.23220694e-01 3.13137442e-01 -1.65460825e+00 8.96961153e-01 5.26987314e+00 7.79905140e-01 -1.08749115e+00 1.18262552e-01 1.78442597e-01 -4.24843103e-01 2.84892917e-01 1.38533209e-02 -1.26778293e+00 7.33458936e-01 5.65483391e-01 2.82327216e-02 1.75237343e-01 6.33626044e-01 6.43959939e-01 -1.44175813e-01 -3.22647274e-01 9.84080672e-01 -2.92721558e-02 -1.49854636e+00 9.51690308e-04 1.93180606e-01 8.79334867e-01 7.27939904e-01 -1.92205921e-01 7.94554502e-02 1.95196327e-02 -4.50149596e-01 7.74877191e-01 5.29329240e-01 5.01658678e-01 -3.93061042e-01 5.07956922e-01 3.49547952e-01 -1.73738289e+00 -2.99462825e-01 -5.02055764e-01 5.51046245e-02 4.71639603e-01 5.06398857e-01 -7.32708499e-02 6.11422181e-01 1.21652150e+00 1.46433318e+00 -6.49269521e-01 1.62909293e+00 -9.88129005e-02 8.39492679e-01 -5.26866317e-01 2.57656604e-01 3.63634467e-01 -4.80544835e-01 9.40917969e-01 8.90084267e-01 6.66113675e-01 6.28343463e-01 4.97656941e-01 2.79485077e-01 -2.43897177e-02 -1.12021148e-01 -3.89952362e-01 -7.02431053e-02 7.08941400e-01 1.52806771e+00 -5.50987184e-01 -4.19878393e-01 -6.03553236e-01 6.38599455e-01 -2.51481980e-01 2.57374674e-01 -1.27127600e+00 2.05222383e-01 9.87344801e-01 -8.10874477e-02 7.66420484e-01 -6.52361691e-01 8.44475627e-01 -1.76765549e+00 1.37028202e-01 -9.73884284e-01 5.83460212e-01 -8.14917386e-01 -1.01190984e+00 3.75439882e-01 -6.02974333e-02 -1.99248028e+00 4.63611454e-01 -4.73955393e-01 -6.26958251e-01 3.02753091e-01 -1.55702984e+00 -1.28647494e+00 -9.68732774e-01 4.24117267e-01 6.82627201e-01 7.64197633e-02 8.65044817e-02 8.23592961e-01 -9.57184136e-01 -1.36107951e-01 6.25102222e-01 4.57176358e-01 4.76153970e-01 -4.92721766e-01 4.09985304e-01 1.39570355e+00 2.16950446e-01 8.24502856e-02 4.26344514e-01 -6.53901935e-01 -1.81552958e+00 -1.62287986e+00 2.74854481e-01 -4.10101801e-01 8.48892093e-01 4.83397394e-02 -1.12777555e+00 9.03027117e-01 -3.03535521e-01 6.11240864e-01 3.28657836e-01 -6.48292005e-01 1.81731120e-01 -1.69755012e-01 -6.37491167e-01 2.07428396e-01 1.00776672e+00 -1.18579917e-01 -5.33881485e-02 7.21275330e-01 5.61019301e-01 -4.92805511e-01 -8.60871553e-01 2.87935495e-01 4.89103913e-01 -6.58300996e-01 1.23407674e+00 -4.75960076e-01 1.67279527e-01 -1.12779331e+00 -4.81459171e-01 -8.62175822e-01 -4.43417460e-01 -2.12802604e-01 -7.80449957e-02 1.23886430e+00 1.35458922e-02 -1.77299216e-01 4.81356114e-01 2.45622858e-01 1.19252585e-01 -4.57086338e-04 -7.29803383e-01 -1.11546445e+00 -5.56527555e-01 -3.71745646e-01 3.44024181e-01 9.21470582e-01 -8.42598736e-01 -2.72344053e-02 -1.03283238e+00 9.91411805e-01 9.48066652e-01 5.10548115e-01 9.83888865e-01 -9.90866184e-01 -1.74484238e-01 -1.39335990e-02 -6.38648510e-01 -1.43401778e+00 -1.03426278e-01 -6.76768661e-01 1.74984112e-01 -1.32936418e+00 4.52498496e-01 -1.43776849e-01 1.81317583e-01 3.70715946e-01 -3.56465459e-01 7.30605543e-01 2.48056084e-01 8.03116381e-01 -8.77620518e-01 8.66156816e-01 1.03066599e+00 -2.99743801e-01 -9.45397094e-03 1.34619057e-01 -1.41875446e-01 6.86334252e-01 5.59202254e-01 -7.41115212e-01 3.06459814e-01 -8.29010367e-01 -9.97127220e-02 1.68214485e-01 8.54881644e-01 -1.15840578e+00 2.15136349e-01 -3.58912855e-01 3.84385973e-01 -9.35968578e-01 2.67242432e-01 -9.62797821e-01 4.48600352e-01 7.48088300e-01 1.81486219e-01 -8.00657123e-02 2.72105485e-01 1.01896822e+00 -3.09954733e-01 -5.41609228e-02 7.84321427e-01 1.40316218e-01 -1.55465364e+00 7.92059720e-01 -4.39910620e-01 2.15894431e-02 1.20574367e+00 1.45078292e-02 -5.06473839e-01 -2.75664389e-01 -6.17741823e-01 7.48976827e-01 5.38802743e-01 5.25523663e-01 4.27003473e-01 -1.43269289e+00 -1.19308913e+00 -9.30816010e-02 3.09879869e-01 -9.89261717e-02 7.22742677e-01 1.24255180e+00 -7.35557675e-01 1.49645627e-01 -3.13956380e-01 -9.85678375e-01 -1.56049335e+00 2.08260849e-01 4.00292963e-01 4.90958363e-01 -8.81588161e-01 6.25636578e-01 7.03438837e-03 -3.31806503e-02 -2.20733471e-02 -3.34575504e-01 -1.22336239e-01 1.62643731e-01 1.15018070e+00 5.62946260e-01 -2.39119917e-01 -1.15208614e+00 -6.58834279e-01 6.91857755e-01 2.57475823e-01 1.99541509e-01 1.43111134e+00 -5.03379643e-01 -6.14912398e-02 8.69090110e-02 9.13136363e-01 -1.32895112e-01 -1.75513339e+00 -5.14277399e-01 -2.33685702e-01 -1.09362793e+00 3.65507364e-01 -5.70049249e-02 -1.46038258e+00 6.32292330e-01 8.19279611e-01 -9.11696777e-02 1.11929941e+00 -3.19333039e-02 7.08332419e-01 5.75183272e-01 3.21188658e-01 -6.89157128e-01 -1.83828980e-01 4.34678227e-01 7.27522016e-01 -1.59136987e+00 3.43928099e-01 -4.03038085e-01 -6.44303262e-01 9.18490469e-01 5.64599156e-01 8.45783055e-02 3.30021590e-01 -1.29235595e-01 9.38261822e-02 -1.00001380e-01 -5.56895733e-01 -7.02964246e-01 3.29351515e-01 3.93102139e-01 -7.63216475e-03 4.99380864e-02 -2.78513264e-02 1.37979969e-01 5.44817626e-01 -1.08346939e-02 5.76979816e-01 9.55219746e-01 -7.74524987e-01 -4.86710846e-01 -7.95506835e-01 4.14642364e-01 -3.68993908e-01 -1.96893513e-01 1.63779825e-01 6.94705069e-01 -1.92553744e-01 9.81266081e-01 9.98967364e-02 -1.73931658e-01 1.04790032e-01 -6.76902890e-01 9.77096558e-02 -2.45198369e-01 4.22257278e-03 1.39592320e-01 4.62603644e-02 -4.93420750e-01 -9.18771207e-01 -1.01144588e+00 -1.07369006e+00 -2.78183401e-01 -4.31290776e-01 -8.65315087e-03 4.61741924e-01 6.91246152e-01 3.35729122e-01 6.12620339e-02 6.31844282e-01 -1.22366452e+00 -4.74787980e-01 -8.35822463e-01 -7.59798765e-01 1.91971108e-01 5.77588379e-01 -7.10561514e-01 -4.67537433e-01 5.10160744e-01]
[8.912240982055664, -0.7323412895202637]
f307281c-f376-4aab-966a-7ec815df8c12
large-scale-mixed-bandwidth-deep-neural
1907.04887
null
https://arxiv.org/abs/1907.04887v1
https://arxiv.org/pdf/1907.04887v1.pdf
Large-Scale Mixed-Bandwidth Deep Neural Network Acoustic Modeling for Automatic Speech Recognition
In automatic speech recognition (ASR), wideband (WB) and narrowband (NB) speech signals with different sampling rates typically use separate acoustic models. Therefore mixed-bandwidth (MB) acoustic modeling has important practical values for ASR system deployment. In this paper, we extensively investigate large-scale MB deep neural network acoustic modeling for ASR using 1,150 hours of WB data and 2,300 hours of NB data. We study various MB strategies including downsampling, upsampling and bandwidth extension for MB acoustic modeling and evaluate their performance on 8 diverse WB and NB test sets from various application domains. To deal with the large amounts of training data, distributed training is carried out on multiple GPUs using synchronous data parallelism.
['Wei zhang', 'Khoi-Nguyen C. Mac', 'Xiaodong Cui', 'Michael Picheny']
2019-07-10
null
null
null
null
['bandwidth-extension', 'bandwidth-extension']
['audio', 'speech']
[-2.62297913e-02 -4.75398481e-01 1.33843452e-01 -4.93023664e-01 -1.10718811e+00 -6.02168776e-03 2.67396271e-01 -1.63590789e-01 -6.36168838e-01 3.36452663e-01 7.79913142e-02 -9.33310688e-01 3.31313372e-01 -4.72430944e-01 -5.46145380e-01 -6.54457688e-01 -1.38262674e-01 4.28378940e-01 2.69048095e-01 -1.21383041e-01 -2.94343024e-01 6.33208215e-01 -1.47092962e+00 4.53466505e-01 2.91319042e-01 1.06485176e+00 7.05284894e-01 1.49311173e+00 -2.26255268e-01 6.00028574e-01 -1.29974759e+00 -3.47300209e-02 1.68632288e-02 7.93770105e-02 -3.75098556e-01 -2.58171350e-01 1.32785648e-01 -6.04293227e-01 -6.84705377e-01 7.48647094e-01 1.20080197e+00 6.40023470e-01 1.86444506e-01 -8.05050671e-01 -1.19217567e-01 8.15717518e-01 -6.99046850e-01 7.07082748e-01 -9.29279551e-02 -7.34733418e-02 5.76069295e-01 -9.92800772e-01 -3.24345648e-01 1.41200757e+00 7.11625934e-01 6.75452828e-01 -9.49453831e-01 -7.80637920e-01 -1.44955620e-01 5.29673517e-01 -1.40579987e+00 -1.21531355e+00 7.97942221e-01 2.34036013e-01 1.70399654e+00 3.72138053e-01 6.30206287e-01 1.32619762e+00 -1.91388443e-01 8.17917883e-01 6.32903337e-01 -4.97743100e-01 4.48083311e-01 -2.20358372e-01 5.41905880e-01 4.36324655e-04 -2.06603721e-01 1.90734506e-01 -9.72963929e-01 -4.65153277e-01 5.31030357e-01 -5.16065955e-01 -9.18435454e-02 9.16013956e-01 -6.91057682e-01 7.64374375e-01 -2.70765007e-01 5.54165170e-02 -3.51583600e-01 5.28102875e-01 8.49511683e-01 4.41904038e-01 6.17473900e-01 -3.08160275e-01 -8.32351863e-01 -7.33238816e-01 -8.80493343e-01 -1.12714224e-01 7.71556556e-01 1.03061616e+00 3.74164283e-01 1.06370735e+00 3.61345708e-01 1.90449202e+00 5.06702781e-01 8.27162266e-01 1.24058795e+00 -4.55682456e-01 5.14562905e-01 -6.06451511e-01 -3.13964009e-01 -3.11298072e-01 -3.17945838e-01 -3.52326035e-01 -1.07442963e+00 -4.50603783e-01 3.65177309e-03 -3.85087937e-01 -1.26436973e+00 1.23729432e+00 4.33282405e-01 6.54360533e-01 2.45882720e-01 7.03651130e-01 1.11514819e+00 1.36948478e+00 2.34436709e-02 -1.22872956e-01 1.29871166e+00 -1.16045761e+00 -7.63867021e-01 -4.44935083e-01 7.13440180e-01 -1.14530790e+00 1.19833875e+00 6.43331826e-01 -1.02089787e+00 -8.62737536e-01 -1.07487130e+00 -2.24556535e-01 -8.22825506e-02 3.42905939e-01 3.39181840e-01 1.41440082e+00 -1.23091733e+00 3.89053635e-02 -1.22674143e+00 2.49605794e-02 9.66894776e-02 4.43046629e-01 4.11941223e-02 -2.95636454e-03 -1.24181151e+00 3.75087440e-01 7.73331337e-03 2.17444360e-01 -1.15748501e+00 -9.46745396e-01 -7.15602875e-01 4.43670973e-02 -5.47566116e-02 -6.60517216e-02 1.68788159e+00 -5.82035899e-01 -2.10927224e+00 4.02099907e-01 -3.64403874e-01 -7.53830910e-01 -3.35601605e-02 -3.92272353e-01 -8.88037145e-01 -1.50914595e-01 -9.06234205e-01 2.58558661e-01 1.06282365e+00 -7.79293776e-01 -5.44690073e-01 -3.83174151e-01 -5.29274762e-01 3.07745878e-02 -5.88084877e-01 3.70477438e-01 -2.93155760e-01 -7.46970534e-01 8.26274231e-02 -6.92805052e-01 -1.56005517e-01 -8.94790053e-01 -1.96844235e-01 -1.61787406e-01 1.01368022e+00 -1.10645247e+00 1.20493782e+00 -2.42695928e+00 -3.26479971e-01 1.67480156e-01 -1.24090716e-01 5.31971216e-01 -2.85301030e-01 8.54729861e-02 3.95020097e-02 -3.51248294e-01 2.72498727e-01 -7.26998270e-01 -5.70922568e-02 3.51101637e-01 -6.39034271e-01 3.85110080e-01 -4.06560600e-01 2.92669117e-01 -2.57212698e-01 -1.41399026e-01 3.43080997e-01 8.72608423e-01 -3.48623961e-01 4.43677425e-01 2.72929400e-01 8.45124759e-03 -2.07965121e-01 5.81228018e-01 7.25171566e-01 3.54027927e-01 6.00383915e-02 -2.61738539e-01 2.79138535e-01 7.09336340e-01 -9.93817925e-01 1.42821455e+00 -1.12189138e+00 1.02426708e+00 6.29715264e-01 -1.13902426e+00 1.26824915e+00 7.20191538e-01 1.31517768e-01 -6.62186801e-01 1.90660097e-02 5.10812104e-01 2.75244057e-01 -1.26700103e-01 6.85230255e-01 -1.37649387e-01 4.73848939e-01 3.00786108e-01 1.13170601e-01 -4.09455895e-01 -4.47528869e-01 -2.89030463e-01 1.06558979e+00 -7.32882321e-01 -4.39620428e-02 -1.14490390e-01 4.02407199e-01 -4.29998010e-01 2.61790782e-01 9.17445362e-01 -3.55381548e-01 4.65605021e-01 -2.01646641e-01 -4.07995939e-01 -1.23251927e+00 -8.32499206e-01 -2.58659601e-01 1.51824808e+00 -4.71063316e-01 -2.63198644e-01 -7.07619011e-01 1.03235431e-01 -3.08834106e-01 7.92478263e-01 1.92768663e-01 -1.29782204e-02 -1.01677382e+00 -1.22326887e+00 9.70738828e-01 6.08423650e-01 3.07278991e-01 -9.81270432e-01 -5.25404453e-01 4.10989910e-01 1.04050398e-01 -1.40132022e+00 -4.20133889e-01 5.49444377e-01 -7.59771109e-01 -2.04970837e-01 -7.50019610e-01 -7.53248692e-01 -1.54538944e-01 4.37484115e-01 1.00697172e+00 -1.19271830e-01 -2.68580496e-01 3.58785987e-01 -4.50420141e-01 -5.42764902e-01 -8.37218702e-01 1.63339823e-01 4.44127411e-01 -1.58566356e-01 4.56351936e-01 -6.75636768e-01 -3.36955577e-01 3.54488552e-01 -8.03219736e-01 -1.60622105e-01 2.76356190e-01 9.86457884e-01 4.23461705e-01 1.64669063e-02 8.74368787e-01 -2.91975111e-01 8.63533199e-01 -3.25760245e-01 -6.33284926e-01 5.86834066e-02 1.62825943e-03 -4.67272967e-01 7.03266561e-01 -1.03059006e+00 -1.12955904e+00 -4.36999828e-01 -1.02441847e+00 -5.94470799e-01 -3.39203179e-01 4.62130487e-01 -1.43247202e-01 1.38884768e-01 5.74140370e-01 4.72573251e-01 -2.18694806e-01 -6.97785020e-01 2.52524644e-01 1.51541626e+00 1.53255805e-01 -8.28948557e-01 9.99525562e-02 -5.92735223e-03 -6.80310488e-01 -1.93934643e+00 -1.28001096e-02 -5.45848131e-01 1.30623924e-02 -5.64034916e-02 3.49948466e-01 -1.02201521e+00 -5.96955776e-01 9.15609062e-01 -1.20819151e+00 -9.16931033e-01 -6.88431114e-02 9.92771089e-01 -3.93637419e-01 3.55648547e-01 -1.16084242e+00 -1.29140508e+00 -8.47189426e-01 -1.48882127e+00 1.17721391e+00 -1.36748642e-01 -6.23946153e-02 -5.55611491e-01 -4.53080498e-02 4.08874720e-01 7.89001644e-01 -1.04678607e+00 6.68537974e-01 -9.29577351e-01 5.83689958e-02 -3.10051888e-01 -6.97328430e-03 7.16705680e-01 1.11733325e-01 -5.59427179e-02 -1.41039681e+00 -5.61939776e-01 4.63691980e-01 -4.22778577e-01 5.25012374e-01 8.35770726e-01 1.55162895e+00 -4.75408435e-02 -1.15207955e-02 6.27494335e-01 7.65122473e-01 8.35339010e-01 4.30614591e-01 -1.74157638e-02 5.75244129e-01 3.54989201e-01 2.45985582e-01 5.45987189e-01 -1.76621437e-01 7.69167006e-01 -2.41378129e-01 1.07607603e-01 -2.99033910e-01 1.95185810e-01 6.88877046e-01 1.81982756e+00 2.14326411e-01 -4.93151903e-01 -1.07786536e+00 5.34710765e-01 -1.14956975e+00 -4.62217718e-01 -3.48943099e-03 2.15805197e+00 9.70870137e-01 1.76726412e-02 1.26676843e-01 3.07484895e-01 7.30504990e-01 4.77829814e-01 -4.80447173e-01 -7.63406873e-01 -7.20369220e-02 6.30117178e-01 5.10129869e-01 5.44635057e-01 -8.00993204e-01 9.18614209e-01 6.84803057e+00 1.81845450e+00 -1.26414859e+00 6.34901106e-01 1.24716687e+00 -5.32050610e-01 3.26234177e-02 -6.81480289e-01 -1.11549497e+00 3.64304572e-01 1.90178609e+00 2.41243526e-01 5.75068653e-01 1.01945865e+00 3.20536792e-01 1.92098141e-01 -8.21887195e-01 1.35596907e+00 -2.70553589e-01 -9.45126474e-01 -2.34888136e-01 -7.85653740e-02 2.61410862e-01 7.88763046e-01 2.43671551e-01 4.85383779e-01 4.00921583e-01 -1.07859421e+00 6.18864655e-01 -3.62396508e-01 9.53220785e-01 -9.85034347e-01 7.25172937e-01 3.16325814e-01 -1.33328521e+00 1.15323044e-01 -8.21173131e-01 2.37373114e-01 3.06583792e-01 6.97485328e-01 -8.08487833e-01 1.24465890e-01 8.41915309e-01 9.78418440e-02 5.60864694e-02 5.93423963e-01 4.14943665e-01 1.44234562e+00 -8.94228280e-01 -3.19128543e-01 1.09367214e-01 -5.93448319e-02 5.16341567e-01 1.50134051e+00 6.59173906e-01 1.72845617e-01 -2.43598133e-01 2.16377318e-01 8.79869089e-02 8.89231265e-02 -7.32301250e-02 1.21037669e-01 7.85752356e-01 8.86267424e-01 -4.04593438e-01 -5.02307415e-01 -4.68580812e-01 5.22984087e-01 1.06019586e-01 6.10339224e-01 -9.60293412e-01 -2.77282327e-01 1.01751018e+00 -3.98611307e-01 6.69371188e-02 -8.15991402e-01 -2.24805564e-01 -7.96962738e-01 -3.39404821e-01 -1.15071630e+00 3.90817039e-03 -6.71890795e-01 -1.03976309e+00 9.06347990e-01 -2.01246381e-01 -5.18941760e-01 -9.32852104e-02 -7.21828520e-01 -5.10910690e-01 9.99507129e-01 -1.39718437e+00 -7.61174142e-01 -8.10058729e-04 3.77562225e-01 1.40266871e+00 -6.85695887e-01 7.65581310e-01 7.15767920e-01 -7.14489400e-01 8.76045704e-01 3.91952366e-01 -4.65109907e-02 2.94312626e-01 -7.96872497e-01 1.06052661e+00 5.77902138e-01 3.48540634e-01 4.39369112e-01 6.85972154e-01 -2.54022568e-01 -1.64124858e+00 -9.36651826e-01 2.53304780e-01 1.87193185e-01 8.70965362e-01 -6.54023051e-01 -1.22018373e+00 4.56894070e-01 7.62217641e-02 1.65304095e-02 8.34504187e-01 1.18414305e-01 -9.30984914e-02 -4.29299682e-01 -7.52092242e-01 4.75376874e-01 6.56850100e-01 -6.79529905e-01 -1.65786788e-01 3.27631205e-01 1.27006495e+00 -5.72274089e-01 -9.34716702e-01 2.04619288e-01 4.40378308e-01 -5.41429996e-01 1.33337426e+00 -4.02126878e-01 -1.57030165e-01 1.94803298e-01 -8.11234117e-01 -1.32139838e+00 3.61545861e-01 -7.28733361e-01 -3.87071520e-01 1.08063102e+00 3.14122230e-01 -7.84306884e-01 8.46001863e-01 3.54055196e-01 -5.01138449e-01 -6.14604473e-01 -1.46803701e+00 -7.78328419e-01 -1.37091041e-01 -1.23596096e+00 8.49842012e-01 4.63287145e-01 -3.81173849e-01 1.26038685e-01 -5.71609676e-01 3.80286932e-01 3.12223434e-01 -5.03573895e-01 7.44999051e-01 -3.46262991e-01 -6.45317197e-01 -3.10373217e-01 -2.19545275e-01 -1.62757111e+00 1.17123455e-01 -3.04000437e-01 9.23298821e-02 -7.26907849e-01 -4.76715922e-01 -6.38081014e-01 -2.88609028e-01 1.76560134e-01 1.74451113e-01 1.86547320e-02 -2.66013801e-01 -9.78719443e-02 1.25140786e-01 8.49884212e-01 5.52652657e-01 -2.26388678e-01 -2.52084076e-01 2.31311142e-01 3.71659219e-01 4.95735109e-01 8.31067026e-01 -2.50929505e-01 -5.86829662e-01 -8.31975877e-01 -4.84597951e-01 3.82496744e-01 -1.61173239e-01 -9.87284541e-01 2.94765443e-01 7.05492571e-02 4.34772037e-02 -6.68385744e-01 9.93838072e-01 -5.06393671e-01 7.99995735e-02 2.26809829e-01 -3.34644705e-01 -4.80304174e-02 6.47503853e-01 4.43206221e-01 -3.76141667e-01 -4.07366425e-01 8.67854714e-01 2.77706891e-01 -5.29031157e-01 1.71240419e-01 -8.80493760e-01 -2.04917133e-01 3.17665219e-01 -4.11177278e-02 -2.60483593e-01 -4.38157946e-01 -7.61904716e-01 -3.49951357e-01 -4.01891172e-01 3.72018158e-01 1.05292988e+00 -1.02576995e+00 -7.80282140e-01 6.04868591e-01 -3.20371956e-01 1.62194312e-01 6.66529894e-01 5.20866632e-01 -7.58674860e-01 3.98458868e-01 4.12232697e-01 -7.27212548e-01 -1.60326791e+00 5.85258491e-02 5.34107268e-01 2.01386407e-01 -6.56677425e-01 1.27875614e+00 1.73868507e-01 -3.94621640e-01 5.27967691e-01 -3.15447211e-01 3.53361503e-03 -3.38341445e-01 6.00517452e-01 6.61798477e-01 5.94856083e-01 -5.49027562e-01 -1.63001984e-01 1.13474555e-01 -1.05752930e-01 -4.92534548e-01 1.28549063e+00 -6.03580400e-02 8.63630995e-02 6.21327221e-01 1.37823570e+00 -1.08020484e-01 -7.31406569e-01 -1.39475867e-01 -2.13212386e-01 -3.89968097e-01 6.03412330e-01 -2.01021329e-01 -1.01800001e+00 1.19001055e+00 8.06498230e-01 3.32704395e-01 1.10329223e+00 -1.36187345e-01 1.27828693e+00 5.51853180e-01 3.37560475e-01 -1.32014239e+00 -8.76020193e-02 6.37209952e-01 7.47752130e-01 -9.52928424e-01 -4.81423974e-01 5.27706323e-03 -3.20494145e-01 1.14381504e+00 5.27615011e-01 1.31552920e-01 1.02859390e+00 8.96031618e-01 2.70688802e-01 2.90546089e-01 -9.26974773e-01 3.44395638e-01 3.88328582e-02 6.21740818e-01 4.04720068e-01 2.75723547e-01 2.13257685e-01 7.54521608e-01 -6.01735055e-01 -5.37665427e-01 3.71226966e-01 7.08842397e-01 -5.16243875e-01 -8.45120013e-01 -7.01802433e-01 5.70815027e-01 -5.17780542e-01 -3.54186833e-01 3.54822665e-01 2.39664793e-01 -6.93108201e-01 1.32238483e+00 3.14000696e-01 -4.69586432e-01 -3.19722877e-03 5.91106042e-02 1.87487826e-01 -4.61016297e-01 -4.49578255e-01 7.90317059e-01 4.16503876e-01 -2.06936970e-01 1.59836277e-01 -1.91036373e-01 -1.14642203e+00 -4.89301920e-01 -6.07865393e-01 9.10834000e-02 1.41554987e+00 8.04277301e-01 2.68783212e-01 8.89452040e-01 5.46762764e-01 -8.94229412e-01 -8.84042144e-01 -1.48995936e+00 -8.73991549e-01 -1.66870132e-01 4.85433877e-01 -1.43686935e-01 -5.49376607e-01 -1.28150523e-01]
[14.513089179992676, 6.438774108886719]
61f98861-7854-462f-9a50-30c580efcda6
a-robust-kernel-machine-regression-towards
2201.05060
null
https://arxiv.org/abs/2201.05060v1
https://arxiv.org/pdf/2201.05060v1.pdf
A robust kernel machine regression towards biomarker selection in multi-omics datasets of osteoporosis for drug discovery
Many statistical machine approaches could ultimately highlight novel features of the etiology of complex diseases by analyzing multi-omics data. However, they are sensitive to some deviations in distribution when the observed samples are potentially contaminated with adversarial corrupted outliers (e.g., a fictional data distribution). Likewise, statistical advances lag in supporting comprehensive data-driven analyses of complex multi-omics data integration. We propose a novel non-linear M-estimator-based approach, "robust kernel machine regression (RobKMR)," to improve the robustness of statistical machine regression and the diversity of fictional data to examine the higher-order composite effect of multi-omics datasets. We address a robust kernel-centered Gram matrix to estimate the model parameters accurately. We also propose a robust score test to assess the marginal and joint Hadamard product of features from multi-omics data. We apply our proposed approach to a multi-omics dataset of osteoporosis (OP) from Caucasian females. Experiments demonstrate that the proposed approach effectively identifies the inter-related risk factors of OP. With solid evidence (p-value = 0.00001), biological validations, network-based analysis, causal inference, and drug repurposing, the selected three triplets ((DKK1, SMTN, DRGX), (MTND5, FASTKD2, CSMD3), (MTND5, COG3, CSMD3)) are significant biomarkers and directly relate to BMD. Overall, the top three selected genes (DKK1, MTND5, FASTKD2) and one gene (SIDT1 at p-value= 0.001) significantly bond with four drugs- Tacrolimus, Ibandronate, Alendronate, and Bazedoxifene out of 30 candidates for drug repurposing in OP. Further, the proposed approach can be applied to any disease model where multi-omics datasets are available.
['Hong-Wen Deng', 'Hui Shen', 'Md ashad Alam']
2022-01-13
null
null
null
null
['data-integration']
['knowledge-base']
[ 2.73739785e-01 -1.53202206e-01 -2.75329143e-01 -1.89552516e-01 -7.16351151e-01 -2.31772915e-01 4.01208460e-01 5.40822208e-01 -1.92222372e-02 1.01696670e+00 1.06118575e-01 -3.96030694e-01 -8.15496564e-01 -6.67572260e-01 -1.06895292e+00 -8.02658737e-01 -4.08133477e-01 3.77313465e-01 -3.05530697e-01 1.94180831e-02 2.21376926e-01 5.50740063e-01 -1.38026321e+00 2.74138629e-01 1.35523725e+00 5.35433352e-01 -1.93709671e-01 5.51128983e-01 2.40756422e-01 1.89210668e-01 -2.71560818e-01 -4.54381227e-01 -1.01226635e-01 -4.98059183e-01 -1.72264233e-01 -5.49465716e-01 1.13443635e-01 6.20615706e-02 -8.91420618e-03 1.06524694e+00 6.38858914e-01 -4.10111964e-01 1.11255980e+00 -1.46787798e+00 -5.45265973e-01 2.87564903e-01 -7.86564052e-01 -1.43422022e-01 8.29474702e-02 1.86594307e-01 7.27965713e-01 -1.01794291e+00 5.72681904e-01 1.54479218e+00 5.29808939e-01 6.14081882e-02 -1.29185045e+00 -7.82101810e-01 -3.41905236e-01 3.02245580e-02 -1.40352297e+00 -2.63168037e-01 1.55675590e-01 -6.46389186e-01 3.70572418e-01 6.11727297e-01 4.33762938e-01 9.63430882e-01 8.92915666e-01 3.39620531e-01 1.33189130e+00 -1.11087844e-01 4.11348730e-01 -2.90643871e-01 9.78307873e-02 6.39866471e-01 8.57274055e-01 3.23614866e-01 -6.03953838e-01 -8.93780351e-01 4.55043375e-01 3.15453947e-01 2.07846224e-01 -8.87887366e-03 -1.20091486e+00 6.29626155e-01 -1.69819623e-01 5.11842035e-02 -4.12921399e-01 2.33620510e-01 2.01099232e-01 1.29996732e-01 4.11844641e-01 1.73668236e-01 -7.13122785e-01 1.74798340e-01 -5.47842085e-01 3.27529103e-01 4.17778164e-01 5.68968713e-01 5.15629470e-01 -1.38343289e-01 -1.30822286e-01 8.95314634e-01 5.27114391e-01 9.76218939e-01 4.03742552e-01 -5.52179277e-01 2.18848959e-01 6.78682745e-01 4.87449616e-02 -1.20747268e+00 -7.07896054e-01 -1.81524277e-01 -1.10407197e+00 -2.65002280e-01 3.74106765e-01 -9.32657197e-02 -8.30391467e-01 1.66394269e+00 5.96663058e-01 4.66648370e-01 8.27397779e-03 6.47842050e-01 6.71014845e-01 1.91680133e-01 2.24442393e-01 -2.91019350e-01 1.53606176e+00 -1.47455364e-01 -5.82366884e-01 2.48307467e-01 5.05253851e-01 -5.70587993e-01 7.47131348e-01 6.29295528e-01 -5.39111137e-01 -2.56340235e-01 -9.07182574e-01 3.00882459e-01 -4.92700070e-01 1.18885607e-01 7.16373384e-01 5.62282383e-01 -2.20369756e-01 7.40232825e-01 -8.42061639e-01 -3.11773509e-01 4.40899700e-01 5.64417660e-01 -6.16823018e-01 -3.49191278e-01 -1.22000098e+00 7.07803190e-01 1.24820001e-01 2.10325912e-01 -8.89352262e-01 -9.71737087e-01 -4.48638678e-01 -2.35615417e-01 -1.20727926e-01 -8.21476936e-01 2.27717608e-01 -2.62694955e-01 -1.20584869e+00 4.91226017e-01 -1.27400219e-01 -4.73997667e-02 3.10720205e-01 -3.76124471e-01 -8.68418872e-01 1.44946083e-01 2.05354393e-01 -1.49105070e-02 5.96658945e-01 -1.00943851e+00 -2.89858967e-01 -9.78622735e-01 -7.22616673e-01 -2.72075266e-01 -1.53713807e-01 1.77688479e-01 1.78133816e-01 -8.10099483e-01 3.89882267e-01 -1.08498549e+00 -4.21054244e-01 -1.76844403e-01 -9.29408789e-01 1.72835618e-01 1.46900937e-01 -6.77031755e-01 1.04933584e+00 -2.15503478e+00 7.70893767e-02 5.22630215e-01 9.19631049e-02 -3.76345329e-02 6.11528456e-02 5.97298265e-01 -3.01139921e-01 5.20319045e-01 -3.19907576e-01 4.21997160e-01 -9.44008231e-02 -1.22412078e-01 1.23473391e-01 1.07800841e+00 5.14164329e-01 8.78158152e-01 -8.89596462e-01 -2.26789653e-01 7.64711499e-02 2.84539044e-01 -4.61749494e-01 -5.33454008e-02 -7.68785626e-02 4.45532531e-01 -6.45115137e-01 1.15539372e+00 9.21566546e-01 -8.95176083e-02 3.01442444e-01 -1.94202140e-01 8.43383521e-02 -4.96020526e-01 -1.29567218e+00 1.25734448e+00 9.97890383e-02 -7.47038946e-02 -2.30867818e-01 -7.69904673e-01 9.34671640e-01 3.05359531e-02 6.22649133e-01 -5.26515603e-01 7.42188320e-02 5.23155928e-01 4.47830617e-01 -7.45700955e-01 -1.43658400e-01 -2.63353646e-01 -6.73574284e-02 7.05268532e-02 -9.90177765e-02 3.78334016e-01 -9.00889561e-02 -5.28169014e-02 1.35847187e+00 -9.08876210e-02 4.45487350e-01 -5.15952110e-01 4.32490557e-01 -1.50007352e-01 6.79688573e-01 6.47911847e-01 4.29375693e-02 5.47229469e-01 8.30437124e-01 -7.69603997e-03 -9.50340927e-01 -1.33599496e+00 -7.66281009e-01 5.63064933e-01 -1.67889684e-01 -5.09832650e-02 -6.77373931e-02 -1.44758269e-01 8.98566961e-01 5.36311984e-01 -6.69181705e-01 -3.62666816e-01 6.52643899e-03 -1.45804274e+00 9.61484671e-01 -4.28321287e-02 4.74613681e-02 -2.27298573e-01 1.60181791e-01 2.21980527e-01 1.56770468e-01 -5.73355854e-01 1.40526369e-01 2.08336890e-01 -1.07189119e+00 -1.47810233e+00 -5.86344719e-01 8.91235918e-02 6.81159079e-01 -2.69108802e-01 5.37211597e-01 -7.43037462e-02 -6.00412548e-01 -1.66437253e-01 -1.58210054e-01 -6.17719769e-01 -3.30598682e-01 -6.18301630e-01 5.67206323e-01 2.28387028e-01 3.62772495e-01 -6.41586840e-01 -6.68309987e-01 4.62043345e-01 -8.07358921e-01 -3.63495797e-01 8.81380498e-01 8.52352023e-01 6.26953542e-01 -1.27598926e-01 1.00869823e+00 -9.78630722e-01 4.34467256e-01 -1.29802883e+00 -2.67710507e-01 2.19191372e-01 -8.04112494e-01 -5.98202758e-02 3.95627588e-01 -5.42076766e-01 -5.88440716e-01 -1.68080926e-01 2.65516698e-01 -1.99504510e-01 -1.77358359e-01 1.01530802e+00 -4.10064250e-01 2.63027936e-01 5.86378038e-01 -3.38010192e-02 3.09394866e-01 -5.87910712e-01 1.73641950e-01 6.72323287e-01 3.57895404e-01 -7.43446231e-01 6.33819699e-01 5.68539500e-01 5.59541762e-01 -8.54382277e-01 -1.96030483e-01 -2.80880719e-01 -3.37537140e-01 1.44519120e-01 6.21009707e-01 -1.22203445e+00 -9.99046862e-01 5.94492912e-01 -6.14931285e-01 2.74990290e-01 4.60313171e-01 1.01205778e+00 -2.11443350e-01 2.45476767e-01 -5.77800214e-01 -8.75901818e-01 -2.72513270e-01 -9.07000244e-01 9.59390581e-01 -3.82535271e-02 -3.28218639e-01 -5.61010599e-01 2.56070048e-01 4.48132545e-01 -8.69062021e-02 9.53310728e-01 1.49974048e+00 -1.00734174e+00 -1.37731120e-01 -2.37594724e-01 -2.96824098e-01 1.11147650e-01 3.27638805e-01 4.87260103e-01 -8.04159582e-01 -3.72941326e-03 -4.12668645e-01 -2.78857276e-02 3.96794975e-01 6.51771247e-01 9.66321886e-01 -1.94956630e-01 -5.36868393e-01 5.54444790e-01 1.32323360e+00 2.16472939e-01 7.70432711e-01 2.21178398e-01 6.36283755e-01 4.89380777e-01 8.60745907e-01 6.46248460e-01 1.39807582e-01 4.69443500e-01 4.18166220e-01 -1.11669756e-01 2.74264097e-01 -2.24479079e-01 4.24756885e-01 3.98679793e-01 -5.23542315e-02 -1.72204167e-01 -9.41072464e-01 4.35941994e-01 -1.76875257e+00 -5.46023965e-01 -9.85623240e-01 2.28699708e+00 8.04402530e-01 -1.68374896e-01 -1.75793339e-02 -2.56637663e-01 8.15259218e-01 -6.30658805e-01 -9.91948605e-01 -2.84672648e-01 -4.87542242e-01 4.32462126e-01 5.93596697e-01 3.88498828e-02 -7.15944707e-01 5.17952502e-01 5.97518396e+00 6.28518999e-01 -6.36674643e-01 -1.55552968e-01 6.15408778e-01 -1.62923262e-01 -3.67385209e-01 2.63149925e-02 -5.82556367e-01 7.94840991e-01 1.28075516e+00 -2.83632845e-01 -2.47134566e-02 3.95476758e-01 9.04415846e-01 -4.06736523e-01 -1.01615191e+00 6.86348021e-01 -2.03058705e-01 -1.09418714e+00 -6.93772137e-02 5.01319051e-01 7.17467666e-01 -2.56984844e-03 -3.01307514e-02 -9.36052501e-02 3.96372288e-01 -1.24480951e+00 1.56754032e-01 9.70164180e-01 8.13991547e-01 -9.25026059e-01 7.91235805e-01 5.62990606e-02 -4.87985849e-01 -7.30163679e-02 -4.98291463e-01 9.92419049e-02 -2.78419405e-01 1.39226162e+00 -8.07471454e-01 9.79732871e-01 5.34106910e-01 5.08804917e-01 -6.26081586e-01 8.67453158e-01 -9.16519538e-02 7.13043392e-01 -3.41942340e-01 -3.43921520e-02 -4.40847009e-01 -2.27764145e-01 4.45414037e-01 7.78714061e-01 7.32115924e-01 2.55288273e-01 -2.28245586e-01 8.00680220e-01 2.55049974e-01 4.63341743e-01 -4.83267516e-01 -3.67621809e-01 5.82583666e-01 1.06113899e+00 -4.30310845e-01 -4.58856672e-02 -2.40266889e-01 5.00726402e-01 -1.71968743e-01 3.43389213e-01 -6.67829752e-01 -1.89338967e-01 1.14744031e+00 9.88775864e-02 -1.38299420e-01 9.34660435e-02 -3.83708894e-01 -9.56023455e-01 -2.71984071e-01 -1.29018879e+00 5.59418201e-01 -5.94230473e-01 -1.59741032e+00 -3.22248995e-01 -4.93055284e-02 -1.21221387e+00 -8.82329606e-03 -6.32651627e-01 -4.18732911e-01 9.26331580e-01 -1.15967321e+00 -1.14778090e+00 1.25698894e-01 4.39832777e-01 -3.36105347e-01 -2.24817678e-01 8.61483991e-01 3.71888131e-01 -8.18324447e-01 3.71931493e-01 7.60525584e-01 -2.24812716e-01 1.04097521e+00 -8.99796903e-01 -4.07516919e-02 5.30547738e-01 -6.23519182e-01 1.14825428e+00 7.50775933e-01 -1.33629882e+00 -1.86089289e+00 -1.15887511e+00 5.12097180e-01 -2.14957908e-01 8.75080109e-01 -2.15151906e-01 -6.34310961e-01 4.60975409e-01 -5.98394156e-01 1.31472554e-02 1.38073504e+00 2.19069228e-01 -3.59417200e-01 -5.16587459e-02 -1.36168385e+00 5.84245384e-01 6.47907317e-01 -1.48781344e-01 -2.29728714e-01 4.53397930e-01 4.82724249e-01 -2.33014133e-02 -1.62892127e+00 6.51447237e-01 9.39839303e-01 -6.30406618e-01 1.12079179e+00 -1.22731733e+00 7.32681394e-01 -6.18271530e-01 -4.85117257e-01 -1.01697850e+00 -2.06481650e-01 -3.10873628e-01 -1.72934741e-01 1.19217229e+00 4.04737115e-01 -6.33943439e-01 4.21846837e-01 5.52178681e-01 -9.32262465e-03 -6.11320198e-01 -1.18780851e+00 -8.91706586e-01 2.28628278e-01 -3.31866622e-01 5.57155430e-01 1.16911161e+00 1.16618350e-01 -9.94444564e-02 -5.61528623e-01 6.36418521e-01 7.38088608e-01 -1.23439915e-01 9.51372266e-01 -1.55120993e+00 -2.09265649e-01 -2.77170707e-02 -6.37314200e-01 1.32265776e-01 -2.82997906e-01 -9.35460925e-01 -4.78122115e-01 -1.31921053e+00 4.19576943e-01 -3.16824049e-01 -6.57710612e-01 3.47936928e-01 -2.94284582e-01 -1.67763576e-01 -2.29881927e-01 -3.25089060e-02 1.64511397e-01 3.89978260e-01 9.77974296e-01 -2.39086986e-01 -1.40282214e-01 -4.36222404e-02 -8.32275152e-01 5.86786926e-01 5.93504012e-01 -7.38365173e-01 -2.15683326e-01 2.49814361e-01 3.15526068e-01 7.95102678e-03 6.83268487e-01 -5.40859282e-01 -8.90038610e-02 -6.25731528e-01 8.75981569e-01 -6.31488502e-01 -2.22187191e-02 -5.41781604e-01 8.33883762e-01 9.94785666e-01 -6.78449636e-03 -7.51346797e-02 1.46324039e-01 7.20950961e-01 1.61956444e-01 -3.33944298e-02 5.36796451e-01 5.61988987e-02 -7.65188411e-02 2.59786874e-01 -3.56268197e-01 -1.07780434e-01 8.83170128e-01 -4.52173091e-02 -5.75196326e-01 1.43382266e-01 -7.38644361e-01 2.01508343e-01 1.29707128e-01 4.60008442e-01 6.67209089e-01 -1.31801963e+00 -1.16533244e+00 4.60769124e-02 4.01234418e-01 -2.65881598e-01 4.39555526e-01 1.10065424e+00 -4.23734426e-01 7.41738677e-02 -1.89167053e-01 -6.63437724e-01 -1.03806007e+00 4.16421294e-01 -3.61199453e-02 9.42694489e-03 -1.42034173e-01 5.43684661e-01 1.58942536e-01 -4.37458485e-01 -2.90549129e-01 -2.17496306e-01 7.27904961e-02 2.45089501e-01 3.76483530e-01 8.20506513e-01 1.31594136e-01 -3.13778341e-01 -6.78984344e-01 3.68699700e-01 1.49845764e-01 2.19929621e-01 1.62786794e+00 2.11249662e-05 -6.30957127e-01 6.86683774e-01 1.19409001e+00 1.76991314e-01 -3.75239462e-01 1.97301030e-01 2.74988055e-01 -4.33177888e-01 -4.68394756e-01 -1.03902113e+00 -5.11874199e-01 3.90840471e-01 9.73090410e-01 -3.60171229e-01 7.26129711e-01 -7.96195567e-02 1.45969808e-01 1.10926650e-01 1.71861380e-01 -9.97238755e-01 -2.84159303e-01 -3.19888107e-02 8.09951723e-01 -9.78600740e-01 4.25348192e-01 -4.36734319e-01 -1.65168107e-01 1.14420843e+00 4.19822544e-01 1.22052111e-01 7.45853007e-01 6.94885179e-02 -2.19430953e-01 -3.62594724e-01 -6.74373269e-01 1.79301172e-01 3.51318806e-01 5.42264104e-01 4.51764613e-01 3.78873736e-01 -7.41392434e-01 1.01567483e+00 -1.20701924e-01 6.55944720e-02 4.42144901e-01 5.11297643e-01 -3.43581617e-01 -9.82710838e-01 -6.06886327e-01 9.13633227e-01 -6.39391363e-01 -2.29052156e-01 -3.30473632e-01 1.07820511e+00 2.49295950e-01 1.00680017e+00 -2.10025996e-01 -3.63143563e-01 3.48738045e-01 2.03772187e-01 1.32704685e-02 -3.77724975e-01 -3.74822348e-01 4.93563861e-01 1.93132550e-01 -5.51916420e-01 -2.58062243e-01 -8.77724290e-01 -1.33169091e+00 -3.60604942e-01 -4.17268962e-01 -5.08857444e-02 8.55289042e-01 9.52532709e-01 6.80841506e-01 4.79728103e-01 6.46189630e-01 -1.31323889e-01 -4.48207706e-01 -1.04313087e+00 -1.03141880e+00 3.23546976e-01 1.12116121e-01 -7.93535769e-01 -4.30761695e-01 -1.50545329e-01]
[6.429522514343262, 5.523967742919922]
3965592a-cfa4-400e-aaac-4f459ca66e82
improving-adversarial-robustness-via-mutual
2207.12203
null
https://arxiv.org/abs/2207.12203v1
https://arxiv.org/pdf/2207.12203v1.pdf
Improving Adversarial Robustness via Mutual Information Estimation
Deep neural networks (DNNs) are found to be vulnerable to adversarial noise. They are typically misled by adversarial samples to make wrong predictions. To alleviate this negative effect, in this paper, we investigate the dependence between outputs of the target model and input adversarial samples from the perspective of information theory, and propose an adversarial defense method. Specifically, we first measure the dependence by estimating the mutual information (MI) between outputs and the natural patterns of inputs (called natural MI) and MI between outputs and the adversarial patterns of inputs (called adversarial MI), respectively. We find that adversarial samples usually have larger adversarial MI and smaller natural MI compared with those w.r.t. natural samples. Motivated by this observation, we propose to enhance the adversarial robustness by maximizing the natural MI and minimizing the adversarial MI during the training process. In this way, the target model is expected to pay more attention to the natural pattern that contains objective semantics. Empirical evaluations demonstrate that our method could effectively improve the adversarial accuracy against multiple attacks.
['Tongliang Liu', 'Yibing Zhan', 'Xiaoyu Wang', 'Bo Han', 'Xinbo Gao', 'Nannan Wang', 'Dawei Zhou']
2022-07-25
null
null
null
null
['adversarial-defense', 'mutual-information-estimation']
['adversarial', 'methodology']
[ 3.62629890e-01 4.42063510e-01 2.87380248e-01 -4.30817157e-01 -3.32305968e-01 -9.84540582e-01 6.72855139e-01 -2.52058804e-01 -4.02887553e-01 4.91334766e-01 8.36892724e-02 -2.82720868e-02 8.84554163e-02 -1.11751354e+00 -1.08663511e+00 -5.65896392e-01 1.26169622e-01 2.04886228e-01 7.63576999e-02 -2.11501583e-01 1.62219942e-01 6.06407523e-01 -1.04374528e+00 2.51173288e-01 9.35140371e-01 1.04272020e+00 -2.96628743e-01 4.93593246e-01 1.61781743e-01 1.10105729e+00 -1.03912807e+00 -8.70728016e-01 4.71350610e-01 -5.76636791e-01 -6.22005463e-01 -1.19236693e-01 3.81722718e-01 -2.93697536e-01 -8.91106784e-01 1.80906093e+00 1.74861044e-01 2.22683325e-01 8.07496369e-01 -1.48473597e+00 -1.02393377e+00 8.93144310e-01 -7.12238550e-02 9.03706774e-02 9.92797762e-02 5.61762810e-01 7.63948917e-01 -6.75822735e-01 4.18643981e-01 1.59859848e+00 2.52418667e-01 1.04775059e+00 -1.10677028e+00 -9.61029053e-01 4.17532504e-01 -5.43561354e-02 -1.16526186e+00 -4.63742018e-01 9.83238459e-01 -2.53414214e-01 2.43274286e-01 4.46070880e-01 2.65849032e-03 1.59311616e+00 2.49977246e-01 8.29303980e-01 8.72204006e-01 -1.41991094e-01 3.83427143e-01 5.03551126e-01 -2.23095641e-01 4.08172876e-01 1.11579694e-01 5.35077989e-01 -8.68626311e-02 -9.17013213e-02 4.44381982e-01 2.41220415e-01 -4.00390625e-01 -1.15531690e-01 -7.66838372e-01 7.83251226e-01 8.98869038e-01 2.17839390e-01 -1.77871183e-01 2.59295218e-02 4.10161942e-01 7.04250157e-01 1.66777819e-01 7.29993820e-01 -4.33903188e-01 3.83328706e-01 -2.75811195e-01 2.07395598e-01 7.43350804e-01 8.42952311e-01 5.41405082e-01 2.62976915e-01 -1.17381349e-01 6.84783936e-01 3.83039057e-01 8.67251635e-01 5.77493608e-01 -6.56764984e-01 6.73705816e-01 5.05840838e-01 -3.40593420e-02 -1.35776997e+00 4.27292325e-02 -4.53307331e-01 -1.19028962e+00 4.13734823e-01 5.98335624e-01 -2.91478992e-01 -8.54391336e-01 2.16391373e+00 -3.55658829e-02 -2.70973463e-02 5.56184888e-01 7.62014866e-01 4.14246261e-01 4.51463938e-01 1.26330614e-01 -6.64283708e-03 7.57032812e-01 -5.88937938e-01 -5.51768661e-01 -6.77793145e-01 2.73539931e-01 -5.33937633e-01 1.24395549e+00 1.98245525e-01 -9.46429253e-01 -4.17759836e-01 -1.11680233e+00 6.24114454e-01 -3.64599496e-01 -4.57119882e-01 -4.70360406e-02 7.97337115e-01 -4.67587739e-01 1.05275130e+00 -7.00924337e-01 1.85955346e-01 7.42456734e-01 2.46358067e-01 -4.39145565e-01 -1.26574963e-01 -1.60547638e+00 9.12274361e-01 5.93349993e-01 5.99931553e-03 -1.28597105e+00 -4.37687248e-01 -8.23937953e-01 7.12746195e-03 3.29457015e-01 -3.23571742e-01 1.02917862e+00 -1.63962138e+00 -1.13205516e+00 6.30698264e-01 3.43195975e-01 -6.80136204e-01 8.99355471e-01 -3.29674393e-01 -4.86166894e-01 -3.20697241e-02 -2.74817735e-01 3.81096900e-01 1.29995513e+00 -1.44398689e+00 -1.19367979e-01 -4.72244322e-01 2.30696052e-01 3.17715257e-02 -8.40711594e-01 -1.91027597e-01 -4.57007065e-02 -1.12573671e+00 5.57379760e-02 -8.37785840e-01 -3.87288749e-01 -9.31132864e-03 -8.49722981e-01 1.32912070e-01 7.60689020e-01 -2.23362252e-01 9.41031277e-01 -2.40230012e+00 7.01879710e-02 4.80178684e-01 3.62096965e-01 5.11969745e-01 -1.25819668e-01 5.44638485e-02 -1.75237492e-01 5.01548648e-01 -3.14363986e-01 1.39647156e-01 1.20523758e-01 4.06693131e-01 -7.63121724e-01 4.49165523e-01 4.50982571e-01 8.66619468e-01 -9.64978039e-01 2.44028606e-02 -1.56484433e-02 9.37245265e-02 -5.34696519e-01 6.08494759e-01 -2.43488863e-01 3.81066412e-01 -5.80824554e-01 3.83513063e-01 7.80786216e-01 5.10775298e-02 -6.95652068e-02 -1.07119724e-01 8.41713786e-01 -8.85316357e-02 -9.47449088e-01 8.62112105e-01 -2.64944732e-01 5.18864989e-01 -2.21481323e-01 -9.15971160e-01 1.10690582e+00 2.37455547e-01 -1.74724460e-01 -4.75752592e-01 3.56862068e-01 4.13418328e-03 3.08988661e-01 -2.73148358e-01 -2.31718421e-02 -4.66274828e-01 -1.96924627e-01 4.37937140e-01 -9.86334309e-02 8.33519325e-02 -4.45571244e-01 3.17377746e-01 1.17525959e+00 -4.25720274e-01 1.88067570e-01 -7.81906620e-02 5.90839446e-01 -4.23590064e-01 6.87234461e-01 1.06403649e+00 -4.15107906e-01 3.38117391e-01 6.93973780e-01 -3.69555295e-01 -1.02873635e+00 -1.56389284e+00 1.11846425e-01 7.63823628e-01 3.35093915e-01 1.19828574e-01 -9.99554276e-01 -1.29216588e+00 7.41714761e-02 9.68408346e-01 -8.52041245e-01 -1.06175876e+00 -4.42849070e-01 -3.27343613e-01 1.00290465e+00 5.95282495e-01 6.32841408e-01 -1.27375567e+00 -8.31773728e-02 7.86538608e-03 1.65678427e-01 -8.81062567e-01 -6.09819531e-01 1.15721285e-01 -6.67956591e-01 -1.03093600e+00 -3.34629893e-01 -4.33049887e-01 8.66389275e-01 -1.80122286e-01 1.08345604e+00 5.93588389e-02 1.38639435e-01 -2.41021477e-02 -4.27929074e-01 -5.52562356e-01 -1.04224503e+00 -2.93548197e-01 4.78399605e-01 1.28619060e-01 2.65766323e-01 -5.90040624e-01 -3.76114666e-01 5.15409410e-01 -1.46942675e+00 -3.11222136e-01 5.68117738e-01 9.00686085e-01 2.74429679e-01 3.34899485e-01 7.21309245e-01 -1.17605412e+00 6.77075267e-01 -7.06442833e-01 -4.07537848e-01 2.37232432e-01 -5.29312074e-01 2.44966820e-01 1.55691350e+00 -1.01643503e+00 -7.81840682e-01 -2.89363146e-01 -1.97963819e-01 -9.71887469e-01 -3.02226663e-01 6.32634759e-02 -1.01178181e+00 -4.02336642e-02 9.46233511e-01 1.41278684e-01 -2.02736005e-01 -1.76684782e-01 3.71506363e-01 4.54194039e-01 5.18027365e-01 -5.02107322e-01 1.36317945e+00 1.30677819e-01 -1.51581854e-01 -3.22596669e-01 -1.03974068e+00 4.61570293e-01 -3.35131496e-01 -2.27399662e-01 4.77243662e-01 -3.48527640e-01 -4.20104027e-01 6.50718629e-01 -9.58755374e-01 -8.37590098e-02 -3.06432694e-01 3.17038625e-01 -4.47605669e-01 3.02093118e-01 -5.25333881e-01 -7.76183069e-01 -2.02772424e-01 -1.19144058e+00 2.95705974e-01 2.04438120e-01 -1.60529986e-01 -1.12617230e+00 -2.72705406e-01 2.33003739e-02 3.22160542e-01 5.35150290e-01 9.72860336e-01 -1.36510694e+00 -3.48016769e-01 -6.36190951e-01 -1.38046771e-01 9.99839425e-01 1.88180313e-01 -1.35663047e-01 -1.20316541e+00 -1.89257145e-01 5.38372099e-01 -4.12204862e-01 7.10025132e-01 -8.67654309e-02 1.29617763e+00 -1.03421366e+00 2.19760444e-02 7.58238733e-01 1.31240165e+00 3.01302224e-01 7.46591151e-01 2.34583437e-01 8.59279513e-01 5.23842454e-01 6.04914069e-01 2.90791214e-01 -3.73720229e-01 2.51412272e-01 9.67507720e-01 2.72198677e-01 3.81793112e-01 -6.03093863e-01 6.28092527e-01 4.25456941e-01 5.46573997e-01 -7.12434351e-01 -8.46721530e-01 2.57556021e-01 -1.52036691e+00 -9.84688163e-01 3.29092711e-01 2.22246051e+00 8.90021622e-01 7.48501003e-01 -2.73287922e-01 2.25693747e-01 7.72404432e-01 2.79094785e-01 -1.06777847e+00 -3.95713478e-01 -2.77233392e-01 -2.58221501e-03 5.21326602e-01 3.62239569e-01 -1.20510232e+00 9.87974524e-01 5.68945646e+00 1.00935638e+00 -8.62998664e-01 -2.10519269e-01 9.66605544e-01 -6.22988902e-02 -6.04696095e-01 -3.07171673e-01 -3.68574023e-01 6.60807252e-01 9.50394034e-01 -3.85037392e-01 6.43058956e-01 1.04837584e+00 -2.28948027e-01 6.48140788e-01 -1.34274268e+00 4.12559628e-01 -2.39564613e-01 -9.46438968e-01 4.59001124e-01 1.81836337e-02 6.70625389e-01 -2.06159189e-01 4.52085972e-01 3.35375249e-01 7.47251987e-01 -1.21498585e+00 7.08389521e-01 7.12060630e-01 4.87102330e-01 -9.96697068e-01 8.49175215e-01 7.07770288e-01 -6.86039507e-01 -1.32333964e-01 -5.01696348e-01 1.70847207e-01 -4.70229477e-01 5.08650184e-01 -5.69719017e-01 1.47744030e-01 3.60420495e-01 5.45117438e-01 -4.68749791e-01 2.69956231e-01 -4.60901439e-01 5.51599801e-01 -1.10927708e-01 -1.16585232e-02 2.10561872e-01 3.36690769e-02 7.23785460e-01 7.02852964e-01 -1.69388339e-01 -1.40178308e-01 9.14830565e-02 1.12435818e+00 -6.75628781e-01 -1.68531567e-01 -1.16910958e+00 -3.05413693e-01 6.11185968e-01 7.20828474e-01 -2.69055158e-01 -3.18463832e-01 -3.81173119e-02 1.16624558e+00 3.66246670e-01 4.43430066e-01 -8.12395692e-01 -4.34963286e-01 9.71295774e-01 -3.27288836e-01 -1.82913363e-01 3.41845751e-01 -4.86488104e-01 -1.08114398e+00 2.36650780e-01 -1.18493116e+00 3.03617448e-01 -4.33576316e-01 -1.91291356e+00 8.94747138e-01 -4.19139117e-01 -1.36047137e+00 -1.83957219e-01 -6.39063060e-01 -8.37858021e-01 9.61958766e-01 -8.60545576e-01 -6.71681762e-01 1.29034564e-01 7.66164064e-01 3.50230724e-01 -4.40834045e-01 8.94293427e-01 -2.87789963e-02 -6.84862077e-01 1.28933275e+00 2.41718993e-01 6.51902497e-01 4.40679729e-01 -1.13321686e+00 6.82783544e-01 1.06340849e+00 2.98447963e-02 7.10133553e-01 8.38676512e-01 -5.70524156e-01 -1.04360998e+00 -1.51276398e+00 3.90484184e-01 -5.20118892e-01 8.97654474e-01 -8.38626400e-02 -1.09295630e+00 7.43484199e-01 -1.75847232e-01 4.74589095e-02 6.82984829e-01 -4.28970605e-01 -7.46079683e-01 -1.96915530e-02 -1.76265728e+00 9.29481864e-01 9.63845968e-01 -7.52231061e-01 -7.00316250e-01 3.11138242e-01 1.06391823e+00 -1.76014662e-01 -8.17909300e-01 4.35279191e-01 4.13047791e-01 -8.71349573e-01 1.04814422e+00 -1.09128928e+00 6.47614360e-01 1.73325557e-02 -3.78249526e-01 -1.55117583e+00 -2.03677088e-01 -3.28144819e-01 -2.66529292e-01 1.13728261e+00 4.01138842e-01 -7.36622453e-01 7.26331651e-01 8.28255713e-01 9.63227600e-02 -5.98395288e-01 -8.10979545e-01 -8.92892063e-01 4.11358416e-01 -4.51334864e-01 6.82134509e-01 1.02712953e+00 -3.20279121e-01 -4.15339619e-02 -5.09256840e-01 5.75280368e-01 7.37306774e-01 -2.25124270e-01 5.83325922e-01 -8.96298528e-01 -3.83126140e-01 -4.97717500e-01 -6.21269107e-01 -8.12457621e-01 4.00411785e-01 -7.63994217e-01 1.60448104e-01 -6.72478616e-01 -1.59487590e-01 -4.10455227e-01 -6.37622058e-01 3.79564852e-01 -5.80929935e-01 2.40464389e-01 3.73738647e-01 2.64668941e-01 -2.62910128e-01 6.48479223e-01 1.26214027e+00 -3.95634711e-01 9.96513292e-02 3.72230411e-01 -9.28668618e-01 1.13684535e+00 9.70524192e-01 -8.35689008e-01 -5.16398907e-01 -3.42280239e-01 3.98040973e-02 -1.77316874e-01 2.94382393e-01 -9.55418050e-01 -9.63106453e-02 -4.33535397e-01 5.26374578e-01 -6.41063452e-02 8.97625089e-02 -1.08434737e+00 -1.41310364e-01 7.00047255e-01 -9.06769812e-01 -1.69255689e-01 -2.04496551e-03 8.56350660e-01 -1.06387585e-01 -4.21684921e-01 1.11138916e+00 -2.51208901e-01 -2.07795039e-01 5.23781478e-01 -2.32401624e-01 3.55839610e-01 1.08348453e+00 2.34901413e-01 -3.42998534e-01 -4.19316024e-01 -8.99567127e-01 1.64846331e-01 5.17764986e-01 5.43482721e-01 8.81181240e-01 -1.54797864e+00 -5.22171080e-01 4.49466884e-01 1.53333575e-01 -1.76419124e-01 6.26854375e-02 2.15319842e-01 -2.16357887e-01 -7.17824325e-02 -1.73664749e-01 -9.15867165e-02 -1.02496958e+00 9.45147157e-01 6.21457696e-01 -2.60439783e-01 -3.53893459e-01 1.04623711e+00 5.99911571e-01 -5.22686720e-01 3.98934454e-01 9.26983804e-02 -1.93462539e-02 -3.83302867e-01 6.16743684e-01 2.29675591e-01 -2.37043425e-01 -4.99709308e-01 -1.53185919e-01 -1.33033087e-02 -3.73864949e-01 6.22450300e-02 9.37533617e-01 8.39618742e-02 1.25909805e-01 3.08105916e-01 1.44310534e+00 -2.94490810e-02 -1.33665478e+00 -5.42408526e-01 1.43041695e-02 -7.19383180e-01 -2.75776237e-01 -7.74668753e-01 -1.34202921e+00 9.08606052e-01 6.86405420e-01 5.78005552e-01 1.25495648e+00 -1.44937858e-01 7.48578846e-01 5.08681595e-01 8.66922438e-02 -6.89854860e-01 2.77657777e-01 5.40698707e-01 8.59450102e-01 -1.14342344e+00 -5.70829690e-01 -6.99416548e-02 -8.96716237e-01 8.93261611e-01 8.07494342e-01 -5.38421214e-01 6.48485899e-01 6.85537308e-02 1.88267186e-01 7.76099488e-02 -6.57665670e-01 2.32187405e-01 4.57061350e-01 7.17996478e-01 -1.04837656e-01 2.04099238e-01 3.20786715e-01 6.86455071e-01 -3.06384802e-01 -5.81494749e-01 2.46237352e-01 7.14839160e-01 -4.69329119e-01 -9.87095237e-01 -4.42326158e-01 5.01005173e-01 -6.70626879e-01 -1.99534550e-01 -8.26958776e-01 3.51998597e-01 2.74706427e-02 1.01104629e+00 -1.82608679e-01 -9.96038616e-01 4.85979050e-01 -1.01585314e-02 9.08733308e-02 -5.06732523e-01 -7.37093151e-01 -5.58254063e-01 -3.17383021e-01 -5.85591137e-01 9.79874730e-02 -3.08507830e-01 -9.59721446e-01 -4.89483595e-01 -1.71187073e-01 -5.39738089e-02 2.84453750e-01 1.12606668e+00 -6.20463416e-02 6.53912544e-01 1.32469106e+00 -4.79087710e-01 -1.32200098e+00 -9.76974845e-01 -5.12048483e-01 9.04182255e-01 4.49011177e-01 -2.70420194e-01 -8.87713730e-01 -1.19998246e-01]
[5.689352512359619, 7.883220195770264]
c22fccaa-7bf0-4978-aaed-0c598a33ae3e
del-dock-molecular-docking-enabled-modeling
2212.00136
null
https://arxiv.org/abs/2212.00136v2
https://arxiv.org/pdf/2212.00136v2.pdf
DEL-Dock: Molecular Docking-Enabled Modeling of DNA-Encoded Libraries
DNA-Encoded Library (DEL) technology has enabled significant advances in hit identification by enabling efficient testing of combinatorially-generated molecular libraries. DEL screens measure protein binding affinity though sequencing reads of molecules tagged with unique DNA-barcodes that survive a series of selection experiments. Computational models have been deployed to learn the latent binding affinities that are correlated to the sequenced count data; however, this correlation is often obfuscated by various sources of noise introduced in its complicated data-generation process. In order to denoise DEL count data and screen for molecules with good binding affinity, computational models require the correct assumptions in their modeling structure to capture the correct signals underlying the data. Recent advances in DEL models have focused on probabilistic formulations of count data, but existing approaches have thus far been limited to only utilizing 2-D molecule-level representations. We introduce a new paradigm, DEL-Dock, that combines ligand-based descriptors with 3-D spatial information from docked protein-ligand complexes. 3-D spatial information allows our model to learn over the actual binding modality rather than using only structured-based information of the ligand. We show that our model is capable of effectively denoising DEL count data to predict molecule enrichment scores that are better correlated with experimental binding affinity measurements compared to prior works. Moreover, by learning over a collection of docked poses we demonstrate that our model, trained only on DEL data, implicitly learns to perform good docking pose selection without requiring external supervision from expensive-to-source protein crystal structures.
['Theofanis Karaletsos', 'Mohammad M. Sultan', 'Benson Chen', 'Kirill Shmilovich']
2022-11-30
null
null
null
null
['molecular-docking']
['medical']
[ 5.60328841e-01 -5.24033248e-01 -1.94027096e-01 -2.90997207e-01 -1.41871560e+00 -1.02581155e+00 4.07723159e-01 4.18220818e-01 -5.27612984e-01 1.51219308e+00 3.13217849e-01 -2.37571687e-01 -1.65946752e-01 -7.16072142e-01 -1.12239969e+00 -9.97820675e-01 8.28641355e-02 1.11302078e+00 3.95333245e-02 -1.25719711e-01 2.86894381e-01 6.88236773e-01 -1.17539275e+00 5.30394793e-01 6.50724113e-01 4.87935036e-01 3.63829195e-01 6.77231669e-01 -2.07343549e-01 2.55645812e-01 -4.80791152e-01 -3.24272424e-01 -1.23538263e-02 -4.56818521e-01 -3.26328933e-01 -6.31244540e-01 1.52599931e-01 1.64129138e-02 -1.50648072e-01 8.09304655e-01 9.30544794e-01 -1.80309385e-01 1.05687726e+00 -4.16035026e-01 -3.33560467e-01 3.38542499e-02 -2.08492517e-01 7.77476728e-02 7.91522264e-01 3.92015159e-01 1.00441086e+00 -1.27760196e+00 9.36487556e-01 1.03153026e+00 7.21460938e-01 4.71529812e-01 -2.07005763e+00 -5.59981227e-01 -4.40106690e-01 -5.42918369e-02 -1.60189295e+00 -1.84467733e-01 2.67055571e-01 -5.88814914e-01 1.40431345e+00 3.69777173e-01 5.94332755e-01 1.51138616e+00 4.22409058e-01 3.23189020e-01 8.13406527e-01 -2.45712131e-01 5.48186123e-01 -4.22430724e-01 -1.35963798e-01 5.99017441e-01 2.99273103e-01 1.28695041e-01 -8.33519280e-01 -8.23543251e-01 5.06426096e-01 3.31513554e-01 -3.09582353e-01 -8.07893336e-01 -1.02144432e+00 9.63253021e-01 2.70061612e-01 -1.09530345e-01 -6.09995902e-01 -4.84803319e-02 1.85290217e-01 -2.36504301e-01 1.53387010e-01 7.22699225e-01 -8.45769167e-01 -2.67852575e-01 -8.47850144e-01 4.86883700e-01 7.12255955e-01 6.60406768e-01 9.11212981e-01 -5.93596816e-01 -1.11556262e-01 5.65769136e-01 6.96946234e-02 4.75240767e-01 3.13723028e-01 -2.44867682e-01 1.72198728e-01 6.25452816e-01 5.28811634e-01 -5.03481448e-01 -5.45369029e-01 -3.45613092e-01 -4.96135563e-01 -1.35509431e-01 4.42557365e-01 5.87168895e-02 -1.07502317e+00 1.81275260e+00 2.12159261e-01 6.21112287e-02 1.04752675e-01 7.82367170e-01 5.06182909e-01 5.69468319e-01 2.81948090e-01 -2.91636348e-01 1.17823577e+00 -2.14947417e-01 -3.09202552e-01 8.42761546e-02 6.79255128e-01 -5.59618831e-01 9.03925419e-01 4.32804823e-01 -8.06275070e-01 -1.23977019e-02 -1.11055076e+00 5.87119684e-02 -5.59346437e-01 -3.11027095e-02 7.53643513e-01 6.63959682e-01 -5.05840659e-01 6.38871193e-01 -9.09654856e-01 -2.22868860e-01 6.14218533e-01 8.71514976e-01 -6.25741661e-01 -2.73764610e-01 -1.02441394e+00 1.00441849e+00 4.63060826e-01 -1.58527538e-01 -1.34110367e+00 -9.05785263e-01 -4.81699228e-01 -1.51810059e-02 2.88217366e-01 -7.50731587e-01 8.71623755e-01 -2.57553756e-01 -1.32084072e+00 6.28999531e-01 -4.20758516e-01 -2.88133085e-01 5.23213036e-02 -8.78720433e-02 5.85681498e-02 -3.28547098e-02 4.05963361e-02 4.78125334e-01 1.64910242e-01 -9.25713181e-01 -2.55204856e-01 -6.70570552e-01 -1.63798422e-01 2.43161649e-01 5.43448776e-02 -1.68686420e-01 -2.25723013e-01 -3.21957201e-01 1.14815183e-01 -7.76920021e-01 -4.64985967e-01 -4.41979021e-01 -4.66820389e-01 2.30426252e-01 1.91125304e-01 -2.20123395e-01 7.63900578e-01 -1.58902860e+00 6.74203098e-01 3.52780819e-01 2.91122228e-01 3.68223637e-01 -4.07802463e-01 9.34394777e-01 -7.81758726e-02 7.60874078e-02 -4.62598205e-02 2.40681469e-01 -2.07987368e-01 9.27211493e-02 -2.30563775e-01 6.28793776e-01 2.91913390e-01 9.97253835e-01 -9.88755822e-01 4.32557464e-02 4.55709957e-02 9.53141928e-01 -8.17396998e-01 2.69450814e-01 -7.59383917e-01 7.18344688e-01 -6.19321644e-01 6.18666530e-01 6.96230888e-01 -3.65998924e-01 6.82270408e-01 -3.31969202e-01 -2.20256876e-02 3.68681759e-01 -8.29604566e-01 1.89364529e+00 -7.87448436e-02 -2.18447849e-01 -4.13315684e-01 -6.28942430e-01 8.41699362e-01 2.18694299e-01 5.69645405e-01 -5.09330451e-01 -6.33069947e-02 3.98868233e-01 -4.21141200e-02 -1.66745484e-01 -5.48768640e-02 -4.53233570e-01 6.56519691e-03 -5.35085015e-02 2.50416696e-01 2.07046606e-02 -3.48200202e-02 1.49533659e-01 1.50566947e+00 3.25512588e-01 2.75235116e-01 -3.75832133e-02 4.95638162e-01 3.67578328e-01 6.23583674e-01 7.97886133e-01 2.30993599e-01 5.20029902e-01 5.04146755e-01 -5.88717103e-01 -1.31218636e+00 -1.24149466e+00 -3.82939607e-01 9.87278223e-01 -9.59388912e-02 -5.48614621e-01 -5.65398037e-01 -4.87951815e-01 6.56896681e-02 3.54939938e-01 -5.13313949e-01 -2.96956122e-01 -3.82656485e-01 -1.62619698e+00 8.17368388e-01 2.16590121e-01 -4.22052473e-01 -4.73643601e-01 -6.84687197e-02 6.40678883e-01 4.93736267e-02 -5.48234522e-01 -3.12863648e-01 1.01900959e+00 -6.04712605e-01 -1.38647628e+00 -6.31771088e-01 -4.43498105e-01 6.24460280e-01 -1.16551138e-01 9.08430934e-01 -3.87512267e-01 -7.48197019e-01 -8.59360304e-03 -3.52845974e-02 -4.43416476e-01 -1.44257054e-01 -1.57853924e-02 2.93234557e-01 -3.07980418e-01 9.32950974e-01 -6.13185585e-01 -7.57553339e-01 2.48967230e-01 -7.99035490e-01 -1.38998091e-01 8.48648250e-01 1.40399206e+00 1.14638865e+00 -4.08560306e-01 6.64982259e-01 -8.69556606e-01 5.93908191e-01 -4.39035505e-01 -6.26861036e-01 2.33527154e-01 -3.37194413e-01 5.59994578e-01 4.88102078e-01 -3.70511502e-01 -8.84365559e-01 5.12705266e-01 -4.24173534e-01 -8.17227140e-02 -9.48742554e-02 7.32987642e-01 -4.26123798e-01 -1.35518700e-01 8.95844638e-01 4.52889115e-01 -2.12678220e-02 -5.36363482e-01 2.13075235e-01 4.61882681e-01 3.88131380e-01 -8.83258104e-01 2.45315656e-01 4.23528790e-01 4.12517041e-01 -5.52495241e-01 -7.01659679e-01 -6.13172352e-01 -6.10517263e-01 4.67066497e-01 7.68543839e-01 -9.30886865e-01 -1.16867757e+00 1.07856765e-01 -9.90224481e-01 6.96463324e-03 2.00753763e-01 6.92284703e-01 -6.51352882e-01 3.55753690e-01 -7.15898514e-01 -8.13407898e-01 -1.21890455e-01 -1.52946079e+00 1.33483219e+00 -2.14624435e-01 -1.43677965e-01 -6.80918872e-01 7.08195508e-01 1.41247183e-01 9.76072177e-02 2.81654626e-01 1.17447305e+00 -9.24475312e-01 -7.38292217e-01 -5.55235386e-01 -4.40875255e-02 -1.46203741e-01 9.90016386e-02 -2.95071125e-01 -7.49897480e-01 -3.38754237e-01 -3.39762509e-01 -6.28582358e-01 9.74383652e-01 4.45048779e-01 8.52245390e-01 6.77568140e-03 -6.91864431e-01 6.67825043e-01 1.63543344e+00 1.38829380e-01 7.27957010e-01 1.15548864e-01 6.22753024e-01 1.22580573e-01 5.22195637e-01 5.30237198e-01 -2.23275408e-01 9.42290127e-01 5.23956478e-01 -8.83323792e-03 3.85420650e-01 -6.95897758e-01 2.26550117e-01 1.01468831e-01 -2.33946115e-01 -4.42873001e-01 -8.16999078e-01 -9.97053683e-02 -1.70435357e+00 -9.85562742e-01 -1.29496023e-01 2.48235345e+00 1.30634201e+00 3.42978258e-03 1.62595585e-01 -2.34134763e-01 3.89809221e-01 -3.67154062e-01 -7.66986787e-01 1.06388032e-01 -5.19170284e-01 6.39182389e-01 7.20894694e-01 6.79567873e-01 -8.15912604e-01 7.09169507e-01 7.01963902e+00 1.02503121e+00 -9.07691658e-01 -2.25508139e-01 4.38211560e-01 -2.73950964e-01 -4.36092764e-01 1.83984563e-01 -1.16128349e+00 3.68794292e-01 1.09793949e+00 1.80191733e-02 3.15116554e-01 5.57966888e-01 3.43597382e-01 -3.11529133e-02 -1.42269015e+00 9.90074813e-01 -3.18482190e-01 -1.88343942e+00 1.94551110e-01 3.43518287e-01 5.83876550e-01 1.57176837e-01 -1.86510999e-02 -6.68187998e-03 4.81020629e-01 -1.46677935e+00 1.49339184e-01 8.52345884e-01 9.32378292e-01 -8.31939995e-01 9.36205745e-01 5.12056828e-01 -7.61939228e-01 2.16499105e-01 -7.44860947e-01 1.53455893e-02 -5.70146926e-02 7.25298762e-01 -1.49279225e+00 4.90948617e-01 1.25952840e-01 4.59140599e-01 -1.70030385e-01 7.76000261e-01 1.35180935e-01 3.15384328e-01 -4.48272914e-01 -2.52779305e-01 8.44442658e-03 -3.46346468e-01 2.63842791e-01 1.19972801e+00 2.77310729e-01 1.39642939e-01 3.18942338e-01 8.93191516e-01 -1.86334521e-01 5.19607626e-02 -5.24214625e-01 -2.97949642e-01 4.66639459e-01 8.67472529e-01 -3.16049069e-01 -2.85536377e-03 -3.49427164e-01 8.89938116e-01 4.58889008e-01 4.86904621e-01 -7.18492985e-01 8.80659651e-03 9.89360750e-01 2.22098425e-01 2.51642466e-01 -2.20708773e-01 1.05655484e-01 -9.61039603e-01 -4.30952609e-01 -8.84927571e-01 2.64458299e-01 -4.32333350e-01 -1.48200071e+00 1.53745994e-01 -3.26435894e-01 -6.54547811e-01 7.43979514e-02 -1.02358031e+00 5.74322492e-02 1.34184361e+00 -1.14188385e+00 -7.96516836e-01 2.62703180e-01 2.27696329e-01 1.68167368e-01 -8.73420537e-02 1.39418435e+00 2.73261756e-01 -5.51603615e-01 3.23489159e-01 6.80099845e-01 -3.64222556e-01 9.12464082e-01 -1.18637574e+00 6.91567883e-02 1.38516247e-01 -6.38157204e-02 1.14064908e+00 8.29936802e-01 -9.69473779e-01 -1.91901517e+00 -8.67497206e-01 4.86294270e-01 -1.00121319e+00 4.24835920e-01 -6.51360869e-01 -7.80263960e-01 4.79089528e-01 -5.90199411e-01 -1.20171336e-02 1.28366399e+00 1.23193145e-01 -4.85087276e-01 2.28815109e-01 -1.16916060e+00 3.02554846e-01 9.90259171e-01 -5.72803557e-01 -3.27828646e-01 5.62030315e-01 2.88623661e-01 -5.18795192e-01 -7.90569484e-01 4.37818974e-01 5.74352026e-01 -7.19548166e-01 1.43806291e+00 -1.12493014e+00 -7.98241422e-02 -6.38515651e-01 -4.73919749e-01 -1.05497897e+00 -4.55285847e-01 -2.28448853e-01 1.09254204e-01 4.60907549e-01 6.81210458e-01 -3.03059131e-01 1.24302328e+00 2.64932573e-01 -4.00008522e-02 -8.53773773e-01 -9.70416069e-01 -5.10581732e-01 8.23904127e-02 -1.45600855e-01 4.94150460e-01 4.07461196e-01 1.19157307e-01 5.64100623e-01 -3.86779845e-01 2.42495045e-01 5.21884859e-01 -2.59142518e-01 7.44403422e-01 -1.35241365e+00 -4.01591420e-01 -1.04908459e-01 -5.88764668e-01 -1.18012488e+00 -1.44339085e-01 -9.44656134e-01 1.38171958e-02 -1.32144737e+00 7.93949187e-01 -1.06819078e-01 -3.11852872e-01 1.93367630e-01 -1.90226793e-01 3.37779135e-01 -5.45152843e-01 1.67222649e-01 -7.32354999e-01 5.50642014e-01 9.29867089e-01 -2.47478351e-01 -1.88536659e-01 -2.89346248e-01 -5.53758085e-01 3.39042276e-01 3.43153596e-01 -6.54215515e-01 -3.36780012e-01 1.86638787e-01 8.43185782e-01 1.84697974e-02 4.22290415e-01 -7.32138216e-01 9.59844068e-02 -3.56267631e-01 8.86451662e-01 -7.11310148e-01 6.01749897e-01 -5.44834077e-01 7.74147332e-01 5.04917622e-01 -2.97755152e-01 -2.42862463e-01 2.13061467e-01 1.09615397e+00 -4.14235238e-03 -3.10766902e-02 6.41640723e-01 -3.08560908e-01 -1.42549738e-01 3.86586726e-01 -5.41216135e-01 -2.36574173e-01 7.03300357e-01 -1.55422106e-01 -8.10118765e-02 -4.56423983e-02 -8.99953485e-01 -1.75898612e-01 7.67550707e-01 -2.76045382e-01 5.45099616e-01 -1.05132306e+00 -5.70969164e-01 1.61828101e-01 3.67007673e-01 -7.67430142e-02 6.90047294e-02 5.79738081e-01 -7.23363936e-01 9.40078557e-01 -1.78134791e-03 -7.48291850e-01 -1.06145692e+00 7.02526808e-01 4.34135526e-01 -3.43024641e-01 -3.36898528e-02 9.86530960e-01 3.29609782e-01 -4.89736736e-01 1.01843953e-01 4.68069464e-02 1.74822360e-01 -1.58522755e-01 7.05926657e-01 -4.79034446e-02 4.14755404e-01 -3.93446505e-01 -6.24768436e-01 4.14317876e-01 -2.88443416e-01 2.26924524e-01 1.56062198e+00 3.39822322e-01 -1.18419365e-03 1.23403646e-01 1.12562668e+00 1.47352591e-01 -1.26667893e+00 -1.62164360e-01 1.59533188e-01 -4.12122577e-01 -1.97298959e-01 -1.12168860e+00 -5.78649975e-02 5.19755363e-01 6.64924860e-01 -7.89027870e-01 6.16284847e-01 -4.65678088e-02 3.86705607e-01 8.13603461e-01 7.64742076e-01 -7.59698570e-01 2.04784617e-01 4.53337818e-01 5.67090809e-01 -1.09725380e+00 1.14733279e-01 -2.59752274e-01 -1.64894029e-01 1.02896774e+00 1.42638832e-01 3.03805977e-01 1.29043236e-01 3.73755783e-01 -3.11697870e-01 -5.13778865e-01 -7.59992719e-01 2.93281097e-02 3.37183960e-02 8.68146122e-01 7.02711940e-01 -6.56603053e-02 -2.85787404e-01 8.53254378e-01 2.05767557e-01 1.19536750e-01 1.73388839e-01 9.64625478e-01 -5.79669476e-01 -1.67142856e+00 -4.22385484e-01 3.99893433e-01 -6.36230052e-01 -3.91874522e-01 -7.47203231e-01 3.43860954e-01 4.90511842e-02 6.32139802e-01 -3.16194981e-01 -3.48072082e-01 3.43191117e-01 4.43314254e-01 7.90067792e-01 -8.00504863e-01 -5.47272637e-02 2.14587569e-01 -4.00014222e-03 -4.07141000e-01 -1.43748298e-01 -5.01184821e-01 -1.40083015e+00 -2.45065898e-01 -5.39286673e-01 5.48157036e-01 6.67252421e-01 7.19114125e-01 6.67954147e-01 3.58065099e-01 2.60208130e-01 -1.04687011e+00 -5.45481145e-01 -7.39984393e-01 -5.42653203e-01 1.86375111e-01 1.99779004e-01 -8.63436580e-01 -7.97924493e-03 -1.21070951e-01]
[4.855458736419678, 5.597195148468018]
94dcb244-f054-4e5e-ac73-39062feba9d6
rethinking-multi-modal-alignment-in-video
2204.11544
null
https://arxiv.org/abs/2204.11544v2
https://arxiv.org/pdf/2204.11544v2.pdf
Rethinking Multi-Modal Alignment in Video Question Answering from Feature and Sample Perspectives
Reasoning about causal and temporal event relations in videos is a new destination of Video Question Answering (VideoQA).The major stumbling block to achieve this purpose is the semantic gap between language and video since they are at different levels of abstraction. Existing efforts mainly focus on designing sophisticated architectures while utilizing frame- or object-level visual representations. In this paper, we reconsider the multi-modal alignment problem in VideoQA from feature and sample perspectives to achieve better performance. From the view of feature,we break down the video into trajectories and first leverage trajectory feature in VideoQA to enhance the alignment between two modalities. Moreover, we adopt a heterogeneous graph architecture and design a hierarchical framework to align both trajectory-level and frame-level visual feature with language feature. In addition, we found that VideoQA models are largely dependent on language priors and always neglect visual-language interactions. Thus, two effective yet portable training augmentation strategies are designed to strengthen the cross-modal correspondence ability of our model from the view of sample. Extensive results show that our method outperforms all the state-of-the-art models on the challenging NExT-QA benchmark, which demonstrates the effectiveness of the proposed method.
['Jun Xiao', 'Zhimeng Zhang', 'Yi Yang', 'Zhao Wang', 'Kaifeng Gao', 'Long Chen', 'Shaoning Xiao']
2022-04-25
null
null
null
null
['video-question-answering']
['computer-vision']
[-1.50792256e-01 -3.27415287e-01 -3.18028986e-01 -3.42145860e-01 -6.85298026e-01 -4.65117395e-01 8.02245080e-01 -1.44783869e-01 -1.54288188e-01 2.34846741e-01 6.29912376e-01 -1.75261468e-01 -7.34794140e-02 -6.34154856e-01 -7.29476571e-01 -4.45081085e-01 1.43764317e-01 -5.06583899e-02 4.72166300e-01 -2.46372283e-01 -8.01831186e-02 1.31925970e-01 -1.48178566e+00 6.40704572e-01 6.73316479e-01 9.53295708e-01 1.40367478e-01 5.57724059e-01 -2.15163052e-01 1.29613674e+00 -1.79591581e-01 -6.66973948e-01 1.51489764e-01 -5.81404209e-01 -8.97609949e-01 3.77844840e-01 6.86442256e-01 -5.56383967e-01 -1.04119658e+00 1.00234294e+00 1.85580492e-01 2.59219974e-01 3.63996983e-01 -1.64245760e+00 -7.52475441e-01 3.65814924e-01 -5.39150119e-01 3.65882784e-01 6.23523653e-01 3.41673523e-01 1.21783614e+00 -7.23146558e-01 7.12748885e-01 1.44712210e+00 3.26103508e-01 4.27836359e-01 -7.96812773e-01 -4.03360248e-01 7.18338192e-01 8.03004682e-01 -1.14156520e+00 -5.32632113e-01 1.00136960e+00 -6.24391139e-01 7.22571611e-01 1.61495224e-01 6.08457386e-01 1.29188776e+00 -1.40319588e-02 1.16505897e+00 7.59294987e-01 -2.77215336e-02 -2.24161502e-02 -2.94169992e-01 1.09926425e-01 1.00215828e+00 -2.14962050e-01 -1.94474995e-01 -8.45902026e-01 -5.85828163e-03 7.84817994e-01 3.14690024e-01 -5.09415030e-01 -6.34976447e-01 -1.59275579e+00 7.80802250e-01 3.63401681e-01 2.74039418e-01 -2.97487140e-01 3.46039891e-01 5.06297052e-01 2.39067271e-01 1.53884441e-01 7.53800869e-02 -1.93862766e-01 -1.89764291e-01 -6.60557449e-01 1.00633614e-01 4.00397986e-01 1.14430523e+00 4.65456843e-01 -4.16236371e-03 -5.21665692e-01 4.75875854e-01 5.04600346e-01 3.57002109e-01 1.98986247e-01 -1.04376018e+00 8.02334189e-01 7.39795327e-01 -5.72286397e-02 -1.41276801e+00 -2.72531599e-01 -1.76636621e-01 -6.17983937e-01 -4.39120948e-01 4.45826560e-01 2.22259551e-01 -8.62313151e-01 1.88352501e+00 4.16775465e-01 5.77433825e-01 -3.95658053e-03 1.21678686e+00 1.04829550e+00 8.45874727e-01 3.82406443e-01 -2.63610095e-01 1.55362177e+00 -1.31703162e+00 -1.01245797e+00 -5.12739830e-02 5.59210598e-01 -4.95298386e-01 1.36564302e+00 4.74472046e-02 -1.23345447e+00 -6.79660618e-01 -9.51134980e-01 -4.06158954e-01 -3.18029374e-01 1.86868012e-02 6.19642496e-01 2.57355183e-01 -8.40576887e-01 1.19750053e-01 -9.19203103e-01 -3.75881433e-01 2.83053666e-01 -3.46064158e-02 -4.16968316e-01 -4.49245960e-01 -1.41782713e+00 6.37040675e-01 1.03608482e-01 1.18063390e-01 -9.36403871e-01 -6.56635225e-01 -1.02083480e+00 9.69969928e-02 6.38802111e-01 -1.10826945e+00 1.07921720e+00 -7.99593091e-01 -1.33261931e+00 4.97740179e-01 -4.00124639e-01 -2.63475329e-01 3.94109458e-01 -1.93912685e-01 -5.36743462e-01 6.71731532e-01 2.83039268e-02 4.89424855e-01 9.35119748e-01 -1.26798260e+00 -7.15937197e-01 -3.15954924e-01 7.51462162e-01 3.49057853e-01 -5.17185211e-01 -4.11867499e-02 -1.08855259e+00 -6.74436569e-01 -5.76120391e-02 -6.69494748e-01 7.18399808e-02 -1.90594289e-02 1.14505403e-01 -3.21700901e-01 9.65986967e-01 -7.87767589e-01 1.37896407e+00 -2.28853488e+00 6.40368581e-01 -2.50568628e-01 4.81370628e-01 4.17162897e-03 -2.57594347e-01 5.59544504e-01 2.71873605e-02 -5.05180210e-02 -1.94283444e-02 -4.02034134e-01 -2.54795719e-02 1.84204876e-01 -3.97889197e-01 4.99445200e-01 2.93011874e-01 1.11475372e+00 -1.30936706e+00 -6.72091722e-01 1.34741873e-01 5.64054191e-01 -7.99436331e-01 3.04802358e-01 -4.07615185e-01 5.81082880e-01 -6.60694838e-01 7.53885448e-01 3.60600919e-01 -6.76697433e-01 1.73637077e-01 -8.32948387e-01 2.25660712e-01 2.23979548e-01 -9.79521930e-01 2.21553278e+00 -3.28135908e-01 4.52922046e-01 -6.95370436e-02 -9.39799011e-01 2.95930117e-01 5.05874276e-01 6.44786477e-01 -8.34567070e-01 6.59732744e-02 -3.02278221e-01 -5.60232513e-02 -9.82212424e-01 4.88931805e-01 1.10308332e-02 6.40377700e-02 1.41625494e-01 3.35733265e-01 2.78535634e-01 2.86789328e-01 5.87275267e-01 9.46968734e-01 4.45077062e-01 1.86199933e-01 1.12518772e-01 6.81050420e-01 -1.05291262e-01 5.78047752e-01 4.71177369e-01 -4.40693259e-01 6.63139105e-01 6.88538611e-01 -2.30844706e-01 -6.32073998e-01 -1.01399803e+00 3.08065593e-01 1.27296889e+00 4.33417857e-01 -8.07135999e-01 -4.91313398e-01 -1.02241063e+00 -3.30134571e-01 5.94705939e-01 -5.88488817e-01 -5.37614673e-02 -6.74492240e-01 -3.15948427e-01 3.22112650e-01 6.31764233e-01 5.31809092e-01 -6.23473227e-01 -3.64958823e-01 5.99943381e-03 -7.22828090e-01 -1.64931679e+00 -6.32669091e-01 -6.61511421e-01 -5.97160876e-01 -1.24592292e+00 -5.78024566e-01 -5.85781217e-01 5.03970981e-01 7.16203988e-01 1.22394753e+00 1.83132634e-01 2.22729549e-01 1.08036745e+00 -7.19451725e-01 4.08995561e-02 -9.73188132e-02 -1.36257336e-01 -1.54096663e-01 3.51031572e-01 1.73872754e-01 -4.54631418e-01 -7.33482599e-01 3.03315699e-01 -1.00869560e+00 2.90831268e-01 3.69737506e-01 7.73396015e-01 4.14146632e-01 -8.63972083e-02 3.57415289e-01 -4.99593377e-01 3.01004440e-01 -7.01509416e-01 -3.47574770e-01 5.75616598e-01 -1.45938685e-02 -7.99688324e-02 6.02522075e-01 -4.39166009e-01 -1.14795005e+00 -1.50765970e-01 9.65609476e-02 -8.58576715e-01 2.72812080e-02 6.82905257e-01 -4.66860116e-01 2.62446076e-01 1.77471340e-01 1.86012775e-01 -1.27254188e-01 -9.96585116e-02 6.88520253e-01 1.93118840e-01 4.11064893e-01 -6.73730850e-01 6.84385538e-01 7.91060269e-01 6.22354336e-02 -7.43283987e-01 -8.41739953e-01 -6.51373327e-01 -5.85985661e-01 -5.12180448e-01 1.13866460e+00 -1.19270551e+00 -8.97117972e-01 1.88039541e-01 -1.15148163e+00 -5.86660132e-02 -1.90858170e-02 4.86218154e-01 -5.00069141e-01 6.89489067e-01 -5.44852972e-01 -4.98509526e-01 8.44786391e-02 -1.35737729e+00 1.26318586e+00 1.15901597e-01 2.87057668e-01 -1.00611424e+00 -1.85815513e-01 7.79850304e-01 1.60187796e-01 8.45147595e-02 8.99598181e-01 -2.90503353e-01 -9.14624751e-01 8.30498710e-02 -4.89119858e-01 -6.16008006e-02 1.31210700e-01 -7.96153992e-02 -7.51567900e-01 -2.77997971e-01 1.18021347e-01 -3.10704052e-01 9.46781576e-01 8.36044550e-02 1.19055283e+00 -1.62751198e-01 -1.72688976e-01 5.61322570e-01 1.11940420e+00 1.54988067e-02 5.50754070e-01 1.55546755e-01 1.19060183e+00 6.65579915e-01 6.82773173e-01 2.11866587e-01 1.04474092e+00 7.71120071e-01 5.98567188e-01 6.92556351e-02 -3.83410484e-01 -5.25855243e-01 5.87939799e-01 1.12428033e+00 -1.42873079e-01 -2.90655941e-01 -8.70671153e-01 6.27379477e-01 -2.33611679e+00 -1.26317227e+00 -1.27127901e-01 1.84167945e+00 5.21684587e-01 -2.37502024e-01 1.90763041e-01 -1.61415637e-01 4.12975878e-01 5.02155006e-01 -2.73701966e-01 3.23414832e-01 5.14990613e-02 -5.17165184e-01 7.19568226e-03 2.63762802e-01 -1.08023953e+00 9.27631080e-01 5.48978615e+00 6.88018441e-01 -9.88114893e-01 2.27416188e-01 3.39207351e-01 -1.39257461e-01 -3.92028630e-01 5.68461493e-02 -5.53825498e-01 3.47238332e-01 7.59245038e-01 7.28993192e-02 4.63310212e-01 4.40909535e-01 1.87598735e-01 1.60387993e-01 -1.32006443e+00 1.04405618e+00 3.55741590e-01 -1.40082073e+00 4.25158501e-01 -1.94721878e-01 4.62314516e-01 -2.62397200e-01 -1.82897858e-02 4.97257262e-01 -5.94076402e-02 -7.64410079e-01 8.14533055e-01 6.73295259e-01 4.47022110e-01 -3.86710465e-01 3.98270935e-01 7.42005408e-02 -1.53826797e+00 -4.21804003e-02 -9.96744931e-02 -1.78225338e-02 5.36620915e-01 8.73895064e-02 -3.73774916e-01 1.02836871e+00 8.36971402e-01 1.06165481e+00 -6.27163231e-01 7.17929363e-01 -6.42265156e-02 4.82576430e-01 5.92441298e-02 3.16672206e-01 3.20126623e-01 -2.29289070e-01 4.29017514e-01 1.03581834e+00 1.81585014e-01 3.24521422e-01 3.24094385e-01 6.09650671e-01 -3.69121544e-02 -5.40876836e-02 -5.67403495e-01 -2.72020161e-01 1.88543037e-01 1.07540345e+00 -4.44218785e-01 -3.14147770e-01 -1.20663488e+00 8.13278258e-01 3.97658408e-01 6.40127003e-01 -1.29080069e+00 3.16411883e-01 7.08887815e-01 -5.55643998e-02 4.57236767e-01 -4.98729944e-01 2.01549485e-01 -1.76033330e+00 1.23453476e-01 -1.09572303e+00 7.09383905e-01 -8.96262348e-01 -1.34465981e+00 4.45791513e-01 1.43996298e-01 -1.35193074e+00 -1.23889692e-01 -6.31306529e-01 -2.45638311e-01 3.73584390e-01 -1.61069798e+00 -1.77802026e+00 -5.32257795e-01 1.14086449e+00 8.40070665e-01 6.99261650e-02 3.96715105e-01 4.84514892e-01 -5.34060061e-01 4.24504817e-01 -3.91535342e-01 2.48124093e-01 6.44694507e-01 -8.64760756e-01 -1.74224507e-02 1.19723248e+00 4.77822781e-01 6.35253370e-01 4.27038461e-01 -5.07161021e-01 -1.98903024e+00 -9.89846706e-01 5.99549890e-01 -6.30738437e-01 1.01973569e+00 -3.53375554e-01 -9.64019120e-01 7.94629872e-01 4.13411468e-01 1.29597336e-01 5.91354609e-01 1.70848534e-01 -6.16218984e-01 1.60168409e-02 -5.78377426e-01 9.68272150e-01 1.29973161e+00 -9.25820947e-01 -7.42389977e-01 2.25280538e-01 1.06849754e+00 -4.09249276e-01 -9.43024337e-01 5.78524411e-01 4.61742759e-01 -9.85917091e-01 1.06170857e+00 -9.47034895e-01 6.21605992e-01 -5.35351455e-01 -3.91602814e-01 -9.00813162e-01 -3.52960825e-01 -5.18990338e-01 -6.17113709e-01 1.41148496e+00 8.33259672e-02 -8.88901204e-02 4.60172117e-01 4.71327990e-01 -5.12575246e-02 -7.52199113e-01 -6.98365390e-01 -5.10040462e-01 -2.72556126e-01 -5.30397475e-01 4.48386729e-01 1.15592635e+00 8.22046697e-02 6.32327437e-01 -6.45547152e-01 4.92612839e-01 3.03037822e-01 2.83584595e-01 7.77853608e-01 -6.99648321e-01 -3.78366202e-01 -4.19482321e-01 -3.86792868e-01 -1.41323256e+00 2.52449989e-01 -6.04388177e-01 -2.19899103e-01 -1.60514796e+00 3.74683559e-01 1.09554254e-01 -5.14628291e-01 3.11958462e-01 -4.08148795e-01 -6.11290485e-02 5.38132787e-01 2.73655057e-01 -1.03788483e+00 8.55727255e-01 1.49483502e+00 -2.59220332e-01 4.18126024e-02 -3.96028996e-01 -5.30718803e-01 6.90391779e-01 3.76142800e-01 -5.51552624e-02 -8.80709469e-01 -9.23162878e-01 2.94869363e-01 4.60032910e-01 5.26356161e-01 -6.17885888e-01 3.96569401e-01 -4.22575891e-01 -1.00803152e-01 -4.88575578e-01 5.17233312e-01 -9.69073772e-01 -9.90682542e-02 -2.69277245e-02 -2.91823715e-01 3.08041632e-01 5.91267645e-02 9.96998429e-01 -5.63389838e-01 2.55599320e-01 3.41575712e-01 -5.97804971e-02 -1.08108127e+00 6.46901429e-01 -2.06156839e-02 1.12427093e-01 1.04497480e+00 3.99881713e-02 -6.03484988e-01 -6.03656948e-01 -5.04950821e-01 6.32330418e-01 3.93652946e-01 8.94886434e-01 6.85025573e-01 -1.44204092e+00 -4.28729355e-01 -7.52910450e-02 3.69288623e-01 -2.20648855e-01 6.30573392e-01 1.25887942e+00 -2.17783287e-01 4.79985356e-01 -6.02435991e-02 -7.24612951e-01 -1.11136281e+00 9.47793484e-01 2.12692201e-01 -2.79762447e-01 -5.82104683e-01 6.56313539e-01 6.67864799e-01 -1.38105135e-02 3.92181009e-01 -2.63517350e-01 -4.10613924e-01 1.37784392e-01 5.37952960e-01 2.17275426e-01 -1.80684537e-01 -9.61636841e-01 -4.18094337e-01 5.31827450e-01 1.00054462e-02 -3.87478317e-03 1.12977087e+00 -4.56152052e-01 3.00867409e-02 5.06500185e-01 1.15255344e+00 -3.02194878e-02 -1.35767066e+00 -3.23751986e-01 -2.92152256e-01 -6.21657729e-01 1.71807762e-02 -4.51819509e-01 -1.24228704e+00 9.35056269e-01 2.67374992e-01 2.35281393e-01 1.22982550e+00 1.28876865e-01 7.78273046e-01 1.98539764e-01 2.55271763e-01 -7.05607355e-01 4.01148528e-01 3.88308257e-01 9.62124407e-01 -1.35752189e+00 4.67774644e-03 -5.71082473e-01 -8.55447829e-01 9.41414177e-01 7.74374962e-01 9.94174778e-02 5.15603304e-01 -3.50460559e-01 -9.74162593e-02 -3.88781399e-01 -8.85387659e-01 -4.53208774e-01 6.43553913e-01 4.38905656e-01 4.25592333e-01 -2.56574661e-01 -2.51824915e-01 6.16246819e-01 3.42688590e-01 -6.29778132e-02 2.59239167e-01 8.35677683e-01 4.58455719e-02 -9.19408798e-01 -1.29022673e-01 3.30470577e-02 -3.55536520e-01 -3.74015421e-02 -6.28387183e-02 9.97636020e-01 -7.94292167e-02 1.06011343e+00 -6.68909177e-02 -4.05860245e-01 3.09614867e-01 7.80783035e-03 6.57304704e-01 -1.89379036e-01 -2.65274793e-01 9.78351012e-02 1.59030840e-01 -1.06625533e+00 -1.01063108e+00 -5.82447469e-01 -1.08508182e+00 -1.57224044e-01 -8.09607729e-02 -4.02948298e-02 2.75866598e-01 1.15698218e+00 6.00148439e-01 6.80985093e-01 4.45594430e-01 -6.21278405e-01 -2.23766342e-01 -5.53953052e-01 -1.96356341e-01 7.24556267e-01 3.83067459e-01 -8.03887248e-01 -1.95001915e-01 3.90237838e-01]
[10.223023414611816, 0.9652472734451294]
ac6dece1-dd46-4607-8219-f7212f0a8731
real-time-visual-tracking-by-deep-reinforced
1702.06291
null
http://arxiv.org/abs/1702.06291v2
http://arxiv.org/pdf/1702.06291v2.pdf
Real-time visual tracking by deep reinforced decision making
One of the major challenges of model-free visual tracking problem has been the difficulty originating from the unpredictable and drastic changes in the appearance of objects we target to track. Existing methods tackle this problem by updating the appearance model on-line in order to adapt to the changes in the appearance. Despite the success of these methods however, inaccurate and erroneous updates of the appearance model result in a tracker drift. In this paper, we introduce a novel real-time visual tracking algorithm based on a template selection strategy constructed by deep reinforcement learning methods. The tracking algorithm utilizes this strategy to choose the appropriate template for tracking a given frame. The template selection strategy is self-learned by utilizing a simple policy gradient method on numerous training episodes randomly generated from a tracking benchmark dataset. Our proposed reinforcement learning framework is generally applicable to other confidence map based tracking algorithms. The experiment shows that our tracking algorithm runs in real-time speed of 43 fps and the proposed policy network effectively decides the appropriate template for successful visual tracking.
['Janghoon Choi', 'Kyoung Mu Lee', 'Junseok Kwon']
2017-02-21
null
null
null
null
['real-time-visual-tracking']
['computer-vision']
[ 6.01823330e-02 -4.27839816e-01 -9.35395658e-02 -6.95485203e-03 -2.51615167e-01 -6.27923608e-01 4.39575106e-01 -1.66815564e-01 -6.11812532e-01 7.24204063e-01 -5.38654327e-01 9.01421010e-02 1.61778986e-01 -4.58930045e-01 -7.91860282e-01 -8.32583189e-01 1.66277677e-01 3.79059792e-01 7.80103505e-01 4.46335636e-02 2.99439818e-01 7.26710975e-01 -1.64313245e+00 -3.61096293e-01 5.25259376e-01 9.89089727e-01 4.22821999e-01 7.57464051e-01 -6.46761730e-02 6.87965572e-01 -6.68443143e-01 -6.90527409e-02 4.97490346e-01 -2.48879701e-01 -1.82895139e-01 2.64423758e-01 5.22804260e-01 -2.61674315e-01 -1.81024030e-01 1.11654973e+00 5.35554588e-01 1.94671020e-01 3.29467624e-01 -1.30784690e+00 -1.43537879e-01 1.02048844e-01 -6.67599142e-01 4.40889508e-01 2.26332322e-01 3.75794172e-01 3.15912098e-01 -5.80253303e-01 7.94568539e-01 1.07150209e+00 7.76512325e-01 7.59759903e-01 -9.27740753e-01 -8.14413726e-01 4.60010499e-01 2.12212756e-01 -1.24974847e+00 -3.98637235e-01 8.34943175e-01 -5.64685225e-01 4.34294283e-01 -3.15034501e-02 1.00110757e+00 9.59837794e-01 5.11172712e-01 5.36685646e-01 1.05757904e+00 -5.27717531e-01 3.86456579e-01 2.27532461e-02 -2.04449490e-01 7.91877151e-01 4.06640530e-01 6.77659988e-01 -3.46436083e-01 -1.00273237e-01 1.02605379e+00 -1.55760333e-01 -1.28526405e-01 -7.65607655e-01 -1.14168262e+00 4.48123604e-01 4.26217735e-01 2.05729976e-01 -3.96168381e-01 5.68418503e-01 2.58624673e-01 2.29735523e-01 -6.97702076e-03 6.06772453e-02 -3.98939401e-01 -2.02427045e-01 -9.96610403e-01 1.78502798e-01 3.84876877e-01 8.56042981e-01 4.59332079e-01 5.78008771e-01 -3.83076578e-01 4.62022096e-01 6.24784589e-01 7.81903267e-01 3.95836055e-01 -9.29654241e-01 -2.17335939e-01 3.01813632e-01 6.08040333e-01 -1.03423572e+00 -3.46286267e-01 -7.05616236e-01 -2.82120436e-01 8.61213505e-01 6.54143393e-01 -4.40181404e-01 -9.79337275e-01 1.85573006e+00 9.05638218e-01 4.09374207e-01 -1.80109337e-01 8.77916813e-01 3.58339399e-01 3.62874866e-01 2.62641162e-01 -4.25869584e-01 1.00917673e+00 -8.84800732e-01 -8.66036117e-01 1.29919616e-03 -3.57237011e-02 -9.48891819e-01 3.25667977e-01 2.56982893e-01 -8.39342713e-01 -9.17472959e-01 -1.07372463e+00 8.15783918e-01 -8.67849737e-02 3.57454985e-01 2.80776471e-01 6.49715841e-01 -1.02107942e+00 6.15840495e-01 -1.00788033e+00 -5.68107724e-01 2.14404508e-01 5.87188125e-01 2.59559639e-02 3.96139085e-01 -8.16887796e-01 9.04476941e-01 4.99996006e-01 2.95088023e-01 -1.01019788e+00 -3.14835548e-01 -4.91770864e-01 -2.24463701e-01 3.64252299e-01 -7.50943959e-01 1.44668782e+00 -1.39398801e+00 -1.91067970e+00 5.93931317e-01 -1.18699856e-01 -6.40386045e-01 9.60160732e-01 -1.74245581e-01 -4.00992781e-01 -1.33389845e-01 -1.24464273e-01 6.52356148e-01 1.42648363e+00 -1.37558830e+00 -9.33638096e-01 -8.06424096e-02 -3.38649392e-01 1.82322204e-01 3.59283872e-02 -3.26532824e-03 -5.51333964e-01 -5.91042042e-01 -2.00461864e-01 -1.09668052e+00 -2.44068071e-01 3.40786219e-01 1.61003426e-01 -1.14390157e-01 1.18035042e+00 -2.20137760e-01 1.00560236e+00 -1.88739324e+00 -1.62459671e-01 -2.57219505e-02 7.56639242e-02 4.79108989e-01 1.52872801e-01 1.06854849e-01 4.13017303e-01 -5.76980352e-01 3.54820251e-01 2.37742085e-02 -1.79469272e-01 5.45642748e-02 -1.32892326e-01 5.92051804e-01 1.24431131e-02 6.32010281e-01 -1.13165677e+00 -6.93295062e-01 4.84764010e-01 6.01200759e-01 -1.45661369e-01 4.55777586e-01 -3.80040348e-01 7.88140476e-01 -5.59655428e-01 5.67908645e-01 7.04572737e-01 -3.50493222e-01 1.59344330e-01 -1.99767038e-01 -3.92299801e-01 -3.60989213e-01 -1.26168728e+00 1.42148697e+00 -1.83304235e-01 6.42157137e-01 -1.21447980e-01 -4.98471707e-01 1.08808327e+00 2.35485166e-01 6.71969175e-01 -5.31670988e-01 4.86405641e-01 1.81264486e-02 2.85100788e-01 -1.74031511e-01 4.44211483e-01 2.94889081e-02 4.08634663e-01 3.14557344e-01 -1.36680067e-01 2.98719466e-01 1.91065580e-01 -1.91781014e-01 1.10815537e+00 7.43602037e-01 2.66422242e-01 1.07041270e-01 6.93294823e-01 1.60886481e-01 9.57400858e-01 9.51612949e-01 -7.42737055e-01 2.23894104e-01 -3.38269949e-01 -9.24664974e-01 -9.83934879e-01 -9.10995841e-01 -4.26704176e-02 8.80220473e-01 4.33936566e-01 3.48765701e-02 -5.76871037e-01 -6.02926970e-01 7.56959766e-02 2.65317887e-01 -6.13334477e-01 -1.33177355e-01 -7.16599643e-01 -4.13218826e-01 7.67209977e-02 4.80098009e-01 4.90121037e-01 -1.38364828e+00 -1.29397798e+00 5.84343016e-01 3.61600399e-01 -1.15141881e+00 -4.45890337e-01 6.90923557e-02 -7.98784137e-01 -9.71998751e-01 -6.82979882e-01 -6.35157704e-01 8.09358299e-01 2.38642231e-01 8.73650610e-01 2.68582225e-01 -2.26225659e-01 5.11151373e-01 -2.04998955e-01 -4.95932549e-01 -6.40194297e-01 -1.23842329e-01 1.95319206e-01 1.15889624e-01 1.52997509e-01 -5.39196357e-02 -7.92964160e-01 5.30706406e-01 -4.69607085e-01 -8.63423347e-02 4.73842144e-01 7.39581943e-01 7.69711077e-01 -1.20778177e-02 5.17356515e-01 -5.96753001e-01 3.29292417e-01 -1.61505312e-01 -1.54368865e+00 5.21618962e-01 -6.53790951e-01 9.52049792e-02 5.76107800e-01 -8.69920731e-01 -9.91881728e-01 6.69392288e-01 1.13065615e-01 -7.99805939e-01 -3.38461101e-02 -2.08397642e-01 3.27290803e-01 -6.82653844e-01 4.00081694e-01 2.77329296e-01 5.68964109e-02 -6.76017180e-02 1.03945717e-01 1.76511839e-01 5.42828560e-01 -4.44570273e-01 1.12721050e+00 4.28861082e-01 1.31098600e-02 -3.08999807e-01 -6.13476932e-01 -3.57662976e-01 -6.54440880e-01 -9.54222322e-01 6.71875179e-01 -7.93345571e-01 -1.06219172e+00 5.56412220e-01 -9.82009172e-01 -3.40942651e-01 -6.64759055e-02 4.62455332e-01 -5.09887218e-01 3.40269387e-01 -3.08943391e-01 -1.07584107e+00 -5.71496487e-01 -1.11282122e+00 9.87247765e-01 8.10187876e-01 7.00671002e-02 -9.95773077e-01 4.10537899e-01 -3.37222368e-01 6.95189536e-01 4.51878190e-01 9.93397757e-02 -1.90514281e-01 -8.39845061e-01 -3.33809197e-01 3.75944450e-02 -1.66114405e-01 3.36800426e-01 3.66643637e-01 -7.53647685e-01 -6.81335926e-01 -1.87220052e-01 -7.97034875e-02 4.45103258e-01 6.61318064e-01 6.54540300e-01 1.43822134e-01 -5.58789074e-01 5.10359704e-01 1.66532457e+00 6.26143575e-01 1.59561604e-01 7.10157871e-01 4.36313331e-01 -2.06896856e-01 9.92503583e-01 5.69804370e-01 -1.98343154e-02 1.02754176e+00 5.51999032e-01 -2.42340118e-02 -1.85100898e-01 -1.35097221e-01 4.15083677e-01 4.11599845e-01 8.39796290e-02 2.58376412e-02 -6.55973375e-01 3.62216324e-01 -2.01528025e+00 -1.16787779e+00 2.55042076e-01 2.52284193e+00 6.91708148e-01 3.87310624e-01 3.83276641e-01 -3.33977550e-01 1.05166233e+00 -1.23757057e-01 -9.08827305e-01 -1.01536043e-01 2.14002028e-01 -1.89372823e-01 7.25049198e-01 3.59080255e-01 -1.19435596e+00 1.13564801e+00 6.45137978e+00 3.61081153e-01 -1.53625000e+00 -1.66484386e-01 1.81782261e-01 2.16613896e-02 3.54907691e-01 -2.58283224e-02 -1.18096542e+00 6.40419841e-01 7.30400801e-01 -2.44265586e-01 3.68744701e-01 8.79789352e-01 3.06126088e-01 -8.62143263e-02 -7.02528775e-01 1.00141621e+00 -1.09264784e-01 -1.24563992e+00 -2.65530020e-01 -3.28044653e-01 6.45026565e-01 -4.78864312e-02 4.49061133e-02 2.54552484e-01 5.20905077e-01 -4.36721236e-01 9.10177708e-01 6.83732212e-01 4.73010957e-01 -5.16940415e-01 5.01723647e-01 3.12511593e-01 -1.46871901e+00 -7.22375438e-02 -5.39757907e-01 1.72788963e-01 2.02772707e-01 1.28823221e-01 -9.43302333e-01 2.60218829e-01 5.56288242e-01 4.74266738e-01 -5.60565531e-01 1.70874572e+00 1.12180654e-02 4.02956158e-01 -3.67055506e-01 -1.62861139e-01 1.95923313e-01 9.17502958e-03 7.26553738e-01 1.03280318e+00 2.91556150e-01 -3.19337010e-01 4.06618655e-01 6.20467007e-01 2.34720394e-01 -8.86710063e-02 -5.05468071e-01 2.27658615e-01 6.57527268e-01 1.41174352e+00 -1.07619524e+00 -2.68887907e-01 -1.94275051e-01 6.52504265e-01 3.76838923e-01 2.16624126e-01 -1.22793913e+00 1.19452201e-01 1.98738858e-01 8.97300337e-03 8.51776898e-01 -1.65108860e-01 2.78015375e-01 -9.23669815e-01 -1.22771576e-01 -7.46076286e-01 2.36424163e-01 -6.52412772e-01 -1.08066261e+00 9.45888937e-01 -2.19394937e-01 -1.65600097e+00 -3.62360120e-01 -3.73585701e-01 -5.02429724e-01 5.21135926e-01 -1.43555129e+00 -9.24339354e-01 -5.77961385e-01 5.56161106e-01 6.11613572e-01 -3.47056627e-01 4.39447522e-01 1.01912670e-01 -5.53040624e-01 5.53785026e-01 1.63140565e-01 1.16016619e-01 8.26077580e-01 -1.20008385e+00 2.88533896e-01 9.26458180e-01 1.23623230e-01 4.27578211e-01 1.00076020e+00 -8.51102591e-01 -1.40681040e+00 -1.09874129e+00 2.16577694e-01 -2.52581120e-01 5.44519544e-01 -5.89321554e-02 -8.25342834e-01 5.44209063e-01 3.58652920e-01 5.63329101e-01 1.65770486e-01 -4.52464432e-01 5.77068031e-02 -3.44065666e-01 -1.12055886e+00 5.03021955e-01 7.31724322e-01 2.15075284e-01 -1.91372097e-01 2.09268615e-01 2.88667232e-01 -8.48095000e-01 -6.53495431e-01 4.30763960e-01 8.57425869e-01 -7.11067498e-01 7.14667797e-01 -4.55179006e-01 -4.98416066e-01 -8.60392153e-01 3.01979572e-01 -1.14324462e+00 -5.36371887e-01 -8.55375648e-01 -3.39181304e-01 9.10423219e-01 -8.29411522e-02 -3.76503080e-01 1.01008463e+00 4.45788831e-01 3.28255266e-01 -5.95102549e-01 -1.03558064e+00 -9.18271780e-01 -3.40716481e-01 4.26361002e-02 3.79950702e-01 5.48577726e-01 -6.44900084e-01 3.23801078e-02 -6.06284797e-01 2.92011827e-01 1.00540197e+00 2.93493271e-01 9.80179369e-01 -1.25201035e+00 -3.79271239e-01 -2.81774849e-01 -6.08967125e-01 -9.30855393e-01 5.03578596e-03 -3.31620246e-01 4.48160708e-01 -1.11734974e+00 7.06926435e-02 -5.93492150e-01 -5.21683753e-01 2.75333643e-01 -3.79860878e-01 -2.20687911e-02 5.06397545e-01 2.29355052e-01 -9.90097880e-01 4.99531090e-01 1.24517131e+00 -7.76728541e-02 -2.33261228e-01 4.24299806e-01 -7.39541724e-02 5.48268914e-01 7.56757975e-01 -7.96801686e-01 -2.34929532e-01 -3.17665488e-01 -1.25645235e-01 2.17177197e-01 2.57094026e-01 -1.37107384e+00 5.24431229e-01 -1.27362370e-01 8.73575628e-01 -7.56603122e-01 1.48252845e-01 -1.22575259e+00 4.00807679e-01 9.08958852e-01 -6.92219064e-02 5.41917205e-01 5.10717690e-01 8.50854754e-01 7.16457590e-02 -2.37509832e-01 1.05591452e+00 -5.86188119e-03 -9.24142957e-01 3.93978357e-01 -4.21931356e-01 -1.56021833e-01 1.33246779e+00 -5.11360884e-01 -1.74695000e-01 -2.24948972e-01 -7.86332846e-01 1.49107873e-01 6.82405889e-01 5.48817635e-01 4.63002563e-01 -1.50708926e+00 -3.56949925e-01 4.42555211e-02 -7.09275305e-02 -4.64700967e-01 -9.69166234e-02 7.38020062e-01 -5.21567285e-01 1.86472759e-01 -6.57522142e-01 -9.78626013e-01 -1.39001155e+00 7.89670885e-01 7.24334717e-01 -3.05479795e-01 -6.45122111e-01 5.39154232e-01 -1.60173118e-01 8.64216536e-02 5.15608847e-01 -1.12211406e-02 -1.86635152e-01 -5.37527382e-01 5.00393212e-01 6.81945309e-02 -1.29668802e-01 -7.04073191e-01 -4.17895854e-01 9.02665198e-01 -2.30763271e-01 -1.46229658e-03 9.63337064e-01 -1.43962845e-01 4.23463076e-01 4.17204052e-01 5.71327031e-01 -5.56270815e-02 -1.87740278e+00 -2.48829380e-01 6.02779873e-02 -6.98405027e-01 -4.80695181e-02 -8.08248460e-01 -1.31142187e+00 2.78577387e-01 1.36903632e+00 5.70037514e-02 9.81505454e-01 -6.34656847e-01 5.62091172e-01 2.84983695e-01 6.31503522e-01 -1.09578085e+00 7.72576034e-02 3.36351007e-01 5.31343341e-01 -1.38805413e+00 3.14941742e-02 3.66783030e-02 -5.15687048e-01 1.36109114e+00 9.79404151e-01 -2.05003053e-01 5.44922709e-01 4.32571650e-01 4.41162556e-01 2.15896387e-02 -8.09307754e-01 -1.84902981e-01 1.06575415e-01 7.32400894e-01 2.70159632e-01 -2.96076506e-01 -2.59098262e-01 -3.16084653e-01 3.59782994e-01 2.79836059e-01 3.39892745e-01 1.06732583e+00 -5.67050159e-01 -1.22631586e+00 -6.70677900e-01 6.07071035e-02 -3.55680674e-01 5.06790757e-01 -1.59813404e-01 8.09194446e-01 -3.64133082e-02 6.84457898e-01 -7.59891048e-02 -1.53913841e-01 5.42376228e-02 -1.85593456e-01 8.46409678e-01 -1.95469990e-01 -6.94334269e-01 3.85917306e-01 -3.74839514e-01 -4.20007974e-01 -6.48735702e-01 -9.16893601e-01 -1.31955218e+00 -4.17919364e-03 -4.88187790e-01 6.39212318e-03 5.92323303e-01 7.79592097e-01 3.32504034e-01 6.24591708e-01 6.72857642e-01 -8.43465686e-01 -6.54641867e-01 -6.72510207e-01 -1.24573097e-01 3.74357820e-01 3.38924855e-01 -1.19470358e+00 -9.44759417e-03 8.15439299e-02]
[6.396175384521484, -2.0624725818634033]
927888ec-ab4b-46e1-a8db-3b559dccf544
transcg-a-large-scale-real-world-dataset-for
2202.08471
null
https://arxiv.org/abs/2202.08471v2
https://arxiv.org/pdf/2202.08471v2.pdf
TransCG: A Large-Scale Real-World Dataset for Transparent Object Depth Completion and a Grasping Baseline
Transparent objects are common in our daily life and frequently handled in the automated production line. Robust vision-based robotic grasping and manipulation for these objects would be beneficial for automation. However, the majority of current grasping algorithms would fail in this case since they heavily rely on the depth image, while ordinary depth sensors usually fail to produce accurate depth information for transparent objects owing to the reflection and refraction of light. In this work, we address this issue by contributing a large-scale real-world dataset for transparent object depth completion, which contains 57,715 RGB-D images from 130 different scenes. Our dataset is the first large-scale, real-world dataset that provides ground truth depth, surface normals, transparent masks in diverse and cluttered scenes. Cross-domain experiments show that our dataset is more general and can enable better generalization ability for models. Moreover, we propose an end-to-end depth completion network, which takes the RGB image and the inaccurate depth map as inputs and outputs a refined depth map. Experiments demonstrate superior efficacy, efficiency and robustness of our method over previous works, and it is able to process images of high resolutions under limited hardware resources. Real robot experiments show that our method can also be applied to novel transparent object grasping robustly. The full dataset and our method are publicly available at www.graspnet.net/transcg
['Cewu Lu', 'Sheng Xu', 'Hao-Shu Fang', 'Hongjie Fang']
2022-02-17
null
null
null
null
['transparent-objects', 'depth-completion', 'transparent-object-depth-estimation', 'robotic-grasping']
['computer-vision', 'computer-vision', 'computer-vision', 'robots']
[ 3.20025295e-01 -1.94403023e-01 2.21367687e-01 -4.44121748e-01 -2.62102932e-01 -5.12848377e-01 1.25519782e-01 -2.74787247e-01 -1.50826871e-01 3.52469265e-01 -1.33585751e-01 1.10451810e-01 -8.80730748e-02 -9.33748782e-01 -7.84344375e-01 -6.94847345e-01 2.28116978e-02 5.47675669e-01 6.45598471e-01 -2.40447938e-01 2.37762511e-01 4.70860571e-01 -1.63493347e+00 5.24590909e-01 9.08034682e-01 1.36399829e+00 9.71001387e-01 3.76855284e-01 -8.20080787e-02 2.43058681e-01 -2.95021415e-01 -3.04884583e-01 7.43100464e-01 4.34010118e-01 -6.18865073e-01 1.13053694e-01 4.36515212e-01 -1.04635167e+00 -4.98657942e-01 9.40991879e-01 5.79241872e-01 -1.75433546e-01 5.00432968e-01 -1.06463623e+00 -8.31287622e-01 4.05403584e-01 -5.83805859e-01 -3.97936910e-01 5.25578260e-01 4.21232283e-01 5.57652712e-01 -9.00248408e-01 6.92373395e-01 1.55526495e+00 3.58053237e-01 7.89950013e-01 -7.53538370e-01 -4.69506353e-01 2.78113663e-01 8.24849308e-02 -7.19868004e-01 -1.95623585e-03 8.98166180e-01 -2.52169222e-01 7.21762657e-01 -8.62270370e-02 7.41919696e-01 1.37356830e+00 2.37478733e-01 9.58753228e-01 1.03198290e+00 -1.92147732e-01 2.42888987e-01 -2.93554217e-01 -1.29625961e-01 7.83222139e-01 4.77427512e-01 5.70086241e-02 -4.60397154e-01 5.24950624e-02 1.20898068e+00 4.20332789e-01 -4.37248528e-01 -9.73462462e-01 -1.59751904e+00 4.08108205e-01 8.51123154e-01 -9.08768326e-02 -5.94710827e-01 1.40974805e-01 1.88318104e-01 1.74775869e-01 2.86410213e-01 1.42502502e-01 -5.04901230e-01 -6.25550672e-02 4.37889919e-02 2.39498317e-01 8.80466759e-01 1.44844902e+00 6.71113074e-01 -2.74080843e-01 1.30518720e-01 8.28487635e-01 3.02229702e-01 7.95185149e-01 1.49069428e-01 -1.29926574e+00 7.21622109e-01 6.77322805e-01 4.28911924e-01 -7.56945908e-01 -5.65199435e-01 3.21466088e-01 -6.42466366e-01 6.04336023e-01 6.06860697e-01 2.38298103e-01 -1.13149822e+00 1.24278784e+00 4.35480416e-01 -5.25966763e-01 8.39423612e-02 1.41314590e+00 1.03571010e+00 2.41153389e-01 -3.03065419e-01 2.35554069e-01 1.24287212e+00 -9.37186003e-01 -5.08451343e-01 -3.02285880e-01 3.54468152e-02 -7.47948408e-01 1.36954486e+00 8.05906653e-01 -1.12672484e+00 -3.25944632e-01 -8.99698138e-01 -3.50307941e-01 -2.36562088e-01 2.66846150e-01 1.22160971e+00 2.18475387e-01 -7.11629570e-01 5.12309432e-01 -1.03916693e+00 -4.74554718e-01 6.19224966e-01 3.84583592e-01 -5.08872330e-01 -6.77063763e-01 -6.10176265e-01 8.07372808e-01 3.22844237e-01 5.50102532e-01 -9.62454081e-01 -5.46717405e-01 -6.06559813e-01 -4.39454466e-01 4.98053461e-01 -6.75971985e-01 1.23772156e+00 -3.33533466e-01 -1.77227509e+00 8.11907053e-01 1.35799155e-01 7.55046010e-02 7.78783143e-01 -5.46326816e-01 3.82847399e-01 5.32348394e-01 -7.83978999e-02 7.26914823e-01 7.69593775e-01 -1.73947406e+00 -3.59111398e-01 -7.44195044e-01 4.38218117e-01 2.90731024e-02 -3.36740643e-01 -4.08650726e-01 -4.93401259e-01 -3.78133416e-01 9.07121360e-01 -8.40175867e-01 -1.02949716e-01 7.89393604e-01 -3.26169580e-01 -9.83305648e-02 9.74996805e-01 -4.18831080e-01 8.20341893e-03 -1.86135876e+00 3.36202830e-01 -1.05704755e-01 2.05627128e-01 1.00785814e-01 -1.90002829e-01 4.92160439e-01 4.96952385e-01 -3.68010163e-01 -3.15749973e-01 -1.86500624e-01 9.97736305e-02 2.89590865e-01 -4.08792287e-01 5.16191840e-01 -6.81596622e-02 9.04961109e-01 -9.45911109e-01 -3.31923753e-01 4.12345290e-01 5.02610981e-01 -4.56566513e-01 3.29929680e-01 -5.05156040e-01 7.01757669e-01 -7.49903977e-01 1.20126426e+00 1.02494860e+00 1.47100940e-01 -1.22308612e-01 -4.37916934e-01 -2.56070700e-02 -1.91373825e-01 -9.12565708e-01 2.33500457e+00 -5.08603692e-01 2.26399064e-01 4.32383031e-01 -6.18883073e-01 1.22637808e+00 2.16356497e-02 5.72801411e-01 -5.83711088e-01 2.12634742e-01 5.00049651e-01 -2.47674912e-01 -9.75704849e-01 2.87796259e-01 2.03887850e-01 1.66798890e-01 3.04981500e-01 -3.13373893e-01 -1.03079784e+00 -3.54606546e-02 -1.42836183e-01 1.02688408e+00 6.81665003e-01 -3.73306155e-01 1.03656240e-01 -2.12850235e-03 -1.88628510e-02 3.78550023e-01 5.96093059e-01 -1.47894070e-01 7.47307360e-01 1.22629449e-01 -6.72390223e-01 -1.03856373e+00 -1.45727539e+00 -2.00499579e-01 7.12261915e-01 8.15325141e-01 2.32815742e-01 -4.60065573e-01 -3.38469625e-01 3.90041411e-01 -2.22144946e-02 -3.96224380e-01 -8.63925293e-02 -5.89004099e-01 -4.11315143e-01 -5.60812652e-02 6.80284798e-01 9.37680304e-01 -1.33155119e+00 -1.08158636e+00 1.42361909e-01 -2.79936582e-01 -1.54747546e+00 1.37398377e-01 2.22295225e-02 -1.34770679e+00 -1.18819201e+00 -9.50946510e-01 -7.98872292e-01 7.06528306e-01 7.70933270e-01 7.87769616e-01 -6.05188571e-02 -6.23897791e-01 5.37683368e-01 -6.18965983e-01 -5.56339383e-01 -6.87204301e-02 -1.65901005e-01 2.01378748e-01 -3.37600768e-01 2.24106476e-01 -6.07710958e-01 -9.92008448e-01 4.46864247e-01 -9.15423036e-01 8.63189697e-02 7.56529748e-01 5.36335468e-01 4.23954368e-01 -3.36100936e-01 2.35258505e-01 -3.08220506e-01 3.19403678e-01 -1.56715348e-01 -7.47462094e-01 1.39928773e-01 -2.85538100e-02 -2.99161583e-01 2.64635921e-01 -5.07585347e-01 -1.08511341e+00 2.11733326e-01 1.46221504e-01 -5.77534258e-01 -1.01543091e-01 9.54055320e-03 -2.25707144e-01 -2.00464919e-01 5.80127299e-01 -1.38001800e-01 5.93523420e-02 -6.39682710e-01 2.44974494e-01 7.29958534e-01 6.80642843e-01 -8.43047857e-01 7.50698447e-01 1.05358911e+00 1.90645251e-02 -7.87391722e-01 -5.29494226e-01 -3.49303842e-01 -8.94244730e-01 -2.51414150e-01 6.61867201e-01 -8.99777114e-01 -1.12854302e+00 8.27120721e-01 -1.37503076e+00 -5.65887988e-01 2.36245990e-02 6.97986186e-01 -8.40386450e-01 5.50390780e-01 -7.67004132e-01 -8.56928706e-01 -3.84761810e-01 -1.19845521e+00 1.55235100e+00 8.81335437e-02 3.05713207e-01 -4.35918272e-01 -6.04599655e-01 4.40358341e-01 2.55782694e-01 4.34141308e-01 7.80816913e-01 3.10571432e-01 -1.13947058e+00 -1.92549184e-01 -5.25562882e-01 2.49843836e-01 4.53427255e-01 -9.68784168e-02 -1.06108141e+00 -2.71002859e-01 -1.09037273e-02 -6.89482987e-01 1.04974389e+00 3.05629253e-01 1.33118665e+00 4.54008654e-02 -2.90896833e-01 5.86451948e-01 1.51245761e+00 -5.03502451e-02 6.57909930e-01 3.91260713e-01 8.54779243e-01 9.77920234e-01 9.88299370e-01 6.61555231e-01 3.12629491e-01 6.36819541e-01 1.18975317e+00 -4.01732931e-03 -2.99393330e-02 3.45800295e-02 1.89977378e-01 6.12481058e-01 -5.54036558e-01 -1.02809906e-01 -9.43508625e-01 4.00223017e-01 -1.71791589e+00 -6.66899979e-01 -2.37143442e-01 2.13670325e+00 7.22404718e-01 1.42546818e-01 -1.19733356e-01 1.15028664e-01 3.15093279e-01 -3.27749819e-01 -8.08473170e-01 -1.02364659e-01 -5.40094040e-02 1.09987438e-01 5.04027843e-01 2.25660264e-01 -8.15893710e-01 1.04753745e+00 5.62901926e+00 1.39441550e-01 -1.06013525e+00 -4.55978885e-02 -1.91625208e-01 -1.45161003e-01 -2.54528016e-01 -3.93319368e-01 -3.14926893e-01 1.55433863e-01 -1.07777610e-01 4.89258051e-01 5.43793797e-01 9.97645915e-01 9.83140618e-02 -5.64760983e-01 -1.26704204e+00 1.13659036e+00 -1.17694266e-01 -7.68710732e-01 5.46743302e-03 -1.13426976e-01 6.33520901e-01 2.29158714e-01 4.01341207e-02 -1.12658627e-01 3.28450888e-01 -7.26817071e-01 9.43836272e-01 5.23038566e-01 6.50832176e-01 -1.97456017e-01 6.51590884e-01 3.93716782e-01 -9.65875745e-01 -4.17435110e-01 -8.89515877e-01 -8.34355801e-02 1.69210471e-02 7.48754680e-01 -6.34491384e-01 5.35967588e-01 1.24723589e+00 6.50049627e-01 -1.89386860e-01 1.10742819e+00 -2.63510913e-01 -2.05478817e-01 -3.64775330e-01 -2.02093855e-01 -2.15417735e-04 -2.32738897e-01 3.27779651e-01 6.89677477e-01 2.22145259e-01 1.45869002e-01 2.22622514e-01 1.02230048e+00 1.77456588e-01 -3.70822519e-01 -7.53690481e-01 2.33453616e-01 2.76202589e-01 1.16744828e+00 -8.25098932e-01 -3.48368213e-02 -2.56927043e-01 1.22575581e+00 3.50912064e-01 5.61241150e-01 -6.59852445e-01 -3.56727451e-01 7.19019234e-01 -2.61514246e-01 3.46841604e-01 -6.40248477e-01 -5.29350281e-01 -1.18079221e+00 7.35610068e-01 -4.95464504e-01 -2.35141188e-01 -1.12561190e+00 -1.45577681e+00 5.01925945e-01 -8.88782553e-04 -1.43244529e+00 2.95028299e-01 -1.29638767e+00 -5.96222356e-02 6.84175193e-01 -1.70863497e+00 -1.29151714e+00 -1.14572847e+00 6.56885266e-01 7.30142951e-01 1.69301301e-01 7.58818030e-01 -2.08626892e-02 -2.13786066e-02 -5.22094630e-02 6.38019666e-03 -1.55368164e-01 7.22846508e-01 -9.93832886e-01 1.57856062e-01 3.12896580e-01 -4.73137379e-01 5.62462568e-01 5.85994482e-01 -6.00128412e-01 -2.20422482e+00 -7.50567794e-01 -6.59066811e-02 -6.44486487e-01 3.64706427e-01 -6.81586564e-01 -7.19231725e-01 5.00557661e-01 -2.71919638e-01 1.78598270e-01 -1.94819510e-01 -3.74129176e-01 -3.58730286e-01 -1.67050377e-01 -1.46313977e+00 5.85981190e-01 1.63582993e+00 -2.85738915e-01 -6.07827604e-01 5.68422079e-01 7.74700820e-01 -9.14942801e-01 -9.18260157e-01 7.58062363e-01 9.84279990e-01 -1.05140233e+00 1.19842064e+00 2.46599242e-02 8.82522404e-01 -8.26576799e-02 -3.72758776e-01 -1.04272151e+00 5.04125878e-02 -2.67763317e-01 -9.69444364e-02 8.29786062e-01 -4.59048748e-02 -8.11415911e-01 8.36773753e-01 6.19804323e-01 -4.01385009e-01 -8.65671933e-01 -8.84073794e-01 -8.62970233e-01 -3.14020738e-02 -4.92688537e-01 6.58454239e-01 4.44227010e-01 -8.63940045e-02 -3.64130616e-01 -2.85039786e-02 3.86029512e-01 9.57472801e-01 6.53604448e-01 9.12996292e-01 -1.54317915e+00 5.27544841e-02 -2.26332694e-01 -4.35572594e-01 -1.30477977e+00 -4.60156463e-02 -6.09539747e-01 5.05249500e-01 -2.14378762e+00 1.28209487e-01 -8.32731128e-01 3.84389132e-01 5.73859155e-01 1.39778003e-01 3.28160554e-01 1.50794432e-01 3.94445509e-01 -2.63573170e-01 8.24539900e-01 1.97975516e+00 -3.47298533e-01 -1.95055142e-01 -1.36595201e-02 -1.08432986e-01 7.80827761e-01 7.02845693e-01 8.54130648e-03 -3.08511764e-01 -9.84603822e-01 -9.12816077e-02 -1.04758412e-01 6.42367303e-01 -9.84410226e-01 -7.55269080e-02 -3.05728942e-01 4.50244188e-01 -5.41931510e-01 7.69924283e-01 -1.26339078e+00 -3.12134296e-01 5.39661467e-01 1.25037685e-01 -3.49370658e-01 1.16713397e-01 6.51489735e-01 2.06537738e-01 -1.28845558e-01 4.36159253e-01 -4.77833718e-01 -8.26389968e-01 6.55107796e-01 1.12140276e-01 -3.66238028e-01 1.07040584e+00 -5.30610442e-01 -5.16482949e-01 -7.57517293e-02 -3.87697995e-01 2.05863759e-01 7.53099382e-01 7.39628077e-01 1.06757605e+00 -1.10329604e+00 -5.39985299e-01 2.03723788e-01 3.16394657e-01 6.82467937e-01 1.29677191e-01 6.32799566e-01 -9.37588453e-01 1.95255429e-01 -5.54788232e-01 -1.00239539e+00 -8.77618670e-01 5.28335750e-01 8.85698125e-02 5.08028269e-01 -1.11112309e+00 8.26060653e-01 2.49986336e-01 -5.99403918e-01 5.06300390e-01 -8.83964539e-01 3.07046890e-01 -6.39367938e-01 3.54637355e-01 3.16699535e-01 6.39131740e-02 -1.41271770e-01 -2.00518429e-01 9.70031500e-01 1.70259804e-01 1.39997257e-02 1.56558084e+00 -1.48126975e-01 -2.96267539e-01 4.07528490e-01 9.20095026e-01 -2.59132802e-01 -1.79443479e+00 -1.38538808e-01 -3.99803638e-01 -8.43904614e-01 -3.18426132e-01 -6.25258923e-01 -1.21775448e+00 1.05793798e+00 5.53100467e-01 -1.02627292e-01 1.02129316e+00 2.18909070e-01 9.60600019e-01 8.50008726e-01 1.33625269e+00 -1.01351655e+00 4.17142093e-01 4.43927556e-01 1.39521861e+00 -1.55555248e+00 -1.78922969e-03 -1.07646227e+00 -4.23440784e-01 1.37835371e+00 9.46336687e-01 -1.03013806e-01 2.76568949e-01 2.46235803e-01 1.81153819e-01 -3.00443798e-01 -2.95359731e-01 -6.65090904e-02 -2.04668403e-01 1.07304311e+00 -6.85504600e-02 -4.87185344e-02 5.73043376e-02 2.70176023e-01 -1.78900585e-01 1.33209541e-01 4.13473845e-01 1.40428138e+00 -5.90632260e-01 -7.55298078e-01 -4.51224923e-01 1.38924256e-01 3.26350075e-03 3.40748012e-01 -3.81852537e-01 5.67794085e-01 -1.10653071e-02 1.01988542e+00 -1.48489088e-01 -2.89317101e-01 5.87484181e-01 -3.38687897e-01 1.15095532e+00 -5.39511204e-01 -2.14701146e-01 -3.27633023e-01 -2.95872152e-01 -9.75729048e-01 -5.28289318e-01 -3.11363876e-01 -1.51352727e+00 -2.10395575e-01 -2.51876831e-01 -5.57703912e-01 1.16175520e+00 6.41657770e-01 8.64072070e-02 3.25302541e-01 5.53477407e-01 -1.60063350e+00 -6.63246453e-01 -1.08859849e+00 -5.63988745e-01 4.32688266e-01 3.21651846e-01 -1.04931843e+00 -2.16655850e-01 -8.04365277e-02]
[5.997312545776367, -1.0513148307800293]
75bd931c-a8d9-414c-a505-d874e3453f46
vision-language-adaptive-mutual-decoder-for
2209.00859
null
https://arxiv.org/abs/2209.00859v1
https://arxiv.org/pdf/2209.00859v1.pdf
Vision-Language Adaptive Mutual Decoder for OOV-STR
Recent works have shown huge success of deep learning models for common in vocabulary (IV) scene text recognition. However, in real-world scenarios, out-of-vocabulary (OOV) words are of great importance and SOTA recognition models usually perform poorly on OOV settings. Inspired by the intuition that the learned language prior have limited OOV preformence, we design a framework named Vision Language Adaptive Mutual Decoder (VLAMD) to tackle OOV problems partly. VLAMD consists of three main conponents. Firstly, we build an attention based LSTM decoder with two adaptively merged visual-only modules, yields a vision-language balanced main branch. Secondly, we add an auxiliary query based autoregressive transformer decoding head for common visual and language prior representation learning. Finally, we couple these two designs with bidirectional training for more diverse language modeling, and do mutual sequential decoding to get robuster results. Our approach achieved 70.31\% and 59.61\% word accuracy on IV+OOV and OOV settings respectively on Cropped Word Recognition Task of OOV-ST Challenge at ECCV 2022 TiE Workshop, where we got 1st place on both settings.
['Bing Yin', 'Jiajia Wu', 'Fengli yu', 'Xuyang Zhu', 'Qiandong Yan', 'Chenyu Liu', 'Jinshui Hu']
2022-09-02
null
null
null
null
['scene-text-recognition']
['computer-vision']
[ 1.30054042e-01 -6.99974373e-02 -3.24126601e-01 -2.47507811e-01 -6.79659247e-01 -3.77200931e-01 9.64236856e-01 -1.61709622e-01 -6.22011960e-01 9.93481055e-02 4.14881319e-01 -5.93887687e-01 6.01988018e-01 -4.46856320e-01 -7.96793044e-01 -3.71885687e-01 7.01983511e-01 5.11554122e-01 2.40848124e-01 -1.36895880e-01 1.52043402e-01 7.83332437e-02 -1.17934775e+00 5.19935012e-01 5.49708724e-01 8.27268839e-01 7.09353149e-01 1.09546649e+00 -7.49440014e-01 1.07837546e+00 -3.66558403e-01 -4.24419254e-01 7.29894936e-02 -7.77394548e-02 -6.98723972e-01 3.15341532e-01 7.59230077e-01 -3.96173537e-01 -7.58103907e-01 7.96991110e-01 5.71268857e-01 -4.51537780e-02 1.09173191e+00 -1.08963418e+00 -1.18595123e+00 7.81581581e-01 -8.07781875e-01 2.70468980e-01 6.76181316e-02 3.92887920e-01 1.18281555e+00 -1.32661557e+00 4.85585779e-01 1.52417397e+00 3.13428909e-01 6.51855469e-01 -1.03783405e+00 -5.59803843e-01 4.59493965e-01 2.14794502e-01 -1.43631995e+00 -7.18390405e-01 4.33949977e-01 -4.17204350e-01 1.55273283e+00 5.58476597e-02 3.22925031e-01 1.45094168e+00 3.63632888e-01 1.32599330e+00 8.32895398e-01 -6.14704251e-01 -2.82686651e-01 5.48474729e-01 4.70742881e-01 6.38091445e-01 -1.78148672e-02 -1.59296423e-01 -4.12218928e-01 2.18419537e-01 4.59644437e-01 1.38347633e-02 -3.31801683e-01 -2.75724858e-01 -1.10345280e+00 1.00244272e+00 1.84272185e-01 3.11759263e-01 -6.70809820e-02 5.99273324e-01 5.25771081e-01 4.67594624e-01 1.91190869e-01 -2.32127443e-01 -3.21300119e-01 2.45101482e-01 -9.21369791e-01 -1.50413588e-01 5.90029001e-01 1.33941698e+00 3.53317678e-01 4.10494864e-01 -5.68120897e-01 1.17373252e+00 1.00854731e+00 9.17386293e-01 6.75993621e-01 -2.61121929e-01 5.64850628e-01 1.59981355e-01 -3.74832660e-01 -7.13949859e-01 -8.08750167e-02 -4.43410695e-01 -9.54040289e-01 -2.30060071e-01 2.20022406e-02 3.18888128e-01 -1.58004558e+00 1.59719050e+00 -2.55571246e-01 6.06182106e-02 2.38937914e-01 6.49607599e-01 1.41782582e+00 9.84727502e-01 3.60467851e-01 3.32557820e-02 1.56613791e+00 -1.23656666e+00 -7.60593534e-01 -6.07733488e-01 8.70583534e-01 -9.29941297e-01 1.35802889e+00 2.23745361e-01 -8.97435248e-01 -7.21401870e-01 -9.64733481e-01 -4.32814777e-01 -3.05448920e-01 2.76257008e-01 2.69407809e-01 6.34010553e-01 -1.43943596e+00 -2.90021211e-01 -5.48328102e-01 -5.57753265e-01 3.28893334e-01 1.68747485e-01 -1.49188831e-01 -3.34487289e-01 -1.05867732e+00 7.21949935e-01 3.06935519e-01 -5.29974364e-02 -1.35453069e+00 -2.67477840e-01 -1.04047954e+00 -9.54184532e-02 3.55814099e-01 -6.92619443e-01 1.08050811e+00 -9.43928123e-01 -1.12703776e+00 1.21609545e+00 -5.66629648e-01 -6.37172043e-01 3.23324472e-01 -1.48804322e-01 -2.96727479e-01 -1.58646107e-01 2.43549934e-03 9.54366148e-01 1.26535368e+00 -1.22956717e+00 -3.32082570e-01 -3.37540627e-01 -2.12699652e-01 3.46017778e-01 -4.36895460e-01 -3.21260057e-02 -1.02586412e+00 -6.87603652e-01 -1.20309986e-01 -6.70853198e-01 6.30187616e-02 -7.01612756e-02 -3.89004439e-01 -6.08091950e-01 9.67995346e-01 -7.34864056e-01 1.14657831e+00 -2.23505998e+00 1.79961935e-01 -2.29001954e-01 3.67394120e-01 3.51137608e-01 -4.91832674e-01 3.13978881e-01 1.31736711e-01 3.09890229e-02 9.01992023e-02 -7.15024650e-01 1.61407888e-01 3.01419526e-01 -8.25309753e-01 2.19658315e-01 -1.23732984e-02 1.37829435e+00 -3.69289339e-01 -5.86078942e-01 3.23223054e-01 5.65313220e-01 -4.82412368e-01 1.47673190e-01 -3.82626534e-01 -8.82225856e-02 -2.42885858e-01 7.39535570e-01 4.23585325e-01 -4.47210312e-01 -1.96028531e-01 -1.65421516e-01 1.52409807e-01 -6.88420748e-03 -9.26629663e-01 1.53478479e+00 -6.93427384e-01 9.82313514e-01 4.77919988e-02 -1.06701469e+00 8.55302155e-01 2.86237597e-01 -2.49200836e-01 -9.59081888e-01 5.05368650e-01 -1.40055260e-02 -1.20290838e-01 -4.54825848e-01 5.73907077e-01 7.06861988e-02 1.28285348e-01 -8.45141634e-02 3.90830636e-01 -3.23055148e-01 -2.15448305e-01 5.69935501e-01 7.99509466e-01 -1.34709477e-02 4.03311670e-01 -8.83509293e-02 7.27902293e-01 -1.42806247e-01 -4.54820581e-02 1.15952909e+00 -3.74619931e-01 6.77066207e-01 2.38623962e-01 -1.41479196e-02 -1.05022299e+00 -8.89062226e-01 -2.02434305e-02 1.36373627e+00 1.06936648e-01 -4.47378218e-01 -3.75582129e-01 -5.02316475e-01 -1.76541746e-01 1.15415847e+00 -4.64395851e-01 -1.52104601e-01 -3.84472519e-01 -4.86830324e-01 6.98089242e-01 6.38039410e-01 3.46337199e-01 -1.14625883e+00 -3.34076695e-02 8.72047916e-02 -4.15561013e-02 -1.49855769e+00 -7.95320570e-01 2.88688511e-01 -4.86186802e-01 -4.72355455e-01 -1.16166997e+00 -1.21808290e+00 9.44657326e-02 7.08456576e-01 1.13069713e+00 -1.65669754e-01 -2.63219148e-01 1.03090870e+00 -3.63612056e-01 -5.80779910e-01 -4.29560333e-01 -4.71111340e-03 -5.40291630e-02 -5.32164052e-02 7.83004880e-01 -1.43777281e-01 -1.89392567e-01 -8.83962493e-03 -7.93529391e-01 1.33043140e-01 6.55699849e-01 9.88073885e-01 6.06035113e-01 -5.53178430e-01 1.08264558e-01 -3.44420999e-01 4.92858469e-01 -3.15472335e-01 -5.85599005e-01 4.13711876e-01 -4.81782734e-01 1.35712609e-01 3.90612274e-01 -6.55825436e-01 -7.51688778e-01 -4.17315215e-02 -3.08914840e-01 -8.25913846e-01 -1.58005729e-01 2.14167580e-01 -2.41959810e-01 1.87431827e-01 2.95787305e-01 9.16945636e-01 -3.26199502e-01 -4.33859259e-01 6.30767703e-01 1.03134048e+00 3.29595268e-01 -9.59366933e-02 6.13931000e-01 3.30242217e-01 -6.70801461e-01 -1.50847960e+00 -5.17099023e-01 -6.55066371e-01 -2.98657805e-01 1.65386543e-01 1.46793973e+00 -1.42420757e+00 -4.89929408e-01 6.54142201e-01 -1.38242137e+00 -5.76160848e-01 3.79001945e-02 3.56524974e-01 -2.40665391e-01 7.52701938e-01 -4.65046287e-01 -8.77919137e-01 -5.79447448e-01 -1.47006416e+00 1.51198065e+00 -2.30221823e-02 1.04144588e-01 -1.04801226e+00 -4.83377911e-02 5.39189458e-01 4.40861136e-01 -7.69330740e-01 8.38442087e-01 -7.02032685e-01 -4.86779749e-01 2.70157531e-02 -7.23267138e-01 4.19450939e-01 -2.74375319e-01 -4.01052326e-01 -1.07902122e+00 -4.57028210e-01 -1.31266668e-01 -6.02478325e-01 1.33547211e+00 4.80845481e-01 1.04208398e+00 2.13594854e-01 -4.60956842e-01 7.21614599e-01 1.41284072e+00 4.10935879e-02 5.28138936e-01 5.79137057e-02 1.27200842e+00 2.49889910e-01 1.75643057e-01 1.57562837e-01 7.22714722e-01 8.48979056e-01 3.74132603e-01 -6.82591274e-02 -7.41184115e-01 -2.79060245e-01 7.20932961e-01 1.07048357e+00 5.84736466e-01 -9.97905791e-01 -1.04027772e+00 8.16117704e-01 -1.48420787e+00 -5.21002471e-01 -4.24241126e-01 1.85620618e+00 4.87914830e-01 1.99152812e-01 -2.63166547e-01 -3.85794520e-01 4.77684587e-01 5.59984446e-01 -4.85166997e-01 -5.78519762e-01 -4.65265155e-01 1.15795135e-01 7.22160637e-01 7.37482250e-01 -1.11385930e+00 1.55049121e+00 5.57876682e+00 1.27940822e+00 -1.15250528e+00 4.06435907e-01 6.59177423e-01 2.28641815e-02 -4.89606589e-01 -9.32752714e-02 -1.31536853e+00 1.51580498e-01 7.80824780e-01 1.66282907e-01 7.39160553e-02 8.48857105e-01 2.57198438e-02 1.82005897e-01 -9.17673647e-01 1.56868517e+00 5.62138975e-01 -1.13108611e+00 6.38979316e-01 1.52542621e-01 4.18384641e-01 6.79762244e-01 9.61605236e-02 7.38304079e-01 3.04543912e-01 -1.44288278e+00 6.91430688e-01 3.53800565e-01 1.02781677e+00 -3.71210217e-01 6.78148150e-01 5.57075143e-01 -1.34468317e+00 1.44384772e-01 -6.37132287e-01 3.04976910e-01 2.55300462e-01 1.09861486e-01 -6.99568331e-01 9.24054459e-02 6.60704792e-01 6.38766587e-01 -5.34438312e-01 4.69750911e-01 -7.04991966e-02 7.46236444e-01 -2.13082001e-01 -2.68879622e-01 6.10569537e-01 8.84617344e-02 6.79796576e-01 1.36696208e+00 -3.75169739e-02 -1.62878096e-01 2.53056973e-01 6.18257880e-01 -2.64830530e-01 2.89800763e-01 -8.61087143e-01 -2.00092345e-01 1.42635211e-01 8.53740692e-01 -4.23119038e-01 -5.98565638e-01 -7.74224222e-01 1.40978897e+00 3.13089490e-01 4.68986779e-01 -1.03795421e+00 -1.20293312e-01 3.89238864e-01 -1.82216927e-01 7.34501123e-01 -3.97166908e-01 -5.04668541e-02 -1.53662062e+00 -1.70248672e-01 -9.92794275e-01 2.00854972e-01 -9.25592482e-01 -1.16022444e+00 6.72511220e-01 -2.58600354e-01 -8.42690647e-01 -1.60418283e-02 -9.37930822e-01 -3.52150977e-01 8.66025746e-01 -1.60324991e+00 -1.57578635e+00 -2.78541923e-01 5.90766549e-01 1.50761104e+00 -5.05645394e-01 5.80582798e-01 1.71810329e-01 -4.91826683e-01 8.98866892e-01 1.36645481e-01 2.23834530e-01 7.97127604e-01 -9.94043887e-01 5.68461478e-01 7.92099357e-01 6.67977512e-01 3.16991210e-01 4.78115261e-01 -5.90916693e-01 -1.93622911e+00 -1.21394730e+00 9.81893659e-01 -7.28107810e-01 6.76620066e-01 -7.80840814e-01 -9.33779776e-01 9.13087428e-01 5.50502241e-01 -1.19801380e-01 2.75039017e-01 -4.69648361e-01 -5.03651857e-01 3.83909911e-01 -5.18163025e-01 8.02240610e-01 9.84711587e-01 -6.72347069e-01 -7.75614321e-01 4.51460272e-01 1.23157394e+00 -1.86155930e-01 -2.52771556e-01 1.91013396e-01 3.47479373e-01 -4.14287955e-01 1.13540447e+00 -5.24981618e-01 2.92202830e-01 -1.22153178e-01 -7.31362402e-01 -7.19846666e-01 -2.23635659e-01 -2.49536887e-01 -2.40345493e-01 1.27140677e+00 4.05043900e-01 -4.53723907e-01 5.04721522e-01 2.93982737e-02 -6.61524618e-03 -5.06764710e-01 -6.43835604e-01 -7.14525104e-01 2.97103345e-01 -9.89384711e-01 -7.14466348e-02 7.86336541e-01 -5.57325780e-01 8.96955132e-01 -7.78886437e-01 1.52733937e-01 6.70993805e-01 -1.98057845e-01 9.17594612e-01 -6.44854486e-01 -5.54971159e-01 -4.34319228e-01 -3.13288361e-01 -2.00895643e+00 1.71056464e-01 -1.06071472e+00 -5.57743981e-02 -1.63776672e+00 4.67031300e-01 9.34742987e-02 -7.09939674e-02 3.11580688e-01 -1.31926551e-01 4.56410289e-01 4.31600302e-01 1.75749883e-01 -6.73605323e-01 8.14811409e-01 1.00121868e+00 -7.03855515e-01 -1.36930242e-01 -4.15287971e-01 -5.34679770e-01 6.70657873e-01 3.24826062e-01 -2.12121174e-01 -6.28695548e-01 -1.01847780e+00 -1.91701546e-01 -3.70111354e-02 3.77431542e-01 -4.91499305e-01 2.27069348e-01 1.04033485e-01 3.17946136e-01 -8.64317715e-01 3.17638516e-01 -6.22878909e-01 -4.54779714e-01 4.87868607e-01 -4.40822959e-01 -2.34901592e-01 2.35283107e-01 6.60700738e-01 -2.02198714e-01 -2.22115710e-01 7.35600412e-01 -1.66718870e-01 -1.22390997e+00 3.48140717e-01 -5.88513792e-01 2.15832144e-01 6.74203098e-01 -3.96053314e-01 -7.10541522e-03 -6.60300434e-01 -7.73491442e-01 5.09855628e-01 2.29965463e-01 8.49412024e-01 9.25818503e-01 -1.03308511e+00 -1.08039296e+00 2.23068714e-01 5.16208887e-01 -2.59489477e-01 2.04136267e-01 8.35870326e-01 -2.82767981e-01 7.50645041e-01 4.62785274e-01 -1.07060945e+00 -1.46315694e+00 6.79695845e-01 2.40790457e-01 -2.74428248e-01 -7.70076036e-01 1.22513092e+00 1.02145517e+00 -4.12605673e-01 5.80617905e-01 -2.99152017e-01 -4.84536856e-01 1.77248362e-02 5.76448441e-01 -1.24727018e-01 -1.62479177e-01 -9.63583589e-01 -5.03617585e-01 7.71815121e-01 -5.12954414e-01 -2.12570772e-01 8.61794412e-01 -5.42979300e-01 3.36966902e-01 5.60089707e-01 1.43719101e+00 -6.33089319e-02 -7.59544253e-01 -5.71028531e-01 -2.73916364e-01 -1.46149909e-02 4.76754129e-01 -5.94939590e-01 -8.88712466e-01 1.40463030e+00 8.37882102e-01 -1.45754576e-01 8.02133143e-01 2.61638969e-01 8.64466548e-01 4.58300710e-01 2.40790546e-02 -7.55460560e-01 7.43839592e-02 1.04822588e+00 9.34471965e-01 -1.58876419e+00 -3.33792597e-01 -2.27717966e-01 -9.75374997e-01 9.12569165e-01 6.30113304e-01 -1.01650521e-01 4.94212657e-01 2.32259572e-01 1.45710930e-01 -2.40193427e-01 -9.66458917e-01 -3.41556221e-01 6.71548188e-01 5.72725832e-01 4.97830123e-01 -1.68541238e-01 -8.42584148e-02 4.96704400e-01 7.61585906e-02 -2.97170311e-01 3.66962969e-01 5.13715386e-01 -5.38821816e-01 -6.74870193e-01 -2.95042247e-01 3.40213746e-01 -2.82860845e-01 -7.43713319e-01 -4.00970012e-01 7.42659807e-01 -2.27485120e-01 8.38120222e-01 1.14015751e-01 -1.95417494e-01 1.31648049e-01 2.19156235e-01 2.81375349e-01 -6.36120021e-01 -1.91482887e-01 5.70336163e-01 -1.02969646e-01 -4.47824150e-01 1.32422715e-01 -2.15992227e-01 -1.04102719e+00 2.79823830e-03 -4.55944896e-01 -2.47354001e-01 6.64133310e-01 1.21361721e+00 2.38255844e-01 6.24012351e-01 1.56044707e-01 -5.12286723e-01 -5.90107322e-01 -9.88156617e-01 -3.76723200e-01 1.27300397e-01 4.40398097e-01 -2.58473307e-01 -3.75218064e-01 1.19363464e-01]
[11.529302597045898, 1.952925443649292]
3145e8a2-b28a-40d0-bb49-250a19248a23
emerging-properties-in-self-supervised-vision
2104.14294
null
https://arxiv.org/abs/2104.14294v2
https://arxiv.org/pdf/2104.14294v2.pdf
Emerging Properties in Self-Supervised Vision Transformers
In this paper, we question if self-supervised learning provides new properties to Vision Transformer (ViT) that stand out compared to convolutional networks (convnets). Beyond the fact that adapting self-supervised methods to this architecture works particularly well, we make the following observations: first, self-supervised ViT features contain explicit information about the semantic segmentation of an image, which does not emerge as clearly with supervised ViTs, nor with convnets. Second, these features are also excellent k-NN classifiers, reaching 78.3% top-1 on ImageNet with a small ViT. Our study also underlines the importance of momentum encoder, multi-crop training, and the use of small patches with ViTs. We implement our findings into a simple self-supervised method, called DINO, which we interpret as a form of self-distillation with no labels. We show the synergy between DINO and ViTs by achieving 80.1% top-1 on ImageNet in linear evaluation with ViT-Base.
['Armand Joulin', 'Piotr Bojanowski', 'Julien Mairal', 'Hervé Jégou', 'Ishan Misra', 'Hugo Touvron', 'Mathilde Caron']
2021-04-29
null
http://openaccess.thecvf.com//content/ICCV2021/html/Caron_Emerging_Properties_in_Self-Supervised_Vision_Transformers_ICCV_2021_paper.html
http://openaccess.thecvf.com//content/ICCV2021/papers/Caron_Emerging_Properties_in_Self-Supervised_Vision_Transformers_ICCV_2021_paper.pdf
iccv-2021-1
['self-supervised-image-classification', 'single-object-discovery']
['computer-vision', 'computer-vision']
[ 3.39823246e-01 7.18485534e-01 -1.68890238e-01 -5.39889038e-01 -3.05313051e-01 -6.66997254e-01 8.23397756e-01 -1.47078574e-01 -6.58029497e-01 5.78698695e-01 1.47772536e-01 -1.48672476e-01 -5.87256625e-02 -6.89374685e-01 -1.04657793e+00 -6.60258174e-01 9.04241577e-02 2.18065947e-01 4.50547367e-01 -2.43464649e-01 -1.34617519e-02 2.24607870e-01 -1.54700720e+00 2.75277644e-01 8.02533150e-01 1.18986130e+00 2.29451597e-01 6.92740560e-01 -2.38990691e-02 1.12739849e+00 -5.59490442e-01 -5.51226556e-01 3.57461870e-01 -2.89184123e-01 -9.06501412e-01 1.82941914e-01 9.99742389e-01 -2.06616148e-01 -3.20992410e-01 9.62991953e-01 2.67353743e-01 -2.03288808e-01 8.15368652e-01 -1.06867504e+00 -8.86995494e-01 9.24619377e-01 -3.44851673e-01 2.27379024e-01 -3.63881737e-01 6.65950239e-01 1.25255728e+00 -6.87637746e-01 6.38103604e-01 1.00989926e+00 1.06415904e+00 4.43437368e-01 -1.27442145e+00 -3.67468446e-01 8.51552188e-02 7.70595670e-02 -9.48441386e-01 -4.54689920e-01 5.15592098e-01 -4.87988681e-01 9.68175054e-01 -1.04650110e-01 7.41588414e-01 1.13109612e+00 -4.53711953e-03 1.04287255e+00 1.50309026e+00 -5.03282905e-01 1.72136754e-01 5.39450407e-01 2.09688619e-01 7.47014046e-01 2.33690053e-01 4.38044935e-01 -4.99905258e-01 4.32619780e-01 7.28115261e-01 -1.80559441e-01 9.12697613e-02 -4.00198489e-01 -1.10602653e+00 7.22463608e-01 8.80751431e-01 2.75386930e-01 -2.92217970e-01 3.69017959e-01 4.42061305e-01 3.90982568e-01 5.08276999e-01 6.85602009e-01 -7.92420328e-01 -2.31049191e-02 -1.13174367e+00 -3.07443559e-01 6.13843203e-01 9.29049611e-01 1.14201224e+00 3.66315156e-01 -2.02568904e-01 6.48517370e-01 -7.77174607e-02 4.98223096e-01 5.37304759e-01 -9.64722872e-01 -2.44582240e-02 6.34453654e-01 -4.07958090e-01 -4.43732709e-01 -4.35755461e-01 -7.68638730e-01 -8.93059433e-01 4.52486217e-01 5.38902700e-01 -3.27431798e-01 -1.19220150e+00 1.71467793e+00 -2.20888048e-01 5.78161478e-02 3.91335487e-01 5.46415687e-01 9.39842582e-01 3.13553602e-01 1.48334488e-01 1.44380137e-01 1.10894549e+00 -1.39265573e+00 -1.90967023e-01 -5.60624957e-01 5.77975750e-01 -4.68765199e-01 1.11840999e+00 2.96422869e-01 -1.01739085e+00 -8.97033989e-01 -9.77259755e-01 1.25692517e-01 -5.64339995e-01 3.49822193e-01 9.16870832e-01 6.59997940e-01 -1.59497368e+00 9.49477136e-01 -5.95880687e-01 -6.30964994e-01 9.24647331e-01 2.85049319e-01 -2.55659968e-01 2.72990435e-01 -8.39783430e-01 1.10139298e+00 3.74357641e-01 -1.06064640e-01 -1.12139750e+00 -6.36655629e-01 -8.13602328e-01 8.96366835e-02 4.07722145e-01 -4.99898583e-01 1.31261194e+00 -1.67934918e+00 -1.33202839e+00 1.05471385e+00 -8.92216042e-02 -9.08020318e-01 4.53755945e-01 -9.22031254e-02 -3.87210469e-03 2.94681668e-01 1.16597407e-01 1.23308516e+00 1.10622275e+00 -1.19273770e+00 -5.96813381e-01 -1.58082172e-01 2.55829424e-01 1.09821655e-01 -4.14396673e-01 -3.62029135e-01 -1.35669857e-01 -4.38807935e-01 -7.53772780e-02 -7.34123647e-01 -2.77052164e-01 6.20132200e-02 -4.38775510e-01 -3.64815623e-01 5.58283448e-01 -2.07515419e-01 6.16754532e-01 -2.23054886e+00 -2.05567300e-01 1.48576936e-02 4.02094603e-01 4.53031033e-01 -2.79109240e-01 1.19708382e-01 -2.41209567e-01 4.98601384e-02 -4.47745830e-01 -3.48918349e-01 -5.26423194e-02 4.05428767e-01 -1.63308948e-01 2.34455004e-01 9.18322682e-01 1.47725403e+00 -8.99943948e-01 -5.15579641e-01 2.62250513e-01 2.48020634e-01 -3.18047196e-01 -1.21935278e-01 -3.38113964e-01 2.70556182e-01 -1.31332770e-01 4.94073749e-01 5.78000069e-01 -4.93999213e-01 5.71792945e-02 -3.21452022e-01 -3.85330200e-01 2.31538862e-01 -6.42265260e-01 1.54347408e+00 -1.65640727e-01 9.29490089e-01 -2.52264172e-01 -1.26882887e+00 8.37412417e-01 -2.50531603e-02 1.93770915e-01 -9.14981127e-01 5.38500994e-02 1.32631704e-01 -9.69728380e-02 -4.27305758e-01 4.26570088e-01 -1.71418060e-02 3.01991135e-01 2.89285034e-01 8.80368233e-01 -1.63873568e-01 3.55653644e-01 2.49958292e-01 1.01266897e+00 3.88554484e-01 -3.29730357e-03 -5.34020960e-01 2.22344920e-01 2.09141374e-01 2.22510576e-01 1.05701029e+00 -1.73567891e-01 6.07573867e-01 6.96245968e-01 -2.42951289e-01 -1.13047528e+00 -9.58398640e-01 -2.24980772e-01 1.06454372e+00 -1.04182862e-01 -2.13231534e-01 -8.72854650e-01 -9.33910847e-01 -1.46268643e-02 3.59500170e-01 -9.77887332e-01 -2.63053715e-01 -2.89144397e-01 -6.30216897e-01 8.03748190e-01 7.90479481e-01 7.28731930e-01 -1.24679983e+00 -7.29968905e-01 -1.10938065e-01 3.53911310e-01 -1.21846306e+00 3.65908593e-02 9.74759817e-01 -1.03453636e+00 -1.20551038e+00 -9.19355392e-01 -1.02586508e+00 6.98246539e-01 2.29776248e-01 1.36512220e+00 -7.68329874e-02 -2.28173241e-01 5.00171542e-01 -3.70469362e-01 -5.11321664e-01 -3.95765871e-01 3.92746747e-01 -2.05779448e-01 -1.27030358e-01 2.32969195e-01 -5.90369284e-01 -5.41471064e-01 1.54133409e-01 -7.95249701e-01 1.09401412e-01 9.66996849e-01 9.48580086e-01 4.79867995e-01 9.93582420e-03 5.34289181e-01 -1.16029739e+00 6.38456121e-02 -2.40535036e-01 -3.34621459e-01 2.69619823e-01 -8.69965494e-01 2.44320497e-01 6.77035213e-01 -3.33570451e-01 -8.92240942e-01 2.14363560e-01 -7.65912384e-02 -2.86772192e-01 -4.40240353e-01 3.02924603e-01 2.40897015e-01 -3.13496053e-01 1.10941720e+00 2.59852499e-01 2.53232956e-01 -3.03226352e-01 6.39408350e-01 5.17005324e-01 6.15917444e-01 -3.04320484e-01 8.97809088e-01 5.79240441e-01 -1.97235659e-01 -7.88970590e-01 -1.38886154e+00 -5.34763277e-01 -8.21575046e-01 -2.63063796e-02 9.60920751e-01 -1.07356441e+00 -6.07894719e-01 6.51411772e-01 -8.11308265e-01 -8.61149907e-01 -1.06363535e+00 2.28520811e-01 -6.75522447e-01 2.11089253e-01 -6.32320225e-01 -6.44180238e-01 -2.29257420e-01 -8.70491683e-01 6.86643898e-01 5.04165888e-01 2.49691755e-02 -1.08650923e+00 -2.11173922e-01 1.38963267e-01 6.50808215e-01 -1.68315358e-02 5.26438594e-01 -5.13018847e-01 -4.91696596e-01 1.63847342e-01 -5.86292684e-01 9.49356973e-01 8.87089968e-03 -7.15900511e-02 -1.53598440e+00 -1.12174369e-01 -2.34294295e-01 -1.00070977e+00 1.43103075e+00 5.49464822e-01 9.72620606e-01 -1.47291780e-01 5.04517332e-02 7.70834625e-01 1.53877687e+00 -2.99934804e-01 6.82634175e-01 4.16573316e-01 6.59050822e-01 5.37744105e-01 1.83522463e-01 -6.73611090e-02 5.16207874e-01 1.46754861e-01 5.49410284e-01 -6.16420507e-01 -5.32767415e-01 -2.69367397e-01 3.69420320e-01 5.60882986e-01 -1.67601496e-01 1.79014578e-01 -6.73758626e-01 5.98174810e-01 -1.71078718e+00 -6.55069470e-01 -2.04571515e-01 1.81321096e+00 8.22691560e-01 4.74285871e-01 1.77519366e-01 5.58168180e-02 3.67444783e-01 1.98432848e-01 -6.46442592e-01 -2.72338241e-01 -7.36483395e-01 5.95973909e-01 1.00234139e+00 1.30233064e-01 -1.31394160e+00 1.37656438e+00 7.16278982e+00 6.43543124e-01 -1.22143447e+00 9.13794041e-02 7.38276482e-01 3.43677789e-01 5.16173802e-03 1.07110091e-01 -6.78149462e-01 1.67287037e-01 8.92428219e-01 2.71715254e-01 3.17843676e-01 9.83508945e-01 -1.89014450e-01 -2.99741685e-01 -1.07725871e+00 6.83431804e-01 7.11266845e-02 -1.40221822e+00 -6.05122931e-02 -2.53875107e-01 1.00550342e+00 5.97574234e-01 2.43934855e-01 4.38564926e-01 5.72719157e-01 -1.13872576e+00 8.98559153e-01 3.59521478e-01 9.90541756e-01 -3.77929509e-01 6.91092551e-01 1.03378460e-01 -7.32770026e-01 -1.30772769e-01 -7.33790338e-01 -1.11216053e-01 -1.62663326e-01 5.56662261e-01 -7.55922318e-01 3.79371136e-01 8.70917022e-01 1.16053212e+00 -1.09090042e+00 1.03279400e+00 -5.24435818e-01 1.18544245e+00 -2.84751147e-01 1.56751662e-01 6.41544759e-01 1.13048606e-01 2.40580112e-01 1.34784913e+00 -2.46044159e-01 -3.32771361e-01 -1.77608728e-01 8.69928658e-01 -2.14382634e-02 -2.58314013e-01 -5.41173041e-01 -1.47159547e-01 -1.15268983e-01 1.35050178e+00 -8.61112952e-01 -5.52371860e-01 -4.52708602e-01 1.07828224e+00 4.49351192e-01 3.92340183e-01 -3.56273770e-01 -6.96603358e-02 2.88923115e-01 -1.55133400e-02 6.33199513e-01 4.34090979e-02 -6.17351890e-01 -1.08784294e+00 -9.09618884e-02 -6.91029727e-01 1.06671624e-01 -9.14867163e-01 -1.46145391e+00 6.90962195e-01 -2.43198022e-01 -1.07911742e+00 -4.61979657e-02 -9.89276111e-01 -6.36964083e-01 4.89797205e-01 -1.99150336e+00 -1.32044852e+00 -2.99316734e-01 4.65826601e-01 3.57364029e-01 -3.48145097e-01 7.99086332e-01 -7.85580575e-02 -3.86912942e-01 7.20630884e-01 1.70678228e-01 3.44525605e-01 6.86017990e-01 -1.56657791e+00 7.12807655e-01 6.87314808e-01 3.89757335e-01 4.40727800e-01 3.83292645e-01 -2.66881794e-01 -8.51814568e-01 -1.01922297e+00 6.90860271e-01 -5.08249581e-01 7.26430774e-01 -2.04748526e-01 -7.34535277e-01 6.72475278e-01 5.95787585e-01 1.65791780e-01 2.45250389e-01 3.18738580e-01 -6.67363882e-01 -1.92530826e-01 -1.02804649e+00 4.05882448e-01 1.17316866e+00 -5.20324409e-01 -5.13802707e-01 3.55582893e-01 7.91187525e-01 -1.49137110e-01 -5.29854298e-01 2.72622287e-01 2.92793155e-01 -1.19290972e+00 9.00782585e-01 -5.67308605e-01 7.82212198e-01 -1.11858360e-02 1.04162917e-01 -1.41685569e+00 -3.62541407e-01 -3.12065154e-01 1.19337924e-01 1.04813337e+00 6.63138688e-01 -6.66659355e-01 1.10666680e+00 1.40815988e-01 -2.14602649e-01 -6.76400363e-01 -5.95265090e-01 -9.04890060e-01 2.87900865e-01 -3.81220996e-01 2.35367343e-01 1.10378003e+00 -3.46234083e-01 4.69445765e-01 -1.12616584e-01 -2.69807130e-01 6.91693962e-01 -2.99909294e-01 5.90031326e-01 -1.36040604e+00 -3.78790855e-01 -5.13640881e-01 -5.66311955e-01 -1.03517699e+00 1.68877110e-01 -1.10898578e+00 4.30071019e-02 -1.53499758e+00 2.78391927e-01 -6.13970399e-01 -4.29937989e-01 9.19976294e-01 -1.15153808e-02 5.88174045e-01 1.62638932e-01 2.63402462e-01 -6.73836410e-01 3.79895002e-01 1.26747751e+00 -3.62767488e-01 3.24536748e-02 -1.18056133e-01 -1.00527084e+00 7.91123271e-01 9.09607232e-01 -3.42342049e-01 -3.02264571e-01 -5.88832021e-01 1.80922270e-01 -5.86976886e-01 6.79975033e-01 -1.14673638e+00 2.28726208e-01 1.78098753e-01 5.17121553e-01 -2.10542917e-01 1.47311851e-01 -5.39879858e-01 -5.59583545e-01 3.74897480e-01 -3.83656025e-01 -2.22999603e-01 3.03187966e-01 3.56375545e-01 -1.81329370e-01 -4.56674963e-01 8.63648951e-01 -4.35598910e-01 -1.06913733e+00 -2.18681823e-02 -2.94777662e-01 2.25899264e-01 7.00538218e-01 -5.77829301e-01 -4.59590137e-01 -2.97760218e-01 -6.87882721e-01 2.61841863e-01 4.05280709e-01 2.05886394e-01 2.87455618e-01 -7.98305929e-01 -6.89216077e-01 1.98445365e-01 2.35208005e-01 2.52008498e-01 5.53029366e-02 7.52931774e-01 -3.73251170e-01 4.07003731e-01 -3.29516262e-01 -8.19974899e-01 -7.94435501e-01 2.27371007e-01 3.82976592e-01 -1.10503651e-01 -7.30514646e-01 1.19072354e+00 2.81306177e-01 -5.56367576e-01 3.68811369e-01 -2.97177911e-01 -2.89609104e-01 8.41857195e-02 1.68203071e-01 -6.15210161e-02 -1.96481142e-02 -3.74346107e-01 -1.57345578e-01 4.86487448e-01 -4.61851619e-02 -6.53856026e-04 1.56733525e+00 8.01714361e-02 -5.04285283e-02 5.71013391e-01 9.73189116e-01 -3.93837392e-01 -1.80952752e+00 -3.69463205e-01 7.53475502e-02 2.34422833e-01 1.05226211e-01 -1.11733830e+00 -1.32388544e+00 8.65277827e-01 6.12966120e-01 2.99030188e-02 9.46744502e-01 2.26940095e-01 3.77700061e-01 5.87748766e-01 1.32806569e-01 -1.17961347e+00 3.08634996e-01 7.52425313e-01 4.24625278e-01 -1.42186463e+00 -1.57695830e-01 -1.42843038e-01 -9.36657667e-01 9.03925478e-01 7.66869128e-01 -4.45726186e-01 5.70287824e-01 2.19450668e-01 3.03009897e-01 -1.90564603e-01 -7.10912228e-01 -8.22701216e-01 7.75934085e-02 8.89580190e-01 3.34051788e-01 -5.38805537e-02 7.03789443e-02 2.40578696e-01 -4.13972914e-01 1.42439470e-01 4.97443885e-01 7.56319046e-01 -4.91734326e-01 -8.72228920e-01 4.93678600e-02 7.17930675e-01 -2.67368138e-01 -4.32381272e-01 -5.32444715e-01 7.00653434e-01 3.07311952e-01 7.52285838e-01 2.84189165e-01 -4.95737106e-01 1.97660923e-01 1.32914677e-01 5.26654005e-01 -7.41342127e-01 -9.35120523e-01 -3.44173878e-01 -9.72167850e-02 -3.10478151e-01 -6.50087178e-01 -3.93855125e-01 -8.21683466e-01 2.17462610e-02 -4.21295762e-01 -3.97462659e-02 7.27550745e-01 1.04420400e+00 7.78150260e-02 6.31003797e-01 5.69307148e-01 -7.66044736e-01 -6.30280256e-01 -1.10073066e+00 -4.48394001e-01 2.23867998e-01 4.34436381e-01 -3.62486154e-01 -4.60695446e-01 2.46072859e-01]
[9.636892318725586, 2.060929298400879]
2eed535f-8cae-4c81-a76d-709d83451147
high-precision-automated-reconstruction-of
null
null
https://doi.org/10.1038/s41592-018-0049-4
https://www.biorxiv.org/content/biorxiv/early/2017/10/09/200675.full-text.pdf
High-Precision Automated Reconstruction of Neurons with Flood-filling Networks
Reconstruction of neural circuits from volume electron microscopy data requires the tracing of complete cells including all their neurites. Automated approaches have been developed to perform the tracing, but without costly human proofreading their error rates are too high to obtain reliable circuit diagrams. We present a method for automated segmentation that, like the majority of previous efforts, employs convolutional neural networks, but contains in addition a recurrent pathway that allows the iterative optimization and extension of the reconstructed shape of individual neural processes. We used this technique, which we call flood-filling networks, to trace neurons in a data set obtained by serial block-face electron microscopy from a male zebra finch brain. Our method achieved a mean error-free neurite path length of 1.1 mm, an order of magnitude better than previously published approaches applied to the same dataset. Only 4 mergers were observed in a neurite test set of 97 mm path length.
['Jeremy Maitin-Shepard', 'Jörgen Kornfeld', 'Michał Januszewski', 'Winfried Denk', 'Art Pope', 'Viren Jain', 'Peter H. Li', 'Larry Lindsey', 'Tim Blakely', 'Mike Tyka']
2017-10-09
null
null
null
nature-methods-2017-10
['electron-microscopy-image-segmentation']
['computer-vision']
[ 4.00381386e-01 3.05838734e-01 7.80183434e-01 -1.98600605e-01 -4.31700379e-01 -7.53590882e-01 3.66087496e-01 2.18729988e-01 -9.74359155e-01 1.05879450e+00 -7.12675571e-01 -6.05602324e-01 3.23353037e-02 -6.02463007e-01 -7.32469916e-01 -6.82920754e-01 2.78334487e-02 9.18060958e-01 5.41305006e-01 2.49308690e-01 6.14186704e-01 1.04653370e+00 -1.08856153e+00 -2.11590528e-02 4.84423757e-01 7.72290289e-01 5.79707026e-01 6.49764955e-01 -3.23746115e-01 5.54485381e-01 -3.36309940e-01 -4.41350460e-01 1.07476555e-01 -3.63196433e-01 -1.10893619e+00 1.96341559e-01 1.26567781e-01 -3.17326188e-01 2.63403729e-02 6.49472892e-01 2.60294288e-01 -2.90251791e-01 7.04194486e-01 -6.00495517e-01 -1.97735429e-01 4.13095653e-01 -2.98600942e-01 3.16072911e-01 -1.64738387e-01 -1.48897897e-02 6.16245091e-01 -5.72614968e-01 1.13138926e+00 7.40665078e-01 9.34791744e-01 7.15695381e-01 -1.73566353e+00 -8.03329110e-01 -4.62410808e-01 -3.19444478e-01 -1.21874082e+00 -3.42706144e-01 3.58582735e-01 -7.32805550e-01 9.81095552e-01 -3.11147571e-01 1.23467040e+00 5.34195483e-01 5.49102128e-01 2.64686078e-01 1.43410242e+00 -2.66994357e-01 3.94574642e-01 -3.26413482e-01 8.59243423e-02 7.16647327e-01 2.31995627e-01 -2.27233201e-01 1.89912707e-01 5.70659786e-02 1.24164784e+00 -1.17189936e-01 6.83741346e-02 7.75091276e-02 -1.05351424e+00 6.73671305e-01 5.02075404e-02 4.83610779e-01 5.38036274e-03 3.84748846e-01 3.75569075e-01 -1.11680441e-01 1.66385755e-01 4.48772937e-01 -3.76971185e-01 1.29268959e-01 -1.16002643e+00 3.90881270e-01 7.50196815e-01 7.51341164e-01 7.72419930e-01 -9.15466323e-02 5.14716446e-01 5.38479686e-01 2.99490362e-01 -1.71788871e-01 6.88226297e-02 -1.50691295e+00 -5.38324332e-03 9.15822506e-01 -1.73672214e-01 -4.42567527e-01 -8.80798161e-01 -1.83232069e-01 -6.76304400e-01 9.29887533e-01 1.05330789e+00 -3.24318349e-01 -1.03625143e+00 1.17369163e+00 1.47321239e-01 -4.10478503e-01 -3.24786693e-01 5.62896550e-01 5.19410253e-01 2.26492226e-01 -1.93448082e-01 -1.84186041e-01 1.04254198e+00 -3.45705301e-01 -3.94820482e-01 6.63105994e-02 6.03065133e-01 -6.94062948e-01 5.99832594e-01 5.80108047e-01 -1.32731080e+00 9.52523351e-02 -1.29752898e+00 -7.56338462e-02 -4.05277520e-01 -8.03696811e-02 6.05127096e-01 4.63419139e-01 -1.15862203e+00 1.14510584e+00 -1.00427878e+00 -4.31036621e-01 1.10862124e+00 8.18747938e-01 -6.48481250e-01 3.90541673e-01 -1.34925291e-01 7.95066833e-01 2.18510643e-01 -8.40223432e-02 -9.63190198e-01 -5.49576759e-01 -2.78653771e-01 -2.59962715e-02 -2.37031039e-02 -5.00377059e-01 1.32529497e+00 -3.90013725e-01 -1.50285172e+00 1.26765561e+00 -6.96216300e-02 -6.70019150e-01 7.04034746e-01 3.27285141e-01 2.51913577e-01 4.29214001e-01 -2.11042657e-01 9.81181026e-01 2.21973121e-01 -1.42767763e+00 -4.27535027e-01 -6.45504177e-01 -1.77698895e-01 -4.76365745e-01 3.06356877e-01 8.18412900e-02 -2.32465357e-01 -2.49601305e-01 4.37750250e-01 -6.88827753e-01 -6.08386755e-01 4.63323683e-01 -2.82529861e-01 1.59248620e-01 7.23132670e-01 -6.69285178e-01 6.06960475e-01 -1.57324326e+00 -8.99545774e-02 3.98182988e-01 5.67366004e-01 6.53719380e-02 2.97528744e-01 3.38136137e-01 2.07787618e-01 2.67005742e-01 -6.98303878e-01 -5.62103212e-01 -4.81412590e-01 2.48432726e-01 1.19140819e-01 9.01683867e-01 -1.40681509e-02 7.32390702e-01 -5.38643062e-01 -7.61446118e-01 -3.10691260e-02 4.72788930e-01 -3.36764365e-01 -2.90408015e-01 -6.63772449e-02 6.87507212e-01 -6.66143671e-02 6.29511237e-01 5.15157759e-01 -3.79859000e-01 2.34202489e-01 3.03159356e-01 -5.34600556e-01 2.52695400e-02 -7.13319480e-01 1.69754553e+00 -3.42537835e-02 9.22500968e-01 4.43373144e-01 -6.29174829e-01 8.97285283e-01 2.16461897e-01 5.48282623e-01 -5.34187555e-01 5.96286535e-01 4.07877088e-01 2.72107899e-01 -7.47379735e-02 2.94118170e-02 -6.00208282e-01 5.20355582e-01 5.53138793e-01 3.97816211e-01 -3.19433868e-01 4.98909920e-01 1.77251026e-01 1.25978601e+00 3.63910168e-01 5.63141815e-02 -4.92105603e-01 2.35895112e-01 3.23615015e-01 5.88800073e-01 2.56394863e-01 -3.64250946e-03 1.04150391e+00 7.23518789e-01 -5.02216876e-01 -1.70648563e+00 -8.31961155e-01 -5.52293718e-01 2.09382743e-01 -8.51731747e-02 -7.41930455e-02 -1.25201249e+00 -2.47256815e-01 -3.43439221e-01 1.69486701e-01 -6.67916894e-01 6.84492648e-01 -6.20243728e-01 -6.75318003e-01 9.09278035e-01 3.88890624e-01 2.36761659e-01 -1.37198305e+00 -1.07000661e+00 6.76880300e-01 3.50505769e-01 -1.03499389e+00 3.70019734e-01 7.03546703e-01 -1.18908811e+00 -1.31565917e+00 -8.62561524e-01 -7.67615438e-01 1.06221533e+00 -5.41040063e-01 7.94975281e-01 4.64824498e-01 -6.98437214e-01 -3.01025659e-01 4.87873331e-02 -3.21080297e-01 -3.24227333e-01 -5.74894994e-03 -3.36204439e-01 -6.00423753e-01 -2.38891393e-02 -9.80456889e-01 -4.78703648e-01 2.73292661e-01 -7.98482060e-01 1.01796174e-02 5.52488506e-01 7.10131228e-01 1.13479805e+00 -1.60778239e-01 4.58453536e-01 -1.14649510e+00 3.86971295e-01 -2.04477578e-01 -1.03966188e+00 -2.48868927e-01 -8.52934718e-01 -1.63306236e-01 7.26908565e-01 -1.89846784e-01 -6.49486482e-01 3.50878090e-01 -6.06177509e-01 -4.25022207e-02 -5.70643425e-01 3.31780538e-02 2.07081258e-01 -6.65103316e-01 4.26013231e-01 1.15528576e-01 3.76617938e-01 -3.97837609e-01 -2.08037168e-01 1.32068425e-01 6.15294814e-01 -2.96169877e-01 4.22790825e-01 1.06036592e+00 4.98099595e-01 -7.73991585e-01 -1.05424784e-01 -3.43649447e-01 -1.05804324e+00 -3.56880695e-01 9.04216170e-01 -6.92018941e-02 -9.87897158e-01 5.23172736e-01 -1.39123869e+00 -7.22959578e-01 -2.01451797e-02 2.77354866e-01 -8.83190691e-01 3.13452482e-01 -1.06499493e+00 -5.48634112e-01 -4.80200440e-01 -1.05513978e+00 6.53092444e-01 1.82239592e-01 -3.90940249e-01 -8.73958170e-01 2.79145300e-01 1.05299652e-01 1.44978061e-01 4.87416714e-01 1.07816362e+00 -4.06021833e-01 -5.20098269e-01 -1.92462578e-01 -2.55501688e-01 5.79019450e-02 -2.32456967e-01 3.68384719e-01 -8.66381645e-01 1.28644677e-02 -1.68697461e-01 -3.00991684e-01 7.61376619e-01 5.17883956e-01 1.10214925e+00 -6.77246526e-02 -6.74233913e-01 7.68878996e-01 1.63113248e+00 5.74798763e-01 9.80634034e-01 5.76961756e-01 4.65101123e-01 8.12023580e-01 -6.11133203e-02 1.48943052e-01 -1.55076236e-01 4.08293493e-02 5.01332700e-01 -1.69587821e-01 -1.33632362e-01 2.85939783e-01 -3.21984977e-01 3.90549392e-01 -5.14262199e-01 8.62927362e-03 -1.05224597e+00 6.59115911e-01 -1.20856893e+00 -8.30728233e-01 -5.17865121e-01 1.75218511e+00 6.54965401e-01 3.70212734e-01 2.13724181e-01 3.92982662e-01 4.93153334e-01 -5.83250463e-01 -6.38194680e-01 -4.64843482e-01 -3.39203142e-02 3.23972493e-01 6.99229479e-01 4.82769996e-01 -6.12366378e-01 8.44329476e-01 7.68928337e+00 4.41135317e-01 -7.98335016e-01 -6.67966977e-02 6.71000540e-01 -9.65292379e-02 -1.48718640e-01 1.94358364e-01 -9.66581285e-01 3.46670806e-01 7.54719555e-01 2.20093474e-01 5.87854445e-01 4.25700665e-01 -2.73568574e-02 -4.38134253e-01 -8.61144781e-01 7.42627978e-01 -3.51092219e-01 -1.84306002e+00 -3.31977546e-01 6.44005597e-01 5.45557976e-01 2.21148759e-01 -4.74150479e-01 -4.11949426e-01 3.47476482e-01 -1.25257552e+00 7.95496941e-01 6.48764431e-01 9.14983094e-01 -9.89443660e-01 7.09635317e-01 3.83230180e-01 -8.03453982e-01 1.20594233e-01 -3.68883520e-01 -1.88379973e-01 3.90945017e-01 4.24506754e-01 -1.06898081e+00 -2.95563862e-02 8.02502751e-01 1.17675260e-01 -5.13336182e-01 1.33314681e+00 1.86662585e-01 4.48757052e-01 -4.83383656e-01 -7.47875571e-02 2.62270182e-01 -4.26581532e-01 3.54293346e-01 1.23056984e+00 2.46922389e-01 5.78066818e-02 -6.57836676e-01 1.31111228e+00 -2.00842515e-01 2.19853241e-02 -6.09525144e-01 -2.51013577e-01 2.16100588e-01 1.70825160e+00 -1.84534168e+00 8.43293294e-02 -2.12215006e-01 6.02168679e-01 5.64269781e-01 1.12930976e-01 -3.18000406e-01 -5.81782520e-01 1.79206192e-01 4.87819374e-01 3.74752730e-01 -5.13918638e-01 -8.87740910e-01 -1.43118441e-01 -2.41413534e-01 -1.53940096e-01 -7.12613389e-02 -5.11556506e-01 -9.31293905e-01 4.94545758e-01 -3.58193547e-01 -6.01348281e-01 -1.02530137e-01 -9.19684708e-01 -8.06088567e-01 6.58883214e-01 -9.09089208e-01 -8.50946724e-01 7.59341568e-02 1.30053520e-01 3.13942879e-01 3.14582395e-03 8.23201895e-01 1.82607144e-01 -3.59998405e-01 6.38075545e-02 1.21031813e-01 1.28450185e-01 4.43494326e-04 -1.29050136e+00 4.02539998e-01 4.82080251e-01 -1.74975693e-01 7.06826806e-01 6.32412374e-01 -7.24272490e-01 -8.92458260e-01 -9.77961898e-01 8.09047520e-01 -1.38026506e-01 6.06120467e-01 -3.70135128e-01 -9.16901886e-01 8.66312861e-01 2.54475772e-01 -2.23738477e-01 7.80940175e-01 -2.47077256e-01 3.72245282e-01 4.45264131e-01 -1.44810045e+00 5.80702603e-01 7.85474658e-01 -4.61004674e-02 -4.53173310e-01 -8.02698433e-02 6.88313097e-02 -1.04104176e-01 -9.80645061e-01 1.88550815e-01 9.54498231e-01 -1.00141311e+00 6.63368464e-01 -1.10024318e-01 5.54741740e-01 -2.84752816e-01 2.31912464e-01 -8.10244739e-01 -3.26963872e-01 -4.28306580e-01 2.13243544e-01 1.21319532e+00 4.83711064e-01 -4.88553971e-01 1.10512209e+00 3.03520322e-01 -4.20254976e-01 -1.18781960e+00 -1.07047462e+00 -6.94602311e-01 5.39395928e-01 -1.27632245e-01 2.31421262e-01 3.71544212e-01 -1.88905075e-02 2.69461900e-01 4.33743298e-01 -3.83171111e-01 9.15792525e-01 -8.58427137e-02 2.22544730e-01 -1.56842482e+00 1.71689004e-01 -7.23531783e-01 -4.98445630e-01 -6.38709247e-01 2.94764042e-01 -9.81919944e-01 2.04966277e-01 -1.88948047e+00 1.90050080e-01 -3.06419998e-01 3.50243390e-01 4.28903610e-01 6.76541209e-01 6.19095027e-01 -3.06875467e-01 3.51808041e-01 -2.73895562e-01 7.88087174e-02 1.51070321e+00 1.86382562e-01 4.52375785e-02 -3.17741364e-01 -4.90007430e-01 1.28798842e+00 9.29228544e-01 -7.54039824e-01 -4.43770401e-02 -3.61884683e-01 2.47061923e-01 -9.95584279e-02 4.13876712e-01 -1.31503844e+00 6.01417303e-01 2.37462506e-01 9.22881901e-01 -9.71049845e-01 3.69615078e-01 -8.37820411e-01 3.16573173e-01 5.10074973e-01 -2.21404478e-01 -2.37556249e-02 2.12873042e-01 2.68136948e-01 1.92880318e-01 -5.71481109e-01 1.06604445e+00 -6.96596146e-01 -2.26408705e-01 2.03259170e-01 -1.20422637e+00 -4.20445681e-01 9.69705224e-01 -6.05726600e-01 -3.13953906e-01 1.68370813e-01 -8.05182397e-01 -1.12555560e-03 1.00967014e+00 -7.95163870e-01 8.19163680e-01 -9.06411052e-01 -3.10610563e-01 -5.17635569e-02 -3.89653683e-01 2.18373358e-01 1.07592726e-02 9.04906034e-01 -1.25074112e+00 2.82134235e-01 -7.73228884e-01 -4.56531793e-01 -1.13753724e+00 3.03574979e-01 3.87439251e-01 -1.70083791e-01 -9.26689148e-01 7.69239664e-01 -7.28834495e-02 -5.71542025e-01 -1.00270271e-01 -2.23550886e-01 -3.71379942e-01 -2.31683522e-01 4.85575348e-01 6.22190714e-01 7.20573813e-02 -5.58465838e-01 -1.87896013e-01 6.84978068e-01 1.68460906e-02 -3.70512336e-01 1.56302488e+00 -2.83998102e-01 -5.08954763e-01 5.88685036e-01 9.99945223e-01 -3.10313046e-01 -1.52445912e+00 5.59391677e-01 8.46823230e-02 4.87056421e-03 -3.80513282e-03 -7.20389903e-01 -9.74456787e-01 9.97797668e-01 3.50540757e-01 1.23508405e-02 6.69101119e-01 6.72369972e-02 9.01990056e-01 4.46281731e-01 5.53030968e-01 -9.92326021e-01 -3.28728944e-01 6.71431303e-01 6.01903081e-01 -8.23789954e-01 -2.97877956e-02 -3.46852481e-01 1.56371653e-01 1.38986433e+00 4.40079629e-01 -4.37314719e-01 4.50464129e-01 9.67100978e-01 -1.18779637e-01 -6.84980750e-01 -6.00816488e-01 -7.81890899e-02 -3.29037637e-01 6.50785267e-01 4.02403206e-01 -4.06250477e-01 -4.32287425e-01 4.92307127e-01 -1.34641573e-01 2.98056334e-01 6.23859584e-01 1.12142813e+00 -6.82402372e-01 -9.74407792e-01 -2.21364334e-01 6.85301304e-01 -9.17620838e-01 2.15674251e-01 -7.28380442e-01 9.40550208e-01 1.87177792e-01 5.30843377e-01 3.98591459e-01 -2.14291081e-01 5.12289032e-02 2.55625565e-02 9.39665735e-01 -4.90043849e-01 -5.57783544e-01 3.16576391e-01 -1.35287605e-02 -3.57669920e-01 -1.88296080e-01 -6.19814456e-01 -2.19556236e+00 -4.44393426e-01 -2.13858813e-01 -1.51341453e-01 9.26156282e-01 1.26716661e+00 -1.83073580e-01 6.34828925e-01 -1.92550141e-02 -1.13447464e+00 4.74650711e-01 -8.62730920e-01 -1.08592737e+00 -1.19394407e-01 1.23775072e-01 -4.96474147e-01 -3.50911826e-01 4.66331810e-01]
[14.2518892288208, -3.134556531906128]
a9ef8075-6241-46e4-93b3-ccf86015558f
crosslingual-generalization-through-multitask
2211.01786
null
https://arxiv.org/abs/2211.01786v2
https://arxiv.org/pdf/2211.01786v2.pdf
Crosslingual Generalization through Multitask Finetuning
Multitask prompted finetuning (MTF) has been shown to help large language models generalize to new tasks in a zero-shot setting, but so far explorations of MTF have focused on English data and models. We apply MTF to the pretrained multilingual BLOOM and mT5 model families to produce finetuned variants called BLOOMZ and mT0. We find finetuning large multilingual language models on English tasks with English prompts allows for task generalization to non-English languages that appear only in the pretraining corpus. Finetuning on multilingual tasks with English prompts further improves performance on English and non-English tasks leading to various state-of-the-art zero-shot results. We also investigate finetuning on multilingual tasks with prompts that have been machine-translated from English to match the language of each dataset. We find training on these machine-translated prompts leads to better performance on human-written prompts in the respective languages. Surprisingly, we find models are capable of zero-shot generalization to tasks in languages they have never intentionally seen. We conjecture that the models are learning higher-level capabilities that are both task- and language-agnostic. In addition, we introduce xP3, a composite of supervised datasets in 46 languages with English and machine-translated prompts. Our code, datasets and models are freely available at https://github.com/bigscience-workshop/xmtf.
['Colin Raffel', 'Edward Raff', 'Albert Webson', 'Zaid Alyafeai', 'Samuel Albanie', 'Khalid Almubarak', 'Alham Fikri Aji', 'Dragomir Radev', 'Xiangru Tang', 'Hailey Schoelkopf', 'Zheng-Xin Yong', 'Sheng Shen', 'M Saiful Bari', 'Teven Le Scao', 'Stella Biderman', 'Adam Roberts', 'Lintang Sutawika', 'Thomas Wang', 'Niklas Muennighoff']
2022-11-03
null
null
null
null
['coreference-resolution', 'cross-lingual-transfer']
['natural-language-processing', 'natural-language-processing']
[ 1.07267909e-02 -1.12919874e-01 -2.31484026e-01 -4.52255398e-01 -1.17352688e+00 -8.40698957e-01 7.59850383e-01 -1.94276534e-02 -1.01061225e+00 8.84591341e-01 3.47088099e-01 -8.04074764e-01 4.38752882e-02 -4.59177405e-01 -8.81057739e-01 -7.01276287e-02 2.19330013e-01 8.14227164e-01 1.80725202e-01 -6.72396779e-01 -1.89258292e-01 -6.78768307e-02 -1.13915718e+00 6.06439948e-01 9.42284703e-01 4.02117908e-01 8.18643272e-01 7.79365599e-01 -1.58698589e-01 4.62476790e-01 -3.88076991e-01 -2.87312806e-01 3.67684871e-01 -2.57690549e-02 -1.06389177e+00 -3.83443832e-01 8.25525463e-01 -2.59619001e-02 -2.35620901e-01 7.40824044e-01 6.53633356e-01 4.72564787e-01 5.02451777e-01 -8.30350697e-01 -1.04424262e+00 8.85880649e-01 -1.99430034e-01 6.21230185e-01 2.82605171e-01 4.07961518e-01 7.96716273e-01 -1.18394375e+00 7.69524395e-01 1.24339652e+00 6.69536591e-01 9.48875487e-01 -1.41300952e+00 -8.60830009e-01 6.89812824e-02 -2.30695982e-03 -1.10105491e+00 -7.15392172e-01 8.76278877e-02 -4.03086990e-01 1.72058511e+00 1.80837765e-01 -6.70791697e-03 1.62943137e+00 4.02442694e-01 5.98058224e-01 1.55948734e+00 -7.02977300e-01 -1.48561344e-01 2.98250526e-01 1.98067710e-01 5.39692998e-01 -1.91616967e-01 3.80117029e-01 -7.99493074e-01 -1.16171325e-02 4.22633737e-01 -2.73705810e-01 -2.86618441e-01 2.18673751e-01 -1.58794546e+00 7.87450194e-01 1.85343921e-01 4.53879327e-01 -1.88213170e-01 -9.09516662e-02 6.00532830e-01 9.09819722e-01 8.80108297e-01 9.65797782e-01 -1.32783842e+00 -1.45053372e-01 -7.14570701e-01 1.39923066e-01 7.88204670e-01 1.20200598e+00 1.04969299e+00 4.66232859e-02 -4.81416643e-01 1.16768014e+00 -3.36221337e-01 6.84291005e-01 1.02264953e+00 -6.93364084e-01 6.23154938e-01 2.50079483e-01 -1.06358498e-01 5.33735659e-03 -7.22146332e-01 -6.38241887e-01 -4.15489286e-01 -2.29080454e-01 5.51025867e-01 -4.69792306e-01 -9.20258403e-01 2.08083963e+00 -1.83937058e-03 -7.69599974e-02 3.17530632e-01 5.66238523e-01 8.95636618e-01 6.87544763e-01 4.72817451e-01 -1.24001905e-01 1.43134594e+00 -1.05020535e+00 -3.85718793e-01 -5.88059187e-01 1.21040809e+00 -1.07218921e+00 2.18469763e+00 3.07407379e-01 -8.17783713e-01 -8.25414121e-01 -5.88192105e-01 -4.23747897e-01 -7.05692649e-01 -1.53984949e-01 5.27040601e-01 3.96846652e-01 -1.34728730e+00 3.45267475e-01 -4.44504052e-01 -8.52925777e-01 -1.65183485e-01 1.33559033e-01 -4.07365441e-01 -3.46724898e-01 -1.64619625e+00 1.21745121e+00 5.59931815e-01 -8.20509553e-01 -1.12096226e+00 -1.04079664e+00 -8.50172520e-01 -8.48165676e-02 4.67839688e-01 -6.98773146e-01 1.88170934e+00 -7.75779843e-01 -1.11821651e+00 1.13073182e+00 -1.79183796e-01 -4.75007474e-01 3.35540146e-01 -1.76037088e-01 -5.68635404e-01 -5.13546824e-01 5.54709017e-01 1.02384734e+00 5.70114553e-01 -6.97162211e-01 -8.14634323e-01 -1.04054093e-01 1.01740018e-01 3.62423569e-01 -5.83189070e-01 2.46153474e-01 -1.43311575e-01 -7.47558177e-01 -4.60876197e-01 -8.74191165e-01 -1.64958779e-02 -7.03074038e-01 -9.73137468e-02 -6.89981580e-01 3.95478576e-01 -6.36260390e-01 9.99864697e-01 -1.95996010e+00 -2.47391596e-01 -4.87496793e-01 -8.73200223e-02 1.23550750e-01 -7.48219550e-01 4.43664342e-01 1.18224313e-02 1.69046700e-01 6.13060519e-02 -3.64423186e-01 3.61673199e-02 2.39661396e-01 -4.11511272e-01 3.45286876e-02 -4.20586858e-03 1.16991186e+00 -1.09886646e+00 -1.76931337e-01 -4.96608466e-02 7.73080215e-02 -5.23449898e-01 5.93745708e-02 -6.34572864e-01 4.32810932e-01 5.51626086e-02 4.54487294e-01 2.42002651e-01 -2.35074416e-01 -1.97523490e-01 1.21120386e-01 -1.82076722e-01 5.63974977e-01 -5.16560793e-01 2.18556929e+00 -1.00843179e+00 4.69110638e-01 -2.12130949e-01 -4.82546866e-01 8.54833841e-01 4.65412050e-01 -3.20835249e-03 -1.08100843e+00 -2.58710027e-01 6.21971488e-01 2.33978912e-01 -4.44119126e-01 7.09236383e-01 -4.90894556e-01 -3.98024559e-01 7.58799493e-01 6.33236408e-01 -1.74033031e-01 5.19052088e-01 3.18164706e-01 1.07718098e+00 1.24053545e-01 3.22161108e-01 -7.60983050e-01 9.72080082e-02 2.56128967e-01 2.42215663e-01 1.24188375e+00 -2.28939742e-01 1.47778347e-01 -2.64468938e-01 -4.56809551e-01 -1.09046626e+00 -1.09208131e+00 -3.38610411e-01 2.36548495e+00 -4.80850428e-01 -4.11583453e-01 -5.50326228e-01 -8.81841063e-01 -3.62361409e-02 1.24739397e+00 -5.52760959e-01 -1.55548409e-01 -3.71377617e-01 -5.07596612e-01 6.29095733e-01 3.99378628e-01 1.75189584e-01 -1.32441330e+00 -4.01547492e-01 3.27747315e-01 -4.22078073e-01 -1.21064651e+00 -9.65483606e-01 8.26886237e-01 -6.87572241e-01 -6.61123693e-01 -8.28101933e-01 -9.52297747e-01 2.00193554e-01 1.97988138e-01 1.52643919e+00 -3.08521897e-01 2.77869049e-02 4.56402868e-01 -4.31941807e-01 -6.41638458e-01 -7.42000103e-01 7.44653642e-01 6.01309836e-01 -5.04167676e-01 7.34607339e-01 -2.50802189e-01 2.91192811e-02 3.14952105e-01 -9.33506906e-01 2.29690596e-01 5.30091763e-01 9.25110877e-01 4.09986854e-01 -4.57832187e-01 7.86766112e-01 -1.24181855e+00 9.75557983e-01 -6.54638290e-01 -3.62390697e-01 4.52921659e-01 -6.05159998e-01 2.79949427e-01 8.00344408e-01 -8.06829453e-01 -1.22078586e+00 -2.87716925e-01 -6.39270842e-02 -2.90792644e-01 -3.70132089e-01 5.73360443e-01 3.38239074e-01 5.64594269e-02 1.41675699e+00 2.88573951e-01 -5.96235573e-01 -7.12022483e-01 6.31535649e-01 6.65983737e-01 5.59760451e-01 -1.07785213e+00 4.28134322e-01 -1.12690240e-01 -6.22703552e-01 -7.76051342e-01 -1.02290595e+00 -5.36893010e-01 -4.33549196e-01 1.35623291e-01 6.14187896e-01 -1.07740319e+00 -2.19078556e-01 2.99181372e-01 -1.18269384e+00 -1.16211987e+00 -4.59438235e-01 4.50578332e-01 -5.30834138e-01 -2.09960327e-01 -8.68702531e-01 -2.80611753e-01 -4.79320973e-01 -1.09974849e+00 1.03540003e+00 5.41273803e-02 -5.77504635e-01 -1.40920508e+00 3.47370774e-01 9.30546373e-02 7.26541400e-01 -6.75475419e-01 1.15557659e+00 -1.24201977e+00 2.43856050e-02 3.43240887e-01 -1.16425827e-01 1.58372462e-01 9.27688554e-02 -6.92027688e-01 -1.15263832e+00 -5.83640158e-01 6.24025008e-04 -9.54856813e-01 1.00244486e+00 2.42919669e-01 6.34926617e-01 -4.21008885e-01 -2.36314967e-01 7.79737115e-01 1.17464244e+00 -1.11278892e-01 -1.50515407e-01 5.92589319e-01 3.97951037e-01 6.39098465e-01 6.02016449e-01 5.25235943e-02 4.92608458e-01 5.53195715e-01 -2.52949566e-01 -1.93628632e-02 -4.22267437e-01 -4.36009496e-01 5.85193574e-01 9.92294729e-01 3.20050418e-01 -1.47358403e-01 -1.20249522e+00 7.80477405e-01 -1.50215793e+00 -5.14972866e-01 5.65948673e-02 2.00794196e+00 1.44282353e+00 1.67784929e-01 -9.41991210e-02 -7.63529241e-01 3.83625716e-01 -3.49113233e-02 -7.24044919e-01 -6.84395850e-01 -3.34505081e-01 4.59064156e-01 5.76477945e-01 9.05530691e-01 -9.82604086e-01 1.75023413e+00 5.90964890e+00 1.06082928e+00 -1.20939457e+00 7.81297684e-01 5.31069279e-01 -2.85474122e-01 -5.66337764e-01 -1.68396831e-02 -1.22371781e+00 1.70715004e-01 1.21748579e+00 -4.93702054e-01 8.18402410e-01 6.74055755e-01 1.11320280e-02 3.34634632e-02 -1.28831947e+00 6.78093314e-01 -9.55536962e-03 -9.83965755e-01 2.34034494e-01 -1.87432081e-01 1.17606127e+00 8.96125853e-01 6.94805533e-02 1.17923713e+00 8.03153217e-01 -9.27682757e-01 6.83225989e-01 3.38272005e-01 1.35227203e+00 -3.76824617e-01 3.39307994e-01 8.53578985e-01 -7.42610633e-01 9.16457921e-03 -6.75582886e-01 -3.09209168e-01 -3.26289833e-02 2.38880798e-01 -1.23016930e+00 2.27592364e-01 8.96005332e-01 3.28127623e-01 -8.29642832e-01 5.42727590e-01 -2.73111075e-01 6.32419109e-01 -1.81841522e-01 2.38326564e-02 3.88993084e-01 3.51963997e-01 5.51199973e-01 1.52771449e+00 2.92740941e-01 -2.25591138e-01 4.94598657e-01 5.14437914e-01 -3.10709417e-01 4.64926541e-01 -8.66258681e-01 -7.35902712e-02 4.54339504e-01 1.21541834e+00 -2.34827384e-01 -5.84163129e-01 -6.58089936e-01 8.75745714e-01 7.97235727e-01 7.07852960e-01 -3.02841067e-01 -1.61497355e-01 4.81258929e-01 2.26952627e-01 -4.29949552e-01 -2.00635552e-01 -1.91749468e-01 -1.34684932e+00 -3.47163171e-01 -1.25578749e+00 5.52846313e-01 -8.52274477e-01 -1.52885318e+00 8.22607756e-01 2.94027459e-02 -6.36690736e-01 -5.61895609e-01 -7.65702486e-01 -3.48355234e-01 1.27324545e+00 -1.41623890e+00 -1.18624043e+00 3.97064462e-02 8.88129950e-01 1.29801250e+00 -5.63629448e-01 1.15479243e+00 1.67028382e-01 -1.82476193e-01 7.64784694e-01 8.55575949e-02 -1.20539322e-01 1.59583211e+00 -1.22938406e+00 8.96495461e-01 8.46624255e-01 3.63502175e-01 8.11440468e-01 7.61917830e-01 -8.61398876e-01 -9.22336161e-01 -1.14541936e+00 1.56302130e+00 -8.34002495e-01 9.93049562e-01 -5.29883265e-01 -9.47476983e-01 1.25278831e+00 5.82404554e-01 -2.37491786e-01 4.98806626e-01 6.27700508e-01 -5.48864901e-01 7.62753189e-02 -6.64830208e-01 6.59550309e-01 1.22726762e+00 -8.58541548e-01 -7.81156838e-01 7.87967026e-01 1.20611298e+00 -3.50018740e-01 -6.71950161e-01 2.91942567e-01 1.97416708e-01 -4.70759451e-01 6.16521001e-01 -1.09343112e+00 2.37194851e-01 2.64198929e-01 -3.74955386e-01 -1.99993932e+00 -5.94874442e-01 -5.06809950e-01 2.48797685e-01 9.64693606e-01 8.28151345e-01 -9.24590051e-01 1.05884574e-01 3.13554376e-01 -4.63231862e-01 -4.60429311e-01 -8.24774802e-01 -1.20398235e+00 6.13082409e-01 -6.52146518e-01 3.15418392e-01 1.29633510e+00 8.41439217e-02 9.17388797e-01 -2.66909391e-01 -3.80066991e-01 3.98012817e-01 -3.08296412e-01 6.79223776e-01 -1.01467812e+00 -5.57323813e-01 -3.87064338e-01 5.74154735e-01 -9.43391323e-01 5.05881786e-01 -1.54300523e+00 1.51748598e-01 -1.27587497e+00 4.91642088e-01 -5.90903997e-01 -2.99426883e-01 9.57825243e-01 -4.40037459e-01 1.23925917e-01 2.04774395e-01 2.95702219e-01 -5.49573839e-01 2.42029324e-01 1.30255437e+00 -2.23813236e-01 -1.81014448e-01 -1.71661556e-01 -8.20474803e-01 5.03778756e-01 9.39794838e-01 -6.38310790e-01 -4.63658988e-01 -9.77762938e-01 2.98877478e-01 -2.74068028e-01 -6.90074861e-02 -8.51212859e-01 3.22497606e-01 -1.71299279e-01 2.42852941e-01 -1.16741098e-03 8.86374936e-02 -2.52129614e-01 -2.96154529e-01 3.87108862e-01 -6.05105639e-01 4.21022058e-01 6.42601132e-01 4.25915048e-02 1.26512572e-01 -2.30630919e-01 6.47797883e-01 -5.68891048e-01 -1.07425761e+00 3.39166284e-01 -2.84544885e-01 7.01582849e-01 6.29714847e-01 4.18525130e-01 -7.41159022e-01 -2.29171291e-01 -7.69059539e-01 3.10322016e-01 4.67939019e-01 9.24717724e-01 2.23292872e-01 -1.12771583e+00 -1.18254125e+00 2.90003985e-01 5.14931560e-01 -3.42770100e-01 2.59901732e-01 8.34534943e-01 -2.88427733e-02 8.65808785e-01 -1.31799802e-01 -4.95874494e-01 -9.44736838e-01 7.73180664e-01 1.70096070e-01 -4.91300553e-01 -1.94076791e-01 1.13107061e+00 5.94981790e-01 -1.28789735e+00 7.37596005e-02 -3.31347793e-01 1.97883472e-01 9.43097007e-03 4.26364303e-01 1.97393641e-01 2.46597722e-01 -3.26393932e-01 -1.93433538e-01 2.16474488e-01 -4.73003000e-01 -4.78867143e-01 9.55842912e-01 -6.22459315e-02 2.61041105e-01 8.08686614e-01 1.01047659e+00 7.22680613e-02 -1.05690277e+00 -8.96056533e-01 2.24458829e-01 -2.59215315e-03 -1.38087943e-01 -1.38850391e+00 -3.41430664e-01 9.63213801e-01 4.23356891e-01 -1.68113664e-01 7.92604387e-01 3.46055448e-01 8.28795433e-01 7.21596003e-01 6.97307825e-01 -1.20712852e+00 5.60452119e-02 1.29371691e+00 8.46937120e-01 -1.49661803e+00 -6.54418528e-01 2.92445123e-01 -6.78116560e-01 7.74379432e-01 1.01086366e+00 2.61122137e-01 3.13622534e-01 2.83291936e-01 4.01972055e-01 1.47632807e-01 -1.22104514e+00 -2.08663017e-01 3.76672477e-01 6.50154054e-01 8.65454257e-01 4.03834552e-01 -1.59711838e-01 8.39000702e-01 -5.65336823e-01 -1.46176992e-02 1.46410182e-01 6.09207213e-01 -6.04274750e-01 -1.12793565e+00 -4.09502119e-01 4.78774309e-01 -3.33605319e-01 -9.65274572e-01 -2.91995943e-01 7.36392975e-01 1.31282851e-01 8.69052768e-01 -1.21968441e-01 -2.58512557e-01 4.85195488e-01 6.97460711e-01 5.21107078e-01 -1.26229465e+00 -8.82997870e-01 -2.09421720e-02 2.96331614e-01 -4.11169589e-01 3.51125181e-01 -5.35268426e-01 -9.92958009e-01 -2.36076713e-01 1.09181985e-01 7.49705508e-02 3.92041057e-01 1.01429796e+00 2.36064881e-01 5.00446141e-01 5.83166964e-02 -6.53334022e-01 -9.12553608e-01 -1.62205923e+00 -3.46432745e-01 4.58591223e-01 2.62139082e-01 -3.87008250e-01 -9.87612158e-02 -1.19425217e-02]
[11.067535400390625, 9.590680122375488]
e63f114d-f01d-4690-90bb-697bad77a2f8
taco-temporal-latent-action-driven
2306.13229
null
https://arxiv.org/abs/2306.13229v1
https://arxiv.org/pdf/2306.13229v1.pdf
TACO: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning
Despite recent progress in reinforcement learning (RL) from raw pixel data, sample inefficiency continues to present a substantial obstacle. Prior works have attempted to address this challenge by creating self-supervised auxiliary tasks, aiming to enrich the agent's learned representations with control-relevant information for future state prediction. However, these objectives are often insufficient to learn representations that can represent the optimal policy or value function, and they often consider tasks with small, abstract discrete action spaces and thus overlook the importance of action representation learning in continuous control. In this paper, we introduce TACO: Temporal Action-driven Contrastive Learning, a simple yet powerful temporal contrastive learning approach that facilitates the concurrent acquisition of latent state and action representations for agents. TACO simultaneously learns a state and an action representation by optimizing the mutual information between representations of current states paired with action sequences and representations of the corresponding future states. Theoretically, TACO can be shown to learn state and action representations that encompass sufficient information for control, thereby improving sample efficiency. For online RL, TACO achieves 40% performance boost after one million environment interaction steps on average across nine challenging visual continuous control tasks from Deepmind Control Suite. In addition, we show that TACO can also serve as a plug-and-play module adding to existing offline visual RL methods to establish the new state-of-the-art performance for offline visual RL across offline datasets with varying quality.
['Furong Huang', 'Hal Daumé III', 'Huazhe Xu', 'Jieyu Zhao', 'Shuang Ma', 'Yanchao Sun', 'Xiyao Wang', 'Ruijie Zheng']
2023-06-22
null
null
null
null
['contrastive-learning', 'contrastive-learning', 'continuous-control']
['computer-vision', 'methodology', 'playing-games']
[ 2.74011999e-01 2.36627180e-02 -5.97806931e-01 -9.54457093e-03 -7.98806787e-01 -5.92126846e-01 1.10741723e+00 5.32485470e-02 -5.11850893e-01 9.00837958e-01 3.62692118e-01 -3.01578879e-01 3.02167907e-02 -3.44072878e-01 -7.56964862e-01 -8.30771506e-01 -4.45591748e-01 3.99001926e-01 1.33667346e-02 -1.43855065e-01 1.58242106e-01 5.52316725e-01 -1.69098139e+00 1.55298963e-01 4.28302526e-01 8.02278519e-01 3.66365999e-01 7.98255086e-01 9.84972343e-02 1.36705101e+00 -5.65818310e-01 6.63461030e-01 4.08207953e-01 -6.76317275e-01 -7.11290896e-01 1.75018132e-01 2.82111704e-01 -6.19254172e-01 -6.43369496e-01 5.67321539e-01 5.67458689e-01 5.50955474e-01 4.53265846e-01 -1.40619969e+00 -4.93265271e-01 2.88512200e-01 -4.68065977e-01 1.91812649e-01 2.46122926e-01 1.25252616e+00 1.04511201e+00 -2.35957801e-01 8.82691085e-01 1.38890111e+00 1.52874768e-01 1.01068437e+00 -1.82134140e+00 -4.98958886e-01 7.31710970e-01 1.83495134e-01 -5.69289327e-01 -6.20594144e-01 5.97965717e-01 -3.25754583e-01 1.52209771e+00 -1.21634409e-01 1.13080800e+00 1.55847692e+00 8.57590884e-02 1.28780675e+00 1.37494886e+00 -1.14852600e-01 5.52370250e-01 -3.49078745e-01 -2.90604234e-01 8.59815061e-01 -3.04026157e-01 8.99054468e-01 -6.25114083e-01 4.03923355e-02 1.01383257e+00 -8.45000595e-02 -7.19335079e-02 -8.99573028e-01 -1.40087616e+00 7.24195123e-01 5.48120379e-01 -1.86696753e-01 -4.26892161e-01 9.42901194e-01 5.76639056e-01 4.70532298e-01 1.28319323e-01 7.57145703e-01 -5.50464988e-01 -4.92369980e-01 -3.66905332e-01 6.03138208e-01 2.58170187e-01 7.31537938e-01 6.48514092e-01 6.26885772e-01 -6.66799545e-01 3.38125229e-01 2.04574078e-01 5.90527475e-01 4.72768068e-01 -1.45776093e+00 3.36872220e-01 3.69883090e-01 4.36235160e-01 -2.93016225e-01 -3.85087729e-01 -2.19866022e-01 -4.45999026e-01 1.11014414e+00 4.61967736e-01 -3.27542275e-01 -1.25488770e+00 2.12224650e+00 3.03883165e-01 1.89918682e-01 2.43868962e-01 7.36438870e-01 5.41868396e-02 8.61427546e-01 3.99437636e-01 -3.13517302e-01 8.01368058e-01 -1.30322146e+00 -6.57427251e-01 -7.55195379e-01 4.87956554e-01 -1.31825343e-01 1.33217621e+00 2.64671177e-01 -1.11532545e+00 -5.49273789e-01 -9.78941798e-01 1.16872415e-01 -1.84338719e-01 8.99485201e-02 9.86822069e-01 -6.01992980e-02 -9.85106230e-01 8.11933637e-01 -1.33949602e+00 -1.11823328e-01 5.89571416e-01 3.43012571e-01 -3.12842906e-01 2.95351446e-01 -7.70520747e-01 1.08905005e+00 3.49419355e-01 -1.69597313e-01 -1.84492052e+00 -7.92370260e-01 -9.33820844e-01 -4.13833465e-03 8.55369270e-01 -5.40095270e-01 1.64970386e+00 -1.17064738e+00 -2.00058746e+00 3.00173879e-01 6.86805323e-03 -8.33576202e-01 5.06081760e-01 -2.79525429e-01 7.57703185e-02 1.35711238e-01 6.35871738e-02 1.01077795e+00 1.17564976e+00 -1.19018507e+00 -6.16262138e-01 -2.58132041e-01 3.60921264e-01 5.45804977e-01 2.31354848e-01 -4.25996691e-01 -2.88020194e-01 -5.12069821e-01 -4.79358643e-01 -9.34675753e-01 -6.75857544e-01 5.80087721e-01 8.88221189e-02 -2.90929258e-01 7.74278164e-01 -3.75481397e-01 8.59823346e-01 -2.08264995e+00 5.26958108e-01 -1.99056491e-01 1.78736299e-01 3.59642625e-01 -4.87595767e-01 4.01563883e-01 -6.26995116e-02 -3.01309586e-01 -2.16462806e-01 -4.24449235e-01 2.41768360e-01 4.17060167e-01 -5.14847636e-01 5.71474493e-01 3.60871136e-01 1.26631451e+00 -1.27461004e+00 -2.47010350e-01 6.87503159e-01 3.50946248e-01 -4.45428938e-01 4.89136755e-01 -8.78407598e-01 8.49926949e-01 -5.03820240e-01 2.28101447e-01 -9.39874128e-02 -2.09885016e-01 4.70257312e-01 3.27670932e-01 -1.60847336e-01 3.50385725e-01 -9.24009502e-01 1.84208882e+00 -5.43049872e-01 6.88123941e-01 1.38085619e-01 -1.00947821e+00 6.13633871e-01 2.42050484e-01 7.51905441e-01 -1.16804135e+00 -5.59471361e-02 -3.27771366e-01 -2.29139045e-01 -3.02584201e-01 1.77931041e-01 -9.75817293e-02 -7.95281306e-02 5.70909321e-01 1.69525340e-01 -3.11622709e-01 1.68430939e-01 1.20307975e-01 1.14861846e+00 1.04165518e+00 5.24529099e-01 1.64523005e-01 4.63764630e-02 1.92877844e-01 3.73554140e-01 7.44551778e-01 -5.06946683e-01 4.75542918e-02 7.64910400e-01 -4.45223838e-01 -1.09603345e+00 -1.24175000e+00 5.03890455e-01 1.20981395e+00 -1.40859917e-01 -3.36375803e-01 -2.69716591e-01 -8.37099850e-01 5.07727750e-02 7.69787669e-01 -9.04420853e-01 -4.52522427e-01 -6.79445267e-01 -1.99648097e-01 2.49157116e-01 7.64042437e-01 3.36983144e-01 -1.59468305e+00 -1.34924269e+00 3.27144504e-01 3.52914035e-01 -7.40887284e-01 -4.17310923e-01 6.30091548e-01 -8.70231092e-01 -1.15623796e+00 -5.88831067e-01 -4.89273667e-01 4.59640175e-01 6.27867803e-02 1.12613916e+00 -2.09960073e-01 -3.80504519e-01 8.26936603e-01 -5.36330342e-02 -2.11837515e-02 -4.39054221e-01 -3.02869827e-01 2.96880715e-02 -3.80370915e-01 -1.87824637e-01 -5.25283813e-01 -6.28769040e-01 -1.45267621e-01 -6.85769796e-01 3.21181417e-01 4.98372316e-01 1.06700420e+00 6.15457892e-01 -4.98355478e-01 4.51545984e-01 -3.71378213e-01 5.60612082e-01 -2.35459998e-01 -1.06560981e+00 1.49770886e-01 -7.91867673e-01 7.91659176e-01 8.05457950e-01 -6.74888015e-01 -1.11280465e+00 4.21326458e-01 2.38905638e-01 -7.26066232e-01 -1.22425027e-01 1.96209192e-01 3.26439053e-01 2.91504771e-01 7.30691135e-01 4.64478165e-01 4.69160080e-01 -2.64620095e-01 8.31578434e-01 -5.13712987e-02 4.57358688e-01 -6.87922895e-01 5.40294826e-01 4.08543825e-01 1.76812023e-01 -4.37492430e-01 -7.41142690e-01 -3.12455326e-01 -3.25589806e-01 -2.94963598e-01 7.73559034e-01 -8.86960924e-01 -1.24138594e+00 2.79482037e-01 -5.78060806e-01 -1.30305040e+00 -8.62344921e-01 3.46232355e-01 -1.23550117e+00 1.31135046e-01 -3.81698519e-01 -1.05071902e+00 -2.03679856e-02 -1.20914972e+00 1.04627049e+00 1.22616656e-01 -1.30004093e-01 -9.41008031e-01 3.99391204e-01 -8.37459639e-02 3.33893925e-01 3.98248255e-01 7.31068909e-01 -5.86411320e-02 -5.96273959e-01 2.87431628e-01 1.04503430e-01 2.51109689e-01 1.58900186e-01 -9.31161419e-02 -8.05446148e-01 -7.41702020e-01 -5.00079274e-01 -1.01919556e+00 9.83031571e-01 4.99653429e-01 1.04086328e+00 -3.91816229e-01 -1.92816958e-01 4.06062126e-01 1.20251274e+00 4.08139855e-01 4.80367333e-01 2.80397415e-01 4.69094336e-01 3.18100274e-01 7.74850905e-01 7.21548378e-01 1.08366258e-01 8.28521430e-01 6.29247606e-01 -7.84856733e-03 -2.88031250e-01 -7.11390376e-01 9.32081938e-01 -2.97387056e-02 6.56334171e-03 7.12739304e-02 -6.60269797e-01 5.20327032e-01 -2.06320000e+00 -1.16485095e+00 6.92760766e-01 2.14756060e+00 9.68166351e-01 6.84655756e-02 3.56282830e-01 -2.80465961e-01 1.57481909e-01 5.82007766e-01 -1.31935501e+00 -1.94644377e-01 2.58819431e-01 4.53144193e-01 3.70620131e-01 6.13116026e-01 -1.20361006e+00 1.19145310e+00 6.62477112e+00 6.76871479e-01 -1.20036817e+00 -1.81893349e-01 4.56392944e-01 -5.01288652e-01 -8.74690339e-02 -6.06701151e-03 -4.43778902e-01 1.05904803e-01 1.03509223e+00 -6.34008646e-02 9.80629563e-01 9.54709351e-01 3.99275243e-01 -2.22267479e-01 -1.23685634e+00 8.38729978e-01 -3.30840051e-01 -1.46753120e+00 -1.38238162e-01 1.19586423e-01 8.45117986e-01 4.72779572e-02 4.21167463e-01 8.56595814e-01 8.84218574e-01 -1.19155729e+00 8.09088409e-01 4.84784544e-01 8.46772134e-01 -7.02096283e-01 -4.74296398e-02 3.29886973e-01 -1.20747852e+00 -4.78855103e-01 -6.63977116e-02 -3.37840408e-01 3.87447514e-02 -5.26468635e-01 -7.44014263e-01 -5.63125126e-02 4.35418755e-01 1.09275615e+00 -4.78520691e-01 5.48126221e-01 -4.33230430e-01 3.63424778e-01 -3.76379527e-02 -2.11600631e-01 8.53514612e-01 -6.40664250e-02 4.53461975e-01 6.00316644e-01 -2.02700362e-01 -2.31528699e-01 4.62125868e-01 8.62153292e-01 2.43645534e-01 -4.39996719e-01 -8.52420211e-01 -4.72262502e-01 1.14298403e-01 9.13676322e-01 -5.00619888e-01 -4.70774204e-01 -1.46884248e-01 1.02260292e+00 7.69403219e-01 5.91004074e-01 -9.35177147e-01 2.64176399e-01 1.12334514e+00 -2.49375671e-01 4.85807836e-01 -6.01113856e-01 1.78943187e-01 -1.05415010e+00 -2.99774200e-01 -1.13669145e+00 1.61227629e-01 -6.70264602e-01 -8.22370946e-01 9.15688872e-02 1.39406189e-01 -1.30259371e+00 -8.32075298e-01 -6.60469294e-01 -3.09310734e-01 4.62808102e-01 -1.30791020e+00 -1.04735839e+00 5.00161648e-02 7.23353684e-01 9.03474391e-01 -1.98477119e-01 8.93541157e-01 -3.63262266e-01 -4.50225443e-01 1.56618401e-01 2.16542393e-01 -2.57893592e-01 4.82260317e-01 -1.56548524e+00 5.01515508e-01 5.73536992e-01 1.97801918e-01 3.66345912e-01 6.90415978e-01 -4.89270091e-01 -1.74557745e+00 -9.88169014e-01 -5.98390736e-02 -4.05187607e-01 6.85826540e-01 -2.70253450e-01 -4.75518346e-01 9.55810249e-01 3.21605772e-01 2.62254566e-01 2.39648391e-02 -1.93009134e-02 -3.18171024e-01 2.77932212e-02 -8.14888537e-01 1.09481788e+00 1.13849664e+00 -6.59554243e-01 -4.44360465e-01 2.27192059e-01 7.16051996e-01 -3.36322486e-01 -4.20667619e-01 -4.04271670e-03 5.49167216e-01 -8.43353927e-01 1.17641342e+00 -1.16173148e+00 2.97405273e-01 -3.90728235e-01 4.66422848e-02 -1.49382699e+00 -3.02170008e-01 -9.28409815e-01 -5.66201866e-01 5.13535500e-01 1.78432330e-01 -3.90969455e-01 7.59494483e-01 3.81674767e-01 -7.57690370e-02 -8.32784295e-01 -9.04451787e-01 -8.15116405e-01 5.72854020e-02 -2.84077734e-01 1.97639510e-01 4.91683483e-01 -2.96916831e-02 4.87868398e-01 -6.73215628e-01 -1.79458171e-01 5.04116058e-01 1.74196556e-01 9.09338593e-01 -6.21309161e-01 -5.92255235e-01 -5.36401629e-01 -3.61306481e-02 -1.37713325e+00 5.74891508e-01 -5.79002619e-01 3.14646691e-01 -1.54872715e+00 -8.50022247e-04 -1.39694780e-01 -3.17698300e-01 8.53573442e-01 -8.99755731e-02 -2.83655256e-01 5.42941153e-01 -8.27350318e-02 -7.73257136e-01 1.17019796e+00 1.56609094e+00 -4.66470450e-01 -4.30519968e-01 -1.74669445e-01 -2.69924402e-01 4.23389167e-01 8.06021690e-01 -1.00754552e-01 -9.12096143e-01 -1.90799519e-01 -5.34309298e-02 3.52650374e-01 6.73730373e-01 -1.03208065e+00 -6.89550117e-02 -6.63377583e-01 3.66869509e-01 -1.66964203e-01 6.96272016e-01 -7.79354036e-01 -1.22031912e-01 8.63225937e-01 -8.77174616e-01 2.98228636e-02 3.73654544e-01 9.91488814e-01 1.35115877e-01 1.79219335e-01 7.77225852e-01 -3.98196995e-01 -1.16962349e+00 4.20353442e-01 -7.01524019e-01 6.59852549e-02 1.19378233e+00 1.01172119e-01 -3.36742312e-01 -5.59641778e-01 -9.11807001e-01 4.55476999e-01 3.21989745e-01 4.30177331e-01 6.66163862e-01 -1.24903464e+00 -3.31293941e-01 1.49880260e-01 9.10532251e-02 -3.07923228e-01 2.47843355e-01 4.63511437e-01 -1.47717908e-01 2.70434499e-01 -6.37384295e-01 -4.66267675e-01 -1.02246201e+00 9.78831887e-01 4.10441756e-01 -6.02787375e-01 -9.81037080e-01 4.54764515e-01 1.73097536e-01 -3.48927051e-01 4.14071143e-01 -4.40412611e-01 -1.22959018e-01 -1.99696999e-02 4.74478394e-01 2.21418425e-01 -6.69425070e-01 -1.67426482e-01 -1.88521426e-02 2.54116774e-01 1.75045520e-01 -5.19554079e-01 1.39931881e+00 5.66596631e-03 4.79934484e-01 6.37480497e-01 9.68777120e-01 -5.76471925e-01 -2.49945617e+00 -1.08427472e-01 -1.88596517e-01 -2.81176418e-01 1.38592273e-01 -9.54122901e-01 -9.90778565e-01 1.00318515e+00 8.49729300e-01 -1.67757273e-01 9.90746319e-01 -9.61431190e-02 2.53662169e-01 7.11552918e-01 4.59542751e-01 -1.22016335e+00 7.26176679e-01 5.51579654e-01 1.09598756e+00 -1.31673074e+00 -1.55281052e-02 5.06723583e-01 -1.08440244e+00 8.55041921e-01 8.46266508e-01 -2.47184351e-01 1.32887632e-01 2.01971784e-01 -9.69440490e-02 -1.28072619e-01 -1.40867567e+00 -6.36186481e-01 6.29211515e-02 8.74218524e-01 7.07431585e-02 6.83444887e-02 4.00507957e-01 -1.42946631e-01 3.41467530e-01 -8.70596245e-02 1.18938230e-01 1.21539426e+00 -3.84582102e-01 -1.08037496e+00 1.32921234e-01 2.60521203e-01 6.92537725e-02 1.27632141e-01 -6.61305487e-02 8.81515622e-01 -4.03287441e-01 6.04865432e-01 1.57624841e-01 -5.04674986e-02 1.68443665e-01 -3.97025049e-03 8.47581029e-01 -5.69244683e-01 -5.52939057e-01 4.10216264e-02 8.30287412e-02 -1.25497520e+00 -2.91800261e-01 -6.77474201e-01 -1.41966581e+00 -3.09789963e-02 3.75483513e-01 -2.57131934e-01 2.67901361e-01 8.09501112e-01 4.16312307e-01 8.60166669e-01 5.24205148e-01 -1.17783427e+00 -9.71917748e-01 -7.79321432e-01 -2.12819636e-01 3.69434983e-01 8.73501778e-01 -9.96052861e-01 -1.37396127e-01 -3.02924179e-02]
[4.245301246643066, 1.507858157157898]
0e6892e1-436c-4f4b-8eb3-5a84c7814405
faster-stochastic-first-order-method-for
2211.12880
null
https://arxiv.org/abs/2211.12880v1
https://arxiv.org/pdf/2211.12880v1.pdf
Faster Stochastic First-Order Method for Maximum-Likelihood Quantum State Tomography
In maximum-likelihood quantum state tomography, both the sample size and dimension grow exponentially with the number of qubits. It is therefore desirable to develop a stochastic first-order method, just like stochastic gradient descent for modern machine learning, to compute the maximum-likelihood estimate. To this end, we propose an algorithm called stochastic mirror descent with the Burg entropy. Its expected optimization error vanishes at a $O ( \sqrt{ ( 1 / t ) d \log t } )$ rate, where $d$ and $t$ denote the dimension and number of iterations, respectively. Its per-iteration time complexity is $O ( d^3 )$, independent of the sample size. To the best of our knowledge, this is currently the computationally fastest stochastic first-order method for maximum-likelihood quantum state tomography.
['Yen-Huan Li', 'Hao-Chung Cheng', 'Chung-En Tsai']
2022-11-23
null
null
null
null
['quantum-state-tomography']
['medical']
[ 2.18614265e-02 2.91113257e-02 1.20206647e-01 -3.56395394e-01 -1.20099092e+00 -3.76920730e-01 2.22848818e-01 8.45718384e-02 -9.78985071e-01 9.18759823e-01 -4.93258506e-01 -7.99597442e-01 5.33418022e-02 -7.56784379e-01 -5.07137418e-01 -8.42989802e-01 -3.60141903e-01 6.93175018e-01 7.15750530e-02 -5.67648187e-02 5.60225248e-01 3.55652988e-01 -9.41319823e-01 -6.96898103e-01 1.02299047e+00 1.03670347e+00 -1.44301221e-01 9.03364718e-01 6.48693964e-02 5.51017344e-01 -9.39260945e-02 -6.02172256e-01 2.36595422e-01 -1.04017138e+00 -9.78541672e-01 -2.89026588e-01 -8.31157193e-02 -3.88609111e-01 -7.25762308e-01 1.52572846e+00 4.54669386e-01 1.32724836e-01 5.38403749e-01 -4.61561203e-01 -2.61845328e-02 5.37931800e-01 -3.77138883e-01 2.57990479e-01 2.33398184e-01 5.14473431e-02 1.02901649e+00 -6.75022721e-01 6.55765593e-01 8.67132425e-01 2.57579327e-01 4.69991028e-01 -1.37506974e+00 -8.37164342e-01 -4.77528453e-01 7.96366856e-02 -1.65994167e+00 -4.43588436e-01 8.28654230e-01 -3.09654683e-01 9.40796077e-01 2.93881651e-02 6.88157618e-01 3.60659510e-01 1.03777967e-01 5.45823395e-01 1.44054294e+00 -7.71147609e-01 6.84058309e-01 2.99011767e-01 -1.10268891e-02 1.24840760e+00 3.83106232e-01 1.65771231e-01 -6.57047868e-01 -3.26158822e-01 7.27335334e-01 -4.61846530e-01 -1.92039624e-01 -3.84008676e-01 -1.11824441e+00 1.12246192e+00 -1.30820572e-02 2.63720065e-01 -2.57824808e-01 8.05267155e-01 2.80876011e-01 5.12502253e-01 4.39383149e-01 4.02941048e-01 -3.20324928e-01 -5.94448864e-01 -1.00976479e+00 6.67833090e-02 1.04394686e+00 6.61980271e-01 1.23425329e+00 -3.84508222e-02 5.07731616e-01 1.70105383e-01 3.66854966e-01 1.11688948e+00 -3.44422832e-02 -9.67499137e-01 4.15489435e-01 1.10638484e-01 5.14488459e-01 -2.79211253e-01 -2.20720261e-01 -4.31841671e-01 -9.46901798e-01 1.51526928e-01 7.36563146e-01 -5.33602834e-01 -5.74032187e-01 1.66338038e+00 3.59636009e-01 -8.93230289e-02 -4.02064025e-02 8.46939921e-01 -6.39167279e-02 4.63307261e-01 -5.40662825e-01 -5.46513736e-01 1.07710969e+00 -2.71228313e-01 -6.71870887e-01 -2.68200040e-01 9.30537760e-01 -7.48670518e-01 6.76726222e-01 3.82465512e-01 -1.21616483e+00 1.90003842e-01 -1.19613802e+00 1.56094879e-01 1.65974826e-01 -6.74860403e-02 9.66544688e-01 1.30963433e+00 -8.86663735e-01 9.99258876e-01 -1.09274864e+00 9.84519199e-02 2.44700443e-02 5.48907816e-01 -1.07864723e-01 -3.74579579e-02 -9.88423049e-01 7.82795250e-01 3.07130337e-01 1.68955147e-01 -7.57928789e-01 -1.76338609e-02 -5.93782365e-01 -1.63135111e-01 3.06527823e-01 -5.81595242e-01 1.18779492e+00 3.56321409e-02 -2.01126456e+00 8.50208402e-01 -6.65730417e-01 -6.92617536e-01 1.94628760e-01 1.49573237e-01 6.25660196e-02 2.73876876e-01 -5.72356023e-02 1.39123797e-01 6.56895876e-01 -5.22198319e-01 -2.88696647e-01 -6.58286691e-01 -1.52560160e-01 -1.96839288e-01 1.11855576e-02 -4.34086323e-02 -2.87648104e-02 5.44576228e-01 9.07324135e-01 -1.35976148e+00 -5.02021909e-01 -1.84081912e-01 -3.56045216e-01 -9.31915420e-04 4.40889336e-02 -2.94128150e-01 9.80267942e-01 -1.96624279e+00 2.83694357e-01 3.84438753e-01 2.36983061e-01 1.18964188e-01 3.66720885e-01 5.51626384e-01 3.31936985e-01 2.60340758e-02 -4.69828814e-01 -4.53406870e-01 1.36603162e-01 -1.54002041e-01 -6.90795109e-02 9.50214684e-01 -6.85396269e-02 6.80025935e-01 -9.87872839e-01 -2.50743747e-01 5.01301363e-02 1.95831299e-01 -6.10896230e-01 -2.31400311e-01 1.14927851e-01 5.30648232e-01 -7.58672833e-01 3.53258729e-01 8.09932888e-01 -5.97452641e-01 4.06636506e-01 2.51211748e-02 -3.75236452e-01 8.61433029e-01 -1.45356321e+00 1.87797081e+00 -2.80454904e-01 5.49244702e-01 1.64244205e-01 -1.02011561e+00 7.84986913e-01 3.68469179e-01 2.84706831e-01 -5.97699821e-01 4.18538719e-01 1.04115558e+00 4.10950705e-02 -2.81665444e-01 4.61265802e-01 -8.16090822e-01 -3.40426743e-01 8.97632182e-01 -3.66753675e-02 -5.49257100e-01 4.08217877e-01 3.43992084e-01 1.12895799e+00 -3.18652093e-01 3.26281577e-01 -3.25915933e-01 3.23217958e-01 -1.63931653e-01 4.24955994e-01 1.02989721e+00 -4.20824945e-01 -4.56829257e-02 7.95356810e-01 -2.69862980e-01 -1.23815584e+00 -1.08276808e+00 -2.38350600e-01 5.08492053e-01 3.71264488e-01 -4.60182697e-01 -8.61435235e-01 -2.01093957e-01 -2.44085282e-01 6.85152888e-01 -1.55109793e-01 -2.17438117e-01 -5.64529300e-01 -9.73677576e-01 6.05233729e-01 -1.33874968e-01 7.66050100e-01 -7.26525486e-01 -4.86386865e-01 4.55196530e-01 6.49891794e-02 -1.02526712e+00 -2.00954646e-01 5.75700521e-01 -1.18020773e+00 -7.15217471e-01 -4.36004132e-01 -4.24409956e-01 6.44162238e-01 -1.18917592e-01 7.17302501e-01 -3.32657188e-01 -2.33355358e-01 -1.27728088e-02 -2.08516702e-01 -2.37328652e-02 -4.99541789e-01 -1.21806543e-02 2.90807664e-01 -2.99238980e-01 5.13380706e-01 -7.21902728e-01 -7.51230419e-01 -3.76774579e-01 -5.76344728e-01 -2.42093816e-01 6.05425596e-01 9.87048388e-01 5.93984485e-01 -1.44403912e-02 -2.96268463e-01 -7.11895704e-01 5.61731517e-01 -8.04131571e-03 -1.22380233e+00 -3.85365412e-02 -7.22643554e-01 7.08577991e-01 6.98796868e-01 -1.64878760e-02 -6.17503464e-01 1.46666706e-01 -2.54923165e-01 2.69582391e-01 1.90409452e-01 8.38879228e-01 6.10747039e-01 -5.13396740e-01 6.56375647e-01 7.28272021e-01 -2.01319233e-01 -5.02647698e-01 3.18014771e-01 6.13739371e-01 1.51466772e-01 -5.34917116e-01 9.10968006e-01 7.48366594e-01 6.68810010e-01 -7.04056263e-01 -9.36710000e-01 -2.86568224e-01 -5.99802971e-01 2.23969951e-01 6.15550816e-01 -6.53944910e-01 -1.07772374e+00 4.79831576e-01 -1.06384146e+00 -1.82074264e-01 -1.88667804e-01 1.11749446e+00 -6.44875050e-01 6.85654938e-01 -7.10092366e-01 -1.53413343e+00 -5.26112735e-01 -1.22500789e+00 8.71218562e-01 8.19740295e-02 3.07126701e-01 -7.03196824e-01 7.36546516e-02 1.93406835e-01 3.98076683e-01 -1.88802391e-01 6.29353285e-01 -9.74042043e-02 -1.06637275e+00 -4.72576708e-01 -2.26063550e-01 2.44324252e-01 -2.49366075e-01 -5.54508209e-01 -6.11257970e-01 -4.40352291e-01 5.71672559e-01 -4.21819001e-01 8.97878230e-01 2.02500850e-01 5.93267083e-01 -1.87851369e-01 -6.03646077e-02 6.59746945e-01 1.53741729e+00 7.33302087e-02 5.99493742e-01 -4.11798283e-02 2.17908621e-01 -6.52910993e-02 5.57651699e-01 7.42928505e-01 8.94354731e-02 2.60132074e-01 1.34561121e-01 3.46383065e-01 3.67883533e-01 -1.79405779e-01 3.08039337e-01 1.18785858e+00 -8.50980505e-02 -1.49971694e-02 -8.52406561e-01 3.00108761e-01 -1.33748281e+00 -9.49272275e-01 -2.24958003e-01 2.63006115e+00 1.01842809e+00 3.94392371e-01 -1.89488396e-01 1.29151374e-01 4.08652216e-01 7.48740062e-02 -7.08628237e-01 -4.81061846e-01 7.89996237e-02 7.92378485e-01 9.27775383e-01 7.34122574e-01 -7.33628809e-01 1.02571440e+00 6.03888416e+00 9.64972019e-01 -1.10792446e+00 3.12232703e-01 4.28474426e-01 -2.69311577e-01 -1.96575776e-01 6.65222704e-01 -8.06429565e-01 5.56263626e-01 1.23436272e+00 -6.48945943e-02 8.23453605e-01 5.66794693e-01 7.80636072e-02 -5.96665144e-01 -8.18083465e-01 1.25193429e+00 -3.32436919e-01 -1.19169712e+00 -5.75668335e-01 4.67400700e-01 7.70517290e-01 4.30187285e-01 -3.23929340e-02 8.89845341e-02 1.07272349e-01 -6.89974010e-01 3.59935462e-01 1.54072687e-01 8.86295140e-01 -8.93261909e-01 6.87674165e-01 7.12050855e-01 -1.09918547e+00 1.94516256e-01 -5.83656371e-01 -1.83944136e-01 6.85145378e-01 1.04157007e+00 -7.61866152e-01 5.29503040e-02 2.71892637e-01 -6.62494153e-02 1.35347590e-01 9.06581700e-01 -4.06449676e-01 6.21876359e-01 -9.93486047e-01 -7.53025889e-01 5.65037251e-01 -9.25841749e-01 6.51015520e-01 9.13558841e-01 5.98996580e-01 3.44579011e-01 -1.96902707e-01 8.44149590e-01 -1.45362541e-01 -8.57647061e-02 -2.99292117e-01 -5.59117913e-01 6.30764306e-01 7.82516360e-01 -7.38433778e-01 -2.83748895e-01 -1.41440451e-01 1.24998057e+00 3.60425860e-01 1.05117112e-01 -5.30701637e-01 -7.50746906e-01 4.12607878e-01 -1.31548047e-01 6.08744383e-01 -1.11297405e+00 -1.74378887e-01 -1.38675308e+00 2.99318284e-01 -3.30594122e-01 -9.30934474e-02 -4.11573499e-02 -9.23857152e-01 2.36446172e-01 -2.95197994e-01 -8.25351000e-01 -4.02641892e-01 -5.59949934e-01 -1.31245643e-01 1.00703120e+00 -1.46407104e+00 -3.15747768e-01 5.01907885e-01 1.92545846e-01 -2.64426500e-01 4.99094762e-02 1.07248139e+00 -6.05016313e-02 -4.05054152e-01 5.40296376e-01 9.49383140e-01 7.91616738e-02 1.36905670e-01 -1.23602188e+00 5.82147896e-01 8.63943398e-01 4.38147373e-02 8.80974472e-01 1.06652904e+00 -4.67920035e-01 -1.90234077e+00 -2.06768036e-01 1.24010980e+00 1.90263897e-01 1.06952941e+00 -6.15003109e-01 -5.17633557e-01 3.54426473e-01 -2.79564530e-01 1.50296176e-02 8.16698074e-01 1.53945982e-01 -2.87589192e-01 -8.05497766e-02 -1.28976846e+00 5.19559860e-01 9.13403988e-01 -1.25903392e+00 7.00860396e-02 6.28049314e-01 2.23803669e-01 -4.09217834e-01 -1.07195079e+00 1.19646132e-01 4.61987168e-01 -1.11044371e+00 5.16377091e-01 -4.98503856e-02 -3.02600473e-01 -1.38827696e-01 -2.06513360e-01 -7.95953274e-01 4.23563272e-02 -1.33400297e+00 -2.55722225e-01 2.85248250e-01 6.73923314e-01 -9.42687273e-01 1.23003662e+00 7.06573844e-01 3.72565866e-01 -6.63910568e-01 -1.62291014e+00 -9.10737574e-01 3.52200091e-01 -4.68499273e-01 1.10316224e-01 4.03237522e-01 3.42486531e-01 4.15852219e-01 -5.31098247e-01 1.54403113e-02 9.93526995e-01 3.69698018e-01 5.53623974e-01 -9.19345796e-01 -7.10641444e-01 -2.47764856e-01 -4.53713685e-01 -1.73206151e+00 -1.81533188e-01 -6.93596661e-01 6.70112744e-02 -9.35270190e-01 4.46906805e-01 -4.17327613e-01 -2.01967254e-01 -2.20390797e-01 1.83064416e-02 8.00701082e-02 -1.05904035e-01 3.21780294e-02 -7.45083809e-01 8.48825514e-01 1.10869122e+00 2.04745904e-01 -1.61488861e-01 5.33380620e-02 -2.64148563e-01 5.66799402e-01 9.46981490e-01 -1.01157188e+00 1.27878606e-01 -3.26148629e-01 6.97772920e-01 6.09050214e-01 7.70803243e-02 -1.01091921e+00 4.44508225e-01 -5.15630692e-02 -3.16205651e-01 -5.66476226e-01 7.57375598e-01 2.81460350e-03 -1.55518442e-01 8.43414783e-01 -5.07834889e-02 -3.39474171e-01 -2.94874400e-01 5.77470958e-01 -8.40756446e-02 -9.35458243e-01 9.73795474e-01 -4.15741593e-01 -1.07942067e-01 2.82501161e-01 -5.78444719e-01 -1.35576218e-01 4.42939818e-01 5.79189323e-02 -5.02947494e-02 -6.44249201e-01 -4.04246122e-01 -2.30943486e-01 4.77311552e-01 -7.36054838e-01 5.42906463e-01 -9.90843475e-01 -5.99355996e-01 2.99879070e-02 -3.29215050e-01 -1.17909767e-01 2.84963548e-01 1.23075330e+00 -7.74594605e-01 7.18765438e-01 5.55142045e-01 -4.51910228e-01 -8.24025214e-01 1.26060128e-01 4.14382577e-01 -5.20129800e-01 -2.48294994e-01 1.29786718e+00 -4.41026330e-01 -3.30436975e-01 -2.19186753e-01 8.31079781e-02 7.78553963e-01 -5.05623996e-01 5.36284149e-01 4.13088053e-01 -1.60904184e-01 -4.78077382e-01 -2.30262145e-01 4.85452265e-01 -1.99098751e-01 -7.41240561e-01 1.03449035e+00 -1.35661736e-01 -4.99878675e-01 4.32775497e-01 1.59968901e+00 6.84268726e-03 -9.98898089e-01 -4.79576111e-01 1.15929857e-01 -2.42778391e-01 2.00082019e-01 -1.66362837e-01 -5.18972337e-01 1.10226238e+00 6.80219412e-01 3.85948360e-01 6.56487763e-01 1.19155698e-01 1.12110436e+00 1.17532837e+00 1.07253182e+00 -1.17484593e+00 -1.99815586e-01 8.66741776e-01 1.73771568e-02 -1.32546473e+00 1.62695989e-01 -2.23849773e-01 -8.44057743e-03 1.04770780e+00 -8.83927345e-02 -3.11142206e-01 6.15597188e-01 1.54416580e-02 -3.82403314e-01 -2.67920732e-01 -3.86997253e-01 -1.99443445e-01 -7.24862963e-02 4.37301444e-03 5.11225879e-01 2.96805501e-01 -7.45897055e-01 -1.75043419e-01 -5.62435567e-01 1.19620457e-03 5.71084142e-01 1.09069812e+00 -8.94149065e-01 -1.49280918e+00 -1.10625580e-01 3.95013332e-01 -4.83867586e-01 -3.01090002e-01 -2.61228055e-01 4.15914714e-01 -3.49661469e-01 1.09964204e+00 -3.14609230e-01 -1.03790641e-01 -1.52256504e-01 1.90420508e-01 9.98767793e-01 -4.00089890e-01 5.04810885e-02 -2.27502100e-02 2.29600798e-02 -4.19671893e-01 -2.84647554e-01 -7.44627655e-01 -1.43467653e+00 -7.82924354e-01 -7.74745762e-01 6.76132560e-01 1.22797906e+00 1.15210712e+00 1.34415865e-01 -3.08347642e-01 7.57633209e-01 -5.58769464e-01 -1.17134964e+00 -8.98129404e-01 -9.83061731e-01 -1.07640132e-01 1.51093021e-01 -2.79544890e-01 -7.71204531e-01 -7.46058762e-01]
[5.7243170738220215, 4.8523478507995605]
a7518356-ac26-41a3-8b53-2b1376008e2f
very-fast-streaming-submodular-function
2010.10059
null
https://arxiv.org/abs/2010.10059v5
https://arxiv.org/pdf/2010.10059v5.pdf
Very Fast Streaming Submodular Function Maximization
Data summarization has become a valuable tool in understanding even terabytes of data. Due to their compelling theoretical properties, submodular functions have been in the focus of summarization algorithms. These algorithms offer worst-case approximations guarantees to the expense of higher computation and memory requirements. However, many practical applications do not fall under this worst-case, but are usually much more well-behaved. In this paper, we propose a new submodular function maximization algorithm called ThreeSieves, which ignores the worst-case, but delivers a good solution in high probability. It selects the most informative items from a data-stream on the fly and maintains a provable performance on a fixed memory budget. In an extensive evaluation, we compare our method against $6$ other methods on $8$ different datasets with and without concept drift. We show that our algorithm outperforms current state-of-the-art algorithms and, at the same time, uses fewer resources. Last, we highlight a real-world use-case of our algorithm for data summarization in gamma-ray astronomy. We make our code publicly available at https://github.com/sbuschjaeger/SubmodularStreamingMaximization.
['Lukas Pfahler', 'Katharina Morik', 'Philipp-Jan Honysz', 'Sebastian Buschjäger']
2020-10-20
null
null
null
null
['data-summarization']
['miscellaneous']
[ 2.10120622e-02 5.89914024e-02 -4.31382209e-01 -3.96466166e-01 -1.02653170e+00 -5.71377635e-01 8.59324262e-02 5.82188189e-01 -3.87923360e-01 9.85360980e-01 1.76448092e-01 -1.92544591e-02 -4.92289960e-01 -6.66426480e-01 -8.85065138e-01 -8.62238824e-01 -9.78596658e-02 9.65322077e-01 2.33877137e-01 -2.87936274e-02 3.15673947e-01 2.89904952e-01 -1.42920899e+00 4.80854101e-02 9.71780539e-01 1.08551466e+00 1.66176751e-01 5.46667218e-01 -1.06269941e-01 4.42522138e-01 -7.12359071e-01 -4.17339236e-01 3.71678710e-01 -3.48608822e-01 -6.49657607e-01 3.52189302e-01 2.58138716e-01 -2.10026875e-01 -3.57492656e-01 9.36879575e-01 7.42333651e-01 -1.27096772e-02 3.10840189e-01 -1.33093095e+00 -1.49668708e-01 6.66533411e-01 -7.54206121e-01 3.69124830e-01 2.99239039e-01 -1.04230672e-01 1.20373559e+00 -5.90070546e-01 6.50120795e-01 1.01617002e+00 4.10403758e-01 2.62110382e-01 -1.00799358e+00 -5.22958398e-01 3.71274799e-01 1.69727847e-01 -1.20797777e+00 -3.30682725e-01 5.68166077e-01 2.76798159e-02 9.00968492e-01 7.13176906e-01 6.96921647e-01 4.07353967e-01 2.22125396e-01 1.28433108e+00 5.57736158e-01 -7.28386194e-02 4.88814384e-01 -2.78160572e-02 4.47737664e-01 4.61099833e-01 8.71791005e-01 -3.61604780e-01 -8.98031950e-01 -7.63884425e-01 1.42472699e-01 1.84690669e-01 -5.88179469e-01 -4.62944329e-01 -1.03842092e+00 8.47403646e-01 3.28868292e-02 -1.47591121e-02 -5.62049985e-01 4.86203343e-01 2.51601964e-01 2.59361386e-01 5.79632461e-01 2.96155244e-01 -2.22093165e-01 -3.32965106e-01 -1.10220706e+00 7.50504375e-01 1.00714219e+00 1.11233985e+00 4.52024192e-01 -2.57843714e-02 -1.86683983e-01 6.84725702e-01 -2.68425737e-02 6.34364724e-01 3.33593518e-01 -8.99223864e-01 5.32211602e-01 5.53467155e-01 2.64619291e-01 -7.30407953e-01 -5.89416623e-01 -6.76454306e-01 -6.97571039e-01 -2.55708754e-01 1.58410788e-01 -1.51443526e-01 -6.08787835e-01 1.59523833e+00 4.69027370e-01 -1.03053071e-01 -5.34027703e-02 7.89118052e-01 4.87631947e-01 6.60877347e-01 -6.03134692e-01 -9.12283540e-01 1.04288614e+00 -6.13313019e-01 -6.90707266e-01 -4.34747525e-02 3.45195323e-01 -6.00914776e-01 6.15830898e-01 8.92306507e-01 -1.37977099e+00 2.37889633e-01 -1.01726508e+00 1.41150877e-01 3.53511602e-01 -5.16677499e-01 8.47609997e-01 7.78124034e-01 -9.89833176e-01 3.74381721e-01 -9.38908994e-01 -3.46315712e-01 5.02498329e-01 4.03687924e-01 1.33254841e-01 -1.18026614e-01 -5.45983970e-01 3.40408444e-01 3.36949289e-01 -4.13453311e-01 -7.78521299e-01 -8.03147972e-01 -4.11618561e-01 1.86836198e-01 8.23483169e-01 -1.06278884e+00 1.55433393e+00 -3.33870053e-01 -1.00751364e+00 5.34694850e-01 -5.89753866e-01 -8.06350589e-01 6.82771087e-01 -3.73920739e-01 6.81305304e-03 1.69478625e-01 -1.58330157e-01 2.20619321e-01 5.37283063e-01 -1.20577323e+00 -8.82710397e-01 -4.80310768e-01 -1.49586603e-01 3.23978126e-01 -5.40779710e-01 -1.83484286e-01 -5.86705565e-01 -6.40756905e-01 3.59096706e-01 -7.24691749e-01 -4.55498457e-01 -4.44588691e-01 -4.93230700e-01 -4.18441117e-01 4.38521326e-01 -3.12768131e-01 1.74216807e+00 -1.86628425e+00 2.46872157e-01 1.31576195e-01 3.58926773e-01 -1.80101916e-01 3.78766805e-01 6.18010223e-01 2.84289420e-01 2.96359789e-02 -7.22465694e-01 -6.25181973e-01 5.96780553e-02 1.60620883e-01 -3.90771240e-01 6.61600411e-01 -4.09631312e-01 6.68670714e-01 -9.28866565e-01 -2.21680254e-01 -2.38107830e-01 -2.14777082e-01 -8.31072032e-01 -1.62836656e-01 -5.95870078e-01 4.07718308e-03 -3.88114423e-01 7.99638510e-01 7.71828413e-01 -3.38961959e-01 2.44545549e-01 4.02045906e-01 -2.48201303e-02 3.51279564e-02 -1.42094576e+00 1.63938951e+00 -1.14090480e-01 4.41620409e-01 8.90770555e-02 -1.19441521e+00 7.73297787e-01 1.04884669e-01 9.80125904e-01 -4.45351809e-01 -1.42803891e-02 4.28128809e-01 -3.36921692e-01 -2.54548281e-01 9.17971313e-01 -1.01663120e-01 -2.32397258e-01 8.73101711e-01 -3.98926795e-01 -2.55034357e-01 5.16223431e-01 5.39887190e-01 1.21619284e+00 -5.23568392e-01 5.19670784e-01 -2.91162461e-01 -2.12058332e-02 1.01108260e-01 7.76021302e-01 9.91292834e-01 7.85686150e-02 9.58833575e-01 7.32813179e-01 -2.82324642e-01 -8.68473172e-01 -9.09620643e-01 -1.77553549e-01 8.06284726e-01 2.31258973e-01 -6.10732555e-01 -5.78635871e-01 -4.91154522e-01 3.88753623e-01 8.85967374e-01 -2.94279367e-01 8.28686953e-02 -5.54780126e-01 -1.37525976e+00 2.11287066e-01 1.56839341e-01 2.06657127e-01 -6.22130156e-01 -7.98843443e-01 2.83237815e-01 -2.74661034e-01 -8.88179660e-01 -4.25971329e-01 -3.72350030e-03 -1.07961178e+00 -9.13761079e-01 -7.76904881e-01 -3.70985538e-01 5.89096725e-01 6.13905191e-01 1.27492225e+00 -8.09897482e-02 -3.33691537e-01 5.96156657e-01 -3.25486600e-01 -9.76203620e-01 -3.56080644e-02 4.12443057e-02 1.30162522e-01 -7.41132349e-02 2.91755676e-01 -6.26152992e-01 -6.78147912e-01 1.48881003e-01 -1.16826272e+00 -4.46094930e-01 2.97866046e-01 6.25391543e-01 1.04253149e+00 2.46121034e-01 8.76130998e-01 -9.43392456e-01 6.12327099e-01 -8.81748319e-01 -8.35009873e-01 2.33627111e-01 -6.78990304e-01 7.54921660e-02 3.30172449e-01 -2.25598998e-02 -7.70319521e-01 -7.64760002e-03 8.18174928e-02 -2.68930286e-01 4.45830733e-01 5.80066621e-01 -2.73949560e-02 4.59885836e-01 6.66807413e-01 4.61069703e-01 6.94150031e-02 -4.61897761e-01 1.86542228e-01 7.47186005e-01 4.23159182e-01 -4.76559669e-01 6.06816709e-01 1.04829037e+00 1.07753448e-01 -9.38057184e-01 -8.26372802e-01 -8.63680124e-01 1.10175647e-01 -1.01371117e-01 2.41262645e-01 -7.70954609e-01 -5.85934460e-01 4.09460753e-01 -9.61068332e-01 8.32654089e-02 -5.68503737e-01 1.92343667e-01 -6.90282285e-01 5.69198370e-01 1.08478986e-01 -9.75860357e-01 -6.24723256e-01 -7.85826087e-01 8.37093949e-01 1.23344228e-01 -1.14797026e-01 -5.50430596e-01 8.00101236e-02 2.94649154e-01 1.76712796e-01 3.90252918e-01 5.77079356e-01 -6.74995720e-01 -9.28126931e-01 -3.20982099e-01 1.65166587e-01 1.44842952e-01 -6.03101663e-02 -3.07431430e-01 -6.57345474e-01 -5.32854617e-01 2.41888285e-01 -5.06259389e-02 1.18359184e+00 7.82414556e-01 1.44808471e+00 -3.94975305e-01 -3.21779758e-01 6.74673617e-01 1.32038689e+00 6.23906292e-02 5.14023185e-01 2.40504026e-01 2.85979241e-01 4.90192235e-01 9.38223958e-01 1.34843254e+00 4.48961586e-01 5.45932353e-01 6.80716395e-01 3.91133577e-01 1.92786902e-01 1.34366840e-01 3.56885463e-01 6.57503784e-01 9.96080264e-02 -8.40346634e-01 -7.74458408e-01 8.15691411e-01 -2.26999164e+00 -9.91741657e-01 -2.56154418e-01 2.59962583e+00 7.30649650e-01 2.02374294e-01 5.18194556e-01 1.33603588e-01 5.37662208e-01 1.30802095e-01 -8.74913990e-01 -2.49616876e-01 -4.06851918e-01 -5.76140964e-03 8.27233851e-01 4.09647077e-01 -7.64030516e-01 4.59669679e-01 5.97848415e+00 8.18959415e-01 -7.72226036e-01 9.90884826e-02 6.39693379e-01 -1.10133755e+00 -8.18561554e-01 -1.98915809e-01 -9.89549875e-01 4.93912876e-01 7.52891541e-01 -8.16779077e-01 3.64921749e-01 8.09321702e-01 1.68625325e-01 -4.82689738e-01 -1.13061476e+00 1.26212740e+00 3.48076552e-01 -1.61647749e+00 1.94906835e-02 2.33658507e-01 9.21075046e-01 1.00235008e-01 9.08372998e-02 -8.77349302e-02 1.85392261e-01 -7.85382688e-01 6.65246010e-01 3.04870069e-01 4.31510329e-01 -1.07545877e+00 7.13498890e-01 4.65521187e-01 -7.04990089e-01 -2.37313285e-01 -4.93833393e-01 8.22671726e-02 5.26856601e-01 1.27882075e+00 -9.24786150e-01 9.86370385e-01 7.46317506e-01 3.67796689e-01 -1.99031577e-01 1.43496346e+00 2.63486058e-01 6.34632289e-01 -8.65089417e-01 -2.54082173e-01 7.13662803e-02 -7.89875016e-02 1.05361152e+00 1.04876363e+00 6.50533915e-01 1.44058391e-01 7.49475658e-02 2.91689306e-01 -3.61770332e-01 1.29733130e-01 -5.02449393e-01 -3.73727009e-02 6.58072114e-01 8.46842468e-01 -6.71587586e-01 -2.79123336e-01 -2.92642295e-01 6.48987174e-01 1.55228242e-01 1.82813436e-01 -8.02293181e-01 -3.19676548e-01 6.98574007e-01 4.11806762e-01 3.89794737e-01 -1.91252276e-01 -6.52628839e-01 -9.98042107e-01 4.58905429e-01 -8.29044104e-01 9.45571303e-01 -1.29597500e-01 -1.02885902e+00 2.10236087e-01 2.45126501e-01 -1.10726595e+00 -2.97718525e-01 -9.73366648e-02 -3.36840183e-01 2.83037663e-01 -1.25794208e+00 -3.49885732e-01 -3.21682692e-01 3.26933533e-01 5.91176927e-01 -1.20013915e-01 2.82844305e-01 1.59080535e-01 -5.03621399e-01 5.64403951e-01 5.85532427e-01 -7.08377659e-01 6.02074742e-01 -1.31301117e+00 3.00593108e-01 9.64801610e-01 1.31150649e-03 3.41644943e-01 1.08729410e+00 -6.24902666e-01 -1.71351016e+00 -8.62382174e-01 8.50311220e-01 -3.30188990e-01 3.93457025e-01 -2.24988222e-01 -7.39814520e-01 6.59903884e-01 7.55131394e-02 -3.20895165e-01 6.82860255e-01 1.56968102e-01 9.26213041e-02 -4.14569408e-01 -1.15896821e+00 3.85791451e-01 1.22736275e+00 2.90331274e-01 -4.48572844e-01 7.40290940e-01 8.12855780e-01 -4.39316899e-01 -6.00821555e-01 4.16859895e-01 2.40170121e-01 -1.10777473e+00 8.87446582e-01 -3.24028730e-01 2.48867199e-01 -2.11212516e-01 -2.51641989e-01 -1.11829174e+00 2.86183544e-02 -1.19552600e+00 -4.99448597e-01 9.60654080e-01 3.30846369e-01 -7.66114235e-01 9.55141485e-01 4.39127296e-01 -2.44104251e-01 -1.08648705e+00 -1.15949893e+00 -1.19263732e+00 -1.32336468e-01 -6.43297076e-01 6.30244076e-01 5.19236982e-01 3.28542739e-02 6.02833834e-03 -5.07136345e-01 1.28347188e-01 9.36824083e-01 5.66399217e-01 9.37225521e-01 -1.03849483e+00 -5.83131075e-01 -4.89484131e-01 -1.65055409e-01 -1.34485126e+00 -2.95857012e-01 -9.06976223e-01 -1.02413848e-01 -1.70049429e+00 5.66952229e-01 -3.70199591e-01 -2.35177532e-01 1.21526994e-01 -2.30644673e-01 -3.53672095e-02 1.84292585e-01 2.05350995e-01 -1.00778592e+00 6.35861337e-01 8.21259618e-01 -4.00405086e-04 -4.60273385e-01 3.88035417e-01 -1.10224140e+00 5.02312899e-01 1.02346909e+00 -6.47957563e-01 -4.43532825e-01 -4.52841997e-01 5.20327151e-01 1.04317956e-01 -1.25921205e-01 -8.19235325e-01 4.59882617e-01 -2.36566871e-01 -2.07649991e-01 -1.00948334e+00 2.09065840e-01 -4.38030452e-01 1.91685900e-01 6.72467291e-01 8.13823845e-03 1.05650373e-01 1.14839733e-01 8.93586576e-01 -2.16101766e-01 -5.09988964e-01 7.17256486e-01 -6.51297672e-03 -3.27774763e-01 5.61208367e-01 -8.25424865e-02 3.68027747e-01 1.30636454e+00 -4.79709394e-02 -4.53516155e-01 -6.53947055e-01 -2.88534135e-01 7.47907102e-01 4.26656157e-01 3.77522223e-02 7.15603590e-01 -9.24723923e-01 -1.14951777e+00 -3.05704057e-01 5.69558218e-02 5.09638190e-01 4.07035410e-01 9.91417944e-01 -5.68032265e-01 4.75784421e-01 2.42008328e-01 -7.82478094e-01 -1.27417386e+00 5.26230693e-01 -6.79746419e-02 -4.17923987e-01 -5.86588562e-01 9.94723082e-01 1.39505967e-01 1.04836814e-01 4.42831784e-01 -1.43485725e-01 2.60012239e-01 4.26207781e-01 5.97518802e-01 7.91237712e-01 2.14765191e-01 6.21740408e-02 -4.03782994e-01 1.09072179e-01 -2.44503811e-01 -2.01717570e-01 1.59804976e+00 -1.41888231e-01 -1.42802894e-01 3.47441107e-01 8.84451866e-01 2.33414337e-01 -9.38046932e-01 -3.58059615e-01 -1.22986650e-02 -5.55014491e-01 -7.40211606e-02 -4.31127936e-01 -9.53259528e-01 2.71303743e-01 1.13104984e-01 5.96849322e-01 1.46395433e+00 2.67537653e-01 1.10094750e+00 4.87086356e-01 4.97476369e-01 -1.13592768e+00 1.39140055e-01 1.48449957e-01 1.01942420e+00 -1.08913994e+00 5.76233864e-01 -4.87247437e-01 -6.37950599e-01 8.23477983e-01 1.61876157e-01 -1.69255450e-01 4.53350365e-01 2.76847631e-01 -4.14876103e-01 -2.96576679e-01 -1.11127484e+00 -6.45071128e-03 -8.71496946e-02 2.36123890e-01 9.70031042e-03 1.76281855e-01 -7.91522801e-01 7.41688073e-01 -4.47473019e-01 -1.29063070e-01 7.51708508e-01 1.10019660e+00 -8.61597717e-01 -1.10337055e+00 -5.93322456e-01 7.23626375e-01 -6.27311230e-01 1.87404789e-02 -2.24753127e-01 6.07140839e-01 -4.67514008e-01 1.04927933e+00 9.43438038e-02 -6.95317164e-02 3.19341391e-01 -1.80128545e-01 3.86712700e-01 -5.58126807e-01 -4.52009946e-01 1.64920822e-01 1.70579001e-01 -6.36544168e-01 -2.34334588e-01 -1.19601417e+00 -1.30673766e+00 -6.22706234e-01 7.24464580e-02 1.19562641e-01 6.03479147e-01 6.09377205e-01 4.23519313e-01 4.78118271e-01 7.62379467e-01 -3.74346763e-01 -1.04035389e+00 -6.07556224e-01 -5.72745681e-01 1.82516336e-01 3.45862806e-01 -3.05570334e-01 -2.96425283e-01 -2.21530676e-01]
[6.599205493927002, 4.9251484870910645]
a2aaa5cf-ef4b-4aba-86c5-5660978e09fa
deltaedit-exploring-text-free-training-for
2303.06285
null
https://arxiv.org/abs/2303.06285v1
https://arxiv.org/pdf/2303.06285v1.pdf
DeltaEdit: Exploring Text-free Training for Text-Driven Image Manipulation
Text-driven image manipulation remains challenging in training or inference flexibility. Conditional generative models depend heavily on expensive annotated training data. Meanwhile, recent frameworks, which leverage pre-trained vision-language models, are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. In this work, we propose a novel framework named \textit{DeltaEdit} to address these problems. Our key idea is to investigate and identify a space, namely delta image and text space that has well-aligned distribution between CLIP visual feature differences of two images and CLIP textual embedding differences of source and target texts. Based on the CLIP delta space, the DeltaEdit network is designed to map the CLIP visual features differences to the editing directions of StyleGAN at training phase. Then, in inference phase, DeltaEdit predicts the StyleGAN's editing directions from the differences of the CLIP textual features. In this way, DeltaEdit is trained in a text-free manner. Once trained, it can well generalize to various text prompts for zero-shot inference without bells and whistles. Code is available at https://github.com/Yueming6568/DeltaEdit.
['Tieniu Tan', 'Jing Dong', 'Dongliang He', 'Fu Li', 'Tianwei Lin', 'Yueming Lyu']
2023-03-11
null
http://openaccess.thecvf.com//content/CVPR2023/html/Lyu_DeltaEdit_Exploring_Text-Free_Training_for_Text-Driven_Image_Manipulation_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Lyu_DeltaEdit_Exploring_Text-Free_Training_for_Text-Driven_Image_Manipulation_CVPR_2023_paper.pdf
cvpr-2023-1
['image-manipulation']
['computer-vision']
[ 2.71268874e-01 -2.23668709e-01 -1.05745882e-01 -6.18992865e-01 -8.00445676e-01 -6.59275413e-01 7.78095841e-01 -5.66546977e-01 -1.67041928e-01 3.77262682e-01 6.22970089e-02 -9.07527879e-02 2.37304419e-01 -5.48921347e-01 -9.25398469e-01 -6.76881492e-01 5.71908951e-01 4.00693089e-01 1.30808214e-03 -1.74947426e-01 3.12011212e-01 -1.09233730e-01 -1.31728828e+00 3.83459538e-01 7.95233488e-01 1.00895822e+00 5.40368676e-01 1.05919743e+00 -2.85279989e-01 7.09903836e-01 -4.36355531e-01 -4.59797114e-01 2.20011801e-01 -6.87411904e-01 -1.40037253e-01 1.38624981e-01 5.33292353e-01 -5.31209230e-01 -6.10202789e-01 1.25052464e+00 6.16971731e-01 7.54101798e-02 6.21765018e-01 -1.34102857e+00 -1.02059042e+00 7.23457217e-01 -5.77158451e-01 -5.59610203e-02 1.75494447e-01 6.33768559e-01 8.57567310e-01 -1.31182635e+00 7.17390299e-01 1.18518150e+00 3.78242522e-01 6.42521560e-01 -1.18732429e+00 -7.90210009e-01 2.46249452e-01 3.60186309e-01 -1.26403046e+00 -6.54886246e-01 1.08705604e+00 -6.48177683e-01 5.53534150e-01 3.03558916e-01 6.12322748e-01 1.65320218e+00 1.93750694e-01 9.75184262e-01 9.18953776e-01 -4.50310081e-01 1.71476185e-01 2.79696643e-01 -3.26943457e-01 7.01775432e-01 -2.58137763e-01 -3.05587519e-02 -8.10260236e-01 4.38755423e-01 7.11990297e-01 7.99443871e-02 -4.26665246e-01 -2.51194924e-01 -1.31523335e+00 8.49488616e-01 6.37862459e-02 1.51171491e-01 -5.68209440e-02 2.11360052e-01 3.77431720e-01 1.84287801e-01 5.37453353e-01 1.14491649e-01 -2.70634174e-01 -3.17053735e-01 -1.23599052e+00 1.11203924e-01 7.37480998e-01 1.35338247e+00 8.30393553e-01 2.91652292e-01 -4.51545894e-01 6.03399873e-01 3.63321275e-01 8.49520266e-01 4.36509907e-01 -7.04375207e-01 7.16277838e-01 3.77483040e-01 -2.08656162e-01 -1.11685443e+00 1.41948223e-01 -1.10535093e-01 -9.55080807e-01 1.38318539e-01 3.67814720e-01 -4.51272696e-01 -9.51562226e-01 1.59080720e+00 1.54367208e-01 1.37558579e-01 -1.48050100e-01 8.33035350e-01 6.23077929e-01 9.71986473e-01 -3.83100808e-01 -1.51480541e-01 1.32726657e+00 -9.92506802e-01 -8.58097196e-01 -4.35212851e-01 2.26451635e-01 -8.95611584e-01 1.46540594e+00 2.30903700e-01 -1.15130854e+00 -6.70763016e-01 -9.84728873e-01 -4.06395316e-01 -2.91949779e-01 6.41656995e-01 1.46385014e-01 2.20172867e-01 -8.48380923e-01 3.03524375e-01 -8.32370877e-01 -2.66606361e-01 3.66651714e-01 -8.64035413e-02 1.31324396e-01 7.54522393e-04 -1.12990320e+00 6.16205633e-01 3.92613888e-01 3.65456641e-01 -1.03076184e+00 -7.53317416e-01 -9.72462475e-01 4.27632034e-02 7.16551304e-01 -6.36344314e-01 1.30126452e+00 -1.15871561e+00 -1.93447542e+00 7.20501661e-01 -5.38619719e-02 -2.49229953e-01 8.39609087e-01 -2.55528688e-01 -3.39338273e-01 1.15189724e-01 4.54008430e-02 7.01714396e-01 1.46526110e+00 -1.00870347e+00 -4.50783044e-01 -2.57609874e-01 -1.56553015e-01 2.27102578e-01 -2.94518143e-01 -1.55233905e-01 -9.54706252e-01 -8.06601703e-01 -3.02644372e-01 -1.03706217e+00 1.26096979e-01 3.46970499e-01 -8.12968850e-01 -1.69468857e-02 9.69527602e-01 -5.95697045e-01 1.13640416e+00 -2.25120234e+00 2.19559476e-01 -1.76095605e-01 8.11607242e-02 2.70805508e-01 -1.56827062e-01 4.62516397e-01 2.02006981e-01 -3.52983661e-02 -1.16450906e-01 -3.57960343e-01 3.62687528e-01 3.98810394e-02 -6.15056932e-01 3.10994327e-01 3.97816658e-01 1.12871873e+00 -6.48437917e-01 -7.70155549e-01 5.27054489e-01 5.30037642e-01 -5.50236285e-01 5.64949930e-01 -7.15902448e-01 5.11007488e-01 -4.25639600e-01 4.51612443e-01 6.46312535e-01 -2.45925426e-01 5.58458939e-02 -4.56328183e-01 -3.22051346e-01 -1.82654291e-01 -8.17395270e-01 2.05414486e+00 -3.64461988e-01 1.03694594e+00 -1.28810897e-01 -9.89476025e-01 1.13711357e+00 1.44815013e-01 -3.91935520e-02 -6.29821420e-01 3.19125473e-01 -1.29855290e-01 -3.28727007e-01 -8.67585599e-01 4.84596848e-01 1.36324763e-01 -5.24442643e-02 3.24355811e-01 2.34343708e-01 -2.93279737e-01 1.93307817e-01 1.40565172e-01 4.26231861e-01 5.84630072e-01 3.78175378e-02 4.58841771e-02 3.04887235e-01 -2.72821039e-01 3.92894447e-01 6.89780414e-01 8.45086947e-02 7.52883852e-01 5.93688726e-01 -2.32531607e-01 -1.25737250e+00 -9.30335522e-01 1.46187752e-01 1.38722658e+00 8.20722207e-02 -4.62406963e-01 -8.44643295e-01 -5.12259126e-01 -3.10541600e-01 1.00225532e+00 -8.48687649e-01 -1.56166449e-01 -4.76837605e-01 -2.19535023e-01 4.89027053e-01 3.54889423e-01 6.57701433e-01 -8.89487028e-01 -5.81638336e-01 -7.98603222e-02 -1.44069627e-01 -1.09679723e+00 -1.10808241e+00 5.24461307e-02 -4.53311205e-01 -7.65530229e-01 -8.78167927e-01 -7.56562829e-01 6.75425231e-01 3.34265381e-02 8.84263813e-01 -2.97701746e-01 -4.00267869e-01 2.32515410e-01 -3.21590215e-01 -3.43097150e-01 -2.57400900e-01 7.21158285e-04 -3.36101234e-01 2.58049577e-01 3.11721802e-01 -6.13142312e-01 -7.75767207e-01 1.23218738e-01 -8.98853779e-01 5.79888821e-01 5.78870654e-01 9.45341349e-01 5.63157022e-01 -3.66132051e-01 8.08044598e-02 -8.82600486e-01 4.02597457e-01 -4.29108977e-01 -7.48293638e-01 4.89853054e-01 -4.74927723e-01 2.66995966e-01 8.64814281e-01 -7.85999775e-01 -1.27078068e+00 6.09650183e-03 9.03743356e-02 -9.99866545e-01 -1.18573345e-01 3.95430893e-01 -2.91667253e-01 3.99927437e-01 5.02613902e-01 7.34480798e-01 4.83522541e-04 -2.90412128e-01 6.84961021e-01 6.04242504e-01 8.21312308e-01 -6.59758270e-01 1.04069328e+00 3.47799957e-01 -4.42016542e-01 -8.99492979e-01 -9.28410828e-01 1.06861681e-01 -6.67755842e-01 -2.20617980e-01 1.10718608e+00 -7.71865189e-01 -5.56270719e-01 6.01952076e-01 -1.13534212e+00 -5.69157541e-01 -1.64539456e-01 3.37015629e-01 -6.94869041e-01 2.26985991e-01 -4.03898478e-01 -6.38221920e-01 -4.28969741e-01 -1.18785691e+00 1.16380656e+00 4.74177510e-01 1.03554390e-01 -1.15417504e+00 -4.84760245e-03 9.71946120e-02 4.19240117e-01 2.21628055e-01 7.88430870e-01 -4.94783252e-01 -6.51135504e-01 -8.15901980e-02 -2.16269836e-01 3.42029631e-01 -1.27445059e-02 4.18258846e-01 -8.40362430e-01 -2.34419614e-01 8.03199112e-02 -3.97762001e-01 6.48467302e-01 4.72165942e-01 1.28650808e+00 -5.29508471e-01 -1.48943979e-02 1.15925729e+00 1.39964581e+00 2.44690552e-01 5.17363906e-01 2.06678346e-01 7.88636029e-01 2.27352768e-01 6.17482781e-01 6.31930709e-01 4.35935766e-01 7.02390492e-01 3.10007602e-01 5.12897633e-02 -1.09274603e-01 -7.09111571e-01 4.52712566e-01 8.66437912e-01 2.33948901e-01 -3.97683203e-01 -6.16266668e-01 2.91896492e-01 -1.84682059e+00 -1.06724858e+00 2.41854519e-01 1.89071226e+00 1.10452557e+00 1.83465451e-01 -3.45425755e-01 -4.32665855e-01 8.56920362e-01 4.31655377e-01 -9.31255400e-01 -2.93735266e-01 -1.71800684e-02 -7.31655955e-02 1.26957804e-01 4.06543553e-01 -8.41171920e-01 1.02411258e+00 4.70305204e+00 8.85321379e-01 -1.43090081e+00 -6.48256987e-02 5.87091088e-01 -2.51858234e-01 -3.18220288e-01 1.61676750e-01 -8.99489403e-01 8.27734768e-01 6.08134389e-01 -4.10497636e-01 5.98573148e-01 8.29444289e-01 3.10084671e-01 4.50081602e-02 -1.34753346e+00 1.18296838e+00 4.00527626e-01 -1.37519145e+00 1.08269885e-01 -2.70404190e-01 7.03385413e-01 -2.28101015e-01 3.88357967e-01 5.23602486e-01 9.09940898e-02 -8.64428043e-01 8.44365180e-01 8.78475010e-01 1.14658821e+00 -4.77420300e-01 2.54819512e-01 4.08202648e-01 -9.92380261e-01 2.33953506e-01 -3.32188725e-01 2.47700468e-01 5.79792820e-02 4.05193061e-01 -8.79166067e-01 2.97187150e-01 4.87004519e-01 8.25614512e-01 -5.95584512e-01 4.50527966e-01 -4.01719958e-01 6.00848377e-01 4.61867228e-02 -1.33780912e-01 1.27860501e-01 -3.14695656e-01 6.29437268e-01 1.43277252e+00 5.50341368e-01 -1.18279727e-02 2.25267172e-01 1.24642444e+00 -2.70166863e-02 -1.24546558e-01 -5.92783809e-01 -2.68159568e-01 6.10093236e-01 1.32575893e+00 -3.97513151e-01 -4.72012520e-01 -3.16607028e-01 1.30430746e+00 1.10166252e-01 6.36698842e-01 -1.20140624e+00 -6.70791209e-01 3.87330264e-01 -2.00450882e-01 6.48433447e-01 -2.57748663e-01 -8.86885002e-02 -1.50014329e+00 -1.37996674e-02 -9.52355981e-01 7.12837279e-02 -1.19783080e+00 -1.09372103e+00 5.26905775e-01 6.02307059e-02 -1.31674349e+00 -3.75732303e-01 -5.11737704e-01 -8.95835340e-01 7.62202978e-01 -1.21268725e+00 -1.34682608e+00 -4.95692134e-01 8.53626788e-01 1.07575083e+00 -2.51971543e-01 5.38321495e-01 6.25183061e-02 -7.90486455e-01 8.96786153e-01 2.50768691e-01 3.40237826e-01 8.85538340e-01 -1.24494731e+00 4.22113210e-01 9.34098959e-01 1.36646286e-01 4.87257153e-01 9.00640190e-01 -4.20317560e-01 -1.71434832e+00 -1.18832314e+00 4.27968353e-01 -1.79624081e-01 7.61034966e-01 -6.67872488e-01 -8.04948449e-01 9.97394025e-01 5.81928432e-01 7.10186409e-03 2.73166925e-01 -2.59447724e-01 -4.30792063e-01 -2.96575934e-01 -5.32060027e-01 8.99733186e-01 7.31169641e-01 -6.85846925e-01 -3.85377228e-01 3.56341094e-01 7.59043813e-01 -7.32673824e-01 -6.66855514e-01 -7.70487338e-02 4.70577419e-01 -9.23770726e-01 6.53860867e-01 -3.43718380e-01 8.02543759e-01 -2.37528160e-01 -1.53257892e-01 -1.27364397e+00 -7.14346096e-02 -9.37337875e-01 -1.36025578e-01 1.47726774e+00 2.90992647e-01 -3.74498308e-01 4.92325872e-01 4.72240686e-01 -5.43794297e-02 -5.61218381e-01 -6.40675783e-01 -4.52552974e-01 -4.60942015e-02 -3.26624691e-01 3.73082459e-01 7.99919844e-01 -2.00340986e-01 5.81246674e-01 -7.14458466e-01 1.09378658e-02 6.33929789e-01 3.53042036e-01 1.03643107e+00 -6.07935071e-01 -4.37800467e-01 -4.29050624e-01 -8.84544328e-02 -1.31541169e+00 1.92497186e-02 -8.55286062e-01 3.64506394e-01 -1.21112132e+00 2.42810547e-01 -7.49551803e-02 1.47830799e-01 4.89316016e-01 -3.04163873e-01 7.21975639e-02 3.96738023e-01 9.47670862e-02 -6.48254335e-01 8.02464187e-01 1.47644222e+00 -2.41988242e-01 -3.66613790e-02 -1.83451146e-01 -5.21430433e-01 5.44499993e-01 9.11673129e-01 -2.64288276e-01 -5.99075377e-01 -7.30524719e-01 1.75040483e-01 2.39652842e-01 5.49346983e-01 -7.19560385e-01 4.77110028e-01 -4.25629526e-01 5.27250230e-01 -7.92420328e-01 3.90071541e-01 -5.68321049e-01 4.90687042e-02 1.49460867e-01 -7.08316565e-01 -1.81360394e-02 -3.32888030e-02 5.03649354e-01 -9.41283554e-02 -2.27122679e-01 6.75701499e-01 -1.30699322e-01 -6.83489859e-01 5.44326723e-01 -1.28363609e-01 3.52147073e-01 9.67241406e-01 -2.64978498e-01 -4.16439116e-01 -5.42602658e-01 -5.40336013e-01 2.26058647e-01 3.58857125e-01 5.93681276e-01 6.41229451e-01 -1.34413850e+00 -7.72795260e-01 3.64060998e-01 1.17086291e-01 2.23247886e-01 6.29650891e-01 8.72858107e-01 -2.59223223e-01 2.60835111e-01 -2.22797096e-01 -8.56501758e-01 -1.09046364e+00 6.29058719e-01 2.01758221e-01 1.58533733e-02 -7.50594199e-01 8.70167494e-01 4.60410744e-01 -2.08353698e-01 2.57281005e-01 -3.19152564e-01 2.81487048e-01 7.74652585e-02 5.80156207e-01 9.86671001e-02 -4.06320930e-01 -2.99578160e-01 1.05271466e-01 7.05991626e-01 -3.25080276e-01 -2.79919684e-01 1.11151123e+00 -3.00000578e-01 9.69550163e-02 7.06911623e-01 1.39672816e+00 -1.22530557e-01 -1.85355306e+00 -3.00614476e-01 -2.54458100e-01 -5.87246954e-01 -1.21492468e-01 -6.18346751e-01 -1.12770832e+00 1.16648102e+00 5.70464969e-01 -7.38369226e-02 1.16574728e+00 -1.30588815e-01 6.34771049e-01 3.00782979e-01 -2.32411683e-01 -1.19880569e+00 3.63575369e-01 4.48285133e-01 1.02683127e+00 -1.25769830e+00 -2.69837290e-01 5.24961092e-02 -9.58379447e-01 1.33278489e+00 7.50017643e-01 -1.24650687e-01 4.16254938e-01 3.47053796e-01 1.60893381e-01 -7.77141079e-02 -9.90248919e-01 1.47852078e-01 2.75463641e-01 5.80606997e-01 3.21092874e-01 -8.22406933e-02 1.10127039e-01 3.89965713e-01 -3.76605213e-01 1.12625845e-01 3.07051688e-01 6.72617316e-01 -4.37393874e-01 -7.59102464e-01 -1.88603297e-01 2.27393121e-01 -2.85455529e-02 -2.42211178e-01 -1.68474793e-01 6.89122617e-01 7.16641098e-02 6.82565153e-01 1.47267893e-01 -4.20941889e-01 1.10407747e-01 1.16048023e-01 4.24476922e-01 -3.79224598e-01 -6.53136075e-02 2.53060162e-01 -3.14894646e-01 -3.82079005e-01 -3.85485478e-02 -5.57852387e-01 -9.70033586e-01 -2.48670712e-01 -2.39099607e-01 -6.64165244e-02 7.06382096e-01 8.50241959e-01 2.98636615e-01 5.13376534e-01 8.44047785e-01 -9.70005393e-01 -6.75085247e-01 -9.82609332e-01 -4.16507423e-01 2.41863385e-01 4.03034151e-01 -2.62143224e-01 -1.88401476e-01 5.36625028e-01]
[11.280091285705566, -0.2179359644651413]
ccb00935-242a-4420-9f9c-c463fb9ccdb0
exploring-the-power-of-generative-deep
2303.09012
null
https://arxiv.org/abs/2303.09012v1
https://arxiv.org/pdf/2303.09012v1.pdf
Exploring the Power of Generative Deep Learning for Image-to-Image Translation and MRI Reconstruction: A Cross-Domain Review
Deep learning has become a prominent computational modeling tool in the areas of computer vision and image processing in recent years. This research comprehensively analyzes the different deep-learning methods used for image-to-image translation and reconstruction in the natural and medical imaging domains. We examine the famous deep learning frameworks, such as convolutional neural networks and generative adversarial networks, and their variants, delving into the fundamental principles and difficulties of each. In the field of natural computer vision, we investigate the development and extension of various deep-learning generative models. In comparison, we investigate the possible applications of deep learning to generative medical imaging problems, including medical image translation, MRI reconstruction, and multi-contrast MRI synthesis. This thorough review provides scholars and practitioners in the areas of generative computer vision and medical imaging with useful insights for summarizing past works and getting insight into future research paths.
['Yuda Bi']
2023-03-16
null
null
null
null
['mri-reconstruction']
['computer-vision']
[ 6.34337842e-01 2.70395458e-01 -1.03909457e-02 -2.99990028e-01 -6.55094028e-01 -1.04331262e-01 4.64107037e-01 -5.67532897e-01 -1.63733035e-01 5.20246148e-01 2.56837428e-01 -2.42856532e-01 -8.19063038e-02 -9.36032951e-01 -5.74244916e-01 -1.07564020e+00 1.97066426e-01 4.86204654e-01 -3.96105111e-01 -1.14203587e-01 -1.67510048e-01 5.57412386e-01 -7.61576593e-01 2.67794400e-01 7.62443781e-01 6.94000483e-01 -3.15456837e-02 8.10156584e-01 -9.16341767e-02 1.08972907e+00 -6.30024910e-01 -6.54256940e-01 -2.40597814e-01 -9.36007261e-01 -9.30756867e-01 3.49355876e-01 -4.83919866e-02 -4.58574951e-01 -8.22728932e-01 1.02468598e+00 9.66980517e-01 -1.93679959e-01 7.72434473e-01 -1.13539481e+00 -1.32424235e+00 6.46252573e-01 -4.31172282e-01 4.13855225e-01 -3.40311299e-03 1.53353095e-01 3.70804816e-01 -8.38391721e-01 6.05095685e-01 1.06464100e+00 7.35244334e-01 7.97910929e-01 -9.98080909e-01 -4.63001847e-01 -3.11294168e-01 3.14723343e-01 -1.09423935e+00 -2.41015658e-01 1.00525260e+00 -6.56989634e-01 4.05433118e-01 1.28201619e-01 5.89378417e-01 1.31985271e+00 7.62427509e-01 9.74439681e-01 1.14615571e+00 -4.26163167e-01 -6.27252534e-02 -2.06424758e-01 -2.97984153e-01 7.73036718e-01 1.61145665e-02 4.09499407e-01 -2.20979288e-01 1.00153863e-01 1.31153119e+00 2.12321490e-01 -1.62462622e-01 -2.54447721e-02 -1.15889394e+00 1.15924072e+00 7.36245334e-01 7.06919849e-01 -6.42375946e-01 2.57480234e-01 2.57881165e-01 8.57079774e-02 4.24934179e-01 2.27847859e-01 2.32693329e-01 4.13375586e-01 -1.01963758e+00 1.81023896e-01 2.86957771e-01 8.42457592e-01 3.32171679e-01 9.12745118e-01 -2.70169616e-01 7.52150536e-01 1.86979547e-01 4.47573006e-01 8.65574896e-01 -8.91904712e-01 -2.46356830e-01 -4.64253277e-02 -5.15242636e-01 -1.07281315e+00 -3.64016891e-01 -7.97755599e-01 -1.54253161e+00 3.83504145e-02 -2.47194648e-01 -2.25184381e-01 -9.88948047e-01 1.40802968e+00 1.29460469e-01 1.98107764e-01 4.84019704e-02 6.39687181e-01 1.60190248e+00 5.35728216e-01 2.05788746e-01 -2.37359554e-01 1.19649780e+00 -1.02370727e+00 -8.90025258e-01 -3.92181695e-01 2.81573180e-03 -8.67971182e-01 5.93654513e-01 1.04688294e-01 -1.35400307e+00 -7.81713128e-01 -7.74229288e-01 -3.02410841e-01 -1.03463575e-01 -9.96782184e-02 7.69635797e-01 5.91946483e-01 -1.16243112e+00 4.26955462e-01 -1.12732601e+00 -1.13253281e-01 7.90795326e-01 9.53358561e-02 -1.06622861e-03 -3.06978047e-01 -1.11394930e+00 8.52668345e-01 1.22380055e-01 1.30864605e-01 -1.20360327e+00 -7.53679931e-01 -9.57333982e-01 -1.61843508e-01 -6.31165504e-02 -1.41870332e+00 1.28091037e+00 -1.00588262e+00 -1.26278770e+00 1.21692204e+00 2.10960582e-01 -4.84156877e-01 6.10848427e-01 -3.27173956e-02 -3.60130101e-01 7.71039873e-02 1.12238027e-01 7.19874144e-01 9.44367349e-01 -1.18683815e+00 -2.99105532e-02 -4.14493173e-01 -2.24309668e-01 -4.63234186e-02 9.98171642e-02 -6.57414421e-02 -1.73349872e-01 -1.16599536e+00 1.13673635e-01 -9.22571242e-01 -5.31571388e-01 -1.01394311e-01 -5.09258747e-01 1.92567155e-01 4.25746679e-01 -6.95014894e-01 7.68168747e-01 -1.92926753e+00 3.45295012e-01 -2.07985416e-01 5.33182740e-01 2.02773914e-01 -2.12796688e-01 3.14664721e-01 -2.77574271e-01 -2.96440404e-02 -3.86540532e-01 -2.24384576e-01 -2.98711509e-01 4.40141976e-01 -3.35460275e-01 3.98661971e-01 6.57997057e-02 1.79517961e+00 -8.97997797e-01 -4.94678110e-01 3.69419396e-01 9.82280314e-01 -3.69145930e-01 3.31855863e-01 1.53479889e-01 1.03700173e+00 -4.76970524e-01 6.43771946e-01 4.19030696e-01 -4.05766755e-01 5.63584641e-02 -3.35235983e-01 4.07789409e-01 -8.64671692e-02 -3.44149381e-01 1.59071887e+00 -6.44725621e-01 6.86358213e-01 -2.18134731e-01 -1.29954505e+00 6.26132309e-01 5.67769110e-01 7.82265723e-01 -7.23498583e-01 4.43729937e-01 3.17804441e-02 2.11669784e-02 -6.77735150e-01 1.18477002e-01 -7.14660406e-01 1.02052741e-01 4.99606371e-01 2.03752875e-01 -4.19470072e-01 -2.11159945e-01 -4.30243611e-02 6.90284848e-01 -1.42250005e-02 4.08968002e-01 7.89959878e-02 3.16896826e-01 -2.39969611e-01 1.70456022e-01 6.84633911e-01 -9.89312604e-02 8.29584539e-01 -6.86897850e-03 -7.51119792e-01 -1.22380888e+00 -1.31358469e+00 -1.26979575e-01 8.46454799e-01 -1.78798318e-01 1.15042053e-01 -9.46623683e-01 -1.91625655e-01 -5.19243360e-01 4.65351224e-01 -8.73104751e-01 -4.54522729e-01 -7.55220115e-01 -1.38659322e+00 6.10901475e-01 7.49912620e-01 5.86922944e-01 -1.57429194e+00 -3.27260375e-01 3.15470517e-01 -5.44268191e-01 -1.09608853e+00 -3.51563603e-01 -2.23663613e-01 -1.09080815e+00 -9.75812793e-01 -1.24999225e+00 -1.12959719e+00 6.79889679e-01 5.08716181e-02 1.43927264e+00 7.23496996e-05 -6.97281480e-01 4.20031875e-01 -1.97033390e-01 -4.06179965e-01 -1.06521225e+00 -6.80299550e-02 -3.41481119e-01 -1.63938642e-01 -3.26285847e-02 -8.03924024e-01 -6.80568635e-01 -3.69563773e-02 -1.37167394e+00 2.27024138e-01 8.83212924e-01 1.17885363e+00 8.21504295e-01 -2.30141040e-02 5.31501830e-01 -1.24159706e+00 8.40413451e-01 -4.27455872e-01 -9.87077504e-02 2.23996326e-01 -5.92420876e-01 -4.16997895e-02 3.74994785e-01 -2.88170308e-01 -8.35284114e-01 -2.86399275e-01 -7.05028534e-01 -3.92245442e-01 -1.05084434e-01 6.47430182e-01 7.78741390e-02 -2.85363793e-01 7.47161329e-01 7.95080721e-01 1.16146684e-01 -1.31626591e-01 5.67842007e-01 1.86128348e-01 9.56989288e-01 -2.08298877e-01 6.08145654e-01 5.63146889e-01 5.49225323e-02 -7.03709543e-01 -7.49392450e-01 2.65915275e-01 -5.41481256e-01 -1.39934063e-01 1.15000534e+00 -6.64265096e-01 -2.29965016e-01 8.07711720e-01 -1.17400610e+00 -2.76291132e-01 -4.26246911e-01 3.07189912e-01 -1.00762975e+00 3.37696373e-01 -1.14362454e+00 -1.11562498e-01 -7.58114696e-01 -1.57321250e+00 9.97887850e-01 3.37865263e-01 -6.54750988e-02 -1.53013051e+00 2.52329081e-01 4.78299886e-01 6.07659638e-01 7.27671266e-01 1.10770178e+00 -1.70320764e-01 -5.07623196e-01 -1.37840554e-01 7.82696977e-02 4.97772098e-01 2.49449089e-01 -2.95385718e-01 -9.40920591e-01 -1.31515488e-01 4.12697673e-01 -8.32995027e-02 8.18894148e-01 1.01110518e+00 1.47751927e+00 -3.16583306e-01 -2.15314522e-01 9.89432096e-01 1.32234979e+00 4.28307712e-01 1.03659368e+00 7.27239624e-02 7.19199300e-01 2.75822163e-01 -2.70770907e-01 6.81383014e-02 2.56114483e-01 3.62508893e-01 2.31623769e-01 -7.13197529e-01 -5.78695953e-01 -6.70542717e-02 -9.59559679e-02 1.04115129e+00 -3.63062650e-01 -1.57780260e-01 -7.42136538e-01 3.84099573e-01 -1.40724683e+00 -1.02655721e+00 9.13745239e-02 1.48415518e+00 8.02945971e-01 -2.11752340e-01 -1.12215452e-01 9.08305198e-02 6.93576097e-01 2.23522648e-01 -4.79768425e-01 -7.59141222e-02 -2.05531389e-01 6.97978139e-01 1.17971562e-01 2.93521285e-01 -1.10735798e+00 8.22022557e-01 7.67626333e+00 7.31712162e-01 -1.33790278e+00 4.18971241e-01 1.04402173e+00 3.10265601e-01 -3.50959361e-01 -6.73808455e-01 -9.33149159e-02 2.48154044e-01 7.62638748e-01 -8.46678093e-02 4.48193938e-01 8.05358529e-01 6.50760829e-02 3.52403373e-01 -9.91691470e-01 1.12270248e+00 4.08573091e-01 -1.68213594e+00 2.04735160e-01 1.89085752e-02 1.06076539e+00 8.19883645e-02 6.09157145e-01 1.60459280e-02 3.21218163e-01 -1.38988745e+00 4.60174114e-01 6.30081773e-01 8.50029767e-01 -6.50531769e-01 7.91693032e-01 5.06243035e-02 -5.07113993e-01 2.84697682e-01 -1.75197616e-01 4.64109123e-01 4.06347513e-01 5.69818199e-01 -5.74348152e-01 5.65143585e-01 5.20127952e-01 6.91607058e-01 -1.43868640e-01 7.91578174e-01 -3.22961539e-01 4.87975091e-01 4.83657122e-01 4.52398181e-01 2.04917684e-01 -1.66824535e-01 3.88674051e-01 1.12639022e+00 2.89054990e-01 1.14870943e-01 -1.01109752e-02 1.40581441e+00 -1.78999826e-01 -1.78693563e-01 -4.92152482e-01 -1.72771081e-01 -1.30498722e-01 1.16152728e+00 -8.81235480e-01 -3.89446884e-01 -2.93483555e-01 9.62345779e-01 -3.55637938e-01 3.82200062e-01 -1.09534502e+00 -1.93235934e-01 2.57944584e-01 2.21596912e-01 -5.64067028e-02 -1.84397146e-01 -5.63793361e-01 -1.02196157e+00 -5.39902508e-01 -8.83827150e-01 1.61173165e-01 -1.01402771e+00 -1.34326673e+00 1.14607656e+00 4.67872173e-02 -9.01969969e-01 -5.49557090e-01 -4.90772754e-01 -6.24936998e-01 7.22279727e-01 -1.43241882e+00 -1.55563653e+00 -4.54898208e-01 6.40871525e-01 6.60959303e-01 -3.69785994e-01 8.40866864e-01 4.42021906e-01 -3.46171856e-01 4.32959765e-01 2.06537962e-01 4.83937800e-01 2.73656189e-01 -7.95541406e-01 6.13765359e-01 7.27090716e-01 4.09107834e-01 4.45037842e-01 5.24630964e-01 -3.99758518e-01 -9.58989322e-01 -1.27426386e+00 7.06054568e-01 -1.02552831e-01 2.96633869e-01 5.50938472e-02 -7.59229720e-01 8.37443471e-01 5.39927125e-01 2.63469461e-02 8.84217560e-01 -5.33081114e-01 1.23093359e-01 1.49974167e-01 -1.18810749e+00 6.06046379e-01 7.39264965e-01 -5.24595916e-01 -3.07240069e-01 6.08854353e-01 5.08586526e-01 -6.96203172e-01 -9.31276858e-01 4.08362597e-01 4.43959683e-01 -9.74665940e-01 1.49268496e+00 -6.55421674e-01 9.59942222e-01 2.86434799e-01 2.39620268e-01 -1.40399098e+00 -7.04270303e-01 -4.74312127e-01 1.99886516e-01 6.12216413e-01 -6.65503815e-02 -4.67722774e-01 6.29240870e-01 3.11668187e-01 -4.49293464e-01 -9.94243205e-01 -7.02396631e-01 -2.40377486e-01 5.51249683e-01 -3.24569076e-01 4.93112028e-01 8.73577952e-01 -7.64448643e-01 3.45422775e-01 -5.15488207e-01 -2.81259358e-01 5.78362346e-01 1.65302336e-01 4.43551183e-01 -8.61467123e-01 -3.95605862e-01 -6.29706502e-01 -4.40263778e-01 -6.75047815e-01 2.21233517e-01 -1.01824999e+00 -9.86029208e-02 -1.84252262e+00 3.74520630e-01 -4.98619080e-02 -1.00463383e-01 2.88195878e-01 -5.82257025e-02 7.85366416e-01 5.97275160e-02 2.43973091e-01 1.40608018e-02 5.04277766e-01 1.87881839e+00 -4.74463493e-01 2.23937452e-01 2.90337682e-01 -9.65573549e-01 7.60378599e-01 6.77189529e-01 -3.62180084e-01 -4.38185930e-01 -7.41799057e-01 -7.06507964e-03 1.63132131e-01 6.58607066e-01 -7.29492426e-01 -9.44835022e-02 -1.50119707e-01 7.10878491e-01 -3.41062546e-01 1.29264638e-01 -4.46648747e-01 4.91360098e-01 7.36065924e-01 -4.02974755e-01 2.28244692e-01 1.05495416e-02 1.29862756e-01 -4.10285562e-01 -1.48507252e-01 1.29958212e+00 -7.02692389e-01 -5.34551620e-01 6.64733291e-01 -4.99499857e-01 1.29476368e-01 9.16046679e-01 -7.76150674e-02 -1.25524074e-01 -7.12517977e-01 -1.31615019e+00 -4.43390250e-01 -5.55010960e-02 3.19508165e-01 9.97429192e-01 -1.43955266e+00 -9.55434084e-01 2.84101069e-01 -3.02763581e-01 -6.39758855e-02 6.03558838e-01 8.79703045e-01 -7.92191327e-01 4.26523119e-01 -5.46923876e-01 -4.78137344e-01 -8.84076774e-01 6.28666282e-01 7.12677360e-01 -3.16467494e-01 -5.82118571e-01 7.67779410e-01 7.14141250e-01 -9.16720405e-02 -1.43020898e-01 -1.48968056e-01 -8.31323490e-02 -5.07357359e-01 4.51371312e-01 2.92613506e-01 1.31787643e-01 -6.98223174e-01 -9.37466472e-02 4.73109782e-01 4.06877883e-02 1.27912313e-01 1.58249521e+00 -5.85366823e-02 -2.83157647e-01 4.10483079e-03 1.08876359e+00 -4.82276648e-01 -7.09910512e-01 -3.32585067e-01 -5.30719638e-01 -5.81382811e-02 1.83465779e-01 -7.18964159e-01 -1.74982893e+00 1.22872055e+00 6.72002494e-01 6.32314757e-03 1.41497648e+00 2.73245037e-01 9.83682990e-01 -2.86748052e-01 1.76740840e-01 -5.67737818e-01 5.04288316e-01 2.57949531e-01 1.17473769e+00 -1.11373067e+00 -6.02108389e-02 -1.92803293e-01 -6.33602321e-01 1.05224526e+00 2.66889334e-01 -3.08989108e-01 8.30233157e-01 5.00134528e-01 1.74997196e-01 -2.69503564e-01 -1.27150878e-01 8.35642889e-02 4.10824805e-01 8.87629628e-01 7.55089462e-01 1.79524422e-01 -2.29690418e-01 5.10328054e-01 -4.36638951e-01 3.30270529e-01 3.75928283e-01 6.95835888e-01 6.92590103e-02 -1.12969291e+00 -3.39988172e-01 3.08226228e-01 -6.38212264e-01 -3.13297123e-01 -6.08878508e-02 5.06790996e-01 2.38061979e-01 3.81948203e-01 1.74902156e-01 -2.09959283e-01 -7.72903338e-02 -1.64853543e-01 9.48765934e-01 -4.69148040e-01 -4.20992553e-01 4.07023698e-01 -5.55655479e-01 -1.82797477e-01 -8.03517938e-01 -4.13531214e-01 -8.95460367e-01 -3.66263777e-01 4.00084183e-02 -2.86629438e-01 5.59961736e-01 8.96189272e-01 1.80159241e-01 1.13431382e+00 3.76637280e-01 -7.74902165e-01 -2.58191347e-01 -9.91763592e-01 -5.03736913e-01 3.31936508e-01 2.60635406e-01 -4.32264119e-01 2.81747639e-01 5.86783528e-01]
[14.053439140319824, -2.0098636150360107]
e272515f-c17a-443e-b5a4-c2cc4eb8725a
influence-of-color-spaces-for-deep-learning
2204.02850
null
https://arxiv.org/abs/2204.02850v1
https://arxiv.org/pdf/2204.02850v1.pdf
Influence of Color Spaces for Deep Learning Image Colorization
Colorization is a process that converts a grayscale image into a color one that looks as natural as possible. Over the years this task has received a lot of attention. Existing colorization methods rely on different color spaces: RGB, YUV, Lab, etc. In this chapter, we aim to study their influence on the results obtained by training a deep neural network, to answer the question: "Is it crucial to correctly choose the right color space in deep-learning based colorization?". First, we briefly summarize the literature and, in particular, deep learning-based methods. We then compare the results obtained with the same deep neural network architecture with RGB, YUV and Lab color spaces. Qualitative and quantitative analysis do not conclude similarly on which color space is better. We then show the importance of carefully designing the architecture and evaluation protocols depending on the types of images that are being processed and their specificities: strong/small contours, few/many objects, recent/archive images.
['Patricia Vitoria', 'Lara Raad', 'Rémi Giraud', 'Michaël Clément', 'Hernan Carrillo', 'Aurélie Bugeau', 'Coloma Ballester']
2022-04-06
null
null
null
null
['colorization']
['computer-vision']
[-2.95930147e-01 -4.42693561e-01 2.46803477e-01 -3.84827197e-01 -8.07846338e-02 -7.26601660e-01 5.05873680e-01 2.53066868e-02 -8.70748162e-01 7.29452133e-01 -2.26240277e-01 -4.24981296e-01 2.06083685e-01 -8.40720236e-01 -4.45174813e-01 -8.63082111e-01 2.82067537e-01 2.82121271e-01 1.23992100e-01 -3.37456971e-01 4.39715743e-01 9.48964894e-01 -1.50097799e+00 1.10196240e-01 4.98924345e-01 9.35892045e-01 -2.27228895e-01 8.55313718e-01 -5.41867733e-01 5.23033679e-01 -7.08596826e-01 -3.26413184e-01 3.80700767e-01 -7.83899665e-01 -8.25632632e-01 -3.52010876e-02 4.65907335e-01 -1.72935754e-01 1.11499898e-01 1.21541917e+00 4.33938801e-01 5.45415320e-02 7.62094736e-01 -1.19261348e+00 -9.57779288e-01 3.08744401e-01 -5.61587691e-01 2.18464568e-01 8.54777396e-02 1.41544431e-01 3.77848119e-01 -7.02397406e-01 6.80705845e-01 1.08728147e+00 5.19795477e-01 6.42352760e-01 -1.27042949e+00 -5.54903388e-01 -2.27634460e-02 3.76456290e-01 -1.28716671e+00 2.38046050e-03 1.04670548e+00 -4.64887321e-01 3.51458520e-01 2.31445223e-01 9.24488783e-01 7.91614056e-01 3.11136782e-01 5.23312986e-01 1.74301898e+00 -8.89482737e-01 4.90823090e-01 3.47574055e-01 1.05611570e-01 6.31178141e-01 4.58400965e-01 1.28340395e-02 -1.49133429e-01 2.79009044e-01 7.66253829e-01 -1.48606211e-01 -2.56445318e-01 -5.00921965e-01 -7.82727361e-01 7.18556345e-01 5.63327491e-01 8.76908243e-01 -3.52287114e-01 3.05168211e-01 2.19405025e-01 2.93787390e-01 2.90627509e-01 5.77209413e-01 -4.00362194e-01 9.82316583e-02 -1.03810561e+00 -1.37772352e-01 6.00618899e-01 4.98311430e-01 1.11440134e+00 2.69822866e-01 1.46612227e-01 7.50275135e-01 2.14123651e-01 4.57053691e-01 2.98755527e-01 -1.05003560e+00 -2.23920897e-01 5.90581119e-01 2.23482475e-01 -8.14946651e-01 -5.36295176e-01 -2.56748013e-02 -7.17520773e-01 1.17662227e+00 8.78868699e-01 -5.21576941e-01 -1.15000927e+00 1.35871887e+00 6.68406934e-02 -5.40555954e-01 6.42111748e-02 1.12667012e+00 7.41443813e-01 4.12867725e-01 1.29004851e-01 2.99719810e-01 1.35640478e+00 -6.28117681e-01 -5.59952021e-01 -6.54499233e-02 1.86151847e-01 -1.04754794e+00 1.25092602e+00 5.87343693e-01 -1.03702712e+00 -6.64523184e-01 -1.21654630e+00 -4.99035344e-02 -1.15887189e+00 3.06543440e-01 6.66806281e-01 1.10387743e+00 -1.54409945e+00 5.92428982e-01 -5.74710906e-01 -6.27703309e-01 -6.87552541e-02 8.98377299e-02 -3.99857163e-01 1.58732727e-01 -1.13396907e+00 1.05920088e+00 5.54626048e-01 3.40635568e-01 -3.01457107e-01 -2.08550036e-01 -3.19151163e-01 1.28141614e-02 -1.15916230e-01 -3.37196589e-01 9.39583719e-01 -1.69693875e+00 -1.64726925e+00 1.24626017e+00 1.85417742e-01 -1.57862246e-01 7.16427088e-01 -1.47155091e-01 -3.20769817e-01 3.75452906e-01 -4.60946232e-01 8.17366362e-01 6.43235147e-01 -1.76733279e+00 -7.12110162e-01 -3.61412883e-01 1.74082294e-01 -2.31905475e-01 -3.70667949e-02 6.19692132e-02 -6.39572322e-01 -4.59413499e-01 1.33974310e-02 -1.00939000e+00 -3.24122459e-02 2.09031865e-01 -4.27829653e-01 -1.48809850e-01 6.90807164e-01 -5.05638480e-01 7.63787746e-01 -2.15004873e+00 -7.30200559e-02 3.53143692e-01 5.39236777e-02 3.83157432e-01 9.05825756e-03 3.53917986e-01 -3.67775768e-01 3.04775119e-01 -1.20569646e-01 -5.25720455e-02 3.60752195e-02 9.22376662e-02 2.34369457e-01 4.82533962e-01 8.21532756e-02 5.97480953e-01 -5.11315465e-01 -6.75651610e-01 4.73135680e-01 7.85881519e-01 -1.33222416e-01 2.16153607e-01 7.44010136e-02 3.31148982e-01 -2.45001987e-01 6.54733598e-01 1.04188108e+00 4.59285267e-02 1.27742216e-01 -5.47257662e-01 -5.30198038e-01 -6.81676149e-01 -9.79295194e-01 1.27923548e+00 -4.59247053e-01 1.16356993e+00 1.14677563e-01 -7.24633873e-01 1.10665905e+00 -2.69342177e-02 3.09417158e-01 -1.08457494e+00 5.77398479e-01 2.53219634e-01 -1.13778837e-01 -3.69370043e-01 5.86807489e-01 -3.29217613e-01 1.75516888e-01 3.82944942e-01 -1.14318468e-01 -1.85123175e-01 5.03205538e-01 -1.93217576e-01 3.47027510e-01 2.19850466e-01 -1.09649450e-01 -3.13657731e-01 5.58562517e-01 3.10741216e-02 2.47679800e-01 4.39280778e-01 -3.95504862e-01 9.46709454e-01 9.35968459e-01 -7.04197109e-01 -9.73138869e-01 -1.08779943e+00 7.64619783e-02 1.12821674e+00 2.78613120e-01 4.50001746e-01 -9.80868578e-01 -4.34836417e-01 -1.10578083e-01 8.46762419e-01 -1.13914120e+00 -1.75582930e-01 -5.74058235e-01 -7.94447660e-01 3.22134852e-01 3.54450226e-01 6.18417978e-01 -1.49623477e+00 -1.02243030e+00 -1.08131349e-01 1.42138466e-01 -7.01566160e-01 6.88961148e-02 4.62581903e-01 -9.35635209e-01 -1.22085142e+00 -1.12574148e+00 -6.85312986e-01 7.76204348e-01 1.57250017e-01 1.35630524e+00 1.53722912e-01 -2.56636113e-01 4.29310143e-01 -8.11604023e-01 -3.03642392e-01 -3.35840911e-01 -3.38815637e-02 -5.48440218e-01 1.44625306e-01 5.42930961e-01 -2.03780532e-01 -8.95129085e-01 -1.10173151e-01 -1.21580327e+00 5.45446984e-02 8.11557293e-01 4.08472866e-01 4.10117656e-01 -2.53404945e-01 -9.17867944e-02 -1.04648471e+00 6.72108829e-01 1.27986237e-01 -6.18514061e-01 5.38250566e-01 -7.09676504e-01 2.99576610e-01 6.97810650e-01 -7.23245146e-04 -1.07290471e+00 1.39910176e-01 -2.05458179e-01 -2.28798881e-01 -5.65499246e-01 2.29814991e-01 1.13405265e-01 -3.40403110e-01 6.57147348e-01 2.37827182e-01 -2.27168277e-02 -4.96265799e-01 6.41442239e-01 2.30938315e-01 3.78805697e-01 -3.57623369e-01 7.13211656e-01 7.26336956e-01 -2.56315231e-01 -8.21009219e-01 -1.14736691e-01 -1.41236305e-01 -8.50896299e-01 -5.71935594e-01 1.43109250e+00 -2.07452118e-01 -5.34105659e-01 6.46585107e-01 -1.10987341e+00 -6.06755435e-01 -1.24096863e-01 3.38614643e-01 -3.46507102e-01 2.31586233e-01 -5.02935469e-01 -7.67624915e-01 -4.00088817e-01 -1.10239613e+00 7.18057990e-01 8.84557009e-01 1.07445478e-01 -1.10253096e+00 2.16074899e-01 -1.89271942e-01 6.05286360e-01 5.07021546e-01 1.09270942e+00 -6.18053451e-02 -2.91008383e-01 -2.65746832e-01 -7.60568559e-01 4.76310819e-01 1.36837587e-01 7.37002134e-01 -9.96735215e-01 6.84478357e-02 -4.28732991e-01 -1.16223983e-01 9.90117788e-01 5.49607217e-01 1.08401501e+00 2.99023479e-01 1.53613180e-01 7.83216655e-01 2.02560019e+00 6.06850028e-01 8.91449749e-01 7.29259253e-01 5.54039240e-01 7.17389345e-01 3.71835947e-01 2.31650904e-01 -3.34159508e-02 2.22403377e-01 5.59598148e-01 -9.52482939e-01 -2.97526032e-01 2.61400878e-01 1.99336167e-02 2.65112638e-01 -3.41496736e-01 -1.01380691e-01 -8.36725712e-01 2.37123072e-01 -1.34874105e+00 -5.48453510e-01 -1.10389538e-01 1.90402234e+00 6.46684289e-01 6.81948364e-02 2.26753786e-01 4.13413346e-02 6.63157642e-01 -1.99295543e-02 -2.86649466e-01 -8.50540519e-01 -4.18631375e-01 4.09974813e-01 6.20980203e-01 3.52927893e-01 -1.12892163e+00 9.59765077e-01 6.14252567e+00 2.25233540e-01 -2.02600431e+00 -1.84873149e-01 9.87980604e-01 3.20883214e-01 -1.71690449e-01 -1.61154181e-01 -1.51931703e-01 4.33484256e-01 5.70169508e-01 2.58829713e-01 3.25219065e-01 6.54281020e-01 2.02658087e-01 -5.61231017e-01 -7.59291410e-01 9.16404009e-01 8.04621503e-02 -1.06150007e+00 1.64278522e-02 -2.94141740e-01 5.45170009e-01 -6.35764450e-02 2.39265874e-01 2.69782301e-02 4.06463921e-01 -8.70207369e-01 9.58886266e-01 8.76782060e-01 7.59984732e-01 -5.97495556e-01 8.24702621e-01 -5.54628313e-01 -9.23438966e-01 2.39167437e-01 -3.06494594e-01 4.36890453e-01 -1.03363782e-01 2.45653495e-01 -3.24462444e-01 3.58398825e-01 9.78268743e-01 8.79991055e-03 -1.09312987e+00 1.18915308e+00 -3.12302083e-01 4.09739673e-01 -1.16744064e-01 -3.74661475e-01 5.14272928e-01 -5.93825996e-01 -2.28795961e-01 1.59108245e+00 2.74326533e-01 -1.60018831e-01 -2.90728867e-01 9.84097004e-01 2.55010962e-01 1.22135125e-01 -3.07078183e-01 -5.57465740e-02 1.61025643e-01 1.43921661e+00 -1.44568396e+00 -3.67489308e-01 -5.14995396e-01 1.00886679e+00 2.00877637e-02 9.98544455e-01 -6.22911870e-01 -7.51242995e-01 3.76289964e-01 -6.79912865e-02 1.61824688e-01 -3.38732302e-01 -5.14321268e-01 -8.95606935e-01 -3.95825416e-01 -5.68804622e-01 2.72938222e-01 -1.22961342e+00 -9.91292417e-01 8.12030792e-01 -6.55551776e-02 -1.05504286e+00 3.94652411e-02 -1.14057398e+00 -8.42985988e-01 9.22370970e-01 -1.56545973e+00 -8.80586386e-01 -6.52547836e-01 4.03215796e-01 6.90006837e-02 5.81582077e-02 7.02867806e-01 3.03496808e-01 -5.77529311e-01 2.57032394e-01 3.24536234e-01 4.32728499e-01 9.01315928e-01 -1.62946093e+00 3.67186554e-02 8.14914465e-01 -5.48498295e-02 3.27445060e-01 8.46688628e-01 -4.02109995e-02 -1.20129001e+00 -5.66720366e-01 4.23540026e-01 -2.48297509e-02 2.30567470e-01 3.23471501e-02 -7.58152902e-01 1.61101893e-01 6.89419985e-01 -1.04117937e-01 4.96275246e-01 -1.64582077e-02 -4.06176746e-01 -4.75890279e-01 -1.11153018e+00 6.71178639e-01 4.49494980e-02 -3.75326753e-01 -2.81898409e-01 -1.04396388e-01 2.04214379e-01 5.76324090e-02 -4.84054655e-01 -1.29144177e-01 6.95685208e-01 -1.67341125e+00 9.12294924e-01 -4.07996893e-01 3.28058660e-01 -3.75009686e-01 1.69394836e-01 -1.42617762e+00 -3.58409196e-01 1.90023512e-01 7.77294874e-01 8.40835512e-01 6.16750300e-01 -6.27175391e-01 1.18479717e+00 7.77977288e-01 8.99636820e-02 -3.58313292e-01 -6.87070549e-01 -4.18827832e-01 5.37360072e-01 -8.45517665e-02 4.89279926e-01 8.26700151e-01 -5.37552118e-01 -2.49854580e-01 -3.89122851e-02 -2.60026813e-01 3.76159072e-01 3.31950754e-01 7.68788576e-01 -1.13690186e+00 2.15686262e-01 -1.04407382e+00 -2.09626943e-01 -1.44273564e-02 -3.10472757e-01 -3.69617641e-01 -3.51705067e-02 -1.69436193e+00 -1.71980113e-01 -4.19274062e-01 -5.04048705e-01 4.28603053e-01 -1.57332093e-01 6.78975165e-01 4.45100754e-01 -1.25376970e-01 -4.03151542e-01 2.50131577e-01 1.17965698e+00 -1.85734391e-01 -2.32135981e-01 -3.39755207e-01 -5.79069674e-01 7.61314571e-01 1.09777975e+00 -6.79725036e-03 1.23394262e-02 -6.52682483e-01 3.25305015e-01 -2.95443416e-01 2.23837093e-01 -1.06994903e+00 7.63396770e-02 -2.23724574e-01 9.06369150e-01 -3.72603983e-01 2.09786892e-01 -1.00500560e+00 1.01411521e-01 6.15633249e-01 -2.10666999e-01 3.21520448e-01 2.91849136e-01 1.13517307e-01 -2.53905267e-01 -4.77900475e-01 1.29829180e+00 -3.47977638e-01 -1.25979984e+00 -7.99236894e-02 -5.11321962e-01 -1.62310660e-01 9.82405543e-01 -4.57640558e-01 -6.80661649e-02 -3.82851362e-01 -8.38818371e-01 -3.69133383e-01 6.63750589e-01 2.86919326e-01 4.55952674e-01 -1.16108286e+00 -5.18379450e-01 4.40073311e-02 1.06778204e-01 -5.98058462e-01 1.89303786e-01 6.96043253e-01 -1.49782979e+00 1.88752592e-01 -8.16516519e-01 -2.20785007e-01 -1.21311510e+00 6.27641141e-01 5.44637501e-01 1.11178324e-01 -3.16595763e-01 7.14377284e-01 5.39137796e-02 -1.77503973e-02 7.55069479e-02 -4.86118317e-01 -4.43040311e-01 2.28128910e-01 1.79330871e-01 4.47862029e-01 9.79550481e-02 -4.76458818e-01 -3.33476484e-01 8.83383930e-01 2.41986319e-01 -2.94500321e-01 1.08036697e+00 -8.10852498e-02 -2.67294377e-01 4.70009774e-01 1.28233612e+00 -2.07428098e-01 -1.16807151e+00 1.61440015e-01 -7.48512968e-02 -4.03045505e-01 1.15044057e-01 -9.13957536e-01 -1.71170640e+00 1.30386472e+00 1.30809450e+00 7.35283375e-01 1.41622865e+00 -2.65586674e-01 3.11690569e-01 1.94270909e-01 6.96750283e-02 -1.51216006e+00 6.37093559e-02 3.19516391e-01 8.42776179e-01 -1.17968357e+00 -7.65805021e-02 8.14951956e-02 -6.68489277e-01 1.68101192e+00 6.68400407e-01 -4.30016339e-01 7.28868961e-01 -4.59676161e-02 8.35943937e-01 -2.48384520e-01 -4.19329852e-02 -4.92576301e-01 2.23693222e-01 6.81286931e-01 8.96794915e-01 1.47701412e-01 -4.35271680e-01 -9.64326113e-02 -1.26250163e-01 -3.51708173e-03 6.45252526e-01 7.15095222e-01 -5.64393818e-01 -1.13584018e+00 -7.43437052e-01 1.76672265e-01 -3.00161481e-01 1.42517626e-01 -1.00893545e+00 1.26690400e+00 3.20343703e-01 8.33076239e-01 2.07687452e-01 -3.29978168e-01 2.82407582e-01 -6.46526227e-04 4.91554409e-01 -5.13301566e-02 -6.62501514e-01 9.39370990e-02 -1.72169566e-01 -3.62523496e-01 -5.66382229e-01 -3.99866104e-01 -1.21350956e+00 -4.97158468e-01 1.68304816e-02 2.15043351e-01 1.01851833e+00 6.77853405e-01 -5.92828318e-02 4.92055923e-01 3.82898420e-01 -9.59276259e-01 2.09447742e-01 -7.47502565e-01 -7.11696148e-01 4.84503776e-01 2.31891498e-01 -4.10349399e-01 -2.33123690e-01 2.06585735e-01]
[10.443824768066406, -2.3916285037994385]
9e67dcd2-0421-4c31-817c-2216fcecea4a
leveraging-wikidata-s-edit-history-in
2210.15495
null
https://arxiv.org/abs/2210.15495v1
https://arxiv.org/pdf/2210.15495v1.pdf
Leveraging Wikidata's edit history in knowledge graph refinement tasks
Knowledge graphs have been adopted in many diverse fields for a variety of purposes. Most of those applications rely on valid and complete data to deliver their results, pressing the need to improve the quality of knowledge graphs. A number of solutions have been proposed to that end, ranging from rule-based approaches to the use of probabilistic methods, but there is an element that has not been considered yet: the edit history of the graph. In the case of collaborative knowledge graphs (e.g., Wikidata), those edits represent the process in which the community reaches some kind of fuzzy and distributed consensus over the information that best represents each entity, and can hold potentially interesting information to be used by knowledge graph refinement methods. In this paper, we explore the use of edit history information from Wikidata to improve the performance of type prediction methods. To do that, we have first built a JSON dataset containing the edit history of every instance from the 100 most important classes in Wikidata. This edit history information is then explored and analyzed, with a focus on its potential applicability in knowledge graph refinement tasks. Finally, we propose and evaluate two new methods to leverage this edit history information in knowledge graph embedding models for type prediction tasks. Our results show an improvement in one of the proposed methods against current approaches, showing the potential of using edit information in knowledge graph refinement tasks and opening new promising research lines within the field.
['Daniel Gayo-Avello', 'Alejandro Gonzalez-Hevia']
2022-10-27
null
null
null
null
['type-prediction', 'knowledge-graph-embedding']
['computer-code', 'graphs']
[ 4.81941178e-02 5.54707468e-01 -4.51522022e-01 -1.02529399e-01 8.54824334e-02 -5.21651685e-01 8.74966145e-01 8.20081174e-01 -3.25630933e-01 7.70435691e-01 3.10420364e-01 7.01229647e-02 -7.97607183e-01 -1.33689833e+00 -5.25098860e-01 -4.54171449e-01 -7.54444525e-02 6.19367898e-01 6.52520478e-01 -3.20836097e-01 3.22231382e-01 2.20290542e-01 -1.73252177e+00 2.15227336e-01 8.57722044e-01 8.61183405e-01 3.20113450e-02 1.46781892e-01 -4.40629840e-01 6.99298322e-01 -4.53296691e-01 -8.07470977e-01 2.65028719e-02 -4.39132303e-02 -1.04066479e+00 -3.64069283e-01 2.37455308e-01 4.17161405e-01 -1.84244916e-01 1.03819680e+00 2.49944270e-01 3.30941528e-01 6.03200078e-01 -1.43713129e+00 -7.34798431e-01 1.23320365e+00 -1.65920198e-01 1.61986910e-02 4.22174722e-01 -3.29809666e-01 1.36131549e+00 -5.95112503e-01 1.17615855e+00 1.13107252e+00 8.02242875e-01 1.33421943e-01 -1.09748089e+00 -3.85817796e-01 1.89900905e-01 8.83924961e-01 -1.40056992e+00 -7.00184852e-02 9.47557807e-01 -7.26905644e-01 9.56300557e-01 1.69380724e-01 8.53801847e-01 7.99743354e-01 -8.94592628e-02 5.00153840e-01 1.16035271e+00 -5.75204492e-01 2.79450685e-01 3.73493165e-01 5.00914931e-01 7.13693559e-01 6.40257299e-01 -3.75108987e-01 -6.42463505e-01 -2.87242264e-01 2.46335968e-01 -1.54776484e-01 -3.79024953e-01 -6.39362335e-01 -8.66004229e-01 7.47042358e-01 5.22691250e-01 5.57424247e-01 -3.59283596e-01 -4.89828661e-02 2.85459727e-01 1.64602056e-01 4.29490477e-01 6.58584177e-01 -4.55434352e-01 -1.23869866e-01 -7.24153757e-01 1.04712978e-01 1.12919307e+00 7.29151487e-01 9.55861151e-01 -4.39463049e-01 -1.46982878e-01 7.20752418e-01 5.08179963e-01 -6.66686743e-02 6.24271072e-02 -5.66394746e-01 2.98645288e-01 1.36036944e+00 -1.72617018e-01 -1.33961284e+00 -2.36862764e-01 -2.85424143e-01 -3.21812242e-01 7.45477602e-02 3.60823572e-01 2.38830224e-01 -7.13906109e-01 1.45285594e+00 5.78763187e-01 3.42633545e-01 -1.92230523e-01 5.20731270e-01 7.96738267e-01 3.58684540e-01 -3.22175995e-02 -7.35878199e-02 1.27469432e+00 -5.88617384e-01 -6.18591249e-01 1.89322472e-01 4.57240164e-01 -4.57411021e-01 6.42641842e-01 5.43178380e-01 -6.10430658e-01 -2.12581232e-01 -9.35546219e-01 1.25086784e-01 -9.28650200e-01 -2.96676636e-01 5.92558861e-01 7.22597897e-01 -9.60952878e-01 7.95285225e-01 -6.99887574e-01 -5.49187303e-01 4.70264673e-01 1.68503881e-01 -4.60151076e-01 -2.34353825e-01 -1.47417986e+00 1.06570864e+00 8.77524674e-01 -9.46969446e-03 -3.21645737e-01 -6.98261023e-01 -6.45375609e-01 2.60907471e-01 9.04746771e-01 -7.47773349e-01 4.19571787e-01 -6.69379652e-01 -9.66747820e-01 5.30084550e-01 1.56313494e-01 -5.30898273e-01 3.17058861e-01 -2.60488112e-02 -4.60986912e-01 9.14707023e-04 -1.94213465e-01 1.32508412e-01 6.43550754e-01 -1.37387061e+00 -7.29166508e-01 -5.42286456e-01 3.93586904e-01 -8.66245702e-02 -7.86995649e-01 -1.41526610e-01 -7.19441533e-01 -4.40036505e-01 -2.07244545e-01 -1.05063570e+00 1.90307535e-02 -2.01819628e-01 -4.68297452e-01 -7.23167598e-01 5.81926703e-01 -6.87030733e-01 1.74340641e+00 -1.53288198e+00 6.47807539e-01 6.43459082e-01 5.35947025e-01 4.71246421e-01 1.78894445e-01 8.72479200e-01 3.54675412e-01 5.03026485e-01 -1.29280925e-01 -6.82571158e-02 1.78440526e-01 3.34152848e-01 8.21826011e-02 9.44488794e-02 -7.33214989e-02 8.55020344e-01 -9.95969117e-01 -6.39141798e-01 1.02604769e-01 6.07339263e-01 -4.22482103e-01 -8.99915993e-02 -4.67013687e-01 -8.17387551e-03 -6.55150950e-01 4.03928399e-01 3.12702566e-01 -2.67563492e-01 6.12891138e-01 -4.82657373e-01 -5.54944277e-02 2.65161246e-01 -1.40187991e+00 1.31952703e+00 -2.06661642e-01 4.04622346e-01 -4.00328338e-01 -9.55844998e-01 8.17452073e-01 3.57561298e-02 5.74007869e-01 -2.77554750e-01 -8.64310339e-02 1.23037368e-01 2.52807364e-02 -4.58809853e-01 7.40659475e-01 2.12909356e-01 2.33449101e-01 3.35961521e-01 8.85134190e-02 2.39500962e-02 5.84452152e-01 4.49480057e-01 1.24444115e+00 1.39029101e-01 4.97526050e-01 -1.26438975e-01 5.72453022e-01 1.60939589e-01 5.87361813e-01 6.87486887e-01 2.15944141e-01 2.06643194e-01 5.26924670e-01 -1.58811003e-01 -7.84442663e-01 -6.94126904e-01 -8.47112462e-02 8.54694188e-01 1.25820652e-01 -1.00139821e+00 -4.44293052e-01 -1.05700099e+00 4.02676493e-01 7.53801405e-01 -8.67257893e-01 -2.64766872e-01 -4.04218346e-01 -3.61513674e-01 6.00743890e-01 3.76987904e-01 2.42210418e-01 -1.14510858e+00 -1.75186977e-01 3.33391905e-01 -1.62215650e-01 -9.71843481e-01 8.39978978e-02 -7.29961097e-02 -6.89474225e-01 -1.60163891e+00 -1.48081735e-01 -4.35465991e-01 4.68531370e-01 -1.55357318e-02 1.07863104e+00 3.14504892e-01 -8.14454705e-02 7.31651962e-01 -8.64758551e-01 -4.15653676e-01 -4.39916223e-01 3.44032168e-01 -4.44473661e-02 1.09373845e-01 3.52327347e-01 -5.00518858e-01 -2.38225371e-01 2.87505627e-01 -9.37361479e-01 -2.04575405e-01 3.79264444e-01 6.68184102e-01 5.13850629e-01 4.54429686e-01 5.29068291e-01 -1.26639414e+00 6.47787809e-01 -6.60325885e-01 -5.96608758e-01 5.91204107e-01 -1.21564782e+00 3.55583042e-01 6.11963212e-01 -2.58045703e-01 -9.84202564e-01 -3.21457386e-01 1.32168382e-01 -4.06329215e-01 2.37180054e-01 1.35052383e+00 -1.15400940e-01 -1.47435322e-01 5.77611983e-01 -2.02368218e-02 -3.07867751e-02 -6.04289532e-01 5.25449753e-01 3.89797658e-01 8.95761475e-02 -5.10382056e-01 8.48380327e-01 1.87546656e-01 1.30680665e-01 -6.88991249e-01 -7.52557397e-01 -5.34076989e-01 -6.51904106e-01 -3.27758402e-01 5.61982691e-01 -4.26284552e-01 -5.18191993e-01 2.82143325e-01 -8.01053703e-01 -1.06447190e-01 -2.71463394e-01 3.76048207e-01 -1.79032147e-01 6.18857622e-01 -2.64532506e-01 -6.79516673e-01 -1.86264008e-01 -7.73466945e-01 4.41921860e-01 2.18820587e-01 -1.38128713e-01 -1.33464658e+00 3.41979176e-01 5.70987463e-01 3.87155801e-01 3.26117933e-01 1.20264900e+00 -1.01002049e+00 -8.54723871e-01 -1.75164476e-01 4.56995703e-03 2.61165589e-01 2.82228202e-01 2.61454940e-01 -6.31065190e-01 -1.23133771e-01 -5.35234988e-01 -1.17571931e-03 9.28637326e-01 5.08734211e-02 7.43315697e-01 -2.90475637e-01 -7.16133058e-01 1.84338436e-01 1.41701591e+00 -1.34107992e-01 6.85822785e-01 4.61391330e-01 9.92362082e-01 7.24650145e-01 6.92687869e-01 4.83001590e-01 9.15071726e-01 9.48899150e-01 4.98107046e-01 4.19950843e-01 -2.75103301e-01 -2.80294180e-01 1.46711648e-01 9.36451733e-01 -5.57585716e-01 -4.19654638e-01 -9.85051632e-01 6.89251184e-01 -2.12252831e+00 -1.07799077e+00 -3.92568588e-01 2.27205586e+00 9.74210620e-01 1.42849088e-01 7.63345063e-02 2.73547113e-01 7.62172997e-01 1.26506642e-01 -1.66760847e-01 -2.21070752e-01 -4.80476990e-02 2.26280004e-01 3.39458674e-01 4.02286768e-01 -7.93625414e-01 9.22238350e-01 5.07776070e+00 7.50199437e-01 -6.55110717e-01 -1.10675640e-01 -2.09567502e-01 4.61771607e-01 -5.11973321e-01 5.49377561e-01 -8.19212615e-01 4.79703039e-01 7.05000639e-01 -4.61520046e-01 4.89245594e-01 7.44151115e-01 -1.33463308e-01 -2.05405951e-01 -9.95467186e-01 5.58985889e-01 2.16477275e-01 -1.44080150e+00 1.42521501e-01 3.23858470e-01 6.48613691e-01 -9.02692229e-02 -4.32256073e-01 3.27231467e-01 4.90792334e-01 -8.18222165e-01 4.51964200e-01 1.03402734e+00 2.02147737e-01 -6.74771428e-01 7.79672563e-01 2.15659395e-01 -1.27193761e+00 -7.15231001e-02 -2.07841307e-01 1.70794621e-01 1.31500997e-02 9.48901594e-01 -1.28857231e+00 1.18215704e+00 6.45120502e-01 9.00531232e-01 -9.72160816e-01 1.27071214e+00 -4.68070835e-01 7.00702727e-01 -4.09951270e-01 -2.87503332e-01 -1.53582439e-01 -3.16779196e-01 6.60036743e-01 1.03857768e+00 2.72683322e-01 -1.73257098e-01 1.50135189e-01 8.43847752e-01 -1.96016863e-01 3.17722827e-01 -6.40560150e-01 -3.40824783e-01 7.37885773e-01 1.39726782e+00 -6.79909885e-01 -2.71389902e-01 -4.15762961e-01 4.41014856e-01 4.92908388e-01 7.02672824e-03 -6.44155562e-01 -4.37058002e-01 4.60843921e-01 3.59914184e-01 4.93090659e-01 -8.97880122e-02 1.47417346e-02 -1.01929617e+00 1.78868368e-01 -6.97223365e-01 8.65697086e-01 -6.47549093e-01 -1.38505089e+00 4.40505832e-01 1.83034062e-01 -8.34592283e-01 -1.50381133e-01 -4.49546188e-01 -3.05225074e-01 4.64773953e-01 -1.55824649e+00 -1.36060107e+00 -4.58251268e-01 4.71409947e-01 1.96624678e-02 -7.55467415e-02 6.64505661e-01 2.51476079e-01 -4.11253721e-01 4.40760523e-01 2.97248214e-02 8.57349113e-02 7.14197040e-01 -1.45742607e+00 1.26245439e-01 8.18113983e-01 5.41253388e-01 7.63217330e-01 7.56267428e-01 -1.15686679e+00 -1.59522665e+00 -1.08213246e+00 9.94235158e-01 -7.72091508e-01 8.78256977e-01 -7.82907754e-02 -1.26504409e+00 6.54909611e-01 4.37072478e-02 -1.52961254e-01 5.33109486e-01 5.41138470e-01 -4.67415333e-01 -3.77698429e-02 -9.75515485e-01 3.65553617e-01 1.20253694e+00 -3.71974021e-01 -8.00450325e-01 -6.13330416e-02 3.88573706e-01 8.75955224e-02 -1.36796439e+00 3.91649425e-01 4.92318600e-01 -8.33778858e-01 8.75332832e-01 -5.63799262e-01 1.42347038e-01 -5.47060490e-01 1.51453778e-01 -1.62576163e+00 -3.30239892e-01 -3.94936681e-01 -5.88298857e-01 1.54006505e+00 4.59609658e-01 -7.05247164e-01 7.50616312e-01 4.92202550e-01 -1.61089897e-01 -6.70336664e-01 -7.09775031e-01 -7.27679193e-01 -2.04150945e-01 -3.51253629e-01 5.50189972e-01 1.29616332e+00 3.29989731e-01 1.83251828e-01 -1.98275819e-01 1.32385850e-01 4.79313254e-01 2.29228973e-01 8.72501969e-01 -1.94692588e+00 -1.65152848e-01 -4.99786377e-01 -7.71284997e-01 -2.97816634e-01 1.73774526e-01 -1.49689174e+00 -4.32572097e-01 -2.10471368e+00 2.50414282e-01 -5.59232175e-01 -3.80330652e-01 7.20490754e-01 -4.04340565e-01 -3.92179228e-02 1.43197283e-01 1.11831188e-01 -7.71523356e-01 3.93741101e-01 8.46279979e-01 -2.70027518e-01 -2.16724977e-01 -2.12329015e-01 -6.24934077e-01 5.87431788e-01 4.75434214e-01 -6.31298482e-01 -4.36958969e-01 -9.54112224e-03 8.24861765e-01 -4.27820861e-01 3.23927552e-01 -7.96791136e-01 5.40866196e-01 -1.93938538e-01 -1.10634960e-01 -2.58133143e-01 2.00799122e-01 -8.39642704e-01 6.23374224e-01 1.80796340e-01 -1.30618095e-01 -1.97697356e-01 -2.07224652e-01 9.27822292e-01 -2.16387108e-01 -3.87745798e-01 3.26963574e-01 1.15069598e-01 -9.61344481e-01 2.41912305e-01 3.85347642e-02 1.53380036e-01 9.83439922e-01 -4.76328969e-01 -4.57199991e-01 -4.89003025e-02 -8.95910621e-01 2.58826584e-01 6.56321943e-01 7.45374918e-01 4.68520582e-01 -1.12010396e+00 -5.79591036e-01 -1.98224306e-01 5.41788042e-01 -3.20474327e-01 -3.76665071e-02 9.10041630e-01 -1.62708551e-01 1.63807765e-01 -1.12751968e-01 -2.52235889e-01 -1.34921527e+00 5.71551442e-01 2.52623651e-02 -5.36223471e-01 -5.80065072e-01 4.00438637e-01 -5.69351852e-01 -2.85588443e-01 -2.59591974e-02 -1.02193013e-01 -8.83988798e-01 5.71701169e-01 1.80919439e-01 6.79784954e-01 3.01769108e-01 -5.56126595e-01 -4.68757778e-01 4.52223986e-01 -8.03100318e-02 1.88890845e-01 1.61873138e+00 -1.87863596e-02 -5.63469768e-01 4.63253945e-01 7.03268409e-01 3.64867359e-01 -7.42122710e-01 -4.01218653e-01 6.03462100e-01 -4.20130223e-01 6.61390871e-02 -9.78264451e-01 -1.15084791e+00 3.30142885e-01 2.27261573e-01 5.93694806e-01 7.72699714e-01 1.80466071e-01 4.03405279e-01 4.26817358e-01 7.28869140e-01 -1.22903192e+00 -2.25613460e-01 5.10571361e-01 6.39537692e-01 -1.04702818e+00 2.19849110e-01 -7.36618996e-01 -5.16013086e-01 1.07160461e+00 3.25484931e-01 1.43069550e-01 8.04249465e-01 -1.10645078e-01 -4.77003932e-01 -5.58234990e-01 -8.22961926e-01 -5.88611603e-01 7.60665119e-01 7.18773067e-01 2.74027824e-01 6.56474680e-02 -6.49112105e-01 7.25711286e-01 6.41325563e-02 1.86597198e-01 5.90848565e-01 8.59620690e-01 -3.39941502e-01 -1.46520400e+00 -9.47146267e-02 7.85149872e-01 -1.98241800e-01 -4.70134020e-02 -8.55243921e-01 9.04602289e-01 1.68238088e-01 9.74606156e-01 -5.01788259e-01 -4.64057297e-01 3.75825316e-01 4.05466467e-01 4.89669532e-01 -7.72430241e-01 -7.83406734e-01 -5.50336421e-01 5.71148932e-01 -3.09091538e-01 -5.34940481e-01 -6.29283249e-01 -1.09217870e+00 -2.38146693e-01 -7.04925418e-01 2.28889778e-01 6.09178782e-01 8.90911281e-01 5.72492957e-01 4.52514380e-01 2.70393580e-01 -2.86697000e-01 -1.10774010e-01 -7.85302162e-01 -4.89140540e-01 7.46519089e-01 -3.94194365e-01 -1.09760380e+00 -2.66878366e-01 -7.17941895e-02]
[8.945575714111328, 7.892004489898682]
4703c1ad-f154-4664-ab11-8e1338c3f5ac
improved-dynamic-memory-network-for-dialogue
1811.05021
null
http://arxiv.org/abs/1811.05021v1
http://arxiv.org/pdf/1811.05021v1.pdf
Improved Dynamic Memory Network for Dialogue Act Classification with Adversarial Training
Dialogue Act (DA) classification is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention. Currently, many existing approaches formulate the DA classification problem ranging from multi-classification to structured prediction, which suffer from two limitations: a) these methods are either handcrafted feature-based or have limited memories. b) adversarial examples can't be correctly classified by traditional training methods. To address these issues, in this paper we first cast the problem into a question and answering problem and proposed an improved dynamic memory networks with hierarchical pyramidal utterance encoder. Moreover, we apply adversarial training to train our proposed model. We evaluate our model on two public datasets, i.e., Switchboard dialogue act corpus and the MapTask corpus. Extensive experiments show that our proposed model is not only robust, but also achieves better performance when compared with some state-of-the-art baselines.
['Yao Wan', 'Philip S. Yu', 'Jian Wu', 'Zhou Zhao', 'Wenqiang Yan', 'Jianwei Gao']
2018-11-12
null
null
null
null
['dialogue-act-classification', 'dialogue-interpretation']
['natural-language-processing', 'natural-language-processing']
[ 3.95049781e-01 4.01988834e-01 3.86278890e-02 -7.52323806e-01 -8.11450362e-01 -4.79189605e-01 8.63806069e-01 -2.15344667e-01 -3.33178729e-01 9.60733235e-01 5.56497812e-01 -1.86450601e-01 4.90016669e-01 -5.29954195e-01 -2.84471869e-01 -5.67741811e-01 3.86568159e-01 7.79470861e-01 3.52506220e-01 -6.30059600e-01 1.90432921e-01 -5.99558651e-02 -9.59377170e-01 5.06426513e-01 9.30345535e-01 1.18140268e+00 -9.55036730e-02 5.87487340e-01 -2.64646590e-01 1.53941894e+00 -9.11833584e-01 -6.87407732e-01 -2.29388908e-01 -6.02584124e-01 -1.51306581e+00 2.34619081e-01 1.06141776e-01 -8.50217164e-01 -4.59048599e-01 1.06672418e+00 4.39289540e-01 3.45430315e-01 7.09221244e-01 -1.25363064e+00 -6.76811755e-01 4.89800006e-01 -1.62433952e-01 -4.79107015e-02 6.50954008e-01 1.16255812e-01 1.19699752e+00 -8.14399600e-01 2.75813192e-01 1.61291218e+00 3.82333338e-01 1.15524936e+00 -9.78587389e-01 -4.44318414e-01 2.69491583e-01 3.87941062e-01 -8.90413523e-01 -8.22302043e-01 1.13248074e+00 -2.59737611e-01 1.02241743e+00 3.86321455e-01 2.14234851e-02 1.54498625e+00 -1.54825985e-01 1.35604095e+00 1.33497274e+00 -3.35246235e-01 2.16865897e-01 1.43943101e-01 3.91314715e-01 7.59498179e-01 -9.14089680e-01 -3.79850298e-01 -2.80199945e-01 -3.26222390e-01 4.49214429e-01 -2.55885005e-01 -3.31834882e-01 1.14374399e-01 -9.73334491e-01 1.27866256e+00 8.17329511e-02 2.42969215e-01 -8.47180933e-02 -2.91661680e-01 8.44503164e-01 5.62175810e-01 6.20475113e-01 3.95037979e-01 -4.73255306e-01 -2.31466025e-01 -1.10466994e-01 3.30857933e-01 1.10741353e+00 7.70861387e-01 5.22540689e-01 1.39900908e-01 -2.36637533e-01 1.24872148e+00 2.38699272e-01 3.16855013e-01 8.67847860e-01 -8.70130122e-01 8.45281780e-01 5.36920011e-01 1.28420919e-01 -8.96235287e-01 -5.86768687e-01 3.63931477e-01 -1.03524745e+00 -1.69853568e-01 4.20905471e-01 -5.73012352e-01 -4.16838795e-01 1.80696368e+00 2.34520033e-01 2.15721205e-01 5.52000701e-01 8.76008213e-01 1.26218450e+00 9.97970164e-01 1.16147809e-01 -3.85065019e-01 1.32058215e+00 -1.53822589e+00 -1.22006738e+00 -4.19061482e-01 5.37244558e-01 -4.76933509e-01 1.14142942e+00 2.78953999e-01 -1.11292899e+00 -5.58941662e-01 -1.02249742e+00 -1.03517599e-01 -2.18160897e-01 -3.59525741e-03 5.10547578e-01 5.72345674e-01 -7.65763700e-01 1.66741431e-01 -6.65902197e-01 4.73230965e-02 4.91771586e-02 3.10611218e-01 -1.21298045e-01 3.23910207e-01 -1.60393715e+00 1.05016565e+00 4.04728502e-01 -2.30361484e-02 -1.06610560e+00 8.86025429e-02 -1.06625533e+00 3.35467309e-02 4.59632874e-01 -3.34936738e-01 2.03456903e+00 -1.23410261e+00 -2.40999174e+00 7.01117098e-01 -2.37475246e-01 -6.81201100e-01 2.86886513e-01 -2.53289789e-01 -4.19495434e-01 6.75805137e-02 -1.14603326e-01 4.28592980e-01 8.22409749e-01 -1.12926745e+00 -6.76830828e-01 -3.62300605e-01 6.33784413e-01 5.17342389e-01 -5.44313669e-01 1.11360863e-01 -8.03839788e-02 -5.20838499e-01 -4.05690968e-02 -8.93527746e-01 -2.17578784e-01 -6.15622938e-01 -5.93090773e-01 -6.59104884e-01 9.99466836e-01 -8.44899893e-01 1.27244127e+00 -1.87304747e+00 4.77532983e-01 -4.42791432e-01 1.89981028e-01 5.31735063e-01 7.05830455e-02 3.73328656e-01 2.65120059e-01 -9.81036052e-02 -2.58382082e-01 -5.79514802e-01 1.32442117e-01 3.51077527e-01 -6.61470413e-01 2.20156863e-01 1.54804513e-01 7.57670522e-01 -8.20257246e-01 -4.64763820e-01 2.37843782e-01 -5.51155545e-02 -3.16679478e-01 9.71657336e-01 -6.22045994e-01 7.18725383e-01 -6.77822828e-01 4.50404942e-01 3.90328944e-01 -1.65724844e-01 3.31579506e-01 9.50271636e-03 3.52804244e-01 6.74963534e-01 -7.55425751e-01 1.73632073e+00 -7.46030331e-01 3.87462288e-01 2.05996513e-01 -1.26476407e+00 9.26141202e-01 6.33893013e-01 8.88973325e-02 -5.99144161e-01 1.37022763e-01 8.05014670e-02 -4.96433824e-02 -6.13283098e-01 5.77219546e-01 -3.94129962e-01 -4.42083597e-01 4.77068514e-01 2.63658702e-01 -1.28639027e-01 -3.68352294e-01 -7.64138773e-02 9.57983375e-01 -9.24351960e-02 4.77999449e-01 -3.71276736e-02 1.24397016e+00 -1.95319787e-01 6.97911739e-01 4.80630606e-01 -5.01710474e-01 2.68523306e-01 6.74139857e-01 -5.15340745e-01 -5.29692769e-01 -7.38118112e-01 5.56931365e-03 1.51072717e+00 2.24402681e-01 -1.77223504e-01 -9.19719577e-01 -1.29018664e+00 -4.27796781e-01 9.41771686e-01 -4.77433652e-01 -3.39103378e-02 -8.65037024e-01 -6.73468709e-01 9.26630557e-01 4.17711914e-01 1.15809786e+00 -1.16775513e+00 -2.08856300e-01 2.94062108e-01 -6.00944400e-01 -1.25052309e+00 -5.17338336e-01 -8.17791298e-02 -4.72516686e-01 -8.80953908e-01 -5.02292633e-01 -1.02689624e+00 3.90293777e-01 8.31750333e-02 1.16523123e+00 -7.15408474e-02 5.25556743e-01 3.08451802e-01 -4.77088809e-01 -2.58551031e-01 -9.09351766e-01 2.51070410e-01 3.46392542e-02 2.74426818e-01 4.52645481e-01 -2.98742324e-01 -2.55226135e-01 5.48211396e-01 -6.78738356e-01 2.43708506e-01 2.67328709e-01 1.38862967e+00 1.20946333e-01 -2.36335874e-01 1.17112899e+00 -1.16578710e+00 1.05855560e+00 -4.97462720e-01 -2.46947959e-01 4.24670786e-01 -3.17588955e-01 4.83998545e-02 9.91175234e-01 -1.85890555e-01 -1.60314989e+00 1.67478677e-02 -6.89713538e-01 -7.83328712e-02 -5.19849241e-01 3.82915288e-01 -5.56444347e-01 1.75159350e-01 4.65966314e-01 3.95775884e-01 2.46074140e-01 -4.32525367e-01 3.39086652e-01 1.24648571e+00 3.57352346e-01 -5.94841182e-01 3.02858770e-01 1.42415054e-02 -5.23354232e-01 -7.45514810e-01 -1.05540156e+00 -2.66675234e-01 -6.08396649e-01 -1.59619272e-01 1.10355878e+00 -7.85866797e-01 -9.25775826e-01 7.06948221e-01 -1.46810579e+00 -4.28722084e-01 4.14582372e-01 -6.38644677e-03 -8.31793368e-01 6.44185126e-01 -1.14257777e+00 -9.45519745e-01 -5.41262507e-01 -1.37013590e+00 7.68045664e-01 1.90181866e-01 -1.36844009e-01 -1.27055538e+00 1.18883662e-01 1.02254999e+00 3.87806088e-01 -2.01323899e-04 9.95452642e-01 -1.31784022e+00 -1.05344197e-02 6.05355874e-02 4.60977405e-02 5.67023814e-01 2.36001104e-01 -5.86266816e-01 -1.16944075e+00 -2.21747190e-01 6.15760744e-01 -1.25006700e+00 5.81914306e-01 -2.19438687e-01 1.18999946e+00 -9.25902843e-01 -8.68341699e-02 -2.70364918e-02 6.98943615e-01 4.07304645e-01 5.71622849e-01 1.05751440e-01 6.04500830e-01 7.16575742e-01 9.19229448e-01 3.39902222e-01 7.87251115e-01 9.82809961e-01 4.35637951e-01 2.00951755e-01 2.61737615e-01 -1.86048120e-01 5.38563192e-01 1.24084485e+00 2.30347484e-01 -3.52061719e-01 -9.25762415e-01 2.70667017e-01 -2.16928411e+00 -9.11487222e-01 2.13983431e-01 1.63625956e+00 1.22790468e+00 2.65588969e-01 2.43849963e-01 -1.69207156e-01 5.25038242e-01 6.18369937e-01 -5.18786311e-01 -7.06501007e-01 5.35009941e-03 -1.08346708e-01 -2.27635652e-01 6.63596570e-01 -1.58161354e+00 1.12579954e+00 5.51821995e+00 7.50037730e-01 -9.64720666e-01 4.34710532e-01 9.43802595e-01 3.59223455e-01 5.05092777e-02 -4.77237433e-01 -7.58043885e-01 4.95202750e-01 1.20987964e+00 -1.11379333e-01 2.48078987e-01 9.82844830e-01 -1.83416530e-01 3.37506086e-01 -1.17635083e+00 8.66632402e-01 4.86420691e-01 -1.03211951e+00 -1.29880160e-02 -3.29426318e-01 4.50452328e-01 -2.97000915e-01 -1.55409444e-02 9.67306435e-01 5.15235603e-01 -1.23316658e+00 2.74312496e-01 2.07913145e-01 4.14553821e-01 -6.95155919e-01 9.43745077e-01 8.15358043e-01 -7.28440762e-01 -8.58100802e-02 -3.41955096e-01 -2.35212669e-01 1.34232193e-01 -2.14409977e-01 -1.04853010e+00 4.08906877e-01 2.20516145e-01 5.27667165e-01 -2.69579023e-01 1.94829613e-01 -3.51776689e-01 8.91325176e-01 1.12666346e-01 -3.64008307e-01 5.50525904e-01 -1.76456586e-01 3.43202919e-01 1.04986489e+00 -2.88509130e-01 2.96795547e-01 4.95766252e-01 3.95687163e-01 -2.92221218e-01 3.07357252e-01 -6.12284660e-01 1.52384117e-01 4.40575570e-01 1.03276587e+00 8.26946795e-02 -4.17974979e-01 -8.65856051e-01 1.32435691e+00 6.36759520e-01 5.67547232e-02 -8.64287853e-01 -2.32542872e-01 5.81476331e-01 -4.64879632e-01 1.35736950e-02 -5.42764254e-02 -1.70635357e-02 -1.42491305e+00 -1.41595408e-01 -1.43854702e+00 4.10146385e-01 -3.46565574e-01 -1.38177943e+00 8.83469105e-01 -3.17839950e-01 -1.12918103e+00 -8.35166097e-01 -5.47196448e-01 -7.41783261e-01 5.43701947e-01 -1.23740554e+00 -1.42791045e+00 -1.06821746e-01 6.67696953e-01 1.31624866e+00 -6.63523257e-01 1.53864992e+00 2.19556883e-01 -6.39158785e-01 6.84924483e-01 1.38328299e-01 5.89729726e-01 6.77215159e-01 -1.41270947e+00 2.56190181e-01 3.93998235e-01 3.78635824e-02 2.12219745e-01 5.34087360e-01 -2.77125925e-01 -1.04657423e+00 -9.34941649e-01 6.97518706e-01 -5.19881010e-01 8.36511254e-01 -3.79680693e-01 -1.13339603e+00 9.70088959e-01 7.38993227e-01 -4.25195873e-01 1.11257005e+00 2.11520851e-01 -1.37715921e-01 2.09182382e-01 -1.20259976e+00 5.47631443e-01 6.37432873e-01 -5.79941392e-01 -1.13167715e+00 6.04115486e-01 7.90973783e-01 -7.37722814e-01 -8.82162035e-01 2.27659613e-01 1.42697722e-01 -9.28884923e-01 8.15021157e-01 -1.02038288e+00 5.79618573e-01 2.25801453e-01 -2.63257861e-01 -1.47338772e+00 -5.81748085e-03 -6.37233734e-01 -2.93834507e-01 1.45283592e+00 3.89784396e-01 -5.34992218e-01 5.51703393e-01 7.73184597e-01 -4.35201824e-01 -9.15603101e-01 -1.25458395e+00 -3.76821637e-01 3.35952997e-01 -6.55364990e-02 5.84263980e-01 1.16464245e+00 3.77915233e-01 1.15740931e+00 -9.23107266e-01 -8.43721852e-02 1.49685726e-01 1.51208550e-01 8.70557785e-01 -9.25828516e-01 -5.50354183e-01 -2.84474373e-01 -2.44710997e-01 -1.67660570e+00 9.53892648e-01 -6.25873983e-01 2.60935515e-01 -1.08009124e+00 -5.49143702e-02 -2.71016419e-01 6.75411001e-02 4.86592323e-01 -3.93404812e-01 -3.55572194e-01 -2.01760102e-02 2.40885884e-01 -8.84979725e-01 9.80702519e-01 9.67576563e-01 -4.62262869e-01 -1.90285772e-01 3.76605481e-01 -4.16638613e-01 9.22290921e-01 1.06088161e+00 -4.43698745e-03 -5.54240823e-01 -4.92148787e-01 -4.41578358e-01 6.93125010e-01 8.69542062e-02 -7.32918441e-01 9.95223373e-02 -3.30451518e-01 -1.85889512e-01 -4.34019148e-01 7.73216605e-01 -5.35750687e-01 -6.98831022e-01 2.96922177e-01 -7.75819123e-01 -1.08853526e-01 -5.24706505e-02 5.79626977e-01 -5.45386970e-01 -5.87610722e-01 7.49157488e-01 -2.48230338e-01 -7.56858289e-01 3.10522653e-02 -4.50958341e-01 2.05942899e-01 9.23123479e-01 5.75718999e-01 -5.90854049e-01 -8.75975311e-01 -5.98236620e-01 5.88415444e-01 -1.06823720e-01 5.29506207e-01 6.33942068e-01 -1.28825057e+00 -7.36824095e-01 -1.18730448e-01 -7.94414431e-03 2.61429064e-02 2.84096956e-01 4.96102452e-01 -3.03580225e-01 6.16948247e-01 -8.50606859e-02 -3.41633499e-01 -1.32410800e+00 4.41050231e-01 4.70062733e-01 -5.39341986e-01 -3.63517046e-01 7.79162049e-01 2.81176329e-01 -9.30018783e-01 4.60885495e-01 1.85927048e-01 -6.23052478e-01 -8.60489067e-03 6.78757012e-01 1.02805525e-01 -2.95418650e-01 -9.47220623e-01 -2.51392245e-01 -4.88183126e-02 -5.12183607e-01 -9.36274976e-02 1.02946150e+00 -3.13351393e-01 -2.65784506e-02 6.31018698e-01 1.16883862e+00 -2.68886894e-01 -9.51037824e-01 -6.64266527e-01 2.01010499e-02 -2.56091028e-01 -2.67237067e-01 -7.38927364e-01 -7.87053823e-01 1.04491961e+00 3.10855806e-01 5.62572896e-01 8.89973104e-01 -2.71605141e-02 1.23642313e+00 9.18861091e-01 2.60328084e-01 -1.29445314e+00 6.38005912e-01 9.06704724e-01 1.19574654e+00 -1.58372283e+00 -3.33865851e-01 -3.47813725e-01 -1.27134228e+00 1.09948325e+00 1.33920288e+00 1.83626458e-01 3.73408854e-01 -2.07041293e-01 4.29540396e-01 1.28022842e-02 -9.20185566e-01 6.45513907e-02 -7.71915615e-02 4.37011391e-01 5.03136039e-01 -2.77168658e-02 -2.74123371e-01 1.09118354e+00 -1.22127451e-01 -3.79839122e-01 4.87500846e-01 7.26689696e-01 -5.10994136e-01 -1.22483158e+00 -5.55576570e-02 4.09248561e-01 -5.44708788e-01 6.97386041e-02 -6.85299873e-01 4.58682984e-01 -4.42126930e-01 1.28614056e+00 -1.77756622e-01 -6.84868932e-01 2.74759978e-01 5.62563837e-01 -1.95547994e-02 -7.04294086e-01 -7.32479215e-01 -2.16280475e-01 6.77341878e-01 -1.30639166e-01 -4.43498135e-01 -5.37305772e-01 -1.24556947e+00 -6.19182251e-02 -4.20490563e-01 3.17921191e-01 2.48800948e-01 1.32128394e+00 8.98381546e-02 4.15337354e-01 1.03668904e+00 -4.95228887e-01 -1.24199140e+00 -1.50100756e+00 -2.00916290e-01 6.30003750e-01 2.72456735e-01 -6.22595727e-01 -2.41866559e-01 -1.13164030e-01]
[12.737732887268066, 7.7289252281188965]
c6fb18b4-328e-4e74-9407-e03f644bfd8c
automatic-milp-solver-configuration-by
2307.00670
null
https://arxiv.org/abs/2307.00670v1
https://arxiv.org/pdf/2307.00670v1.pdf
Automatic MILP Solver Configuration By Learning Problem Similarities
A large number of real-world optimization problems can be formulated as Mixed Integer Linear Programs (MILP). MILP solvers expose numerous configuration parameters to control their internal algorithms. Solutions, and their associated costs or runtimes, are significantly affected by the choice of the configuration parameters, even when problem instances have the same number of decision variables and constraints. On one hand, using the default solver configuration leads to suboptimal solutions. On the other hand, searching and evaluating a large number of configurations for every problem instance is time-consuming and, in some cases, infeasible. In this study, we aim to predict configuration parameters for unseen problem instances that yield lower-cost solutions without the time overhead of searching-and-evaluating configurations at the solving time. Toward that goal, we first investigate the cost correlation of MILP problem instances that come from the same distribution when solved using different configurations. We show that instances that have similar costs using one solver configuration also have similar costs using another solver configuration in the same runtime environment. After that, we present a methodology based on Deep Metric Learning to learn MILP similarities that correlate with their final solutions' costs. At inference time, given a new problem instance, it is first projected into the learned metric space using the trained model, and configuration parameters are instantly predicted using previously-explored configurations from the nearest neighbor instance in the learned embedding space. Empirical results on real-world problem benchmarks show that our method predicts configuration parameters that improve solutions' costs by up to 38% compared to existing approaches.
['Sherief Reda', 'Abdelrahman Hosny']
2023-07-02
null
null
null
null
['metric-learning', 'metric-learning']
['computer-vision', 'methodology']
[-6.68146238e-02 -2.69928783e-01 -3.22511792e-01 -4.04936492e-01 -9.70020533e-01 -9.23840821e-01 -4.71564569e-02 4.17813301e-01 -1.75000519e-01 9.81056929e-01 -1.84391901e-01 -5.10649383e-02 -7.74814248e-01 -1.02234638e+00 -7.40579367e-01 -8.23882580e-01 -1.12119600e-01 1.02579308e+00 -4.27387774e-01 -6.99748099e-02 5.15586257e-01 4.04859751e-01 -1.43249214e+00 3.16549510e-01 1.01200533e+00 1.16353774e+00 3.78208607e-02 2.73978293e-01 -3.55122268e-01 3.22110415e-01 -7.19100237e-01 -3.68628919e-01 6.92932904e-01 -4.79836687e-02 -8.74717236e-01 -1.43927680e-02 4.26622570e-01 1.03084005e-01 3.99035923e-02 1.08707166e+00 2.19603300e-01 3.33381742e-01 4.08106208e-01 -1.47481620e+00 -3.44598413e-01 6.71122074e-01 -2.92768687e-01 -5.12265079e-02 4.87386763e-01 3.22833925e-01 1.17787385e+00 -6.74933374e-01 6.87794447e-01 9.00078416e-01 4.53641087e-01 1.63803503e-01 -1.63492036e+00 -4.70792592e-01 3.75260532e-01 2.43063465e-01 -1.64684200e+00 5.32449596e-03 7.67722964e-01 -3.34299594e-01 1.05968404e+00 4.44630802e-01 5.36885381e-01 7.81951725e-01 1.73892200e-01 1.63243920e-01 8.13591957e-01 -5.43393716e-02 7.30047047e-01 3.51427197e-01 4.20471542e-02 6.14540100e-01 4.55289662e-01 -8.47899392e-02 -1.79965720e-01 -2.64802545e-01 -4.66339616e-03 -1.15051143e-01 -2.10758314e-01 -6.14060640e-01 -1.25203431e+00 1.02322543e+00 4.51619625e-01 3.65204841e-01 -2.79530615e-01 1.57884419e-01 1.83374524e-01 4.00064588e-01 1.35893419e-01 1.35287845e+00 -6.34652078e-01 -2.16415107e-01 -8.35480034e-01 5.88626206e-01 1.13904321e+00 8.43381107e-01 1.04170680e+00 -2.98341334e-01 -3.27509880e-01 6.19268775e-01 -2.88408965e-01 1.54184535e-01 3.09127301e-01 -9.45780993e-01 1.17459428e+00 9.46046114e-01 2.50391126e-01 -1.42250466e+00 -3.96211147e-01 -6.14849806e-01 -3.19982260e-01 1.56939089e-01 4.09102350e-01 -1.89832047e-01 -5.56966126e-01 1.66023886e+00 3.73494089e-01 2.37634763e-01 6.66141063e-02 9.90655303e-01 1.77638635e-01 9.68874276e-01 -1.65361375e-01 -2.31940255e-01 9.41221774e-01 -1.17048538e+00 -2.12011531e-01 -3.82370353e-01 9.64313745e-01 -6.19094074e-01 9.20300961e-01 4.95579511e-01 -9.69527006e-01 -9.11089778e-02 -1.14908993e+00 3.75541300e-01 -6.18400097e-01 4.50713979e-03 5.96277714e-01 6.24477088e-01 -6.89936817e-01 1.09060562e+00 -6.44329786e-01 1.33455573e-02 1.16062783e-01 6.41475618e-01 -2.90979981e-01 -3.41038555e-01 -9.32717264e-01 1.04397011e+00 7.03461349e-01 2.28697568e-01 -7.16907620e-01 -1.10938823e+00 -7.42365301e-01 3.69363874e-01 7.08701551e-01 -5.31547189e-01 7.16469526e-01 -7.04040587e-01 -1.35689509e+00 2.94954985e-01 -5.84254824e-02 -2.03080863e-01 5.11808813e-01 9.71405581e-02 -3.14042836e-01 -2.22819045e-01 -3.30734327e-02 1.40235588e-01 6.73022389e-01 -1.16242695e+00 -5.06251216e-01 -1.80090576e-01 5.13069451e-01 2.75919914e-01 -3.21129024e-01 -2.92614937e-01 -3.31224024e-01 -1.07308201e-01 2.05426574e-01 -9.60691392e-01 -6.37589931e-01 -4.56296861e-01 -6.37641609e-01 1.30944774e-01 2.49328092e-01 -3.62791270e-01 1.47233784e+00 -1.90134263e+00 7.93533325e-01 7.98091412e-01 1.42228976e-01 -1.65158287e-02 -5.13012707e-01 4.52378213e-01 -1.34363994e-01 3.30967218e-01 -3.02929729e-01 -1.60267502e-01 4.37274992e-01 2.97025472e-01 -1.78517655e-01 3.43881965e-01 1.73352331e-01 7.19099045e-01 -9.48002279e-01 -4.43990290e-01 4.08872843e-01 6.13947771e-02 -9.90093291e-01 2.01682061e-01 -4.61907238e-01 3.46809745e-01 -5.00902832e-01 5.49362183e-01 6.93415761e-01 -2.84732610e-01 4.49925601e-01 -3.67212236e-01 5.05654961e-02 2.32772335e-01 -1.76746655e+00 1.59192967e+00 -8.62147272e-01 2.55526453e-01 -4.24029499e-01 -1.41836607e+00 7.82648444e-01 -1.66817039e-01 5.41310966e-01 -7.46357679e-01 1.00887150e-01 4.14010704e-01 -1.19556449e-01 -4.73501712e-01 4.77429092e-01 1.82907775e-01 -3.13290209e-01 4.41273242e-01 -9.71388817e-02 -1.86457083e-01 7.65476465e-01 -2.76327997e-01 1.26432300e+00 -1.78789675e-01 9.09677669e-02 -1.26230419e-01 6.11460090e-01 2.65182704e-01 9.32267249e-01 5.65819621e-01 2.92167217e-01 4.77860838e-01 8.54832709e-01 -9.19302583e-01 -9.46727395e-01 -1.06472075e+00 -2.73766845e-01 6.88818276e-01 4.02893066e-01 -5.59982181e-01 -6.49300337e-01 -6.91162229e-01 1.84950009e-01 9.48397160e-01 -5.36068201e-01 -2.30274796e-01 -8.46500635e-01 -9.07360137e-01 1.16141755e-02 2.75027722e-01 8.18965882e-02 -6.20995700e-01 -6.05253160e-01 5.38502455e-01 -1.76219061e-01 -1.12544680e+00 -3.16046089e-01 1.86114937e-01 -8.14750552e-01 -1.19409275e+00 -2.07621872e-01 -5.02622724e-01 1.12118745e+00 -3.15195382e-01 1.31917465e+00 1.33083150e-01 -7.24628031e-01 -2.40839683e-02 -3.94555815e-02 2.39476979e-01 -1.38225257e-01 3.45135838e-01 6.47224486e-02 -9.41386893e-02 8.61881077e-02 -4.29346502e-01 -4.12910461e-01 4.10690099e-01 -6.78680003e-01 -1.32753447e-01 3.77043962e-01 8.69244277e-01 8.42642665e-01 5.11305273e-01 1.80114746e-01 -6.92692280e-01 6.41362309e-01 -7.15559185e-01 -1.23347855e+00 7.03657866e-01 -7.66397297e-01 6.06080115e-01 9.94097829e-01 -5.39467454e-01 -6.27698720e-01 1.46041170e-01 4.78357434e-01 -5.73095441e-01 1.77983791e-01 8.46771240e-01 -1.99343741e-01 -1.56288937e-01 6.48275495e-01 -1.81251884e-01 -4.46950853e-01 -2.78527498e-01 2.61905760e-01 7.08164722e-02 7.42483139e-02 -1.22137237e+00 9.87588465e-01 -9.19227675e-03 2.71172494e-01 -1.01910606e-01 -9.65883434e-01 7.78403953e-02 -3.14335376e-01 1.06160127e-01 4.92137671e-01 -2.72960037e-01 -7.20484972e-01 -1.98112428e-01 -9.76281703e-01 -1.13660119e-01 -2.92762816e-01 4.63912874e-01 -4.96120602e-01 -2.19740778e-01 -3.55594084e-02 -3.49181652e-01 8.19525197e-02 -1.62731957e+00 6.46407068e-01 1.45650908e-01 -2.83055842e-01 -1.05767882e+00 2.71199763e-01 4.14103687e-01 4.78106469e-01 6.29347205e-01 1.30125594e+00 -6.39305055e-01 -8.78461659e-01 -2.47439936e-01 -3.40389386e-02 1.95322976e-01 5.10050207e-02 6.22784197e-02 -4.37117428e-01 -3.70372176e-01 -1.65387183e-01 8.49294811e-02 1.76051080e-01 2.48704717e-01 1.46048534e+00 -7.72584081e-01 -3.69589210e-01 1.05058360e+00 1.97355509e+00 7.10468441e-02 3.85374278e-01 5.00340164e-01 4.89673525e-01 5.73030174e-01 8.08983564e-01 4.39645588e-01 3.64007242e-02 7.45028734e-01 4.93346512e-01 2.73349643e-01 4.86604065e-01 -4.73593809e-02 1.59070596e-01 3.85804355e-01 8.40168167e-03 -6.23461753e-02 -1.04616952e+00 5.02735615e-01 -1.80019820e+00 -7.13065326e-01 3.94492596e-01 2.41943049e+00 8.80642891e-01 7.91592076e-02 -1.65615126e-01 4.84877974e-02 7.07512796e-01 9.35850199e-04 -6.18268609e-01 -7.93678939e-01 2.09405109e-01 4.42500919e-01 6.26219988e-01 6.16694748e-01 -8.50321412e-01 7.18813837e-01 5.70790339e+00 6.38879061e-01 -1.26064622e+00 -2.19394878e-01 7.28595793e-01 -9.16105390e-01 -2.80290008e-01 1.65257514e-01 -7.75302112e-01 6.63198471e-01 9.57818449e-01 -6.91976607e-01 1.23926783e+00 1.12438178e+00 -1.74236268e-01 -2.07485054e-02 -1.70545173e+00 1.09669411e+00 -7.40035921e-02 -1.65566516e+00 -1.73159763e-01 8.77926499e-02 1.12073112e+00 -3.75833750e-01 2.15803966e-01 4.36045051e-01 2.08264455e-01 -1.30678391e+00 5.28265774e-01 1.64680123e-01 4.51588869e-01 -1.14757216e+00 8.16232860e-01 -2.49920469e-02 -1.09975600e+00 -5.38453341e-01 -4.99989390e-01 1.41592398e-02 1.13383032e-01 8.11876953e-01 -7.63188124e-01 5.30557752e-01 5.33665717e-01 3.62113744e-01 -3.36684495e-01 1.11837006e+00 -7.72034377e-02 1.27064943e-01 -4.91491884e-01 -3.22908983e-02 4.17643666e-01 -5.06387353e-01 4.50023800e-01 7.07607985e-01 5.92988312e-01 -1.38122633e-01 2.61403710e-01 1.39755070e+00 9.12386328e-02 2.09535927e-01 -4.38321114e-01 -1.61007121e-01 6.90221727e-01 1.20479846e+00 -5.65389276e-01 -9.72396135e-03 -6.24181069e-02 5.75530231e-01 5.86087286e-01 5.38752258e-01 -1.37300861e+00 -4.01369750e-01 1.08851302e+00 -1.48570493e-01 2.01402724e-01 -7.27686584e-02 -5.30680001e-01 -1.06170619e+00 5.11213601e-01 -8.07873726e-01 3.62731844e-01 -1.72230408e-01 -1.25333238e+00 4.88115340e-01 5.53363711e-02 -1.31151211e+00 -2.17425361e-01 -6.34699523e-01 -4.70770150e-01 7.84405112e-01 -1.42663133e+00 -4.26047176e-01 -2.68797845e-01 3.50370467e-01 1.64379478e-01 5.09497430e-03 8.68885756e-01 3.51246148e-01 -1.04570639e+00 6.83003068e-01 2.45055810e-01 -2.28098705e-01 3.29617441e-01 -1.07467020e+00 -1.28841072e-01 5.34691453e-01 8.43510777e-02 6.43171608e-01 8.78973424e-01 -1.65485010e-01 -1.73221850e+00 -1.09833050e+00 8.89505565e-01 -3.94187510e-01 7.37205029e-01 -1.45523697e-01 -6.27795517e-01 5.10444820e-01 -3.22284520e-01 1.46147326e-01 5.09855807e-01 3.15152168e-01 -3.50808591e-01 -4.69474256e-01 -1.52892721e+00 6.61981583e-01 8.53683352e-01 -2.15940997e-01 -5.01594663e-01 6.38513684e-01 5.61332583e-01 -6.58443570e-01 -1.09545755e+00 3.26178104e-01 1.75953224e-01 -6.80322528e-01 1.24052227e+00 -8.94013762e-01 6.46349311e-01 -3.18309039e-01 -4.48408455e-01 -1.60524344e+00 -2.68318892e-01 -3.47951114e-01 -1.04690775e-01 9.57205355e-01 6.36773229e-01 -8.37371528e-01 6.87338471e-01 1.31024969e+00 1.62128627e-01 -1.24099028e+00 -1.17687058e+00 -1.06289339e+00 1.20031171e-01 -3.21817607e-01 1.34123886e+00 9.88838911e-01 1.19145192e-01 -1.22480094e-01 8.35149437e-02 4.70239699e-01 5.64711452e-01 6.64924443e-01 6.01674736e-01 -9.99895751e-01 -3.93974602e-01 -4.88288790e-01 -5.47059059e-01 -1.95072025e-01 4.24662709e-01 -9.73861992e-01 -1.83110699e-01 -1.36484981e+00 2.44797673e-03 -9.57943380e-01 -5.16280949e-01 4.84385788e-01 1.72422267e-02 -1.41635939e-01 2.83019632e-01 -1.75004110e-01 -6.36485696e-01 2.72329092e-01 8.29307377e-01 -3.73169303e-01 -4.76284087e-01 -2.19949618e-01 -5.86161733e-01 5.03003776e-01 8.43810916e-01 -6.77841842e-01 -4.37764049e-01 -5.68867981e-01 7.62268364e-01 7.45688602e-02 1.43690854e-02 -1.15602839e+00 1.29375041e-01 -8.29467058e-01 7.79127181e-02 -1.54321671e-01 2.95089871e-01 -1.13622868e+00 5.62069297e-01 3.99330139e-01 -3.84843737e-01 8.85644704e-02 1.95004866e-01 1.17362007e-01 -8.71206224e-02 -6.15040839e-01 6.50224984e-01 3.13242059e-03 -4.57933694e-01 2.50858843e-01 9.69000831e-02 2.93380678e-01 1.60678947e+00 -1.60332426e-01 -3.75309795e-01 1.68251067e-01 -7.07394481e-01 5.38402438e-01 5.44278145e-01 3.65741968e-01 3.91844690e-01 -1.33056223e+00 -4.58020598e-01 7.72820367e-03 1.50846571e-01 2.48754621e-01 1.12009495e-01 6.92336440e-01 -6.55047953e-01 4.71752852e-01 -1.80159092e-01 -4.50797945e-01 -8.14104855e-01 7.72125542e-01 4.60363269e-01 -7.94304669e-01 -3.18180740e-01 6.19066060e-01 -2.82794118e-01 -6.74141586e-01 1.39687940e-01 -5.09304464e-01 2.76651889e-01 1.10082455e-01 4.58428532e-01 6.93528891e-01 2.78552622e-01 -1.02693744e-01 -4.30146545e-01 6.71635687e-01 5.06092212e-04 2.04149291e-01 1.70403302e+00 3.39900523e-01 -2.37009943e-01 4.39286791e-02 1.47547042e+00 -1.15692534e-01 -9.12960708e-01 -9.11983252e-02 -1.15454858e-02 -1.01823115e+00 2.46690493e-02 -8.31762254e-01 -1.56886494e+00 4.32940692e-01 3.78642350e-01 -1.42154917e-01 9.74690020e-01 -2.57883668e-01 5.57535052e-01 7.18079329e-01 6.89632475e-01 -1.39284217e+00 7.31263822e-03 3.25429797e-01 8.57981801e-01 -1.11004853e+00 7.49923512e-02 -3.32437664e-01 -4.85406846e-01 1.21236873e+00 7.14127481e-01 -1.99898943e-01 2.77017623e-01 3.82117808e-01 -3.45559716e-01 -1.10249706e-01 -7.84785867e-01 3.66796285e-01 1.10581927e-01 3.30205858e-01 -1.28816992e-01 2.99388826e-01 -2.22576186e-01 6.20387912e-01 -4.93764400e-01 -1.44849360e-01 2.80125648e-01 7.00431108e-01 -1.05631789e-02 -1.12999475e+00 -4.97756720e-01 4.86898094e-01 -3.99360284e-02 -5.22695258e-02 2.38414500e-02 4.46194142e-01 1.52769461e-01 8.86353731e-01 1.21869765e-01 -3.79139632e-01 3.64670247e-01 8.93278271e-02 5.48065066e-01 -6.57890439e-01 -7.39108682e-01 -7.85497487e-01 1.86866865e-01 -1.06286526e+00 3.13101888e-01 -4.90877092e-01 -1.33118701e+00 -4.97678697e-01 -6.96206987e-02 2.40409076e-01 9.18244183e-01 8.54858220e-01 5.21932960e-01 5.38592458e-01 8.37427020e-01 -8.02586019e-01 -9.28985000e-01 -1.99327350e-01 -3.59558672e-01 4.09461826e-01 5.11074103e-02 -8.32727909e-01 -6.29574478e-01 -3.82932156e-01]
[5.190420150756836, 2.969623327255249]
b71b02c0-1920-4842-af14-7d83eeaf6c41
cross-modality-sub-image-retrieval-using
2201.03597
null
https://arxiv.org/abs/2201.03597v2
https://arxiv.org/pdf/2201.03597v2.pdf
Cross-Modality Sub-Image Retrieval using Contrastive Multimodal Image Representations
In tissue characterization and cancer diagnostics, multimodal imaging has emerged as a powerful technique. Thanks to computational advances, large datasets can be exploited to discover patterns in pathologies and improve diagnosis. However, this requires efficient and scalable image retrieval methods. Cross-modality image retrieval is particularly challenging, since images of similar (or even the same) content captured by different modalities might share few common structures. We propose a new application-independent content-based image retrieval (CBIR) system for reverse (sub-)image search across modalities, which combines deep learning to generate representations (embedding the different modalities in a common space) with classical feature extraction and bag-of-words models for efficient and reliable retrieval. We illustrate its advantages through a replacement study, exploring a number of feature extractors and learned representations, as well as through comparison to recent (cross-modality) CBIR methods. For the task of (sub-)image retrieval on a (publicly available) dataset of brightfield and second harmonic generation microscopy images, the results show that our approach is superior to all tested alternatives. We discuss the shortcomings of the compared methods and observe the importance of equivariance and invariance properties of the learned representations and feature extractors in the CBIR pipeline. Code is available at: \url{https://github.com/MIDA-group/CrossModal_ImgRetrieval}.
['Nataša Sladoje', 'Joakim Lindblad', 'Elisabeth Wetzer', 'Eva Breznik']
2022-01-10
null
null
null
null
['content-based-image-retrieval']
['computer-vision']
[ 3.78432959e-01 -4.35385883e-01 -1.02138050e-01 -1.45389259e-01 -1.65699875e+00 -7.83041775e-01 1.00831258e+00 4.50206399e-01 -5.49622834e-01 4.09690350e-01 3.57910067e-01 -2.99779065e-02 -6.32857442e-01 -4.86417413e-01 -2.86709040e-01 -1.15815997e+00 9.66910943e-02 4.87052768e-01 8.36954415e-02 -5.15506528e-02 2.86118865e-01 8.95951569e-01 -1.62946010e+00 6.31171644e-01 1.62054032e-01 1.11443806e+00 4.83366370e-01 8.13723862e-01 -8.55732039e-02 5.21578491e-01 -3.79217565e-01 -2.08561793e-01 8.71770382e-02 -3.41466963e-01 -1.20776153e+00 -2.22906142e-01 4.20644820e-01 -1.73559368e-01 -5.10385334e-01 7.73177505e-01 9.84735608e-01 -7.08728954e-02 8.98085952e-01 -9.22255874e-01 -8.20979238e-01 -9.89895985e-02 -4.94138509e-01 5.35355985e-01 4.06037569e-01 -2.49831900e-02 8.80280614e-01 -9.17796314e-01 1.18096662e+00 9.12147880e-01 1.58490822e-01 6.58098340e-01 -1.34213185e+00 -3.80208433e-01 -5.35594225e-01 4.19242918e-01 -1.37670147e+00 -5.72793067e-01 4.18033600e-01 -4.79831487e-01 9.04235184e-01 5.89721978e-01 4.00388271e-01 9.26005960e-01 3.48459095e-01 7.39203036e-01 1.31595659e+00 -4.53155786e-01 -2.06588686e-01 1.86330661e-01 -2.76541971e-02 6.46157324e-01 -1.96678843e-02 7.37143904e-02 -6.35553718e-01 -5.04286289e-01 4.81352895e-01 3.28443319e-01 -5.35531640e-01 -3.80908966e-01 -1.65577507e+00 7.82990515e-01 5.88412046e-01 9.22907531e-01 -2.67320573e-01 7.53961280e-02 5.22282898e-01 4.29122984e-01 8.80382359e-02 5.28981686e-01 -1.31889179e-01 2.50706375e-01 -9.13516223e-01 1.43653080e-01 3.40916276e-01 5.22069156e-01 5.02009869e-01 -5.17560422e-01 -4.34175998e-01 1.02078891e+00 1.62938952e-01 6.31236911e-01 1.02630246e+00 -7.89422452e-01 -2.36793250e-01 4.13610399e-01 -3.17863315e-01 -1.03092360e+00 -5.08152962e-01 -3.25156182e-01 -1.02898777e+00 9.46266726e-02 2.94788688e-01 7.19805956e-01 -8.75029922e-01 1.46365964e+00 2.04824314e-01 -1.82932064e-01 -1.65740345e-02 9.58960414e-01 1.33380711e+00 3.74090672e-01 8.80021527e-02 -1.16913244e-01 1.81626415e+00 -7.00188816e-01 -4.93603706e-01 2.61337996e-01 6.04159117e-01 -1.06461656e+00 6.38143480e-01 1.65048316e-01 -9.80552852e-01 -3.05117726e-01 -6.06964588e-01 -4.92983699e-01 -8.58289838e-01 9.22060609e-02 4.41175044e-01 2.05875933e-01 -1.47089827e+00 3.35704982e-01 -5.07025778e-01 -5.74204504e-01 4.09258485e-01 4.46516246e-01 -1.01121628e+00 -4.74470377e-01 -9.79292691e-01 9.47937429e-01 1.65135905e-01 -1.56652868e-01 -8.69831204e-01 -7.80230284e-01 -7.69922078e-01 -1.29882619e-01 -1.68951645e-01 -8.02189827e-01 6.50685668e-01 -5.69286644e-01 -1.01998055e+00 1.59434104e+00 -2.00144112e-01 -6.14056662e-02 2.16297090e-01 2.59543240e-01 -1.59680709e-01 8.29737306e-01 1.62666440e-01 8.33120584e-01 7.30865180e-01 -1.15175664e+00 -2.74982452e-01 -5.65836012e-01 -2.27632210e-01 8.40335526e-03 -3.08653891e-01 2.27848604e-01 -5.78256309e-01 -5.47868729e-01 2.08922103e-01 -9.23420727e-01 -2.48608831e-03 3.14851135e-01 -3.28714669e-01 -3.45656015e-02 5.86899936e-01 -7.29738355e-01 8.05043578e-01 -2.13574481e+00 5.42237103e-01 2.61091769e-01 3.34286273e-01 3.82576138e-02 -5.30319691e-01 6.58990026e-01 -3.41826588e-01 1.36393696e-01 -1.00553639e-01 -3.95241201e-01 -3.04129004e-01 4.20813411e-02 -8.71751904e-02 8.09618652e-01 1.12723269e-01 1.12224007e+00 -8.22016537e-01 -7.75721669e-01 3.75943333e-01 8.63958180e-01 -7.15381727e-02 1.66747108e-01 4.67198342e-01 7.47040033e-01 -3.64722967e-01 9.80679870e-01 5.12936234e-01 -6.03005886e-01 1.37927055e-01 -6.06506765e-01 4.05557826e-02 -1.26238912e-01 -5.78069448e-01 1.95150363e+00 -4.81110334e-01 6.21234477e-01 -1.59270838e-01 -1.20645738e+00 4.66901571e-01 3.83486211e-01 9.41924512e-01 -1.15088153e+00 9.54413414e-02 4.74726707e-01 -2.73989081e-01 -6.35941684e-01 2.36777633e-01 -2.59568989e-01 6.47782758e-02 3.56744736e-01 5.38844109e-01 -1.43437117e-01 1.74123704e-01 2.00386330e-01 1.10832775e+00 -3.12117606e-01 4.42581713e-01 -2.39352062e-01 7.32068837e-01 -9.29931924e-02 -2.35821128e-01 8.20773482e-01 -1.43457949e-01 1.04642379e+00 2.42322832e-01 -3.53483111e-01 -8.85819435e-01 -1.03451645e+00 -6.11075997e-01 9.58079278e-01 8.82951319e-02 -2.62906194e-01 -4.31739874e-02 -4.01025355e-01 3.00336676e-03 -1.23053484e-01 -8.64315093e-01 -7.50752613e-02 -3.63657653e-01 -8.80539477e-01 4.99824375e-01 6.34213462e-02 -6.90095425e-02 -9.87382352e-01 -5.65745354e-01 -2.28934884e-01 -2.96370417e-01 -9.13382471e-01 -1.50300577e-01 -3.47589217e-02 -7.47438550e-01 -1.18319881e+00 -1.36078489e+00 -7.71830559e-01 7.04142869e-01 6.20375395e-01 1.05292475e+00 3.80587488e-01 -1.05551326e+00 9.74162042e-01 -3.53818685e-01 1.40853211e-01 -3.91739815e-01 -7.65986443e-02 -2.52540886e-01 -1.12203725e-01 -9.90431217e-05 -2.77924001e-01 -1.10322058e+00 2.51764636e-02 -1.53372657e+00 -8.81713331e-02 8.59523594e-01 1.25699508e+00 1.03398967e+00 -4.92241532e-01 2.86224782e-01 -6.04012370e-01 4.73054826e-01 -5.56659877e-01 -3.56834978e-01 5.23330927e-01 -4.88375276e-01 -9.88771021e-03 1.06746495e-01 -2.16766492e-01 -5.26527941e-01 -1.01200633e-01 -1.02112927e-01 -5.32472134e-01 -1.81086570e-01 6.20498955e-01 3.34534615e-01 -4.51657474e-01 5.17251670e-01 6.15271926e-01 4.23578054e-01 -3.49176407e-01 4.27342594e-01 5.10204315e-01 4.57169503e-01 -2.53030598e-01 5.42898536e-01 9.50043023e-01 3.12846035e-01 -8.56019676e-01 -4.48856384e-01 -1.00177348e+00 -5.13849139e-01 -1.25546917e-01 8.61497641e-01 -9.19797242e-01 -6.90999746e-01 3.32998335e-01 -9.58723605e-01 1.93164781e-01 -2.95641929e-01 4.51884657e-01 -6.05463982e-01 4.85760212e-01 -7.34985113e-01 -3.52423877e-01 -5.78053057e-01 -1.35154319e+00 1.65832007e+00 1.29754737e-01 -3.26679349e-02 -1.00354648e+00 3.55288118e-01 5.62264502e-01 6.25293612e-01 2.15283856e-01 9.88150418e-01 -7.72872865e-01 -4.95100141e-01 -4.28778023e-01 -5.34928799e-01 3.17523330e-02 2.75410086e-01 -1.69433236e-01 -1.07175493e+00 -5.39876342e-01 -2.80862063e-01 -4.06090409e-01 1.17810190e+00 3.27851564e-01 1.30604649e+00 -1.06944270e-01 -4.51582313e-01 5.60004890e-01 1.64023447e+00 -2.38774195e-01 7.83595204e-01 4.39863771e-01 3.59113544e-01 7.77295232e-01 2.60592997e-01 2.39274070e-01 2.80416589e-02 8.04904461e-01 2.02358827e-01 -3.23634773e-01 -4.37582582e-01 3.15749705e-01 -1.10804975e-01 7.96658158e-01 -6.10633083e-02 -7.92732909e-02 -8.89376819e-01 7.81943321e-01 -1.49248743e+00 -1.02865958e+00 1.83853015e-01 2.27365923e+00 7.62006879e-01 -6.17099822e-01 -4.11529355e-02 -7.64414817e-02 3.30343604e-01 1.00412980e-01 -2.30241701e-01 6.82140291e-02 -4.32006001e-01 4.41615492e-01 2.04720348e-01 3.67265075e-01 -1.04575634e+00 3.91703784e-01 5.94632244e+00 1.15358925e+00 -1.39641857e+00 3.88365418e-01 7.34029412e-01 -5.40440269e-02 -4.64823276e-01 -3.37377697e-01 -4.14669603e-01 9.15754437e-02 7.30065346e-01 -8.64013508e-02 1.60374731e-01 3.10912460e-01 -3.51043165e-01 -1.27179340e-01 -9.48892415e-01 1.27524376e+00 4.70858127e-01 -1.62529469e+00 3.21153492e-01 1.81894839e-01 4.93155986e-01 3.19947839e-01 4.36245859e-01 -7.41838142e-02 -4.20754254e-01 -1.12058890e+00 6.46856204e-02 8.92231405e-01 1.07023430e+00 -2.10699052e-01 8.92654181e-01 -2.54798263e-01 -8.89271200e-01 4.83216718e-02 -2.72445440e-01 8.01128924e-01 -1.56954870e-01 5.42587996e-01 -5.60989201e-01 9.17668521e-01 8.04453075e-01 6.81143463e-01 -8.42080176e-01 1.11912203e+00 4.71787304e-01 -1.39942124e-01 -8.62339363e-02 3.29193950e-01 8.68216855e-04 6.30641580e-02 4.75890130e-01 1.39843941e+00 5.91352046e-01 -1.39952317e-01 -2.21934214e-01 6.55818522e-01 8.24612603e-02 3.62811953e-01 -7.91615069e-01 -2.00010851e-01 -4.21213284e-02 1.68438423e+00 -8.65553796e-01 -2.48296678e-01 -3.90694857e-01 1.02408731e+00 1.20200180e-01 3.09595913e-01 -3.73163015e-01 -5.94493560e-02 3.98484528e-01 1.08244516e-01 1.03636079e-01 8.72152448e-02 3.55294049e-01 -1.09412849e+00 -1.95520431e-01 -8.43884230e-01 8.12240303e-01 -8.54373157e-01 -1.59645891e+00 7.65728951e-01 1.14549465e-01 -1.41892672e+00 -3.24557364e-01 -7.42756903e-01 -3.76812890e-02 8.46452594e-01 -1.87067103e+00 -1.52021861e+00 -2.44989991e-01 8.39395523e-01 1.77404955e-01 -2.51639247e-01 1.24410510e+00 4.70959067e-01 4.08723168e-02 4.46291745e-01 6.10307157e-01 -4.20257449e-02 9.42583919e-01 -9.14881706e-01 -5.14848769e-01 1.03215784e-01 2.01970622e-01 6.73825443e-01 3.55738372e-01 -1.59424588e-01 -1.65564013e+00 -7.01683223e-01 7.90504992e-01 -4.32641298e-01 7.39934564e-01 -1.03778262e-02 -8.20276320e-01 2.13345557e-01 3.35300952e-01 4.69922870e-01 1.13471651e+00 -2.62417525e-01 -5.18566847e-01 -1.00538716e-01 -1.15658653e+00 3.83828580e-01 5.19374669e-01 -8.38621080e-01 -1.31616145e-01 6.49823487e-01 3.70730907e-01 -2.54642725e-01 -1.16297054e+00 4.50085908e-01 9.49561894e-01 -9.74289775e-01 1.38286507e+00 -5.33898950e-01 5.01164496e-01 -1.15074694e-01 -3.49397510e-01 -8.11097682e-01 -2.93460548e-01 -1.61687717e-01 2.34118626e-01 8.10095072e-01 1.33792341e-01 -6.84401155e-01 2.27965415e-01 1.70210570e-01 1.19899899e-01 -8.97525966e-01 -1.34068298e+00 -4.61086214e-01 1.82829887e-01 -6.24825992e-03 1.23801537e-01 9.14528906e-01 8.18360224e-03 -1.77762181e-01 -7.61050060e-02 -1.12956971e-01 4.54699129e-01 4.48821366e-01 3.91381145e-01 -9.58210528e-01 -3.17047387e-01 -6.39120936e-01 -8.43282878e-01 -3.26328099e-01 1.26174286e-01 -1.38196170e+00 -2.77530491e-01 -1.44007695e+00 7.71369100e-01 -2.28433669e-01 -8.75433385e-01 4.10001934e-01 8.85099620e-02 8.79256845e-01 2.41471305e-01 6.70176923e-01 -7.42315888e-01 1.98055655e-01 1.31420040e+00 -4.47634816e-01 3.70169014e-01 -3.08854491e-01 -6.52210534e-01 5.21243475e-02 5.96410871e-01 -4.12828088e-01 -7.32750148e-02 -2.14908943e-01 2.73077190e-01 2.05425501e-01 7.77380943e-01 -8.14196587e-01 2.47562855e-01 2.47641578e-01 5.27562201e-01 -2.80429572e-01 5.69273293e-01 -6.76318705e-01 3.71277452e-01 5.37256658e-01 -4.87276286e-01 1.69239398e-02 2.74402887e-01 4.31728303e-01 -5.76108813e-01 -2.85274774e-01 7.32274950e-01 -3.28174561e-01 -4.87708628e-01 3.55330288e-01 -3.64135325e-01 -3.27182949e-01 7.45015264e-01 5.15545383e-02 -5.81282616e-01 -2.85208374e-01 -8.47179294e-01 -7.77796432e-02 3.08229744e-01 3.84303391e-01 9.39075053e-01 -1.32981634e+00 -7.95164943e-01 5.18516377e-02 6.55471802e-01 -4.12946761e-01 7.87147999e-01 1.34172618e+00 -4.42942172e-01 5.69817722e-01 -3.41370285e-01 -8.44669819e-01 -1.49581647e+00 6.12366676e-01 4.35441762e-01 -6.33014023e-01 -3.44567060e-01 6.59820974e-01 4.03467029e-01 -5.09766698e-01 -2.50460505e-01 2.09108889e-01 -3.61466557e-01 3.02569389e-01 7.05821097e-01 8.47309753e-02 3.24484468e-01 -9.11155879e-01 -4.82514709e-01 8.85374010e-01 -3.20001602e-01 -6.74019232e-02 1.42568803e+00 -1.09778762e-01 -5.45773327e-01 3.47122401e-01 1.63866222e+00 -1.77320391e-01 -1.55331165e-01 -3.34295064e-01 -1.79899961e-01 -4.86734897e-01 5.82029782e-02 -7.90826261e-01 -1.26830041e+00 9.13833141e-01 1.20863163e+00 1.73455849e-01 1.34008956e+00 5.91729343e-01 5.08887351e-01 2.12769270e-01 2.53360152e-01 -5.56724906e-01 1.89034924e-01 2.95402505e-03 1.22829390e+00 -1.54352582e+00 2.83600569e-01 -1.12789080e-01 -3.85431111e-01 1.16064513e+00 -9.50653628e-02 6.07828200e-02 7.29469419e-01 -3.65012529e-04 1.72880158e-01 -6.23647273e-01 -5.84822774e-01 -3.52702171e-01 6.34551466e-01 5.13189614e-01 7.07943738e-01 -1.48347721e-01 -3.83364618e-01 1.04748599e-01 3.39292169e-01 -1.72891334e-01 1.09810762e-01 9.65169847e-01 1.19876280e-01 -1.30222774e+00 -3.30675066e-01 5.59025943e-01 -7.54550576e-01 -9.98154059e-02 -2.76312828e-01 6.86811686e-01 -1.60038978e-01 6.49240136e-01 -1.61363229e-01 -1.07681178e-01 -2.22694371e-02 -1.10844746e-01 6.42992079e-01 -2.78982908e-01 -5.16330004e-01 2.30778322e-01 -4.94692951e-01 -8.17261994e-01 -9.78582025e-01 -6.32992804e-01 -9.08527911e-01 1.43275142e-01 -2.31977805e-01 -9.71354693e-02 7.12436974e-01 6.72787070e-01 6.13922834e-01 4.27752316e-01 4.85617220e-01 -9.92469192e-01 -6.62416890e-02 -7.35770702e-01 -5.67727447e-01 8.23959947e-01 5.08469522e-01 -6.50668740e-01 -3.79400015e-01 1.23505518e-01]
[14.363710403442383, -1.5736665725708008]