paperID
stringlengths
36
36
pwc_id
stringlengths
8
47
arxiv_id
stringlengths
6
16
nips_id
float64
url_abs
stringlengths
18
329
url_pdf
stringlengths
18
742
title
stringlengths
8
325
abstract
stringlengths
1
7.27k
authors
stringlengths
2
7.06k
published
stringlengths
10
10
conference
stringlengths
12
47
conference_url_abs
stringlengths
16
198
conference_url_pdf
stringlengths
27
199
proceeding
stringlengths
6
47
taskID
stringlengths
7
1.44k
areaID
stringclasses
688 values
embedding
stringlengths
9.26k
12.5k
umap_embedding
stringlengths
29
44
4267d6df-f76d-4a5d-8b92-18fa1751d458
ia-gcn-interpretable-attention-based-graph
2103.15587
null
https://arxiv.org/abs/2103.15587v1
https://arxiv.org/pdf/2103.15587v1.pdf
IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease prediction
Interpretability in Graph Convolutional Networks (GCNs) has been explored to some extent in computer vision in general, yet, in the medical domain, it requires further examination. Moreover, most of the interpretability approaches for GCNs, especially in the medical domain, focus on interpreting the model in a post hoc fashion. In this paper, we propose an interpretable graph learning-based model which 1) interprets the clinical relevance of the input features towards the task, 2) uses the explanation to improve the model performance and, 3) learns a population level latent graph that may be used to interpret the cohort's behavior. In a clinical scenario, such a model can assist the clinical experts in better decision-making for diagnosis and treatment planning. The main novelty lies in the interpretable attention module (IAM), which directly operates on multi-modal features. Our IAM learns the attention for each feature based on the unique interpretability-specific losses. We show the application on two publicly available datasets, Tadpole and UKBB, for three tasks of disease, age, and gender prediction. Our proposed model shows superior performance with respect to compared methods with an increase in an average accuracy of 3.2% for Tadpole, 1.6% for UKBB Gender, and 2% for the UKBB Age prediction task. Further, we show exhaustive validation and clinical interpretation of our results.
['Nassir Navab', 'Soroush Farghadani', 'Anees Kazi']
2021-03-29
null
null
null
null
['gender-prediction']
['computer-vision']
[ 4.36604768e-01 1.04113901e+00 -2.69206822e-01 -5.49207568e-01 -4.05048043e-01 -1.60105452e-01 4.35531795e-01 7.41058111e-01 -2.05927402e-01 4.75007176e-01 3.79511505e-01 -5.71516991e-01 -5.44749737e-01 -5.28978050e-01 -5.02817333e-01 -7.17952073e-01 -2.45108694e-01 9.95998085e-01 -3.53548676e-01 -1.68715324e-02 -2.51595676e-01 2.61974752e-01 -1.06661427e+00 4.18165565e-01 1.05650270e+00 9.99781132e-01 -2.54492164e-01 7.16576695e-01 2.56979942e-01 8.91942143e-01 -2.72567838e-01 -7.98644483e-01 -8.63357484e-02 -5.27534723e-01 -1.07113194e+00 4.72867638e-02 1.96794525e-01 -1.68797150e-01 -2.20173255e-01 7.12221861e-01 3.51763397e-01 -3.56727064e-01 1.03470647e+00 -1.41698694e+00 -7.56346822e-01 8.73935342e-01 -3.66525620e-01 2.25272626e-01 -1.42608047e-01 2.61575371e-01 1.22978938e+00 -4.15136099e-01 4.31247056e-01 1.31661642e+00 7.13549733e-01 8.60646129e-01 -1.03715658e+00 -2.22754419e-01 2.92819649e-01 1.44651502e-01 -1.03351510e+00 -1.07482197e-02 5.21283329e-01 -5.25775313e-01 5.56469083e-01 4.10872370e-01 8.67170513e-01 1.19323146e+00 5.22275448e-01 6.84331119e-01 7.72091508e-01 -2.30611429e-01 1.52870148e-01 -2.86943763e-01 4.38427389e-01 9.52010274e-01 4.09333974e-01 -1.82385873e-02 -2.40161121e-01 -1.15773916e-01 5.96888840e-01 1.98477179e-01 -2.32559472e-01 -2.25213617e-01 -1.14015687e+00 1.02190018e+00 8.38256836e-01 7.97744915e-02 -3.54177952e-01 5.15843213e-01 5.36517203e-01 4.49891947e-02 7.94530213e-01 4.61393386e-01 -4.11208779e-01 2.81571627e-01 -4.73123461e-01 6.05436377e-02 4.90143895e-01 4.26599264e-01 2.10566327e-01 -2.39931881e-01 -5.44156909e-01 4.65473562e-01 5.49347460e-01 3.24622482e-01 3.00609171e-01 -4.89760280e-01 4.78041202e-01 1.01739895e+00 -4.79798436e-01 -9.66280758e-01 -1.00279593e+00 -7.64137685e-01 -1.17552614e+00 -8.19363222e-02 4.24942434e-01 -4.13413206e-03 -1.19562662e+00 1.90600204e+00 2.31784120e-01 1.65410832e-01 1.69571545e-02 9.99164641e-01 1.08701181e+00 -9.04316008e-02 4.01459873e-01 1.99735120e-01 1.76065338e+00 -8.05182874e-01 -6.68815076e-01 -4.57383484e-01 9.40589368e-01 -1.25454247e-01 9.35057759e-01 2.36532077e-01 -7.42002428e-01 -2.13586330e-01 -7.85585642e-01 -2.11794928e-01 -2.01481342e-01 3.26406628e-01 1.06473315e+00 5.35226285e-01 -1.09977674e+00 5.54982245e-01 -1.02287292e+00 -6.21216953e-01 7.42192745e-01 7.59778082e-01 -3.26952696e-01 1.79701056e-02 -1.23154569e+00 7.39967585e-01 4.16856319e-01 3.52331907e-01 -7.65120625e-01 -7.30341911e-01 -8.62638891e-01 2.79210627e-01 4.45720255e-02 -1.45075870e+00 8.53155553e-01 -1.19166291e+00 -9.11854923e-01 1.09901905e+00 1.45424120e-02 -7.13734508e-01 6.96466506e-01 -5.73969223e-02 -2.85675466e-01 1.61036149e-01 3.93156223e-02 6.63566232e-01 7.48939216e-01 -9.39817429e-01 -3.79282504e-01 -7.90824533e-01 2.97935903e-01 2.70747066e-01 -3.57386529e-01 -5.07286549e-01 -4.81975287e-01 -7.18357921e-01 8.21158439e-02 -1.01281691e+00 -4.61980373e-01 1.72594488e-01 -7.20409989e-01 -2.57503778e-01 3.42211068e-01 -7.58978188e-01 1.17451537e+00 -2.03638768e+00 5.62602401e-01 1.94773823e-01 1.08914852e+00 7.56434649e-02 -5.63940071e-02 9.91223454e-02 -3.18283856e-01 3.50070447e-01 -3.66221428e-01 -6.39519930e-01 -2.72825956e-01 2.17457071e-01 8.78131241e-02 5.22490382e-01 5.65124869e-01 1.21603251e+00 -1.06062150e+00 -3.37214530e-01 5.67099079e-02 4.17512119e-01 -7.62615025e-01 3.69968116e-02 3.48120295e-02 7.81543314e-01 -5.75148046e-01 5.61903536e-01 3.92740101e-01 -6.62859678e-01 4.64428425e-01 -2.16022462e-01 6.27212405e-01 -1.02968097e-01 -4.56260264e-01 1.44070709e+00 -5.24514735e-01 5.70682466e-01 -2.38004655e-01 -1.04639208e+00 6.38300121e-01 2.21044883e-01 3.71923000e-01 -2.58983970e-01 3.34986061e-01 2.15871140e-01 5.05741000e-01 -5.62884748e-01 -5.84788509e-02 -5.29397354e-02 -8.62806141e-02 2.36793727e-01 -2.00146008e-02 3.77915651e-01 -7.22077861e-02 2.81576335e-01 1.25232923e+00 -4.12436217e-01 5.18270910e-01 -3.19637179e-01 6.38374865e-01 -1.88959062e-01 3.22300136e-01 6.97365999e-01 -1.49529338e-01 7.41895258e-01 1.08089292e+00 -7.54239142e-01 -6.51459396e-01 -1.02319491e+00 -2.13007912e-01 7.37700105e-01 5.20933680e-02 -2.95724839e-01 -7.47201860e-01 -1.17056489e+00 2.23291636e-01 6.04088783e-01 -1.23701632e+00 -6.59865558e-01 -3.70673060e-01 -9.64861155e-01 5.26226819e-01 7.38349915e-01 2.38099113e-01 -1.00204611e+00 -3.63760412e-01 -8.36394280e-02 -1.35721639e-01 -9.51935649e-01 -3.40526789e-01 1.09998003e-01 -1.11074352e+00 -1.23865616e+00 -3.87418985e-01 -4.72877383e-01 1.13106406e+00 -3.46132129e-01 1.27609122e+00 6.64435387e-01 -2.99675673e-01 4.61414188e-01 -3.93918961e-01 -6.40354156e-01 -5.56047082e-01 4.80309278e-01 -1.42109729e-02 2.90208250e-01 1.42263100e-01 -3.33113283e-01 -8.10221195e-01 6.25483990e-02 -8.55443120e-01 4.63505059e-01 7.18254864e-01 1.20953095e+00 3.57576311e-01 -3.69968027e-01 6.39283299e-01 -1.44712889e+00 5.31880260e-01 -6.48159504e-01 -9.54777468e-03 1.73579931e-01 -8.88209760e-01 3.51867288e-01 6.27804577e-01 -3.90370190e-02 -6.13372087e-01 -4.45399769e-02 -2.12604821e-01 -3.26123834e-01 -1.23580825e-02 7.33514667e-01 -7.52283633e-02 2.18535915e-01 7.16743827e-01 -2.25842357e-01 1.62946910e-01 -2.98919082e-01 1.58889979e-01 5.28114617e-01 2.41732642e-01 -2.52167940e-01 6.73661113e-01 4.39768285e-01 4.15716946e-01 -3.28212768e-01 -1.06028259e+00 -2.06266075e-01 -6.72313988e-01 -2.11251974e-01 1.11711895e+00 -7.23246455e-01 -1.01152945e+00 3.15877050e-01 -1.01029480e+00 -3.12558860e-01 -1.92072347e-01 3.11622828e-01 -4.50073242e-01 2.06106126e-01 -4.61078435e-01 -6.21746123e-01 -7.21755147e-01 -1.32441819e+00 1.48504961e+00 -3.24821174e-02 -5.48875034e-01 -1.64504516e+00 -3.02652866e-01 5.66123068e-01 9.93529931e-02 5.80898345e-01 1.45211089e+00 -8.73416603e-01 -4.18182373e-01 -1.08879879e-01 -3.23609889e-01 -1.05086919e-02 2.05203548e-01 -3.86004686e-01 -9.74143863e-01 -3.69361937e-01 -5.50984800e-01 -2.23763257e-01 1.04714036e+00 7.24987090e-01 1.62021458e+00 -3.21757883e-01 -5.30135989e-01 8.37282121e-01 1.09559321e+00 -1.65223375e-01 4.37314481e-01 -1.26782591e-02 1.06179678e+00 5.56153834e-01 4.97175395e-01 2.55731672e-01 5.86907089e-01 5.81934869e-01 1.05888879e+00 -6.03067517e-01 -1.79412916e-01 -1.20659024e-01 1.84141379e-02 4.19132352e-01 -4.41051781e-01 -5.10644853e-01 -1.05559504e+00 5.71843028e-01 -2.12898135e+00 -4.85617518e-01 -4.15562123e-01 1.93926489e+00 4.39641327e-01 1.56977996e-01 -6.86912164e-02 1.37236983e-01 5.21127045e-01 1.86262671e-02 -7.77810752e-01 -6.23773515e-01 1.97499603e-01 1.03413746e-01 4.94002283e-01 3.69556844e-01 -1.09860909e+00 5.64680398e-01 5.60341072e+00 5.68785012e-01 -1.10277057e+00 5.02228811e-02 1.42137623e+00 2.50560492e-01 -4.77374882e-01 -1.28342569e-01 -4.16609108e-01 3.08445513e-01 7.90861011e-01 -7.72571750e-03 3.25175822e-01 6.65313661e-01 3.32503259e-01 1.64067388e-01 -1.60567415e+00 8.32342327e-01 2.97423694e-02 -1.18972158e+00 3.32866818e-01 2.25269422e-01 2.87275225e-01 -3.08599979e-01 3.36586446e-01 2.46094882e-01 6.11810274e-02 -1.54160416e+00 4.63996738e-01 5.11717558e-01 1.00861239e+00 -7.02923536e-01 1.03950012e+00 2.49929726e-01 -9.70716774e-01 -1.21300414e-01 -4.71583717e-02 4.56143692e-02 -9.26752388e-02 5.89737356e-01 -1.34798348e+00 7.16773331e-01 5.47839820e-01 8.34603071e-01 -9.23854768e-01 6.79328382e-01 -4.13690060e-01 7.46203244e-01 5.55090494e-02 9.23759937e-02 1.56255186e-01 5.97606115e-02 4.56518859e-01 8.97140086e-01 1.49645671e-01 1.41811874e-02 -1.21209510e-01 8.60166728e-01 -1.58872411e-01 1.24603644e-01 -4.30341303e-01 -7.02724978e-02 -1.92869216e-01 1.50003779e+00 -8.55937123e-01 -1.86881483e-01 6.62249699e-02 9.51527357e-01 4.86803144e-01 1.21070489e-01 -1.10051525e+00 -2.72690114e-02 5.88943779e-01 2.27318510e-01 -1.90067999e-02 4.27573860e-01 -5.80436468e-01 -1.05999959e+00 -1.88355505e-01 -7.31744647e-01 8.13045979e-01 -5.56281507e-01 -1.36063039e+00 8.14598322e-01 -1.30169794e-01 -1.06318176e+00 -4.71768767e-01 -9.19677496e-01 -6.83603108e-01 8.64920795e-01 -1.25556314e+00 -1.61467659e+00 -4.83777106e-01 2.38837034e-01 4.34681207e-01 -7.72388428e-02 8.69311035e-01 2.12954655e-01 -6.89842880e-01 8.57122064e-01 -2.27649346e-01 2.56483644e-01 5.15769720e-01 -1.56553829e+00 4.69510347e-01 4.22006160e-01 -1.14076063e-01 5.89422047e-01 7.07740486e-01 -5.54825962e-01 -9.81624961e-01 -1.46114981e+00 1.01371312e+00 -7.21840203e-01 4.87728775e-01 -3.35199386e-01 -7.60476947e-01 8.54423702e-01 -1.18335210e-01 1.98626041e-01 8.10166717e-01 4.74231780e-01 -9.37065408e-02 -4.15342599e-02 -1.13960695e+00 6.61832809e-01 1.34945524e+00 -9.91817340e-02 -2.47357681e-01 5.36366105e-01 7.51776993e-01 -5.85093379e-01 -1.03214252e+00 5.27579427e-01 4.94244158e-01 -8.53113532e-01 9.48325276e-01 -1.17659426e+00 7.86706924e-01 -5.49285151e-02 4.36214417e-01 -1.48007309e+00 -4.69137281e-01 -4.79234569e-02 -1.31852895e-01 8.83694530e-01 6.18066609e-01 -6.91558301e-01 7.46451914e-01 5.39288759e-01 -2.28858113e-01 -1.35917830e+00 -8.24152768e-01 -1.53119639e-01 -8.65026787e-02 -4.30489272e-01 6.11242890e-01 8.32623422e-01 -2.62734890e-01 5.54511428e-01 -3.54735166e-01 3.63580912e-01 4.54782307e-01 2.29794960e-02 3.63509864e-01 -1.49434936e+00 -5.34563005e-01 -3.00252765e-01 -7.56298482e-01 -4.75754321e-01 1.70368835e-01 -1.44926727e+00 -4.79083627e-01 -1.78360260e+00 4.23898190e-01 -3.17980975e-01 -3.52287292e-01 7.40136147e-01 -6.23414099e-01 1.73468873e-01 9.83067825e-02 -9.21328738e-02 -5.43711603e-01 3.35275024e-01 1.23018980e+00 -4.47388113e-01 -3.79616506e-02 2.87912548e-01 -9.99315739e-01 8.45109403e-01 7.38517880e-01 -4.49059457e-01 -6.48765266e-01 -5.44876933e-01 2.16469735e-01 1.35226265e-01 7.08031714e-01 -6.97907567e-01 -3.16841871e-01 -4.53057140e-02 5.11611104e-01 -2.12101817e-01 1.06502831e-01 -7.33542860e-01 1.34230316e-01 9.47926462e-01 -4.98122245e-01 1.05551742e-01 6.76503107e-02 7.89737880e-01 -5.87099977e-02 -2.05890704e-02 5.38358569e-01 6.66926056e-02 -3.55726182e-01 6.51121140e-01 -2.26262838e-01 2.19135821e-01 9.14759755e-01 -2.94010974e-02 -2.84835190e-01 -5.06073534e-01 -1.10794723e+00 4.52901065e-01 1.14444762e-01 4.37839597e-01 5.62084377e-01 -1.27846670e+00 -7.76067078e-01 4.46648672e-02 5.05812287e-01 1.36067122e-01 4.16276604e-01 1.20087647e+00 -6.73339367e-01 3.39808464e-01 1.76082365e-03 -8.50182116e-01 -1.28430557e+00 3.81172657e-01 6.05666816e-01 -8.71968329e-01 -3.65543097e-01 7.00184703e-01 8.08432698e-01 -2.97386289e-01 -1.65584926e-02 -6.42870843e-01 -5.54814160e-01 -5.24212606e-02 1.66563645e-01 1.52882934e-01 1.90283492e-01 -6.38671637e-01 -4.82145667e-01 4.63080168e-01 -1.05308473e-01 4.04725581e-01 1.38834500e+00 1.06820188e-01 -8.47690329e-02 2.58124620e-01 1.02858937e+00 -3.94889027e-01 -8.31654310e-01 1.02743365e-01 4.12710011e-02 -9.70860720e-02 -1.01403467e-01 -8.67820978e-01 -1.45755720e+00 9.15054977e-01 6.51527584e-01 1.27832547e-01 1.29868340e+00 3.18330526e-01 3.90295476e-01 2.47472394e-02 7.28210958e-04 -4.52416748e-01 -4.53719497e-02 2.08136737e-01 9.46138084e-01 -1.39512336e+00 8.06870088e-02 -7.51287997e-01 -7.32506096e-01 1.22488701e+00 6.68197870e-01 1.56597435e-01 4.98347551e-01 -2.68432885e-01 -9.21066571e-03 -5.54922104e-01 -7.15617776e-01 -1.00919090e-01 7.91600823e-01 5.81501424e-01 5.33732951e-01 3.18066716e-01 -4.28149641e-01 1.03454316e+00 -9.36153680e-02 -1.10977799e-01 3.33975583e-01 1.74183369e-01 8.10109749e-02 -1.00351465e+00 -6.21872284e-02 9.56913888e-01 -4.73462701e-01 -2.11848110e-01 -5.25284886e-01 7.22860217e-01 2.89303720e-01 5.70482373e-01 1.37904793e-01 -4.09219652e-01 3.18487346e-01 -8.45185891e-02 1.96540564e-01 -6.30624950e-01 -8.01692784e-01 -3.48660827e-01 2.74450123e-01 -4.77966636e-01 -2.19624743e-01 -5.39053142e-01 -1.48180509e+00 -1.64506704e-01 -1.13720261e-01 -1.56514987e-01 2.20397472e-01 9.63277459e-01 5.12005866e-01 1.01608896e+00 2.71507591e-01 -3.09541315e-01 -3.24764788e-01 -7.53404498e-01 -5.35881877e-01 7.51287520e-01 5.02161860e-01 -8.00921023e-01 -3.75829458e-01 -9.13611278e-02]
[8.584817886352539, 5.697046279907227]
e059c5cc-eb69-4cad-9d35-1a7a041c0ab0
select-good-regions-for-deblurring-based-on
2008.05065
null
https://arxiv.org/abs/2008.05065v1
https://arxiv.org/pdf/2008.05065v1.pdf
Select Good Regions for Deblurring based on Convolutional Neural Networks
The goal of blind image deblurring is to recover sharp image from one input blurred image with an unknown blur kernel. Most of image deblurring approaches focus on developing image priors, however, there is not enough attention to the influence of image details and structures on the blur kernel estimation. What is the useful image structure and how to choose a good deblurring region? In this work, we propose a deep neural network model method for selecting good regions to estimate blur kernel. First we construct image patches with labels and train a deep neural networks, then the learned model is applied to determine which region of the image is most suitable to deblur. Experimental results illustrate that the proposed approach is effective, and could be able to select good regions for image deblurring.
['Xiaotian Wu', 'Xinglong Sun', 'Hang Yang']
2020-08-12
null
null
null
null
['blind-image-deblurring']
['computer-vision']
[ 1.55542925e-01 -4.85942125e-01 -1.94021482e-02 -1.64628446e-01 -3.17787409e-01 -5.05873144e-01 2.19585836e-01 -6.95677102e-01 -1.04520231e-01 7.44338691e-01 5.70868015e-01 -6.55649826e-02 -1.73194036e-01 -3.63356352e-01 -6.64399743e-01 -9.28223968e-01 2.69413173e-01 -1.95603848e-01 7.46015012e-02 1.53288543e-01 5.50545156e-01 4.86954778e-01 -1.13178694e+00 9.35684219e-02 1.13266683e+00 7.58499146e-01 7.89334774e-01 6.57277405e-01 2.28905037e-01 1.18372786e+00 -6.91742122e-01 2.68681854e-01 1.63232386e-01 -7.37268746e-01 -1.05449593e+00 4.64403927e-01 4.03809994e-01 -8.46644461e-01 -6.05964839e-01 1.53101766e+00 5.05466402e-01 2.33564377e-01 6.54609680e-01 -4.80414212e-01 -1.37490499e+00 6.05430067e-01 -6.41852677e-01 6.66807175e-01 -7.39416981e-04 1.09751828e-01 2.58080006e-01 -8.67704153e-01 2.95705497e-01 9.34490085e-01 4.35483575e-01 5.34502506e-01 -1.16972268e+00 -3.86451155e-01 -2.75528580e-01 4.67195392e-01 -1.49975038e+00 -6.80791378e-01 1.08540320e+00 -4.48591918e-01 1.71805635e-01 2.52329320e-01 2.64293909e-01 8.44199657e-01 2.45141909e-01 7.05612123e-01 1.41432214e+00 -4.04268473e-01 2.25385502e-01 -2.75532026e-02 3.96362484e-01 4.09971952e-01 3.01124185e-01 1.34735197e-01 -8.13485831e-02 -3.96213643e-02 1.26873434e+00 1.30287170e-01 -1.10162532e+00 -1.82774991e-01 -1.13590312e+00 5.06463587e-01 8.09258521e-01 5.84807813e-01 -5.19998074e-01 2.80734986e-01 -6.81880936e-02 2.01891884e-01 5.37105680e-01 7.91414261e-01 -1.65987775e-01 8.04979503e-02 -1.27129114e+00 -3.51568982e-02 2.85936713e-01 5.42108119e-01 8.66113365e-01 1.56719536e-02 -3.83622497e-01 1.28146386e+00 9.83164310e-02 4.37011063e-01 5.90557814e-01 -1.07082450e+00 -1.01820357e-01 1.46754803e-02 6.05562150e-01 -8.10142040e-01 2.85531562e-02 -1.62079424e-01 -1.03308022e+00 2.87113369e-01 4.55774337e-01 -2.72472888e-01 -1.20228314e+00 1.30439961e+00 -1.95423380e-01 4.86763000e-01 1.22800870e-02 1.64240277e+00 5.95053852e-01 6.62336290e-01 -3.66697818e-01 -1.46098673e-01 1.33567119e+00 -1.07024789e+00 -9.23388660e-01 -5.36965370e-01 -1.27260372e-01 -1.04613864e+00 6.87256753e-01 2.01074600e-01 -1.16923237e+00 -7.70284057e-01 -9.55943823e-01 -7.09661990e-02 6.94601983e-02 5.55827260e-01 3.28188449e-01 3.64892513e-01 -1.27597225e+00 5.19558489e-01 -5.26588500e-01 -1.76749662e-01 4.58582222e-01 1.78594097e-01 -1.32853851e-01 -5.65076530e-01 -1.40005517e+00 1.25872386e+00 5.10731101e-01 4.85483795e-01 -1.17530012e+00 -2.79577136e-01 -7.40741849e-01 2.88094461e-01 1.53023237e-02 -7.89585888e-01 1.08369601e+00 -1.33299673e+00 -1.42387259e+00 4.80701685e-01 -2.56800175e-01 -4.23614025e-01 3.25003803e-01 -2.51118213e-01 -1.81976482e-01 3.26074928e-01 -4.18628640e-02 4.91636008e-01 1.54621661e+00 -1.63233662e+00 -3.38588983e-01 -1.08885072e-01 -7.58501887e-02 2.64445752e-01 4.53466475e-02 2.29519874e-01 -5.12676120e-01 -8.17977250e-01 3.48416008e-02 -6.52140319e-01 -2.95989722e-01 -2.65366822e-01 -2.21771687e-01 2.76827365e-01 8.67157757e-01 -1.20755875e+00 1.15337837e+00 -2.12336230e+00 1.76237360e-01 -1.70827702e-01 3.00611049e-01 4.33031350e-01 -1.13751672e-01 5.39214537e-03 -1.13510512e-01 -1.09551162e-01 -3.80917102e-01 1.47976086e-01 -4.97359246e-01 -6.43668026e-02 -4.23215598e-01 7.68314719e-01 -9.60752741e-03 8.29867065e-01 -9.02438343e-01 -8.30263644e-02 4.84624982e-01 6.08337045e-01 -1.16076991e-01 7.41395056e-01 7.44967386e-02 6.32147551e-01 -4.00337964e-01 5.35077572e-01 1.26869750e+00 -4.17693049e-01 -2.12146193e-01 -5.76587737e-01 -8.45532119e-02 -2.25569338e-01 -8.32614839e-01 1.36877549e+00 -3.94482970e-01 1.01700246e+00 3.42099041e-01 -6.39049172e-01 7.93213427e-01 1.19932666e-01 1.31921768e-01 -1.40907720e-01 2.35823885e-01 1.37368903e-01 -1.37149945e-01 -1.03151882e+00 6.00772798e-01 -6.38595745e-02 5.34370959e-01 4.65029925e-01 -2.15884566e-01 -2.52535224e-01 -3.06030542e-01 -1.49407744e-01 8.84539366e-01 -4.31147590e-02 1.33965909e-01 -3.94629359e-01 6.03463352e-01 -1.94870874e-01 1.52932927e-01 8.85494113e-01 -3.76134127e-01 1.25388050e+00 -8.56628269e-02 -5.15303254e-01 -1.05733800e+00 -6.96814418e-01 -2.02182963e-01 7.10902989e-01 9.64938879e-01 4.50253159e-01 -1.12530005e+00 -4.85942602e-01 -3.72892946e-01 6.54609859e-01 -6.29699528e-01 -2.26033390e-01 -5.20918489e-01 -9.09416318e-01 2.74578035e-01 1.50112823e-01 8.31475735e-01 -1.17838657e+00 -3.62820357e-01 -6.59520552e-02 -5.13067245e-01 -6.69350564e-01 -1.10593784e+00 -3.55409719e-02 -6.87168360e-01 -1.00613093e+00 -1.54828978e+00 -1.10833669e+00 1.15823174e+00 1.05288863e+00 7.55904496e-01 8.16883892e-03 -2.08030697e-02 -3.38216648e-02 -2.67347515e-01 3.52231741e-01 -4.98920768e-01 -1.66249141e-01 -2.24758804e-01 2.21410260e-01 1.29578695e-01 -2.62294680e-01 -1.09590220e+00 4.26952779e-01 -1.05045557e+00 1.10499956e-01 8.43739808e-01 1.08350039e+00 -6.58627003e-02 5.11615634e-01 3.77463728e-01 -5.00968814e-01 1.10976338e+00 -4.41190451e-01 -4.15554315e-01 2.81058162e-01 -5.79859614e-01 1.58995718e-01 4.24225599e-01 -6.58442914e-01 -1.41737294e+00 -1.64567336e-01 1.48388475e-01 -8.12437713e-01 -4.37913209e-01 4.13898289e-01 -9.40237492e-02 -2.65538543e-01 8.27508986e-01 4.10280287e-01 4.02842462e-02 -7.13272750e-01 5.42325497e-01 9.95440662e-01 5.29296041e-01 -3.01895529e-01 4.69964027e-01 2.74441093e-01 -7.25101650e-01 -8.03684175e-01 -7.11012661e-01 -5.49977541e-01 -5.04789591e-01 -1.62177563e-01 9.92670774e-01 -8.61876011e-01 -2.65219241e-01 9.22197700e-01 -1.39626515e+00 -4.01832759e-01 1.96459725e-01 5.40824354e-01 -2.73914844e-01 6.41449928e-01 -9.59557235e-01 -7.15728462e-01 -2.77982920e-01 -1.47026515e+00 7.77676165e-01 5.09316921e-01 1.33653924e-01 -9.58388805e-01 7.75889843e-04 5.17400265e-01 8.87097418e-01 -4.00568932e-01 6.25369310e-01 4.43555042e-02 -8.22647452e-01 1.57610849e-02 -8.78260791e-01 6.16418064e-01 7.84746170e-01 -5.50488293e-01 -1.19775093e+00 -4.08685505e-01 4.63888198e-01 -6.08678814e-03 1.13097227e+00 1.11931574e+00 1.36344850e+00 -5.20763516e-01 -3.14508259e-01 7.03315735e-01 1.33485162e+00 2.29325101e-01 1.03212941e+00 3.79879177e-01 9.41674113e-01 3.31069082e-01 3.21291178e-01 -8.11272189e-02 -1.06864488e-02 6.20860338e-01 4.01397854e-01 -4.37489629e-01 -5.57699025e-01 5.19481823e-02 4.30156440e-01 5.84818244e-01 -3.06461770e-02 -1.76779151e-01 -5.19068718e-01 7.88427353e-01 -1.78651142e+00 -9.07925725e-01 9.61709097e-02 2.03844953e+00 1.14056730e+00 -3.58864635e-01 -4.54822868e-01 -4.92094874e-01 1.27309394e+00 4.17157412e-01 -5.51015437e-01 7.74422884e-02 -2.20157295e-01 -1.46514714e-01 7.15159357e-01 8.27576995e-01 -1.19267392e+00 1.08638918e+00 6.85053492e+00 8.18005979e-01 -1.33231330e+00 1.23934271e-02 9.16632295e-01 4.31005299e-01 -5.11577502e-02 1.52025759e-01 -2.25655735e-01 7.58455098e-01 5.31547189e-01 6.41668439e-02 1.13117719e+00 6.32494152e-01 5.90387702e-01 -2.39019081e-01 -6.65910125e-01 1.21563125e+00 2.14829385e-01 -1.28813720e+00 -1.86699674e-01 -1.58136994e-01 8.83806407e-01 -8.79529342e-02 1.70030985e-02 -3.36666942e-01 3.91325057e-01 -1.24935508e+00 4.91645187e-01 8.50096166e-01 6.51590347e-01 -3.47908050e-01 9.48745728e-01 2.10904017e-01 -4.69622046e-01 1.14400372e-01 -6.50854230e-01 1.13124467e-01 2.46410910e-03 7.78472126e-01 -8.51941347e-01 2.09357485e-01 7.50472963e-01 7.27405608e-01 -6.54020905e-01 1.37295997e+00 -3.08054566e-01 6.97183609e-01 4.05663103e-01 3.35498989e-01 -6.10212237e-02 -4.63255316e-01 4.83465970e-01 1.19711888e+00 6.68960690e-01 2.90082823e-02 -1.66417226e-01 1.26254201e+00 -1.24475576e-01 -3.78831148e-01 -5.23859918e-01 2.47974262e-01 4.21190381e-01 1.09504795e+00 -6.35806143e-01 -3.61269057e-01 -1.08143747e-01 1.56130302e+00 1.17175937e-01 9.72905219e-01 -6.77923024e-01 -4.08037454e-01 5.87970972e-01 -9.45487712e-03 4.76293772e-01 -6.35553598e-02 -3.04269344e-01 -1.41672254e+00 -4.46424693e-01 -8.67046297e-01 -4.66724634e-02 -1.55502343e+00 -1.46164191e+00 7.09383249e-01 -1.08127348e-01 -1.22681737e+00 1.09322369e-01 -3.90509456e-01 -7.06306458e-01 1.37048900e+00 -1.59324229e+00 -9.90918219e-01 -6.58074558e-01 3.02032739e-01 6.95180178e-01 5.37160337e-02 2.59512663e-01 9.84900743e-02 -4.67817605e-01 5.49465511e-03 3.43099087e-01 1.45644695e-01 1.06117141e+00 -1.25033629e+00 1.62813291e-01 1.26761091e+00 -2.10890710e-01 9.34598267e-01 1.05280232e+00 -5.48798382e-01 -1.16956711e+00 -1.10090959e+00 2.41589576e-01 -2.69427449e-01 3.78717452e-01 2.34101489e-01 -1.23493898e+00 3.74919742e-01 8.27528238e-01 8.52818340e-02 -4.36141565e-02 -3.80030870e-01 -1.90280247e-02 -8.02150443e-02 -1.22478223e+00 5.58649719e-01 3.36244524e-01 -5.31630456e-01 -7.92167127e-01 5.04834577e-02 5.98608017e-01 -5.17754436e-01 -5.41809618e-01 1.12647951e-01 2.83793569e-01 -9.42994118e-01 1.11247230e+00 -2.20271628e-02 4.99104202e-01 -7.61774540e-01 3.35563600e-01 -1.84322071e+00 -8.41768265e-01 -5.64013898e-01 -9.44644213e-02 1.14326286e+00 4.96117398e-03 -5.33361554e-01 5.37530363e-01 4.93150890e-01 3.65259573e-02 -2.16035232e-01 -3.95482749e-01 -2.49601290e-01 -8.59190822e-02 2.57123888e-01 5.46964526e-01 1.16020453e+00 -4.15598124e-01 2.35451430e-01 -9.72181916e-01 5.57047546e-01 6.82726443e-01 3.35570514e-01 4.17314649e-01 -6.73192918e-01 -2.04378977e-01 -5.03840625e-01 1.09532014e-01 -1.54660165e+00 3.02567333e-02 -4.40005302e-01 5.16475439e-01 -1.62678099e+00 4.29536700e-01 -2.68370450e-01 -4.59161460e-01 2.17091590e-01 -6.72279477e-01 3.22812855e-01 -1.69667393e-01 6.75057471e-01 -3.56302202e-01 4.19973552e-01 1.49931037e+00 -4.11031008e-01 -1.88533932e-01 8.96889046e-02 -8.86247993e-01 4.44335550e-01 6.93711400e-01 -1.76327929e-01 -3.27085108e-01 -6.93877876e-01 -3.81062090e-01 2.29553133e-01 4.99753505e-01 -6.54618621e-01 2.15516031e-01 -4.38656569e-01 6.72552824e-01 -2.76397079e-01 -3.53963040e-02 -8.16033423e-01 2.28413671e-01 1.69579029e-01 -4.10554171e-01 -4.70490783e-01 9.77742970e-02 5.25925159e-01 -3.71618211e-01 -7.76420653e-01 1.07201040e+00 -2.71987110e-01 -7.73726881e-01 6.54771701e-02 -5.22976041e-01 -3.38968784e-01 5.28147221e-01 -1.67595387e-01 -4.50791150e-01 -5.40467083e-01 -4.65378463e-01 -1.59248725e-01 8.19288373e-01 3.70684624e-01 7.87775934e-01 -1.22157049e+00 -6.00565434e-01 2.02133834e-01 -2.01938629e-01 -1.56243637e-01 3.34844619e-01 6.34000421e-01 -8.01115632e-01 1.58723474e-01 -3.02616179e-01 -3.19733471e-01 -1.08884478e+00 8.26965868e-01 6.52615845e-01 2.52715439e-01 -4.69106704e-01 8.50557566e-01 5.25070190e-01 3.79177928e-01 -3.78553681e-02 -4.77252692e-01 -3.07481468e-01 -4.77128476e-01 8.53555024e-01 3.16330791e-01 -1.16288409e-01 -7.04726815e-01 -5.05548343e-02 6.14312708e-01 -1.45808235e-01 1.29207045e-01 1.12827206e+00 -7.34486520e-01 -6.03227675e-01 -1.05162658e-01 1.04871297e+00 6.49453178e-02 -1.73708057e+00 -1.84347436e-01 -1.23324461e-01 -8.16495180e-01 5.99908471e-01 -8.05317461e-01 -1.27523589e+00 6.98617816e-01 9.73890126e-01 3.95447999e-01 1.40008283e+00 2.62708068e-02 7.55293012e-01 -8.16338733e-02 1.37110978e-01 -6.15933299e-01 5.21724485e-02 3.60165477e-01 1.05209780e+00 -1.34531689e+00 2.54653115e-02 -8.44824761e-02 -5.92505574e-01 1.18449807e+00 4.87330645e-01 -4.04793918e-01 5.44069648e-01 -3.35939564e-02 2.60127068e-01 -2.08360597e-01 -1.88453764e-01 -2.11860612e-01 4.79473919e-01 5.28367698e-01 3.13352883e-01 -2.22962886e-01 -6.16985485e-02 2.62087256e-01 3.02540004e-01 3.40610862e-01 7.11418152e-01 3.08311611e-01 -7.62412548e-01 -6.61921561e-01 -9.60411549e-01 2.52661854e-01 -5.18577456e-01 -2.98556209e-01 -1.66989446e-01 2.44703237e-02 2.22430423e-01 1.04040194e+00 -1.60681188e-01 -1.41939133e-01 -1.92612514e-01 -3.24347973e-01 5.33688009e-01 -3.46156955e-01 -1.34708643e-01 3.59232455e-01 -3.13685745e-01 -1.87101122e-02 -4.97514516e-01 -1.73594385e-01 -6.71738207e-01 -1.16355106e-01 -7.35559821e-01 2.09578156e-01 2.99409777e-01 8.84256244e-01 3.89600456e-01 3.52729619e-01 7.13526249e-01 -1.20257592e+00 -2.90747523e-01 -1.32213891e+00 -6.55690670e-01 3.91103357e-01 1.00268376e+00 -4.10082042e-01 -5.72803140e-01 5.93130112e-01]
[11.618948936462402, -2.775852918624878]
7204fb7a-71ac-41b9-bffb-293a00a916f6
pas-mef-multi-exposure-image-fusion-based-on
2105.11809
null
https://arxiv.org/abs/2105.11809v1
https://arxiv.org/pdf/2105.11809v1.pdf
PAS-MEF: Multi-exposure image fusion based on principal component analysis, adaptive well-exposedness and saliency map
High dynamic range (HDR) imaging enables to immortalize natural scenes similar to the way that they are perceived by human observers. With regular low dynamic range (LDR) capture/display devices, significant details may not be preserved in images due to the huge dynamic range of natural scenes. To minimize the information loss and produce high quality HDR-like images for LDR screens, this study proposes an efficient multi-exposure fusion (MEF) approach with a simple yet effective weight extraction method relying on principal component analysis, adaptive well-exposedness and saliency maps. These weight maps are later refined through a guided filter and the fusion is carried out by employing a pyramidal decomposition. Experimental comparisons with existing techniques demonstrate that the proposed method produces very strong statistical and visual results.
['Mehmet Turkan', 'Oguzhan Ulucan', 'Diclehan Karakaya']
2021-05-25
null
null
null
null
['multi-exposure-image-fusion']
['computer-vision']
[ 6.95042312e-01 -4.28056329e-01 3.38991702e-01 -3.30857784e-02 -1.28335923e-01 -2.18641862e-01 4.63614136e-01 -8.39212239e-02 -3.04373682e-01 6.56728029e-01 2.76970595e-01 -6.78898990e-02 -1.80057794e-01 -7.24123776e-01 -3.18512142e-01 -6.36166990e-01 2.48718366e-01 -4.18161452e-01 7.48346448e-01 -3.65827292e-01 4.57882285e-01 6.27482951e-01 -2.06219769e+00 2.11400926e-01 1.03973627e+00 7.81638622e-01 8.27025354e-01 7.02024937e-01 9.68686044e-02 5.95495641e-01 -3.60243946e-01 -2.48009339e-01 4.02400613e-01 -4.11605567e-01 -2.92459905e-01 3.51832330e-01 2.14909166e-01 -4.68781024e-01 -3.27624619e-01 1.24583268e+00 5.65988302e-01 4.10254925e-01 5.34174323e-01 -5.59049666e-01 -1.02769136e+00 -1.34381101e-01 -1.20334530e+00 4.53498751e-01 8.39504719e-01 4.64326739e-02 3.40686142e-01 -1.01703417e+00 6.41510010e-01 1.15400612e+00 3.05968165e-01 2.83510268e-01 -1.47043419e+00 -4.03068393e-01 -1.49192914e-01 2.00672969e-01 -1.41646910e+00 -4.98552173e-01 1.07971632e+00 -6.76098391e-02 8.26985538e-01 5.87535977e-01 7.30025172e-01 4.97274250e-01 5.12244165e-01 1.84391513e-01 1.67177522e+00 -4.78205919e-01 -7.28961602e-02 3.56826365e-01 4.64582909e-03 5.00048757e-01 3.04920822e-01 2.18298778e-01 -4.72414583e-01 1.13636717e-01 9.10784602e-01 2.89943337e-01 -7.20792353e-01 -2.49654025e-01 -1.08881986e+00 1.41010329e-01 3.47816914e-01 4.54283983e-01 -5.86474538e-01 -5.68674684e-01 -1.67411808e-02 2.76616752e-01 4.13635850e-01 2.09827960e-01 1.76344842e-01 3.75720114e-01 -9.71934974e-01 -8.21858123e-02 8.68228450e-02 6.76554024e-01 6.97771013e-01 1.41691297e-01 -1.51443362e-01 1.02501130e+00 2.66159207e-01 6.79256976e-01 4.54396218e-01 -9.20553207e-01 5.71824051e-03 5.22139370e-01 1.33552670e-01 -1.22799015e+00 -6.06125742e-02 -7.96287283e-02 -1.06639469e+00 8.71817827e-01 -2.86018979e-02 3.07397783e-01 -9.97791886e-01 1.14159906e+00 2.89491922e-01 -1.62419885e-01 1.11240841e-01 1.18689132e+00 6.77658200e-01 8.96410942e-01 -1.06637171e-02 -5.64271331e-01 1.35394788e+00 -4.61636543e-01 -1.07754517e+00 -1.28858358e-01 -3.59761596e-01 -1.04287064e+00 1.41923583e+00 7.04982400e-01 -1.26437294e+00 -8.30168128e-01 -1.24256980e+00 -2.78063953e-01 -2.13605076e-01 6.85159341e-02 3.26859087e-01 7.38624513e-01 -1.12792087e+00 4.08118993e-01 -3.07652861e-01 -3.10156941e-01 2.10134685e-01 1.18110314e-01 -4.33621615e-01 -3.33977252e-01 -8.77890408e-01 1.03832555e+00 3.07501525e-01 1.32826325e-02 -4.53799397e-01 -6.85735106e-01 -6.75508559e-01 -3.95191200e-02 1.18978091e-01 -5.60652494e-01 4.00134057e-01 -7.57532597e-01 -1.62407517e+00 9.31786716e-01 -2.31102332e-01 -2.74200469e-01 3.53800029e-01 -3.76504660e-01 -5.39383709e-01 4.72969294e-01 -3.21582943e-01 3.53000760e-01 1.13396156e+00 -1.45944691e+00 -4.95886534e-01 -3.35235447e-01 -2.39475816e-01 6.22289896e-01 -3.65930378e-01 2.75276572e-01 -3.14337701e-01 -5.74134827e-01 3.32925946e-01 -5.57749510e-01 -9.17875841e-02 -2.03062873e-02 -2.54903585e-01 3.73209506e-01 1.16077483e+00 -9.76557374e-01 1.45168340e+00 -2.20157266e+00 -3.40354396e-03 2.17982709e-01 4.40757215e-01 4.03705567e-01 2.88093477e-01 1.48880556e-01 -1.22655563e-01 -2.64103979e-01 -1.84569001e-01 1.82824656e-01 -4.82657015e-01 -4.45172518e-01 -3.76316965e-01 6.52775109e-01 -1.65350422e-01 3.32338065e-01 -5.59823334e-01 -5.64860880e-01 8.66666913e-01 8.35920751e-01 1.59215257e-02 2.91901737e-01 2.80955762e-01 4.59520996e-01 -1.63920715e-01 6.36826277e-01 9.73505139e-01 6.04675487e-02 -2.22424269e-01 -5.94847918e-01 -4.70779657e-01 -4.06754732e-01 -1.25416398e+00 1.44684613e+00 -3.29068571e-01 7.16025591e-01 1.17069241e-02 -2.53587574e-01 1.35826492e+00 -4.24061865e-02 2.06751496e-01 -1.07898605e+00 -5.27138188e-02 4.36659493e-02 -3.89025211e-01 -4.33259547e-01 8.67789268e-01 -2.23206401e-01 2.95155078e-01 7.47585446e-02 -4.78554159e-01 -1.02350235e-01 2.88682757e-03 1.81035072e-01 7.92167008e-01 -7.48112658e-03 4.87941623e-01 -3.49991620e-01 7.98641980e-01 -4.02687192e-01 4.41842943e-01 3.52587461e-01 -3.21743265e-03 9.42013443e-01 -1.53661788e-01 -4.00169730e-01 -1.36453581e+00 -1.40222311e+00 -2.31905341e-01 5.72096884e-01 6.86290026e-01 -1.24216571e-01 -3.64426732e-01 1.71313044e-02 -4.16695267e-01 7.30590343e-01 -4.33834285e-01 -2.26321384e-01 -3.23551506e-01 -6.55837893e-01 -9.11956877e-02 8.29961002e-02 9.82438982e-01 -9.00403440e-01 -9.53928590e-01 -2.62725707e-02 -3.18446197e-02 -8.38574409e-01 -2.99336910e-01 -2.87862360e-01 -9.08003271e-01 -6.64768040e-01 -1.05484915e+00 -5.56685805e-01 6.50245547e-01 9.57339168e-01 9.15842533e-01 -1.35311801e-02 -5.93005776e-01 1.30760178e-01 -4.03996527e-01 -1.98951308e-02 -1.55827388e-01 -6.77774549e-01 3.14983428e-02 1.91933453e-01 2.69573510e-01 -6.91438794e-01 -1.04982102e+00 3.28858972e-01 -1.06033242e+00 4.85565424e-01 8.16942692e-01 4.89932209e-01 9.05426204e-01 6.18077457e-01 2.48188630e-01 -6.75674617e-01 6.64543211e-01 -4.84636910e-02 -5.56396008e-01 3.31422389e-01 -7.13905156e-01 -3.12407911e-01 5.81211925e-01 -4.27731037e-01 -1.87352920e+00 -1.65533245e-01 1.38343140e-01 -4.08011734e-01 -1.72189817e-01 -3.19518149e-01 -2.22894847e-01 -2.90041953e-01 6.00367308e-01 5.24902344e-01 -1.52359888e-01 -5.14244497e-01 1.94037333e-01 7.40234554e-01 6.26865923e-01 1.94977950e-02 9.78696585e-01 6.87880576e-01 -6.14984566e-03 -1.17727709e+00 -3.00890774e-01 -2.74255216e-01 -3.49069357e-01 -5.34311533e-01 1.08418798e+00 -9.80215132e-01 -6.16220474e-01 5.16138554e-01 -7.00621665e-01 5.76243997e-02 -1.04852885e-01 6.45538986e-01 -3.50985467e-01 5.13482273e-01 -5.34850061e-01 -1.01408362e+00 -3.70913655e-01 -8.09873521e-01 8.19089949e-01 7.34424531e-01 8.20646435e-02 -4.92723435e-01 1.92780793e-02 3.11552197e-01 6.54054701e-01 2.56728202e-01 7.14368641e-01 3.46954048e-01 -6.98723316e-01 8.91930088e-02 -5.65743625e-01 3.19699675e-01 1.81675419e-01 8.20225030e-02 -9.52354848e-01 -2.42338911e-01 3.27751368e-01 8.38906914e-02 8.02172422e-01 5.83563149e-01 1.06369531e+00 5.87152243e-02 -1.82857484e-01 6.93449378e-01 1.97732723e+00 4.52754855e-01 1.19758880e+00 3.53666574e-01 5.88891327e-01 5.16679525e-01 8.63605142e-01 3.48385632e-01 -6.31485507e-02 6.16675913e-01 1.06048755e-01 -5.26596844e-01 -4.15661633e-01 -9.22759622e-02 2.48523831e-01 6.00938737e-01 -3.08147371e-01 -1.93513945e-01 -4.70214903e-01 3.83124113e-01 -1.28470039e+00 -1.06984448e+00 -3.57222199e-01 2.43552041e+00 6.57033861e-01 1.29894733e-01 -2.00862497e-01 3.11487168e-01 1.02351213e+00 2.58266926e-01 -4.25569296e-01 -5.61571360e-01 -6.84289277e-01 -3.70266251e-02 5.94168365e-01 3.41757536e-01 -7.90205956e-01 5.38954198e-01 6.56524038e+00 9.38386679e-01 -1.01357090e+00 -3.89690101e-02 6.48495078e-01 -8.37157220e-02 -5.53272545e-01 -1.22221068e-01 -4.95576710e-01 5.37340105e-01 5.68758368e-01 -2.67504007e-01 4.51536596e-01 3.80495608e-01 3.69150996e-01 -7.71606088e-01 -3.72747421e-01 1.27528751e+00 2.19975010e-01 -8.78648996e-01 2.34774891e-02 6.38777614e-02 7.66793966e-01 -5.84936500e-01 4.90416497e-01 -4.70636487e-01 9.33252648e-02 -7.79290497e-01 4.58370537e-01 9.90622044e-01 1.03458440e+00 -1.00520957e+00 3.00327301e-01 -8.09179470e-02 -1.11067212e+00 -1.86866537e-01 -7.21390069e-01 9.82410386e-02 3.37273568e-01 8.97369981e-01 -1.18036062e-01 4.78519261e-01 1.03137684e+00 5.23481190e-01 -8.03532600e-01 1.12287199e+00 -2.20864397e-02 2.68453322e-02 -1.68854460e-01 3.54814500e-01 -3.69807631e-01 -5.42562783e-01 9.11313534e-01 9.38190758e-01 5.39481044e-01 3.85558486e-01 -2.64483124e-01 7.68169343e-01 2.88046658e-01 1.37779355e-01 -9.67671454e-01 3.09752494e-01 2.04408392e-01 1.28553975e+00 -9.42535222e-01 -1.92910492e-01 -4.96668428e-01 1.43263555e+00 -2.65454680e-01 5.16882122e-01 -6.49985790e-01 -6.10784888e-01 6.26764223e-02 4.77548450e-01 2.19280213e-01 -1.95627540e-01 -3.08722824e-01 -1.06539321e+00 2.53377017e-02 -6.84729457e-01 7.70445019e-02 -1.37070346e+00 -1.04794705e+00 8.38140666e-01 3.71950120e-02 -1.43401229e+00 2.28465617e-01 -1.51498854e-01 -5.62434137e-01 1.00123906e+00 -1.52035069e+00 -8.88355255e-01 -3.97163898e-01 7.48913229e-01 5.41465878e-01 -1.53063118e-01 5.01355052e-01 2.25070685e-01 -3.64407808e-01 6.35892078e-02 2.30639309e-01 -5.71070492e-01 7.57656455e-01 -1.16162145e+00 -2.43073747e-01 1.31264269e+00 -3.04502219e-01 5.39271176e-01 1.00633633e+00 -7.67218709e-01 -1.24730957e+00 -6.90527558e-01 3.69026423e-01 4.65869159e-02 8.98845643e-02 -1.63865492e-01 -1.19874704e+00 6.21527955e-02 4.49463487e-01 -2.12523431e-01 6.23069525e-01 -3.97882968e-01 -9.85899121e-02 -3.95283103e-01 -1.44938374e+00 6.88349366e-01 7.64024317e-01 -4.77874666e-01 -6.79535747e-01 -2.53485709e-01 6.48462951e-01 -4.32404913e-02 -8.73758018e-01 4.49810892e-01 7.05939889e-01 -1.54626524e+00 1.17003477e+00 4.54818636e-01 2.78177202e-01 -7.90369809e-01 -1.41097769e-01 -1.06073368e+00 -5.10778487e-01 -5.87725461e-01 -1.63149964e-02 1.44638336e+00 3.07249930e-02 -3.88540685e-01 3.35521519e-01 6.81348622e-01 1.65876567e-01 -3.05574745e-01 -5.13052940e-01 -4.59433585e-01 -8.71672094e-01 1.72568068e-01 2.84028530e-01 6.59456730e-01 -3.82623643e-01 1.71313986e-01 -6.74022555e-01 2.00105414e-01 1.12216747e+00 2.70037293e-01 3.42964917e-01 -1.18206596e+00 -2.36295938e-01 -5.94647182e-03 -4.43291754e-01 -5.71577787e-01 -4.12655950e-01 -1.71682760e-01 -1.31912202e-01 -1.44242668e+00 4.48367596e-01 -1.64657995e-01 -3.72647822e-01 -1.68232381e-01 -2.86488831e-01 7.77434409e-01 1.77146077e-01 2.76393294e-01 -6.59538448e-01 5.21249473e-01 1.36088765e+00 2.48274103e-01 -4.75004047e-01 -2.30880886e-01 -6.44843459e-01 7.44564533e-01 5.99738538e-01 -5.95097095e-02 -5.90392947e-01 -2.54463315e-01 2.23261580e-01 8.27457756e-02 4.46593642e-01 -1.34226859e+00 1.58925474e-01 -5.10649160e-02 1.00294971e+00 -6.92929447e-01 3.43348265e-01 -9.39045966e-01 6.09502852e-01 3.20496887e-01 -1.60591945e-01 8.02576244e-02 7.14029223e-02 6.81102633e-01 -2.92037696e-01 9.91491154e-02 1.33265185e+00 -1.40576109e-01 -9.32346046e-01 -1.71493575e-01 -4.04643595e-01 -6.41991138e-01 1.29412532e+00 -8.07919204e-01 -3.22720826e-01 -2.87370682e-01 -5.34471452e-01 -3.70621562e-01 9.83208239e-01 2.06014112e-01 1.21060264e+00 -1.26684332e+00 -5.51571012e-01 4.02064204e-01 -1.13398939e-01 -4.08374131e-01 1.03659511e+00 7.16001451e-01 -6.04059219e-01 3.70091610e-02 -8.87570083e-01 -3.13745528e-01 -1.61217570e+00 8.35603952e-01 -1.08169064e-01 -1.11704700e-01 -1.10878873e+00 4.35674906e-01 5.17820179e-01 5.12672484e-01 -1.37165979e-01 1.78403869e-01 -6.30374908e-01 -1.46445990e-01 1.04032588e+00 6.23973727e-01 -2.05919355e-01 -7.91283071e-01 -2.33864710e-01 9.04249847e-01 -1.45260453e-01 -1.33452415e-01 1.32869184e+00 -9.78121459e-01 -5.04341871e-02 3.90765369e-01 9.98121679e-01 2.21604258e-01 -1.33403361e+00 -1.13051012e-01 -5.75088084e-01 -1.20196593e+00 4.40403908e-01 -5.89706838e-01 -9.69494045e-01 7.56380141e-01 1.19826365e+00 3.24067831e-01 1.89563978e+00 -3.51899177e-01 7.53724813e-01 -6.54533356e-02 2.39584059e-01 -1.13179696e+00 1.00960881e-01 -2.37560585e-01 8.65509808e-01 -9.58477020e-01 2.56340325e-01 -4.85466063e-01 -6.51301801e-01 9.27486300e-01 5.39045870e-01 -2.84621835e-01 3.41480076e-01 2.97116101e-01 -2.30032623e-01 -4.93990667e-02 -5.95665038e-01 -3.90364558e-01 4.07837212e-01 9.59905624e-01 2.21201375e-01 -3.80400985e-01 -5.12443960e-01 1.07197657e-01 2.04631239e-01 -7.34190643e-02 6.99773490e-01 6.96335554e-01 -8.33118260e-01 -5.68240941e-01 -7.49967098e-01 4.07977283e-01 -6.87402129e-01 -2.23259106e-02 1.70557760e-02 3.37000906e-01 -6.42417185e-03 1.05765986e+00 -6.82660053e-03 -4.70234722e-01 3.09729993e-01 -2.87749082e-01 5.29718161e-01 -2.81313062e-01 -1.27623558e-01 4.00200427e-01 -2.45339945e-01 -6.85243547e-01 -6.19319618e-01 -2.60033369e-01 -9.32784438e-01 -2.56750107e-01 -1.78412721e-01 -2.64511853e-01 6.05844498e-01 4.52707112e-01 2.59893179e-01 6.69596016e-01 7.32196331e-01 -8.73785198e-01 1.39822915e-01 -6.81533933e-01 -1.00252664e+00 5.39128780e-01 3.38647902e-01 -6.48438096e-01 -3.88290733e-01 3.00302118e-01]
[10.871384620666504, -2.4555258750915527]
438e1797-a105-4710-adae-36feae5784a4
an-empirical-study-of-remote-sensing
2204.02825
null
https://arxiv.org/abs/2204.02825v4
https://arxiv.org/pdf/2204.02825v4.pdf
An Empirical Study of Remote Sensing Pretraining
Deep learning has largely reshaped remote sensing (RS) research for aerial image understanding and made a great success. Nevertheless, most of the existing deep models are initialized with the ImageNet pretrained weights. Since natural images inevitably present a large domain gap relative to aerial images, probably limiting the finetuning performance on downstream aerial scene tasks. This issue motivates us to conduct an empirical study of remote sensing pretraining (RSP) on aerial images. To this end, we train different networks from scratch with the help of the largest RS scene recognition dataset up to now -- MillionAID, to obtain a series of RS pretrained backbones, including both convolutional neural networks (CNN) and vision transformers such as Swin and ViTAE, which have shown promising performance on computer vision tasks. Then, we investigate the impact of RSP on representative downstream tasks including scene recognition, semantic segmentation, object detection, and change detection using these CNN and vision transformer backbones. Empirical study shows that RSP can help deliver distinctive performances in scene recognition tasks and in perceiving RS related semantics such as "Bridge" and "Airplane". We also find that, although RSP mitigates the data discrepancies of traditional ImageNet pretraining on RS images, it may still suffer from task discrepancies, where downstream tasks require different representations from scene recognition tasks. These findings call for further research efforts on both large-scale pretraining datasets and effective pretraining methods. The codes and pretrained models will be released at https://github.com/ViTAE-Transformer/ViTAE-Transformer-Remote-Sensing.
['DaCheng Tao', 'Gui-Song Xia', 'Bo Du', 'Jing Zhang', 'Di Wang']
2022-04-06
null
null
null
null
['object-detection-in-aerial-images', 'scene-recognition', 'change-detection-for-remote-sensing-images', 'building-change-detection-for-remote-sensing']
['computer-vision', 'computer-vision', 'miscellaneous', 'miscellaneous']
[ 6.15162790e-01 -2.87536472e-01 8.83178264e-02 -5.79688907e-01 -2.45788619e-01 -7.95904517e-01 4.09639239e-01 -3.28497112e-01 -4.93726939e-01 2.56257862e-01 4.15878110e-02 -5.94050825e-01 -1.52656391e-01 -1.09572697e+00 -9.12959814e-01 -4.85560358e-01 1.03101037e-01 -1.66609824e-01 1.86002031e-01 -6.04106307e-01 -5.97306602e-02 6.60827696e-01 -1.67868865e+00 2.78757393e-01 7.62865543e-01 9.84460354e-01 5.41766763e-01 6.58163369e-01 4.78156283e-02 6.59137726e-01 -4.38366294e-01 -7.97779709e-02 7.40318894e-01 -1.38204843e-01 -9.65265930e-01 2.21908435e-01 7.76802599e-01 -5.79889536e-01 -3.70593995e-01 1.18721950e+00 4.93975490e-01 3.14854056e-01 2.58284837e-01 -9.73561108e-01 -1.02590311e+00 6.37314200e-01 -4.22017336e-01 5.34524858e-01 -2.25863263e-01 5.09948432e-01 9.46489394e-01 -6.86695695e-01 3.23862523e-01 1.07309413e+00 1.01911342e+00 5.07585704e-01 -8.26672316e-01 -6.63163006e-01 4.12698209e-01 -1.79335824e-03 -1.41669893e+00 -3.75494450e-01 5.69012761e-01 -4.71777320e-01 9.78909373e-01 2.79237717e-01 5.90445042e-01 9.65414584e-01 -3.24628294e-01 6.49227321e-01 1.05475044e+00 -1.46828135e-02 -7.08333915e-03 -5.35123497e-02 -1.91680458e-03 5.98259747e-01 6.34011701e-02 1.64963380e-01 -4.64327410e-02 4.65093493e-01 1.14954555e+00 3.89640570e-01 -4.23517883e-01 1.29652709e-01 -1.15252221e+00 7.75289178e-01 1.22125530e+00 2.28498921e-01 -3.28331381e-01 2.31991351e-01 2.27955312e-01 3.88706177e-01 5.98035634e-01 5.95528901e-01 -8.83716822e-01 4.15918648e-01 -7.91694105e-01 -1.38696358e-01 2.47568965e-01 7.70098448e-01 9.39131260e-01 4.43849444e-01 1.69913918e-01 1.08518076e+00 1.71264619e-01 7.43133187e-01 3.45713109e-01 -7.38675714e-01 4.19518977e-01 6.91058397e-01 -1.90669298e-01 -1.02457952e+00 -2.99789906e-01 -5.68026483e-01 -9.41536844e-01 3.55709232e-02 1.47978842e-01 -3.28690171e-01 -1.37598121e+00 1.55631435e+00 -1.78427808e-02 3.61579686e-01 1.93745315e-01 1.24254942e+00 1.14960206e+00 9.30687010e-01 2.91293949e-01 6.61431849e-01 1.21210659e+00 -9.99698579e-01 -2.39265673e-02 -8.22859943e-01 4.56169069e-01 -4.10792530e-01 1.44994831e+00 -1.75036248e-02 -5.95907867e-01 -1.02723324e+00 -1.06012321e+00 2.57325321e-02 -7.79767454e-01 4.83140528e-01 8.40374351e-01 3.54819596e-01 -1.26122308e+00 6.20222211e-01 -6.78628325e-01 -8.42210829e-01 6.59406364e-01 1.65965751e-01 -2.02959776e-01 -2.68480539e-01 -1.22123349e+00 7.18617082e-01 3.90891641e-01 5.55324316e-01 -1.44647694e+00 -8.90538156e-01 -9.32071507e-01 -7.26577938e-02 3.35429847e-01 -7.29784608e-01 1.02602017e+00 -1.47179520e+00 -1.24467552e+00 1.16835916e+00 3.81629616e-01 -5.00668228e-01 1.57078907e-01 -3.23869675e-01 -4.88588214e-01 1.76015049e-01 8.68407488e-02 1.09197056e+00 9.58308756e-01 -1.27031791e+00 -6.05622530e-01 -3.32940280e-01 5.88545620e-01 3.66584867e-01 -2.72891134e-01 2.25368189e-03 -2.82842904e-01 -6.43845081e-01 1.61623240e-01 -7.61724651e-01 -3.58810067e-01 1.44489147e-02 -2.74744064e-01 9.19731036e-02 8.46399784e-01 -6.08488321e-01 6.89482749e-01 -2.32192111e+00 -1.49188161e-01 -1.42181262e-01 4.42425907e-02 6.56754017e-01 -7.67114341e-01 1.61986411e-01 -4.01940107e-01 3.90771806e-01 -4.93519604e-01 1.28398985e-01 -2.79827595e-01 3.34178329e-01 -6.57094955e-01 3.36623102e-01 3.99859279e-01 1.10697937e+00 -6.89652026e-01 -2.92842779e-02 5.21646321e-01 2.64401287e-01 -3.85143489e-01 1.49059907e-01 -3.09238046e-01 3.78972799e-01 -4.02982146e-01 8.81700933e-01 7.17562437e-01 -2.73638248e-01 -7.22867772e-02 -4.47577834e-01 -1.92606807e-01 1.89155042e-01 -8.18793535e-01 1.65544140e+00 -3.88881624e-01 7.98477471e-01 1.75490066e-01 -1.40090311e+00 1.06852555e+00 -1.52746141e-01 3.16425174e-01 -8.14427316e-01 3.69272754e-02 -1.35248035e-01 -1.60143077e-01 -4.85710651e-01 5.96573293e-01 -2.73529857e-01 1.17880374e-01 -1.56545709e-03 -2.40291487e-02 -3.73626590e-01 -5.38514666e-02 -1.37771025e-01 7.73572683e-01 1.59466848e-01 -1.96922109e-01 -2.43820071e-01 3.06622714e-01 5.04874945e-01 4.00592655e-01 7.41104484e-01 -2.75661498e-01 6.85866833e-01 -1.99382588e-01 -7.08971798e-01 -8.51112247e-01 -1.05457628e+00 -1.83527842e-01 1.38485742e+00 4.26193565e-01 -2.25746706e-02 -5.41176438e-01 -6.31923020e-01 -1.38771022e-03 4.70779330e-01 -5.76569378e-01 -2.09531769e-01 -2.53091395e-01 -9.98344958e-01 9.22607124e-01 8.33420455e-01 1.27878094e+00 -1.24875903e+00 -6.93241775e-01 -3.58324312e-02 -1.88357621e-01 -1.28116441e+00 5.96092790e-02 6.25024363e-02 -1.07267475e+00 -1.11171472e+00 -5.54869413e-01 -7.21245408e-01 5.72964609e-01 1.01145947e+00 1.18957198e+00 1.72959447e-01 -3.62364143e-01 5.68376482e-01 -5.22640288e-01 -4.20929193e-01 -4.29255553e-02 8.92938823e-02 -1.72783092e-01 -2.07675576e-01 3.94243777e-01 -4.98846710e-01 -7.39439905e-01 4.87727642e-01 -1.41210771e+00 5.03242835e-02 7.17992425e-01 5.04676521e-01 4.86109912e-01 3.45886171e-01 2.96899855e-01 -6.16679192e-01 2.93354422e-01 -4.56637293e-01 -5.48774660e-01 2.84537017e-01 -2.98214644e-01 -4.06668782e-01 5.49304307e-01 -1.35249570e-01 -1.05800891e+00 -8.54533445e-03 -2.39222258e-01 -4.45371628e-01 -8.07479024e-01 8.39821815e-01 1.14078723e-01 -9.90144461e-02 9.58204389e-01 3.35116982e-01 -1.12258546e-01 -3.41450036e-01 3.15375239e-01 5.79137504e-01 4.66682673e-01 -3.42280209e-01 1.00624144e+00 6.17326438e-01 -5.41652858e-01 -1.22820199e+00 -1.23687279e+00 -5.71030319e-01 -5.73441327e-01 -1.30404234e-01 1.10856092e+00 -1.51019979e+00 -9.25704241e-02 6.46957099e-01 -7.11156726e-01 -1.02631211e+00 -4.31686878e-01 3.70497406e-01 -1.49663746e-01 1.83026671e-01 -4.84965742e-01 -4.43524450e-01 -2.59432703e-01 -9.42040861e-01 1.07330596e+00 4.04511660e-01 2.71038771e-01 -9.80816066e-01 -1.38933748e-01 5.09433091e-01 6.72894597e-01 1.82484701e-01 5.98720610e-01 -2.50870317e-01 -6.20270908e-01 1.56363040e-01 -6.83733523e-01 9.43028569e-01 2.09251478e-01 1.68175340e-01 -1.06170678e+00 -2.50614643e-01 -3.32811058e-01 -4.96674180e-01 1.36097515e+00 5.61469793e-01 1.35206068e+00 2.06682682e-02 -8.45417678e-02 1.09384954e+00 1.70288968e+00 1.33727873e-02 8.52748752e-01 5.08419454e-01 9.09021854e-01 5.66526651e-01 6.28379285e-01 2.11650237e-01 4.27661777e-01 1.59123853e-01 8.14924061e-01 -7.25751460e-01 -2.95950592e-01 -2.20013902e-01 5.85886240e-01 3.60773563e-01 -3.55213761e-01 -2.51708835e-01 -1.12131870e+00 7.12633014e-01 -1.56269920e+00 -8.74118626e-01 -6.88625202e-02 1.83711481e+00 6.17725790e-01 -2.74119854e-01 -2.28443563e-01 -1.19368009e-01 6.63655937e-01 5.83687365e-01 -8.03017080e-01 7.37260953e-02 -3.61799896e-01 3.56093884e-01 9.14162636e-01 1.14876531e-01 -1.52584231e+00 1.60514057e+00 5.73391676e+00 5.98893702e-01 -1.56538177e+00 -3.64611112e-02 5.41353762e-01 4.35687423e-01 -9.53612104e-02 -5.25969155e-02 -8.32376659e-01 7.23141283e-02 7.65488684e-01 4.40497190e-01 4.28365320e-01 1.05965090e+00 2.24253654e-01 -2.08469704e-02 -6.22476935e-01 9.10579383e-01 -4.41783853e-02 -1.39170396e+00 4.22089279e-01 -2.36898690e-01 8.52510035e-01 8.31463397e-01 1.90249175e-01 4.54830229e-01 5.34730256e-01 -1.13273382e+00 6.14233375e-01 2.80735701e-01 9.36040759e-01 -2.93765306e-01 8.42786372e-01 1.18451612e-02 -1.42285013e+00 -3.25152040e-01 -8.98702443e-01 -2.37207964e-01 -2.20444798e-01 3.46914500e-01 -6.35954976e-01 5.75763643e-01 1.10928237e+00 1.35883439e+00 -8.93797874e-01 7.19667017e-01 -3.19961280e-01 8.97057295e-01 -2.92835712e-01 4.72460032e-01 6.24377787e-01 -3.76029223e-01 2.64228493e-01 1.06981611e+00 2.42378324e-01 3.63987654e-01 2.78735995e-01 1.04619074e+00 -9.00895298e-02 -3.28328639e-01 -9.94360685e-01 -3.74514788e-01 2.54587084e-01 1.34485817e+00 -8.05243373e-01 -3.82386595e-01 -3.22771549e-01 9.53326344e-01 -5.88500723e-02 6.23198569e-01 -9.22563255e-01 -1.46328852e-01 1.05692768e+00 1.14247680e-01 3.74458224e-01 -4.43697929e-01 -2.33165652e-01 -1.31419158e+00 -3.20770115e-01 -8.30842853e-01 4.29669529e-01 -1.14176738e+00 -1.35885072e+00 6.42904997e-01 2.65244208e-02 -1.16257179e+00 4.91619080e-01 -9.46936369e-01 -6.95674717e-01 6.18996084e-01 -2.15575457e+00 -1.39194047e+00 -9.14403558e-01 9.64596212e-01 8.66585493e-01 1.55682052e-02 6.03024662e-01 2.12057143e-01 -8.05540502e-01 1.77104056e-01 -1.44225299e-01 5.04430652e-01 5.34377754e-01 -9.95411873e-01 5.13931930e-01 1.21003747e+00 9.12209228e-02 4.67545688e-01 1.74868807e-01 -4.01121259e-01 -1.17225695e+00 -1.72069418e+00 9.53399017e-02 -3.48680377e-01 6.19317234e-01 1.59883752e-01 -8.88809025e-01 8.57034862e-01 -4.51679863e-02 -2.51083868e-03 5.42179108e-01 -2.86588818e-02 -3.59482974e-01 -3.99968386e-01 -9.54505980e-01 5.21348000e-01 1.35657597e+00 -7.11976111e-01 -6.09796762e-01 3.97540897e-01 7.63599396e-01 -1.31130427e-01 -7.52153099e-01 7.93785155e-01 1.38658285e-01 -8.79494131e-01 1.38389051e+00 -5.59292734e-01 7.89483190e-01 -4.77864355e-01 -4.06150073e-01 -1.24999404e+00 -4.50189590e-01 1.26129702e-01 8.26200306e-01 1.07096565e+00 4.80861604e-01 -6.96807384e-01 5.37685335e-01 4.30326968e-01 -6.24433637e-01 -1.02417879e-01 -1.97284698e-01 -7.19120681e-01 6.34832308e-02 -5.67191601e-01 5.47981620e-01 1.31764114e+00 -1.02824354e+00 3.84837836e-01 -5.44296801e-02 6.51576102e-01 3.04156333e-01 2.57922173e-01 8.10591042e-01 -1.16900074e+00 -8.12906921e-02 -4.87913817e-01 -1.63209617e-01 -1.17689288e+00 1.67637074e-03 -9.90575433e-01 2.59826839e-01 -1.74372160e+00 -1.12936035e-01 -6.06605113e-01 -2.54764289e-01 9.40832317e-01 -1.79417923e-01 5.69830775e-01 6.74205944e-02 2.07455292e-01 -4.14601088e-01 5.97541690e-01 1.30730605e+00 -4.62783903e-01 -1.94492698e-01 -1.48092836e-01 -8.13169241e-01 8.73940289e-01 1.29308677e+00 -8.64762589e-02 -5.64537585e-01 -1.07317173e+00 1.46072283e-01 -4.61698741e-01 9.04973984e-01 -1.10894644e+00 -6.34585768e-02 -3.04070085e-01 4.32813823e-01 -4.21218872e-01 5.18707670e-02 -7.90942967e-01 7.30417296e-02 2.45065510e-01 -1.33709401e-01 -8.88182148e-02 6.04640961e-01 3.71911556e-01 -3.89016300e-01 -4.25258279e-02 8.55278254e-01 -5.53349257e-01 -1.59138906e+00 5.74198902e-01 -3.08206558e-01 -1.21987723e-01 7.20456243e-01 -4.86043930e-01 -4.72900897e-01 -9.43348557e-02 -6.13230586e-01 1.76556826e-01 3.74104112e-01 4.43847924e-01 8.47491145e-01 -7.67713845e-01 -6.99920774e-01 3.99027318e-01 2.27033272e-01 4.87623394e-01 4.82344121e-01 6.42299354e-01 -8.29905331e-01 2.61401206e-01 -4.42588329e-01 -7.34035492e-01 -9.37168419e-01 2.42544100e-01 5.25995076e-01 1.81447476e-01 -6.32445097e-01 1.12930989e+00 5.78935385e-01 -8.66065860e-01 -1.10365689e-01 -6.28486097e-01 -2.22839162e-01 -7.13571757e-02 2.26915464e-01 7.44169205e-02 -4.50207889e-02 -4.63164777e-01 -2.97412157e-01 8.01682353e-01 3.17818493e-01 2.72991598e-01 1.64318717e+00 -2.68389076e-01 -1.19268270e-02 3.55955660e-02 8.63455474e-01 -4.81644601e-01 -1.46763897e+00 -3.17285031e-01 -3.18925023e-01 -3.56434107e-01 3.44756484e-01 -9.55730200e-01 -1.51411545e+00 1.05323553e+00 7.42069960e-01 8.84114131e-02 1.42429602e+00 -3.76098827e-02 6.73368931e-01 7.01646328e-01 2.63158649e-01 -9.01346028e-01 5.79344928e-02 7.85321355e-01 9.60888565e-01 -1.56931043e+00 -1.87150165e-01 -2.10250854e-01 -7.35325515e-01 9.15111125e-01 8.42128634e-01 -3.29685479e-01 6.83161557e-01 -6.76832572e-02 3.97476912e-01 -5.99908113e-01 -2.82668024e-01 -8.70662570e-01 2.22732127e-01 7.46581078e-01 2.04551980e-01 1.99012950e-01 4.42633510e-01 2.59240240e-01 -2.13297129e-01 -1.48434788e-02 2.68690765e-01 8.01625848e-01 -5.26215553e-01 -5.53679705e-01 -1.97788328e-01 3.20681423e-01 -2.14356363e-01 -5.39428651e-01 -6.12268746e-01 8.87691498e-01 2.51020879e-01 9.01268721e-01 1.26271069e-01 -6.86967373e-01 4.80265647e-01 -2.84361333e-01 1.37088671e-01 -8.67999673e-01 -6.23520911e-01 -3.37830812e-01 2.85319611e-02 -5.71816683e-01 -9.51648176e-01 -1.52910620e-01 -9.84699070e-01 -3.51290554e-01 -2.69869447e-01 -1.30527899e-01 5.77816665e-01 7.98044026e-01 3.33558708e-01 6.72545612e-01 4.94559854e-01 -9.72302556e-01 -3.97668332e-01 -1.00262618e+00 -5.67645252e-01 3.35398346e-01 1.73796743e-01 -3.97901475e-01 -3.19101214e-01 2.71816730e-01]
[9.442755699157715, -1.0972907543182373]
458ef21e-342c-405f-ad1b-af31e890c9e0
self-trained-one-class-classification-for
2106.06115
null
https://arxiv.org/abs/2106.06115v2
https://arxiv.org/pdf/2106.06115v2.pdf
Self-supervise, Refine, Repeat: Improving Unsupervised Anomaly Detection
Anomaly detection (AD), separating anomalies from normal data, has many applications across domains, from security to healthcare. While most previous works were shown to be effective for cases with fully or partially labeled data, that setting is in practice less common due to labeling being particularly tedious for this task. In this paper, we focus on fully unsupervised AD, in which the entire training dataset, containing both normal and anomalous samples, is unlabeled. To tackle this problem effectively, we propose to improve the robustness of one-class classification trained on self-supervised representations using a data refinement process. Our proposed data refinement approach is based on an ensemble of one-class classifiers (OCCs), each of which is trained on a disjoint subset of training data. Representations learned by self-supervised learning on the refined data are iteratively updated as the data refinement improves. We demonstrate our method on various unsupervised AD tasks with image and tabular data. With a 10% anomaly ratio on CIFAR-10 image data / 2.5% anomaly ratio on Thyroid tabular data, the proposed method outperforms the state-of-the-art one-class classifier by 6.3 AUC and 12.5 average precision / 22.9 F1-score.
['Tomas Pfister', 'Chen-Yu Lee', 'Sercan O. Arik', 'Chun-Liang Li', 'Kihyuk Sohn', 'Jinsung Yoon']
2021-06-11
self-supervise-refine-repeat-improving
https://openreview.net/forum?id=Nct9j3BVswZ
https://openreview.net/pdf?id=Nct9j3BVswZ
null
['one-class-classifier', 'one-class-classification']
['methodology', 'miscellaneous']
[ 3.94524992e-01 2.48075604e-01 -1.16800837e-01 -6.41612470e-01 -8.46727848e-01 -2.98064172e-01 4.14014786e-01 5.80295205e-01 -3.86169374e-01 6.26552343e-01 -2.05009386e-01 -6.20653629e-02 -8.08834285e-02 -6.38150871e-01 -5.42815030e-01 -8.14181864e-01 -8.71512070e-02 5.92117786e-01 3.04364502e-01 -4.05535474e-03 1.77095860e-01 3.86577934e-01 -1.71233952e+00 3.02389681e-01 1.09034753e+00 1.38299906e+00 -5.70378482e-01 5.49198389e-01 -1.73212498e-01 7.52352238e-01 -6.29848361e-01 -1.31974295e-01 4.33948070e-01 -3.09760541e-01 -7.25217819e-01 4.64141548e-01 6.07608438e-01 -9.43809450e-02 6.13945536e-04 1.14821291e+00 1.78029627e-01 1.05040736e-01 8.23043346e-01 -1.56687081e+00 -4.45075303e-01 3.08994472e-01 -7.31566668e-01 5.25524795e-01 -1.22085541e-01 -1.46161363e-01 8.86940420e-01 -8.18887234e-01 2.00892836e-01 8.21526706e-01 4.92106467e-01 7.77076125e-01 -1.25916529e+00 -8.25687647e-01 3.82531136e-01 2.55721658e-01 -1.33326399e+00 -3.18127543e-01 6.71577275e-01 -5.70696473e-01 6.86586499e-01 6.61635771e-02 2.59613663e-01 9.17491853e-01 2.35500157e-01 7.61812985e-01 8.79889309e-01 -4.01714206e-01 4.60942566e-01 2.31374562e-01 5.12913942e-01 4.63419825e-01 5.21309078e-01 -1.41949236e-01 -2.38100201e-01 -4.20047253e-01 2.26004153e-01 2.88671046e-01 2.53178440e-02 -5.66056609e-01 -6.13535941e-01 9.28404212e-01 1.58915833e-01 1.99304417e-01 -4.93895322e-01 -4.10454124e-01 4.64890718e-01 4.67772424e-01 8.17692935e-01 3.41850370e-01 -5.71128070e-01 1.81824267e-01 -8.30472767e-01 1.18908279e-01 5.00087202e-01 6.23010695e-01 5.27669132e-01 1.91129193e-01 -3.10956575e-02 1.07333529e+00 3.86104405e-01 1.90015927e-01 5.99812567e-01 -3.31359237e-01 2.45817170e-01 1.07231617e+00 -1.11768022e-01 -7.21958637e-01 -6.06632233e-01 -7.51595259e-01 -1.05605400e+00 2.63485163e-01 4.83774334e-01 -1.05425805e-01 -1.45859468e+00 1.51479530e+00 3.98486435e-01 2.47489125e-01 2.78907448e-01 5.11853933e-01 5.04913330e-01 5.27136147e-01 1.29738599e-01 -3.42236757e-01 1.08327055e+00 -8.12797964e-01 -7.05265701e-01 -8.85344148e-02 8.91350567e-01 -4.84550655e-01 6.34036064e-01 9.75546300e-01 -5.67880869e-01 -3.84861648e-01 -1.10450006e+00 4.77616191e-01 -4.19892043e-01 -4.04194929e-02 7.57855773e-02 7.67091751e-01 -7.17073023e-01 2.42202044e-01 -8.44909072e-01 -3.92433107e-01 9.05920684e-01 4.30696309e-01 -4.86162722e-01 -2.76335120e-01 -9.00991917e-01 6.34846568e-01 3.74847561e-01 -1.23041280e-01 -8.93920600e-01 -6.24315441e-01 -8.28361392e-01 -1.39863923e-01 5.60403943e-01 -8.00108537e-02 1.16601038e+00 -1.11549795e+00 -8.65151882e-01 8.31112027e-01 1.00187398e-01 -1.02373302e+00 3.70511740e-01 -4.94364768e-01 -8.93557370e-01 8.85546952e-02 1.65364027e-01 3.84179175e-01 1.17224407e+00 -1.35496747e+00 -9.17767167e-01 -6.26615047e-01 -3.64517808e-01 -8.18713978e-02 -4.01087552e-01 -2.01019824e-01 -4.15848717e-02 -7.12184191e-01 3.74299318e-01 -9.19287205e-01 -3.12598437e-01 -1.36657655e-01 -4.44596171e-01 -2.39620313e-01 1.19879568e+00 -5.49398541e-01 1.22950244e+00 -2.22131181e+00 -3.27898026e-01 6.12394273e-01 3.52185488e-01 5.06156445e-01 6.81807846e-02 -5.24221361e-02 -4.87332523e-01 -1.29842967e-01 -7.60291755e-01 -2.83160537e-01 -4.85656589e-01 3.31430793e-01 -2.84517556e-01 6.28731608e-01 5.37882388e-01 3.30904216e-01 -6.77920282e-01 -3.32228869e-01 1.72505360e-02 2.51240730e-01 -6.46092594e-01 2.94847965e-01 -1.41781837e-01 7.79036939e-01 -3.97223264e-01 7.96413124e-01 7.84393430e-01 -2.13634327e-01 -2.21205831e-01 1.89134747e-01 2.23296180e-01 -2.28728756e-01 -1.35379088e+00 1.30326235e+00 -8.16230029e-02 2.38767222e-01 -3.32661271e-01 -1.52748537e+00 1.10350442e+00 2.93150753e-01 7.61397123e-01 -7.58465409e-01 -1.12286061e-01 2.00931206e-01 1.72364861e-01 -4.05495286e-01 8.02887902e-02 -6.69830013e-03 -4.70206402e-02 4.89072859e-01 2.04802677e-01 3.58772367e-01 1.81976557e-01 2.17344105e-01 1.21762419e+00 -1.82790890e-01 4.84017074e-01 -2.24202916e-01 7.38358438e-01 2.40901262e-02 7.64372051e-01 7.35266984e-01 -2.92868137e-01 8.12369943e-01 6.93387926e-01 -6.57442927e-01 -8.99718821e-01 -9.28309679e-01 -5.38947642e-01 9.26072359e-01 -1.09795772e-01 -3.37936223e-01 -7.56059766e-01 -1.28697777e+00 -1.10912949e-01 8.45515668e-01 -7.57980525e-01 -4.67449576e-01 -4.65675503e-01 -1.18186617e+00 5.06073117e-01 4.41234887e-01 5.36143005e-01 -9.75272417e-01 -5.49865365e-01 6.65225908e-02 1.88159481e-01 -9.83847260e-01 -9.61330533e-02 2.93841124e-01 -1.06576502e+00 -1.41797221e+00 -3.72041166e-01 -5.92922866e-01 1.02665746e+00 -1.22456573e-01 9.58634019e-01 4.55320813e-02 -3.28311592e-01 5.67731738e-01 -6.09287500e-01 -5.96006751e-01 -3.11865240e-01 -1.81292258e-02 2.37648562e-01 6.80298805e-01 5.07077277e-01 -2.97588408e-01 -4.42729890e-01 4.06258911e-01 -1.21606100e+00 -4.35786873e-01 6.52776480e-01 1.06111991e+00 8.43711019e-01 2.98097670e-01 8.20588291e-01 -1.50504446e+00 2.38801122e-01 -8.54595304e-01 -5.12470841e-01 1.38008118e-01 -9.94988978e-01 1.00552373e-01 6.61310554e-01 -3.76531571e-01 -1.02320158e+00 2.92264402e-01 -1.06973216e-01 -4.43191230e-01 -6.34759307e-01 2.77679145e-01 -7.58714601e-02 2.11644396e-01 1.02411842e+00 1.10953175e-01 -6.84482092e-03 -5.22810578e-01 -4.81345020e-02 7.72291422e-01 5.15162110e-01 -4.11551595e-01 7.93974042e-01 3.55700791e-01 -3.99462655e-02 -8.12071383e-01 -1.08560073e+00 -6.66251779e-01 -8.07385683e-01 4.90204990e-02 7.65841007e-01 -7.18623996e-01 -2.87399255e-02 6.60140991e-01 -5.21435022e-01 -3.93443480e-02 -4.86550957e-01 3.62915456e-01 -1.76441118e-01 3.41673672e-01 -1.16720498e-01 -9.36905563e-01 -4.12556231e-01 -8.87920082e-01 8.47663045e-01 5.66643886e-02 -1.22612141e-01 -7.64288723e-01 1.76584914e-01 2.59945482e-01 3.03427756e-01 4.71852899e-01 9.07750547e-01 -1.60749173e+00 -7.42883459e-02 -5.31258702e-01 -3.90436165e-02 7.48912394e-01 4.70652461e-01 -3.25881451e-01 -1.21048486e+00 -3.23265880e-01 5.85782751e-02 -2.93158710e-01 1.03960371e+00 1.56780884e-01 1.63463020e+00 -3.05091083e-01 -1.76375702e-01 1.84341967e-01 1.01908195e+00 4.05085057e-01 5.27685106e-01 3.22729468e-01 7.45924234e-01 4.95516509e-01 9.45293128e-01 5.47212183e-01 9.46685597e-02 3.65124494e-01 7.27006435e-01 -1.06966190e-01 2.48908967e-01 2.36695975e-01 1.16997339e-01 3.01854640e-01 2.43961230e-01 -7.43353218e-02 -1.16646767e+00 6.06241345e-01 -1.81808758e+00 -6.17470145e-01 -5.51094003e-02 2.39072704e+00 6.01949275e-01 5.45002520e-01 3.94430399e-01 7.13358700e-01 7.61843741e-01 -1.51178077e-01 -7.36410141e-01 -1.95939705e-01 2.36508399e-02 3.39741737e-01 3.47972959e-01 1.06882662e-01 -1.45422947e+00 5.61737478e-01 5.10948944e+00 4.36210185e-01 -1.00694835e+00 -7.35479174e-04 1.01479232e+00 6.14077225e-02 1.34727791e-01 -2.99101859e-01 -6.86317027e-01 3.44440848e-01 1.13128340e+00 1.77209422e-01 -7.38177299e-02 1.03739142e+00 -1.58496290e-01 -1.77251309e-01 -1.18783700e+00 9.25844371e-01 3.47515523e-01 -8.31018090e-01 1.82597861e-01 -3.37027125e-02 9.62481141e-01 -1.71476632e-01 1.35932833e-01 4.60000515e-01 -1.36344939e-01 -1.09548676e+00 2.56097704e-01 3.88550490e-01 6.01383686e-01 -9.00690556e-01 1.06518483e+00 3.45810533e-01 -8.27002227e-01 -2.96990752e-01 -5.53675815e-02 2.71949857e-01 -3.43620449e-01 7.35051513e-01 -8.50632071e-01 4.90106046e-01 9.95016098e-01 8.83434355e-01 -9.08916950e-01 1.21794939e+00 1.32955715e-01 8.47655296e-01 -2.06382081e-01 4.95164365e-01 1.76589936e-01 9.89800096e-02 4.54166800e-01 9.64583993e-01 1.13880627e-01 1.57994851e-01 2.09502056e-01 3.17983776e-01 -6.38684705e-02 2.72146612e-01 -5.87060988e-01 1.13612220e-01 9.37209055e-02 1.18741155e+00 -7.73152769e-01 -3.31154317e-01 -5.62151492e-01 6.37757182e-01 1.57538280e-01 1.71977833e-01 -5.54828882e-01 -2.98307866e-01 5.02939403e-01 1.97980151e-01 2.04226375e-01 2.87579209e-01 -2.36485064e-01 -1.05408061e+00 6.59196079e-02 -9.28969681e-01 1.09486949e+00 -1.98365018e-01 -1.60429418e+00 8.54292154e-01 9.96760428e-02 -1.50509238e+00 -3.41949403e-01 -6.12952411e-01 -5.59965849e-01 3.46564651e-01 -1.47629452e+00 -9.54363942e-01 -4.05611545e-01 7.23564208e-01 7.41247118e-01 -5.77604592e-01 9.12947893e-01 4.07480091e-01 -8.18022847e-01 8.13779294e-01 2.68996060e-02 3.08262050e-01 8.43087554e-01 -1.26789165e+00 1.35587826e-01 1.13270617e+00 1.67445213e-01 2.63286412e-01 5.47753036e-01 -7.96837151e-01 -7.39966989e-01 -1.50291336e+00 4.26546812e-01 -4.10092086e-01 3.88352811e-01 -2.03768715e-01 -1.46939218e+00 7.52319932e-01 -2.38542303e-01 7.78731108e-01 7.09082305e-01 4.55606962e-03 -4.37256485e-01 -3.09533060e-01 -1.62815428e+00 2.27639452e-01 7.52927959e-01 -1.09139532e-01 -6.33004606e-01 2.10844785e-01 3.36083323e-01 -4.77607936e-01 -7.79851079e-01 7.08001554e-01 2.23125011e-01 -7.63689280e-01 5.51628828e-01 -7.93162644e-01 4.00454663e-02 -4.19458836e-01 -2.16349468e-01 -1.25337338e+00 7.37401843e-02 -1.58203527e-01 -3.60274166e-01 1.10307229e+00 4.77391183e-01 -9.15148735e-01 7.87395477e-01 4.52958047e-01 -2.76760608e-01 -7.58554161e-01 -9.35894191e-01 -5.65879464e-01 -3.52478609e-03 -7.04487741e-01 4.06510115e-01 9.79291201e-01 -3.07219744e-01 2.10926965e-01 -3.41462672e-01 5.25949001e-01 7.22156465e-01 -1.90516889e-01 5.91458619e-01 -1.81322062e+00 1.19924389e-01 -2.76086666e-02 -6.96789265e-01 -3.74523610e-01 5.43610081e-02 -7.01386988e-01 -1.81892868e-02 -1.03491318e+00 1.44524341e-02 -5.75217485e-01 -7.59676754e-01 7.35510468e-01 -6.59321398e-02 4.05844986e-01 -3.61793309e-01 1.68256372e-01 -8.30847859e-01 4.39665705e-01 6.12187624e-01 -1.78794146e-01 -3.79389226e-01 3.58652353e-01 -7.10200548e-01 7.48035848e-01 1.12768018e+00 -8.26574862e-01 -4.64355379e-01 1.03457458e-01 -1.70532688e-01 -4.56043631e-01 1.54978469e-01 -1.15483463e+00 1.56489670e-01 1.21517934e-01 6.47054613e-01 -6.38605952e-01 3.38239372e-02 -9.48882341e-01 -2.60522485e-01 5.08269608e-01 -5.03461242e-01 -4.17608246e-02 3.13763052e-01 9.42057312e-01 -2.98492014e-01 -2.04398647e-01 1.13058949e+00 1.40965283e-01 -7.64653563e-01 4.79528308e-01 -2.26983696e-01 3.02864283e-01 1.33142519e+00 -8.33976641e-02 -2.43428111e-01 -2.22413853e-01 -1.01969063e+00 3.01093578e-01 9.02974904e-02 5.24204314e-01 6.93389416e-01 -1.22323310e+00 -7.49372482e-01 6.65008187e-01 7.09055364e-01 3.40639442e-01 2.18570262e-01 7.50166655e-01 -1.88173592e-01 2.03299016e-01 -3.60799223e-01 -9.91187632e-01 -1.23304677e+00 5.45266986e-01 3.94517511e-01 -2.88443148e-01 -7.55702436e-01 5.02167881e-01 2.51186252e-01 -3.38118345e-01 4.63408947e-01 -1.88135684e-01 -6.84870601e-01 1.23676971e-01 5.99807441e-01 4.17053789e-01 5.27350068e-01 -6.90331340e-01 -4.16213185e-01 3.82104278e-01 -6.37789667e-01 2.46032193e-01 1.34010553e+00 1.34812042e-01 1.19627550e-01 5.10104954e-01 8.96499991e-01 -2.46192038e-01 -1.05525959e+00 -4.45700198e-01 4.03334796e-01 -4.15299863e-01 -6.85925707e-02 -6.61099374e-01 -1.24711120e+00 5.80107152e-01 1.10069060e+00 3.38034034e-01 1.37593496e+00 1.91213153e-02 5.52531838e-01 4.35963988e-01 -1.20591391e-02 -1.14355874e+00 3.63123447e-01 3.41544271e-01 6.51409149e-01 -1.53429663e+00 -9.83770043e-02 -3.01425427e-01 -8.22580993e-01 9.13579345e-01 9.92775679e-01 -3.50286782e-01 8.48842621e-01 -2.02957299e-02 1.19555153e-01 -1.36996150e-01 -6.58708811e-01 -1.42775506e-01 5.57170928e-01 6.33559465e-01 1.58940017e-01 -2.46374503e-01 3.87025625e-02 7.72121668e-01 1.74787223e-01 -3.47182542e-01 4.38762873e-01 9.99086797e-01 -4.16968286e-01 -1.05279040e+00 -4.84227866e-01 1.13943148e+00 -7.92575836e-01 2.90024757e-01 -2.53776908e-01 7.21073866e-01 2.13047013e-01 1.01742291e+00 3.56011748e-01 -2.99592227e-01 4.71401542e-01 3.90436500e-01 5.89007139e-02 -7.85178900e-01 -3.74714375e-01 -1.37939793e-03 -3.43472324e-02 -5.33371627e-01 -3.31745565e-01 -8.57537389e-01 -1.26954842e+00 2.65350610e-01 -1.68891788e-01 2.48514503e-01 3.51261973e-01 1.15042996e+00 2.01779470e-01 5.88501573e-01 7.43529141e-01 -2.27144942e-01 -5.21221519e-01 -9.42588508e-01 -6.41608179e-01 4.79302824e-01 7.81445503e-01 -8.80983293e-01 -4.26121652e-01 -2.89988834e-02]
[7.647970676422119, 2.3168704509735107]
8bccdc91-f6e8-4f71-b45e-6d16e2438440
rethinking-deep-face-restoration
null
null
https://openreview.net/forum?id=-AY7C3f26C_
https://openreview.net/pdf?id=-AY7C3f26C_
Rethinking Deep Face Restoration
A model that can authentically restore a low-quality face image to a high-quality one can benefit many applications. While existing approaches for face restoration make significant progress in generating high-quality faces, they often fail to preserve facial features and cannot authentically reconstruct the faces. Because the human visual system is very sensitive to faces, even minor facial changes may alter the identity and significantly degrade the perceptual quality. In this work, we argue the problems of existing models can be traced down to the two sub-tasks of the face restoration problem, i.e. face generation and face reconstruction, and the fragile balance between them. Based on the observation, we propose a new face restoration model that improves both generation and reconstruction by learning a stochastic model and enhancing the latent features respectively. Furthermore, we adapt the number of skip connections for a better balance between the two sub-tasks. Besides the model improvement, we also introduce a new evaluation metric for measuring models' ability to preserve the identity in the restored faces. Extensive experiments demonstrate that our model achieves state-of-the-art performance on multiple face restoration benchmarks. The user study shows that our model produces higher quality faces while better preserving the identity $86.4\%$ of the time compared with the best performing baselines.
['Xuhui Jia', 'Changyou Chen', 'Yukun Zhu', 'Marius Renn', 'Yandong Li', 'Chun-Te Chu', 'Yu-Chuan Su', 'Yang Zhao']
2021-09-29
null
http://openaccess.thecvf.com//content/CVPR2022/html/Zhao_Rethinking_Deep_Face_Restoration_CVPR_2022_paper.html
http://openaccess.thecvf.com//content/CVPR2022/papers/Zhao_Rethinking_Deep_Face_Restoration_CVPR_2022_paper.pdf
cvpr-2022-1
['face-reconstruction']
['computer-vision']
[ 3.04278582e-01 -7.75750801e-02 -4.34407871e-03 -6.00652874e-01 -7.11694300e-01 -2.61842728e-01 4.80703533e-01 -5.33540845e-01 1.32834271e-01 5.84745884e-01 5.40075660e-01 1.34130478e-01 1.65227324e-01 -8.48554015e-01 -8.43816698e-01 -8.12198520e-01 2.41623923e-01 -1.26115099e-01 -2.65794456e-01 -3.58784825e-01 1.46504313e-01 6.41626537e-01 -1.99567497e+00 5.82374275e-01 9.08700585e-01 9.91774321e-01 -1.64035887e-01 2.99535871e-01 -1.43068917e-02 6.56235576e-01 -5.09669960e-01 -8.15156221e-01 4.88371551e-01 -5.26038527e-01 -7.60088146e-01 2.73998529e-01 9.39693391e-01 -6.22449160e-01 -4.11864877e-01 1.31498420e+00 5.92706561e-01 -5.23149483e-02 4.96342152e-01 -1.57023597e+00 -1.21055901e+00 2.87129670e-01 -7.22416878e-01 -2.33192146e-01 5.49512982e-01 1.25708029e-01 7.61889756e-01 -1.18190956e+00 5.70179045e-01 1.82390606e+00 7.54766643e-01 9.19536769e-01 -1.33375573e+00 -1.01246274e+00 8.50508213e-02 3.73695672e-01 -1.43735194e+00 -1.19718874e+00 7.02958703e-01 -2.71280229e-01 4.42508250e-01 2.14967012e-01 2.35288873e-01 9.51790035e-01 1.43734753e-01 3.62402290e-01 1.10769582e+00 -2.32614130e-01 -1.03898801e-01 -8.10451284e-02 -1.98066220e-01 6.90244317e-01 2.00754166e-01 3.62570345e-01 -7.41380811e-01 -6.42810613e-02 7.14918613e-01 9.11321398e-03 -6.35557890e-01 -9.00012329e-02 -7.96258509e-01 4.61493134e-01 4.69963580e-01 1.95715860e-01 -3.98444593e-01 1.57314122e-01 1.59196272e-01 3.49570662e-01 4.93619114e-01 1.19696045e-02 -7.85576254e-02 4.21505153e-01 -8.78907800e-01 1.70500726e-01 4.39659595e-01 6.82251096e-01 8.79365921e-01 1.57535046e-01 -4.07386959e-01 9.72493351e-01 3.79750937e-01 4.31240767e-01 1.61607310e-01 -1.16865051e+00 1.79944620e-01 3.82027447e-01 7.87777081e-02 -1.26994765e+00 7.26473555e-02 -2.46917844e-01 -1.00770628e+00 5.51469564e-01 1.73128426e-01 3.65575850e-01 -8.78634989e-01 2.08517027e+00 2.81910211e-01 5.03188193e-01 1.06724463e-02 6.99801385e-01 1.04078364e+00 6.61712706e-01 6.38071969e-02 -4.54215854e-01 1.29923511e+00 -9.57360566e-01 -1.10011542e+00 -5.64616285e-02 -8.88466388e-02 -1.16880000e+00 1.07869279e+00 1.57642618e-01 -1.34962213e+00 -9.99408901e-01 -1.01699710e+00 -1.37425840e-01 1.92075953e-01 1.60845369e-01 4.15199339e-01 9.20957565e-01 -1.59930062e+00 7.74493098e-01 -3.74245942e-01 -2.32843056e-01 8.08595181e-01 4.15821433e-01 -8.64317656e-01 -4.22005892e-01 -8.11008215e-01 6.92091346e-01 -2.59273916e-01 1.88393533e-01 -9.90892947e-01 -8.66912782e-01 -7.65235841e-01 9.32391286e-02 1.03081137e-01 -7.34737694e-01 9.77936268e-01 -1.13939154e+00 -1.50184619e+00 9.73221838e-01 -5.24390876e-01 3.16174217e-02 4.58186775e-01 -1.28499985e-01 -6.84365928e-01 1.10475853e-01 1.45709440e-01 7.68675447e-01 1.21478009e+00 -1.82597768e+00 -6.05731666e-01 -4.97143298e-01 -8.82930160e-02 -4.10915427e-02 -5.99839985e-01 1.63147464e-01 -5.53639591e-01 -6.47336006e-01 1.59638405e-01 -7.44047105e-01 1.97782993e-01 4.18859541e-01 -2.08171904e-01 -4.78530191e-02 9.32617545e-01 -9.47054505e-01 8.67068112e-01 -2.19987679e+00 5.33452407e-02 -9.63232964e-02 2.22645804e-01 3.18949670e-01 -6.50076747e-01 2.09707484e-01 -3.69380862e-01 2.92813510e-01 -2.40489364e-01 -8.37313235e-01 -1.05664149e-01 1.21656038e-01 -6.05680525e-01 5.61241984e-01 1.49335042e-01 7.77724981e-01 -5.92297316e-01 -2.88491875e-01 -1.34217754e-01 1.04004037e+00 -6.80388689e-01 1.80009976e-01 2.54273057e-01 4.46124136e-01 1.27126828e-01 7.21907437e-01 1.25926530e+00 2.44297297e-03 1.77119419e-01 -4.81362820e-01 3.10551852e-01 -7.05898628e-02 -1.26001525e+00 1.53455365e+00 -3.59365106e-01 3.21720362e-01 2.93062836e-01 -6.15985274e-01 9.65278208e-01 5.40833652e-01 3.24392110e-01 -7.63112903e-01 -1.01578005e-01 2.05358177e-01 -1.88760862e-01 -2.93807745e-01 5.15201449e-01 -3.48673165e-01 5.63558340e-01 4.67060745e-01 7.16770515e-02 2.05411211e-01 -6.04424514e-02 1.65252574e-02 7.86102295e-01 2.49014512e-01 1.38387177e-02 -2.48484090e-01 7.39724517e-01 -7.78648913e-01 9.06681240e-01 2.56544769e-01 -2.56947488e-01 7.61834502e-01 4.74822432e-01 -3.71966630e-01 -7.86585987e-01 -1.16235900e+00 -4.75578159e-02 1.05130076e+00 1.56977862e-01 -3.39636803e-01 -9.65218425e-01 -6.03585243e-01 2.31736209e-02 3.70262742e-01 -7.14311719e-01 -5.23714542e-01 -5.55753291e-01 -8.05930138e-01 5.68620801e-01 3.71554315e-01 6.52167857e-01 -1.04016805e+00 9.04378518e-02 -1.38990447e-01 -6.22368693e-01 -1.08477259e+00 -7.09306359e-01 -7.97476113e-01 -7.56056547e-01 -1.11957514e+00 -4.31535065e-01 -9.61825490e-01 9.87694025e-01 6.16488516e-01 1.21376288e+00 7.37305820e-01 -1.20239511e-01 2.44180471e-01 -2.04843313e-01 -2.01620143e-02 -6.70231760e-01 -4.55160946e-01 3.21225733e-01 5.46684682e-01 -8.50161836e-02 -8.79032254e-01 -5.74867666e-01 3.13094467e-01 -1.08589530e+00 -4.02612239e-02 3.83056521e-01 8.41435373e-01 5.42081594e-01 2.47107893e-01 9.06014979e-01 -6.69284105e-01 5.45843422e-01 -1.36427805e-01 -2.27579668e-01 3.51425797e-01 -7.47545958e-01 -7.77283218e-03 6.27963006e-01 -2.34438866e-01 -1.26194119e+00 1.21008903e-01 -4.04992461e-01 -4.45359826e-01 3.83936837e-02 -1.32239506e-01 -7.75771141e-01 -3.55958104e-01 5.24021745e-01 2.75364935e-01 1.56916335e-01 -5.78317344e-01 3.37179780e-01 3.98151606e-01 9.85340297e-01 -5.57218552e-01 1.14840043e+00 7.45597005e-01 1.57881007e-02 -5.36345065e-01 -5.40664673e-01 7.81479925e-02 -4.42124963e-01 -2.55731791e-01 3.62363756e-01 -1.07006574e+00 -9.56510067e-01 7.16023505e-01 -1.23088372e+00 3.32415476e-02 -2.54978955e-01 -7.12341964e-02 -5.51121175e-01 5.99497736e-01 -6.48145735e-01 -6.19579494e-01 -4.24661934e-01 -1.22683978e+00 1.06195271e+00 3.01330507e-01 3.66460592e-01 -4.88578022e-01 -1.58796608e-01 3.56682330e-01 5.25297046e-01 1.97806627e-01 9.35702741e-01 1.72313467e-01 -5.42916358e-01 1.36209587e-02 -3.80753458e-01 5.95874608e-01 5.37609696e-01 1.41800672e-01 -1.35732687e+00 -5.85016310e-01 1.56827405e-01 -1.44648910e-01 1.11458170e+00 2.00376481e-01 1.08209229e+00 -5.18846512e-01 -1.41726777e-01 8.73014569e-01 1.38638806e+00 1.93296149e-02 1.39514661e+00 -1.07866392e-01 5.99877298e-01 7.79470146e-01 3.61124784e-01 3.24767172e-01 4.07562792e-01 7.97819793e-01 6.43273234e-01 -1.36738151e-01 -6.23780787e-01 -5.27131379e-01 6.12789869e-01 5.46973884e-01 -2.88729727e-01 -3.93195972e-02 -4.36670929e-01 5.40787637e-01 -1.63127172e+00 -1.13007605e+00 2.43476592e-02 2.26985717e+00 9.60702121e-01 -4.52165067e-01 -4.24559116e-02 3.44426334e-01 9.32814598e-01 1.41829610e-01 -3.52401912e-01 5.78917675e-02 -2.72401899e-01 2.30413347e-01 -8.94619524e-02 6.40153766e-01 -8.68983030e-01 1.05628157e+00 6.51885462e+00 7.04972267e-01 -1.13893938e+00 1.56456560e-01 8.99752021e-01 -9.65065211e-02 -4.09730017e-01 -3.12382001e-02 -7.49819040e-01 3.96573782e-01 5.27200162e-01 -1.56118751e-01 7.32806921e-01 5.73625445e-01 1.83491349e-01 3.43874812e-01 -1.11711836e+00 1.19849074e+00 4.17406708e-01 -1.28076148e+00 4.79856282e-01 1.54632151e-01 9.23993826e-01 -7.36757636e-01 3.50498646e-01 1.20176058e-02 1.09289482e-01 -1.40134490e+00 8.41622829e-01 7.36163616e-01 1.08475327e+00 -9.93356884e-01 5.64494193e-01 -5.13676219e-02 -1.26826942e+00 -9.19242948e-02 -5.08876920e-01 1.19507603e-01 1.02874205e-01 5.77557206e-01 -3.34375262e-01 6.05329216e-01 8.91473949e-01 6.62257731e-01 -6.67069793e-01 7.82080114e-01 -3.93790126e-01 1.89901754e-01 2.05757171e-01 8.98101687e-01 -5.63246369e-01 -1.32872105e-01 3.65451396e-01 7.05961823e-01 5.50417423e-01 9.13895518e-02 -9.30893943e-02 9.89727914e-01 -6.50424600e-01 1.12941176e-01 -3.71436447e-01 2.22537056e-01 5.76909125e-01 1.27386856e+00 -3.97346079e-01 -6.97263628e-02 -1.90057993e-01 1.15109277e+00 2.33787209e-01 3.03815812e-01 -8.23348045e-01 -6.70035481e-02 1.14032555e+00 3.41510981e-01 8.96983147e-02 1.83959275e-01 -2.15733409e-01 -1.04608119e+00 3.06450933e-01 -1.18069720e+00 3.18328887e-02 -6.53613806e-01 -1.40808547e+00 9.56566691e-01 -5.50691485e-01 -1.08208382e+00 -8.65679085e-02 -1.97560653e-01 -4.33547735e-01 9.25160110e-01 -1.81396008e+00 -1.40031242e+00 -5.37771702e-01 8.91008615e-01 2.49817953e-01 -1.86072737e-01 8.73431206e-01 6.01107955e-01 -5.20526111e-01 9.54348326e-01 -1.22487560e-01 -6.80973530e-02 1.03176677e+00 -7.34558344e-01 5.59732854e-01 1.20698643e+00 5.25290109e-02 5.95465839e-01 5.34180641e-01 -6.05682850e-01 -1.42285490e+00 -1.14533722e+00 1.05012095e+00 -1.24032587e-01 -8.73636678e-02 -1.83830738e-01 -1.07892537e+00 5.03619969e-01 1.30214781e-01 2.84421980e-01 5.31511307e-01 -1.22673176e-01 -8.78917634e-01 -4.74460900e-01 -1.54564404e+00 5.70712805e-01 1.40401709e+00 -6.96199298e-01 -1.49989158e-01 1.07099049e-01 6.57856584e-01 -6.20704778e-02 -8.12762499e-01 5.35963655e-01 6.28704548e-01 -1.32851040e+00 1.29049516e+00 -4.19961691e-01 6.41300619e-01 -4.69727993e-01 -3.67357105e-01 -1.18724394e+00 -5.51623046e-01 -6.52622879e-01 -8.40315782e-03 1.64719963e+00 -1.40606016e-01 -5.33699751e-01 5.71415246e-01 3.40138048e-01 -4.82210796e-03 -4.42914307e-01 -9.04704452e-01 -7.08972216e-01 -5.62730767e-02 -6.45447075e-02 1.19732344e+00 9.20291066e-01 -4.96921688e-01 1.86335325e-01 -7.30387092e-01 3.14970881e-01 7.54312217e-01 8.84271935e-02 7.95563281e-01 -1.29304230e+00 8.66540521e-02 -4.51669693e-01 -3.11074078e-01 -7.94238210e-01 5.09842396e-01 -7.98000336e-01 1.43740505e-01 -1.51643836e+00 4.66800958e-01 -2.51271158e-01 -1.85650960e-01 6.75305605e-01 -3.57217491e-01 8.17762196e-01 3.19467723e-01 3.07672918e-01 -1.48455650e-01 7.82145262e-01 1.35946465e+00 -6.33072387e-03 3.29782744e-03 -1.35893688e-01 -1.30606246e+00 5.15066266e-01 5.80832899e-01 -4.70764756e-01 -3.25279176e-01 -5.22719383e-01 -7.99718779e-03 -4.27961163e-02 5.43461561e-01 -1.00875664e+00 1.21276766e-01 -1.34129807e-01 4.70322758e-01 -1.08502172e-01 4.68925536e-01 -7.03432322e-01 3.92416477e-01 3.48740160e-01 -4.86072898e-02 -6.23678379e-02 1.90705821e-01 4.64126348e-01 -2.92849720e-01 8.87894705e-02 1.35916126e+00 7.09622400e-03 -4.91636276e-01 4.79882777e-01 1.39311835e-01 -3.59138727e-01 7.78811872e-01 -2.41063267e-01 -4.57569093e-01 -6.22905850e-01 -4.32796150e-01 -2.69393206e-01 8.54874372e-01 7.50436783e-01 8.50182354e-01 -1.76543021e+00 -1.22911906e+00 4.77866709e-01 -1.36598572e-01 -5.46561360e-01 6.10122919e-01 3.93202782e-01 -2.92481124e-01 -8.29248950e-02 -5.67797065e-01 -2.77949363e-01 -1.58714259e+00 5.46079159e-01 5.17098010e-01 -5.88642433e-02 -4.35279936e-01 8.15131128e-01 3.73110056e-01 -4.09948349e-01 2.92045593e-01 2.52853006e-01 -1.88287571e-01 -3.73973581e-03 1.04618323e+00 3.77015412e-01 1.50337815e-01 -1.22902453e+00 -3.76623750e-01 6.68239594e-01 3.28453705e-02 1.00156382e-01 1.45072210e+00 -2.98446059e-01 -6.25785172e-01 -3.05647671e-01 1.16755331e+00 2.06922218e-01 -1.37986290e+00 -3.19351554e-01 -4.16106433e-01 -1.01365030e+00 -4.00629938e-02 -7.65404761e-01 -1.71882725e+00 7.98808396e-01 8.51930737e-01 -2.08153278e-01 1.64523602e+00 -2.78255492e-01 8.09615612e-01 -1.34526178e-01 3.36726457e-01 -6.88640356e-01 3.31590116e-01 1.91335484e-01 1.29760265e+00 -1.09269488e+00 6.07948974e-02 -8.43868613e-01 -3.51606101e-01 9.61670756e-01 5.82808316e-01 9.15701911e-02 5.07913768e-01 1.81740806e-01 8.00164789e-02 1.14205189e-01 -6.13982797e-01 6.30593002e-02 3.49424064e-01 8.54106724e-01 3.89773041e-01 -1.08091675e-01 -9.74014252e-02 6.76236272e-01 -3.30729783e-01 1.31425187e-01 4.53165203e-01 4.65022862e-01 -2.63453513e-01 -1.39726198e+00 -6.58929825e-01 1.16848260e-01 -5.56585968e-01 -5.58011495e-02 -2.76429057e-01 3.25987279e-01 3.71741831e-01 1.33513761e+00 -1.29377708e-01 -6.31538212e-01 4.39606160e-01 2.92761791e-02 6.45459950e-01 -3.26403528e-01 -5.49249589e-01 -1.05579771e-01 -3.04940641e-01 -8.04261982e-01 -4.72134829e-01 -5.28871775e-01 -1.02443409e+00 -9.49308634e-01 -7.52832890e-02 -2.01578408e-01 4.64757413e-01 6.53474331e-01 5.78376234e-01 4.82679725e-01 1.01293433e+00 -7.97248483e-01 -4.23637331e-01 -7.63684392e-01 -6.53153300e-01 6.20892227e-01 3.95315170e-01 -5.76012433e-01 -2.99838692e-01 4.88975167e-01]
[12.813791275024414, -0.03545837104320526]
44cb9471-37a4-4fbb-bbdb-5931b29c593f
use-of-variational-inference-in-music-emotion
2106.14323
null
https://arxiv.org/abs/2106.14323v2
https://arxiv.org/pdf/2106.14323v2.pdf
Use of Variational Inference in Music Emotion Recognition
This work was developed aiming to employ Statistical techniques to the field of Music Emotion Recognition, a well-recognized area within the Signal Processing world, but hardly explored from the statistical point of view. Here, we opened several possibilities within the field, applying modern Bayesian Statistics techniques and developing efficient algorithms, focusing on the applicability of the results obtained. Although the motivation for this project was the development of a emotion-based music recommendation system, its main contribution is a highly adaptable multivariate model that can be useful interpreting any database where there is an interest in applying regularization in an efficient manner. Broadly speaking, we will explore what role a sound theoretical statistical analysis can play in the modeling of an algorithm that is able to understand a well-known database and what can be gained with this kind of approach.
['Hugo Tremonte de Carvalho', 'Nathalie Deziderio']
2021-06-27
null
null
null
null
['music-emotion-recognition']
['music']
[ 2.96088487e-01 -1.07810684e-01 2.37495258e-01 -1.66336104e-01 -4.11015630e-01 -3.13206315e-01 3.05801332e-01 1.73774332e-01 -6.35677457e-01 3.98866326e-01 2.38941163e-01 -1.21638149e-01 -7.20528185e-01 -6.83543265e-01 -3.45420778e-01 -8.83173704e-01 -1.07289441e-01 3.21945637e-01 8.19267146e-03 -2.92998105e-01 3.04132283e-01 7.58368254e-01 -1.91854072e+00 1.19874485e-01 4.60988492e-01 9.00323153e-01 1.62926123e-01 5.37232697e-01 -5.60569167e-02 3.75633717e-01 -5.37700891e-01 -3.26344579e-01 -2.94648875e-02 -7.24407196e-01 -5.62536836e-01 -1.33980450e-03 -3.34300876e-01 3.40548068e-01 2.82122254e-01 9.53922689e-01 4.71247822e-01 4.53384548e-01 7.97764122e-01 -5.79502821e-01 2.61683494e-01 6.38805389e-01 6.00774735e-02 7.06536025e-02 4.21177983e-01 -3.64601195e-01 8.54158998e-01 -4.75151598e-01 4.24216509e-01 9.37583685e-01 3.79395217e-01 1.01474859e-01 -1.22602332e+00 -3.65565985e-01 -1.41238838e-01 4.67637539e-01 -1.28289616e+00 -2.72824377e-01 1.04629457e+00 -4.97528762e-01 3.82270962e-01 4.77562994e-01 7.81946540e-01 9.84207630e-01 -9.52288136e-02 5.98029792e-01 1.30121982e+00 -8.59144270e-01 6.14919066e-01 4.70301688e-01 3.01042378e-01 7.24113435e-02 2.12667912e-01 2.03768939e-01 -8.25875342e-01 2.52875090e-02 5.42648673e-01 -4.99124408e-01 -3.73820245e-01 -4.08259660e-01 -1.02506161e+00 8.24990690e-01 -5.89300431e-02 1.22220504e+00 -5.13559639e-01 -6.77469224e-02 6.03200674e-01 4.04971659e-01 5.44805467e-01 4.28728104e-01 -3.97618890e-01 -6.68360174e-01 -1.22459137e+00 1.41596034e-01 9.93051410e-01 1.75991610e-01 2.80836344e-01 3.46217066e-01 2.09195450e-01 7.69009471e-01 3.93813670e-01 4.37168568e-01 3.49534035e-01 -7.62409687e-01 -1.25800475e-01 3.16448778e-01 -1.66317403e-01 -1.07150495e+00 -2.72906035e-01 -6.72674239e-01 -6.16335571e-01 5.11592031e-01 6.50087535e-01 3.95448804e-02 4.39546295e-02 1.49571693e+00 9.62176397e-02 1.31704584e-01 7.22254217e-02 8.45879018e-01 4.33019102e-01 3.94568831e-01 -1.80705741e-01 -6.06977344e-01 1.01918828e+00 -1.98237255e-01 -7.52868474e-01 3.27422917e-01 3.53887051e-01 -1.08217919e+00 8.68024886e-01 1.13031852e+00 -8.45045388e-01 -5.22229433e-01 -9.21418607e-01 3.74379128e-01 -2.74383545e-01 3.41330558e-01 5.63380182e-01 9.72129762e-01 -6.82278156e-01 8.86470079e-01 -6.25590324e-01 -5.06691575e-01 -2.46905446e-01 1.83017999e-01 -1.98029667e-01 2.05473363e-01 -9.41086292e-01 9.71695542e-01 4.00938392e-01 3.45593661e-01 -2.55545557e-01 -2.45388180e-01 -4.21266854e-01 2.43681177e-01 6.14753604e-01 -5.12025774e-01 9.49722111e-01 -1.16766238e+00 -1.85393596e+00 5.97208083e-01 -3.08739126e-01 -4.18023944e-01 5.41391551e-01 -1.23789564e-01 -3.76611918e-01 1.50389493e-01 -5.03675759e-01 -2.44391054e-01 1.12709534e+00 -1.06475472e+00 -1.33058131e-01 -4.55145448e-01 -3.42284352e-01 -4.78381477e-02 -3.40422124e-01 2.25152358e-01 -1.84763968e-01 -8.85188818e-01 2.15340763e-01 -8.79230797e-01 -1.86054885e-01 -4.71216649e-01 1.10039115e-02 -6.27102554e-02 6.12483956e-02 -6.29643500e-01 1.27115643e+00 -2.25909042e+00 6.56098008e-01 7.39813626e-01 -4.55572456e-01 2.67988294e-01 2.54571110e-01 6.24432862e-01 -1.23434298e-01 -1.07059985e-01 -2.23599702e-01 -6.20545307e-03 1.94051802e-01 1.08433299e-01 -4.72191483e-01 2.61023998e-01 -3.20070058e-01 1.45360082e-01 -4.68100339e-01 -1.78611845e-01 5.85373282e-01 6.74767911e-01 -6.28251493e-01 1.38536200e-01 -9.39521268e-02 4.48154658e-01 -5.78832865e-01 2.05307513e-01 2.57660747e-01 5.23845315e-01 3.41122359e-01 -2.46645615e-01 -4.12871987e-01 -4.32432257e-02 -1.68064272e+00 1.45321453e+00 -5.77784777e-01 7.53318012e-01 1.22916237e-01 -1.49568439e+00 1.19724023e+00 4.08412009e-01 6.80425525e-01 -4.25927311e-01 3.95506650e-01 3.21516335e-01 1.34407952e-01 -4.87306893e-01 3.94755512e-01 -4.75385994e-01 2.67748237e-01 3.90304506e-01 1.30921483e-01 -1.56864509e-01 2.98815638e-01 -4.54820752e-01 5.98127842e-01 2.85107315e-01 2.65583307e-01 -3.77157331e-01 8.10717583e-01 -3.46473992e-01 2.64559507e-01 6.06222153e-01 1.70642465e-01 2.06639603e-01 4.76058424e-01 -2.27071851e-01 -7.03517973e-01 -6.37985706e-01 -4.94281113e-01 9.42504108e-01 -3.37547362e-01 -5.21883428e-01 -6.37621105e-01 -6.82305470e-02 -2.88013816e-01 7.02498019e-01 -3.52534026e-01 1.84545629e-02 -1.67034939e-01 -7.87588060e-01 2.21458048e-01 -9.16109979e-02 1.23580761e-01 -1.28209424e+00 -6.94364905e-01 4.65626419e-01 -7.80310631e-02 -5.35285056e-01 4.29927140e-01 2.42317051e-01 -1.33390749e+00 -9.76672649e-01 -7.85821617e-01 -1.86000466e-01 -3.67408618e-02 4.64272592e-03 1.12008154e+00 -8.98164436e-02 -2.65005767e-01 9.33400929e-01 -7.03243732e-01 -8.84018421e-01 -6.72089219e-01 2.47972477e-02 6.86432719e-02 3.12628776e-01 3.82006466e-01 -8.98769557e-01 -1.99249238e-01 2.82447636e-01 -9.84315097e-01 -5.95131576e-01 5.11891782e-01 4.80573207e-01 3.89555812e-01 2.85940826e-01 6.03999317e-01 -6.59287453e-01 6.01522028e-01 -8.93631428e-02 -5.15995979e-01 1.15424283e-01 -6.54486120e-01 -1.11250905e-02 4.00658458e-01 -2.44394273e-01 -1.02844977e+00 3.68708260e-02 -6.31809235e-01 -2.78345235e-02 -5.42149901e-01 7.66157329e-01 -3.73412788e-01 -2.03639865e-01 6.11104667e-01 2.49268487e-01 -4.67911921e-03 -8.49739611e-01 3.83977801e-01 6.93500578e-01 1.88744292e-01 -7.89542675e-01 5.07940829e-01 3.96864295e-01 4.18047816e-01 -1.45475161e+00 -4.99096483e-01 -8.43884766e-01 -6.58068240e-01 -5.37889898e-01 5.82855105e-01 -3.93443584e-01 -8.96530986e-01 2.81574816e-01 -8.28657329e-01 -4.28742357e-02 -5.91667175e-01 9.73730147e-01 -8.21868420e-01 4.71614242e-01 6.02523685e-02 -1.48307943e+00 7.37091601e-02 -7.57040143e-01 6.33416891e-01 3.45955254e-03 -4.20775026e-01 -1.09541297e+00 2.12084398e-01 4.79177475e-01 3.29087347e-01 -1.20424330e-01 8.41766238e-01 -6.79291427e-01 -3.80269766e-01 -1.62835553e-01 4.81412530e-01 7.23523915e-01 -2.62961179e-01 8.41490179e-02 -1.10419047e+00 1.02881500e-02 5.04713118e-01 1.65974684e-02 8.29248190e-01 4.47446585e-01 1.04891384e+00 3.86575907e-01 2.06871510e-01 1.94240049e-01 1.44158173e+00 9.82623324e-02 7.25092173e-01 3.67900908e-01 -4.86446880e-02 7.68477798e-01 7.56815016e-01 5.50054133e-01 -3.12819302e-01 1.14671338e+00 2.44421288e-01 1.17144004e-01 1.71049505e-01 1.55671537e-01 3.80942255e-01 9.98762965e-01 -6.57308996e-01 -3.75434128e-03 -4.96841043e-01 2.77525902e-01 -1.99092722e+00 -1.25244081e+00 -4.82878953e-01 2.60563922e+00 4.03160661e-01 2.04833150e-01 2.51257360e-01 8.74375463e-01 3.69113505e-01 8.42604861e-02 1.36064917e-01 -7.08085716e-01 -1.61193758e-01 5.62780619e-01 -8.10028519e-03 4.12967980e-01 -8.46009433e-01 2.09139436e-01 6.05705261e+00 1.07779396e+00 -1.08431983e+00 -2.25316122e-01 -7.70506915e-03 -4.26440835e-02 -7.36913607e-02 -2.38735434e-02 -3.33977044e-01 2.91209012e-01 1.06209457e+00 -9.62257758e-02 6.42763793e-01 6.75895810e-01 7.29735196e-01 -5.53297102e-01 -8.18135560e-01 1.06006360e+00 4.05409753e-01 -8.47430825e-01 -1.26709655e-01 1.84264511e-01 2.50044972e-01 -5.01120687e-01 -4.17806692e-02 2.15981081e-01 -6.67619884e-01 -8.24735343e-01 6.52607620e-01 1.08798981e+00 4.08533998e-02 -7.55231380e-01 9.58505511e-01 5.67765236e-01 -7.69415975e-01 -1.33892456e-02 -3.24448645e-01 -4.14613158e-01 3.27216685e-01 1.02139473e+00 -4.66224432e-01 8.89308631e-01 6.62894845e-01 5.32073855e-01 -2.13001803e-01 1.38182175e+00 -1.81938276e-01 1.05077660e+00 -4.31045949e-01 -3.20669532e-01 -2.40839735e-01 -7.66936660e-01 9.53331113e-01 1.19880819e+00 7.49521494e-01 -1.32747039e-01 -3.72208059e-01 7.01179504e-01 5.73697865e-01 7.76082933e-01 -6.00094020e-01 -4.98049930e-02 -1.97387680e-01 1.24981463e+00 -9.56640780e-01 -1.06291190e-01 -1.66486964e-01 6.33028924e-01 -2.32520968e-01 1.53026000e-01 -3.58032525e-01 -1.61287725e-01 2.17996851e-01 5.45112751e-02 3.97872448e-01 -3.03167522e-01 -5.04426897e-01 -1.10682499e+00 -7.61377737e-02 -9.80493784e-01 1.98536217e-01 -6.75545275e-01 -1.05674469e+00 3.72847795e-01 1.43282279e-01 -1.05929244e+00 -4.89301562e-01 -8.39687109e-01 -5.41430295e-01 9.21781540e-01 -9.74001050e-01 -7.24967778e-01 1.35533646e-01 4.87552464e-01 2.65076011e-01 -3.48917246e-01 1.27389300e+00 2.43066728e-01 -1.90227911e-01 8.74852985e-02 3.94202173e-01 -4.91199464e-01 7.17069685e-01 -1.25135517e+00 -7.20420241e-01 7.72015095e-01 9.59301233e-01 5.54483116e-01 1.20828998e+00 -1.31252214e-01 -1.11587155e+00 -2.52025038e-01 1.04571402e+00 -2.05055028e-01 6.13617301e-01 -1.33345917e-01 -8.08737516e-01 -2.89488081e-02 1.67855620e-02 -5.73084295e-01 9.62040842e-01 8.00247312e-01 4.70410883e-02 -2.32158035e-01 -7.81910241e-01 3.13080788e-01 4.34576660e-01 -5.92342556e-01 -9.08209622e-01 -1.06760807e-01 -1.95181891e-01 8.33722204e-02 -9.48461950e-01 3.85034800e-01 6.94315970e-01 -1.44297588e+00 9.35469747e-01 -3.31068456e-01 -1.95756890e-02 -1.85949460e-01 -1.53305024e-01 -1.27605724e+00 1.24659151e-01 -5.97090125e-01 8.44270736e-02 1.30546963e+00 2.71583050e-01 -4.18797761e-01 6.40112638e-01 3.22110295e-01 1.65790185e-01 -4.52372909e-01 -1.22234857e+00 -7.37829208e-01 2.95584481e-02 -1.07092655e+00 3.00059952e-02 6.59751773e-01 1.96325928e-01 2.72180945e-01 -4.67122048e-01 -2.23166510e-01 4.61449087e-01 2.59971738e-01 7.79402912e-01 -1.61123383e+00 -8.29724073e-01 -5.46057642e-01 -6.49751186e-01 -4.48191792e-01 1.68238267e-01 -7.46147394e-01 -9.91719365e-02 -1.05192590e+00 -1.10075921e-01 -1.26464382e-01 -4.97652173e-01 -2.00808451e-01 2.42990032e-01 3.55984539e-01 5.04506648e-01 -1.16539456e-01 -2.43831947e-01 2.99737573e-01 8.19074512e-01 2.02607214e-01 -2.68491834e-01 6.41483128e-01 -4.82404739e-01 9.33108032e-01 5.58199048e-01 -5.00929177e-01 -3.43684793e-01 3.10495496e-01 6.70620799e-01 -6.19556457e-02 4.25427765e-01 -1.06015551e+00 9.73420292e-02 2.89206564e-01 1.13084756e-01 -3.07802379e-01 3.98583740e-01 -1.21129894e+00 3.66156042e-01 1.33094817e-01 -2.84178764e-01 -6.11679435e-01 1.29904315e-01 4.78849202e-01 -5.26828289e-01 -9.88721907e-01 5.71158648e-01 1.91244390e-02 -5.31125307e-01 -3.69509846e-01 -7.74447799e-01 -2.45482758e-01 7.50046551e-01 -1.64794073e-01 6.12800717e-01 -6.78785980e-01 -1.36373436e+00 -5.85083365e-01 1.87122464e-01 3.03603839e-02 2.04965264e-01 -8.75303149e-01 -5.13484478e-01 2.59550493e-02 4.04290445e-02 -7.83453882e-01 5.16225457e-01 9.52096820e-01 -2.65427530e-01 2.78533310e-01 -1.89309999e-01 -4.57633913e-01 -1.51333892e+00 4.88609940e-01 2.46393695e-01 -2.01910719e-01 -4.03178126e-01 2.56254137e-01 -3.99325341e-01 -5.43358885e-02 3.38466674e-01 -2.24753633e-01 -5.55561602e-01 3.53114158e-01 3.88456196e-01 6.05226159e-01 2.74575025e-01 -6.50355041e-01 -1.71295494e-01 8.93425524e-01 7.39968479e-01 -5.47769487e-01 1.42686498e+00 4.51033339e-02 -1.56268671e-01 1.06740677e+00 6.50687039e-01 6.12785220e-01 -6.63233519e-01 8.49866495e-02 3.10493767e-01 -3.46852481e-01 3.50361377e-01 -7.63376415e-01 -5.34801245e-01 1.10366011e+00 6.72807813e-01 5.60210526e-01 1.33329499e+00 -1.60540760e-01 2.24138238e-02 5.53101182e-01 4.22222823e-01 -1.22256052e+00 -2.77357638e-01 3.94251257e-01 1.11419427e+00 -1.01136017e+00 -1.15996692e-02 -5.41692674e-01 -3.62629920e-01 1.65054917e+00 -4.03812706e-01 -9.73720104e-02 9.55110013e-01 8.67233723e-02 -7.90077075e-03 2.10248549e-02 -2.63382345e-01 -7.19082534e-01 5.88585258e-01 6.70694768e-01 7.56968081e-01 8.45975578e-02 -9.55988824e-01 9.23168659e-01 -1.96172610e-01 4.34157789e-01 4.22820568e-01 5.47459126e-01 -4.49863851e-01 -1.61491191e+00 -5.36289811e-01 1.53455451e-01 -7.46355653e-01 8.45210701e-02 -3.96623164e-01 7.81825900e-01 1.99888438e-01 1.09218001e+00 -4.74130780e-01 -1.65557161e-01 5.22043824e-01 5.06687939e-01 6.26758039e-01 -4.94091392e-01 -5.57903767e-01 5.58970332e-01 3.19583625e-01 -3.51297140e-01 -9.01423335e-01 -9.01628613e-01 -7.25939095e-01 1.13481604e-01 -2.58875996e-01 5.20544112e-01 1.17245770e+00 1.13211071e+00 -1.87804595e-01 7.45235145e-01 5.05920529e-01 -8.75750065e-01 -3.54952365e-01 -9.17026937e-01 -1.16904664e+00 2.68941909e-01 -1.95893794e-01 -5.87065101e-01 -4.43031698e-01 9.93386731e-02]
[15.799025535583496, 5.330885410308838]
307ce705-6239-4d92-a24d-f05ed3a9a100
deep-sketch-shape-hashing-with-segmented-3d
null
null
http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_Deep_Sketch-Shape_Hashing_With_Segmented_3D_Stochastic_Viewing_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/papers/Chen_Deep_Sketch-Shape_Hashing_With_Segmented_3D_Stochastic_Viewing_CVPR_2019_paper.pdf
Deep Sketch-Shape Hashing With Segmented 3D Stochastic Viewing
Sketch-based 3D shape retrieval has been extensively studied in recent works, most of which focus on improving the retrieval accuracy, whilst neglecting the efficiency. In this paper, we propose a novel framework for efficient sketch-based 3D shape retrieval, i.e., Deep Sketch-Shape Hashing (DSSH), which tackles the challenging problem from two perspectives. Firstly, we propose an intuitive 3D shape representation method to deal with unaligned shapes with arbitrary poses. Specifically, the proposed Segmented Stochastic-viewing Shape Network models discriminative 3D representations by a set of 2D images rendered from multiple views, which are stochastically selected from non-overlapping spatial segments of a 3D sphere. Secondly, Batch-Hard Binary Coding (BHBC) is developed to learn semantics-preserving compact binary codes by mining the hardest samples. The overall framework is jointly learned by developing an alternating iteration algorithm. Extensive experimental results on three benchmarks show that DSSH improves both the retrieval efficiency and accuracy remarkably, compared to the state-of-the-art methods.
[' Ling Shao', ' Jin Xie', ' Fumin Shen', ' Fan Zhu', ' Li Liu', ' Jie Qin', 'Jiaxin Chen']
2019-06-01
null
null
null
cvpr-2019-6
['3d-shape-retrieval', '3d-shape-representation']
['computer-vision', 'computer-vision']
[ 5.55988029e-02 -3.75736415e-01 -2.20148653e-01 -2.42012843e-01 -1.14231193e+00 -6.85085118e-01 6.94228709e-01 7.24804476e-02 -5.88788539e-02 2.37036161e-02 1.07557885e-01 -1.35157658e-02 -3.16003770e-01 -7.88572907e-01 -4.74991918e-01 -8.29328299e-01 1.10707887e-01 7.63626814e-01 1.94384143e-01 1.35293633e-01 5.50219297e-01 8.13037336e-01 -1.40288711e+00 8.77808705e-02 3.18138361e-01 1.26270759e+00 7.36245364e-02 1.54303432e-01 -2.68837482e-01 9.16677248e-03 -1.04845330e-01 -5.06130517e-01 4.06151474e-01 8.67935866e-02 -3.53559256e-01 1.23670459e-01 5.20102501e-01 -5.32433867e-01 -4.94049847e-01 8.84692729e-01 7.50651300e-01 5.88745214e-02 9.70243216e-01 -1.08855069e+00 -1.01997936e+00 -5.51435575e-02 -7.59096086e-01 -3.27893376e-01 3.26740414e-01 -1.47989333e-01 1.14580381e+00 -1.53024268e+00 6.59884751e-01 1.68797064e+00 4.97096837e-01 3.59356582e-01 -1.17571533e+00 -4.97233123e-01 -2.06594482e-01 5.38234450e-02 -1.95243764e+00 -3.11277866e-01 1.21825802e+00 -7.82360062e-02 6.66093349e-01 3.22428733e-01 5.93284547e-01 7.11862445e-01 -2.92034715e-01 1.22860861e+00 7.81564772e-01 -2.01866359e-01 3.20470929e-01 -1.72351927e-01 -2.52137274e-01 7.94508159e-01 3.51610750e-01 -1.47130847e-01 -3.92556876e-01 -7.01278806e-01 1.04845083e+00 5.38130879e-01 -2.05691811e-02 -1.13099027e+00 -9.57889855e-01 9.25295055e-01 2.62372315e-01 2.06099883e-01 -1.93301514e-01 1.59300506e-01 5.11521399e-01 2.88638234e-01 6.26398087e-01 -3.06363553e-01 -1.29464388e-01 6.10238202e-02 -1.03331017e+00 5.49631953e-01 6.48484707e-01 1.15374041e+00 6.93280578e-01 -2.46179968e-01 -1.71521902e-01 1.24065304e+00 5.39779603e-01 9.34399307e-01 6.48916736e-02 -6.34136140e-01 4.79740620e-01 7.67787516e-01 1.51234390e-02 -1.54196024e+00 1.03531100e-01 -6.47603124e-02 -9.34360206e-01 -2.11347044e-01 9.17109847e-03 6.94387674e-01 -6.03526294e-01 1.35499668e+00 5.90396047e-01 7.72512034e-02 -9.00999233e-02 1.13481963e+00 8.65262210e-01 6.73744857e-01 -3.33936244e-01 1.41510308e-01 1.15408885e+00 -8.50650609e-01 -2.75419116e-01 2.53266096e-01 2.88944900e-01 -9.13918316e-01 8.72255147e-01 2.22040907e-01 -1.32027912e+00 -4.08092737e-01 -8.43518078e-01 -3.18838775e-01 -3.26181501e-01 3.17516506e-01 3.84966046e-01 6.03456140e-01 -9.10960019e-01 3.80373329e-01 -6.82290256e-01 -1.91460937e-01 7.09365547e-01 2.04486951e-01 -3.69314522e-01 -4.78938401e-01 -7.65964389e-01 3.16729605e-01 2.18384147e-01 -1.43023327e-01 -9.28692520e-01 -3.48311096e-01 -9.57175791e-01 1.77053794e-01 3.53919238e-01 -5.82319796e-01 7.86137223e-01 -1.18216455e-01 -1.34807491e+00 1.21100938e+00 -2.98783600e-01 -6.38191849e-02 3.81583035e-01 -9.16632861e-02 7.23786578e-02 5.53954720e-01 -3.51689048e-02 5.07897377e-01 1.29743659e+00 -1.41000700e+00 -1.17769115e-01 -8.39622557e-01 -2.58409262e-01 2.96799690e-01 -4.76755887e-01 -1.84622973e-01 -9.91472602e-01 -8.61995995e-01 5.25786519e-01 -8.62460256e-01 -7.81795457e-02 6.76689565e-01 -2.24951595e-01 -5.41536689e-01 9.72729146e-01 -4.76570964e-01 1.08327699e+00 -2.21234965e+00 3.50413889e-01 5.06732285e-01 2.33224779e-01 3.37343544e-01 -2.87083924e-01 7.69263387e-01 3.52693349e-01 -5.91390505e-02 -4.61993277e-01 -8.04734945e-01 3.86079311e-01 2.57079482e-01 -5.22182345e-01 6.06231987e-01 2.27539703e-01 1.08772302e+00 -8.22523177e-01 -5.99192679e-01 1.55565187e-01 7.53239870e-01 -5.05012870e-01 3.20501983e-01 -1.09036723e-02 6.16604872e-02 -7.84747660e-01 9.40839112e-01 1.29713166e+00 -2.87451416e-01 -2.16009766e-02 -8.29117838e-03 4.56296690e-02 -3.24738435e-02 -1.25353050e+00 2.19821382e+00 -1.76731899e-01 -1.99472710e-01 -6.53551472e-03 -1.09724092e+00 1.38400924e+00 8.16435963e-02 4.02583539e-01 -7.18300700e-01 -2.05799252e-01 5.46416938e-01 -9.90849018e-01 -2.47034699e-01 3.79578203e-01 1.79628413e-02 -1.87023625e-01 7.35975623e-01 -1.32072106e-01 -4.38262194e-01 -3.54307830e-01 1.35837257e-01 9.14340913e-01 1.57274067e-01 1.18307844e-01 1.26271937e-02 8.17898035e-01 -4.60927725e-01 2.27401242e-01 8.35431278e-01 -3.75084169e-02 9.63457108e-01 2.01587752e-01 -6.73718631e-01 -1.27735710e+00 -1.25004339e+00 -1.26779214e-01 5.49599826e-01 5.94063759e-01 -4.26758736e-01 -4.38449293e-01 -6.33046210e-01 4.68890488e-01 1.46777675e-01 -4.09908414e-01 -7.57986233e-02 -5.98758101e-01 -1.59199134e-01 4.62178588e-01 2.72924751e-01 3.17682296e-01 -9.77899313e-01 -5.46390474e-01 1.52472947e-02 9.39778537e-02 -9.24048901e-01 -7.63811767e-01 -3.67150873e-01 -9.75913346e-01 -7.55410433e-01 -1.31753826e+00 -8.96102488e-01 6.41242027e-01 1.06809449e+00 7.64867783e-01 3.77430022e-01 -4.03662056e-01 8.35354686e-01 -4.27460670e-01 -1.23080024e-02 1.61839351e-01 1.01213008e-01 -6.15874156e-02 3.51712793e-01 4.07960385e-01 -7.07839847e-01 -8.72341096e-01 3.02762568e-01 -1.20950603e+00 -1.96008444e-01 8.89335334e-01 9.89347637e-01 1.07268333e+00 -2.61933774e-01 3.76211762e-01 -3.85764569e-01 3.91764075e-01 -4.72885430e-01 -5.39074063e-01 4.64861840e-01 -3.63330722e-01 2.57038981e-01 4.66790110e-01 -2.71786511e-01 -7.66128898e-01 1.57648511e-02 3.74905020e-03 -1.08890045e+00 -1.71419486e-01 2.38716617e-01 -7.05925524e-02 -3.47911537e-01 -2.16589682e-02 1.08184767e+00 1.91493422e-01 -8.55792940e-01 4.96168077e-01 6.99600577e-01 1.54337853e-01 -8.58951747e-01 1.12304699e+00 9.09144044e-01 1.39896542e-01 -7.93272078e-01 -5.15194178e-01 -7.93824673e-01 -6.20625556e-01 5.66228144e-02 3.94583166e-01 -8.71613264e-01 -6.62159562e-01 3.63961875e-01 -1.17557573e+00 1.89787075e-01 -4.23825867e-02 -3.99784697e-03 -8.00368845e-01 9.99199152e-01 -3.66487950e-01 -1.08281505e+00 -8.00477803e-01 -9.70744312e-01 1.93207145e+00 -7.65569955e-02 2.57472575e-01 -6.74238563e-01 2.69576728e-01 2.89254904e-01 3.62544268e-01 3.31656411e-02 1.20073640e+00 -6.35459065e-01 -8.91631663e-01 -3.61358672e-01 -7.30832815e-01 4.85458411e-02 -7.87250251e-02 -5.87364078e-01 -7.56917953e-01 -5.93146682e-01 -8.46148878e-02 -5.96778214e-01 8.74959350e-01 -2.30189133e-03 1.49309063e+00 -3.37577134e-01 -3.39894384e-01 5.41391253e-01 1.50769210e+00 -6.42999858e-02 4.39847350e-01 -1.81746244e-01 5.43947041e-01 4.03510123e-01 6.35481119e-01 8.61637712e-01 4.74015713e-01 8.37887108e-01 4.85656798e-01 2.51879364e-01 5.33155017e-02 -5.24841249e-01 -9.33064967e-02 1.07953417e+00 1.14380032e-01 1.33132469e-02 -6.14342928e-01 7.12513626e-01 -1.88499749e+00 -7.93056726e-01 2.97271967e-01 2.37426901e+00 6.96011245e-01 -1.49174318e-01 1.00885265e-01 9.09734890e-02 7.52655983e-01 6.17046535e-01 -5.20237625e-01 -4.67464738e-02 -8.99184719e-02 3.10481369e-01 7.67946169e-02 1.55331627e-01 -1.03460968e+00 7.49933004e-01 4.76024866e+00 1.49029660e+00 -8.61631036e-01 -2.03091670e-02 3.83079559e-01 -1.02254907e-02 -7.94626415e-01 5.40417507e-02 -6.91082537e-01 3.14875871e-01 1.36362568e-01 9.48424712e-02 5.42137206e-01 8.75063002e-01 -1.99579149e-01 3.08482349e-01 -7.61320531e-01 1.54531801e+00 4.78476435e-01 -1.25029325e+00 6.05413616e-01 5.06784804e-02 6.25703871e-01 -3.01170915e-01 2.24228665e-01 1.01947948e-01 -3.40100229e-01 -7.11957693e-01 8.58430505e-01 6.90657973e-01 1.09015775e+00 -9.80065167e-01 2.46377677e-01 4.45849687e-01 -1.54954231e+00 5.79838715e-02 -7.84110069e-01 4.76788968e-01 2.07960084e-02 5.63512921e-01 -3.26594174e-01 7.60916591e-01 5.63837409e-01 8.14357936e-01 -2.76988596e-01 1.27800143e+00 1.85118482e-01 1.70001492e-01 -5.14626563e-01 -2.48767361e-01 4.10176486e-01 -3.73537123e-01 8.20353866e-01 1.09205723e+00 5.66175282e-01 3.33383292e-01 1.99698254e-01 1.08259475e+00 -8.76007229e-02 3.32644820e-01 -1.01156640e+00 9.97239142e-04 6.71025336e-01 1.22608852e+00 -6.18759394e-01 -1.76772431e-01 -4.78772461e-01 1.10856056e+00 3.83605272e-01 1.34996131e-01 -4.02459711e-01 -4.19364154e-01 3.57976049e-01 1.64769236e-02 9.43640172e-01 -4.80713665e-01 -5.10688648e-02 -1.16323984e+00 3.04551095e-01 -5.62075913e-01 3.81359607e-01 -5.91751277e-01 -1.56269610e+00 1.32793665e-01 -9.21225399e-02 -1.50461245e+00 2.00459495e-01 -4.07384604e-01 -3.81683230e-01 6.08103096e-01 -1.82659101e+00 -1.40979290e+00 -2.29848742e-01 5.36918104e-01 5.02382815e-01 -1.66361466e-01 9.67517555e-01 4.53928798e-01 -7.27468580e-02 7.64888525e-01 3.15430760e-01 5.30110486e-02 6.27688885e-01 -9.17946279e-01 6.30569041e-01 8.23478848e-02 4.43128258e-01 5.68989277e-01 -1.55987993e-01 -5.56895912e-01 -2.11216140e+00 -1.01477647e+00 8.40834200e-01 -2.23721623e-01 2.32237309e-01 -5.12854099e-01 -9.74446833e-01 -1.19514912e-02 -2.70702571e-01 2.49839440e-01 6.32111788e-01 -4.66817230e-01 -7.77587056e-01 -7.32347593e-02 -1.20222604e+00 4.78934109e-01 1.38486111e+00 -8.08012366e-01 -6.08355165e-01 1.01470158e-01 5.31168997e-01 -3.36299777e-01 -8.09959054e-01 3.36791635e-01 8.83230686e-01 -7.63937056e-01 1.54728162e+00 -4.20352161e-01 2.70332575e-01 -2.25340545e-01 -5.87752581e-01 -7.05928922e-01 -2.07172960e-01 -4.68320101e-01 -4.32154119e-01 9.79500294e-01 -3.50073874e-01 -3.52034807e-01 8.36689293e-01 1.76739410e-01 2.07598612e-01 -1.04838943e+00 -1.14030433e+00 -9.12403882e-01 -4.39856155e-03 -2.30273575e-01 7.85735846e-01 6.41170740e-01 -5.37123203e-01 6.17718883e-02 -4.31694180e-01 -2.02627890e-02 1.16760981e+00 9.41772878e-01 8.06164622e-01 -1.31337988e+00 9.76156630e-03 -4.22940552e-01 -6.35099232e-01 -1.63264680e+00 1.13926701e-01 -1.17154455e+00 -3.12203318e-01 -1.12251127e+00 5.54107249e-01 -6.50512278e-01 -1.88607112e-01 3.75791460e-01 4.39432822e-02 4.32565838e-01 2.80817062e-01 5.02024293e-01 -1.03657818e+00 1.20828879e+00 1.34807062e+00 -4.03028965e-01 1.62323892e-01 -1.19546577e-01 -4.22524244e-01 2.79258221e-01 2.93537766e-01 -5.76614082e-01 -4.16840822e-01 -5.71395338e-01 1.24533571e-01 3.72849941e-01 7.51045704e-01 -6.04016304e-01 3.00697029e-01 7.55113438e-02 3.19734275e-01 -1.31976056e+00 5.96929550e-01 -9.22741711e-01 -7.58465528e-02 2.66710877e-01 -2.79571325e-01 -4.28298861e-02 -2.87066959e-02 9.95930731e-01 -1.87603712e-01 -3.50872159e-01 5.35932064e-01 -1.28688872e-01 -4.11725551e-01 7.81494558e-01 2.26196915e-01 1.28698528e-01 6.65063858e-01 -2.45374784e-01 1.94573805e-01 -3.70157123e-01 -4.66002196e-01 -3.21018063e-02 5.34323752e-01 3.46745372e-01 1.23870254e+00 -2.04103088e+00 -7.17532575e-01 4.59401339e-01 4.61764991e-01 1.10525079e-01 4.30720448e-01 4.28074926e-01 -2.94658870e-01 6.95138574e-01 9.28269923e-02 -8.61843765e-01 -1.05149603e+00 7.11399317e-01 -1.80216908e-01 -2.65679240e-01 -7.99261510e-01 7.47483134e-01 1.20930351e-01 -6.12375975e-01 3.81952375e-01 8.68694633e-02 4.28601652e-02 2.04393063e-02 5.18453717e-01 2.35908940e-01 1.81774572e-02 -5.78152716e-01 -2.46495873e-01 1.24233806e+00 -1.24349222e-01 2.89518423e-02 1.62358046e+00 -6.91848323e-02 -2.93044627e-01 2.47434542e-01 1.72780550e+00 -1.74941257e-01 -1.19465768e+00 -7.84628332e-01 -1.02175772e-01 -9.81601298e-01 -1.36977449e-01 -2.98326284e-01 -1.05644810e+00 1.02805996e+00 5.19602001e-01 1.33057505e-01 8.61807108e-01 4.90018986e-02 1.36130190e+00 6.53941512e-01 7.71241605e-01 -7.92376816e-01 2.02573612e-01 4.47563112e-01 1.17099357e+00 -1.11305022e+00 -4.88184728e-02 -2.99072385e-01 -2.87181526e-01 1.21476746e+00 4.94260602e-02 -4.39933002e-01 7.06885993e-01 -2.57370204e-01 -4.71140653e-01 -4.55859482e-01 -5.84130824e-01 3.58084664e-02 4.95376527e-01 3.64541262e-01 -2.36840099e-01 -3.23411822e-02 -2.74564177e-01 5.87702692e-01 5.20576000e-01 -2.48721182e-01 -3.17938626e-01 1.02635872e+00 -2.88437068e-01 -1.23060417e+00 -4.82267529e-01 3.03239971e-01 -7.31392726e-02 -9.06582773e-02 -5.36323071e-01 3.52376789e-01 -3.76606882e-01 3.24135244e-01 -1.41991571e-01 -1.22436345e-01 3.21345031e-01 2.02391371e-01 6.29467547e-01 -3.38218927e-01 -2.53122486e-03 2.28958681e-01 -4.84181613e-01 -4.27470654e-01 -2.97645539e-01 -8.34424436e-01 -9.23298061e-01 -2.59147063e-02 -2.21443608e-01 -3.84861790e-02 4.84889776e-01 6.19040728e-01 7.02078938e-01 -5.21246672e-01 1.09400582e+00 -1.26665342e+00 -1.10159063e+00 -3.92401934e-01 -6.50931239e-01 5.36972046e-01 2.39830121e-01 -9.77274537e-01 -3.62160385e-01 -3.80406380e-01]
[8.164592742919922, -3.8953781127929688]
c2adb14e-f565-469b-b67f-160891e1c4b7
neur2sp-neural-two-stage-stochastic
2205.12006
null
https://arxiv.org/abs/2205.12006v2
https://arxiv.org/pdf/2205.12006v2.pdf
Neur2SP: Neural Two-Stage Stochastic Programming
Stochastic Programming is a powerful modeling framework for decision-making under uncertainty. In this work, we tackle two-stage stochastic programs (2SPs), the most widely used class of stochastic programming models. Solving 2SPs exactly requires optimizing over an expected value function that is computationally intractable. Having a mixed-integer linear program (MIP) or a nonlinear program (NLP) in the second stage further aggravates the intractability, even when specialized algorithms that exploit problem structure are employed. Finding high-quality (first-stage) solutions -- without leveraging problem structure -- can be crucial in such settings. We develop Neur2SP, a new method that approximates the expected value function via a neural network to obtain a surrogate model that can be solved more efficiently than the traditional extensive formulation approach. Neur2SP makes no assumptions about the problem structure, in particular about the second-stage problem, and can be implemented using an off-the-shelf MIP solver. Our extensive computational experiments on four benchmark 2SP problem classes with different structures (containing MIP and NLP second-stage problems) demonstrate the efficiency (time) and efficacy (solution quality) of Neur2SP. In under 1.66 seconds, Neur2SP finds high-quality solutions across all problems even as the number of scenarios increases, an ideal property that is difficult to have for traditional 2SP solution techniques. Namely, the most generic baseline method typically requires minutes to hours to find solutions of comparable quality.
['Merve Bodur', 'Elias B. Khalil', 'Rahul Patel', 'Justin Dumouchelle']
2022-05-20
null
null
null
null
['decision-making-under-uncertainty', 'decision-making-under-uncertainty']
['medical', 'reasoning']
[ 2.47091115e-01 2.46280625e-01 -3.91914010e-01 -3.65789622e-01 -1.43546891e+00 -8.18542480e-01 -2.34845579e-01 9.46389958e-02 -2.28173986e-01 1.13862503e+00 -2.52766758e-01 -6.71319306e-01 -5.51585972e-01 -8.48658979e-01 -1.01171076e+00 -8.21169436e-01 -1.41673207e-01 8.57368350e-01 -8.91979188e-02 -5.88608161e-02 2.78115779e-01 1.78021386e-01 -1.22691464e+00 2.90608227e-01 1.17390442e+00 1.40725470e+00 2.97412008e-01 5.40950060e-01 -3.19297522e-01 4.68186289e-01 -4.94253337e-01 -5.11032403e-01 6.17202580e-01 1.86663583e-01 -6.88640118e-01 -4.99483980e-02 3.98238190e-03 -1.35375991e-01 1.04212962e-01 1.13008261e+00 3.77383798e-01 1.99732974e-01 3.79467785e-01 -1.51636147e+00 -2.39714459e-01 8.74395370e-01 -1.06110108e+00 1.61161181e-03 4.00710970e-01 4.36151117e-01 1.12492430e+00 -5.34805715e-01 3.31004709e-01 1.42974281e+00 7.86078691e-01 2.24763185e-01 -1.60511732e+00 -4.68196213e-01 5.63368261e-01 -2.92389661e-01 -1.24116135e+00 7.63091817e-02 4.67920929e-01 -3.41975749e-01 8.56119394e-01 4.46165353e-01 2.73031563e-01 9.30197239e-01 4.45526719e-01 9.35519636e-01 1.36948931e+00 1.88962240e-02 6.09123290e-01 2.13164270e-01 2.80841649e-01 2.28044048e-01 3.51852208e-01 1.68345168e-01 -2.58638203e-01 -4.44908053e-01 4.47194017e-02 -1.56194031e-01 -1.85416102e-01 -2.57758230e-01 -7.24286199e-01 9.86610293e-01 1.32510871e-01 -2.24215671e-01 -5.79457521e-01 4.31734204e-01 2.84832060e-01 3.16783130e-01 5.57563961e-01 7.37039804e-01 -7.68614411e-01 -3.26439291e-01 -1.40709758e+00 8.13160658e-01 1.13644779e+00 9.73856628e-01 5.25519729e-01 3.13545875e-02 -5.54637015e-01 4.62927759e-01 8.96695182e-02 6.31554186e-01 -8.25625882e-02 -1.24969137e+00 1.18520546e+00 2.86629528e-01 5.57857275e-01 -1.25873387e+00 -3.75088662e-01 -7.51403511e-01 -6.37644827e-01 5.16129732e-02 5.57321072e-01 -6.07937872e-01 -6.70037687e-01 1.66711450e+00 2.80332595e-01 -1.67220235e-02 1.44748360e-01 7.35865772e-01 2.99227685e-01 1.21232629e+00 -4.13878232e-01 -6.19932950e-01 1.08108938e+00 -1.05624533e+00 -5.22843719e-01 -4.54251409e-01 3.77729684e-01 -2.69395143e-01 8.79939795e-01 6.42585874e-01 -1.41991806e+00 1.26677468e-01 -9.27795410e-01 4.30409133e-01 -2.24086791e-01 -4.42083269e-01 9.32777107e-01 8.34717274e-01 -9.47595417e-01 6.20047927e-01 -6.73008919e-01 3.68653655e-01 3.48710001e-01 7.32094109e-01 8.50946531e-02 -1.88225225e-01 -9.77440476e-01 7.41662860e-01 3.84865612e-01 4.67051178e-01 -7.36370981e-01 -1.33841348e+00 -8.31184149e-01 3.77360851e-01 1.16509211e+00 -6.47425890e-01 1.31792831e+00 -5.97467780e-01 -1.56996787e+00 3.59770089e-01 -4.45164591e-01 -6.16871536e-01 9.66261089e-01 5.04290462e-02 2.28237867e-01 -2.30706438e-01 6.79965643e-03 2.12650254e-01 5.74789047e-01 -1.27594173e+00 -5.29646933e-01 -1.88239053e-01 4.62070972e-01 1.32239358e-02 1.57712862e-01 1.91830397e-01 -3.75076264e-01 -3.58331710e-01 1.03111438e-01 -8.58996689e-01 -1.01356614e+00 -3.03359717e-01 -6.32948697e-01 2.17375625e-02 1.53704971e-01 -6.70551300e-01 1.50389767e+00 -1.58300412e+00 3.38589579e-01 4.94498402e-01 -1.61400706e-01 -1.06698252e-01 -6.19244650e-02 3.76125425e-01 -1.82146789e-03 3.71466756e-01 -8.60807717e-01 -5.97489715e-01 4.46264863e-01 3.68420929e-01 -4.48581696e-01 2.37852827e-01 2.01566607e-01 9.75685835e-01 -8.36040437e-01 -1.97969034e-01 -2.28539780e-01 -1.88750088e-01 -7.72908032e-01 -1.13324802e-02 -7.27109671e-01 7.16824979e-02 -4.93425995e-01 6.89299405e-01 1.19515681e+00 -2.08595470e-01 1.76851779e-01 2.44589582e-01 -5.66269793e-02 2.15884522e-02 -1.76052833e+00 1.37316167e+00 -9.46910203e-01 3.64892870e-01 4.26650673e-01 -1.19768572e+00 5.41087449e-01 -9.68949348e-02 6.30958617e-01 -4.19025183e-01 -3.80953923e-02 2.94480234e-01 -3.89041632e-01 -4.02517349e-01 4.50143337e-01 -6.38256744e-02 -4.82631624e-01 5.63004136e-01 -3.82361770e-01 -4.73034680e-01 5.72030723e-01 -1.46670252e-01 9.97217178e-01 -1.07051328e-01 -1.43712424e-02 -4.85598236e-01 2.97056794e-01 1.58163607e-01 1.05522680e+00 1.12395346e+00 1.63920358e-01 7.22493589e-01 1.20166910e+00 -4.97159570e-01 -4.72397983e-01 -9.58718538e-01 -3.78146060e-02 7.87752271e-01 -5.95035553e-02 -7.08867982e-02 -5.56010425e-01 -5.94873846e-01 4.13630784e-01 1.06610656e+00 -6.00511551e-01 2.44648188e-01 -4.85819548e-01 -1.36752641e+00 1.97887123e-02 4.08003688e-01 8.79565403e-02 -5.27142167e-01 -4.34279889e-01 4.55060482e-01 -9.33982432e-02 -1.18478167e+00 -3.65801543e-01 4.95856166e-01 -6.79185987e-01 -8.41875792e-01 -7.37101853e-01 -1.92798376e-01 7.90092349e-01 -1.26408234e-01 1.30100870e+00 -3.81503850e-01 -5.64584089e-03 1.60605118e-01 2.13262841e-01 -5.48303306e-01 -1.24519221e-01 -6.14839308e-02 6.34408295e-02 -6.91582561e-02 -1.65828168e-01 -5.94510138e-01 -1.02888323e-01 1.61248922e-01 -7.85683513e-01 -1.82113320e-01 2.94443399e-01 9.37725306e-01 8.13603282e-01 6.82346165e-01 3.41341972e-01 -1.10383892e+00 8.58068645e-01 -7.22552955e-01 -1.38613439e+00 6.10312641e-01 -4.84324396e-01 3.57895225e-01 5.53712666e-01 -2.57198960e-01 -9.77451861e-01 8.50887969e-02 1.03541560e-01 -3.08734804e-01 4.60525155e-01 1.07186854e+00 -6.41320646e-02 -5.71038052e-02 2.53706932e-01 2.35346884e-01 -2.64037371e-01 -2.32086658e-01 -4.04129773e-02 3.16241056e-01 3.08631212e-01 -1.26482975e+00 8.70320618e-01 2.09768891e-01 2.79508203e-01 -2.01833904e-01 -1.33380914e+00 -1.26777425e-01 -1.04555018e-01 1.29396409e-01 3.82396072e-01 -7.49158144e-01 -1.17107201e+00 1.61587238e-01 -1.19966435e+00 -3.44816744e-01 -3.62774253e-01 8.87372494e-02 -6.77034795e-01 4.27060993e-03 -2.26112768e-01 -1.34279644e+00 -2.30930984e-01 -1.42440653e+00 8.14073384e-01 2.63231546e-01 2.64269952e-02 -1.00190997e+00 -4.22959886e-02 5.83012283e-01 5.41533232e-01 7.63334990e-01 7.59133101e-01 -2.78751314e-01 -5.79607666e-01 -8.13279226e-02 -2.15038583e-01 1.65344447e-01 -3.56007785e-01 1.70088232e-01 -6.44685745e-01 -2.69583702e-01 3.27320188e-01 -2.65602022e-01 6.71295583e-01 8.32066536e-01 1.67979884e+00 -7.72193015e-01 -1.79051533e-01 8.66296589e-01 1.72810340e+00 1.26852468e-01 1.79957256e-01 4.11139190e-01 1.30219162e-01 7.46329546e-01 7.80649900e-01 7.63623595e-01 6.22256696e-01 5.40807784e-01 4.44884241e-01 1.79651484e-01 8.82547498e-01 -3.20564732e-02 3.89382005e-01 3.29558045e-01 1.03482664e-01 -3.89507085e-01 -1.25148118e+00 4.03059751e-01 -2.06729484e+00 -7.36524940e-01 -3.31430174e-02 2.12407136e+00 1.03367686e+00 3.19205105e-01 -3.47664244e-02 -9.33951065e-02 4.72978413e-01 1.25772819e-01 -8.47140491e-01 -9.54592288e-01 -8.09297711e-02 1.26456127e-01 7.53801763e-01 5.63384891e-01 -9.94130075e-01 4.97240752e-01 6.54696798e+00 9.75391746e-01 -9.60520148e-01 -1.55523598e-01 1.17653298e+00 -6.39569581e-01 -5.84317744e-01 -1.40040696e-01 -1.01805770e+00 8.97334695e-01 1.16454554e+00 -6.38607979e-01 7.43081033e-01 1.02391911e+00 4.68818814e-01 -4.54680890e-01 -1.30882001e+00 9.48716938e-01 -4.09224242e-01 -1.64122880e+00 -4.73802090e-01 1.14883766e-01 1.37258887e+00 -2.26649344e-01 4.69238997e-01 4.98998523e-01 7.27105618e-01 -1.27685928e+00 7.28453100e-01 3.92176658e-01 5.20036399e-01 -1.16920841e+00 1.16671181e+00 5.21677136e-01 -8.70462656e-01 -5.10017395e-01 -3.65181118e-01 2.04993878e-02 5.32162786e-01 1.10745895e+00 -2.54414737e-01 8.03217649e-01 8.32888007e-01 1.91070691e-01 1.85631458e-02 1.10302186e+00 -4.75019366e-02 5.07106304e-01 -9.40206110e-01 -5.81212863e-02 6.98812246e-01 -2.53768921e-01 6.28864229e-01 1.13520610e+00 3.35505664e-01 1.50193274e-01 3.54914844e-01 1.32496762e+00 1.40043110e-01 -2.00263843e-01 -2.02731788e-01 -1.80523321e-01 2.88739413e-01 8.96301687e-01 -5.20558476e-01 1.56420946e-01 -2.06790403e-01 4.67034101e-01 1.27246723e-01 5.37037671e-01 -1.04745173e+00 -2.51565605e-01 7.19639480e-01 -1.84415862e-01 2.95255572e-01 -2.74213761e-01 -8.87473464e-01 -1.01897705e+00 6.32146299e-01 -1.12790990e+00 3.66384804e-01 -3.67589712e-01 -1.29212499e+00 3.67993414e-01 2.16739863e-01 -8.12590539e-01 -4.78877366e-01 -6.43248320e-01 -6.89669192e-01 1.01198721e+00 -1.67191315e+00 -6.69709921e-01 9.31268409e-02 1.52551115e-01 4.37420845e-01 3.32272232e-01 4.64927107e-01 -1.37195652e-02 -1.00756228e+00 7.46721566e-01 4.60856438e-01 -6.27743959e-01 2.23297738e-02 -1.34293997e+00 9.20568183e-02 8.01297963e-01 -4.63932961e-01 4.53700006e-01 1.12014270e+00 -3.07244480e-01 -1.85647178e+00 -8.43635678e-01 7.04830527e-01 -3.90225530e-01 9.74385083e-01 -4.28982943e-01 -5.72928846e-01 2.72234231e-01 -1.68700159e-01 1.20175136e-02 4.94526356e-01 2.24243164e-01 7.29517266e-02 -2.42008001e-01 -1.45760262e+00 5.07557571e-01 7.62603819e-01 -7.58629739e-02 -3.02730560e-01 6.93927705e-01 1.01177227e+00 -8.61377776e-01 -8.40457857e-01 3.85818392e-01 4.22083974e-01 -7.47076392e-01 9.26531076e-01 -6.24015212e-01 7.21186936e-01 -4.82921265e-02 -4.48084325e-01 -1.29521894e+00 2.82712907e-01 -1.18450105e+00 -4.47491974e-01 1.07844806e+00 8.44977796e-01 -9.15602624e-01 9.61230695e-01 1.41435349e+00 2.24102274e-01 -1.48678064e+00 -1.02374697e+00 -1.22668898e+00 2.76858270e-01 -8.57794404e-01 8.57654631e-01 5.36809564e-01 -3.11133534e-01 -5.50380945e-01 -2.05110043e-01 5.19153059e-01 7.55766869e-01 5.68163931e-01 5.77293396e-01 -9.39412236e-01 -8.08959663e-01 -3.54601026e-01 2.91285999e-02 -8.68129551e-01 3.80833417e-01 -6.44357324e-01 1.70104697e-01 -1.50042009e+00 1.50657952e-01 -7.06934988e-01 -3.93374026e-01 4.20316160e-01 -1.81396693e-01 -4.21157211e-01 3.69575918e-01 -3.88511240e-01 -5.68687260e-01 5.81170678e-01 1.04904211e+00 -3.59638542e-01 -5.06700218e-01 6.44111037e-01 -1.06563878e+00 7.36335754e-01 6.73427582e-01 -7.94276357e-01 -4.66531873e-01 -5.32176912e-01 7.44468808e-01 5.97609580e-01 -8.71849954e-02 -8.38711739e-01 3.72025102e-01 -8.02334845e-01 -1.81192502e-01 -8.37496281e-01 2.84364879e-01 -9.70797300e-01 3.18124533e-01 4.35963184e-01 -2.80123353e-01 2.59002328e-01 5.09704053e-01 5.05659342e-01 -2.56410569e-01 -6.70911431e-01 4.86872971e-01 -2.01808602e-01 -2.00620830e-01 4.38210607e-01 -2.53564298e-01 3.66671562e-01 1.24885666e+00 -4.12795320e-02 5.51156886e-02 -4.26829785e-01 -6.78505838e-01 1.06857073e+00 2.09196627e-01 5.38445637e-03 3.43107373e-01 -8.34708512e-01 -7.35921383e-01 -3.09904337e-01 -4.18476701e-01 4.86860663e-01 2.62142867e-01 9.18089628e-01 -5.50171793e-01 5.75632036e-01 3.24750721e-01 -6.12809956e-01 -7.28076398e-01 6.49759114e-01 2.89005369e-01 -1.17169559e+00 -4.82171290e-02 1.10769451e+00 -4.48086672e-02 -6.63315415e-01 3.64725143e-01 -5.16811788e-01 3.53122532e-01 1.92115307e-01 4.94263411e-01 6.30070627e-01 -1.03219427e-01 1.59838721e-01 -3.34965706e-01 3.52706820e-01 6.87891096e-02 -2.13609874e-01 1.81551540e+00 2.54600454e-04 -3.47446024e-01 2.53061891e-01 9.69193101e-01 -1.24720789e-01 -1.40127051e+00 -1.58352658e-01 2.03892514e-01 -5.14439523e-01 2.04244718e-01 -8.79031360e-01 -1.32195377e+00 7.16236293e-01 -3.95212956e-02 1.33995533e-01 1.19675541e+00 -5.35617352e-01 7.64379442e-01 6.57865107e-01 8.36979926e-01 -1.18782365e+00 -4.70345765e-01 5.68683147e-01 1.13132715e+00 -1.35052347e+00 2.50625253e-01 -6.33343160e-01 -6.75657988e-01 1.07230997e+00 4.08598840e-01 -2.42381394e-02 7.22531259e-01 7.92221785e-01 -3.90592426e-01 1.85851619e-01 -1.01859951e+00 2.78345704e-01 1.14956677e-01 2.43983105e-01 -2.88497984e-01 2.07035452e-01 -2.10246101e-01 1.24050343e+00 -3.52038831e-01 -9.34359133e-02 5.17583311e-01 9.72276390e-01 1.45119634e-02 -8.51833940e-01 -4.63537902e-01 4.94431615e-01 -6.20677352e-01 -1.03037231e-01 1.47772223e-01 3.13014448e-01 -9.13066715e-02 1.15008259e+00 -9.61121693e-02 -9.53498855e-02 2.15076149e-01 -4.05571133e-01 2.05938846e-01 -5.29424310e-01 -7.95224309e-01 -4.11540091e-01 1.47761375e-01 -1.08660138e+00 -1.23369945e-02 -6.78702474e-01 -9.25418615e-01 -4.42872107e-01 -2.55781531e-01 1.78508982e-01 8.75535607e-01 8.64885151e-01 2.75194287e-01 4.32010651e-01 7.86376834e-01 -9.82144773e-01 -1.11967981e+00 -1.74232483e-01 -4.32847798e-01 -5.20836532e-01 2.56470591e-01 -6.14698887e-01 -5.05911767e-01 -5.08014500e-01]
[5.681464672088623, 3.560732841491699]
4187727f-9587-4471-8410-ef3481497ba6
deepproblog-neural-probabilistic-logic
1805.10872
null
http://arxiv.org/abs/1805.10872v2
http://arxiv.org/pdf/1805.10872v2.pdf
DeepProbLog: Neural Probabilistic Logic Programming
We introduce DeepProbLog, a probabilistic logic programming language that incorporates deep learning by means of neural predicates. We show how existing inference and learning techniques can be adapted for the new language. Our experiments demonstrate that DeepProbLog supports both symbolic and subsymbolic representations and inference, 1) program induction, 2) probabilistic (logic) programming, and 3) (deep) learning from examples. To the best of our knowledge, this work is the first to propose a framework where general-purpose neural networks and expressive probabilistic-logical modeling and reasoning are integrated in a way that exploits the full expressiveness and strengths of both worlds and can be trained end-to-end based on examples.
['Sebastijan Dumančić', 'Luc De Raedt', 'Angelika Kimmig', 'Robin Manhaeve', 'Thomas Demeester']
2018-05-28
deepproblog-neural-probabilistic-logic-1
http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming
http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming.pdf
neurips-2018-12
['program-induction']
['computer-code']
[-9.27130580e-02 6.32661343e-01 -7.48989284e-01 -7.30968356e-01 -5.97337544e-01 -4.41008866e-01 9.47668254e-01 2.23263994e-01 -1.62642762e-01 8.86344731e-01 1.39879048e-01 -7.12558508e-01 -3.87728244e-01 -1.47562373e+00 -1.10238194e+00 3.85204442e-02 -3.92338991e-01 1.19459581e+00 5.16218245e-01 -5.64788282e-02 -6.88712448e-02 5.65867364e-01 -1.65588975e+00 6.97421193e-01 4.73881006e-01 9.93293464e-01 -5.24642646e-01 6.80741668e-01 -4.77620512e-01 1.67558098e+00 -1.73053071e-01 -6.81223333e-01 -3.31154734e-01 4.05704111e-01 -9.85292971e-01 -8.13582778e-01 3.37053210e-01 -6.36582732e-01 -5.25906146e-01 9.37882900e-01 3.91096510e-02 5.66288717e-02 5.13993979e-01 -1.32637918e+00 -6.98889613e-01 1.50383461e+00 2.59871446e-02 -4.15129438e-02 6.99707866e-01 2.58747131e-01 1.19416165e+00 -5.47161043e-01 4.49132264e-01 1.79842389e+00 8.30799878e-01 3.82558256e-01 -1.55717123e+00 -5.37072182e-01 -1.22254677e-01 3.32862675e-01 -1.16668916e+00 -1.93207040e-01 8.27360868e-01 -4.15226460e-01 1.59111500e+00 -1.13178626e-01 6.04981184e-01 1.21442819e+00 -1.99353382e-01 1.07364321e+00 8.79362583e-01 -8.06188941e-01 3.60874951e-01 2.40563348e-01 5.83566129e-01 1.12066853e+00 6.58692792e-02 4.53159481e-01 -6.01522863e-01 -4.17994589e-01 3.38141620e-01 -2.76645154e-01 3.36591333e-01 -5.12650549e-01 -9.36715543e-01 1.07251322e+00 1.29248098e-01 9.37919691e-02 -1.31177634e-01 9.77773190e-01 8.16516042e-01 3.11292745e-02 -5.96003346e-02 3.44874769e-01 -7.00371742e-01 -3.23817730e-01 -9.63734806e-01 6.36942148e-01 1.53502929e+00 1.06040418e+00 6.34036183e-01 1.11823693e-01 -1.03758968e-01 4.51847732e-01 6.53968990e-01 5.38210213e-01 1.44719645e-01 -1.14794302e+00 1.77209869e-01 4.77179259e-01 -6.81796595e-02 -5.70214093e-01 -1.91984266e-01 3.65781426e-01 -1.42476961e-01 4.64619249e-01 2.30731994e-01 -1.78681538e-01 -6.73132658e-01 1.78932774e+00 -1.24954395e-02 2.78107703e-01 3.28238159e-01 7.17285126e-02 9.71162319e-01 8.17884386e-01 4.09517974e-01 3.08295339e-01 1.18715072e+00 -5.02915859e-01 -4.26717192e-01 -1.25923648e-01 6.38091385e-01 -3.04257199e-02 9.97244954e-01 6.03337407e-01 -1.29134262e+00 -2.03021780e-01 -1.16281140e+00 -1.35594875e-01 -7.69245386e-01 -3.36031020e-01 1.30217147e+00 7.35944927e-01 -9.80356991e-01 5.71826041e-01 -1.22169507e+00 1.87593456e-02 6.13642275e-01 3.91444147e-01 -1.83778331e-01 -2.56474376e-01 -1.56258309e+00 1.10621452e+00 1.35915804e+00 -3.84169906e-01 -9.61988807e-01 -7.19044507e-01 -1.34397829e+00 1.52430952e-01 4.98675793e-01 -7.06479490e-01 1.52475858e+00 -6.22089505e-01 -1.78893828e+00 6.87552691e-01 -3.55463754e-03 -8.66744399e-01 2.67699152e-01 -4.29104358e-01 -1.49230108e-01 -1.47977816e-02 -2.93861270e-01 5.88662326e-01 -7.16102449e-03 -1.06828737e+00 -4.74644899e-01 -2.69256651e-01 7.22546756e-01 -3.16124856e-01 -3.32268886e-04 3.96977484e-01 -1.94933012e-01 -7.86017254e-02 -3.29739630e-01 -5.46092987e-01 7.74478763e-02 3.06641627e-02 -6.55362487e-01 -7.77430773e-01 6.56942487e-01 -2.56068140e-01 8.86332273e-01 -1.86059642e+00 8.69026631e-02 5.11825264e-01 -6.36790320e-02 9.56893340e-02 3.00047189e-01 3.69104266e-01 5.91551401e-02 2.35653937e-01 -1.37168780e-01 -1.71911284e-01 7.92657971e-01 7.14551628e-01 -7.11389542e-01 4.95357178e-02 3.63354236e-01 1.11049652e+00 -1.13238597e+00 -8.93526614e-01 4.77464318e-01 3.45184624e-01 -8.17641497e-01 2.04838738e-01 -1.11031115e+00 -3.67341518e-01 -2.76666433e-01 8.21814120e-01 4.94057477e-01 -1.68857142e-01 4.45775241e-01 -1.23441042e-02 1.77409902e-01 6.74586713e-01 -1.30478191e+00 1.60591638e+00 -7.03131974e-01 5.15328228e-01 -4.76641744e-01 -8.69546533e-01 5.95559180e-01 3.18143517e-01 -1.99499309e-01 -4.40948969e-03 -6.63921684e-02 1.66553646e-01 -2.73561895e-01 -6.08226061e-01 3.47093582e-01 -5.00540078e-01 -4.64772403e-01 5.53555071e-01 5.90375304e-01 -5.88777959e-01 5.66017628e-01 1.71258807e-01 8.08168471e-01 7.11375594e-01 5.23304343e-01 -3.77887599e-02 3.88153523e-01 1.24695994e-01 2.77643770e-01 1.20389414e+00 2.79765218e-01 -1.79417014e-01 9.38441217e-01 -7.19013810e-01 -8.06102157e-01 -1.47728145e+00 -2.76843727e-01 1.59915686e+00 -4.05261457e-01 -4.84118134e-01 -1.83292672e-01 -5.61798513e-01 2.38123223e-01 1.52317607e+00 -5.13429105e-01 -5.24963215e-02 -5.41997254e-01 -4.26972538e-01 1.29093635e+00 1.13108122e+00 2.95468092e-01 -1.49098635e+00 -4.30007696e-01 2.59030789e-01 2.62966931e-01 -1.11823583e+00 7.49644756e-01 5.02943933e-01 -7.52048492e-01 -9.88191664e-01 3.21405858e-01 -6.33446395e-01 3.51843378e-03 -9.87094164e-01 1.51670456e+00 -2.83526629e-01 1.03636526e-01 3.38987470e-01 2.78135687e-02 -5.72564185e-01 -7.79768765e-01 -1.88316375e-01 -4.85095717e-02 -9.39766645e-01 7.24093676e-01 -1.00827110e+00 2.44800597e-01 -5.38764238e-01 -8.17536056e-01 2.18394678e-02 4.27853078e-01 7.17410743e-01 4.07094836e-01 4.97892737e-01 -4.13674377e-02 -1.24815357e+00 5.33754885e-01 -4.89397019e-01 -1.07520115e+00 4.17611659e-01 -3.54025424e-01 5.08850217e-01 7.41963804e-01 -3.14267039e-01 -1.13819826e+00 -8.24667886e-03 -2.76585519e-01 -2.39303038e-01 -4.98382628e-01 9.65798557e-01 -1.94724604e-01 2.38524809e-01 8.91043842e-01 2.04431310e-01 -3.58604580e-01 1.76016167e-02 8.23818505e-01 3.03725153e-01 7.87913144e-01 -1.58275104e+00 5.91409922e-01 4.73262608e-01 2.65711337e-01 -2.21795484e-01 -1.03216922e+00 1.85865313e-01 -6.08373404e-01 3.13919842e-01 5.88869095e-01 -7.50031412e-01 -1.17519104e+00 2.30937019e-01 -1.36353230e+00 -7.11754858e-01 -4.13526356e-01 3.62570047e-01 -9.02717054e-01 3.02420527e-01 -8.42262626e-01 -1.06120825e+00 -1.90627366e-01 -1.06496644e+00 8.96218717e-01 -6.34700134e-02 -4.77520496e-01 -1.18518496e+00 1.34761289e-01 -1.26087055e-01 1.54734820e-01 5.01127958e-01 1.24142635e+00 -9.69551563e-01 -5.62320352e-01 -4.72081840e-01 -2.34327719e-01 3.96659195e-01 -6.74454153e-01 4.87958282e-01 -1.09512377e+00 5.50938487e-01 -4.67633575e-01 -1.00745308e+00 6.43277705e-01 1.96285948e-01 1.51766086e+00 -5.77282906e-01 -2.94728100e-01 4.59480017e-01 1.48480403e+00 -1.30096272e-01 7.95384943e-01 3.54995191e-01 5.44478297e-01 2.63121456e-01 -2.53248494e-03 3.94691676e-01 6.98407829e-01 3.70269686e-01 3.45866323e-01 5.63273668e-01 1.87371090e-01 -6.34386957e-01 3.32044363e-01 -9.14984383e-03 -9.63442922e-02 1.79159209e-01 -1.43911541e+00 4.53655332e-01 -1.93311691e+00 -1.44987142e+00 2.52615571e-01 1.78260267e+00 1.61722565e+00 7.36544073e-01 -4.94241044e-02 1.17010511e-01 2.28963837e-01 7.66609907e-02 -1.91707179e-01 -9.32491601e-01 1.28684372e-01 9.03688252e-01 1.81179345e-01 6.04757071e-01 -1.23020995e+00 1.03682220e+00 7.21879053e+00 7.31960475e-01 -5.85869968e-01 -5.37205711e-02 2.49507159e-01 2.46799309e-02 -3.47840875e-01 1.59407616e-01 -8.01889658e-01 1.92649513e-01 1.37061274e+00 -5.19901775e-02 6.31885648e-01 1.56783867e+00 -5.95742762e-01 1.27116308e-01 -1.79114032e+00 5.67507982e-01 -1.89296588e-01 -1.69734251e+00 1.39968723e-01 -3.85143906e-01 3.72832984e-01 2.59012252e-01 -1.23087838e-01 1.11982763e+00 1.27920461e+00 -1.32343626e+00 9.93595362e-01 6.69689059e-01 5.57654202e-01 -1.03563547e+00 9.56535280e-01 4.34363455e-01 -7.48341322e-01 -2.59247005e-01 -3.88294123e-02 -1.14527270e-01 1.41247213e-01 6.43967688e-01 -7.98716187e-01 1.78872779e-01 5.41819513e-01 5.73344469e-01 -9.34290290e-02 5.22056043e-01 -1.01150250e+00 6.48852110e-01 -6.22525573e-01 -3.50199252e-01 7.03362823e-02 4.39955026e-01 3.78166407e-01 1.72791147e+00 -1.26099735e-01 -2.34136984e-01 3.08045864e-01 1.61845410e+00 -2.85878349e-02 -6.50284171e-01 -8.21263850e-01 -2.26133302e-01 5.41405976e-01 8.63336802e-01 -4.84351292e-02 -8.03012133e-01 -4.30028945e-01 1.80089518e-01 5.67468643e-01 3.04582894e-01 -9.27439094e-01 -5.20874500e-01 2.60059714e-01 -1.65555641e-01 4.00588095e-01 -2.20261961e-01 -2.98697948e-01 -9.62685227e-01 -2.55680829e-01 -6.38896048e-01 6.54923618e-01 -9.41274285e-01 -1.34527040e+00 1.71349645e-01 8.42624009e-01 -6.31702021e-02 -8.87809515e-01 -1.09066594e+00 -6.38551354e-01 6.92267001e-01 -1.58989680e+00 -1.54147911e+00 2.42113814e-01 3.96620482e-01 -1.42378435e-01 -1.17844701e-01 1.40325344e+00 -1.57105789e-01 -2.29287595e-01 5.14370501e-01 -3.24108779e-01 3.75797451e-01 -9.40810964e-02 -1.77239096e+00 6.29119873e-02 4.41181570e-01 2.37037130e-02 9.20534313e-01 7.69914091e-01 -2.88739532e-01 -1.62841046e+00 -9.65360045e-01 8.54649305e-01 -6.28163695e-01 1.25038266e+00 -3.35611135e-01 -7.27422714e-01 1.21362329e+00 -1.50455916e-02 2.25969568e-01 8.98318172e-01 9.02707756e-01 -1.08334243e+00 7.37249553e-02 -1.30203712e+00 6.01215184e-01 5.89965463e-01 -9.46818829e-01 -1.27663815e+00 4.62665856e-01 8.20561171e-01 -5.98381162e-01 -1.14606214e+00 5.77809274e-01 7.85359144e-01 -8.86419833e-01 1.11603403e+00 -8.09964895e-01 8.57037365e-01 -2.64682591e-01 -5.65185189e-01 -6.25909030e-01 4.26685475e-02 -4.16242123e-01 -1.18968964e+00 9.65874732e-01 4.90046561e-01 -5.25088727e-01 6.40270293e-01 8.84612679e-01 -5.91312088e-02 -7.75028467e-01 -8.78382981e-01 -5.27773559e-01 3.88663650e-01 -1.24882102e+00 8.79636705e-01 5.04078746e-01 5.68311930e-01 6.66640466e-03 1.26727596e-01 2.62459457e-01 5.69476247e-01 3.75526398e-01 6.29451156e-01 -1.24979389e+00 -8.73268425e-01 -6.83168054e-01 -6.50743544e-01 -7.00678527e-01 9.04691875e-01 -9.79193807e-01 1.61796823e-01 -1.46942532e+00 2.93294072e-01 -3.81421477e-01 -3.27177405e-01 1.08194160e+00 2.76965290e-01 -1.23099402e-01 -2.69204617e-01 -3.31041634e-01 -8.68910313e-01 2.98670858e-01 4.56676662e-01 -2.60512710e-01 7.53899068e-02 -5.32453991e-02 -7.44869888e-01 1.18111563e+00 8.55054259e-01 -3.37513685e-01 -3.27882171e-01 -2.07581416e-01 8.44234049e-01 2.09454144e-03 6.48301899e-01 -1.06669664e+00 2.77123481e-01 -4.01282072e-01 3.35470617e-01 -5.66782951e-01 4.31320906e-01 -5.35293460e-01 -3.61763775e-01 3.19256783e-01 -5.95120549e-01 -4.23374742e-01 7.01871872e-01 4.46256071e-01 -4.14357334e-02 -5.53286910e-01 5.35369873e-01 -3.48050177e-01 -9.35033560e-01 -4.86080572e-02 -3.37404549e-01 6.34238049e-02 7.56613195e-01 1.72535330e-01 -3.23575944e-01 -1.71492353e-01 -7.47807503e-01 1.15407392e-01 1.80287972e-01 -2.14559019e-01 5.52383065e-01 -1.18352020e+00 -5.26961863e-01 -1.41794235e-01 2.33994633e-01 2.75937319e-01 -2.16666892e-01 3.69606465e-01 -7.08940268e-01 4.57555473e-01 -1.16238138e-02 -4.63930190e-01 -6.83717549e-01 7.03762889e-01 3.57429683e-01 -5.24431825e-01 -5.52790701e-01 7.68659353e-01 -3.35298389e-01 -1.05295348e+00 5.71049631e-01 -6.11093521e-01 1.79377720e-02 -5.14081895e-01 7.22480237e-01 2.23553125e-02 -2.92680919e-01 2.56443955e-02 -3.45402777e-01 -2.24368393e-01 -4.14722934e-02 -2.20387131e-01 1.49790263e+00 7.64595866e-01 -5.49976289e-01 8.41760278e-01 6.80933774e-01 -1.97789222e-01 -8.32941234e-01 -4.22125846e-01 2.03827456e-01 -6.11366145e-02 1.99372997e-03 -1.04817450e+00 -4.33208615e-01 9.60928917e-01 2.96072196e-02 1.50602190e-02 7.00247884e-01 3.84767920e-01 4.12705660e-01 1.11087883e+00 4.99852896e-01 -8.31490397e-01 -9.40591842e-02 9.22598422e-01 6.07966781e-01 -9.13774252e-01 1.51868731e-01 -5.10692075e-02 -3.75801921e-01 1.44649684e+00 4.67687249e-01 -3.67209673e-01 7.71462500e-01 8.30704510e-01 -6.91636622e-01 -3.02607000e-01 -9.52232301e-01 -1.11766174e-01 6.28591701e-02 8.90214980e-01 4.96859550e-01 3.38430613e-01 4.95187610e-01 7.88404644e-01 -3.20276469e-01 6.27710819e-01 2.14767888e-01 1.29298902e+00 -3.29806745e-01 -1.11443567e+00 -2.76160032e-01 3.09448242e-01 -4.11768705e-01 -4.38306123e-01 2.54509859e-02 9.89615679e-01 2.95097709e-01 4.69798476e-01 -2.56872550e-02 -7.75349438e-02 9.04574096e-02 5.27633905e-01 9.22656953e-01 -8.21858704e-01 -1.80532023e-01 -7.78372645e-01 5.25428474e-01 -4.12405550e-01 -3.63513440e-01 -3.60721081e-01 -1.56466043e+00 -6.63769484e-01 -2.33968701e-02 -8.57673213e-02 5.24161279e-01 8.87926519e-01 -4.91419900e-03 4.68127787e-01 -2.11703926e-01 -7.50471056e-01 -8.12504411e-01 -9.45826888e-01 -5.41742504e-01 -6.81961328e-02 4.96429354e-02 -7.25015938e-01 -1.67614236e-01 -4.53595854e-02]
[8.768558502197266, 7.093825817108154]
78526357-edfb-4a90-9328-f37c8f1e01fb
loss-optimal-classification-trees-a
2306.00857
null
https://arxiv.org/abs/2306.00857v1
https://arxiv.org/pdf/2306.00857v1.pdf
Loss-Optimal Classification Trees: A Generalized Framework and the Logistic Case
The Classification Tree (CT) is one of the most common models in interpretable machine learning. Although such models are usually built with greedy strategies, in recent years, thanks to remarkable advances in Mixer-Integer Programming (MIP) solvers, several exact formulations of the learning problem have been developed. In this paper, we argue that some of the most relevant ones among these training models can be encapsulated within a general framework, whose instances are shaped by the specification of loss functions and regularizers. Next, we introduce a novel realization of this framework: specifically, we consider the logistic loss, handled in the MIP setting by a linear piece-wise approximation, and couple it with $\ell_1$-regularization terms. The resulting Optimal Logistic Tree model numerically proves to be able to induce trees with enhanced interpretability features and competitive generalization capabilities, compared to the state-of-the-art MIP-based approaches.
['Matteo Lapucci', 'Tommaso Aldinucci']
2023-06-01
null
null
null
null
['interpretable-machine-learning']
['methodology']
[ 3.44446778e-01 6.17955685e-01 -4.61602181e-01 -4.89337355e-01 -7.67672718e-01 -4.70248789e-01 4.78502661e-01 4.36809868e-01 -1.82782635e-01 8.16695094e-01 -2.16551676e-01 -3.98828924e-01 -7.00681925e-01 -8.80246222e-01 -7.79942632e-01 -7.51192331e-01 -1.00206330e-01 7.85552919e-01 -2.14207023e-01 -1.22140452e-01 1.22337468e-01 5.24753630e-01 -1.66022825e+00 1.99872300e-01 1.35274220e+00 1.39353180e+00 -8.59018117e-02 2.04250827e-01 -4.02702838e-01 7.31680393e-01 -2.09060580e-01 -9.11664128e-01 2.30240151e-01 -9.30008367e-02 -1.11039388e+00 1.60666347e-01 2.11106673e-01 2.67760932e-01 2.98727751e-01 8.31420064e-01 5.41748591e-02 -1.92017570e-01 7.26532459e-01 -1.33324254e+00 -4.44886655e-01 6.93744600e-01 -3.70442390e-01 -1.76497459e-01 1.47423014e-01 -2.95940429e-01 1.43888175e+00 -7.58174062e-01 5.59900641e-01 1.28978145e+00 6.09187067e-01 2.73344249e-01 -1.77906024e+00 -3.95642035e-02 4.31349367e-01 1.53273270e-01 -9.84305441e-01 -1.43230101e-02 7.14398742e-01 -4.96277243e-01 4.78609830e-01 5.46278596e-01 3.82611156e-01 8.38192403e-01 -1.17599569e-01 9.88102794e-01 1.24371219e+00 -7.50242710e-01 3.07859123e-01 5.91682613e-01 5.52494049e-01 8.18772376e-01 3.58473867e-01 -2.27974206e-01 -1.53363869e-01 -3.13987061e-02 3.75149190e-01 -1.45353690e-01 -2.93498129e-01 -7.62471020e-01 -8.23763967e-01 1.00073195e+00 4.94580835e-01 3.20804328e-01 -5.63066155e-02 2.86046844e-02 3.99598151e-01 3.00029218e-01 9.42769170e-01 4.07943398e-01 -4.22691524e-01 1.25991076e-01 -7.01147497e-01 3.84065449e-01 1.06459248e+00 7.44617224e-01 7.55452871e-01 -1.67680427e-01 -1.02551624e-01 8.60362530e-01 1.97453335e-01 -5.43198474e-02 8.99426453e-03 -6.43152177e-01 9.00704920e-01 8.06145132e-01 -1.57197267e-02 -8.96391809e-01 -4.97309476e-01 -8.75228822e-01 -7.47287095e-01 1.94928005e-01 5.64620554e-01 1.18014604e-01 -4.83141363e-01 1.65461087e+00 3.50062907e-01 -5.65026514e-02 -1.56716973e-01 4.66683596e-01 2.90608823e-01 4.08650845e-01 1.05539940e-01 -3.29397768e-01 1.18008566e+00 -9.11819220e-01 -4.83215839e-01 -9.95459482e-02 8.21937382e-01 -2.07347825e-01 1.08990741e+00 6.41056895e-01 -1.11157107e+00 -3.94179434e-01 -9.34733987e-01 -1.10641688e-01 -4.55146223e-01 2.39657506e-01 1.06960142e+00 9.06693518e-01 -9.64226425e-01 8.71191919e-01 -6.12767816e-01 -1.89527512e-01 4.27923828e-01 4.34975177e-01 -3.35369468e-01 -2.25109179e-02 -8.39522719e-01 9.60570455e-01 4.06172007e-01 4.26284075e-01 -5.14716923e-01 -6.20509803e-01 -7.81678557e-01 1.76631734e-01 5.72766662e-01 -9.32714701e-01 9.69702661e-01 -1.08632076e+00 -1.42126763e+00 1.27384782e+00 -2.31216386e-01 -6.78960860e-01 1.00191379e+00 -2.15135038e-01 3.02351773e-01 -1.12302408e-01 -2.18456283e-01 3.54947180e-01 8.51350725e-01 -1.32450497e+00 -3.45390230e-01 -4.45005238e-01 6.28480673e-01 -1.47051826e-01 -4.36832547e-01 -8.67436919e-03 -8.51493478e-02 -5.97870290e-01 5.11914715e-02 -8.41359675e-01 -4.44391429e-01 1.76089746e-03 -6.05084479e-01 -2.99021125e-01 3.74342620e-01 -4.37699705e-01 1.45097744e+00 -1.82976234e+00 8.25800121e-01 2.11038947e-01 1.34507999e-01 2.14555323e-01 1.64988309e-01 3.35282862e-01 -3.10360879e-01 5.18146574e-01 -6.32943213e-01 -8.90872180e-01 4.65954006e-01 4.62179154e-01 -4.44725007e-01 2.94427305e-01 3.34356308e-01 7.60724783e-01 -5.35833776e-01 -3.62974256e-01 2.84454376e-01 3.22147161e-01 -7.93897629e-01 -5.42818941e-02 -6.23278797e-01 4.42617178e-01 -8.24684322e-01 4.88974780e-01 6.79719925e-01 -2.12650210e-01 3.02957118e-01 1.23143651e-01 -1.74806222e-01 2.98584491e-01 -1.25382578e+00 1.40834439e+00 -7.77309358e-01 2.01090008e-01 3.61009598e-01 -1.72395527e+00 8.77915442e-01 1.53047070e-01 4.66660529e-01 -1.32197067e-01 5.24768420e-02 3.46604675e-01 -4.50550258e-01 -5.00276327e-01 1.64176509e-01 -3.00597101e-01 -3.77181470e-02 1.48930252e-01 -1.42052084e-01 -1.79201648e-01 3.04712325e-01 -4.12193716e-01 8.61254811e-01 1.31199777e-01 4.05390203e-01 -3.55921179e-01 1.04741061e+00 -1.93717048e-01 4.27708328e-01 7.05212057e-01 2.94141859e-01 5.45888543e-01 9.91771698e-01 -6.75065637e-01 -9.02519703e-01 -8.24862778e-01 -5.81412733e-01 9.76674616e-01 -2.91982830e-01 -3.46478611e-01 -9.34665024e-01 -8.57699454e-01 9.04644951e-02 6.77770257e-01 -5.56530595e-01 8.29318687e-02 -6.22004390e-01 -1.00628185e+00 2.33929381e-01 3.84047538e-01 3.88003737e-01 -7.95691013e-01 -3.48054647e-01 2.16449454e-01 -1.83103012e-03 -9.89058793e-01 3.16209108e-01 6.96059346e-01 -1.18091083e+00 -8.72512639e-01 -5.18158674e-01 -5.58764100e-01 5.87546647e-01 -2.96038926e-01 1.39645839e+00 2.53866136e-01 -3.57321858e-01 2.38119408e-01 -3.82095456e-01 -3.38136703e-01 -3.16051722e-01 5.92238486e-01 -1.60926774e-01 3.32684427e-01 -6.70840666e-02 -7.65552759e-01 -1.72579721e-01 8.23786557e-02 -1.10365582e+00 2.25099280e-01 5.07529199e-01 9.44960475e-01 7.10663676e-01 8.33751336e-02 4.56947654e-01 -1.27846110e+00 3.52929413e-01 -4.49532509e-01 -8.17759812e-01 4.49092627e-01 -7.43731320e-01 4.52372342e-01 9.49354231e-01 5.98651059e-02 -9.11273122e-01 1.72455639e-01 -2.81479925e-01 4.57279980e-02 -1.96104169e-01 6.58044398e-01 -4.73989725e-01 -3.77446622e-01 3.26080412e-01 1.25026959e-03 -3.65317136e-01 -7.89744973e-01 4.19282407e-01 5.20723581e-01 6.06571836e-03 -1.17464828e+00 8.77539039e-01 4.03505206e-01 3.77486676e-01 -6.34578288e-01 -1.26010382e+00 -8.69575590e-02 -7.61024296e-01 1.99129190e-02 7.73676574e-01 -3.79419237e-01 -6.37966454e-01 2.13286027e-01 -1.22450423e+00 -2.25885123e-01 -5.07746518e-01 9.17067230e-02 -8.95395219e-01 1.80654779e-01 -3.81344408e-01 -1.04807174e+00 1.02674058e-02 -1.37544680e+00 1.18106508e+00 -7.84247369e-02 1.32726476e-01 -1.30268109e+00 -1.51301220e-01 6.84945464e-01 1.75123751e-01 5.37157893e-01 1.47069585e+00 -5.85784316e-01 -7.99438477e-01 -1.63787037e-01 -1.46912053e-01 5.79320014e-01 -2.56591499e-01 -1.66166529e-01 -1.04799151e+00 3.35518494e-02 1.79488674e-01 -2.17018828e-01 1.06259489e+00 4.75695491e-01 1.58040226e+00 -5.47816157e-01 -3.45274538e-01 8.86406839e-01 1.61207044e+00 -2.26315960e-01 6.01840079e-01 4.58409101e-01 4.71484393e-01 8.61363113e-01 3.68140668e-01 4.04853165e-01 3.95619959e-01 9.95711923e-01 7.64520586e-01 1.76022705e-02 4.30084854e-01 -9.81915966e-02 4.73588035e-02 4.45188940e-01 -3.95413816e-01 -1.07113458e-01 -7.34034836e-01 7.31907263e-02 -1.91817605e+00 -7.71494389e-01 -2.01304018e-01 2.35612345e+00 6.14101768e-01 3.68228495e-01 1.24426551e-01 5.85260332e-01 4.10916537e-01 2.71071941e-01 -2.97740608e-01 -6.79772556e-01 -9.99458581e-02 4.75229800e-01 3.38184476e-01 7.27293849e-01 -1.36693418e+00 5.64141095e-01 6.51663589e+00 8.68689060e-01 -8.85150075e-01 -1.62487442e-04 1.02519763e+00 1.85225770e-01 -5.60712755e-01 8.33940208e-02 -9.93647397e-01 3.45125079e-01 6.93394303e-01 -1.10279039e-01 4.67502981e-01 1.07218528e+00 2.10029140e-01 1.33921236e-01 -1.45754027e+00 5.92471063e-01 -1.65347457e-01 -1.22365963e+00 -8.79252255e-02 2.34865472e-01 4.92133856e-01 -5.80533206e-01 2.93137252e-01 4.12689418e-01 -7.08472058e-02 -1.36329150e+00 7.98339248e-01 3.75330418e-01 4.66913044e-01 -6.57044172e-01 5.39070070e-01 5.57891786e-01 -1.15846097e+00 -4.13307369e-01 -3.62088412e-01 -2.48687163e-01 4.49802093e-02 1.01579702e+00 -2.71352589e-01 9.89147007e-01 3.79225343e-01 6.62054062e-01 -5.35196543e-01 1.06111598e+00 -2.26850554e-01 6.80619895e-01 -3.42902631e-01 3.74109037e-02 2.37763613e-01 -6.94147110e-01 6.34600639e-01 1.12927186e+00 1.10854767e-01 -2.09735081e-01 1.11888230e-01 1.05042195e+00 -6.17476702e-02 3.12440991e-01 -5.88528216e-01 1.50762543e-01 -4.38027754e-02 1.30868363e+00 -6.48535669e-01 4.92058061e-02 -3.01423579e-01 6.20339692e-01 8.34140301e-01 1.19680464e-01 -9.22715008e-01 7.12444484e-02 4.65878725e-01 2.13701993e-01 2.82047272e-01 -2.99624410e-02 -7.35529542e-01 -1.24169755e+00 5.78017235e-01 -7.14355290e-01 4.42619145e-01 -3.21180880e-01 -1.33579218e+00 6.07601047e-01 1.56732872e-01 -1.04850674e+00 -2.18817830e-01 -9.83491898e-01 -3.58213603e-01 6.53070450e-01 -1.77889943e+00 -1.27266824e+00 -1.62174270e-01 1.56371549e-01 3.18359166e-01 2.78705508e-01 8.98652136e-01 4.07501549e-01 -7.72276282e-01 5.68905890e-01 2.77394444e-01 -3.55982989e-01 -2.43188292e-02 -1.63291943e+00 -1.74690783e-02 4.91732806e-01 1.47515163e-01 4.99494970e-01 8.31274092e-01 4.91305627e-02 -1.26838291e+00 -9.23636973e-01 1.14315414e+00 -3.35615724e-01 6.64410472e-01 -4.56592143e-01 -9.17509735e-01 7.83715427e-01 -2.92073011e-01 1.85176730e-01 4.12625641e-01 3.18284661e-01 -3.96319509e-01 -3.94648015e-01 -1.22906399e+00 3.28747988e-01 1.11476481e+00 -1.38260528e-01 -4.68072236e-01 5.74539125e-01 6.61998212e-01 -3.13523918e-01 -8.32059622e-01 5.21351039e-01 3.62033665e-01 -1.27292097e+00 1.30043888e+00 -7.76115417e-01 6.46272480e-01 -2.54391320e-02 -5.29729612e-02 -1.06552935e+00 1.14866029e-02 -6.57097757e-01 -3.04604452e-02 1.31873989e+00 5.15268266e-01 -9.34627712e-01 8.65356505e-01 6.49664819e-01 -1.67546287e-01 -1.21034205e+00 -1.27347815e+00 -7.60101676e-01 4.63386297e-01 -6.15008533e-01 3.75759006e-01 6.12383544e-01 6.86650947e-02 7.06445575e-02 -4.03136492e-01 -2.22021356e-01 6.80348694e-01 1.36783138e-01 5.00019073e-01 -1.64772916e+00 -7.37903237e-01 -7.14187622e-01 -4.98854190e-01 -1.07881975e+00 5.84195495e-01 -1.14920890e+00 -3.12758625e-01 -1.35270977e+00 3.51903066e-02 -1.05649006e+00 -5.89486919e-02 4.05009687e-01 -1.04681484e-01 -8.26606899e-02 3.71053606e-01 -1.38445303e-01 -3.34909052e-01 4.56222206e-01 9.58662271e-01 -1.98511332e-01 -6.00404218e-02 6.71559334e-01 -7.20081985e-01 8.58158767e-01 5.67989528e-01 -3.87540162e-01 -3.16638321e-01 -4.42711800e-01 5.60723782e-01 1.21107005e-01 4.87410426e-01 -9.10659373e-01 -4.78496589e-02 -7.27283210e-02 -1.34983793e-01 -2.19186500e-01 3.93429428e-01 -9.48957860e-01 3.04102808e-01 2.62150943e-01 -7.31404364e-01 -2.75302619e-01 -5.74041121e-02 5.43022394e-01 -3.58196467e-01 -7.28396475e-01 7.56035030e-01 -1.57510474e-01 -1.58557538e-02 2.22190022e-01 -6.19995371e-02 8.12322348e-02 9.55932260e-01 -1.48740277e-01 4.98674624e-02 -3.03097013e-02 -8.12982619e-01 9.76431966e-02 1.23658679e-01 8.90952069e-03 1.37960270e-01 -9.83054459e-01 -5.78734756e-01 -1.61202744e-01 3.26177408e-03 2.94401199e-01 1.24577014e-03 1.03217769e+00 -4.67279762e-01 6.95970953e-01 2.72137731e-01 -5.97069681e-01 -1.12899613e+00 5.84703028e-01 4.39291239e-01 -1.10368395e+00 -5.14878988e-01 6.66966259e-01 3.05406243e-01 -5.14284015e-01 5.38028121e-01 -5.29495418e-01 -1.40020519e-01 8.74256492e-02 2.46140108e-01 4.57029998e-01 1.79732010e-01 -3.34508508e-01 -2.54112631e-01 7.91988552e-01 2.11596772e-01 1.72946170e-01 1.50317132e+00 3.87797989e-02 -1.90561712e-01 4.57342058e-01 1.08220685e+00 -4.91155162e-02 -9.47325766e-01 -8.88903067e-02 4.38426584e-01 -2.11333811e-01 -2.85280854e-01 -5.87186217e-01 -1.04166210e+00 1.07554579e+00 2.04675034e-01 6.12352192e-01 1.26668322e+00 -2.95900628e-02 3.65268886e-01 3.83553952e-01 7.10852444e-01 -6.91786528e-01 -3.48384112e-01 4.05397445e-01 8.98478150e-01 -1.16577983e+00 -7.22261379e-03 -9.49377894e-01 -1.87791616e-01 1.38951993e+00 9.79208350e-02 -1.30531639e-01 6.61399364e-01 3.66494060e-01 -4.37087625e-01 2.01334164e-01 -6.30966246e-01 -3.08751553e-01 2.20778257e-01 4.99494344e-01 4.62514877e-01 1.89897746e-01 -6.37201905e-01 8.06552887e-01 -1.68398604e-01 1.20556705e-01 1.41424552e-01 5.45700967e-01 -3.42105240e-01 -1.59637702e+00 -2.16860071e-01 2.89664239e-01 -6.09293938e-01 -8.46111253e-02 -2.66842932e-01 8.65216851e-01 2.91721135e-01 6.83025956e-01 -2.86495924e-01 -1.03940167e-01 3.98628563e-01 2.21357837e-01 6.00758672e-01 -5.57231426e-01 -9.24101114e-01 -4.85227793e-01 1.88783154e-01 -4.03614670e-01 -4.79746848e-01 -5.70646048e-01 -8.63488555e-01 -1.45622939e-01 -3.54547679e-01 1.07775114e-01 6.10091925e-01 1.28301895e+00 1.17798708e-02 3.96240681e-01 6.11161292e-01 -9.83758509e-01 -7.71392226e-01 -5.46061635e-01 -6.34034514e-01 2.96714008e-01 2.47971162e-01 -7.93956101e-01 -6.84621513e-01 -7.11963251e-02]
[8.730076789855957, 4.220551490783691]
50641a7b-b92a-459d-afd6-27dc849b003c
native-language-identification-with-user
null
null
https://aclanthology.org/D18-1395
https://aclanthology.org/D18-1395.pdf
Native Language Identification with User Generated Content
We address the task of native language identification in the context of social media content, where authors are highly-fluent, advanced nonnative speakers (of English). Using both linguistically-motivated features and the characteristics of the social media outlet, we obtain high accuracy on this challenging task. We provide a detailed analysis of the features that sheds light on differences between native and nonnative speakers, and among nonnative speakers with different backgrounds.
['Shuly Wintner', 'Gili Goldin', 'Ella Rabinovich']
2018-10-01
null
null
null
emnlp-2018-10
['native-language-identification']
['natural-language-processing']
[-4.3919215e-01 -2.4276318e-01 -6.5493196e-01 -2.0089450e-01 -8.4016526e-01 -1.0240122e+00 8.0849999e-01 4.5370755e-01 -8.6580014e-01 3.1732568e-01 6.0806793e-01 -6.8755096e-01 2.1870095e-01 -4.1007778e-01 -9.1615148e-02 -9.7605899e-02 -1.8031636e-02 -5.4844242e-02 -3.3462903e-01 -1.7180908e-01 2.0850372e-01 4.1312662e-01 -1.2064716e+00 -2.4691290e-01 1.1644158e+00 5.0959384e-01 1.0218896e-01 4.2956010e-01 -5.5716223e-01 7.2925985e-01 -5.1225305e-01 -7.3331672e-01 1.2051648e-01 -3.4398642e-01 -7.7944839e-01 -1.3574179e-01 6.9191277e-01 1.3667201e-01 -4.0336728e-01 1.3082479e+00 2.2987451e-01 -2.1455675e-02 1.0003225e+00 -6.0297370e-01 -1.0499675e+00 1.1353517e+00 -4.3795231e-01 7.3359925e-01 9.7693175e-01 -2.0663481e-02 1.0751621e+00 -9.9894351e-01 8.0125964e-01 1.5238844e+00 8.5477602e-01 1.8487167e-01 -1.0558636e+00 -8.3202827e-01 5.1200718e-01 -2.1754642e-01 -1.9452507e+00 -8.5268074e-01 7.2685307e-01 -1.0495821e+00 2.8094506e-01 1.0852118e-01 4.0942603e-01 1.4986492e+00 -1.0989676e-02 4.6008319e-01 1.5501680e+00 -6.5884888e-01 -1.7152330e-01 7.0509636e-01 4.4052890e-01 6.5754765e-01 7.4067935e-03 -8.4656253e-03 -9.3592870e-01 -3.2577866e-01 3.3210975e-01 -1.1985425e-01 -2.2896691e-01 4.4477466e-01 -1.5057361e+00 9.8299503e-01 9.8184995e-02 8.8140124e-01 -2.9455736e-01 -7.1736985e-01 2.9216844e-01 7.6677263e-01 5.8767080e-01 6.3539845e-01 -5.7169241e-01 -2.5723165e-01 -1.0595317e+00 3.9507891e-03 1.2057165e+00 8.2140088e-01 6.4968401e-01 1.3167304e-01 -3.6836915e-02 1.2121644e+00 2.9258439e-01 8.1381750e-01 7.9274231e-01 -5.5274767e-01 1.7986754e-01 3.3805838e-01 -1.8055889e-01 -1.0375804e+00 1.6618567e-02 -5.8700848e-01 -4.2462185e-01 -1.7970079e-01 7.8272343e-01 -2.6435614e-01 -3.9418474e-01 1.8185101e+00 -6.0713444e-02 -3.3160013e-01 1.4297444e-01 3.7530631e-01 1.0484651e+00 5.6306261e-01 4.5220175e-01 -4.3960971e-01 1.7107384e+00 -6.6570908e-01 -7.4527115e-01 -2.3654620e-01 3.6697942e-01 -9.1882789e-01 1.3973496e+00 -5.2383896e-02 -1.0164981e+00 -6.7905128e-01 -5.3509122e-01 6.8191521e-02 -7.6954448e-01 4.0867496e-02 5.7533610e-01 1.0987706e+00 -1.0861450e+00 2.8502539e-01 -2.5417918e-01 -5.6379765e-01 1.0431120e-01 1.2372498e-01 -6.4558500e-01 2.8869802e-01 -1.3637910e+00 6.7458916e-01 -1.3573682e-01 -6.8863374e-01 -2.3415434e-01 -1.1502268e+00 -9.6769035e-01 -2.0408522e-01 4.1155729e-02 1.8170974e-01 1.1792102e+00 -1.2660547e+00 -1.5153607e+00 1.6465137e+00 -2.1239264e-01 1.0128292e-02 5.8429956e-01 1.2063637e-01 -1.2073473e+00 -1.3076034e-01 6.5697140e-01 1.6853729e-01 6.4247674e-01 -6.7250949e-01 -8.2437050e-01 -3.0153677e-01 -2.7238455e-01 -1.5356820e-02 -7.6730853e-01 7.5408900e-01 -1.0142696e-01 -1.1480734e+00 -8.1645079e-02 -7.0607483e-01 1.2711972e-01 -2.7938679e-01 -5.5385041e-01 -7.1301711e-01 1.2964074e-01 -1.0559050e+00 1.2642002e+00 -2.4086063e+00 -7.9604417e-02 3.6791611e-01 3.4908879e-01 -8.1045106e-02 2.8006902e-01 3.6443499e-01 3.3671346e-01 8.3148295e-01 2.7757558e-01 -2.8316587e-01 2.6424593e-01 -4.9437824e-01 -3.1933203e-01 2.9562315e-01 -4.5013959e-03 7.3502827e-01 -9.3756866e-01 -5.9545481e-01 -3.1181675e-01 2.2607197e-01 -2.8451249e-01 3.1750438e-01 4.0212986e-01 7.9581827e-01 -4.1424805e-01 8.1891197e-01 2.3011746e-01 1.5813091e-01 -1.3440715e-04 4.5233706e-01 -7.0452821e-01 5.1821905e-01 -8.1233913e-01 1.3703424e+00 -7.2386348e-01 1.0886595e+00 5.6250590e-01 -2.1729915e-01 8.5839641e-01 1.5751131e-01 7.0899181e-02 -3.5664546e-01 5.2379131e-01 5.1102966e-01 3.2765663e-01 -3.2769051e-01 2.2592884e-01 6.2992819e-02 -3.8499841e-01 4.7485733e-01 7.9788797e-04 3.4999830e-01 3.8157052e-01 1.2856427e-01 5.6599474e-01 -3.9473945e-01 6.6807693e-01 -1.1129943e+00 7.1419489e-01 -3.5917807e-01 3.1362018e-01 1.2365652e+00 -6.7833710e-01 2.1115939e-01 2.9416594e-01 -1.1279746e-01 -6.0129923e-01 -1.1593571e+00 -4.1342944e-01 1.8155049e+00 -2.9818535e-01 -5.4829502e-01 -5.5231321e-01 -5.7033211e-01 1.8647304e-01 2.7623907e-01 -4.3840903e-01 -3.1875916e-02 -5.3803420e-01 -2.9954639e-01 4.3503842e-01 2.7471024e-01 8.8917054e-02 -1.0075486e+00 4.5514399e-01 -7.7600725e-02 1.3008985e-01 -1.5388433e+00 -9.6497583e-01 -1.1853340e-01 -6.5077371e-03 -7.0388812e-01 -9.3055928e-01 -1.3379477e+00 3.0796704e-01 -2.7650282e-01 1.2969975e+00 1.8074203e-01 2.1805632e-01 5.5614841e-01 -2.4338166e-01 -4.2717665e-01 -9.1902947e-01 7.6340503e-01 4.8490050e-01 2.9637429e-01 7.4265343e-01 -3.8322076e-01 2.4504344e-01 6.7951798e-02 -2.1915896e-01 -2.8176451e-01 1.4339484e-01 3.0559884e-02 -1.4722875e-01 -1.6888836e-01 4.3866375e-01 -1.0362108e+00 5.7489783e-01 -6.9880420e-01 -2.3501392e-01 1.1635401e-01 -2.6128578e-01 -1.8192537e-01 9.6727169e-01 -1.1231178e+00 -6.1252016e-01 4.9184524e-02 -3.4040365e-01 2.2379850e-01 -4.1487083e-01 5.5769622e-01 -2.3965566e-01 -3.2927725e-01 6.3350600e-01 1.9656986e-01 -1.9404326e-01 -7.4174744e-01 -3.9031699e-02 1.1811203e+00 7.0057696e-01 -4.8026127e-01 9.9670124e-01 -5.8493212e-02 -7.0059615e-01 -1.2841866e+00 -8.5836315e-01 -4.6298939e-01 -9.7576463e-01 -8.9490160e-02 7.3100555e-01 -1.2040045e+00 -8.9513499e-01 6.3824505e-01 -7.1701694e-01 -1.8922690e-01 -7.5988024e-02 7.7525330e-01 8.3149537e-02 3.1249134e-02 -7.9041857e-01 -7.4868214e-01 -8.4844619e-02 -1.1526419e+00 6.2166274e-01 1.3909833e-01 -6.5417707e-01 -1.5546362e+00 -2.0696458e-01 3.3881582e-02 4.7083852e-01 1.5733464e-01 7.5702167e-01 -1.0831368e+00 2.2359736e-02 -1.4763722e-01 3.4619272e-02 4.6541017e-02 2.6206806e-01 1.9545762e-01 -8.5271096e-01 -1.5669157e-01 -4.2125532e-01 -2.3857494e-01 8.3404779e-01 3.2702562e-01 5.8387309e-01 -3.7546822e-01 -2.7468029e-01 7.2691965e-01 7.6820207e-01 -4.2795259e-01 -6.2340021e-01 2.4322408e-01 8.5824466e-01 7.7020824e-01 -2.2713928e-01 2.2801684e-01 6.7720371e-01 3.8523942e-01 -6.1789197e-01 5.0873343e-02 -7.4404694e-02 -4.2140490e-01 9.2223459e-01 1.2530031e+00 1.2582190e-01 4.5124315e-02 -1.3385366e+00 6.2095636e-01 -1.0880648e+00 -8.7465304e-01 -6.7743018e-02 1.8964772e+00 1.0952767e+00 7.8536063e-02 6.7771554e-01 1.2901776e-01 1.2134476e+00 3.6589786e-01 -2.3591949e-01 -4.8031795e-01 -3.4747934e-01 4.7599982e-02 7.1254134e-01 1.0206099e+00 -1.3520451e+00 1.2508752e+00 7.7923007e+00 8.1668431e-01 -1.2090073e+00 1.3700975e-01 5.7296878e-01 4.4376001e-01 -1.6925032e-01 -2.6031092e-01 -1.3348830e+00 5.9088421e-01 1.3517635e+00 -5.9891617e-01 6.5911704e-01 7.3396063e-01 -9.6559353e-02 3.5363171e-01 -1.0585872e+00 1.0185146e+00 2.5554875e-01 -7.8992522e-01 -2.2403285e-01 2.1813372e-01 7.5437182e-01 -1.5647862e-02 4.4303444e-01 5.4527771e-01 5.2860564e-01 -9.8205954e-01 1.2782434e+00 1.2567489e-01 9.7987926e-01 -4.3870613e-01 1.8871939e-01 3.7357914e-01 -9.8416579e-01 -2.6666340e-01 1.1363700e-02 -5.3101140e-01 -1.1765570e-01 5.1043695e-01 -3.7312046e-01 2.6430544e-02 5.1214272e-01 1.0147852e+00 -9.0556616e-01 2.7094996e-01 -1.3793695e-01 8.6992800e-01 -2.1465795e-01 -5.4817472e-02 7.5280249e-02 5.5025976e-02 5.1620227e-01 1.4286771e+00 2.2029042e-01 -3.0440232e-01 7.7693945e-01 8.3430856e-01 -2.7993715e-01 9.0427434e-01 -5.8669555e-01 -5.5812329e-01 5.9355664e-01 1.3160046e+00 -5.8641332e-01 -2.2504947e-01 -8.1338334e-01 8.7941706e-01 6.4934838e-01 4.0708068e-01 -1.2893884e-01 -3.8094601e-01 8.3574134e-01 4.0671542e-01 -3.2402804e-01 -4.4576627e-01 -2.5513761e-02 -1.3753425e+00 -5.8531120e-02 -8.5010111e-01 3.9238378e-01 9.7599812e-02 -1.9963462e+00 7.8856862e-01 -5.5233532e-01 -6.9856220e-01 -3.4947011e-01 -1.0367247e+00 -5.9490490e-01 1.1860330e+00 -1.5238526e+00 -9.9235308e-01 -5.8220800e-02 5.2844030e-01 2.5683868e-01 -1.0007551e+00 7.1962941e-01 3.5571834e-01 -6.5947670e-01 9.1908985e-01 1.1796154e-01 8.0527097e-01 8.7022376e-01 -1.3059131e+00 5.7825351e-01 6.4396071e-01 2.0894207e-01 1.0025791e+00 4.9932581e-01 -6.4431554e-01 -9.8345184e-01 -8.3437622e-01 1.7411712e+00 -7.7710205e-01 1.2219372e+00 -8.7957281e-01 -5.6274301e-01 6.2090838e-01 3.1657127e-01 -5.8689225e-03 1.1196241e+00 6.7629075e-01 -6.0242134e-01 3.2163075e-01 -8.9805603e-01 7.2552049e-01 1.2762797e+00 -1.1818843e+00 -5.1575595e-01 5.6263727e-01 5.5381417e-01 4.9004953e-02 -1.2233740e+00 -1.3937674e-01 6.7119199e-01 -7.0515370e-01 9.4000769e-01 -6.5302974e-01 1.6443604e-01 4.1707608e-01 -2.3679277e-03 -1.2899770e+00 -6.9245255e-01 -9.8703307e-01 3.3909070e-01 1.5903008e+00 4.0488762e-01 -7.0395935e-01 1.3400927e-01 5.9456146e-01 8.7261312e-02 -1.8842934e-01 -7.1725160e-01 -1.0116215e+00 7.3221344e-01 -3.0801741e-02 3.6467582e-01 1.5751697e+00 1.4814687e-01 3.6972249e-01 -4.2932808e-02 9.4736777e-03 1.3744533e-01 -4.2514570e-02 4.9213904e-01 -1.9004098e+00 6.0436286e-02 -1.0398576e+00 -2.8685030e-01 -6.0902077e-01 1.3520017e+00 -1.4043331e+00 -3.6699587e-01 -7.6661146e-01 4.4782743e-02 -4.2287362e-01 -1.6794360e-01 8.8788904e-02 -4.4366768e-01 3.3409482e-01 6.8303779e-02 3.7499696e-01 -3.3206245e-01 -6.7998178e-02 9.1007608e-01 -1.9440943e-01 -4.0311694e-01 2.0179769e-01 -1.1750590e+00 8.6312830e-01 5.4631209e-01 -4.4273093e-01 3.0023685e-01 -1.9305310e-01 2.7044886e-01 -5.3621256e-01 -7.6480836e-02 -9.1227680e-01 6.9976449e-02 -3.4418789e-01 3.8317931e-01 2.1252908e-01 -1.2681113e-03 -6.8615323e-01 -4.5870590e-01 4.3496132e-01 -7.7064133e-01 3.9529648e-01 -2.2899333e-01 -6.8966441e-02 -3.1968608e-01 -2.3675904e-01 9.3367803e-01 -4.0292859e-01 -5.5698675e-01 5.8128130e-01 -8.4880167e-01 5.9071904e-01 8.1909162e-01 -9.8304272e-02 5.0616502e-03 -4.0905562e-01 -7.4809712e-01 -2.2746444e-01 8.6770815e-01 7.4705404e-01 -3.5942259e-01 -1.2773523e+00 -1.0460306e+00 5.5410951e-01 2.6651564e-01 -1.2874978e+00 -2.9594293e-01 7.4417692e-01 -2.0159306e-01 2.9959726e-01 -1.0235225e-01 -1.1452147e-01 -8.7209415e-01 5.5325633e-01 2.2047606e-01 2.1345855e-01 -1.4645317e-01 8.0250686e-01 7.1912088e-02 -8.6075217e-01 3.2577306e-01 2.0202500e-01 -6.3500488e-01 5.3604388e-01 5.5652827e-01 3.5101941e-01 -3.2242680e-01 -1.5291840e+00 -5.4903579e-01 6.0930467e-01 -1.4067097e-01 -3.3098149e-01 6.5493834e-01 -3.9356112e-01 -1.3674401e-01 9.9295264e-01 1.3239236e+00 1.1470394e+00 -3.0148169e-01 -6.7183703e-01 2.1212099e-01 -3.5920915e-01 1.8386120e-01 -5.0897545e-01 -7.1249890e-01 6.8847227e-01 3.5704643e-01 5.7201284e-01 3.4355754e-01 6.5478556e-02 6.6800946e-01 5.6626670e-02 1.7973142e-02 -1.2088178e+00 -3.9651689e-01 9.8927885e-01 4.6890399e-01 -1.5092885e+00 -3.5361192e-01 -5.3532892e-01 -5.0159585e-01 8.8615775e-01 4.1770151e-01 2.6650089e-01 1.2288432e+00 7.8697763e-02 7.3203617e-01 2.8990495e-01 -7.1169354e-02 -4.7214636e-01 6.2392431e-01 4.0984958e-01 9.6865523e-01 3.5944697e-01 -3.7031236e-01 1.0215650e+00 -1.1036677e+00 -6.4058089e-01 2.7516869e-01 6.0944462e-01 -1.8370710e-01 -1.1000198e+00 -4.9052954e-01 5.9880167e-01 -1.1131392e+00 -4.8627174e-01 -7.3502606e-01 4.2429876e-01 1.0539392e-01 1.1380727e+00 3.3877653e-01 -1.9283336e-01 1.3379252e-01 3.8777977e-01 3.9356012e-02 -7.9670531e-01 -1.1562337e+00 -1.8281615e-01 -1.8558152e-02 1.8182749e-01 -3.0013373e-01 -1.0967025e+00 -7.6977056e-01 -7.1840233e-01 9.8118462e-02 4.7061789e-01 5.6623936e-01 8.9576697e-01 1.7546202e-01 -2.4072567e-02 9.9980664e-01 -5.8030289e-01 -2.2906283e-01 -9.8060870e-01 -9.7460431e-01 5.1595396e-01 6.9104671e-01 -3.3910829e-01 -8.5924917e-01 5.4371592e-02]
[10.396197319030762, 10.394063949584961]
abed8583-8e8d-4410-8282-92c07fd2035c
multi-target-embodied-question-answering
1904.04686
null
http://arxiv.org/abs/1904.04686v1
http://arxiv.org/pdf/1904.04686v1.pdf
Multi-Target Embodied Question Answering
Embodied Question Answering (EQA) is a relatively new task where an agent is asked to answer questions about its environment from egocentric perception. EQA makes the fundamental assumption that every question, e.g., "what color is the car?", has exactly one target ("car") being inquired about. This assumption puts a direct limitation on the abilities of the agent. We present a generalization of EQA - Multi-Target EQA (MT-EQA). Specifically, we study questions that have multiple targets in them, such as "Is the dresser in the bedroom bigger than the oven in the kitchen?", where the agent has to navigate to multiple locations ("dresser in bedroom", "oven in kitchen") and perform comparative reasoning ("dresser" bigger than "oven") before it can answer a question. Such questions require the development of entirely new modules or components in the agent. To address this, we propose a modular architecture composed of a program generator, a controller, a navigator, and a VQA module. The program generator converts the given question into sequential executable sub-programs; the navigator guides the agent to multiple locations pertinent to the navigation-related sub-programs; and the controller learns to select relevant observations along its path. These observations are then fed to the VQA module to predict the answer. We perform detailed analysis for each of the model components and show that our joint model can outperform previous methods and strong baselines by a significant margin.
['Mohit Bansal', 'Tamara L. Berg', 'Licheng Yu', 'Dhruv Batra', 'Xinlei Chen', 'Georgia Gkioxari']
2019-04-09
multi-target-embodied-question-answering-1
http://openaccess.thecvf.com/content_CVPR_2019/html/Yu_Multi-Target_Embodied_Question_Answering_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/papers/Yu_Multi-Target_Embodied_Question_Answering_CVPR_2019_paper.pdf
cvpr-2019-6
['embodied-question-answering']
['computer-vision']
[-7.95087963e-02 3.13081235e-01 2.84321100e-01 -4.62404281e-01 -7.30734587e-01 -1.03725529e+00 4.32272941e-01 1.52186483e-01 -4.08473074e-01 3.98534775e-01 1.87812373e-01 -7.44511068e-01 -2.05309868e-01 -1.09594452e+00 -8.43261540e-01 -4.54319656e-01 2.14444399e-01 8.27859759e-01 3.52632642e-01 -6.79532766e-01 3.54688078e-01 1.15056053e-01 -1.60889781e+00 2.10608169e-01 7.99543917e-01 5.58883846e-01 7.40398049e-01 9.15526152e-01 -1.29769057e-01 1.17447031e+00 -5.41647613e-01 -3.23687106e-01 -7.16559663e-02 -6.62585795e-01 -1.45908213e+00 -2.52201021e-01 2.36447811e-01 -5.62014461e-01 -1.09273858e-01 1.08342636e+00 -3.96278314e-02 6.01552904e-01 4.66452718e-01 -1.47647178e+00 -7.79933870e-01 4.75837946e-01 -1.43249473e-02 2.66634393e-02 9.62494791e-01 5.89618742e-01 1.16284633e+00 -6.69110894e-01 4.98766869e-01 1.51055789e+00 2.55441040e-01 5.97620010e-01 -1.09782255e+00 -1.07194573e-01 5.39948523e-01 4.17965829e-01 -9.28280592e-01 -2.80493975e-01 6.73465490e-01 -3.73620212e-01 1.07001531e+00 5.22661328e-01 4.70954746e-01 8.98221910e-01 3.14667463e-01 7.96762586e-01 7.91452587e-01 -2.92673200e-01 7.76834011e-01 2.54879177e-01 2.73937374e-01 1.01827264e+00 -4.25335169e-02 2.05702633e-02 -3.23465049e-01 -1.84751615e-01 5.54844201e-01 -1.94580317e-01 -1.32880479e-01 -7.40403652e-01 -1.30789626e+00 1.10622561e+00 5.94526768e-01 6.89170584e-02 -3.81997526e-01 3.33747476e-01 8.83595869e-02 4.95361239e-01 -3.24136794e-01 8.81637692e-01 -3.83410037e-01 -7.66408741e-02 -2.82102644e-01 7.16105580e-01 1.22704840e+00 1.03185689e+00 9.65816617e-01 -3.31758887e-01 8.32044892e-03 3.98580998e-01 5.17322540e-01 4.83870089e-01 2.12230027e-01 -1.45759010e+00 5.64720273e-01 9.08315480e-01 5.74852884e-01 -1.00387931e+00 -6.16019666e-01 -9.20726508e-02 -1.02345727e-01 4.99669611e-01 6.66733444e-01 -3.20319742e-01 -6.59051239e-01 1.88166571e+00 5.92495084e-01 -5.19665182e-01 3.71855557e-01 1.16013765e+00 9.02064025e-01 6.57011569e-01 1.35090515e-01 4.85937238e-01 1.85695577e+00 -1.44165218e+00 -3.47265512e-01 -7.31207192e-01 8.29030395e-01 -4.07004684e-01 1.54185915e+00 -1.11828953e-01 -1.05787790e+00 -5.86383581e-01 -8.68538618e-01 -4.63765830e-01 -6.94138944e-01 -7.65198544e-02 5.53847790e-01 2.45124087e-01 -1.24598944e+00 1.64992169e-01 -5.83549917e-01 -9.20186222e-01 -1.38118789e-01 2.03543723e-01 -2.23732576e-01 -1.55033723e-01 -1.02844799e+00 1.22254026e+00 3.19741279e-01 2.22120006e-02 -1.30916917e+00 -2.48021603e-01 -1.37588477e+00 1.70999095e-01 6.44413054e-01 -1.25012386e+00 1.75267041e+00 -8.88027787e-01 -1.70755959e+00 8.61937225e-01 -5.72001874e-01 -2.04666823e-01 2.04056278e-01 -7.13632181e-02 -3.39203000e-01 1.84653118e-01 5.29342234e-01 7.39678264e-01 4.60235506e-01 -1.27586830e+00 -8.13941598e-01 -5.98594010e-01 1.12402809e+00 4.95501488e-01 5.52993357e-01 1.75119154e-02 -3.57927978e-01 -9.89383459e-02 2.43414253e-01 -1.00800741e+00 -3.68664116e-01 -1.36295883e-02 -3.00800294e-01 -5.40305376e-01 6.08154535e-01 -3.66194785e-01 7.96822429e-01 -1.93779743e+00 2.09711447e-01 1.75031498e-02 1.29259542e-01 -4.45435166e-01 -4.41112846e-01 5.29008687e-01 2.50473223e-03 -3.11274916e-01 -1.14083670e-01 5.57474084e-02 3.72046590e-01 3.02604258e-01 -2.62634248e-01 1.28763095e-01 -3.16263773e-02 1.14172864e+00 -1.30800223e+00 -2.43485466e-01 2.10600004e-01 -8.91417935e-02 -8.05029929e-01 3.84162128e-01 -7.90147603e-01 3.49614561e-01 -7.36159682e-01 3.84333968e-01 4.55388367e-01 -3.53803098e-01 1.21384978e-01 9.40058902e-02 -2.39371032e-01 5.47874153e-01 -1.05140579e+00 1.76936793e+00 -4.66688305e-01 4.15666193e-01 2.50876129e-01 -6.39061332e-01 7.15575159e-01 1.90500338e-02 -2.82030284e-01 -7.54295111e-01 1.31931722e-01 -3.07108760e-02 1.28765926e-01 -1.12312245e+00 5.28395057e-01 1.21522769e-01 -3.96871418e-01 5.41622102e-01 -3.19914192e-01 -4.26962018e-01 3.22512597e-01 3.17065388e-01 1.22556007e+00 4.30657595e-01 3.09743434e-01 -4.96639699e-01 6.98048472e-01 6.80043519e-01 1.84049964e-01 9.83801007e-01 -4.45285141e-01 2.21055821e-01 5.96687257e-01 -5.56479394e-01 -7.80879438e-01 -1.27300775e+00 6.54444993e-01 1.66347373e+00 6.32540584e-01 -2.50235438e-01 -9.38184321e-01 -6.72048092e-01 -1.66344509e-01 1.34912205e+00 -8.98505330e-01 -9.69894156e-02 -6.34936690e-01 -1.67950466e-02 1.51862025e-01 5.59604585e-01 7.94871867e-01 -1.28180885e+00 -1.34183288e+00 1.90888240e-03 -5.96441031e-01 -7.43803561e-01 -5.43176651e-01 2.17916355e-01 -5.45691907e-01 -1.27458215e+00 -2.03334376e-01 -1.07411110e+00 7.95230329e-01 3.02648127e-01 1.34921038e+00 -1.32520571e-01 2.62408078e-01 8.22399378e-01 -3.40252727e-01 -3.64738554e-01 -3.17889482e-01 7.18476847e-02 -3.76210421e-01 -2.05470532e-01 5.03288031e-01 -3.29230458e-01 -8.99278581e-01 4.22473788e-01 -5.46161950e-01 1.77925572e-01 3.22218955e-01 3.59246939e-01 1.61870927e-01 -3.39271151e-03 3.56014967e-01 -7.73662746e-01 8.25310647e-01 -7.60125458e-01 -6.77738070e-01 2.71146029e-01 -8.53145495e-02 4.01135385e-01 7.73455799e-01 -1.93816185e-01 -1.15675366e+00 9.42226797e-02 -1.72345430e-01 1.65459961e-01 -4.53804344e-01 5.62119067e-01 -5.61087668e-01 3.60052019e-01 8.67683172e-01 3.31616819e-01 4.53415327e-03 -1.06936671e-01 4.98889208e-01 4.21739928e-03 8.53726327e-01 -8.28547001e-01 8.67006660e-01 4.07841861e-01 -2.67866015e-01 -3.02971333e-01 -5.90616465e-01 -2.60939956e-01 -3.08938026e-01 -1.02048889e-01 1.15719295e+00 -6.98584080e-01 -1.32886446e+00 1.15123712e-01 -1.27422476e+00 -8.38738501e-01 -2.30025947e-01 1.58337981e-01 -8.75194788e-01 -4.97613698e-02 -2.95909286e-01 -6.79447532e-01 4.94671427e-02 -1.34028852e+00 8.13655972e-01 5.73213696e-01 -5.93374431e-01 -9.56020296e-01 1.96576998e-01 5.09513438e-01 5.29487908e-01 -3.07549424e-02 1.39688897e+00 -6.37858629e-01 -7.39176750e-01 1.62052408e-01 -9.09622461e-02 -5.05158901e-01 6.59797341e-02 -4.70596164e-01 -6.69055939e-01 -9.71533209e-02 1.72570392e-01 -1.85383260e-01 3.66413176e-01 2.97737997e-02 8.57108355e-01 -3.43023956e-01 -3.49925011e-01 1.82365581e-01 1.26424825e+00 6.71747863e-01 6.54724419e-01 6.81401372e-01 3.35131407e-01 8.46625745e-01 6.28938198e-01 7.18010962e-02 1.27627659e+00 4.46373999e-01 8.55615139e-01 2.62099385e-01 2.11822093e-01 -3.78694147e-01 5.48426926e-01 1.07367791e-01 2.90159583e-01 -2.35552475e-01 -9.13854718e-01 8.56331706e-01 -1.98740733e+00 -9.45795357e-01 -1.01714186e-01 1.89304912e+00 4.90906447e-01 -2.70005822e-01 3.09288334e-02 -3.90896738e-01 4.01665747e-01 2.53550917e-01 -9.60085750e-01 -6.41381443e-01 3.44287992e-01 -1.34810299e-01 -6.67464808e-02 8.37308347e-01 -9.13333178e-01 1.06423712e+00 6.05521011e+00 7.13038966e-02 -5.64943433e-01 -6.47199601e-02 2.95775235e-01 2.20879823e-01 -4.47639525e-01 4.63786125e-01 -4.84674066e-01 2.31425941e-01 7.56509364e-01 5.73347695e-03 7.88187385e-01 1.05040848e+00 1.79610282e-01 -6.68162167e-01 -1.69635248e+00 7.66036808e-01 1.50170729e-01 -9.82888162e-01 -1.12229849e-04 -3.28052014e-01 2.96868175e-01 -1.53165564e-01 1.06342629e-01 7.45881081e-01 9.68729198e-01 -9.72253680e-01 9.79781687e-01 4.70291823e-01 1.16189651e-01 -5.67577600e-01 4.09506738e-01 6.73160613e-01 -1.10194230e+00 -3.52960676e-01 -1.85611397e-01 -3.07883531e-01 2.31639966e-02 -2.09299982e-01 -6.46041274e-01 3.57578307e-01 7.94043005e-01 -1.18667990e-01 -4.98075753e-01 7.18891740e-01 -6.24341249e-01 -3.88408974e-02 -8.51913616e-02 -3.94243091e-01 4.20550734e-01 -3.16108197e-01 5.09083927e-01 5.69547713e-01 3.39092046e-01 5.22876501e-01 8.83240029e-02 1.45550478e+00 2.06939161e-01 -4.78517562e-02 -5.78022540e-01 4.00040925e-01 3.32070798e-01 1.19659686e+00 -4.37653750e-01 -3.03232878e-01 -4.21461850e-01 1.12931538e+00 3.87847215e-01 7.73884952e-01 -8.87948215e-01 -6.08819008e-01 7.89067626e-01 1.02704324e-01 1.44994527e-01 -1.15299493e-01 4.93377000e-02 -9.60662961e-01 -2.53048483e-02 -1.24908566e+00 6.39638841e-01 -1.45137870e+00 -6.79108143e-01 6.23707175e-01 -1.40953675e-01 -6.90723896e-01 -4.30786073e-01 -7.06226587e-01 -9.73672867e-01 9.49298441e-01 -1.38244343e+00 -1.02940345e+00 -6.10519707e-01 7.97140837e-01 7.62583137e-01 5.33275679e-02 9.77799714e-01 -2.56713778e-01 -4.86801594e-01 1.94327295e-01 -3.17669511e-01 1.80035517e-01 3.83557051e-01 -1.39177382e+00 4.99200672e-01 7.22480536e-01 -1.77955493e-01 9.14510846e-01 9.21699107e-01 -3.94923717e-01 -1.71805239e+00 -9.42013681e-01 9.51818109e-01 -1.05127597e+00 5.52921832e-01 -2.53606558e-01 -7.77580261e-01 1.18163133e+00 3.62670809e-01 -4.27006036e-01 4.68374789e-01 4.75330912e-02 -5.27223408e-01 8.52460712e-02 -1.19029129e+00 1.13294423e+00 6.79538369e-01 -6.90436661e-01 -1.06394875e+00 2.57301509e-01 7.58016944e-01 -4.85495299e-01 -2.21227467e-01 -2.05899745e-01 3.35305631e-01 -1.14929807e+00 8.00786614e-01 -8.03004861e-01 4.76619750e-01 -7.74728358e-01 -2.65703321e-01 -1.45387495e+00 -4.11451697e-01 -3.08997035e-01 7.83215091e-02 7.45296001e-01 5.78023076e-01 -8.54997575e-01 7.63031602e-01 1.15370381e+00 -1.28315926e-01 -4.79274720e-01 -6.36296093e-01 -3.49149466e-01 1.30416706e-01 -3.17012906e-01 8.94065142e-01 6.07244194e-01 3.07772338e-01 6.37636185e-01 2.54176050e-01 6.41961277e-01 3.24886918e-01 5.20588875e-01 8.90982747e-01 -8.87281060e-01 -3.36209625e-01 -4.29799944e-01 1.93450093e-01 -1.58201313e+00 9.29169282e-02 -7.65052199e-01 4.14368451e-01 -2.01818967e+00 1.90327972e-01 -1.28570586e-01 1.36591390e-01 4.02504474e-01 -2.13107899e-01 -4.16886389e-01 1.99963003e-01 1.43235410e-02 -9.01832521e-01 3.19987923e-01 1.22628975e+00 -2.39208728e-01 -2.20676303e-01 2.90966639e-03 -1.00923336e+00 1.03380632e+00 8.51838052e-01 -8.62830132e-02 -7.58068860e-01 -8.79812181e-01 5.72431028e-01 2.97104567e-01 6.72525406e-01 -9.84123468e-01 7.77825534e-01 -3.35106224e-01 1.76045626e-01 -5.07736206e-01 5.06400645e-01 -9.44565773e-01 -7.93906376e-02 5.26510537e-01 -5.29347241e-01 4.98610765e-01 8.76154304e-02 3.51067126e-01 1.66139845e-02 -4.29377645e-01 4.23162818e-01 -5.09002626e-01 -1.06207061e+00 -1.04145728e-01 -7.52720654e-01 2.35902816e-02 1.13393176e+00 -1.95990756e-01 -6.14980936e-01 -7.87974834e-01 -7.15100288e-01 8.95637870e-01 4.14525568e-01 4.95645136e-01 5.78548729e-01 -1.06993711e+00 -3.22910339e-01 -5.81956990e-02 3.88748765e-01 1.80657372e-01 3.01939666e-01 5.77252507e-01 -6.39102995e-01 5.82449675e-01 -2.07529478e-02 -1.86708465e-01 -8.45082283e-01 8.63665521e-01 7.19184995e-01 -7.64738694e-02 -3.07407975e-01 8.49587381e-01 7.47584045e-01 -1.08545732e+00 1.34445205e-01 -6.07625306e-01 -4.08673316e-01 -2.82603174e-01 5.03944397e-01 1.36260837e-01 -3.76284897e-01 -4.99571383e-01 -4.36819524e-01 4.18416023e-01 2.21510865e-02 -2.02478796e-01 8.78431559e-01 -3.72306198e-01 -3.42365324e-01 3.21565807e-01 8.89694095e-01 -1.92551717e-01 -1.07518566e+00 -1.81223810e-01 -2.35440284e-02 -2.20826194e-01 -4.50006753e-01 -1.05076218e+00 -4.74346519e-01 6.97473645e-01 2.84322858e-01 2.55953819e-01 7.87544429e-01 4.19894665e-01 4.50379401e-01 9.17613447e-01 5.94962418e-01 -9.47597623e-01 3.24638516e-01 8.99124563e-01 1.14232528e+00 -1.32027173e+00 -4.58462089e-01 -7.63962045e-02 -6.81332231e-01 9.42260265e-01 1.03506958e+00 -2.24224664e-02 1.79841578e-01 -1.16681881e-01 3.19921613e-01 -6.30311430e-01 -8.93835783e-01 -3.11912984e-01 -5.66228703e-02 6.87198043e-01 -8.29964504e-02 1.02354086e-03 2.80740350e-01 4.82474595e-01 -6.70108259e-01 -4.33213741e-01 4.19195771e-01 9.72186446e-01 -7.12501943e-01 -5.90392649e-01 -5.62893152e-01 2.44859140e-02 2.00851932e-01 8.28086734e-02 -3.78888816e-01 7.68601120e-01 1.44413169e-02 1.42117393e+00 1.36318952e-01 -2.08394870e-01 5.99077582e-01 1.42994419e-01 3.05587173e-01 -5.79956293e-01 -6.51539505e-01 -4.88025486e-01 2.95587946e-02 -8.40498626e-01 -1.25465125e-01 -5.94240427e-01 -1.62225127e+00 -2.97216415e-01 9.31284502e-02 3.40760976e-01 5.28602183e-01 1.01506841e+00 3.81948590e-01 5.29549837e-01 3.09375972e-01 -3.92869681e-01 -4.13271666e-01 -5.43484867e-01 -1.10601462e-01 2.37723723e-01 5.48281252e-01 -3.29278201e-01 -3.81379187e-01 -1.04186147e-01]
[4.370973587036133, 0.6513186693191528]
f283d877-0e87-4d2f-9ba0-38b294fe4b56
information-extraction-from-documents
2304.10994
null
https://arxiv.org/abs/2304.10994v1
https://arxiv.org/pdf/2304.10994v1.pdf
Information Extraction from Documents: Question Answering vs Token Classification in real-world setups
Research in Document Intelligence and especially in Document Key Information Extraction (DocKIE) has been mainly solved as Token Classification problem. Recent breakthroughs in both natural language processing (NLP) and computer vision helped building document-focused pre-training methods, leveraging a multimodal understanding of the document text, layout and image modalities. However, these breakthroughs also led to the emergence of a new DocKIE subtask of extractive document Question Answering (DocQA), as part of the Machine Reading Comprehension (MRC) research field. In this work, we compare the Question Answering approach with the classical token classification approach for document key information extraction. We designed experiments to benchmark five different experimental setups : raw performances, robustness to noisy environment, capacity to extract long entities, fine-tuning speed on Few-Shot Learning and finally Zero-Shot Learning. Our research showed that when dealing with clean and relatively short entities, it is still best to use token classification-based approach, while the QA approach could be a good alternative for noisy environment or long entities use-cases.
['Fabien Caspani', 'William Vanhuffel', 'Joël Tang', 'Pirashanth Ratnamogan', 'Laurent Lam']
2023-04-21
null
null
null
null
['key-information-extraction', 'reading-comprehension', 'machine-reading-comprehension']
['natural-language-processing', 'natural-language-processing', 'natural-language-processing']
[ 5.93248010e-01 1.30585566e-01 1.50629148e-01 -1.51942849e-01 -1.13883853e+00 -6.56640589e-01 9.76379097e-01 8.53219867e-01 -5.29759228e-01 6.66646540e-01 3.96240801e-01 -3.28855842e-01 -3.94494087e-01 -8.83849740e-01 -3.81813198e-01 -5.20929217e-01 1.58685982e-01 5.30496061e-01 3.70382369e-01 -3.35343510e-01 8.22624564e-01 1.86547741e-01 -1.74446833e+00 6.52281880e-01 9.60439861e-01 9.20346558e-01 4.04980779e-01 1.32238197e+00 -9.00881052e-01 1.18500197e+00 -7.45945275e-01 -2.67284006e-01 -2.95682639e-01 -1.53397620e-01 -1.54897702e+00 -4.33438867e-02 4.75022286e-01 -5.80171682e-02 1.89050227e-01 7.26419210e-01 7.88634837e-01 2.74975389e-01 5.84935546e-01 -8.79068375e-01 -7.90605366e-01 5.06666481e-01 -8.04518461e-02 3.12777191e-01 7.73435354e-01 -2.67054707e-01 1.16856885e+00 -8.83525193e-01 9.74516392e-01 9.60351229e-01 3.59545410e-01 3.13851118e-01 -6.84431672e-01 1.12712443e-01 -6.11095806e-04 8.60979736e-01 -9.24366176e-01 -3.45095843e-01 4.67414618e-01 -2.49021441e-01 1.41347933e+00 3.99027318e-01 1.54501036e-01 1.30893004e+00 -7.28847384e-02 1.32362509e+00 1.07696295e+00 -1.18404984e+00 4.32193339e-01 3.93294781e-01 7.80780971e-01 5.22347808e-01 1.15247212e-01 -6.45421803e-01 -4.63419557e-01 3.78073230e-02 4.18256484e-02 -3.21372151e-01 -2.38103166e-01 -1.32875517e-01 -1.14844024e+00 7.93347657e-01 -1.87577114e-01 7.78529644e-01 -2.61802703e-01 -2.96220183e-01 8.27131093e-01 4.22642708e-01 2.94278990e-02 8.21022093e-01 -5.83544195e-01 -5.41468740e-01 -1.00307000e+00 3.40466052e-01 1.23037720e+00 9.81501043e-01 5.38743794e-01 -3.11241806e-01 -6.63592398e-01 7.92983949e-01 -9.63429064e-02 3.15397471e-01 6.91488802e-01 -5.34775853e-01 8.47885072e-01 6.33205116e-01 2.05429986e-01 -8.81184578e-01 -4.26798373e-01 -7.84192458e-02 -6.54281914e-01 -3.02472740e-01 4.23287004e-01 -1.02378935e-01 -1.11352277e+00 8.74634385e-01 1.40480533e-01 -3.47823590e-01 2.83538729e-01 3.83372098e-01 8.67152035e-01 9.00160789e-01 -3.86462621e-02 -2.15516165e-01 1.71358371e+00 -9.11249876e-01 -9.72271383e-01 7.05744326e-02 8.42161894e-01 -1.08667779e+00 9.75368679e-01 7.47483730e-01 -7.69775450e-01 -5.37569106e-01 -9.74610090e-01 -3.12726289e-01 -1.27276325e+00 1.26357615e-01 3.98538470e-01 7.81093121e-01 -5.95600069e-01 4.59980220e-01 -2.83680528e-01 -7.47845352e-01 2.86994606e-01 8.40564296e-02 -2.57638246e-01 -5.15734315e-01 -1.27236712e+00 1.08116245e+00 5.88213623e-01 -1.35847017e-01 -6.85221076e-01 -4.50242877e-01 -6.83554053e-01 3.08217496e-01 9.35362220e-01 -5.64015687e-01 1.31105042e+00 -7.48804688e-01 -1.38954830e+00 6.36009455e-01 -2.00065166e-01 -5.29917717e-01 1.91253141e-01 -4.66263026e-01 -2.85215497e-01 2.81375557e-01 -6.56113354e-03 2.73546547e-01 9.12754476e-01 -1.12273800e+00 -6.57666862e-01 -4.48726267e-01 1.14935435e-01 2.09529757e-01 -4.69831079e-01 1.31237581e-01 -2.42826104e-01 -4.58879858e-01 -1.23148963e-01 -4.73330706e-01 1.98132634e-01 -6.32802546e-01 -5.51265240e-01 -5.92352331e-01 1.04112709e+00 -9.30167496e-01 1.11650360e+00 -1.64396429e+00 1.31707802e-01 8.91343355e-02 -1.66309357e-01 6.93685532e-01 -1.02009989e-01 1.13006878e+00 1.10846246e-03 1.59248441e-01 2.93935556e-02 -2.59303451e-01 2.29746535e-01 2.45778158e-01 -3.61061692e-01 -2.03039646e-01 1.47177324e-01 9.33854282e-01 -9.50350881e-01 -7.14902580e-01 1.41907096e-01 1.19403288e-01 6.86997995e-02 1.41928494e-01 -5.25102615e-01 -1.70124486e-01 -6.56743348e-01 9.35995221e-01 5.72483897e-01 7.94450566e-02 -1.05022766e-01 -5.74269034e-02 -3.00513297e-01 -2.08392084e-01 -1.41005206e+00 1.78846729e+00 -5.24767280e-01 8.76166105e-01 -8.66250470e-02 -1.33963156e+00 8.12657297e-01 6.11120045e-01 2.32439667e-01 -9.18865442e-01 1.73014164e-01 5.41560017e-02 -3.64160061e-01 -1.27376986e+00 1.03367734e+00 2.44574875e-01 7.84924775e-02 4.14895594e-01 4.44365531e-01 -1.49057359e-01 4.95776385e-01 4.05309737e-01 1.24399650e+00 7.92573690e-02 3.73436660e-01 3.60739492e-02 7.16491580e-01 1.72588497e-01 -3.26140612e-01 1.04930544e+00 -1.11917630e-01 4.80328709e-01 4.74494219e-01 -2.97308356e-01 -1.00127852e+00 -7.31578588e-01 2.33739633e-02 1.28882837e+00 -1.97248980e-01 -6.46410942e-01 -8.09604406e-01 -6.35669827e-01 -3.64409328e-01 7.66340196e-01 -4.98066604e-01 1.24450557e-01 -3.80436480e-01 -5.85158348e-01 6.85689747e-01 4.49350744e-01 6.34583116e-01 -1.05964398e+00 -8.39349627e-01 3.67305934e-01 -2.96841264e-01 -1.26023531e+00 2.35260457e-01 5.41800618e-01 -5.39196968e-01 -1.12283242e+00 -1.17647612e+00 -8.50092947e-01 2.76942343e-01 1.22063875e-01 9.57855999e-01 6.77247271e-02 -7.77876675e-01 9.31160033e-01 -1.22247052e+00 -9.45690751e-01 -1.89841256e-01 5.17772079e-01 -3.53500843e-01 -1.86259404e-01 5.87407827e-01 -6.67147040e-02 -2.92705297e-01 -1.30438864e-01 -1.18311775e+00 -3.65467608e-01 7.06870317e-01 8.33671927e-01 -3.39428894e-02 2.70289242e-01 5.43048620e-01 -7.86680281e-01 1.17242718e+00 -1.55363828e-01 -1.93947196e-01 1.02793407e+00 -5.69043159e-01 2.93588936e-01 5.92669427e-01 -9.69958454e-02 -1.49770176e+00 -3.67336422e-01 -2.00023845e-01 4.67613429e-01 -6.43995404e-01 5.03881097e-01 -2.54369408e-01 8.35818201e-02 6.91020489e-01 4.79266822e-01 -6.06420219e-01 -5.16730726e-01 4.51234192e-01 1.11650825e+00 3.36397558e-01 -8.01620960e-01 4.88854676e-01 3.29486161e-01 -1.26505837e-01 -1.40880692e+00 -9.59412932e-01 -1.06603396e+00 -9.14756715e-01 -1.64835095e-01 1.02066171e+00 -3.36473703e-01 -5.28219759e-01 5.84018409e-01 -1.38591444e+00 2.48546958e-01 -3.97271544e-01 1.82815224e-01 -3.59910876e-01 7.83760548e-01 -1.86115116e-01 -1.04039121e+00 -6.74939156e-01 -8.27958226e-01 1.23704684e+00 3.85171682e-01 1.35461858e-03 -9.49188590e-01 2.53908932e-01 6.88288510e-01 4.84614432e-01 7.79090598e-02 1.29531109e+00 -1.02023053e+00 -4.37114239e-01 -3.65363091e-01 -3.95671666e-01 4.46690530e-01 -1.13668457e-01 3.92424874e-02 -1.18534207e+00 1.33276135e-01 -2.08623335e-01 -6.59685373e-01 9.24741566e-01 5.21033630e-02 7.97396064e-01 -4.04179059e-02 -7.45958984e-02 -7.88312480e-02 1.59874642e+00 1.87507540e-01 9.63442504e-01 7.70407677e-01 5.18423319e-01 8.34115922e-01 6.87120736e-01 6.09031737e-01 3.19806755e-01 4.18872714e-01 1.21288516e-01 3.42030466e-01 3.15827727e-02 5.97975776e-02 7.14185908e-02 6.49238527e-01 -2.85481781e-01 -4.70143110e-01 -1.25820923e+00 7.16921985e-01 -1.87323081e+00 -1.15811861e+00 -2.10259765e-01 1.83838713e+00 7.04176366e-01 2.42154986e-01 -2.64647573e-01 4.98196304e-01 2.07652614e-01 9.82164294e-02 -5.32213226e-02 -8.96588206e-01 -6.76746443e-02 4.61641937e-01 3.60327512e-01 2.00775772e-01 -1.19507492e+00 9.36373353e-01 5.40546846e+00 1.12274146e+00 -6.22807145e-01 -3.91753726e-02 2.34843716e-01 3.90573025e-01 -5.47252335e-02 7.09000900e-02 -9.97778893e-01 3.79450284e-02 1.05147636e+00 9.96184908e-03 2.08938140e-02 7.36540198e-01 -1.44396909e-02 -7.95062840e-01 -8.85017633e-01 8.15420687e-01 5.32389402e-01 -1.48142707e+00 2.48364419e-01 -2.86901206e-01 5.84605575e-01 -2.69363880e-01 -3.54634404e-01 5.74101508e-01 -1.87375098e-01 -1.10319829e+00 3.27696532e-01 8.42029989e-01 6.25113249e-02 -7.17590213e-01 1.09995341e+00 6.33214533e-01 -1.01359153e+00 -1.92907661e-01 -5.18503845e-01 5.23695350e-02 5.21866679e-02 3.07670593e-01 -1.04269123e+00 9.93066311e-01 7.26251662e-01 1.54845089e-01 -8.50681067e-01 1.00776327e+00 -9.73257646e-02 3.77935171e-01 -9.66776982e-02 -5.52673280e-01 5.63631237e-01 1.84275657e-01 5.05660295e-01 1.63502920e+00 -2.65039504e-02 1.30940899e-01 -5.83563112e-02 2.82400161e-01 1.20026864e-01 4.86079574e-01 -3.71305794e-01 -2.31893271e-01 7.63749843e-03 1.40467036e+00 -9.17095602e-01 -5.90762794e-01 -3.12126011e-01 1.23812377e+00 1.39880016e-01 1.83729723e-01 -3.36684763e-01 -1.05075932e+00 -1.34787187e-01 -2.87530065e-01 6.40337288e-01 -4.20091063e-01 -1.00100502e-01 -1.12622237e+00 1.86398298e-01 -9.59236920e-01 3.60403895e-01 -7.82640278e-01 -8.57798517e-01 3.87553602e-01 1.88602090e-01 -7.87028491e-01 -1.43690094e-01 -9.07970607e-01 -7.51560271e-01 4.55375671e-01 -1.73110080e+00 -1.33960021e+00 -4.31496352e-01 5.71335018e-01 1.00208330e+00 -1.97688669e-01 1.22347248e+00 1.57980844e-01 -3.95839572e-01 2.03823701e-01 5.14355123e-01 1.97755083e-01 7.02248394e-01 -1.71458709e+00 -3.55876945e-02 7.64426827e-01 4.19663429e-01 5.63593984e-01 7.07267106e-01 -3.45871180e-01 -1.58570564e+00 -5.14469385e-01 1.04280710e+00 -5.13455570e-01 7.65512347e-01 -3.57592791e-01 -8.90037537e-01 2.36696362e-01 7.68848479e-01 -5.38310468e-01 8.40691030e-01 2.38331124e-01 -3.38240862e-01 1.48368105e-01 -8.87756765e-01 3.77874672e-01 3.26074868e-01 -5.96303284e-01 -1.13740015e+00 6.43215597e-01 4.32615519e-01 -4.39502709e-02 -8.43085289e-01 -1.44632325e-01 3.70425344e-01 -6.35867417e-01 8.37249875e-01 -7.34690130e-01 3.78592581e-01 -3.15255765e-03 -2.88346410e-01 -1.10613954e+00 2.72465080e-01 -4.66964662e-01 -2.03240052e-01 1.48395228e+00 4.08484846e-01 8.82072300e-02 5.96693814e-01 5.19533336e-01 5.45228608e-02 -5.07874012e-01 -9.77717698e-01 -7.29894876e-01 -2.79145818e-02 -5.66040277e-01 1.41846955e-01 7.68857598e-01 3.53720546e-01 6.85035765e-01 -4.53623593e-01 -2.16752708e-01 3.13505739e-01 -4.01941463e-02 7.35161602e-01 -1.12537909e+00 -1.77202851e-01 -1.50682211e-01 -4.74544019e-01 -7.27537513e-01 -1.11491412e-01 -6.61724865e-01 7.80872032e-02 -2.05829167e+00 8.03046748e-02 2.50049531e-01 1.89300105e-02 3.03302258e-01 -7.68936872e-02 -4.24197465e-01 3.39978516e-01 -2.74445802e-01 -9.37581718e-01 3.26746136e-01 1.07186043e+00 -4.31107700e-01 -1.22074438e-02 -2.69633699e-02 -3.80301923e-01 5.06167531e-01 5.34364820e-01 -2.16847211e-01 -3.46097976e-01 -3.37119192e-01 5.91341436e-01 -1.32108510e-01 1.43528357e-01 -1.02462757e+00 6.77355170e-01 1.66384459e-01 4.14924413e-01 -8.92261922e-01 2.63077617e-01 -8.05099010e-01 -9.35350835e-01 8.19021240e-02 -3.29126269e-01 -2.13946089e-01 9.95280296e-02 5.11049271e-01 -3.84240836e-01 -1.15369368e+00 3.14173251e-01 -4.97037500e-01 -1.20996749e+00 -2.15229690e-01 -7.17005432e-01 2.13504821e-01 1.13110948e+00 -4.48571742e-01 -4.73725021e-01 -2.39009112e-01 -7.59500325e-01 2.85768300e-01 -2.92170554e-01 4.12948549e-01 6.94104016e-01 -5.25674641e-01 -6.51485384e-01 -2.59410828e-01 4.46076900e-01 -1.34631112e-01 3.47905636e-01 6.54465735e-01 -5.57676435e-01 8.98943722e-01 -7.59737939e-02 -3.22587878e-01 -1.52239192e+00 5.71643174e-01 -1.63348079e-01 -7.29588151e-01 -5.07310569e-01 8.21759403e-01 -9.09445167e-01 -2.51126379e-01 5.72225511e-01 -4.39555049e-01 -6.94923460e-01 8.14731181e-01 9.24141347e-01 5.70879698e-01 5.30250967e-01 -1.84040710e-01 -1.69846147e-01 6.39094532e-01 -4.98491228e-01 -1.11409247e-01 1.24525368e+00 -2.04207823e-02 8.70797187e-02 4.45684493e-01 1.15160465e+00 -2.06146345e-01 -3.01786095e-01 -1.97482914e-01 8.66734326e-01 -1.34743825e-01 1.71710312e-01 -9.91264939e-01 -3.46220136e-02 1.01834571e+00 6.72120571e-01 6.96030974e-01 9.40737128e-01 -1.44766033e-01 8.33670139e-01 1.35084200e+00 1.15039825e-01 -1.89685082e+00 1.48628205e-01 8.90285015e-01 6.93851769e-01 -1.54534793e+00 2.40005955e-01 -2.35268548e-02 -7.15806365e-01 1.66471934e+00 1.71977744e-01 3.25893879e-01 6.34926200e-01 3.19054089e-02 -1.09588355e-01 -4.53088999e-01 -6.19203627e-01 -5.86868465e-01 3.15065265e-01 7.75114179e-01 4.44995552e-01 -3.02181542e-01 -2.02357799e-01 5.07391930e-01 6.58876970e-02 1.42285541e-01 5.98810613e-01 1.56497824e+00 -9.25757587e-01 -1.31291389e+00 -5.71614325e-01 4.79563802e-01 -4.07222092e-01 -2.90543646e-01 -5.85411012e-01 8.88176739e-01 2.29553789e-01 1.13031054e+00 -2.93011308e-01 1.84996888e-01 5.17578721e-01 5.64692736e-01 6.69304132e-01 -7.91200697e-01 -7.41336048e-01 -4.16188687e-01 3.14868063e-01 -2.20665127e-01 -6.31757200e-01 -6.56949222e-01 -1.06738985e+00 1.80932373e-01 -6.92736447e-01 3.81350160e-01 1.01492548e+00 1.43498492e+00 4.57491614e-02 5.95632017e-01 2.95999825e-01 -4.21811283e-01 -5.38498402e-01 -1.21521580e+00 -4.62320060e-01 1.67128593e-01 2.22366780e-01 -2.24482313e-01 -3.85009247e-04 3.56347531e-01]
[11.685791969299316, 2.8630433082580566]
8adc749b-f97b-4c0e-b984-244b8f511a6c
improving-faithfulness-of-abstractive
2212.09726
null
https://arxiv.org/abs/2212.09726v1
https://arxiv.org/pdf/2212.09726v1.pdf
Improving Faithfulness of Abstractive Summarization by Controlling Confounding Effect of Irrelevant Sentences
Lack of factual correctness is an issue that still plagues state-of-the-art summarization systems despite their impressive progress on generating seemingly fluent summaries. In this paper, we show that factual inconsistency can be caused by irrelevant parts of the input text, which act as confounders. To that end, we leverage information-theoretic measures of causal effects to quantify the amount of confounding and precisely quantify how they affect the summarization performance. Based on insights derived from our theoretical results, we design a simple multi-task model to control such confounding by leveraging human-annotated relevant sentences when available. Crucially, we give a principled characterization of data distributions where such confounding can be large thereby necessitating the use of human annotated relevant sentences to generate factual summaries. Our approach improves faithfulness scores by 20\% over strong baselines on AnswerSumm \citep{fabbri2021answersumm}, a conversation summarization dataset where lack of faithfulness is a significant issue due to the subjective nature of the task. Our best method achieves the highest faithfulness score while also achieving state-of-the-art results on standard metrics like ROUGE and METEOR. We corroborate these improvements through human evaluation.
['Asli Celikyilmaz', 'Scott Wen-tau Yih', 'Yashar Mehdad', 'Lili Yu', 'Haoran Li', 'Ankit Arun', 'Arash Einolghozati', 'Asish Ghoshal']
2022-12-19
null
null
null
null
['abstractive-text-summarization']
['natural-language-processing']
[ 3.49032789e-01 6.10221922e-01 -2.64642626e-01 -2.79950023e-01 -1.44233286e+00 -7.98367560e-01 1.02364218e+00 4.74056393e-01 -4.40885127e-01 1.13063467e+00 1.24612641e+00 -1.68750182e-01 -4.14774800e-03 -5.02464950e-01 -8.96900713e-01 -2.07410783e-01 1.61145285e-01 4.36568111e-01 6.01145066e-02 -4.99048799e-01 6.82318389e-01 -2.47039810e-01 -1.14429176e+00 5.88900030e-01 1.20984614e+00 1.94280341e-01 -7.96120465e-02 8.34076941e-01 5.01163341e-02 1.00824463e+00 -1.16952193e+00 -6.26734197e-01 -1.85710907e-01 -8.06266427e-01 -1.09729576e+00 -1.48139656e-01 7.51770496e-01 -1.37860924e-01 -1.28353730e-01 9.11228597e-01 6.86004281e-01 2.45265439e-02 9.39123094e-01 -9.68477666e-01 -4.15665030e-01 1.13314044e+00 -5.24796128e-01 5.67343473e-01 6.57718420e-01 1.92976773e-01 1.49393308e+00 -5.25206447e-01 6.28060222e-01 1.37652552e+00 6.76015794e-01 4.76001322e-01 -1.27750289e+00 -2.81429440e-01 1.21758841e-01 9.70390514e-02 -7.41447389e-01 -8.19401205e-01 6.11424088e-01 -3.64361972e-01 9.60141957e-01 6.60236359e-01 1.88332543e-01 1.22897387e+00 1.78830892e-01 8.25388491e-01 8.49629223e-01 -4.27246273e-01 1.91331238e-01 -4.22974266e-02 2.83828616e-01 4.18854058e-01 5.09935558e-01 -3.59690905e-01 -7.44081199e-01 -2.91087329e-01 1.19390018e-01 -6.79355085e-01 -6.41274571e-01 2.31349677e-01 -1.34741390e+00 9.10483599e-01 2.77223915e-01 2.24613756e-01 -4.67484683e-01 1.67214707e-01 5.94675839e-01 1.24590747e-01 6.32596731e-01 1.05203247e+00 -3.55799615e-01 -4.09441799e-01 -1.23368001e+00 6.82174444e-01 9.98449743e-01 7.37112224e-01 2.60843873e-01 -2.11621940e-01 -8.39676440e-01 7.61859953e-01 -1.41720578e-01 4.08998400e-01 4.76043850e-01 -1.23810947e+00 8.14226031e-01 4.47365642e-01 4.23996031e-01 -1.05380011e+00 -2.78776258e-01 -2.90503055e-01 -7.50547886e-01 -4.04230952e-01 4.35687095e-01 -3.05059612e-01 -5.06712437e-01 1.99541152e+00 -3.05714756e-02 -2.88036287e-01 1.79898366e-01 7.64450192e-01 8.47029209e-01 6.27662063e-01 1.12611437e-02 -5.60869038e-01 1.39932251e+00 -9.40933347e-01 -9.36359227e-01 -3.86945486e-01 6.56834304e-01 -8.21971476e-01 1.36673307e+00 2.77742743e-01 -1.26172888e+00 -7.78678060e-02 -1.17124832e+00 -2.41780177e-01 1.95480436e-01 -3.37231196e-02 4.28524315e-01 4.90157753e-01 -8.92306387e-01 8.19874465e-01 -4.24214125e-01 -2.10019648e-01 3.24938744e-01 -1.03273712e-01 -1.21492609e-01 1.07767545e-02 -1.34460449e+00 1.07923031e+00 2.05192864e-01 -1.78208992e-01 -5.02962589e-01 -9.36655700e-01 -6.64690912e-01 7.09701106e-02 6.99662149e-01 -9.56379116e-01 1.62810671e+00 -4.92811352e-01 -1.16564775e+00 5.57829857e-01 -4.00226235e-01 -6.09989941e-01 8.29717338e-01 -5.21630764e-01 2.95686815e-03 1.65646315e-01 4.15606052e-01 3.18619400e-01 4.63963747e-01 -1.22067904e+00 -4.05333191e-01 1.24591496e-02 1.51107475e-01 2.93770432e-01 -1.17433533e-01 4.47595026e-03 -2.14820072e-01 -6.70998991e-01 -3.74567538e-01 -7.39230096e-01 -1.89676359e-01 -8.28516781e-01 -9.01393414e-01 -4.05431569e-01 2.87740678e-01 -7.73019671e-01 1.49749851e+00 -1.71905982e+00 1.15371898e-01 -3.03982526e-01 3.14922750e-01 1.74188122e-01 -1.85823023e-01 7.88576424e-01 2.82829493e-01 5.60287893e-01 -3.71434361e-01 -4.32402670e-01 1.97115794e-01 -4.21852916e-02 -5.80678284e-01 2.08049878e-01 2.23607019e-01 1.15861118e+00 -1.08143806e+00 -5.36381185e-01 -9.55830067e-02 9.78759080e-02 -6.56038582e-01 2.75829971e-01 -5.35929441e-01 1.95689246e-01 -3.28644782e-01 2.02812087e-02 1.56980336e-01 -2.83873916e-01 4.39079814e-02 -1.79988995e-01 6.89807674e-03 9.74550724e-01 -7.40546048e-01 1.59203565e+00 -4.52273339e-01 6.61836565e-01 -2.55838066e-01 -7.13829875e-01 4.25025761e-01 3.33394557e-01 -1.01912422e-02 -3.77578914e-01 3.00212167e-02 6.03251420e-02 -4.30227593e-02 -5.10521531e-01 1.03911245e+00 -3.27494860e-01 -4.11312997e-01 6.27298474e-01 -1.65973231e-01 -5.38985848e-01 5.28241336e-01 8.22389543e-01 1.23780954e+00 -3.24238509e-01 5.00061691e-01 -4.48749006e-01 2.82651633e-01 2.04327777e-01 5.11223555e-01 1.14473331e+00 -6.93281591e-02 7.62214899e-01 9.40967441e-01 1.99462436e-02 -1.08417523e+00 -8.48817706e-01 1.93829551e-01 9.09490705e-01 -1.30565703e-01 -7.82543778e-01 -7.76610434e-01 -6.97710514e-01 -1.80458650e-01 1.37012291e+00 -7.48965025e-01 -1.82027325e-01 -6.35220349e-01 -9.16900516e-01 7.83365011e-01 3.35961878e-01 3.42865616e-01 -9.42549288e-01 -6.67962670e-01 2.05700040e-01 -9.74002540e-01 -1.13885987e+00 -6.58898115e-01 -1.74874678e-01 -7.10161030e-01 -1.09775388e+00 -5.40573001e-01 2.00650841e-02 2.45140240e-01 1.82027400e-01 1.60272026e+00 2.36934889e-03 9.28198919e-02 2.34049216e-01 -2.03838438e-01 -5.99525332e-01 -8.96391451e-01 2.41735786e-01 -2.11312145e-01 -5.20716608e-01 1.17280141e-01 -6.18996620e-01 -5.83009362e-01 -1.35249123e-01 -8.47359717e-01 1.44287303e-01 6.17026567e-01 8.26443017e-01 6.19442277e-02 -2.74249792e-01 1.03309011e+00 -1.28441727e+00 1.26460087e+00 -5.04623413e-01 1.10381178e-03 1.97279364e-01 -6.37462080e-01 3.26929122e-01 6.91014409e-01 -1.94252551e-01 -1.07785547e+00 -6.82881534e-01 7.56048262e-02 1.89654514e-01 1.15480065e-01 6.33794129e-01 -1.66803032e-01 8.07232499e-01 1.00933707e+00 -5.59904091e-02 -1.22957237e-01 -1.79379478e-01 7.22711027e-01 6.72410369e-01 7.68300593e-01 -5.81172705e-01 4.79369223e-01 3.21285784e-01 -2.80176014e-01 -7.95426488e-01 -1.43555343e+00 -3.99352998e-01 -1.86649054e-01 -9.32434350e-02 6.15878224e-01 -9.26569879e-01 -5.44442773e-01 -3.26408595e-02 -1.45071697e+00 -3.41407865e-01 -3.42156321e-01 1.20630458e-01 -5.40710807e-01 4.84196544e-01 -6.13117635e-01 -7.31051207e-01 -6.76157653e-01 -6.64012671e-01 1.00308371e+00 7.85443094e-03 -8.82279277e-01 -9.48292553e-01 2.87734270e-01 6.83398068e-01 3.54484171e-01 4.50006306e-01 9.77041602e-01 -8.02026093e-01 -3.12558711e-01 -2.18436301e-01 -8.57648104e-02 1.58973590e-01 3.80989388e-02 5.04959784e-02 -9.41105366e-01 1.41519401e-02 -6.27864245e-03 -4.83534306e-01 1.19130135e+00 4.09880370e-01 6.55634582e-01 -8.91792238e-01 -1.26317918e-01 -2.06081912e-01 1.08572805e+00 -4.90144521e-01 5.67730963e-01 1.37017518e-01 5.86712778e-01 7.66011894e-01 4.54047143e-01 5.40773034e-01 6.97272122e-01 5.33179939e-01 6.06823154e-02 1.60175562e-01 -3.09448063e-01 -4.70490485e-01 2.89620847e-01 1.05007958e+00 1.35149613e-01 -6.25593781e-01 -6.87162042e-01 8.54431570e-01 -2.00472903e+00 -1.20015025e+00 -5.14153242e-01 2.10234141e+00 1.29964793e+00 3.18296820e-01 2.31546819e-01 1.18208826e-01 6.51804745e-01 5.64883947e-01 -1.55173987e-01 -5.25271177e-01 -3.81651312e-01 -1.63514763e-01 2.77908683e-01 8.43550563e-01 -7.84986317e-01 7.48648643e-01 6.31363630e+00 7.01019406e-01 -7.18874514e-01 5.47013432e-02 5.32149851e-01 -3.42586309e-01 -7.60457814e-01 6.73282444e-02 -5.20606935e-01 5.70045650e-01 1.07676387e+00 -6.30266011e-01 1.25527427e-01 2.82877237e-01 6.43222511e-01 -4.19940978e-01 -1.25150621e+00 3.66969228e-01 2.69506484e-01 -1.38859272e+00 1.41407982e-01 -6.81257620e-02 9.01952147e-01 -5.13826236e-02 -3.00656468e-01 2.79814065e-01 6.70160413e-01 -9.63620245e-01 7.65066683e-01 4.66820180e-01 5.32779157e-01 -6.33825243e-01 7.89143264e-01 5.89518905e-01 -4.15658981e-01 2.54822493e-01 -2.79270679e-01 -3.37029845e-01 4.52924371e-01 1.09925354e+00 -9.80123580e-01 6.83538735e-01 1.04928322e-01 4.36318249e-01 -5.78945935e-01 7.39523053e-01 -6.92152381e-01 9.92549002e-01 -2.15127349e-01 -2.79800832e-01 3.05466931e-02 2.36576438e-01 7.82641113e-01 1.53998446e+00 -4.15731221e-02 3.09397459e-01 -1.42384484e-01 9.06832874e-01 -6.10250413e-01 4.92362604e-02 -5.33738613e-01 -1.84491519e-02 6.58221900e-01 9.92747664e-01 -3.36927384e-01 -6.00226164e-01 -2.19386909e-02 8.72118235e-01 5.00988543e-01 1.15002044e-01 -5.52664876e-01 -1.97902679e-01 1.37502447e-01 -2.48939656e-02 1.08681664e-01 1.18883826e-01 -6.52619958e-01 -1.27491939e+00 2.41444081e-01 -1.03667974e+00 3.83144796e-01 -5.42834580e-01 -1.40141141e+00 2.29415163e-01 8.72336179e-02 -6.74190104e-01 -5.39927065e-01 2.59986788e-01 -9.56019342e-01 7.91792750e-01 -1.43314207e+00 -7.64117360e-01 -1.31577119e-01 -2.84183808e-02 6.82066917e-01 3.02585185e-01 6.37701392e-01 -1.13862544e-01 -5.04518151e-01 5.23909092e-01 -2.32501090e-01 -2.05988988e-01 1.03639996e+00 -1.54061055e+00 6.27543449e-01 1.08981645e+00 1.30580872e-01 7.15804338e-01 1.35617578e+00 -8.05832148e-01 -1.09782851e+00 -9.34471011e-01 1.50765753e+00 -9.14676845e-01 6.49216592e-01 -1.93010628e-01 -8.96846294e-01 4.94397640e-01 5.39387047e-01 -6.15336657e-01 5.94829738e-01 4.33811307e-01 -4.98094082e-01 2.99744368e-01 -8.43980491e-01 7.84302115e-01 9.61495399e-01 -3.24669480e-01 -1.25318575e+00 5.01664340e-01 9.29473042e-01 -2.79505879e-01 -4.37792212e-01 3.81894022e-01 2.97679871e-01 -9.99900579e-01 5.94861686e-01 -7.31740236e-01 1.20854735e+00 7.42423758e-02 1.32413004e-02 -1.65165436e+00 -1.77912310e-01 -8.70433509e-01 -8.91417265e-02 1.41607761e+00 6.11833096e-01 -2.06204578e-01 4.29442257e-01 7.41574705e-01 -1.83593109e-01 -3.97057563e-01 -6.77739561e-01 -6.93284333e-01 5.09328187e-01 -2.42692888e-01 2.76021153e-01 9.26729679e-01 4.76466358e-01 1.00779974e+00 -4.38095868e-01 -1.03150032e-01 6.48281991e-01 2.43250560e-02 1.00214756e+00 -9.62862313e-01 -2.73207277e-01 -5.84094107e-01 1.84105158e-01 -8.97482276e-01 2.72731006e-01 -5.82466960e-01 3.99983495e-01 -1.80002749e+00 5.48272192e-01 2.74904910e-02 1.08897194e-01 3.10200810e-01 -8.43387961e-01 7.46566355e-02 3.81486744e-01 3.14478248e-01 -8.50957990e-01 5.82098126e-01 1.05822968e+00 -6.66132802e-03 -1.83471769e-01 -1.73897520e-01 -1.29457939e+00 5.97987950e-01 7.09806144e-01 -4.02649939e-01 -3.56093705e-01 -3.99329722e-01 3.02854538e-01 2.55185038e-01 3.43943119e-01 -6.01312041e-01 1.95083618e-01 -1.44117281e-01 -2.10788861e-01 -4.58409876e-01 4.40006405e-02 -2.73654666e-02 -2.92410821e-01 2.29769140e-01 -9.10003126e-01 1.02319606e-01 1.34492531e-01 6.71801805e-01 -1.32598639e-01 -2.45986298e-01 4.65706974e-01 -1.92050219e-01 -8.75401944e-02 -4.41158533e-01 -3.81730884e-01 9.30151939e-01 4.25080687e-01 3.70952606e-01 -9.23080862e-01 -7.20558941e-01 -1.61491241e-02 2.86984086e-01 4.05338228e-01 3.36952806e-01 2.13489428e-01 -8.04030418e-01 -1.33162165e+00 -6.25048578e-01 8.59751850e-02 -8.99887532e-02 2.71211594e-01 8.17014635e-01 -1.20782472e-01 5.05271733e-01 2.46314630e-01 -3.13390464e-01 -1.06359673e+00 2.66369611e-01 -6.00056313e-02 -6.62912548e-01 -5.56784689e-01 6.41037226e-01 2.06093285e-02 -1.16035111e-01 2.95388196e-02 -3.03516984e-01 -1.39765531e-01 2.51562268e-01 6.28052831e-01 5.53276360e-01 2.12982863e-01 -1.77206263e-01 -2.91382015e-01 -5.85591570e-02 -2.23583564e-01 -4.81288314e-01 1.18785191e+00 -2.56787449e-01 -4.12206836e-02 5.63481033e-01 9.39281464e-01 5.75377345e-01 -1.08269870e+00 -1.00077473e-01 1.95661828e-01 -2.30092466e-01 -5.82484230e-02 -1.25991738e+00 -2.80337691e-01 6.65308297e-01 -5.01406193e-01 3.96332264e-01 6.96241736e-01 1.11770980e-01 8.44394624e-01 4.42155868e-01 5.06214681e-04 -9.45266664e-01 1.86596110e-01 5.09092271e-01 1.21292377e+00 -1.36219645e+00 3.35148662e-01 -3.36586744e-01 -8.92861187e-01 6.98337257e-01 1.96820721e-01 -1.09304205e-01 -1.71751529e-01 1.26511425e-01 6.33385703e-02 -3.20593983e-01 -1.14653111e+00 1.41358063e-01 3.81867617e-01 1.22874185e-01 6.64755940e-01 1.70267686e-01 -8.19845557e-01 7.68564641e-01 -7.65936971e-01 -2.42069542e-01 1.16800594e+00 5.99177003e-01 -4.57669884e-01 -6.90973043e-01 -2.14387774e-01 5.05044281e-01 -7.41845727e-01 -3.44972789e-01 -7.62623966e-01 6.85757399e-01 -5.96825063e-01 1.37332654e+00 -1.64161921e-01 -1.63851008e-02 5.37256420e-01 -4.37827408e-02 4.00824785e-01 -6.96048081e-01 -7.81711876e-01 -1.05692253e-01 7.44558990e-01 -3.27562660e-01 -4.46501374e-01 -7.23471403e-01 -1.05605114e+00 -5.54986596e-01 -2.42352560e-01 4.07092571e-01 4.22015935e-01 1.05717385e+00 4.44292426e-01 6.27093256e-01 4.58950520e-01 -6.15704477e-01 -9.66676354e-01 -1.29747212e+00 -1.50805200e-02 6.72897220e-01 4.73912328e-01 -2.84959644e-01 -6.77427888e-01 7.31106400e-02]
[12.25846004486084, 9.329999923706055]
006f874f-b699-4d35-b956-dc41220b81df
early-guessing-for-dialect-identification
null
null
https://openreview.net/forum?id=mdAhC06ICCb
https://openreview.net/pdf?id=mdAhC06ICCb
Early Guessing for Dialect Identification
This paper deals with the problem of incremental dialect identification. Our goal is to reliably determine the dialect before the full utterance is given as input. The major part of the previous research on dialect identification has been model-centric with a focus on performance. We address a new question: How much input is needed to identify a dialect? Our approach is a data-centric analysis that results in general criteria for finding the shortest input needed to make a plausible guess. Working with two sets of dialects (Swiss German and Indo-Aryan languages), we show that the dialect can be identified well before the end of the input utterance. To determine the optimal point for making the first guess, we propose a heuristic that involves calibrated model confidence (temperature scaling) and input length. We show that the same input shortening criteria apply to both of our data sets. While the performance with the early guesses is still below the performance on the full input, the gap is smaller when the overall performance of the fine-tuned model is better.
['Anonymous']
2022-01-16
null
null
null
acl-arr-january-2022-1
['dialect-identification']
['natural-language-processing']
[ 1.68318957e-01 -3.36227603e-02 -1.82026699e-02 -7.72368789e-01 -1.05000985e+00 -1.06359780e+00 5.30335128e-01 1.36310548e-01 -4.24506605e-01 3.62479508e-01 2.27509186e-01 -8.02737236e-01 -2.98655108e-02 -4.08733398e-01 -2.21782446e-01 -5.69115639e-01 3.55818629e-01 9.27181184e-01 2.56130487e-01 -7.04680264e-01 4.81436163e-01 4.25604999e-01 -1.49071383e+00 1.26153573e-01 9.70121562e-01 3.36895168e-01 2.55349815e-01 1.03297007e+00 -2.16447890e-01 3.10617745e-01 -5.50443172e-01 -4.06840116e-01 3.15406054e-01 -8.73165905e-01 -1.46405470e+00 -1.81107651e-02 5.16544640e-01 -1.92453757e-01 6.82846606e-02 9.77503002e-01 5.49237847e-01 -1.01739891e-01 6.46566510e-01 -8.40973735e-01 -2.05449700e-01 1.08816576e+00 8.58723745e-02 7.44291767e-02 5.02963245e-01 2.02560294e-02 1.07296634e+00 -7.30162024e-01 4.85751241e-01 1.28147042e+00 6.62169576e-01 4.66924042e-01 -1.38786829e+00 -2.31413081e-01 2.39330873e-01 -5.97739443e-02 -1.49154639e+00 -7.79691339e-01 4.69153881e-01 -5.32435715e-01 8.20812643e-01 5.29692054e-01 3.27113569e-01 3.25485051e-01 -4.47418094e-01 4.62277532e-01 1.20307398e+00 -1.03533566e+00 1.43917009e-01 5.24159312e-01 5.22201121e-01 5.56189954e-01 -2.81004936e-01 1.46143198e-01 -2.45682210e-01 -2.04922974e-01 5.38681805e-01 -8.25509608e-01 -2.11019129e-01 2.17726737e-01 -9.66202497e-01 8.23700249e-01 7.33310580e-02 6.26592338e-01 -4.42379341e-02 -2.77479291e-01 2.48957708e-01 8.12152982e-01 1.32370561e-01 7.18959868e-01 -7.02286184e-01 -3.66373986e-01 -9.13747907e-01 3.49412411e-01 9.67952490e-01 8.98462653e-01 7.76147604e-01 -6.85527474e-02 2.18959451e-01 1.16532826e+00 6.23333268e-02 3.35152090e-01 2.29716644e-01 -9.54465508e-01 4.65620607e-01 4.72762734e-01 1.65004104e-01 -1.88061088e-01 -3.41572374e-01 4.16446775e-02 -1.16522253e-01 3.63307416e-01 1.41669357e+00 -4.10285473e-01 -8.20453405e-01 1.95955050e+00 2.29380295e-01 -4.21460181e-01 6.35532709e-03 7.86045313e-01 2.36691087e-01 6.77730143e-01 -2.19566554e-01 -2.43835539e-01 1.32641089e+00 -4.57431972e-01 -3.04750592e-01 -2.71102846e-01 8.71861279e-01 -1.18057334e+00 1.33952713e+00 4.16595966e-01 -1.03026485e+00 -6.89289272e-01 -9.94252920e-01 7.31122270e-02 -1.99433282e-01 2.75122132e-02 3.02336812e-01 1.11028183e+00 -1.17155290e+00 4.41458941e-01 -2.38981605e-01 -6.35190606e-01 -8.01789761e-01 4.76837337e-01 -1.88244477e-01 1.02155609e-02 -1.26352322e+00 1.20452714e+00 3.03856254e-01 3.24829854e-02 -2.59324461e-01 -4.03850496e-01 -5.57995975e-01 -1.72081605e-01 -1.91824753e-02 -2.68515497e-01 1.57678854e+00 -1.27497840e+00 -1.54829991e+00 1.10364866e+00 -4.19078290e-01 -4.22244556e-02 5.57309866e-01 1.02008946e-01 -2.24573255e-01 -3.58294368e-01 -1.55660540e-01 3.65877748e-01 5.60280979e-01 -1.35852075e+00 -8.27034116e-01 -3.70765746e-01 1.21536151e-01 2.78734505e-01 2.10841045e-01 5.77595949e-01 -4.71582204e-01 -4.71308887e-01 2.91551739e-01 -1.31255114e+00 -9.08943638e-02 -6.19320691e-01 -3.52499425e-01 -3.17969888e-01 2.84042899e-02 -8.16841125e-01 1.55512619e+00 -1.91242099e+00 1.55967250e-01 5.29370844e-01 -1.84012249e-01 7.84475058e-02 1.17599905e-01 6.72965646e-01 -1.70012504e-01 1.23391569e-01 -2.78613418e-01 -1.83654398e-01 -4.39240225e-03 1.32542357e-01 -3.39410394e-01 3.61168832e-01 -1.18704021e-01 4.36097115e-01 -6.45917475e-01 -3.71386915e-01 -3.44490707e-02 -7.37441480e-02 -5.24999440e-01 3.69143277e-01 6.96774293e-03 1.10933304e-01 1.12602606e-01 3.63664657e-01 6.38810635e-01 4.23850030e-01 4.07556504e-01 1.80310175e-01 -4.83727366e-01 6.80208981e-01 -1.44839358e+00 1.20025706e+00 -6.67045653e-01 6.75784886e-01 3.41987371e-01 -5.47634900e-01 9.61565077e-01 2.68195570e-01 3.45563777e-02 -4.22544032e-01 8.54348689e-02 5.88641822e-01 5.12031138e-01 -3.31841856e-01 6.27674222e-01 -3.59998614e-01 -3.60565841e-01 8.23482275e-01 -9.03194472e-02 -3.26145321e-01 1.23169981e-01 -5.96127613e-03 5.52092314e-01 -6.95703505e-03 2.20946699e-01 -7.14634359e-01 6.25480175e-01 1.31503806e-01 3.79911393e-01 8.70088637e-01 1.83551125e-02 7.93074369e-01 5.31479180e-01 -2.28989452e-01 -1.29552770e+00 -1.03545141e+00 -3.62884820e-01 1.55481100e+00 9.42042544e-02 -4.34093654e-01 -1.29756665e+00 -4.59368020e-01 -1.05779193e-01 9.79105949e-01 -5.05248785e-01 9.58998129e-02 -9.68881905e-01 -6.73384607e-01 7.90180683e-01 3.86441410e-01 -1.21703416e-01 -8.32443833e-01 -2.45033473e-01 3.35598826e-01 -4.45296288e-01 -5.89569688e-01 -7.44011521e-01 2.57595271e-01 -6.39188111e-01 -8.43407989e-01 -5.94075263e-01 -1.02902400e+00 6.53825700e-01 -9.52783898e-02 1.04283059e+00 2.58345723e-01 2.83840775e-01 8.21215659e-02 -2.56340861e-01 -2.54452825e-01 -1.09831965e+00 3.49506378e-01 1.65908575e-01 -1.22583561e-01 5.06471813e-01 -1.15296960e-01 -7.88651332e-02 6.73919559e-01 -4.44136143e-01 -7.41779506e-02 1.80275112e-01 9.01272714e-01 6.60130978e-02 -1.91008151e-01 5.03410220e-01 -1.10540128e+00 8.33424926e-01 -2.70665169e-01 -6.34674668e-01 4.36502516e-01 -8.23093712e-01 5.08816004e-01 8.24387968e-01 -4.54065621e-01 -9.43412423e-01 3.04230660e-01 -7.71037579e-01 3.54922533e-01 -3.84344578e-01 2.70337194e-01 -3.62284660e-01 1.30261153e-01 9.14142728e-01 2.16928273e-01 -2.92929839e-02 -7.54251480e-01 4.98154074e-01 1.10775876e+00 5.71274221e-01 -8.22588742e-01 5.41889429e-01 -2.54681975e-01 -6.89229667e-01 -9.38328803e-01 -1.85639605e-01 -5.58918953e-01 -1.03176427e+00 -3.40686619e-01 3.76297891e-01 -4.76115942e-01 -6.84301376e-01 6.08017981e-01 -1.18518019e+00 -4.07618135e-01 3.43453214e-02 3.58564436e-01 -6.82006896e-01 3.23827296e-01 -5.02293944e-01 -9.81226981e-01 -1.02817953e-01 -1.30479598e+00 7.75547564e-01 -1.50461078e-01 -7.46438503e-01 -9.12852943e-01 2.86274940e-01 -3.00501119e-02 1.40592203e-01 -3.49287659e-01 1.40550399e+00 -7.75030553e-01 -1.91646039e-01 -8.49360675e-02 1.47457764e-01 2.42461771e-01 2.71161169e-01 1.78980991e-01 -1.15198040e+00 -1.56791225e-01 3.61247025e-02 -8.64654258e-02 6.31635845e-01 2.60866225e-01 2.93556809e-01 -2.23447144e-01 -5.04078008e-02 3.96833986e-01 1.34342170e+00 4.60418046e-01 4.23494011e-01 1.95825502e-01 6.16020679e-01 1.13658023e+00 5.27119994e-01 5.79709262e-02 6.28825188e-01 8.12261701e-01 -2.49673903e-01 -4.77865115e-02 5.25250807e-02 -3.23436975e-01 4.37849432e-01 9.81209636e-01 -2.60713622e-02 -1.78125367e-01 -1.12774873e+00 8.90721977e-01 -1.64462304e+00 -9.10765171e-01 -2.36855522e-01 2.62501454e+00 1.01029575e+00 3.65043640e-01 7.70515144e-01 6.41743302e-01 7.59290457e-01 -1.82587564e-01 -2.46790811e-01 -9.07470822e-01 -1.73236523e-02 -8.75373632e-02 4.61042851e-01 1.40385652e+00 -5.78736007e-01 1.10519636e+00 7.84883070e+00 5.03797174e-01 -1.19231796e+00 -3.52744997e-01 6.32382989e-01 2.76151329e-01 -5.30556560e-01 3.27578902e-01 -9.81634378e-01 4.04852957e-01 1.22700262e+00 -3.24636787e-01 7.44039476e-01 4.98565733e-01 1.83100477e-01 -3.66989374e-01 -1.39088345e+00 7.76739359e-01 -9.03959349e-02 -7.77980208e-01 -3.20892900e-01 -1.42274603e-01 2.87145287e-01 -2.30132714e-01 -1.97957933e-01 1.37711138e-01 4.53154087e-01 -9.32360947e-01 9.93504763e-01 1.32523432e-01 9.33749676e-01 -8.76640558e-01 4.87757653e-01 5.26582658e-01 -1.11009789e+00 4.35235314e-02 -2.13048831e-01 -2.01401398e-01 2.79951811e-01 5.89929596e-02 -1.22134686e+00 1.64525703e-01 2.37812325e-01 -1.35514721e-01 -5.05695045e-01 8.18610787e-01 -1.57710090e-01 1.06826556e+00 -6.11482680e-01 -2.22723126e-01 2.09281042e-01 -2.07516000e-01 3.91909689e-01 1.57876980e+00 1.38833970e-01 2.01101005e-02 5.61295031e-03 4.49804366e-01 4.13682371e-01 4.45939362e-01 -5.08811176e-01 3.22524428e-01 5.75322568e-01 7.22858906e-01 -6.19877994e-01 -3.16600591e-01 -1.71477452e-01 8.45883906e-01 4.43790495e-01 1.37690380e-01 -2.97333956e-01 -6.63458049e-01 7.20869303e-01 1.91684440e-01 -6.99769333e-03 -1.88659236e-01 -5.92890739e-01 -9.42993164e-01 -8.61756504e-02 -1.03167224e+00 5.07562160e-01 -2.78107643e-01 -1.03881490e+00 8.75672877e-01 2.70087332e-01 -8.98024082e-01 -1.06568956e+00 -6.13218486e-01 -6.47404492e-01 1.50263906e+00 -7.90915430e-01 -8.05792332e-01 1.13131873e-01 2.22541913e-01 6.31906271e-01 -3.23143601e-02 9.55049515e-01 2.34478414e-01 -1.91898331e-01 9.91271615e-01 1.84283018e-01 2.66061932e-01 8.13500583e-01 -1.67402697e+00 8.86684835e-01 9.60018039e-01 2.07786039e-01 8.81419122e-01 1.12049127e+00 -4.26321983e-01 -1.05019939e+00 -3.55290562e-01 1.50077581e+00 -7.09590733e-01 3.85884851e-01 -6.96524501e-01 -9.91100252e-01 6.85160637e-01 1.54373914e-01 -9.30080235e-01 4.80476171e-01 5.39852500e-01 -3.52844030e-01 -2.49094274e-02 -1.01162851e+00 6.37937486e-01 8.46479475e-01 -8.42737138e-01 -7.90135324e-01 3.02777588e-02 5.05107582e-01 -2.58075923e-01 -7.04274058e-01 -9.98500064e-02 7.73072839e-01 -9.09185946e-01 6.07245684e-01 -5.67918181e-01 -2.28094935e-01 -2.88791686e-01 -2.42202267e-01 -1.58282447e+00 -4.71604317e-01 -8.28009069e-01 8.01728964e-01 1.49903488e+00 7.88682580e-01 -4.74463940e-01 6.08907402e-01 8.91026497e-01 9.06886086e-02 -3.04845929e-01 -7.02659547e-01 -7.23156631e-01 5.06629169e-01 -6.20643616e-01 6.81527257e-01 8.18484306e-01 2.41223648e-01 6.75044477e-01 -4.42609191e-01 -1.66159067e-02 3.33681375e-01 1.83539227e-01 7.06280589e-01 -1.16937721e+00 -3.74663591e-01 -5.90012014e-01 -6.63686171e-02 -1.35578489e+00 -8.22771117e-02 -7.80029178e-01 4.51699734e-01 -1.00820005e+00 -3.40489000e-01 -7.82151997e-01 -1.01049533e-02 1.68753996e-01 -4.75381881e-01 -1.84049070e-01 4.02022451e-01 9.51681752e-03 1.61613047e-01 -1.87468335e-01 5.23313522e-01 1.63733438e-01 -5.49720883e-01 5.64970255e-01 -8.18118095e-01 4.42953914e-01 8.27696919e-01 -4.74634677e-01 -3.52983266e-01 -4.86510098e-01 1.03879809e-01 2.09347486e-01 -2.88286090e-01 -5.60702085e-01 2.96757013e-01 -2.53844529e-01 -9.26921517e-02 -4.85437989e-01 7.94033855e-02 -5.48716545e-01 2.03018218e-01 3.75210017e-01 -4.92340654e-01 5.91700315e-01 1.65063307e-01 -1.26278475e-01 -5.31393252e-02 -6.62572265e-01 1.03888929e+00 -6.34263828e-03 -6.92036271e-01 -8.42552185e-02 -7.08541811e-01 1.47234693e-01 5.17619431e-01 -3.16271335e-01 1.31712735e-01 -5.00731885e-01 -6.87432528e-01 5.67750409e-02 7.39006281e-01 4.63592649e-01 1.98700517e-01 -1.08478248e+00 -1.08513045e+00 4.87725705e-01 3.01288188e-01 -5.80774307e-01 -2.01252624e-01 2.96221852e-01 -6.12604856e-01 3.94794494e-01 -2.66163945e-02 -4.60940838e-01 -1.51426136e+00 4.36904401e-01 5.78578711e-01 1.99181229e-01 -5.45684360e-02 9.29227889e-01 -2.66484749e-02 -8.06542754e-01 2.13505045e-01 -3.25850666e-01 -5.72996438e-02 1.39628440e-01 5.78469872e-01 2.71069735e-01 7.04252496e-02 -9.07809973e-01 -3.57847601e-01 6.90791428e-01 -2.35187858e-01 -7.19677091e-01 8.92964005e-01 -4.45577294e-01 -6.08825870e-02 8.23113143e-01 1.15427375e+00 3.77986729e-01 -8.87163818e-01 -3.03611815e-01 2.85626709e-01 -5.24773479e-01 -3.11108232e-01 -7.42949843e-01 -3.87933761e-01 8.73416364e-01 5.95035732e-01 5.21975815e-01 9.22284782e-01 1.08297297e-03 4.27803338e-01 3.22902679e-01 3.77921104e-01 -1.27155876e+00 -7.46342003e-01 8.57705474e-01 7.59376526e-01 -1.12172949e+00 -3.51091504e-01 -2.76867330e-01 -7.99585104e-01 1.20559120e+00 5.16859591e-01 1.75638929e-01 5.62539518e-01 2.14027673e-01 6.42590761e-01 2.43957058e-01 -6.70593858e-01 -3.49962324e-01 2.59402812e-01 4.67396438e-01 6.23219013e-01 5.20002693e-02 -3.19038510e-01 3.25015038e-01 -8.21182668e-01 -5.18615603e-01 5.03873289e-01 6.33652151e-01 -6.44124627e-01 -1.37737298e+00 -5.38578629e-01 2.95177132e-01 -3.63498181e-01 -3.40896755e-01 -8.98602188e-01 6.53234661e-01 2.42771376e-02 1.22356677e+00 3.63242440e-02 -7.74176061e-01 4.47710842e-01 3.53178501e-01 5.72034597e-01 -5.15894890e-01 -9.59218085e-01 1.04821555e-01 4.47684020e-01 8.35636184e-02 8.04223642e-02 -8.24748099e-01 -1.16295981e+00 -6.91640496e-01 -4.90004629e-01 4.75396127e-01 5.81645548e-01 1.01731753e+00 -3.17346543e-01 -2.37207070e-01 9.53632176e-01 -5.17648458e-01 -5.80540538e-01 -1.00217128e+00 -5.55227041e-01 3.27746987e-01 5.31378567e-01 -1.97031677e-01 -3.50239903e-01 8.55946913e-02]
[14.192214012145996, 6.694639205932617]
60b595ba-e8bf-4dd2-bc67-555791dbb960
cloud-detection-algorithm-for-remote-sensing
1810.05782
null
http://arxiv.org/abs/1810.05782v1
http://arxiv.org/pdf/1810.05782v1.pdf
Cloud Detection Algorithm for Remote Sensing Images Using Fully Convolutional Neural Networks
This paper presents a deep-learning based framework for addressing the problem of accurate cloud detection in remote sensing images. This framework benefits from a Fully Convolutional Neural Network (FCN), which is capable of pixel-level labeling of cloud regions in a Landsat 8 image. Also, a gradient-based identification approach is proposed to identify and exclude regions of snow/ice in the ground truths of the training set. We show that using the hybrid of the two methods (threshold-based and deep-learning) improves the performance of the cloud identification process without the need to manually correct automatically generated ground truths. In average the Jaccard index and recall measure are improved by 4.36% and 3.62%, respectively.
['Sorour Mohajerani', 'Thomas A. Krammer', 'Parvaneh Saeedi']
2018-10-13
null
null
null
null
['cloud-detection']
['computer-vision']
[ 2.23603576e-01 -3.90945852e-01 3.43862951e-01 -4.58865196e-01 -7.36671031e-01 -6.98147833e-01 3.02942544e-01 1.75883591e-01 -5.49039423e-01 7.66161919e-01 -5.97208977e-01 -6.22936249e-01 -6.70278817e-02 -1.33951890e+00 -5.99733949e-01 -1.01449013e+00 -1.96934640e-01 2.74391681e-01 1.41406478e-02 -2.29574228e-03 1.11906372e-01 8.80413473e-01 -1.83527744e+00 3.31706375e-01 1.29200518e+00 1.28541875e+00 3.22956562e-01 6.60088599e-01 -2.60915607e-01 6.37218118e-01 -3.48573893e-01 1.78446516e-01 6.44704878e-01 -1.85119063e-01 -5.80285847e-01 1.29018605e-01 9.66320157e-01 -6.69135034e-01 1.53466463e-01 1.26410937e+00 2.04885200e-01 -2.83809721e-01 6.70686901e-01 -8.25887978e-01 -1.20620005e-01 2.50704467e-01 -6.42225027e-01 3.92284878e-02 -5.54107249e-01 5.56868725e-02 8.36498618e-01 -1.15534997e+00 3.92398924e-01 5.66590786e-01 9.59575355e-01 -3.41152027e-02 -7.15944052e-01 -8.17719817e-01 -1.20363399e-01 5.42682186e-02 -1.74671483e+00 -1.04603089e-01 2.53741145e-01 -8.17636967e-01 6.59546614e-01 4.59473372e-01 1.13611639e+00 -2.77025193e-01 2.96657570e-02 6.26502395e-01 1.41917920e+00 -5.70211053e-01 3.49081874e-01 -7.31251836e-02 2.19293982e-01 4.04903352e-01 7.75515139e-01 2.59178072e-01 1.84524313e-01 -7.43518919e-02 7.80722380e-01 2.24633172e-01 7.22630396e-02 -1.38293102e-01 -5.19064486e-01 9.08671618e-01 7.66044557e-01 3.69396925e-01 -7.97570348e-01 7.97044411e-02 2.20497161e-01 3.81394401e-02 7.97492981e-01 3.85513783e-01 -2.76681423e-01 6.92449927e-01 -1.70213878e+00 3.83227736e-01 4.41859007e-01 7.41479516e-01 1.28812146e+00 2.16520980e-01 -1.67244628e-01 1.96617514e-01 2.39583582e-01 1.02834404e+00 -1.49212703e-01 -9.44335103e-01 8.91231373e-02 9.44325209e-01 5.95048428e-01 -8.37453187e-01 -2.67971039e-01 -7.73219526e-01 -8.53166223e-01 6.85275614e-01 1.41998857e-01 -2.43937775e-01 -1.42354310e+00 8.30084324e-01 2.24361524e-01 1.35097325e-01 -1.84599962e-02 1.01913559e+00 7.45865881e-01 4.08463091e-01 1.49409503e-01 1.72943901e-02 1.13166749e+00 -6.34594977e-01 -7.04010844e-01 -2.62166560e-01 6.09934807e-01 -3.16277474e-01 7.33830333e-01 1.17044784e-01 -5.65923333e-01 -3.98539662e-01 -1.04333580e+00 4.30339962e-01 -9.26671028e-01 6.60779774e-01 7.19319522e-01 6.37782872e-01 -1.25742900e+00 5.35358429e-01 -6.62708819e-01 -1.43974259e-01 6.95537806e-01 2.77133077e-01 -1.16353601e-01 -8.89439434e-02 -1.02708507e+00 8.60703051e-01 4.46689129e-01 8.18805158e-01 -9.14645016e-01 -4.88819420e-01 -5.13458848e-01 3.23427826e-01 6.40052557e-02 -2.63042033e-01 8.15903842e-01 -1.43927503e+00 -6.18694723e-01 1.25820398e+00 1.18853943e-02 -7.34968722e-01 7.61198997e-01 -4.62831765e-01 -6.18601367e-02 3.62193197e-01 1.48820952e-01 3.45671266e-01 8.67795348e-01 -1.59906673e+00 -9.99728620e-01 -5.01582503e-01 -6.04284257e-02 9.62629691e-02 5.37977256e-02 -1.29509419e-02 3.71013135e-02 -3.19401830e-01 3.51300806e-01 -9.48880792e-01 -4.95072961e-01 1.58409715e-01 7.66798295e-03 1.94861844e-01 8.91378343e-01 -9.81443226e-01 9.18793440e-01 -1.97572672e+00 -7.31161475e-01 5.00760436e-01 5.15587449e-01 9.39219296e-01 -1.23835348e-01 1.99100956e-01 1.34827429e-02 3.23603243e-01 -7.69639015e-01 1.10755302e-01 -4.06779259e-01 1.56849667e-01 -2.06754833e-01 5.24187028e-01 3.92644793e-01 7.42431343e-01 -9.13615465e-01 -3.78449202e-01 4.81815815e-01 3.78070325e-01 2.25469265e-02 2.41000101e-01 -1.30523741e-01 1.60035759e-01 -1.36326283e-01 8.17438841e-01 1.57659483e+00 1.60686355e-02 2.54269570e-01 1.39888197e-01 -5.63589633e-01 -2.79821809e-02 -1.16305339e+00 9.16428149e-01 -3.97160441e-01 7.85810649e-01 2.53632665e-01 -6.59371436e-01 1.01532423e+00 1.15199901e-01 4.01795864e-01 -5.26743472e-01 9.22394320e-02 3.99266124e-01 -1.12496831e-01 -5.55685937e-01 6.29666805e-01 -8.39063525e-02 4.52744365e-01 2.00746149e-01 -3.90727907e-01 -1.34361342e-01 -1.31569937e-01 -8.99567381e-02 6.11747503e-01 1.71453595e-01 3.03437673e-02 -5.26809514e-01 5.17596543e-01 5.32869160e-01 5.75810790e-01 1.08079970e+00 -2.65168488e-01 5.84448934e-01 -4.37988639e-02 -8.67586374e-01 -1.06419802e+00 -8.51173937e-01 -2.01757506e-01 8.20699334e-01 -3.24487090e-02 1.82007536e-01 -9.46097493e-01 -5.17572165e-01 3.32796752e-01 5.29452205e-01 -7.34114766e-01 3.05242062e-01 -4.15450007e-01 -9.86327291e-01 3.12967420e-01 6.15118325e-01 8.85461330e-01 -8.24207902e-01 -9.97021973e-01 8.18167031e-02 -3.25609356e-01 -9.81367350e-01 4.28146929e-01 3.14428389e-01 -1.12286985e+00 -1.13581288e+00 -3.71647745e-01 -5.28896630e-01 7.83184946e-01 6.03044927e-01 1.24191940e+00 6.06492341e-01 -2.54756272e-01 -2.03007430e-01 -4.96597588e-01 -5.84734559e-01 -2.47720152e-01 7.90204576e-05 -4.88033801e-01 5.70573919e-02 7.78663039e-01 -2.51724511e-01 -6.34851515e-01 -9.42067727e-02 -8.71262431e-01 -1.29267052e-01 7.17061341e-01 6.69195831e-01 6.33965552e-01 1.09793238e-01 1.62757561e-01 -8.47254753e-01 2.07325500e-02 -2.06944048e-01 -1.20122719e+00 2.68704712e-01 -7.85694182e-01 -3.26526880e-01 5.52782938e-02 3.27689290e-01 -7.87305057e-01 7.53600240e-01 6.73337877e-02 -4.84302938e-01 -4.34653580e-01 7.63457894e-01 1.12883903e-01 -4.85081136e-01 5.72682381e-01 2.79881567e-01 -1.56453952e-01 -3.87373865e-01 8.31263885e-02 1.06077683e+00 5.61534882e-01 1.77775145e-01 9.40238655e-01 8.34047914e-01 -8.68105888e-02 -8.94720554e-01 -7.72464633e-01 -8.17193985e-01 -1.20135999e+00 -5.15450060e-01 8.78143311e-01 -1.37664413e+00 -2.72938401e-01 8.83621395e-01 -1.02544856e+00 -2.91033059e-01 -1.47408292e-01 3.48596573e-01 -3.93978953e-02 2.57930458e-01 -2.33820245e-01 -1.35551536e+00 -8.99687886e-01 -7.46366858e-01 1.11330390e+00 2.04085007e-01 5.40895641e-01 -5.33258617e-01 -3.11421633e-01 2.11016476e-01 6.87824428e-01 6.06472790e-01 3.81532192e-01 -3.71852368e-01 -8.21960330e-01 -4.08513546e-01 -7.47230530e-01 7.64726996e-01 1.76110312e-01 3.86971027e-01 -1.35183620e+00 -1.39368922e-01 -1.54287264e-01 1.93118423e-01 1.35834873e+00 6.73068106e-01 8.96489322e-01 -1.93930268e-01 -1.76038265e-01 6.73837066e-01 2.04451084e+00 3.12175844e-02 9.10003364e-01 5.16862273e-01 7.09583998e-01 4.83762085e-01 8.09822857e-01 5.10576963e-01 2.64660358e-01 1.07206043e-03 1.05172992e+00 -6.50992393e-01 3.98816355e-02 2.54818171e-01 -2.07964763e-01 1.42423213e-01 -5.22908151e-01 1.13331757e-01 -1.26067698e+00 1.00705171e+00 -1.80104399e+00 -8.71371806e-01 -7.49967337e-01 2.15560031e+00 4.37553704e-01 -2.49551982e-01 -1.47466868e-01 1.88472956e-01 9.53696251e-01 -3.16884078e-04 -4.38074380e-01 -1.44438550e-01 -3.31168264e-01 4.16903436e-01 1.22785854e+00 5.72753906e-01 -1.75178277e+00 1.29785538e+00 6.63890219e+00 4.22308803e-01 -1.26554143e+00 1.10281128e-02 4.27948266e-01 3.96095186e-01 4.95805852e-02 -1.11715635e-02 -6.14127576e-01 2.01116025e-01 6.95456684e-01 3.05739522e-01 1.34961933e-01 8.48953247e-01 5.57790518e-01 -5.32823384e-01 -1.86865464e-01 6.17488861e-01 -2.48015359e-01 -1.53054214e+00 2.07844097e-02 1.16190597e-01 8.48670244e-01 5.18719852e-01 -2.16986507e-01 -6.81052506e-02 4.44508314e-01 -9.50497508e-01 7.31951594e-01 6.62891090e-01 1.00050414e+00 -6.74858689e-01 1.41168332e+00 2.35689938e-01 -1.25651217e+00 -1.65734991e-01 -3.96026343e-01 -4.09373701e-01 -5.47387481e-01 1.02120292e+00 -7.70489752e-01 6.12745523e-01 1.03988731e+00 3.04172337e-01 -5.38028538e-01 1.41649902e+00 -3.35683882e-01 7.76188850e-01 -4.82557565e-01 2.75739461e-01 6.02111638e-01 -4.51217353e-01 2.53115475e-01 1.28455210e+00 1.71055481e-01 8.36919099e-02 5.90516292e-02 9.14792061e-01 1.44842580e-01 -1.13087883e-02 -5.72801948e-01 1.15990199e-01 5.60408950e-01 1.38681340e+00 -8.23613346e-01 -5.44885874e-01 4.77166921e-02 6.80963516e-01 -1.80813760e-01 2.66553789e-01 -4.68718082e-01 -4.48180020e-01 8.18782985e-01 2.88038969e-01 6.49752021e-01 -3.74989361e-01 -6.03300333e-01 -9.49920952e-01 6.25193045e-02 -5.21962583e-01 1.38993412e-01 -8.62777889e-01 -9.30079401e-01 6.82315409e-01 -2.70238966e-01 -1.39306474e+00 -1.81079078e-02 -6.45489454e-01 -7.83527315e-01 1.23701143e+00 -2.14361715e+00 -1.32164514e+00 -1.06783605e+00 2.06385180e-01 -7.81538188e-02 2.61161536e-01 8.12858284e-01 1.61474377e-01 -8.73477757e-02 1.22412100e-01 6.32238448e-01 4.75791872e-01 1.70383975e-01 -1.38204801e+00 4.70648080e-01 1.28013444e+00 -2.49983460e-01 1.64002240e-01 5.68298399e-01 -6.81422591e-01 -8.84730041e-01 -1.75207102e+00 1.05756438e+00 -4.59469594e-02 2.47808456e-01 -3.18718284e-01 -9.81758535e-01 4.87735450e-01 -2.55392771e-02 1.88275665e-01 4.76500124e-01 -2.14253396e-01 -2.51438916e-01 -4.68989819e-01 -1.45273256e+00 2.00064760e-03 5.72526395e-01 -4.53786701e-01 -1.63749814e-01 6.11995339e-01 1.56181425e-01 -3.47165376e-01 -5.80863774e-01 6.59937024e-01 6.22736514e-01 -1.07869923e+00 6.07906640e-01 -3.38038266e-01 3.22657287e-01 -6.25122249e-01 -1.69149756e-01 -8.92252862e-01 -5.21805823e-01 1.75327256e-01 4.47024733e-01 7.56063879e-01 2.03251481e-01 -4.03826892e-01 9.41120684e-01 1.63468406e-01 -3.53971832e-02 -2.25572661e-01 -7.89399028e-01 -8.29003215e-01 2.75264531e-01 -2.36960694e-01 7.64809608e-01 9.97485995e-01 -9.65561748e-01 -3.39535832e-01 -3.67120802e-02 8.39564383e-01 5.85081398e-01 5.86988807e-01 6.92756474e-01 -1.73388422e+00 6.11393929e-01 -1.56692505e-01 -4.13811594e-01 -2.56410658e-01 -2.59733386e-02 -6.07838929e-01 1.45825878e-01 -1.84794760e+00 3.38195078e-02 -6.63753927e-01 -2.83369154e-01 7.44546950e-01 -2.30051473e-01 5.22095919e-01 2.08560050e-01 4.37587738e-01 -6.21525720e-02 3.77637595e-01 7.61676908e-01 -2.38413572e-01 -3.88005413e-02 1.22885384e-01 -1.94422588e-01 6.65386498e-01 1.07005215e+00 -7.51920462e-01 2.81284988e-01 -6.76936448e-01 1.77743107e-01 -3.50212395e-01 7.16082931e-01 -1.26208246e+00 -8.15424323e-02 -1.67568341e-01 5.12610972e-01 -1.11423445e+00 -9.92640480e-02 -1.06824732e+00 4.91279587e-02 7.26717114e-01 1.33473054e-01 -2.49517336e-01 3.57531846e-01 2.94515401e-01 -2.52509862e-01 -2.99352854e-01 9.23215926e-01 -4.98747349e-01 -8.88261616e-01 2.46792659e-01 -6.88741624e-01 -6.74184203e-01 8.34607422e-01 -3.37289870e-01 -8.18792433e-02 -1.97390705e-01 -6.16079569e-01 2.93383121e-01 3.83067042e-01 -1.01648629e-01 4.86217588e-01 -9.40036476e-01 -1.10587430e+00 2.38156140e-01 2.56496936e-01 1.77073598e-01 1.33987561e-01 5.37792504e-01 -1.16103268e+00 8.48668143e-02 -2.57329881e-01 -8.20399642e-01 -1.30552733e+00 1.82047084e-01 9.06422973e-01 -2.43506104e-01 -3.54376674e-01 6.49655342e-01 -3.22841913e-01 -5.62051713e-01 -1.66734725e-01 -5.02923131e-01 -3.17824274e-01 2.00395823e-01 4.43688512e-01 2.18916088e-01 5.56245506e-01 -6.87430918e-01 -5.64432323e-01 3.76162797e-01 2.94891149e-01 1.54140994e-01 1.61892772e+00 6.47059176e-03 -5.62894225e-01 1.58959091e-01 5.52709937e-01 -2.99396038e-01 -1.04856002e+00 -3.31780374e-01 1.46209195e-01 -6.65321231e-01 6.69435322e-01 -1.08410978e+00 -1.42524242e+00 1.01252723e+00 1.28314376e+00 2.54588097e-01 1.30503118e+00 -5.35816014e-01 3.67250949e-01 4.65539664e-01 -2.32861862e-02 -1.10729957e+00 -8.27465892e-01 5.77476323e-01 6.12882257e-01 -1.49103737e+00 2.16136575e-01 -4.07690555e-01 -2.42576137e-01 1.19252038e+00 4.31429207e-01 -4.24455225e-01 7.16340423e-01 3.37161720e-01 4.11803722e-01 -4.23248112e-01 -1.60180271e-01 -9.12166715e-01 -1.16026709e-02 7.22191334e-01 1.65784657e-01 5.40423870e-01 -3.58256042e-01 1.47472173e-01 1.46886930e-01 1.02083787e-01 4.96217370e-01 1.03728569e+00 -9.33586538e-01 -4.17851955e-01 -7.05780029e-01 7.63244927e-01 -2.53621519e-01 -5.25676429e-01 -5.73525786e-01 6.42344475e-01 4.56910104e-01 9.57811594e-01 4.24185723e-01 -3.55444044e-01 -8.84267166e-02 -7.02816695e-02 2.92719416e-02 -5.31523645e-01 -9.00151253e-01 8.67615491e-02 -1.35948822e-01 -1.84138089e-01 -9.25855458e-01 -6.20281339e-01 -9.55427408e-01 -1.52303174e-01 -8.63969207e-01 2.44502708e-01 9.59600925e-01 9.18066502e-01 3.78764570e-01 1.50608346e-01 7.19526768e-01 -8.58652711e-01 -2.24459007e-01 -1.07658505e+00 -1.02544892e+00 -1.50745258e-01 6.85179174e-01 -3.96008104e-01 -4.42258269e-01 7.00815022e-02]
[9.677370071411133, -1.6471331119537354]
dd501312-096d-489b-8b0c-674f7cf7cfa8
comprehensive-fair-meta-learned-recommender
2206.04789
null
https://arxiv.org/abs/2206.04789v1
https://arxiv.org/pdf/2206.04789v1.pdf
Comprehensive Fair Meta-learned Recommender System
In recommender systems, one common challenge is the cold-start problem, where interactions are very limited for fresh users in the systems. To address this challenge, recently, many works introduce the meta-optimization idea into the recommendation scenarios, i.e. learning to learn the user preference by only a few past interaction items. The core idea is to learn global shared meta-initialization parameters for all users and rapidly adapt them into local parameters for each user respectively. They aim at deriving general knowledge across preference learning of various users, so as to rapidly adapt to the future new user with the learned prior and a small amount of training data. However, previous works have shown that recommender systems are generally vulnerable to bias and unfairness. Despite the success of meta-learning at improving the recommendation performance with cold-start, the fairness issues are largely overlooked. In this paper, we propose a comprehensive fair meta-learning framework, named CLOVER, for ensuring the fairness of meta-learned recommendation models. We systematically study three kinds of fairness - individual fairness, counterfactual fairness, and group fairness in the recommender systems, and propose to satisfy all three kinds via a multi-task adversarial learning scheme. Our framework offers a generic training paradigm that is applicable to different meta-learned recommender systems. We demonstrate the effectiveness of CLOVER on the representative meta-learned user preference estimator on three real-world data sets. Empirical results show that CLOVER achieves comprehensive fairness without deteriorating the overall cold-start recommendation performance.
['Jingrui He', 'Tianxin Wei']
2022-06-09
null
null
null
null
['general-knowledge']
['miscellaneous']
[-2.78698355e-01 -2.72142857e-01 -4.56001401e-01 -5.20979464e-01 -5.88650823e-01 -5.41456223e-01 3.94190431e-01 -3.52521598e-01 -4.71222669e-01 9.61847603e-01 2.21373707e-01 -1.36182696e-01 -3.23442787e-01 -7.21165299e-01 -3.93684208e-01 -8.90101969e-01 -1.99575983e-02 3.18139851e-01 -3.52078080e-01 -5.42053998e-01 3.81464303e-01 -5.13874777e-02 -1.39337885e+00 4.08947617e-01 1.49077809e+00 8.14849138e-01 -1.51386350e-01 5.93020201e-01 1.66396588e-01 5.43594122e-01 -4.85720783e-01 -8.78242314e-01 4.18770581e-01 -3.70968312e-01 -6.74106002e-01 -4.27688658e-01 3.95776689e-01 -4.68314290e-01 -2.74640501e-01 1.02191067e+00 8.35844696e-01 8.62236381e-01 6.12778544e-01 -1.49301481e+00 -9.62668657e-01 8.76657546e-01 -3.50488394e-01 -2.38917544e-02 1.01946011e-01 3.65766473e-02 1.19886160e+00 -7.50083387e-01 -7.68429190e-02 1.15838277e+00 5.75589657e-01 1.11161995e+00 -9.95442212e-01 -9.12444949e-01 5.59185266e-01 6.84140772e-02 -1.09312499e+00 -3.83271813e-01 3.89925957e-01 -1.89319059e-01 3.34386855e-01 5.43624401e-01 1.96401864e-01 1.14628732e+00 2.04844728e-01 6.90251589e-01 1.15556645e+00 7.21106352e-03 5.58412552e-01 3.45944762e-01 3.85428309e-01 2.16260701e-01 3.19790125e-01 5.19031823e-01 -2.16180786e-01 -6.62592530e-01 3.17534983e-01 4.87100840e-01 -3.26858968e-01 -2.77828723e-01 -7.94718385e-01 8.36582422e-01 4.03414577e-01 -4.14159037e-02 -3.32302332e-01 -2.81291157e-02 4.24803942e-01 6.15673125e-01 7.17116475e-01 5.42640090e-01 -5.84992170e-01 2.20799416e-01 -8.87982547e-01 5.92728794e-01 1.00282693e+00 8.77109468e-01 6.15901351e-01 1.08302049e-01 -6.99376285e-01 8.51937771e-01 3.30960125e-01 6.78457618e-01 6.33373499e-01 -1.10340226e+00 4.52343941e-01 5.26388874e-04 6.84113383e-01 -8.92465711e-01 -1.10143356e-01 -7.33678043e-01 -1.03329980e+00 2.99050659e-01 3.74506831e-01 -6.07920051e-01 -4.76264983e-01 2.02547240e+00 3.52467716e-01 4.00194228e-01 4.25998904e-02 1.10998917e+00 7.36557186e-01 6.79051876e-01 2.41756827e-01 -6.42697453e-01 7.37587750e-01 -1.34052193e+00 -4.68286455e-01 8.64991471e-02 3.50981206e-01 -6.43495977e-01 1.28263271e+00 5.25069714e-01 -1.13222373e+00 -7.14982688e-01 -7.72399724e-01 4.19422001e-01 -9.08355862e-02 -1.24123275e-01 6.24669909e-01 1.26124227e+00 -8.38644624e-01 8.11850846e-01 -9.06068683e-02 4.97277901e-02 3.97732258e-01 5.78774154e-01 6.35341704e-02 -1.23447359e-01 -1.37746251e+00 7.05848873e-01 2.75796317e-02 9.36340168e-02 -9.59437430e-01 -1.08812726e+00 -2.38011077e-01 2.79315472e-01 6.07390165e-01 -1.11112332e+00 1.35920703e+00 -1.30889726e+00 -1.93535352e+00 2.74715960e-01 2.01948017e-01 -1.70518667e-01 7.16115236e-01 -5.60554683e-01 -6.00509465e-01 -7.62597442e-01 -3.00982624e-01 -6.18432499e-02 1.09056711e+00 -1.60400438e+00 -8.37449253e-01 -1.81895554e-01 3.95910203e-01 4.42784876e-01 -4.40028816e-01 3.26556079e-02 -3.57477367e-02 -7.99599648e-01 -6.23524666e-01 -1.00226390e+00 -6.06430233e-01 -4.96202588e-01 -6.83140457e-02 -1.20488383e-01 3.86959553e-01 -1.56352311e-01 1.33893764e+00 -1.86064303e+00 -1.13719637e-02 3.97544444e-01 2.47339487e-01 6.13655806e-01 -4.89567280e-01 9.85600725e-02 1.45206466e-01 3.23483050e-01 1.11811370e-01 -3.44355613e-01 1.97468370e-01 1.95069015e-01 -5.97551167e-01 4.01108712e-01 -7.14503050e-01 8.86287868e-01 -1.28612280e+00 -4.74933274e-02 1.90846659e-02 2.63987243e-01 -1.12549245e+00 8.46149683e-01 -7.40160048e-02 4.69936550e-01 -6.02674007e-01 1.92603290e-01 1.05344200e+00 6.71246974e-03 2.36750439e-01 -3.20355245e-03 5.29530644e-02 5.29939272e-02 -1.36700857e+00 1.37315667e+00 -8.17218363e-01 -4.71416414e-01 6.91165403e-02 -8.06490779e-01 6.22910082e-01 3.65052998e-01 3.92933547e-01 -5.57075620e-01 3.18817437e-01 9.55628902e-02 6.96143135e-03 -2.89712995e-01 7.13717699e-01 -3.73366386e-01 -8.30004364e-02 9.03290510e-01 6.80959076e-02 2.96519607e-01 -2.80326426e-01 1.81045160e-01 4.01190370e-01 -3.65111865e-02 3.58498663e-01 -3.67034823e-01 7.21163630e-01 -6.34109139e-01 7.91935503e-01 1.23931956e+00 -2.65066117e-01 4.66572672e-01 -1.26971096e-01 -4.70582455e-01 -7.00974882e-01 -9.57865596e-01 2.59563208e-01 1.81458282e+00 3.58671457e-01 -3.27089667e-01 -5.64787269e-01 -1.08986974e+00 1.32046968e-01 8.38363230e-01 -6.76829219e-01 -4.84000117e-01 -2.99769044e-01 -1.15903509e+00 1.51380330e-01 1.38669178e-01 3.20573002e-01 -9.25280869e-01 -1.09381713e-01 1.02982178e-01 -1.27389908e-01 -3.00902575e-01 -1.10823834e+00 -3.82090777e-01 -8.43102515e-01 -7.37463474e-01 -9.23164785e-01 -1.92898721e-01 6.23720884e-01 6.24429107e-01 1.14224625e+00 3.06132406e-01 3.77759963e-01 4.84340042e-01 -4.66520816e-01 -4.09558117e-02 -2.35679805e-01 1.35151735e-02 6.16551101e-01 3.73984307e-01 -6.27056882e-02 -6.42271817e-01 -8.90036285e-01 6.85226798e-01 -6.08392835e-01 -4.18821067e-01 2.40285799e-01 1.18853152e+00 2.54830420e-01 -1.49643635e-02 8.98029566e-01 -1.52215981e+00 1.14782035e+00 -8.24218869e-01 -1.89430892e-01 5.38646102e-01 -1.22440815e+00 -7.63523206e-02 1.21688581e+00 -7.23516405e-01 -1.46872199e+00 -6.58108115e-01 6.49131509e-03 -2.84775347e-01 1.44900948e-01 2.84371316e-01 -3.85523319e-01 -1.88649952e-01 7.28835225e-01 -1.56171650e-01 -2.20479757e-01 -4.65081155e-01 9.50848877e-01 6.87657297e-01 4.12566423e-01 -1.18778360e+00 8.16851795e-01 1.06721103e-01 -3.57160658e-01 7.34476978e-03 -1.18832755e+00 -4.21777785e-01 -2.80062646e-01 -1.00789100e-01 1.08708173e-01 -7.76710808e-01 -1.03980815e+00 2.90291905e-01 -6.43591881e-01 -4.58054036e-01 -3.60160559e-01 4.11925316e-01 -5.47282636e-01 4.24770296e-01 -2.73796618e-01 -1.06061983e+00 -9.04891312e-01 -9.08559442e-01 1.39641911e-01 4.85530227e-01 1.14869036e-01 -1.06888938e+00 4.43792611e-01 2.17745543e-01 7.17240870e-01 -2.74557441e-01 5.45438230e-01 -7.54539609e-01 -1.20598346e-01 -4.85015102e-02 -1.51113225e-02 4.63742346e-01 2.16470748e-01 -6.87198192e-02 -9.69443142e-01 -8.09689164e-01 1.25293294e-02 -3.59220058e-01 7.34566033e-01 3.21644545e-01 1.31908631e+00 -8.19047630e-01 -1.46575809e-01 6.63374484e-01 1.30018425e+00 4.47365567e-02 3.64428341e-01 1.00526966e-01 6.71098232e-01 3.04013252e-01 8.39880943e-01 7.69435883e-01 4.11898822e-01 6.14613652e-01 3.57269794e-01 2.61639297e-01 3.27474773e-01 -2.34754503e-01 4.20042396e-01 7.60048866e-01 -6.41320646e-01 -4.97282177e-01 -2.06687957e-01 6.47572950e-02 -2.40973997e+00 -1.31452382e+00 2.80904472e-01 2.76862478e+00 7.28923023e-01 -2.56784558e-01 4.50540185e-01 -3.19335043e-01 7.86788523e-01 8.95797312e-02 -5.53327978e-01 -6.36482477e-01 2.13771805e-01 1.45530194e-01 3.66844952e-01 5.96175075e-01 -9.68092501e-01 8.16196978e-01 6.57672310e+00 8.01663816e-01 -1.00318265e+00 3.94599229e-01 7.08821893e-01 -4.93438631e-01 -6.12086236e-01 8.63827486e-03 -5.32058537e-01 7.26390660e-01 8.85605395e-01 -6.02084577e-01 9.88659143e-01 9.37531114e-01 2.64037877e-01 3.69900644e-01 -8.96046281e-01 8.64509583e-01 1.23841381e-02 -8.76531303e-01 2.49394387e-01 -1.55785874e-01 1.30665314e+00 -2.44465441e-01 5.86967051e-01 7.90126383e-01 7.64386952e-01 -1.04464757e+00 3.70704442e-01 7.59301186e-01 6.51698709e-01 -9.99268413e-01 7.81056821e-01 4.92335260e-01 -6.79364443e-01 -4.37463641e-01 -8.39882731e-01 -1.95642874e-01 7.49280825e-02 6.00810409e-01 -6.30421489e-02 7.39898860e-01 4.42517877e-01 4.64707077e-01 -1.18933558e-01 1.27797687e+00 -7.44576380e-02 6.76251709e-01 1.28045261e-01 -1.57457534e-02 1.69375464e-02 -3.19179773e-01 3.79610837e-01 9.45763707e-01 3.65754873e-01 4.41312999e-01 3.80301684e-01 6.86878562e-01 -3.47203523e-01 4.48043257e-01 -7.03342333e-02 4.73784149e-01 5.11845648e-01 1.52390993e+00 1.31732568e-01 -1.84824482e-01 -2.80991346e-01 9.50917184e-01 4.38590735e-01 5.18324673e-01 -8.15451741e-01 -3.59184891e-02 9.95827734e-01 -3.23485583e-01 -9.64437798e-02 3.06200981e-01 -3.12901974e-01 -1.50438702e+00 -4.15273786e-01 -1.18689513e+00 7.48814344e-01 -3.01132292e-01 -1.82661343e+00 4.63718921e-01 -2.78986782e-01 -1.31774843e+00 -1.18394978e-02 -2.44475663e-01 -1.08964396e+00 1.09935319e+00 -1.50399792e+00 -1.11753154e+00 -1.69356123e-01 7.66609311e-01 2.35256582e-01 -5.71080804e-01 8.87792826e-01 4.67286110e-01 -6.32096529e-01 1.38087070e+00 6.15292668e-01 -4.57035184e-01 1.27599251e+00 -1.25569654e+00 7.16655254e-02 5.13061821e-01 -7.75922909e-02 1.19342685e+00 7.31277823e-01 -3.95982236e-01 -1.18248582e+00 -1.13009584e+00 5.48771977e-01 -5.92883825e-01 1.84712350e-01 1.46700526e-02 -7.16213048e-01 4.29230392e-01 1.63305588e-02 1.92061216e-01 9.82999265e-01 6.75774992e-01 -6.07698262e-01 -3.61859173e-01 -1.45439386e+00 7.65357614e-01 1.07893622e+00 -2.78366834e-01 -5.45085490e-01 8.49242229e-03 5.88260055e-01 -3.78711134e-01 -8.16122651e-01 2.68491566e-01 9.70045626e-01 -9.17308629e-01 1.15443110e+00 -1.29109120e+00 3.30535918e-01 -2.04185009e-01 -8.88015255e-02 -1.93883133e+00 -8.68321061e-01 -1.09145141e+00 -3.38281840e-01 1.31345987e+00 2.79752284e-01 -6.08293414e-01 7.08671749e-01 1.13249147e+00 2.54373532e-02 -5.12115479e-01 -5.96189439e-01 -5.94392240e-01 5.48620820e-01 -8.60779658e-02 1.01314628e+00 1.11454165e+00 1.82268038e-01 2.10463226e-01 -1.29478872e+00 2.08379745e-01 7.91879475e-01 4.79039043e-01 9.11533177e-01 -1.13613701e+00 -5.36306262e-01 -4.54115421e-01 4.61421192e-01 -9.48641419e-01 3.90203506e-01 -9.13833141e-01 -8.67132097e-02 -1.00597656e+00 4.63609308e-01 -7.83506691e-01 -1.13519466e+00 2.68775463e-01 -8.01489472e-01 2.77532563e-02 2.68736094e-01 2.31829152e-01 -9.27077711e-01 6.46323681e-01 1.44169974e+00 -1.47289395e-01 -4.16759819e-01 8.54482293e-01 -1.36274731e+00 3.45720321e-01 8.90094817e-01 -6.22861564e-01 -7.66614854e-01 -1.58618480e-01 2.50887632e-01 -1.16212584e-01 2.35689152e-02 -5.69058597e-01 2.37374336e-01 -7.68995523e-01 8.03425238e-02 5.92415556e-02 -1.69840053e-01 -8.09408426e-01 6.56209663e-02 1.84759140e-01 -5.98843098e-01 -2.30289221e-01 -1.83328703e-01 7.18286574e-01 2.82431513e-01 -2.68098593e-01 8.76570404e-01 -3.20802808e-01 -4.76568133e-01 8.95549595e-01 7.80326948e-02 2.91133225e-01 7.02174246e-01 3.18746954e-01 -3.89698446e-01 -5.88976681e-01 -7.22805917e-01 5.35295546e-01 2.46816054e-01 5.67828476e-01 3.63516837e-01 -1.42874837e+00 -7.94391572e-01 -2.43385676e-02 6.72092065e-02 -5.47590017e-01 6.49913549e-01 4.82878327e-01 3.70356500e-01 -3.16523528e-03 -3.31871986e-01 1.91563040e-01 -1.01280963e+00 9.16706264e-01 5.73278069e-01 -2.26207495e-01 -4.79162447e-02 9.08857882e-01 2.92879552e-01 -8.92576337e-01 2.49189720e-01 1.04375273e-01 -3.09923947e-01 -2.10653469e-01 7.83968985e-01 7.11745679e-01 -3.31828594e-01 -4.34219807e-01 -4.31045853e-02 3.68119746e-01 -3.02581728e-01 1.15472749e-01 1.08097684e+00 -4.19636250e-01 -7.92093277e-02 2.10264131e-01 7.95595050e-01 3.38188529e-01 -1.17796397e+00 -4.37658787e-01 -3.93340826e-01 -9.37294960e-01 5.53905554e-02 -1.09713447e+00 -1.25301063e+00 6.03101015e-01 6.10423982e-01 4.48802412e-02 9.26043928e-01 -6.51872218e-01 7.11876690e-01 4.39288646e-01 5.40347338e-01 -1.15336025e+00 -1.10337235e-01 4.99421567e-01 5.58678985e-01 -1.42936504e+00 1.15917698e-01 2.07840931e-02 -9.21264172e-01 8.22132885e-01 8.37830067e-01 -2.17966110e-01 1.01709509e+00 -2.38960341e-01 1.18015431e-01 3.58684689e-01 -7.92241037e-01 3.69098149e-02 5.68698943e-01 5.82899749e-01 4.85628575e-01 3.98859799e-01 -6.05497479e-01 1.48883808e+00 3.46694589e-02 1.69907957e-01 4.25053775e-01 3.01372379e-01 -3.42535853e-01 -1.45554924e+00 -3.50278541e-02 5.81899345e-01 -6.56705499e-01 -1.47815466e-01 -2.56763701e-03 4.12733518e-02 1.99294358e-01 1.14020491e+00 -3.83691609e-01 -6.98091388e-01 3.85196149e-01 -1.68100283e-01 2.72602558e-01 -5.45343161e-01 -1.09413290e+00 -2.98617840e-01 -4.94415313e-02 -5.47656059e-01 -5.12063920e-01 -3.72939825e-01 -6.95978522e-01 -8.80302787e-01 -4.24377024e-01 7.30782211e-01 -8.88932347e-02 9.60496843e-01 3.42785567e-01 3.17969739e-01 1.29524159e+00 -8.48160326e-01 -1.24841666e+00 -6.64935350e-01 -7.93611288e-01 6.06025696e-01 3.40375036e-01 -6.40919983e-01 -4.28158998e-01 -3.73807609e-01]
[9.707939147949219, 5.582244396209717]
76f35f18-f6d2-4d96-9e88-aa287802e4a3
a-new-speech-feature-fusion-method-with-cross
2211.13377
null
https://arxiv.org/abs/2211.13377v1
https://arxiv.org/pdf/2211.13377v1.pdf
A new Speech Feature Fusion method with cross gate parallel CNN for Speaker Recognition
In this paper, a new speech feature fusion method is proposed for speaker recognition on the basis of the cross gate parallel convolutional neural network (CG-PCNN). The Mel filter bank features (MFBFs) of different frequency resolutions can be extracted from each speech frame of a speaker's speech by several Mel filter banks, where the numbers of the triangular filters in the Mel filter banks are different. Due to the frequency resolutions of these MFBFs are different, there are some complementaries for these MFBFs. The CG-PCNN is utilized to extract the deep features from these MFBFs, which applies a cross gate mechanism to capture the complementaries for improving the performance of the speaker recognition system. Then, the fusion feature can be obtained by concatenating these deep features for speaker recognition. The experimental results show that the speaker recognition system with the proposed speech feature fusion method is effective, and marginally outperforms the existing state-of-the-art systems.
['Ye Zhang', 'Wenyi Yan', 'Jiacheng Zhang']
2022-11-24
null
null
null
null
['speaker-recognition']
['speech']
[-3.74202207e-02 -4.61917400e-01 1.61977708e-01 -3.89431566e-01 -5.63452721e-01 -6.54323101e-02 4.23654824e-01 -2.27804080e-01 -3.30745488e-01 2.42237538e-01 4.88514304e-01 -2.04298869e-01 1.67518675e-01 -6.15211248e-01 -2.63468593e-01 -9.81802046e-01 1.54567018e-01 -4.95096266e-01 2.22432166e-01 -3.83811831e-01 8.95562619e-02 6.65119588e-01 -1.78732967e+00 6.46306217e-01 5.48735738e-01 1.36273801e+00 2.22167507e-01 7.99238205e-01 -3.93805176e-01 3.56060743e-01 -9.93778765e-01 -1.51584670e-01 -7.04822456e-03 -3.36376280e-01 -4.21470672e-01 -5.82496822e-02 7.22924918e-02 -4.52741474e-01 -8.23217928e-01 1.24021840e+00 7.95806348e-01 3.83047462e-01 4.46817070e-01 -9.53100681e-01 -5.50925612e-01 8.60145390e-01 -2.30474874e-01 4.83758688e-01 3.61474156e-01 -1.96528718e-01 7.45023906e-01 -1.17589200e+00 -2.41657019e-01 1.83996236e+00 4.74935889e-01 4.94544059e-01 -7.33500302e-01 -9.07731712e-01 1.16036296e-01 5.65791190e-01 -1.60572219e+00 -9.06956613e-01 8.30973387e-01 -1.14782818e-01 1.18508077e+00 4.45191056e-01 7.08016336e-01 7.34072328e-01 2.51863390e-01 8.31779420e-01 6.71681285e-01 -5.57517529e-01 -3.61180007e-02 -1.08469658e-01 2.92790323e-01 6.70224369e-01 -3.15770388e-01 2.38949537e-01 -8.50077450e-01 2.88952794e-02 8.64135265e-01 4.12886769e-01 -5.69477320e-01 6.19946420e-01 -1.18790340e+00 8.28779280e-01 6.22337937e-01 6.42547488e-01 -3.03177297e-01 -1.59179807e-01 3.38246018e-01 4.61361736e-01 1.76002234e-01 -3.75383019e-01 -2.85392791e-01 1.86572075e-01 -8.73732686e-01 -4.87675555e-02 7.77274370e-01 7.94767022e-01 6.52078152e-01 5.75158417e-01 -2.87939399e-01 8.34490180e-01 7.41752684e-01 5.69726169e-01 1.11173022e+00 -2.00051844e-01 3.96985888e-01 5.53705752e-01 -1.94802493e-01 -7.81075120e-01 -3.41980070e-01 -3.46413463e-01 -1.02672136e+00 -1.91473141e-02 5.46857901e-02 -3.05651695e-01 -1.08966494e+00 1.29615283e+00 1.70087934e-01 4.49669242e-01 5.05604863e-01 9.13820982e-01 1.41502345e+00 1.08892417e+00 -2.72163779e-01 -2.38038853e-01 1.72968447e+00 -1.01949286e+00 -1.01843321e+00 4.35919985e-02 6.82511404e-02 -1.04386985e+00 7.03468621e-01 1.63300857e-01 -9.16916490e-01 -1.03736758e+00 -1.41546535e+00 -7.93901756e-02 -5.58149099e-01 4.33554471e-01 1.94866389e-01 8.83887291e-01 -8.35879385e-01 3.45480740e-01 -7.89057076e-01 1.54823452e-01 2.18824208e-01 5.02733707e-01 -1.69810429e-01 2.82422215e-01 -1.55170703e+00 6.68321550e-01 4.23440218e-01 6.02637768e-01 -6.32178605e-01 -2.75129110e-01 -9.00135338e-01 5.78311801e-01 -2.76237637e-01 -2.46796951e-01 1.30327034e+00 -1.16217053e+00 -1.83586836e+00 1.92715287e-01 -5.03159523e-01 -3.77795488e-01 6.46257028e-02 1.31514922e-01 -1.20694995e+00 1.26380280e-01 -4.64031637e-01 3.88711274e-01 1.40771830e+00 -3.78351420e-01 -9.58801270e-01 -1.98928133e-01 -2.11552188e-01 2.33207032e-01 -5.41245341e-01 3.15779865e-01 -3.96247059e-02 -7.37774134e-01 3.50557983e-01 -3.24349195e-01 1.03502266e-01 -5.67667425e-01 -1.21012419e-01 -4.04360712e-01 1.24191654e+00 -7.13316262e-01 1.47623956e+00 -2.70101142e+00 -4.83040996e-02 5.20641394e-02 1.27794873e-02 7.03017056e-01 -8.30198154e-02 2.55003273e-01 4.55471911e-02 -1.13562435e-01 1.39400870e-01 -1.78313196e-01 1.95234492e-02 -5.39805070e-02 -5.01325369e-01 1.52904376e-01 4.04760748e-01 7.47057199e-01 -3.85077655e-01 -2.08079070e-01 4.57502633e-01 8.44891131e-01 -1.47494704e-01 2.39607409e-01 3.57021570e-01 1.92182079e-01 -2.70140141e-01 3.47674012e-01 1.00260258e+00 3.62738818e-01 -2.06972614e-01 -5.27983963e-01 -3.27052325e-01 6.98873580e-01 -1.33587611e+00 1.27796698e+00 -1.70271128e-01 5.27560830e-01 9.35103446e-02 -7.72513509e-01 1.16675186e+00 6.86397910e-01 -9.39173698e-02 -3.51611495e-01 4.08969790e-01 2.88588047e-01 3.44805568e-01 -3.47330868e-01 2.68239766e-01 -2.59208679e-01 4.49759141e-02 -4.92259953e-03 5.00079811e-01 -6.76733814e-03 -1.25501588e-01 -3.44778389e-01 6.80703402e-01 -7.45033145e-01 2.01830193e-01 -1.21166445e-01 1.40024173e+00 -7.48187244e-01 6.47021294e-01 3.68894547e-01 -4.12254363e-01 3.27528656e-01 -1.61648631e-01 -5.09614408e-01 -7.31850922e-01 -9.37170446e-01 -1.96342394e-01 1.02183187e+00 -5.21071590e-02 -3.09630334e-01 -8.40596318e-01 -3.70618016e-01 -1.68483675e-01 1.76335752e-01 -2.36623332e-01 -3.79391432e-01 -5.52166343e-01 -4.45090562e-01 8.94988775e-01 6.54279709e-01 9.89183009e-01 -1.13628829e+00 -2.77772337e-01 5.36978960e-01 -8.00842121e-02 -8.89777064e-01 -8.53207171e-01 2.36058921e-01 -4.82781708e-01 -5.18211782e-01 -7.86069632e-01 -1.34375203e+00 2.68964380e-01 4.33918536e-01 2.97240406e-01 3.44594568e-02 2.02485994e-01 -2.37165615e-01 -4.82500643e-01 -5.17128348e-01 -4.18653309e-01 -4.45962884e-02 3.03859174e-01 5.22749245e-01 7.60959446e-01 -3.80459070e-01 -4.87243086e-01 1.10491522e-01 -8.74586999e-01 -1.13042787e-01 5.41654646e-01 1.09227228e+00 2.54196793e-01 4.11073327e-01 1.01555824e+00 1.17107451e-01 7.83000648e-01 -3.91772538e-02 -4.66174066e-01 4.50039692e-02 1.46448016e-01 -2.05539525e-01 8.04807246e-01 -6.81648433e-01 -1.24360514e+00 5.34957759e-02 -5.61885953e-01 -3.95337552e-01 -2.78226465e-01 6.87311649e-01 -5.09401143e-01 -1.26526058e-01 2.34067619e-01 5.24791300e-01 1.63612127e-01 -4.88618672e-01 2.43455708e-01 1.44573522e+00 4.36025798e-01 1.88843355e-01 3.96001399e-01 1.67952268e-03 -5.03591061e-01 -1.19997525e+00 -4.16785032e-01 -4.44840401e-01 -3.21782708e-01 -7.33073875e-02 7.78905272e-01 -1.20773315e+00 -9.45069075e-01 1.03581119e+00 -1.34384847e+00 4.62503880e-01 1.05952611e-02 9.56613123e-01 -1.68378487e-01 2.63187319e-01 -1.04298544e+00 -9.72143352e-01 -6.56257570e-01 -1.47848284e+00 9.15550113e-01 9.80169356e-01 2.00824350e-01 -6.55650496e-01 -4.67740744e-01 1.00429535e-01 6.13739014e-01 -5.93716681e-01 6.90246582e-01 -8.63883138e-01 -2.75748402e-01 -1.36628106e-01 -1.57775115e-02 7.13814139e-01 4.74197745e-01 6.95727766e-02 -1.36715555e+00 -4.15697902e-01 4.72366512e-01 2.10519478e-01 1.02955329e+00 3.66168499e-01 7.83435404e-01 -6.10392749e-01 -1.49366036e-01 5.48168242e-01 8.91601026e-01 6.35543883e-01 6.07060015e-01 -1.02418870e-01 5.42925060e-01 2.00531393e-01 9.90989804e-02 1.86999172e-01 1.40030473e-01 3.89398783e-01 -5.90781309e-02 -3.91480289e-02 -2.35917583e-01 3.34604271e-02 8.59720588e-01 1.49713230e+00 1.31306946e-01 4.19213846e-02 -4.68561292e-01 3.61279875e-01 -1.64207029e+00 -1.10042393e+00 9.24334228e-02 1.89205730e+00 6.51806235e-01 8.99408609e-02 -1.69425067e-02 5.09607136e-01 1.10334373e+00 3.09991062e-01 -4.37969148e-01 -5.46301246e-01 -1.58075437e-01 4.49232876e-01 3.67262214e-02 3.27851653e-01 -1.14701247e+00 7.27855563e-01 6.22883224e+00 1.12062979e+00 -1.61919916e+00 -8.58799219e-02 1.91129074e-01 7.04366118e-02 1.95866615e-01 -4.23753470e-01 -1.17770207e+00 5.98196566e-01 1.15191925e+00 -3.13512474e-01 6.19469166e-01 7.72573233e-01 1.63211837e-01 4.84480947e-01 -8.60958338e-01 1.13901186e+00 7.82830715e-02 -1.09947884e+00 1.71252996e-01 -2.17202246e-01 4.13373262e-01 2.33965255e-02 1.89206794e-01 5.32378078e-01 4.63913120e-02 -1.02777970e+00 7.93157458e-01 5.49377024e-01 5.71934104e-01 -1.16689992e+00 9.84337449e-01 2.91480362e-01 -1.74771190e+00 -3.95599395e-01 -4.90470409e-01 -1.38249084e-01 2.93130688e-02 6.07351422e-01 -8.30169082e-01 6.31598711e-01 7.38267481e-01 4.27056491e-01 -1.27166077e-01 8.05250823e-01 3.83443907e-02 6.32481873e-01 -3.34154814e-01 -2.88093299e-01 1.28386438e-01 2.11159721e-01 3.46547037e-01 1.44212878e+00 5.96850932e-01 4.51240428e-02 -1.14170341e-02 7.52570987e-01 -1.75126433e-01 1.24839377e-02 -1.10450864e-01 -2.35003218e-01 8.12860072e-01 1.43909156e+00 -2.36040384e-01 -6.33779407e-01 -5.03921807e-01 7.02207327e-01 -8.58164430e-02 3.83887976e-01 -5.79859257e-01 -1.01465070e+00 7.72465348e-01 -4.50803757e-01 7.57213175e-01 -1.21003158e-01 -6.75674854e-03 -1.23222232e+00 -2.72840261e-02 -9.18399811e-01 1.92174420e-01 -4.37884361e-01 -1.39087784e+00 8.57199490e-01 -6.07395172e-01 -1.33868563e+00 -2.50281096e-01 -5.29059172e-01 -9.70287085e-01 1.59678376e+00 -1.46124041e+00 -1.16871941e+00 -7.37264156e-02 9.15637255e-01 6.61613047e-01 -6.64627612e-01 1.02527738e+00 2.55003095e-01 -5.68295181e-01 6.93499029e-01 6.15510978e-02 3.80737543e-01 2.40963027e-01 -6.94287062e-01 6.73124075e-01 9.50787544e-01 5.19143641e-02 7.11954117e-01 8.56147893e-03 -2.70657569e-01 -1.36414564e+00 -9.87074554e-01 9.45036232e-01 3.58378053e-01 3.31729859e-01 -3.07602584e-01 -1.10349953e+00 4.06730503e-01 3.05684775e-01 -2.35335063e-02 8.54103565e-01 -3.78699452e-01 -3.99220109e-01 -3.34567279e-01 -1.15345478e+00 3.03535879e-01 3.39082211e-01 -8.21469545e-01 -1.05193686e+00 -2.16043159e-01 1.06907642e+00 -4.71689880e-01 -7.76680112e-01 3.17306399e-01 7.38042831e-01 -8.21127772e-01 1.01337349e+00 -3.86793733e-01 1.02618309e-02 -7.65091240e-01 -3.82429183e-01 -1.47122872e+00 -4.80910629e-01 -2.69691974e-01 -1.70594499e-01 1.39496195e+00 1.36722594e-01 -8.77442896e-01 2.20114097e-01 -1.28227443e-01 -2.23009527e-01 -4.03309166e-01 -1.33739614e+00 -6.56064034e-01 -1.76038086e-01 -1.40859306e-01 1.30425370e+00 7.81898320e-01 2.11069912e-01 5.48003852e-01 -9.23288986e-02 4.47084963e-01 1.28383115e-01 -6.34184927e-02 2.54121035e-01 -1.19503748e+00 -3.08747608e-02 -6.87137723e-01 -5.89381337e-01 -1.22415483e+00 8.79822969e-02 -7.99932241e-01 1.17856875e-01 -1.24943292e+00 -2.90062517e-01 1.97055772e-01 -6.31648123e-01 4.04213637e-01 -2.06812784e-01 -1.22480258e-01 3.08878154e-01 -1.27079077e-02 1.29051790e-01 6.69306099e-01 1.13952398e+00 -4.35174555e-01 -3.78219873e-01 5.00214435e-02 -4.19533342e-01 7.64344215e-01 7.34509706e-01 5.46837151e-02 -1.69141276e-03 -1.49944827e-01 -7.06182241e-01 2.22814456e-01 1.60731018e-01 -1.20815825e+00 5.23929894e-01 1.92312941e-01 8.69185030e-01 -9.29370344e-01 6.34731174e-01 -7.56700695e-01 -5.26422076e-02 5.43780446e-01 -1.07559852e-01 -1.89032584e-01 3.44271511e-01 2.15739042e-01 -6.53982401e-01 -1.46405041e-01 6.90970778e-01 6.15072548e-02 -5.51224172e-01 9.78027806e-02 -7.33706117e-01 -8.22891772e-01 4.80189949e-01 -1.60736680e-01 -4.10419434e-01 -2.19375104e-01 -7.13952839e-01 -1.79619417e-01 -4.16939795e-01 5.77643633e-01 9.66776729e-01 -1.78953898e+00 -6.81422055e-01 1.06084216e+00 -3.21921676e-01 1.73778068e-02 6.32405937e-01 5.58287859e-01 -1.72577605e-01 4.90781635e-01 -3.46537083e-01 -4.70512748e-01 -1.30637109e+00 3.82567734e-01 5.33659279e-01 1.85777843e-02 -1.79176718e-01 8.94914806e-01 1.15524448e-01 -3.00469190e-01 3.00459355e-01 -5.62317431e-01 -6.04463637e-01 1.88427404e-01 1.11038458e+00 3.63396108e-01 4.21611488e-01 -1.16898501e+00 -4.51052606e-01 3.66068572e-01 -4.00587827e-01 -3.68168831e-01 1.25020289e+00 -2.44350761e-01 -6.38218969e-02 3.32271755e-01 1.27853048e+00 9.90297943e-02 -8.97064030e-01 -3.74606609e-01 -5.51680565e-01 -2.32815385e-01 2.69381523e-01 -5.95527589e-01 -1.18237674e+00 1.14458907e+00 8.24821413e-01 4.36236233e-01 1.34659576e+00 -3.88520300e-01 9.65518057e-01 2.27052838e-01 4.88009527e-02 -1.02732289e+00 -2.33311072e-01 8.21805596e-01 9.44756150e-01 -7.78290868e-01 -5.48458457e-01 -2.41688505e-01 -1.31028816e-01 1.61540759e+00 3.50603044e-01 -1.60534099e-01 8.80575836e-01 2.74122506e-01 2.90749252e-01 2.71918565e-01 -5.41049659e-01 -2.50144452e-01 5.19882560e-01 4.18071777e-01 4.42044258e-01 2.11981177e-01 -2.38295108e-01 1.15771270e+00 -6.29494429e-01 -3.18574637e-01 2.86403954e-01 7.01075912e-01 -8.77239108e-01 -9.59291577e-01 -8.28798413e-01 3.45039934e-01 -3.81197095e-01 -3.03548634e-01 -1.54665112e-01 5.94350845e-02 2.18048945e-01 1.44388175e+00 1.89519614e-01 -9.65100884e-01 3.56028646e-01 3.25633824e-01 2.36628175e-01 -3.25226456e-01 -8.05935144e-01 6.16466701e-01 -3.39687824e-01 -7.01830536e-02 -2.58932233e-01 -3.30109000e-01 -1.55868256e+00 -2.17473283e-01 -7.48911917e-01 1.90178230e-01 7.43099332e-01 9.18185294e-01 2.97619164e-01 8.59000266e-01 1.02885234e+00 -9.59730029e-01 -6.79312468e-01 -1.42084825e+00 -6.28953934e-01 -1.87252648e-02 8.88545990e-01 -4.60420549e-01 -5.10326743e-01 1.15135215e-01]
[14.466071128845215, 6.005220413208008]
b8ac3bbd-52cf-4e0e-ad3e-af4c0c3a8ea7
data-structures-for-density-estimation
2306.11312
null
https://arxiv.org/abs/2306.11312v1
https://arxiv.org/pdf/2306.11312v1.pdf
Data Structures for Density Estimation
We study statistical/computational tradeoffs for the following density estimation problem: given $k$ distributions $v_1, \ldots, v_k$ over a discrete domain of size $n$, and sampling access to a distribution $p$, identify $v_i$ that is "close" to $p$. Our main result is the first data structure that, given a sublinear (in $n$) number of samples from $p$, identifies $v_i$ in time sublinear in $k$. We also give an improved version of the algorithm of Acharya et al. (2018) that reports $v_i$ in time linear in $k$. The experimental evaluation of the latter algorithm shows that it achieves a significant reduction in the number of operations needed to achieve a given accuracy compared to prior work.
['Sandeep Silwal', 'Shyam Narayanan', 'Piotr Indyk', 'Justin Y. Chen', 'Alexandr Andoni', 'Anders Aamand']
2023-06-20
null
null
null
null
['density-estimation']
['methodology']
[-6.06724441e-01 -9.33910161e-02 -2.53944755e-01 -3.55681390e-01 -1.44705427e+00 -9.00255620e-01 -1.17961861e-01 3.73491973e-01 -6.77474916e-01 9.87663805e-01 -7.98486054e-01 -6.50370538e-01 -3.68858516e-01 -1.04937494e+00 -1.12201953e+00 -5.72460175e-01 -5.57317257e-01 1.04219103e+00 1.20124593e-01 3.69438142e-01 4.52809691e-01 2.97553539e-01 -1.30610025e+00 -7.77593136e-01 7.40958691e-01 1.66734219e+00 -1.23255022e-01 7.86519706e-01 -1.28653914e-01 3.17539603e-01 -5.87917626e-01 -7.20696926e-01 4.13357049e-01 -1.09646186e-01 -8.40454817e-01 -3.30655903e-01 3.50256234e-01 -5.57650745e-01 -3.45737964e-01 1.48100770e+00 2.34813899e-01 1.12959877e-01 9.30441916e-01 -1.25769508e+00 -4.70911920e-01 1.09561980e+00 -1.19222152e+00 4.12260771e-01 9.34688225e-02 1.96268503e-02 9.78725374e-01 -5.96746802e-01 4.39417481e-01 1.08952463e+00 5.70856810e-01 8.33977982e-02 -1.77869689e+00 -1.20828116e+00 -1.06840067e-01 -1.32450193e-01 -2.08115768e+00 -1.57304883e-01 2.85845101e-01 -3.38470697e-01 7.49617159e-01 -3.84837538e-02 4.16471928e-01 3.55669409e-01 -3.44785303e-01 7.82499313e-01 1.06397557e+00 -2.52103955e-01 8.24475825e-01 2.03949153e-01 1.64928421e-01 6.36923015e-01 7.15138137e-01 -1.80704832e-01 -5.60089529e-01 -6.15657508e-01 5.56281626e-01 -3.22344363e-01 5.11323959e-02 -4.13555264e-01 -2.73902476e-01 9.96730626e-01 1.36404291e-01 -2.30889395e-01 9.63603705e-03 7.79646277e-01 3.87412727e-01 1.45958811e-01 5.24977446e-01 1.03701599e-01 -7.53825724e-01 -6.84212446e-01 -1.23183930e+00 5.13862312e-01 1.02868378e+00 1.24444783e+00 1.12952638e+00 -1.41629398e-01 2.54690021e-01 6.60262704e-01 7.47583658e-02 1.28802729e+00 -2.48336703e-01 -1.45740974e+00 6.16033852e-01 1.45516127e-01 6.66624606e-01 -5.51348090e-01 2.09996819e-01 9.02722478e-02 -7.46712208e-01 -1.03591394e-03 8.71618092e-01 -2.35847846e-01 -6.14146590e-01 2.11240315e+00 2.32160270e-01 -1.61857694e-01 -4.11920100e-01 3.25528294e-01 -2.06119537e-01 6.19138420e-01 -8.86829719e-02 -2.23964706e-01 1.25196481e+00 -1.12259425e-02 -1.87205896e-01 -1.60792932e-01 3.58728886e-01 -6.13753438e-01 1.05619872e+00 5.96631050e-01 -1.51197636e+00 -6.52353540e-02 -7.44337261e-01 2.14809790e-01 -2.67371625e-01 -2.71613020e-02 7.90384948e-01 1.11387920e+00 -1.22714615e+00 3.74932587e-01 -7.26113021e-01 -1.57333523e-01 9.14916396e-01 3.87258202e-01 1.75838415e-02 -2.78332114e-01 -7.86190331e-01 3.58234137e-01 1.12444919e-03 -5.16546190e-01 -1.13311934e+00 -1.02360988e+00 -7.44912863e-01 1.93425238e-01 6.18483484e-01 -1.55869588e-01 1.36711693e+00 -1.86867103e-01 -8.55778575e-01 8.78908336e-01 -5.29097497e-01 -9.33023512e-01 4.96163696e-01 1.87119115e-02 2.17855901e-01 2.23962173e-01 1.86189204e-01 3.33800048e-01 6.39771879e-01 -9.65853930e-01 -9.66653109e-01 -8.33448231e-01 -7.65461326e-02 -2.38126069e-01 -1.52561650e-01 -1.86707929e-01 -5.51716685e-01 -2.03424007e-01 -8.36645961e-02 -7.13249505e-01 -4.43572998e-01 -2.00253185e-02 -4.20921624e-01 -4.43479627e-01 3.17338943e-01 -4.79209691e-01 1.36478865e+00 -2.10402966e+00 -2.79533684e-01 8.30369234e-01 6.51950359e-01 1.88299594e-03 2.64944613e-01 3.59090805e-01 6.61423266e-01 3.87394071e-01 -4.13432807e-01 -7.06019402e-01 4.49822843e-01 2.51411665e-02 -1.31865442e-01 7.54786253e-01 -5.30846953e-01 4.96228099e-01 -5.75608313e-01 -3.67038876e-01 3.69724594e-02 5.85059971e-02 -5.22673726e-01 2.06214517e-01 -3.87519360e-01 -3.37912828e-01 -8.80923867e-02 5.32490730e-01 1.42315197e+00 -5.89800715e-01 3.28948706e-01 3.01574200e-01 1.92105979e-01 3.06235850e-01 -1.34033215e+00 1.51333356e+00 -3.30344647e-01 3.36510390e-01 7.58938134e-01 -1.52923620e+00 7.87208855e-01 -2.44008765e-01 5.18790126e-01 -4.03428495e-01 4.26112294e-01 5.07078111e-01 -4.70333338e-01 1.22755505e-01 6.06383443e-01 -1.58725694e-01 -5.60098946e-01 6.93837047e-01 1.71147749e-01 -9.99732018e-02 3.57898116e-01 5.60227871e-01 1.42998159e+00 -5.85013747e-01 2.05838129e-01 -4.22805279e-01 -6.20353185e-02 -1.67633280e-01 2.52830207e-01 1.39165020e+00 -6.24271512e-01 -1.00655137e-02 9.77558196e-01 9.44868103e-02 -1.30531764e+00 -1.58791649e+00 -2.16548428e-01 1.05643594e+00 2.90161282e-01 -3.41459274e-01 -8.84236157e-01 -5.43916821e-01 4.53224599e-01 5.13482809e-01 -8.90230000e-01 3.29650283e-01 -2.75456220e-01 -4.99716818e-01 5.92203617e-01 6.22657359e-01 6.34912431e-01 -5.08244872e-01 -4.67482954e-01 -1.11252755e-01 7.39140585e-02 -9.93436337e-01 -6.88606203e-01 3.20413977e-01 -7.41594017e-01 -9.26127195e-01 -5.86722493e-01 -5.38524806e-01 5.63310266e-01 -1.52231917e-01 1.22733176e+00 -4.49989200e-01 -4.52001870e-01 4.73524004e-01 -6.10421784e-02 -4.43792582e-01 -1.79553013e-02 2.01629072e-01 1.02042779e-02 -6.63251817e-01 9.50494111e-01 -6.93628013e-01 -8.65074635e-01 -1.94953114e-01 -6.51388943e-01 -9.65831876e-01 3.39807868e-01 6.09392226e-01 7.34149456e-01 4.13147330e-01 3.29744190e-01 -1.18718779e+00 4.01697576e-01 -9.03214216e-01 -1.30373883e+00 4.68851179e-02 -9.34143603e-01 2.23276779e-01 8.56105328e-01 -2.43257895e-01 -3.68759573e-01 -1.41139120e-01 -2.42965207e-01 -7.01793373e-01 1.61604747e-01 4.13839579e-01 1.69665515e-02 1.16684973e-01 6.43120170e-01 4.48865384e-01 4.02186453e-01 -4.31061655e-01 5.49284399e-01 4.46058631e-01 5.59311628e-01 -9.37136471e-01 6.06830418e-01 5.36478698e-01 -1.59855019e-02 -4.56674278e-01 -4.55231905e-01 -4.25233305e-01 -1.04262188e-01 4.84307110e-01 2.43909582e-02 -8.07436407e-01 -1.40377688e+00 2.71447182e-01 -6.02334678e-01 -6.59050822e-01 -7.59045780e-01 1.42558962e-01 -6.53019726e-01 2.68812567e-01 -4.23543036e-01 -1.36965835e+00 -3.39974642e-01 -7.84265876e-01 8.43474150e-01 1.31775215e-01 2.01096404e-02 -7.14487016e-01 6.79566860e-02 -3.33509780e-02 4.43907142e-01 -3.33880365e-01 8.66519034e-01 -5.70249081e-01 -6.41434431e-01 -3.95084113e-01 -6.08681560e-01 4.48952705e-01 -3.54945242e-01 -1.04332075e-01 -5.41502774e-01 -5.28647959e-01 -2.71248996e-01 -5.33708990e-01 6.70202672e-01 9.89902377e-01 1.91557837e+00 -6.32205427e-01 -5.19548595e-01 5.87967932e-01 1.87265754e+00 1.22930288e-01 6.66742921e-01 -1.54187530e-01 -2.11796686e-02 1.24065682e-01 5.95684350e-01 1.03547311e+00 4.53980923e-01 1.30034596e-01 2.07831174e-01 2.72727340e-01 4.85922605e-01 -3.51042122e-01 -4.46978770e-02 1.11909874e-01 3.41653079e-01 -1.62236035e-01 -7.51152575e-01 1.06934714e+00 -1.50710082e+00 -7.53478825e-01 5.11840105e-01 2.75213480e+00 9.90483880e-01 5.06716967e-02 7.81496048e-01 -2.33990587e-02 6.61582112e-01 -2.58265026e-02 -9.37234581e-01 -3.62353295e-01 2.96974868e-01 1.43847978e+00 1.38074481e+00 5.80690444e-01 -6.81822777e-01 6.82541847e-01 6.67862797e+00 1.62206411e+00 -6.84770048e-01 1.73949838e-01 1.06116581e+00 -5.01147449e-01 -4.35405463e-01 3.78737189e-02 -9.58194733e-01 1.00249970e+00 1.41941273e+00 -5.69521964e-01 8.97088885e-01 1.45581412e+00 -2.68724740e-01 -8.16255927e-01 -1.09306407e+00 1.50079548e+00 -2.30984375e-01 -1.50894809e+00 -4.45376456e-01 4.56595719e-01 4.30138141e-01 -2.66093891e-02 6.09576821e-01 4.61370617e-01 1.28829253e+00 -1.35015512e+00 5.36519110e-01 -2.00745195e-01 1.22763419e+00 -1.36048317e+00 6.04989409e-01 4.71535236e-01 -1.30377781e+00 1.28123192e-02 -7.06463277e-01 8.05474669e-02 1.84727982e-01 9.54470158e-01 -8.14192235e-01 3.57613415e-02 1.21852040e+00 4.40516919e-02 -1.53210565e-01 5.50808966e-01 3.84606153e-01 9.92729843e-01 -9.78307664e-01 -4.09345210e-01 6.67032897e-02 -2.25504726e-01 3.84888947e-02 9.74986434e-01 6.64386868e-01 2.43266612e-01 1.60080209e-01 1.02443480e+00 -6.86223269e-01 4.28188331e-02 -6.69869184e-01 -1.42099932e-01 1.46192610e+00 8.38911474e-01 -5.38272142e-01 -4.99421537e-01 3.89008783e-02 7.24307239e-01 7.76380718e-01 1.10227577e-01 -8.32668841e-01 -5.91407537e-01 7.72999763e-01 5.60511947e-01 8.67054760e-01 -3.49589825e-01 -3.44282448e-01 -6.78259134e-01 1.10116430e-01 -4.23336238e-01 6.09965026e-01 -8.53917301e-02 -1.66867208e+00 -1.28039047e-02 1.42148614e-01 -6.35676563e-01 -1.44224718e-01 -5.79478264e-01 8.15945789e-02 1.14135420e+00 -9.18564260e-01 -4.14606035e-01 2.90788651e-01 4.62028474e-01 -7.82581270e-02 1.00078486e-01 6.97815239e-01 1.03783287e-01 -2.03841254e-01 1.25927985e+00 7.54756927e-01 1.34864852e-01 2.72823751e-01 -1.50178659e+00 1.69809729e-01 7.44609654e-01 -1.45640954e-01 7.26715922e-01 7.54888833e-01 -3.53975773e-01 -1.51703203e+00 -7.11950243e-01 3.27373743e-01 -4.71132606e-01 6.96670890e-01 -4.46274787e-01 -4.69395965e-01 8.04474413e-01 8.72981623e-02 1.52226016e-01 9.91702557e-01 4.68400866e-01 -6.75407946e-01 -5.11402607e-01 -1.91590703e+00 7.80642629e-02 8.66672158e-01 -4.98053133e-01 2.44734377e-01 -1.54796124e-01 3.71124297e-01 -3.79432112e-01 -1.01408327e+00 5.02881370e-02 5.14055669e-01 -8.98226380e-01 9.57617521e-01 -2.34711647e-01 1.94896758e-01 3.76939438e-02 -5.95339656e-01 -1.06601155e+00 2.29256794e-01 -6.29317641e-01 -3.86297286e-01 1.10653412e+00 4.99825954e-01 -7.78172731e-01 1.18954992e+00 7.29342282e-01 7.60774612e-01 -7.25456536e-01 -1.39479768e+00 -8.39910388e-01 8.70839357e-01 -6.92499340e-01 4.98854786e-01 3.53095263e-01 -3.77138592e-02 -8.59517381e-02 -2.02675819e-01 2.54932642e-02 1.09445333e+00 5.18586226e-02 1.07084537e+00 -1.07960999e+00 -4.70314145e-01 -3.29799324e-01 -1.74280077e-01 -1.49832451e+00 4.99979667e-02 -6.31104708e-01 2.19235182e-01 -9.37896729e-01 5.76331675e-01 -1.19934762e+00 -1.94346502e-01 1.62478983e-02 3.85278612e-02 1.68562070e-01 -2.83215404e-01 -2.61988286e-02 -8.59190702e-01 3.43927532e-01 4.85489368e-01 1.49919108e-01 2.44244203e-01 -1.61503017e-01 -1.10097849e+00 5.48824668e-01 5.56349695e-01 -3.59850585e-01 -3.96336436e-01 -2.60725439e-01 2.84091175e-01 3.35212857e-01 -2.10364759e-02 -6.91653848e-01 9.77372080e-02 -2.21504986e-01 1.99426010e-01 -8.84534776e-01 3.28074098e-01 -4.74472404e-01 -2.93987513e-01 3.48420233e-01 -2.49986783e-01 9.71926972e-02 2.22481996e-01 7.60185361e-01 9.36057866e-02 -1.61860079e-01 1.14145410e+00 -1.37240693e-01 -1.89325407e-01 7.92795539e-01 -2.47829616e-01 5.76662123e-01 1.08294559e+00 1.88488767e-01 -3.61655802e-01 -5.60101509e-01 -3.28162938e-01 2.85419613e-01 6.43246472e-01 -7.24145830e-01 2.29527101e-01 -9.54830170e-01 -3.56481314e-01 -1.13314450e-01 8.02236516e-03 4.87261504e-01 5.45217454e-01 6.58081412e-01 -6.92216694e-01 2.35144153e-01 3.67015988e-01 -6.68388665e-01 -8.87191236e-01 5.16950309e-01 5.34176752e-02 -5.95735371e-01 1.32341171e-02 1.55862725e+00 -3.50343108e-01 -2.71403223e-01 3.18748981e-01 -2.09281147e-01 8.24530840e-01 -4.03565735e-01 6.11230969e-01 7.00870216e-01 -3.73661190e-01 -6.91488525e-03 -5.56467474e-01 1.93843976e-01 -2.74514437e-01 -8.30137074e-01 1.00402880e+00 -3.28214139e-01 -1.04868516e-01 3.63149405e-01 1.39829159e+00 3.25064421e-01 -1.26176238e+00 -4.93724614e-01 -3.39836210e-01 -1.01449358e+00 -5.30346751e-01 -5.55557013e-01 -1.13083863e+00 8.71488750e-01 7.42141664e-01 5.27989805e-01 1.08417952e+00 5.86743176e-01 7.89323986e-01 1.20314978e-01 1.10277486e+00 -1.19074190e+00 -1.27685547e-01 2.42138624e-01 -1.34039089e-01 -1.08938646e+00 -9.02114138e-02 -1.76141053e-01 -1.96361348e-01 4.96807694e-01 6.68353319e-01 -4.22457665e-01 1.03657055e+00 6.84060872e-01 -4.94016141e-01 -2.82336056e-01 -5.77176690e-01 -8.51469338e-02 -5.94714820e-01 6.61571920e-01 1.00762106e-01 4.94757563e-01 -3.90866309e-01 8.71341109e-01 -5.49109101e-01 1.64687648e-01 2.75570124e-01 8.89189303e-01 -7.26738691e-01 -1.19932544e+00 -2.28559718e-01 1.06177640e+00 -6.37730718e-01 -3.66626382e-02 2.47107267e-01 7.26316094e-01 -5.03411032e-02 7.73122609e-01 6.13947093e-01 -2.00779408e-01 -2.37747192e-01 -3.90067361e-02 6.47649527e-01 -3.77095789e-01 1.10205933e-01 -1.60206631e-01 -3.27242613e-01 -5.34198463e-01 -1.43088382e-02 -6.80602968e-01 -1.22737229e+00 -1.46509945e+00 2.18620785e-02 5.23353815e-01 6.60356402e-01 7.56218672e-01 4.32218909e-01 -4.20004815e-01 7.43217051e-01 -2.35373333e-01 -1.01750207e+00 -1.05283666e+00 -1.46410835e+00 2.13733658e-01 -7.53418892e-04 -6.37306094e-01 -7.25380242e-01 -2.64752269e-01]
[6.69671106338501, 4.591709613800049]
0d6a4af6-e23c-46dd-89e2-fa14fd414e46
single-image-hdr-reconstruction-by-multi
2210.15897
null
https://arxiv.org/abs/2210.15897v1
https://arxiv.org/pdf/2210.15897v1.pdf
Single-Image HDR Reconstruction by Multi-Exposure Generation
High dynamic range (HDR) imaging is an indispensable technique in modern photography. Traditional methods focus on HDR reconstruction from multiple images, solving the core problems of image alignment, fusion, and tone mapping, yet having a perfect solution due to ghosting and other visual artifacts in the reconstruction. Recent attempts at single-image HDR reconstruction show a promising alternative: by learning to map pixel values to their irradiance using a neural network, one can bypass the align-and-merge pipeline completely yet still obtain a high-quality HDR image. In this work, we propose a weakly supervised learning method that inverts the physical image formation process for HDR reconstruction via learning to generate multiple exposures from a single image. Our neural network can invert the camera response to reconstruct pixel irradiance before synthesizing multiple exposures and hallucinating details in under- and over-exposed regions from a single input image. To train the network, we propose a representation loss, a reconstruction loss, and a perceptual loss applied on pairs of under- and over-exposure images and thus do not require HDR images for training. Our experiments show that our proposed model can effectively reconstruct HDR images. Our qualitative and quantitative results show that our method achieves state-of-the-art performance on the DrTMO dataset. Our code is available at https://github.com/VinAIResearch/single_image_hdr.
['Binh-Son Hua', 'Rang Nguyen', 'Quynh Le', 'Phuoc-Hieu Le']
2022-10-28
null
null
null
null
['hdr-reconstruction', 'tone-mapping']
['computer-vision', 'computer-vision']
[ 6.60233855e-01 -8.63396898e-02 1.40883714e-01 -3.63511473e-01 -9.00165856e-01 -2.40368783e-01 4.15356547e-01 -6.01781249e-01 -2.99809724e-01 6.36292696e-01 1.25133500e-01 -1.64244547e-01 2.52896607e-01 -8.32183778e-01 -1.01593494e+00 -8.05817366e-01 4.50249583e-01 -1.34663552e-01 2.95354240e-02 -2.03256890e-01 9.13760290e-02 4.68123019e-01 -1.55007672e+00 2.79350281e-01 9.34853613e-01 9.42272425e-01 6.01457417e-01 9.44129765e-01 2.76845694e-01 1.22499323e+00 -5.20310163e-01 -2.68078893e-01 7.67154098e-01 -7.10430026e-01 -4.94041204e-01 3.63764167e-01 7.71388054e-01 -9.84584153e-01 -9.26839709e-01 1.00695968e+00 6.80535734e-01 5.50216846e-02 2.09413514e-01 -8.81084621e-01 -1.03922522e+00 1.78639218e-01 -7.35919058e-01 -6.79374710e-02 4.71807063e-01 5.43131411e-01 6.98104680e-01 -8.19477677e-01 5.02044559e-01 9.30670738e-01 5.56917131e-01 5.52342176e-01 -1.49223924e+00 -6.78247571e-01 -3.91028911e-01 9.75332782e-02 -1.31446159e+00 -6.99935913e-01 7.93562829e-01 -8.65017325e-02 7.69793570e-01 3.70313168e-01 6.50507808e-01 8.33828330e-01 2.65884370e-01 4.57419723e-01 1.74999344e+00 -4.75830019e-01 -1.31901860e-01 -9.36836228e-02 -4.70532238e-01 5.89751840e-01 -2.15874597e-01 5.51518857e-01 -5.15451252e-01 4.02382016e-01 1.23606336e+00 2.35711232e-01 -7.78252780e-01 8.39772820e-02 -1.01779759e+00 4.93657231e-01 6.35307252e-01 -2.84673870e-02 -3.12760144e-01 2.21500576e-01 -2.77850479e-01 4.08101946e-01 3.46493661e-01 4.36527550e-01 5.07791638e-02 3.46448362e-01 -9.68637586e-01 3.32427621e-02 3.64227563e-01 6.39294684e-01 1.07154536e+00 1.25549912e-01 -8.38371068e-02 9.89377975e-01 7.39598833e-03 7.63237298e-01 2.18851656e-01 -1.39164352e+00 2.74335921e-01 1.07133158e-01 1.31146595e-01 -7.15066433e-01 -3.68951000e-02 -1.36384889e-01 -1.07370698e+00 7.04320490e-01 1.97691604e-01 -8.01910236e-02 -1.15769839e+00 1.53274012e+00 1.49628520e-01 2.98677027e-01 1.68232117e-02 1.31413877e+00 7.30587125e-01 1.02159035e+00 -3.06511432e-01 -3.46345752e-01 9.30917680e-01 -1.02165067e+00 -8.34212899e-01 -3.81581724e-01 -1.17935568e-01 -1.02402449e+00 1.17350459e+00 5.14798045e-01 -1.54752231e+00 -6.97569609e-01 -1.21212626e+00 -6.63501143e-01 9.70563442e-02 7.75929093e-02 2.75725454e-01 1.87067643e-01 -1.25078809e+00 5.84256887e-01 -3.14744115e-01 1.75237395e-02 2.07960010e-01 1.57356188e-01 -3.22061241e-01 -5.75818121e-01 -1.16112387e+00 9.57579732e-01 1.94794208e-01 1.13241121e-01 -1.00460780e+00 -9.53478038e-01 -7.22750366e-01 -1.17801003e-01 2.38108829e-01 -8.38367820e-01 1.00544238e+00 -1.00169265e+00 -1.80052733e+00 9.68757153e-01 5.23439907e-02 -4.12735134e-01 4.70633477e-01 -1.65997446e-01 -5.25058746e-01 3.31359982e-01 -1.66841865e-01 7.20051706e-01 1.07094133e+00 -1.64129663e+00 -5.05914032e-01 -4.63218316e-02 -1.00217713e-02 4.15227354e-01 9.61977318e-02 -8.71861055e-02 -5.32165766e-01 -5.51477015e-01 1.18961014e-01 -7.55142629e-01 -9.59233269e-02 2.70472586e-01 -4.28531319e-01 6.76017284e-01 8.24015200e-01 -9.80044723e-01 1.02828503e+00 -2.03585887e+00 1.63434982e-01 -2.60130912e-01 3.83891881e-01 2.66894877e-01 -2.73944229e-01 2.82484174e-01 -2.47188717e-01 -2.45244727e-01 -4.49874133e-01 -4.74696368e-01 -3.46625388e-01 9.14626718e-02 -6.46037579e-01 6.35918260e-01 5.23225516e-02 9.40498352e-01 -6.80537283e-01 -2.66894847e-01 8.18352461e-01 8.47332358e-01 -2.93027192e-01 7.42351770e-01 -9.71739292e-02 7.05039918e-01 2.99748570e-01 4.84845430e-01 9.16566849e-01 -2.28607476e-01 1.39164597e-01 -5.97290695e-01 -3.56246233e-01 4.06433716e-02 -1.00286102e+00 1.67825162e+00 -8.37261021e-01 8.99503827e-01 5.00641055e-02 -6.53401673e-01 8.79612863e-01 1.37868106e-01 5.28183818e-01 -1.35272861e+00 8.92684050e-03 3.00579548e-01 -2.78109282e-01 -4.55340385e-01 6.05957806e-01 -4.93565589e-01 3.40722054e-02 4.34006929e-01 -2.94625815e-02 -5.68779588e-01 -2.30797291e-01 3.98465171e-02 9.07186568e-01 4.83831689e-02 1.96974903e-01 3.39048058e-01 2.72622943e-01 -4.87948745e-01 3.71484935e-01 6.25197649e-01 2.06285328e-01 1.31898057e+00 1.25083983e-01 -3.80823433e-01 -1.61877406e+00 -1.37982202e+00 -1.03043959e-01 6.22814417e-01 4.27593172e-01 5.58011271e-02 -5.37534297e-01 6.44935593e-02 -3.40694040e-01 6.37493670e-01 -4.26912069e-01 -1.12425230e-01 -7.54525840e-01 -5.67950726e-01 3.23707491e-01 -2.10553985e-02 9.29198384e-01 -1.06932187e+00 -5.84532440e-01 1.37986951e-02 -4.09879059e-01 -1.28148544e+00 -5.65124869e-01 1.24424390e-01 -4.36350971e-01 -8.16973567e-01 -8.67873669e-01 -6.77722335e-01 6.01785660e-01 7.61043608e-01 1.07460082e+00 7.06057101e-02 -5.23999274e-01 2.07312070e-02 -6.50697351e-02 1.03486679e-01 -6.25229359e-01 -4.52127278e-01 -2.33325124e-01 1.15226611e-01 -4.43268836e-01 -8.19463670e-01 -9.83853221e-01 3.73303145e-01 -1.29187012e+00 6.73690319e-01 8.21254671e-01 8.91769588e-01 7.77844548e-01 1.09796762e-01 1.66270539e-01 -7.57890105e-01 2.14174554e-01 -1.75261229e-01 -7.52279162e-01 2.40630627e-01 -6.04425967e-01 -1.33379281e-01 8.19219530e-01 -3.64676714e-01 -1.39218915e+00 5.64478375e-02 -1.66687891e-01 -8.96558166e-01 8.12528096e-03 -1.89470246e-01 -2.10907802e-01 -4.22465056e-01 5.90917051e-01 4.74127591e-01 5.52692749e-02 -2.03437373e-01 6.25149727e-01 6.14166379e-01 9.91519094e-01 -1.90862253e-01 1.04555726e+00 7.88058281e-01 -6.50139377e-02 -8.29498947e-01 -1.04068553e+00 -2.97310591e-01 -1.90406382e-01 -4.49625582e-01 9.10611451e-01 -1.23179483e+00 -6.61389351e-01 8.23301733e-01 -9.33507860e-01 -8.30451906e-01 -4.01877195e-01 1.42934635e-01 -7.01865494e-01 2.76580542e-01 -8.34061265e-01 -4.57102925e-01 -3.35292727e-01 -1.05198753e+00 1.16553605e+00 5.75309396e-01 3.49178731e-01 -8.22222054e-01 1.05460867e-01 5.67913413e-01 5.77328920e-01 1.12428963e-01 5.72318196e-01 5.34088373e-01 -1.08921421e+00 2.81609505e-01 -5.54131031e-01 6.32233202e-01 2.43706390e-01 -2.86241114e-01 -1.15340602e+00 -3.59195709e-01 2.19188824e-01 -4.92606252e-01 9.99887943e-01 4.81611609e-01 1.35019588e+00 -3.98244232e-01 1.88373908e-01 1.27307057e+00 1.99152100e+00 7.71175846e-02 1.33434999e+00 2.27528587e-01 9.95100081e-01 4.09316897e-01 4.27912235e-01 3.07605445e-01 2.53105313e-01 9.39329982e-01 2.77104884e-01 -7.86075711e-01 -8.51957321e-01 -3.92385811e-01 4.31245536e-01 5.58438540e-01 9.92520601e-02 -3.87515515e-01 -4.30540204e-01 2.04873800e-01 -1.51029384e+00 -1.09010279e+00 -1.26217911e-02 2.33065987e+00 1.12178588e+00 -2.43272156e-01 -2.21624509e-01 -1.27434939e-01 6.70759857e-01 4.81140077e-01 -6.68420017e-01 -1.79381371e-01 -5.73485076e-01 3.51169854e-01 8.65739584e-01 8.69308233e-01 -7.89870560e-01 9.37004268e-01 6.29134083e+00 7.01023757e-01 -1.57446074e+00 7.20363706e-02 9.03855681e-01 -3.72120708e-01 -4.45816010e-01 -7.96829537e-03 -5.31746149e-01 5.76742589e-01 7.36923933e-01 2.95673423e-02 1.09199190e+00 1.12837575e-01 4.15730536e-01 -3.18632215e-01 -7.66172111e-01 1.28128850e+00 3.52807909e-01 -1.42382884e+00 -4.27314043e-02 5.30103669e-02 1.07278454e+00 -1.99622568e-02 4.91816550e-01 -1.85193181e-01 3.20068032e-01 -1.18704653e+00 7.02010095e-01 6.84749186e-01 1.23795831e+00 -4.21904415e-01 2.82371700e-01 -5.81779098e-03 -8.79989684e-01 -1.64364249e-01 -3.44921350e-01 1.30221128e-01 5.60569286e-01 7.36132979e-01 -4.88113046e-01 4.51147735e-01 7.24259853e-01 8.01268816e-01 -4.90609556e-01 7.80393183e-01 -4.14383829e-01 1.41294703e-01 -5.21488599e-02 8.21339667e-01 -2.29366288e-01 -4.64003175e-01 3.99388582e-01 7.83157587e-01 4.38236982e-01 3.48711759e-01 -3.06349304e-02 1.10871959e+00 -2.70021379e-01 -4.25373614e-01 -6.83291793e-01 3.48354578e-01 2.91805446e-01 1.31741810e+00 -3.22690517e-01 -1.81731388e-01 -4.17169124e-01 1.43645346e+00 1.88440382e-01 5.49948156e-01 -1.01745558e+00 -3.26078683e-01 5.10157764e-01 2.92844653e-01 2.49488935e-01 -1.02448436e-02 -3.26591134e-01 -1.24018395e+00 1.18995652e-01 -9.88668323e-01 -9.08510536e-02 -1.42273450e+00 -1.20039392e+00 5.01669168e-01 -2.21677408e-01 -1.28538084e+00 8.60228483e-03 -3.33978623e-01 -6.01997375e-01 9.39708769e-01 -1.89616919e+00 -1.10474658e+00 -6.25801444e-01 6.62933052e-01 4.65930372e-01 1.82154566e-01 3.83622020e-01 6.11706197e-01 -4.19570446e-01 3.51297081e-01 1.41225696e-01 -1.31834313e-01 1.00904846e+00 -1.10855877e+00 2.54560143e-01 1.02508080e+00 -1.41588330e-01 2.86880136e-01 8.24392378e-01 -4.36348826e-01 -1.49954379e+00 -1.12912285e+00 2.92234153e-01 -2.23534275e-02 2.91949689e-01 -2.68839180e-01 -9.82466877e-01 5.54449081e-01 4.77079481e-01 1.97418511e-01 2.02512458e-01 -5.80448210e-01 -3.36261928e-01 -4.72278357e-01 -1.15349543e+00 6.76370740e-01 9.82489049e-01 -8.26902509e-01 -6.85781613e-02 1.81933790e-01 8.95730078e-01 -6.10247314e-01 -9.27814782e-01 1.38886780e-01 5.31827927e-01 -1.45845652e+00 1.27166796e+00 3.09994251e-01 9.38323855e-01 -6.31084979e-01 -1.69467375e-01 -1.38938129e+00 -7.83833116e-02 -8.60957026e-01 -2.96026617e-02 1.10160840e+00 1.86473221e-01 -6.43608809e-01 4.62494791e-01 4.51602727e-01 -2.00541124e-01 -5.69459736e-01 -5.82352281e-01 -4.45905775e-01 -1.46587968e-01 8.40292722e-02 3.76820773e-01 8.85500371e-01 -6.30352676e-01 2.72749513e-01 -1.00107050e+00 2.64373302e-01 1.08970761e+00 3.12190562e-01 7.74455488e-01 -4.46922421e-01 -6.44474447e-01 -9.01450589e-02 2.06484199e-02 -1.15154684e+00 5.90031184e-02 -5.38391709e-01 4.33382213e-01 -1.54983938e+00 2.93501318e-01 -4.43486869e-01 6.61401674e-02 2.32069567e-01 -1.99272633e-01 7.59666324e-01 3.68483961e-01 3.76528054e-01 -4.02781934e-01 5.36003947e-01 1.67143285e+00 3.21560316e-02 -1.30121604e-01 -4.41345572e-01 -6.28194749e-01 3.46130699e-01 7.74493515e-01 -1.83795527e-01 -3.70619059e-01 -6.77018344e-01 7.88644105e-02 4.57604170e-01 6.74025476e-01 -1.10512877e+00 2.85479575e-01 -1.21562943e-01 7.49797523e-01 -2.26274550e-01 6.12566173e-01 -6.58281386e-01 7.36832440e-01 2.01971799e-01 -3.96755755e-01 -2.68438727e-01 -8.56588930e-02 3.18965286e-01 -2.17082426e-01 1.01562507e-01 1.33204317e+00 -1.80395439e-01 -7.44038761e-01 4.12107140e-01 9.11160409e-02 -1.31046623e-01 9.09516096e-01 -1.87417835e-01 -7.05355823e-01 -5.41862905e-01 -2.99918175e-01 -8.97531509e-02 1.01187742e+00 2.45166898e-01 9.64658916e-01 -1.22229731e+00 -6.42019808e-01 3.60255390e-01 -1.45003453e-01 -7.51715910e-04 7.47172415e-01 5.64846218e-01 -8.66460443e-01 -5.00303507e-02 -5.68947494e-01 -4.62302506e-01 -1.06307495e+00 5.79943478e-01 6.50126398e-01 -1.18566610e-01 -9.49120164e-01 4.97144312e-01 4.86454248e-01 -2.62500286e-01 -2.80670803e-02 7.12026730e-02 2.88627118e-01 -4.85091537e-01 6.41275823e-01 2.26761773e-01 -1.92527056e-01 -5.57586491e-01 2.94498444e-01 7.94097364e-01 2.64974274e-02 -2.94498205e-01 1.37798750e+00 -5.84398746e-01 -1.37531072e-01 3.06842744e-01 1.50912869e+00 -1.49212539e-01 -1.76162982e+00 -2.40882903e-01 -9.08303618e-01 -9.21070814e-01 3.96457434e-01 -8.23714316e-01 -1.40055716e+00 8.19396973e-01 7.84758210e-01 -3.35108526e-02 1.64874625e+00 -6.69512004e-02 1.15641403e+00 -2.52056718e-02 1.80202439e-01 -9.16442633e-01 3.70593548e-01 5.34265116e-02 8.58994663e-01 -1.32279396e+00 2.17430264e-01 -3.28194439e-01 -6.01457894e-01 9.44771469e-01 6.28009021e-01 -1.98002174e-01 2.56238014e-01 4.07551110e-01 2.46332094e-01 4.50239629e-02 -6.36000037e-01 -1.11526966e-01 7.27024898e-02 5.17005742e-01 1.75605565e-01 -1.35384038e-01 1.49183348e-01 -3.23514670e-01 -7.40348846e-02 8.17275196e-02 8.80279720e-01 5.33782959e-01 -3.62376869e-01 -9.10710216e-01 -3.61054748e-01 1.94733188e-01 -3.11352402e-01 -1.60925776e-01 2.61776447e-02 4.69209880e-01 1.04077104e-02 7.57410109e-01 1.15422972e-01 -4.02340829e-01 2.68231958e-01 -5.93931913e-01 8.34794641e-01 -2.85202026e-01 -2.45552033e-01 3.33302468e-02 -1.82637423e-01 -7.72535145e-01 -4.65130538e-01 -2.90409327e-01 -9.70704317e-01 -5.18374443e-01 -7.16092624e-03 -4.60578203e-01 5.79525292e-01 5.61617672e-01 2.25922480e-01 5.69670379e-01 1.09070706e+00 -1.05276215e+00 -2.15538934e-01 -5.70821941e-01 -7.54632056e-01 5.08255064e-01 7.37452745e-01 -2.29373038e-01 -6.25670135e-01 3.35095942e-01]
[10.851673126220703, -2.2224836349487305]
12c1a8c3-f445-4419-a385-6a04c90bf43d
a-survey-of-identification-and-mitigation-of
2210.04491
null
https://arxiv.org/abs/2210.04491v1
https://arxiv.org/pdf/2210.04491v1.pdf
A survey of Identification and mitigation of Machine Learning algorithmic biases in Image Analysis
The problem of algorithmic bias in machine learning has gained a lot of attention in recent years due to its concrete and potentially hazardous implications in society. In much the same manner, biases can also alter modern industrial and safety-critical applications where machine learning are based on high dimensional inputs such as images. This issue has however been mostly left out of the spotlight in the machine learning literature. Contrarily to societal applications where a set of proxy variables can be provided by the common sense or by regulations to draw the attention on potential risks, industrial and safety-critical applications are most of the times sailing blind. The variables related to undesired biases can indeed be indirectly represented in the input data, or can be unknown, thus making them harder to tackle. This raises serious and well-founded concerns towards the commercial deployment of AI-based solutions, especially in a context where new regulations clearly address the issues opened by undesired biases in AI. Consequently, we propose here to make an overview of recent advances in this area, firstly by presenting how such biases can demonstrate themselves, then by exploring different ways to bring them to light, and by probing different possibilities to mitigate them. We finally present a practical remote sensing use-case of industrial Fairness.
['Jean-Michel Loubes', 'Lucas Hervier', 'Agustin Picard', 'Laurent Risser']
2022-10-10
null
null
null
null
['common-sense-reasoning']
['reasoning']
[ 8.28924716e-01 4.53049719e-01 -3.09382200e-01 -3.87161553e-01 -2.93220699e-01 -6.09088898e-01 8.30423057e-01 2.10607126e-01 -6.45720780e-01 1.04466939e+00 3.52657884e-02 -4.65939552e-01 -6.46200657e-01 -9.61709678e-01 -5.77512205e-01 -1.06308877e+00 2.22093031e-01 2.15962902e-01 -3.22616994e-01 -3.24015290e-01 5.19334614e-01 5.77047884e-01 -1.66857028e+00 -2.66046990e-02 7.24777937e-01 1.01476443e+00 -1.01693548e-01 1.47142321e-01 1.80193912e-02 3.84695053e-01 -7.08576024e-01 -6.95347071e-01 4.85255331e-01 -3.43867809e-01 -6.35782897e-01 -8.97957385e-02 1.67565614e-01 1.24052301e-01 3.02675128e-01 1.35241652e+00 5.36132336e-01 -1.35154545e-01 6.82407260e-01 -1.29309726e+00 -6.87471569e-01 5.48883379e-01 -6.06304526e-01 -1.71180874e-01 4.75128228e-03 4.27693337e-01 8.87699366e-01 -2.81241566e-01 2.80571014e-01 1.34057617e+00 3.42190444e-01 5.94630480e-01 -1.31264102e+00 -7.45595634e-01 5.34288287e-01 2.66508192e-01 -8.45171511e-01 -2.62692004e-01 8.86036158e-01 -6.17417216e-01 1.77878693e-01 7.77244866e-01 4.98722464e-01 1.30009913e+00 1.67856246e-01 3.63560528e-01 1.67980576e+00 -5.11543930e-01 5.05745947e-01 5.85318148e-01 -6.19177744e-02 1.18041039e-01 7.08978295e-01 5.29246151e-01 -4.13846254e-01 -1.25836849e-01 3.97610873e-01 -9.77822617e-02 -2.37332836e-01 -4.35430288e-01 -1.37695825e+00 9.37956393e-01 7.09270716e-01 3.95225734e-01 -4.64077085e-01 5.40271848e-02 1.78092837e-01 2.98721164e-01 4.30851609e-01 9.72036064e-01 -5.21872163e-01 2.95177400e-01 -5.50219238e-01 2.47509837e-01 4.58267033e-01 3.65605921e-01 7.88229346e-01 -1.69329010e-02 7.71280602e-02 6.80449069e-01 3.32332999e-01 6.74539149e-01 8.85381252e-02 -8.43375444e-01 1.66473135e-01 4.56315696e-01 2.92671263e-01 -1.29019070e+00 -3.14058512e-01 -5.76940477e-01 -1.09393740e+00 6.61656082e-01 7.13634133e-01 -2.06329197e-01 -6.60754323e-01 1.60063958e+00 3.41016591e-01 -4.39184874e-01 -1.69754311e-01 1.22762430e+00 2.20511422e-01 3.43410641e-01 3.29078376e-01 -1.77048281e-01 1.36574590e+00 -1.90905482e-01 -7.50651062e-01 -5.00130773e-01 1.10930011e-01 -4.27606672e-01 1.06020737e+00 6.25168383e-01 -5.30994177e-01 -1.72719285e-01 -9.99500334e-01 2.45048583e-01 -8.31808627e-01 -3.08531970e-01 8.41671884e-01 9.31543052e-01 -3.62707883e-01 7.39697337e-01 -1.51365101e-01 -4.04035270e-01 5.91724992e-01 2.69167244e-01 4.68231924e-02 2.13223081e-02 -1.41846395e+00 1.15722215e+00 1.03645148e-02 5.62553406e-01 -4.32779878e-01 -7.08976746e-01 -5.03979802e-01 -2.37379178e-01 7.28327870e-01 -5.50830364e-01 7.36435950e-01 -1.42527151e+00 -1.24741066e+00 1.01422381e+00 1.37379035e-01 -2.84412205e-01 9.95161712e-01 -9.69831645e-02 -7.16163456e-01 -5.06090641e-01 3.06972023e-02 4.46560234e-01 1.01214218e+00 -1.44849503e+00 -4.40445930e-01 -6.74672425e-01 3.78164738e-01 -1.75452873e-01 -2.02303246e-01 1.08323686e-01 6.10292733e-01 -6.17191315e-01 -1.81740016e-01 -1.08377028e+00 -6.49444938e-01 3.05743426e-01 -4.15657103e-01 6.98033795e-02 4.39558953e-01 -2.17133701e-01 1.10238552e+00 -1.85640240e+00 -4.41066511e-02 3.75130385e-01 -2.64270161e-03 2.58499891e-01 1.65400103e-01 2.54592121e-01 -2.03554675e-01 3.98772687e-01 -7.03870475e-01 5.16608179e-01 1.14685513e-01 2.10294142e-01 -4.65412021e-01 6.42945707e-01 5.64713895e-01 6.47406042e-01 -1.17422080e+00 -7.78049827e-02 3.32192183e-01 2.80861765e-01 -2.17183575e-01 -1.28950655e-01 -1.69518873e-01 5.07796764e-01 -5.98431885e-01 5.48089802e-01 5.32665849e-01 1.06066018e-01 2.45455995e-01 -4.06735465e-02 -2.65794337e-01 1.49771124e-01 -1.09012008e+00 1.07463300e+00 -3.08455110e-01 4.98081088e-01 1.42604396e-01 -1.22741711e+00 8.40043604e-01 5.06086573e-02 2.66966850e-01 -7.93087363e-01 1.08735226e-01 2.81016797e-01 2.00153768e-01 -4.33017135e-01 3.66889238e-01 -7.46149123e-01 -2.70945877e-01 3.61306578e-01 -5.67790091e-01 -3.94648939e-01 -3.02826047e-01 -4.10502464e-01 6.85541928e-01 9.88963023e-02 5.69548428e-01 -4.28875387e-01 7.16491938e-01 4.33594733e-02 5.68153679e-01 5.50506830e-01 -3.06135356e-01 4.09190446e-01 4.89467800e-01 -5.72352529e-01 -7.09279537e-01 -8.41052175e-01 -3.31971347e-01 8.37893426e-01 6.76328456e-03 3.46373975e-01 -5.27471066e-01 -8.82185638e-01 4.91959363e-01 8.66551578e-01 -8.72613907e-01 -2.32218891e-01 -2.75637448e-01 -1.17763102e+00 5.76674156e-02 8.14821646e-02 2.83640027e-01 -1.02018356e+00 -9.62878823e-01 5.37982807e-02 1.88521966e-01 -7.38683164e-01 4.33229387e-01 3.80472958e-01 -7.64734328e-01 -1.16472828e+00 -7.67510891e-01 1.79964066e-01 7.37975359e-01 1.14068910e-01 1.21815932e+00 8.38929117e-02 -2.23444238e-01 1.40587285e-01 -1.24541499e-01 -1.31296587e+00 -5.26016235e-01 -1.03040367e-01 9.23086107e-02 1.50048599e-01 5.15565097e-01 -5.91147900e-01 -5.51533580e-01 4.77890730e-01 -1.08758962e+00 -3.20260376e-01 7.27762043e-01 6.07974112e-01 1.53950542e-01 -6.92107007e-02 1.10599053e+00 -1.18776000e+00 5.49743474e-01 -5.76386988e-01 -8.38402092e-01 7.01183900e-02 -8.91903639e-01 -4.75981608e-02 2.48836488e-01 -3.23217571e-01 -9.58204567e-01 -3.85409407e-02 1.04880072e-01 1.62506968e-01 -4.31991011e-01 3.45600218e-01 -4.57820147e-01 9.25984532e-02 8.59283924e-01 -3.91192704e-01 2.03086771e-02 -3.05530399e-01 4.97316271e-01 8.30154419e-01 1.19744547e-01 -6.33741677e-01 1.07618582e+00 7.28242993e-01 3.29071611e-01 -9.15226221e-01 -9.67049360e-01 -3.99510786e-02 -5.63026428e-01 -5.54530740e-01 8.39061677e-01 -5.63433230e-01 -4.38658148e-01 2.44821385e-01 -9.15691435e-01 -1.50127277e-01 -5.49903989e-01 3.02072823e-01 -4.25723225e-01 2.83926651e-02 2.44425520e-01 -1.27290094e+00 1.52054802e-01 -1.07998633e+00 5.79260647e-01 6.45489292e-03 -6.26043975e-01 -7.76700437e-01 -4.53435838e-01 4.67923433e-01 5.38326859e-01 5.59749544e-01 1.21551609e+00 -3.27904612e-01 -5.38306713e-01 -8.10341462e-02 -1.77350238e-01 4.14650023e-01 3.97773623e-01 -3.15138966e-01 -1.49407363e+00 -4.28308547e-02 6.76869825e-02 -5.01916334e-02 7.53907502e-01 1.97580516e-01 9.84429240e-01 -2.95722604e-01 -1.73719361e-01 -4.17131260e-02 1.38586342e+00 7.40146562e-02 5.34843504e-01 4.91965681e-01 3.33491594e-01 1.39032280e+00 8.06999564e-01 3.59528363e-01 -1.28628358e-01 5.34857571e-01 9.74183440e-01 -4.30809826e-01 1.06797636e-01 3.05204540e-02 6.80072978e-02 2.36873493e-01 -3.21675718e-01 -9.39038023e-02 -7.57535696e-01 5.57999015e-01 -1.68246603e+00 -1.04388547e+00 -4.60612386e-01 2.49448586e+00 5.70873618e-01 7.83728734e-02 7.27251098e-02 5.02983630e-01 8.54230940e-01 3.08379263e-01 -7.27787375e-01 -6.00679100e-01 -1.71427265e-01 -1.28398433e-01 7.11507976e-01 1.85998395e-01 -9.12279665e-01 3.62335235e-01 6.15772486e+00 3.30491096e-01 -1.30285645e+00 -5.97857311e-02 9.41619515e-01 -1.08934350e-01 -6.48210406e-01 -1.38529956e-01 -1.97639674e-01 5.32891452e-01 5.20432949e-01 -1.04601771e-01 3.88587147e-01 6.90719068e-01 4.63562638e-01 -3.67966503e-01 -1.27362728e+00 7.51002014e-01 -1.33114383e-01 -7.91191220e-01 6.25748560e-02 4.68134433e-01 6.85424566e-01 -1.98022485e-01 3.49985421e-01 2.41098087e-03 2.10180074e-01 -1.10127032e+00 8.74151528e-01 4.59748864e-01 5.35932839e-01 -6.95280612e-01 5.19275665e-01 2.66767055e-01 -3.22664380e-01 -3.51413548e-01 -4.76345599e-01 -6.59358621e-01 3.62963155e-02 1.42769480e+00 -4.26315427e-01 5.25738597e-01 6.12734973e-01 2.72700042e-01 -2.35974029e-01 8.28506470e-01 -4.36327845e-01 4.17407095e-01 -1.04361445e-01 -3.45789313e-01 2.29308024e-01 -2.89824933e-01 6.49900973e-01 8.72957110e-01 2.41585031e-01 -1.38860559e-02 -5.34000039e-01 1.30531704e+00 1.13706402e-01 -1.63453177e-01 -8.97186518e-01 -7.26431385e-02 1.12592913e-01 1.13924861e+00 -5.20270109e-01 3.93933393e-02 -4.29272622e-01 5.97306788e-01 -1.21379249e-01 3.77174973e-01 -7.12036908e-01 -1.25243559e-01 1.26311052e+00 3.22410494e-01 -1.91295117e-01 6.47445172e-02 -5.22728980e-01 -8.48263264e-01 4.69742380e-02 -1.03568637e+00 1.61854967e-01 -4.96943533e-01 -1.50589108e+00 5.03062122e-02 3.32557820e-02 -1.06824458e+00 9.69592258e-02 -9.13764834e-01 -2.87656248e-01 8.97046447e-01 -2.00522709e+00 -6.89967632e-01 6.33292943e-02 1.49201304e-01 3.12874138e-01 7.93248788e-02 7.82745957e-01 1.84905127e-01 -4.12511915e-01 -2.81545334e-03 4.89747189e-02 -2.10920230e-01 9.08228159e-01 -1.12256944e+00 1.56513706e-01 6.23944104e-01 -1.65840816e-02 5.83340526e-01 9.34103668e-01 -3.92581940e-01 -1.32173669e+00 -1.03371358e+00 8.48254919e-01 -7.72560358e-01 6.50797307e-01 -3.98963541e-01 -5.92361927e-01 3.37292224e-01 8.18080753e-02 -5.87535203e-02 7.02985406e-01 2.89641619e-01 -2.76171327e-01 -3.42038482e-01 -1.44092274e+00 6.52677655e-01 8.21745574e-01 -3.73117447e-01 -5.79426169e-01 2.41878822e-01 2.30899930e-01 1.98806956e-01 -5.94252825e-01 3.58899325e-01 8.30103993e-01 -1.06355429e+00 8.40395391e-01 -6.63379014e-01 5.92766404e-01 -3.00165534e-01 -7.44960904e-02 -1.44378722e+00 -2.91258961e-01 -4.05021042e-01 6.50214672e-01 1.40588021e+00 6.34998322e-01 -1.01924729e+00 6.23083711e-01 8.34422708e-01 3.06576014e-01 -5.41577041e-01 -8.98092330e-01 -7.23722041e-01 3.34175557e-01 -5.20773470e-01 8.67121577e-01 1.33088517e+00 -1.28778622e-01 6.54441267e-02 -3.48456532e-01 6.61437735e-02 5.88907003e-01 1.60999343e-01 6.65694296e-01 -1.63599789e+00 7.70834088e-02 -6.12328827e-01 -3.38329673e-01 -3.56919587e-01 -1.00825325e-01 -5.93579948e-01 1.38646260e-01 -1.13035262e+00 -8.64693448e-02 -6.24492228e-01 -7.12802887e-01 1.83316201e-01 -2.08751529e-01 2.25908488e-01 4.02293473e-01 -1.63383663e-01 8.94061401e-02 1.82503954e-01 1.12127304e+00 -4.03847665e-01 2.61872917e-01 2.07473651e-01 -1.21204090e+00 9.65459526e-01 8.39583337e-01 -6.44183338e-01 -2.31952578e-01 -3.28287870e-01 7.66910195e-01 -5.27944267e-01 6.98838890e-01 -8.83917153e-01 -3.49588692e-01 -7.40048110e-01 3.88489038e-01 1.13750070e-01 1.14437610e-01 -1.44834304e+00 2.51956254e-01 5.17226517e-01 -5.41722476e-01 -2.47972384e-01 -5.18760160e-02 6.19206965e-01 1.04506262e-01 -2.56421983e-01 8.46088529e-01 -4.22660470e-01 -3.58147025e-01 -1.07343629e-01 -4.48911726e-01 -2.67873347e-01 1.12468612e+00 -1.92146584e-01 -2.95107394e-01 -3.20477039e-01 -3.76031071e-01 1.12625338e-01 3.91407341e-01 6.41955733e-01 1.00056656e-01 -1.11497927e+00 -5.91259062e-01 4.50813398e-02 2.85066694e-01 -2.15294316e-01 1.22237224e-02 6.94827557e-01 1.63909182e-01 4.34581608e-01 -2.34305650e-01 -3.35503429e-01 -9.79888022e-01 9.51842010e-01 2.37631917e-01 7.10818842e-02 -1.12423860e-01 5.59979796e-01 4.28386629e-01 -4.00626689e-01 2.84127649e-02 -4.83720690e-01 -1.66236341e-01 4.45562869e-01 2.96548069e-01 6.34003282e-01 1.73935726e-01 -5.06889939e-01 -5.82370043e-01 4.98802871e-01 5.69634795e-01 1.14006922e-01 1.38498974e+00 -1.61823243e-01 -2.02625424e-01 7.49471724e-01 6.29329681e-01 2.69453466e-01 -9.35563266e-01 1.50604714e-02 2.47031212e-01 -5.64054132e-01 7.13889822e-02 -1.37178791e+00 -1.18680823e+00 1.07285428e+00 6.52558982e-01 5.58042943e-01 1.07411194e+00 -1.59870327e-01 2.22822830e-01 4.03131247e-01 5.88276148e-01 -1.28580272e+00 -3.73471409e-01 -4.67640124e-02 1.25023150e+00 -1.37825358e+00 3.19028407e-01 -4.03663635e-01 -4.09677386e-01 8.87240589e-01 1.52853236e-01 2.91241612e-02 4.01019633e-01 6.88549876e-02 3.70480388e-01 -4.79394868e-02 -2.23508194e-01 -1.80780381e-01 1.38994887e-01 8.91959846e-01 5.58283150e-01 2.69657820e-01 -6.69808686e-01 4.92041886e-01 -6.59341961e-02 -6.94020838e-02 4.61944222e-01 7.27242529e-01 -2.95256227e-01 -1.36120093e+00 -7.42969334e-01 5.11191487e-01 -5.77295482e-01 1.85649469e-01 -8.12716961e-01 8.85728061e-01 5.09287298e-01 1.04796648e+00 -2.71421850e-01 -9.78289098e-02 5.17900884e-01 -2.59099458e-03 2.63812393e-01 -3.46182823e-01 -8.14763367e-01 -4.87681776e-01 2.78364241e-01 -4.52765733e-01 -6.55408084e-01 -7.72194505e-01 -6.83107436e-01 -1.60257220e-01 -4.43770051e-01 7.18027204e-02 9.59843755e-01 8.95610571e-01 7.72602931e-02 6.18985236e-01 5.46139240e-01 -8.99614811e-01 -7.13621795e-01 -5.85686445e-01 -5.39003849e-01 2.98861772e-01 4.50188458e-01 -7.67637551e-01 -5.30882657e-01 -1.54574469e-01]
[8.75290584564209, 5.153059959411621]
d623fcbf-5244-4f4c-a0f4-fdba24bfd0cf
event-extraction-based-on-open-information
1907.00692
null
https://arxiv.org/abs/1907.00692v1
https://arxiv.org/pdf/1907.00692v1.pdf
Event extraction based on open information extraction and ontology
The work presented in this master thesis consists of extracting a set of events from texts written in natural language. For this purpose, we have based ourselves on the basic notions of the information extraction as well as the open information extraction. First, we applied an open information extraction(OIE) system for the relationship extraction, to highlight the importance of OIEs in event extraction, and we used the ontology to the event modeling. We tested the results of our approach with test metrics. As a result, the two-level event extraction approach has shown good performance results but requires a lot of expert intervention in the construction of classifiers and this will take time. In this context we have proposed an approach that reduces the expert intervention in the relation extraction, the recognition of entities and the reasoning which are automatic and based on techniques of adaptation and correspondence. Finally, to prove the relevance of the extracted results, we conducted a set of experiments using different test metrics as well as a comparative study.
['Sihem Sahnoun']
2019-06-24
null
null
null
null
['open-information-extraction']
['natural-language-processing']
[ 2.24635825e-01 5.73791981e-01 4.16292787e-01 -2.56668389e-01 -1.97175786e-01 -2.45075092e-01 9.76871729e-01 8.31137002e-01 -7.02935219e-01 8.89162898e-01 7.31287673e-02 -1.40094057e-01 -6.30628407e-01 -1.11920679e+00 -2.66089529e-01 -2.28023395e-01 -1.80503666e-01 5.56606650e-01 6.37735367e-01 -2.59309441e-01 2.51618594e-01 6.29431963e-01 -1.97234035e+00 2.85030961e-01 5.30908585e-01 6.23664081e-01 -4.93179522e-02 4.75347728e-01 -5.30584574e-01 9.43503857e-01 -7.45785296e-01 -2.49146253e-01 -1.72644943e-01 -5.20085931e-01 -1.20979476e+00 -1.57734349e-01 -4.72390145e-01 1.84933960e-01 4.03182894e-01 7.53207386e-01 3.23646814e-01 1.92503497e-01 9.07587647e-01 -1.18599594e+00 3.28250796e-01 8.70270252e-01 7.46182427e-02 9.16844979e-02 8.09803545e-01 -3.03162932e-01 6.05374217e-01 -6.75006151e-01 1.05880797e+00 8.55333269e-01 3.83635819e-01 1.67464837e-01 -8.24072778e-01 -2.89023817e-01 -1.71879768e-01 5.79066753e-01 -1.41320348e+00 -2.01434985e-01 5.52309513e-01 -5.92258215e-01 9.15523291e-01 3.56775999e-01 8.45798433e-01 9.01327491e-01 1.18780814e-01 2.53549606e-01 1.21355128e+00 -1.05468845e+00 3.96460980e-01 7.40234196e-01 5.97786546e-01 3.16620857e-01 5.18452883e-01 -1.29765362e-01 -2.11976573e-01 -4.64922376e-02 2.05561519e-01 -2.12242484e-01 -2.12721732e-02 -9.29500628e-03 -8.11295331e-01 5.40562928e-01 -1.65743068e-01 1.27118027e+00 -5.59972584e-01 -3.07993293e-01 7.41908967e-01 4.16184682e-03 2.47510090e-01 3.42267513e-01 -3.80666941e-01 -9.39511880e-02 -7.91821539e-01 1.43624902e-01 1.35257673e+00 6.73910618e-01 6.61952972e-01 -5.38415015e-01 -9.53816101e-02 2.89317816e-01 2.04435930e-01 3.08304969e-02 4.52014625e-01 -4.33424786e-02 3.25263023e-01 1.21816957e+00 8.26859251e-02 -1.16179311e+00 -4.95861977e-01 -3.07348907e-01 -3.23842734e-01 2.52339780e-01 3.80156428e-01 -1.26942009e-01 -5.20530403e-01 1.47731137e+00 4.51578796e-01 4.51496094e-02 4.56119925e-01 3.20508301e-01 8.62751424e-01 5.25980711e-01 3.31517458e-01 -6.01617992e-01 1.49373949e+00 -2.83861190e-01 -1.36583543e+00 4.77216572e-01 7.24161267e-01 -8.45580995e-01 6.01458013e-01 5.65067828e-01 -8.00697148e-01 -3.83326292e-01 -1.15651250e+00 2.72727042e-01 -1.13256133e+00 4.87998948e-02 4.60051328e-01 5.60569584e-01 -3.83880079e-01 7.39510596e-01 -6.11480117e-01 -7.38046765e-01 -1.65782675e-01 2.05038071e-01 -3.45466375e-01 3.85429680e-01 -1.34252274e+00 1.24771130e+00 9.68793273e-01 6.74240217e-02 -2.44014814e-01 -2.22145006e-01 -4.03920203e-01 3.69244248e-01 6.75413191e-01 -3.44093114e-01 8.87913287e-01 -7.32984126e-01 -1.05794024e+00 7.98419714e-01 3.10560286e-01 -6.64358854e-01 5.71706295e-01 -1.92570582e-01 -8.54245484e-01 2.84139991e-01 1.09438173e-01 -6.23751990e-02 -5.91910779e-02 -1.10794532e+00 -8.07794690e-01 -3.91100168e-01 1.24026304e-02 -2.12828040e-01 -5.02820551e-01 3.48458439e-01 -1.73505008e-01 -3.91320258e-01 -1.19863264e-01 -5.44834435e-01 7.32641295e-02 -9.83150482e-01 -6.97911903e-02 -4.72039402e-01 5.30045569e-01 -6.13022566e-01 1.77863920e+00 -2.00913000e+00 4.25275005e-02 6.72380269e-01 -5.58823720e-02 1.96673259e-01 6.57105982e-01 8.35866749e-01 -1.81540057e-01 2.18793228e-01 -1.56743363e-01 2.78964378e-02 1.54948207e-02 2.08492160e-01 -1.47116959e-01 -1.84550688e-01 -7.23721087e-02 5.70533946e-02 -6.37458563e-01 -1.05837846e+00 3.86533380e-01 2.79069990e-01 -1.23571493e-01 2.25220889e-01 -3.11798304e-01 7.96678662e-02 -5.91134429e-01 2.49796808e-01 2.46783897e-01 3.45427215e-01 2.97040671e-01 -4.52509522e-01 -3.55764747e-01 2.37984762e-01 -1.70680583e+00 1.37913799e+00 -5.16548753e-01 2.28670865e-01 -5.35667479e-01 -9.02562261e-01 1.07577777e+00 8.75498891e-01 8.14559460e-01 -5.12212574e-01 5.88868797e-01 4.97706562e-01 -1.85924143e-01 -8.91115367e-01 3.55245441e-01 1.75790548e-01 4.46404442e-02 3.91716927e-01 3.37948978e-01 7.80881941e-02 8.78370643e-01 1.17539622e-01 9.11581337e-01 4.18091744e-01 8.36971581e-01 -3.02826643e-01 1.04232574e+00 8.68998468e-02 3.09114724e-01 1.74407199e-01 3.46904993e-01 -2.09952667e-01 7.68822968e-01 -5.06072283e-01 -8.01248431e-01 -4.76323038e-01 -2.34643817e-01 3.89533371e-01 -3.46863955e-01 -7.84464598e-01 -9.03223336e-01 -6.76275611e-01 -5.94182312e-01 7.40147948e-01 -4.73896772e-01 2.05217153e-01 -4.75197494e-01 -7.33737528e-01 4.97552067e-01 -1.09750517e-01 3.33344549e-01 -1.29280984e+00 -1.04261744e+00 3.99399519e-01 -6.57466799e-02 -1.25051081e+00 5.44889927e-01 4.57026899e-01 -7.97834754e-01 -1.43634474e+00 6.17963001e-02 -4.91436750e-01 3.05340111e-01 -6.34778917e-01 1.12609959e+00 9.17769447e-02 -3.93919498e-01 1.63321510e-01 -9.83744621e-01 -9.05006230e-01 -7.49680161e-01 3.77938330e-01 -3.88024539e-01 7.67787695e-02 5.96014738e-01 -7.28822649e-01 3.41639891e-02 1.50764212e-01 -1.26565564e+00 -7.71693587e-02 6.65427685e-01 1.89104855e-01 2.10201398e-01 2.94188946e-01 5.51472723e-01 -1.21892226e+00 7.62839794e-01 -4.32120174e-01 -7.14023173e-01 3.60002637e-01 -7.59218931e-01 2.49020204e-01 5.03019392e-01 -1.04948819e-01 -1.14616656e+00 1.31848857e-01 -2.51733094e-01 3.14714611e-01 -5.22180736e-01 5.19736826e-01 -3.41904551e-01 2.31709346e-01 8.54729295e-01 -1.53881326e-01 -3.42197180e-01 -5.39831758e-01 3.90767530e-02 7.16651142e-01 6.06586188e-02 -5.72678864e-01 4.96413022e-01 1.47907257e-01 3.46061736e-01 -7.42971003e-01 -3.85978967e-01 -3.33008349e-01 -5.75775564e-01 -3.95020336e-01 9.95196879e-01 -2.93604016e-01 -8.01438630e-01 1.04447939e-01 -1.25608587e+00 1.51914909e-01 -5.60883164e-01 7.62481511e-01 -3.05730581e-01 2.29541317e-01 -2.16111943e-01 -1.01066136e+00 -2.54480213e-01 -7.81292677e-01 3.73182029e-01 2.31673807e-01 -3.16258609e-01 -7.43396044e-01 2.91765511e-01 -1.07819080e-01 -5.33078834e-02 5.37699819e-01 7.87640810e-01 -1.05206203e+00 -5.39893806e-01 -3.81696999e-01 1.94922313e-01 8.68488848e-02 -4.44290675e-02 1.94470212e-01 -7.80674398e-01 3.98827374e-01 6.11466430e-02 1.55091837e-01 4.46546316e-01 -3.11795682e-01 6.42835319e-01 2.36993246e-02 -4.28416193e-01 1.20120086e-01 1.66794789e+00 6.57251775e-01 9.14367676e-01 6.42608106e-01 1.39307201e-01 7.59504497e-01 1.03483212e+00 5.62500954e-01 1.37088466e-02 9.16121960e-01 2.07281709e-01 1.17515586e-01 -7.59849548e-02 -8.01592246e-02 4.94221039e-02 5.71845055e-01 -3.92649412e-01 -2.16578230e-01 -8.19805682e-01 4.56666559e-01 -1.94015944e+00 -1.05066979e+00 -4.44466501e-01 2.18748188e+00 7.04534411e-01 5.64629018e-01 1.55317202e-01 7.90204644e-01 5.60313940e-01 -2.23940402e-01 4.94585425e-01 -6.62673712e-01 1.03455395e-01 5.70351839e-01 3.29109102e-01 4.91228372e-01 -8.49797726e-01 4.85777378e-01 5.37066841e+00 7.25473046e-01 -8.51881683e-01 2.75457829e-01 -1.63851887e-01 2.16947988e-01 -9.76732224e-02 1.45640194e-01 -9.10446227e-01 4.26967323e-01 1.20244515e+00 -2.23756079e-02 -5.83156534e-02 5.81565440e-01 1.69579491e-01 -6.30619764e-01 -9.27236080e-01 6.44398332e-01 1.03388272e-01 -1.01090527e+00 1.47910314e-02 6.17030412e-02 2.67685592e-01 -5.26146472e-01 -1.03525043e+00 1.46030724e-01 -1.20917983e-01 -6.32623374e-01 6.33677959e-01 1.01069677e+00 3.57394032e-02 -8.12360048e-01 1.26571918e+00 3.11372459e-01 -1.21074522e+00 -6.58470094e-02 7.37667130e-03 -1.96206778e-01 1.42846987e-01 7.65124440e-01 -1.13902855e+00 1.17624784e+00 5.00762880e-01 9.09265205e-02 -6.82649910e-01 1.07512879e+00 -3.90139669e-01 3.35897654e-01 -4.97905016e-01 -5.46104133e-01 -1.34955779e-01 -1.50448173e-01 4.99966294e-01 1.36226809e+00 2.09627673e-01 -2.42921561e-02 -5.30598648e-02 8.25546741e-01 5.04428625e-01 7.45077729e-01 -7.55606353e-01 1.84378043e-01 3.59081030e-01 1.19751477e+00 -1.03199148e+00 -5.13824463e-01 -2.89405823e-01 5.40680170e-01 -9.60685462e-02 -7.63564184e-02 -8.54968965e-01 -8.30477476e-01 -1.65739760e-01 2.01508120e-01 1.78056121e-01 -4.67916392e-03 -8.21037516e-02 -9.61180449e-01 2.45628059e-01 -4.25375253e-01 5.77349663e-01 -6.16459370e-01 -6.58756018e-01 8.51671696e-01 6.40406132e-01 -1.10917521e+00 -6.02272987e-01 -5.48736989e-01 -3.76737624e-01 7.20889032e-01 -8.60247612e-01 -9.76731837e-01 -2.30859295e-01 5.11886835e-01 1.17813326e-01 -2.32837396e-03 1.11296594e+00 7.60538042e-01 -5.37905216e-01 -8.58367011e-02 -5.01349390e-01 1.71203047e-01 5.69762945e-01 -1.11402643e+00 -3.14146250e-01 1.05952418e+00 1.68634489e-01 3.72476101e-01 8.82029653e-01 -6.98237062e-01 -7.47462511e-01 -3.34963441e-01 1.55056608e+00 -2.25048453e-01 5.46063602e-01 -1.58545181e-01 -6.03675842e-01 5.15811980e-01 2.91193128e-01 -2.99650997e-01 6.84164941e-01 9.75684151e-02 4.46542129e-02 -3.46304208e-01 -1.09612942e+00 3.22868049e-01 7.10484564e-01 -1.70927942e-01 -1.24457109e+00 1.32290006e-01 4.53016311e-01 -9.36455466e-03 -1.23258102e+00 3.81375998e-01 4.59864438e-01 -1.13140774e+00 6.42911434e-01 -3.96330923e-01 1.32329598e-01 -4.79232073e-01 1.75024927e-01 -7.73435652e-01 3.47142696e-01 -2.72711545e-01 1.75233409e-01 1.78561807e+00 5.85827053e-01 -4.72044706e-01 2.30008140e-01 4.50526416e-01 8.78107920e-02 -4.47004050e-01 -5.81891656e-01 -4.91917670e-01 -5.99482894e-01 -4.82290775e-01 5.53123772e-01 8.29329371e-01 3.08062315e-01 5.32219350e-01 6.07976019e-02 1.28503338e-01 3.24476540e-01 1.83956437e-02 6.16689622e-01 -1.75470901e+00 -1.95886180e-01 -1.98982805e-01 -6.34351552e-01 3.56336862e-01 -1.81555614e-01 -4.95388508e-01 -3.80199581e-01 -1.60510266e+00 -1.58105358e-01 -2.40179017e-01 -2.81741291e-01 2.92434663e-01 2.81363130e-01 -2.12771013e-01 2.17232049e-01 -4.55105826e-02 -3.27940226e-01 -9.17408019e-02 7.24393010e-01 3.63120794e-01 -4.09555078e-01 8.96246657e-02 -1.81153476e-01 7.65575588e-01 7.09668815e-01 -7.51354635e-01 -3.65729034e-01 3.69203925e-01 8.35906684e-01 2.57088561e-02 2.27849558e-01 -1.30611205e+00 1.74356669e-01 -1.71660129e-02 4.10029292e-02 -6.88123345e-01 -5.46705425e-02 -1.43765152e+00 5.44376194e-01 6.18689299e-01 -7.35777766e-02 -1.01373948e-01 2.88338736e-02 1.88841578e-02 -2.89055914e-01 -9.18860912e-01 3.74354422e-01 -2.34761626e-01 -7.49398768e-01 -3.83412123e-01 -3.92345458e-01 -1.54101804e-01 1.32931173e+00 -2.89277911e-01 9.90198255e-02 2.70901710e-01 -1.14306545e+00 -1.09253854e-01 4.09900397e-02 6.64096931e-03 -1.09426811e-01 -8.51476252e-01 -3.78955364e-01 -1.53231084e-01 1.56778410e-01 -2.81536847e-01 6.51575699e-02 8.26006651e-01 -7.16770768e-01 3.96484256e-01 -5.70160627e-01 -4.53877077e-02 -1.45952499e+00 8.99446130e-01 1.13090239e-01 -7.48606026e-01 -4.47435498e-01 -1.40041053e-01 -7.40660071e-01 6.99935555e-02 3.26479107e-01 -5.84900737e-01 -1.18298054e+00 6.83467805e-01 3.22072327e-01 6.17142320e-01 4.18836236e-01 -3.54797512e-01 -4.66869116e-01 4.99651819e-01 4.35883194e-01 -4.40108776e-01 1.30712330e+00 2.11960617e-02 -3.11891198e-01 5.95859587e-01 7.89898455e-01 4.66797590e-01 -2.83943534e-01 2.75915235e-01 5.59749067e-01 -7.29747415e-02 -2.88779110e-01 -8.08051288e-01 -3.39344412e-01 5.00584126e-01 4.67251539e-01 9.12391126e-01 1.22141159e+00 -1.98524520e-01 2.42221117e-01 5.42081535e-01 4.31325525e-01 -1.21614587e+00 -5.55339873e-01 3.99004966e-01 5.92462361e-01 -7.38726974e-01 1.86969072e-01 -8.93859565e-01 -1.85113192e-01 1.57264364e+00 2.94628859e-01 4.95501831e-02 8.35742533e-01 5.30050397e-01 -3.27685684e-01 -4.17172641e-01 -5.86311758e-01 -7.37433314e-01 8.90175402e-02 2.76607037e-01 5.87691724e-01 8.21339190e-02 -1.54614854e+00 8.66524339e-01 -1.05155177e-01 7.00406909e-01 5.33184409e-01 9.60991383e-01 -6.02962673e-01 -1.52421069e+00 -5.56887865e-01 -2.54044589e-02 -5.28788269e-01 2.40685821e-01 -6.25871778e-01 1.30087626e+00 8.79826009e-01 9.98237431e-01 -1.99233159e-01 -3.37410599e-01 6.69981122e-01 4.36781228e-01 5.44733405e-01 -5.72562158e-01 -1.00035942e+00 -1.85281366e-01 6.11269593e-01 -3.17013055e-01 -8.15673292e-01 -6.31541729e-01 -1.30698848e+00 9.17839706e-02 -3.79857510e-01 6.72156990e-01 9.66111064e-01 1.21406603e+00 4.55532894e-02 9.20129418e-01 5.07224739e-01 -2.41415605e-01 -1.58746153e-01 -1.25732827e+00 -3.82337034e-01 6.10577106e-01 -4.28531170e-01 -6.49357915e-01 -2.78047830e-01 8.04498643e-02]
[9.301643371582031, 8.64735221862793]
9f7a8be5-3bff-4bea-b395-33d117885626
an-unsupervised-approach-to-user-simulation
null
null
https://aclanthology.org/W12-1606
https://aclanthology.org/W12-1606.pdf
An Unsupervised Approach to User Simulation: Toward Self-Improving Dialog Systems
null
['Sungjin Lee', 'Maxine Eskenazi']
2012-07-01
null
null
null
ws-2012-7
['user-simulation']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.340228080749512, 3.730822801589966]
48546e7b-fa90-499c-b818-2a25487bea6a
modeling-cell-size-distribution-with
2304.06631
null
https://arxiv.org/abs/2304.06631v2
https://arxiv.org/pdf/2304.06631v2.pdf
Modeling Cell Size Distribution with Heterogeneous Flux Balance Analysis
For over two decades, Flux Balance Analysis (FBA) has been successfully used for predicting growth rates and intracellular reaction rates in microbiological metabolism. An aspect that is often omitted from this analysis, is segregation or heterogeneity between different cells. In this work, we propose an extended FBA method to model cell size distributions in balanced growth conditions. Hereto, a mathematical description of the concept of balanced growth in terms of cell mass distribution is presented. The cell mass distribution, quantified by the Number Density Function (NDF), is affected by cell growth and cell division. An optimization program is formulated in a general manner in which the NDF, average cell culture growth rate and reaction rates per cell mass are treated as optimization variables. As qualitative proof of concept, the methodology is illustrated on a core carbon model of Escherichia coli under aerobic growth conditions. This illustrates feasibility and applications of this method, while indicating some shortcomings intrinsic to the simplified biomass structuring and the time invariant approach.
['Steffen Waldherr', 'Florence H. Vermeire', 'Michiel Busschaert']
2023-04-13
null
null
null
null
['culture']
['speech']
[ 2.64103502e-01 -2.20212951e-01 1.25558889e-02 6.13370776e-01 6.51626348e-01 -6.15900218e-01 4.74272668e-01 6.79877281e-01 -3.58620942e-01 1.32878733e+00 -3.39511067e-01 -3.48844320e-01 -2.13743821e-01 -8.56267035e-01 -3.55938166e-01 -1.32575881e+00 -1.14640696e-02 4.02398914e-01 -8.72379765e-02 -3.88442948e-02 2.34580040e-01 9.25560594e-01 -1.52592134e+00 -4.17152524e-01 5.68667293e-01 8.74533057e-01 7.68301368e-01 9.12905514e-01 -2.68360287e-01 5.52387655e-01 -5.86313188e-01 1.60803705e-01 -7.41364956e-02 -7.79681683e-01 -6.25034332e-01 2.45111510e-01 -8.01026642e-01 3.46950561e-01 3.07264119e-01 6.85106337e-01 3.28794897e-01 2.63228893e-01 1.01040542e+00 -1.11929715e+00 9.68578309e-02 1.42169148e-01 -1.19189374e-01 1.25055000e-01 1.50578246e-01 1.63401440e-01 3.17232311e-01 -6.77808881e-01 5.21671772e-01 1.08712351e+00 3.99070472e-01 3.56284678e-01 -1.45277262e+00 1.19808167e-01 -1.01320948e-02 -1.13052092e-01 -1.56552792e+00 -3.12636405e-01 2.85308331e-01 -9.11113381e-01 1.05195951e+00 5.12729347e-01 1.18442380e+00 3.48250449e-01 8.89665961e-01 1.13423042e-01 1.10909176e+00 -6.09840393e-01 7.29318142e-01 -6.48225024e-02 -1.59846082e-01 3.98358941e-01 1.09724844e+00 -1.52671768e-03 -2.73655087e-01 1.26621515e-01 8.72078478e-01 -1.25701785e-01 -4.55785364e-01 -8.29712868e-01 -1.10958779e+00 6.32494628e-01 -1.97772503e-01 5.06225646e-01 -4.29383904e-01 2.50044823e-01 3.85347873e-01 5.81175846e-04 5.24645805e-01 5.60332656e-01 -9.06708002e-01 -1.04281530e-01 -5.93178213e-01 2.19896525e-01 1.19007838e+00 4.66655552e-01 6.67445898e-01 5.27538098e-02 7.16481358e-02 6.38269424e-01 4.93187785e-01 6.23939872e-01 3.92371148e-01 -8.26339483e-01 -4.07156259e-01 5.66355050e-01 4.64237869e-01 -9.32127476e-01 -5.00092745e-01 -5.36058307e-01 -7.85549462e-01 1.70805082e-01 7.73264408e-01 -1.22012332e-01 -3.58211339e-01 1.55070472e+00 2.80052602e-01 -4.27760303e-01 3.32605958e-01 6.27605379e-01 1.25553876e-01 9.18774188e-01 6.18236735e-02 -1.26244724e+00 1.26240361e+00 -6.02407217e-01 -1.17337632e+00 3.79523486e-01 7.29954362e-01 -6.61226809e-01 3.41024905e-01 4.58358616e-01 -1.41951966e+00 -1.51763380e-01 -7.06176221e-01 3.87005389e-01 -7.16959536e-01 -1.72021851e-01 3.32441121e-01 7.43142366e-01 -7.18505085e-01 7.74074197e-01 -1.01526296e+00 -9.04879212e-01 -7.19369575e-02 2.27735430e-01 -8.89501348e-03 2.18715534e-01 -6.20808840e-01 1.09799457e+00 4.74720031e-01 1.61259482e-03 -8.72497082e-01 -6.12088203e-01 -7.89797604e-01 2.68642098e-01 1.67519599e-01 -9.35150623e-01 9.42901611e-01 -4.49263811e-01 -2.03087616e+00 5.72191536e-01 -4.62626249e-01 -1.44515157e-01 6.56553745e-01 3.07212144e-01 -1.16473801e-01 2.65566111e-01 -1.31907240e-01 1.26683086e-01 1.09323032e-01 -1.56509614e+00 -3.67828041e-01 -2.82032132e-01 -5.88108711e-02 1.05467029e-01 1.04576819e-01 -5.18146604e-02 3.53597403e-01 -3.38623017e-01 3.86316866e-01 -5.42370081e-01 -1.84319600e-01 -2.23975882e-01 4.12231981e-04 1.15307353e-01 4.36277181e-01 -4.98635501e-01 9.05920625e-01 -1.75974309e+00 6.65263891e-01 4.54485118e-02 -1.79307550e-01 -7.70065635e-02 3.79872769e-01 7.42773294e-01 -4.18021567e-02 2.43260860e-01 -4.43939000e-01 1.95223615e-01 -1.36457801e-01 -1.32564548e-03 3.03811729e-01 7.60347664e-01 4.95982528e-01 3.87466967e-01 -1.27966642e+00 -8.55656713e-02 4.25281852e-01 5.66842616e-01 -3.57654363e-01 2.62874123e-02 -9.31814909e-02 8.27459574e-01 3.70403454e-02 7.42599666e-01 7.55102873e-01 -1.16591372e-01 6.37223601e-01 -1.87790230e-01 -9.25687969e-01 -2.08500430e-01 -1.21729314e+00 1.16812539e+00 -3.03982526e-01 2.34271109e-01 5.62987745e-01 -9.82649267e-01 1.01088798e+00 3.77268702e-01 9.36567724e-01 -3.28867557e-03 4.14451808e-01 6.61690831e-01 2.18276426e-01 -4.93447185e-01 3.45916510e-01 -8.10763955e-01 4.13460284e-01 -1.62654091e-02 -5.28485663e-02 -5.66053510e-01 6.56785369e-01 -3.77133995e-01 5.97755373e-01 4.41122055e-01 9.96249080e-01 -1.23240840e+00 1.09095371e+00 2.38916472e-01 4.49507952e-01 1.67996764e-01 -2.46709615e-01 1.50763884e-01 7.37661123e-01 -4.60889675e-02 -1.17181087e+00 -6.46322906e-01 -5.90030015e-01 6.04205489e-01 5.50111830e-01 -6.48955675e-03 -7.70835936e-01 4.89288986e-01 3.72817144e-02 5.08636415e-01 -5.04233122e-01 -2.66679376e-02 -4.63188648e-01 -1.32964182e+00 9.64719728e-02 -7.49721704e-03 1.07476808e-01 -6.13347530e-01 -8.70141625e-01 6.59479439e-01 -3.54006514e-02 -5.73403418e-01 3.80399138e-01 5.97513914e-01 -1.02823663e+00 -1.29734194e+00 -9.14573610e-01 -3.32190067e-01 6.00901842e-01 1.26359522e-01 1.00403869e+00 1.31851867e-01 -4.72698987e-01 2.50551552e-01 -2.49032840e-01 -5.87338984e-01 -8.05867672e-01 -8.65661949e-02 2.36329928e-01 -2.45695591e-01 1.00129895e-01 -2.65991569e-01 -5.14489651e-01 4.26226586e-01 -8.38135242e-01 -2.14997336e-01 -5.64635992e-02 8.67929399e-01 6.38252795e-01 2.63598502e-01 6.65309131e-01 -4.70387220e-01 1.84823409e-01 -6.01282537e-01 -6.82289243e-01 7.53850639e-02 -6.90112948e-01 -3.64142329e-01 4.54776913e-01 -1.31517366e-01 -1.09572423e+00 -1.03820883e-01 1.93005413e-01 4.28153127e-01 -1.11016579e-01 6.28807366e-01 -3.42760086e-01 1.25763983e-01 2.49073863e-01 4.25188124e-01 5.65511584e-01 -4.41309154e-01 -2.91940510e-01 2.59695351e-01 -3.29222269e-02 -6.45795822e-01 1.25510618e-01 5.03877044e-01 7.63525844e-01 -1.00820088e+00 -3.96584496e-02 -5.74661791e-01 -5.79253256e-01 -4.93537754e-01 7.35325456e-01 -7.14580059e-01 -1.14153242e+00 8.45492244e-01 -1.04168189e+00 -5.68048358e-01 -6.43480718e-01 8.20036411e-01 -9.73923683e-01 3.51821512e-01 -4.81694221e-01 -1.41820252e+00 9.50610042e-02 -1.12783396e+00 6.30975008e-01 1.16450198e-01 -8.05194527e-02 -1.29524410e+00 2.40340993e-01 -2.81026840e-01 5.13395309e-01 5.16631067e-01 9.30056393e-01 -4.14303038e-03 -4.34850216e-01 1.64930061e-01 1.54584914e-01 4.56330851e-02 5.33060074e-01 3.97322893e-01 -7.34911323e-01 -5.79933524e-01 3.30599070e-01 2.07908884e-01 7.41549432e-01 9.43676651e-01 5.53970754e-01 1.37906969e-01 -5.72010934e-01 7.33120501e-01 2.15564752e+00 5.54881692e-01 4.83220816e-01 4.33920771e-01 3.57528448e-01 9.81065512e-01 4.46267575e-01 7.85349905e-01 -3.06291342e-01 3.33963513e-01 7.69336820e-01 1.78874582e-01 -1.15235686e-01 3.80030602e-01 3.50891143e-01 8.83671701e-01 -8.09236646e-01 -6.73186779e-01 -7.51372755e-01 3.95617604e-01 -1.32096231e+00 -7.96008289e-01 -4.98355269e-01 2.22881961e+00 5.12769938e-01 -3.83689761e-01 2.51626223e-01 6.13007247e-01 8.40459406e-01 -4.03384596e-01 -3.76081169e-01 -5.57584703e-01 -5.99209666e-01 -5.25301211e-02 7.46090472e-01 8.68284047e-01 -5.87471545e-01 2.73861974e-01 7.25876904e+00 2.56326437e-01 -1.24949181e+00 2.79541742e-02 5.91147959e-01 1.08576633e-01 5.92992045e-02 9.83470455e-02 -6.41340852e-01 4.16164070e-01 8.00382435e-01 -4.31674600e-01 4.77639139e-01 2.82218844e-01 7.07742333e-01 -5.78719020e-01 -7.53721714e-01 3.78156364e-01 -2.29104385e-01 -1.11418223e+00 -2.07418993e-01 4.84602600e-01 7.27617383e-01 -5.67740440e-01 -5.79106987e-01 -1.15500368e-01 -8.40595365e-02 -7.06896484e-01 8.84116292e-01 6.27582490e-01 7.78140783e-01 -4.83594924e-01 1.00646842e+00 2.45406419e-01 -1.27886474e+00 -2.79834718e-01 -5.63942134e-01 -7.12112725e-01 4.49639976e-01 8.30837905e-01 -7.86834955e-01 8.22412491e-01 1.20115466e-01 5.65212905e-01 -4.00664583e-02 1.11873257e+00 2.42100328e-01 2.34004304e-01 -3.69384855e-01 -2.62402922e-01 -2.44932309e-01 -6.42491281e-01 5.71613789e-01 1.34418821e+00 8.01492691e-01 8.83589685e-03 -2.09057972e-01 9.85745132e-01 4.81792390e-01 6.32874846e-01 -5.10295093e-01 -2.19935074e-01 3.46776873e-01 9.39786911e-01 -1.35045540e+00 -2.44790435e-01 -8.90990943e-02 3.25179160e-01 -4.46089596e-01 3.92157137e-01 -3.33985031e-01 -1.12473276e-02 5.78926682e-01 3.73634994e-01 9.28505808e-02 -3.35486859e-01 -2.55825192e-01 -9.60911572e-01 -5.50585091e-01 -1.93092585e-01 8.54721069e-02 -4.94937539e-01 -8.59434545e-01 -1.09036751e-01 3.74662578e-01 -6.93388939e-01 2.05746219e-02 -1.27588904e+00 -2.03645125e-01 1.21298563e+00 -1.42536342e+00 -4.62857753e-01 -2.84796178e-01 -1.62908763e-01 5.08655488e-01 -5.25475331e-02 8.01091731e-01 -3.39865722e-02 -9.50488687e-01 -2.82531738e-01 7.10869253e-01 -8.04189026e-01 8.30408372e-03 -1.36069524e+00 -4.33908969e-01 7.76716650e-01 -1.16461015e+00 5.69732964e-01 1.13387001e+00 -8.30109119e-01 -1.26721931e+00 -9.05441225e-01 9.12765503e-01 2.08036173e-02 5.17797291e-01 -1.24630667e-02 -6.59980059e-01 7.82994851e-02 1.70242622e-01 -3.66789788e-01 6.25420332e-01 -3.20387840e-01 6.97097540e-01 5.73299937e-02 -1.22831309e+00 4.58894849e-01 6.49792373e-01 1.98092610e-01 -2.53284108e-02 2.81014323e-01 4.04001951e-01 -2.52215892e-01 -1.36528790e+00 5.55978835e-01 4.89232779e-01 -7.65170157e-01 7.53038585e-01 -3.59482914e-01 1.81760937e-01 -6.79270327e-01 -3.13315362e-01 -1.18999207e+00 -4.65982735e-01 -5.71089208e-01 -1.79376692e-01 9.49067175e-01 1.48002952e-02 -8.34364831e-01 2.74939954e-01 -5.43802418e-02 -2.08096474e-01 -7.00872421e-01 -8.97265136e-01 -1.12796354e+00 3.75230372e-01 5.23755968e-01 6.93818569e-01 9.80785847e-01 4.49322671e-01 9.25988629e-02 1.07834354e-01 -1.50277048e-01 2.23618880e-01 -3.53631198e-01 4.47802663e-01 -1.43773270e+00 -1.98423728e-01 -6.14247084e-01 -1.53773516e-01 -5.41811049e-01 -1.77513182e-01 -4.66406256e-01 1.22217111e-01 -1.40949202e+00 1.21073186e-01 -1.00412905e-01 -3.44379067e-01 -4.30221081e-01 1.86928902e-02 -4.81441505e-02 2.37355515e-01 1.19742215e-01 3.30454201e-01 3.69975835e-01 1.57703018e+00 9.63513479e-02 -2.73950487e-01 -2.42759317e-01 -2.04848442e-02 4.86031234e-01 9.61257875e-01 -2.84743011e-01 -4.43014771e-01 1.95249602e-01 5.42686284e-01 2.48134628e-01 1.71009004e-01 -9.87887681e-01 -3.39409709e-01 -5.96915483e-01 1.09067887e-01 -4.38549340e-01 2.90282071e-01 -8.83899450e-01 1.03139555e+00 1.20291245e+00 1.07722394e-01 1.27271578e-01 2.04671726e-01 5.31993270e-01 -1.93085343e-01 -6.45353258e-01 9.17340338e-01 -5.39335966e-01 3.77330780e-02 -2.45791063e-01 -1.07494891e+00 -6.03833199e-01 1.30764914e+00 -7.02416062e-01 -3.92418265e-01 2.78319776e-01 -9.46946681e-01 -3.22057873e-01 1.12370133e+00 -5.56409955e-01 -8.42250362e-02 -1.13765180e+00 -6.18893027e-01 2.68205330e-02 -2.00628266e-01 8.87479931e-02 3.11656892e-01 1.35109735e+00 -1.51128542e+00 5.37020326e-01 -5.45150101e-01 -6.92172766e-01 -8.56822193e-01 8.59375954e-01 6.35600805e-01 -2.86126494e-01 4.43103649e-02 5.62104046e-01 4.02242184e-01 7.24417269e-02 -5.55469215e-01 -5.56406796e-01 -2.47719735e-01 3.13974768e-01 1.65801823e-01 9.80040252e-01 7.95039162e-02 -7.44691610e-01 -4.00323570e-01 5.19314528e-01 7.99707472e-01 -1.07455626e-03 1.06122744e+00 -6.28459036e-01 -7.46049762e-01 1.00858402e+00 8.01133394e-01 -5.85594587e-02 -1.35814512e+00 4.45248872e-01 -2.56852597e-01 -3.22304994e-01 -2.23280221e-01 -6.01615071e-01 -6.69956923e-01 5.01023471e-01 3.68337780e-01 8.81023526e-01 1.04271400e+00 -3.19896996e-01 -1.18197300e-01 2.50540346e-01 1.67692199e-01 -1.05413210e+00 -1.01724066e-01 4.78435725e-01 7.71824837e-01 -6.81643546e-01 2.02751532e-01 -9.67760742e-01 2.45075434e-01 1.24702978e+00 2.65147954e-01 2.40573525e-01 6.04475379e-01 3.65511000e-01 -2.35479891e-01 -5.11967577e-03 -6.18896246e-01 -8.99055675e-02 -7.58594632e-01 6.32741034e-01 9.00399387e-01 2.97981501e-01 -1.14296043e+00 -7.19857514e-02 1.95009947e-01 8.48564953e-02 8.95030022e-01 1.05343270e+00 -7.50888169e-01 -9.85824525e-01 -8.47782373e-01 1.54648516e-02 -6.13726616e-01 2.24004820e-01 -7.28105381e-02 8.50847661e-01 3.42379302e-01 1.13719511e+00 9.72006544e-02 3.32256347e-01 9.21869129e-02 5.32994032e-01 7.08613396e-01 -4.47317183e-01 -2.72066325e-01 3.51963222e-01 -1.16267063e-01 1.20698199e-01 -9.10245359e-01 -1.00048673e+00 -1.12947094e+00 -3.05811763e-01 -6.26059473e-01 3.41822147e-01 1.17407990e+00 7.48222172e-01 -1.46892995e-01 9.95810628e-01 5.87010145e-01 -9.93735611e-01 -2.43072182e-01 -1.10164249e+00 -1.24063075e+00 1.29706949e-01 2.14326322e-01 -9.97680008e-01 -6.53843045e-01 5.66461384e-01]
[5.754912853240967, 4.280282497406006]
545350cd-142a-4d4e-bf72-726f815e6e2f
implementation-of-an-internet-of-things
2203.12787
null
https://arxiv.org/abs/2203.12787v2
https://arxiv.org/pdf/2203.12787v2.pdf
Design of an Internet of Things System for Smart Hospitals
With the fast advancement of smart devices and Internet of Things (IoT) technologies, certain established situations are opening up new avenues of exploration. Particularly in the sphere of healthcare, the diverse and big population, the complicated and professional data, and the stringent environmental requirements for certain medical scenes and equipment all impose exceptionally high standards on hospital administration. As a result, an effective and secure Internet of things system is critical. This article proposes an IoT system that might be used in hospitals for a variety of purposes. This system collects data by LoRa, Wi-Fi, and other ways, uploads it to a cloud platform for processing over a secure connection, and then feeds it back to users in real-time via the user interface. This system enables precise indoor localization through the use of UWB, ECG signal detection, environmental monitoring, and data on people flow.
['Zihuai Lin', 'Xucun Yan', 'Jichao Leng']
2022-03-24
null
null
null
null
['indoor-localization']
['computer-vision']
[ 6.99614640e-04 -3.08390111e-01 -2.79099029e-02 -3.30198228e-01 -7.96993896e-02 -3.08086365e-01 1.17186807e-01 3.59877139e-01 -3.39185685e-01 1.01094341e+00 9.84101593e-02 -4.72516119e-01 -6.32934332e-01 -1.15272033e+00 3.01731288e-01 -8.12160969e-01 -1.24403484e-01 1.64210007e-01 -3.32319736e-03 9.55075771e-03 -2.00045884e-01 5.15010178e-01 -1.02036738e+00 -1.02841236e-01 6.39490604e-01 1.27691615e+00 8.16939585e-03 1.58203304e-01 -6.10869788e-02 1.66709721e-01 -6.74274564e-01 -9.16095823e-02 6.82823434e-02 -1.75893724e-01 -3.66562456e-01 -3.94157112e-01 -8.39905858e-01 -3.22729230e-01 -7.91333169e-02 7.12188303e-01 1.18900847e+00 -2.80154973e-01 -9.66073945e-02 -7.88531184e-01 -8.93722773e-02 6.52141511e-01 -1.10725120e-01 1.38256988e-02 6.98938608e-01 -6.37287507e-03 -4.77596857e-02 -2.15617076e-01 9.45424736e-02 6.71464026e-01 6.79751098e-01 8.50157216e-02 -7.42926419e-01 -7.25046337e-01 -6.46185398e-01 1.70560524e-01 -1.57681203e+00 -1.75564185e-01 6.10188186e-01 -1.67176742e-02 2.43875027e-01 4.28810567e-01 7.20163703e-01 1.18945992e+00 6.56951129e-01 -1.81448743e-01 1.10437560e+00 -2.75247693e-01 4.49193656e-01 4.31792855e-01 8.70092884e-02 3.57681900e-01 7.65409827e-01 -9.24888402e-02 -1.92102939e-01 -3.15645903e-01 4.41973120e-01 7.55075395e-01 -3.24108481e-01 2.37961914e-02 -1.64051771e+00 6.98110387e-02 2.04408258e-01 8.41531575e-01 -5.93978643e-01 -1.78308710e-01 1.56645134e-01 2.44690459e-02 -5.72122373e-02 2.96625197e-01 -6.05016232e-01 -4.08625424e-01 -4.02963668e-01 -5.26609421e-01 7.85627425e-01 7.04717875e-01 2.01952547e-01 -3.87209833e-01 -4.35955375e-02 2.66939878e-01 5.16887844e-01 9.53710973e-01 5.18554986e-01 -4.61503088e-01 2.76242673e-01 2.63116628e-01 8.65584165e-02 -8.37835550e-01 -9.70317066e-01 -6.74496949e-01 -1.10733318e+00 -5.60984135e-01 1.26870349e-01 -5.68472743e-01 -1.16907448e-01 1.05170298e+00 6.32722378e-01 1.75352931e-01 -2.37859730e-02 3.46446902e-01 7.38774359e-01 3.85656387e-01 1.87871292e-01 -5.65337539e-01 1.55793536e+00 1.51645035e-01 -1.15298736e+00 4.46747184e-01 3.31680328e-01 -8.13312590e-01 6.18560195e-01 5.67463338e-01 -6.17222309e-01 -6.51187122e-01 -7.18857408e-01 5.15048981e-01 -4.15602505e-01 -2.32836053e-01 5.78054607e-01 1.18551362e+00 -6.06296420e-01 3.88601720e-01 -7.72012293e-01 -6.96679890e-01 3.09373826e-01 5.47387362e-01 5.75515591e-02 -6.26787171e-02 -1.18102479e+00 6.58958435e-01 1.70193970e-01 1.24893822e-01 -1.27395447e-02 -4.84601945e-01 -5.97161055e-01 1.61666036e-01 -3.01217467e-01 -8.81943464e-01 5.30129611e-01 1.65664673e-01 -1.38339257e+00 1.90973803e-01 2.49963239e-01 -2.57358670e-01 3.49111378e-01 -7.80915543e-02 -1.29602528e+00 1.04092941e-01 -5.99155538e-02 -3.61128747e-01 2.96422899e-01 -5.31941116e-01 -3.99594456e-01 -6.27093613e-01 -3.01882505e-01 -3.11917871e-01 -4.06164616e-01 9.17590261e-02 2.78039843e-01 -7.28866458e-02 3.08153778e-01 -5.70268989e-01 -2.17791870e-01 -3.99770111e-01 -3.67446601e-01 1.79114491e-01 9.43852723e-01 -3.12961400e-01 1.18305671e+00 -2.20268750e+00 -6.58592343e-01 7.84348309e-01 8.00418779e-02 1.52129248e-01 4.07243043e-01 4.94314611e-01 3.22267234e-01 -5.02712354e-02 2.26743013e-01 1.94883496e-01 -1.41888365e-01 1.67989492e-01 9.93129015e-02 5.34978747e-01 -6.53751612e-01 5.53334057e-01 -8.67973149e-01 -5.55606961e-01 5.13986170e-01 8.08281660e-01 -1.86645940e-01 -1.69994831e-02 7.44766414e-01 1.29265809e+00 -9.72642124e-01 8.18610430e-01 4.74882513e-01 -7.73695558e-02 2.76219606e-01 -1.37875959e-01 -3.44007850e-01 2.33536944e-01 -1.26869249e+00 1.49151576e+00 -7.78279603e-01 -3.50677297e-02 -6.36776015e-02 -8.83705735e-01 1.05262733e+00 8.93697560e-01 9.85898077e-01 -7.09043324e-01 6.86218619e-01 1.90910891e-01 -1.88083082e-01 -1.22853041e+00 -2.20009163e-01 -4.94735665e-04 -3.12824905e-01 4.31061655e-01 -2.81204492e-01 1.12373002e-01 -2.23653466e-01 -1.85533807e-01 1.17329419e+00 -1.43008336e-01 6.29091203e-01 -4.29337114e-01 5.60312092e-01 -7.32573628e-01 3.84315848e-01 3.30791742e-01 -2.32756913e-01 -1.69178799e-01 -4.84264731e-01 -5.32483876e-01 -3.59508455e-01 -1.11713254e+00 -5.14387310e-01 3.43296200e-01 4.00021523e-01 -1.15185417e-01 -3.40753406e-01 -3.20318699e-01 -7.56701513e-04 2.90852427e-01 1.72940582e-01 -1.08825400e-01 -3.34743381e-01 -6.52984977e-01 3.79697412e-01 1.67584941e-02 9.67730284e-01 -9.25740838e-01 -9.48413730e-01 5.65115690e-01 -4.08797354e-01 -1.10834515e+00 9.39160809e-02 3.78288329e-02 -9.28112328e-01 -7.22335398e-01 -4.43972349e-01 -4.40113991e-01 4.63222384e-01 2.74182230e-01 5.31414807e-01 -4.63868566e-02 -4.91492033e-01 4.96675432e-01 -1.57015875e-01 -9.19544101e-01 5.09462804e-02 3.43424194e-02 5.22761703e-01 3.84097874e-01 5.91510832e-01 -9.59903777e-01 -8.45956206e-01 3.88987035e-01 -4.58975911e-01 -6.07183874e-01 3.43338042e-01 1.31237626e-01 2.73533612e-01 5.10871828e-01 9.87119555e-01 -4.94918197e-01 5.73969424e-01 -7.20492482e-01 -3.85488719e-01 -2.08159089e-02 -3.84160370e-01 -2.76814431e-01 6.00437701e-01 -1.56672392e-02 -7.82719910e-01 -1.78459331e-01 -5.14531076e-01 5.32689214e-01 -6.22213423e-01 1.57492295e-01 -5.86573005e-01 -1.06734641e-01 6.03028119e-01 8.75880476e-03 -2.60344088e-01 -4.86272424e-01 -2.60485858e-01 1.49392843e+00 2.29195029e-01 -1.20408453e-01 7.87147760e-01 6.14583790e-01 8.75980631e-02 -1.11483955e+00 -6.01364076e-01 -6.00227416e-01 -2.89271653e-01 -2.84383476e-01 9.93059456e-01 -7.19673157e-01 -1.17206657e+00 5.60888164e-02 -9.38323259e-01 2.35514015e-01 -2.96547413e-01 1.25397789e+00 1.54183106e-02 1.87960923e-01 -3.26369405e-01 -8.46847892e-01 -4.14086312e-01 -7.27497756e-01 4.77233171e-01 3.81159633e-01 -5.76628387e-01 -7.94647574e-01 -1.46111101e-01 4.29190367e-01 8.65867615e-01 3.89898986e-01 3.47934276e-01 -2.96999961e-01 -6.33300781e-01 -6.39124990e-01 1.52454779e-01 -9.66774747e-02 6.73982680e-01 -5.08825660e-01 -9.35807168e-01 -6.59102648e-02 5.81188858e-01 3.63539219e-01 -6.58624396e-02 5.02081513e-01 1.43864608e+00 -2.96725005e-01 -7.93295145e-01 7.67236650e-01 1.27070880e+00 5.43793976e-01 8.41723561e-01 8.49842280e-02 1.05927557e-01 1.26100823e-01 4.59603310e-01 8.31558824e-01 2.91748941e-01 2.53879160e-01 4.28894699e-01 -9.50676017e-03 5.25804520e-01 2.07225189e-01 -2.85101295e-01 9.38205063e-01 -4.70729947e-01 -7.79605210e-02 -6.65701270e-01 5.55413030e-02 -1.40958905e+00 -1.04998636e+00 -1.61163792e-01 2.30638838e+00 3.60934377e-01 7.08986307e-03 -3.88477445e-02 6.71256483e-01 6.45980477e-01 -2.50494778e-01 -1.06774300e-01 -2.34837338e-01 5.43547273e-01 3.08223486e-01 6.76199019e-01 -7.59258494e-02 -8.70862424e-01 -1.64674520e-01 5.87816238e+00 1.19748764e-01 -1.22401571e+00 4.47642058e-01 3.70428532e-01 3.76976043e-01 -8.10752362e-02 -6.44541204e-01 -4.82592165e-01 8.90835881e-01 9.29600775e-01 -1.46465385e-02 1.57687917e-01 7.12794483e-01 5.96906185e-01 -2.50862986e-01 -6.72086954e-01 1.36123347e+00 -4.27251428e-01 -9.79212701e-01 -5.66856146e-01 3.00033033e-01 3.76936853e-01 -1.19620830e-01 -5.65792546e-02 -2.74743527e-01 -2.49089822e-01 -5.24261057e-01 6.54608607e-02 6.30160868e-01 7.75522351e-01 -7.09723949e-01 1.07191098e+00 4.10006106e-01 -1.19948816e+00 -2.24596307e-01 -1.14421465e-01 -3.14649820e-01 4.39225614e-01 1.11295331e+00 -5.31199098e-01 7.59504676e-01 6.70353174e-01 1.58291578e-01 1.35632515e-01 1.38229978e+00 -2.03268737e-01 5.71225405e-01 -5.12044847e-01 -3.35005611e-01 -3.46677810e-01 -9.91470963e-02 2.11550876e-01 9.04274881e-01 8.00183177e-01 4.68421638e-01 1.20168189e-02 3.07119310e-01 1.89718977e-01 1.30634844e-01 -7.39335656e-01 5.78864694e-01 5.28248012e-01 1.39499080e+00 -6.83996022e-01 -2.37872049e-01 -3.14005435e-01 4.08956587e-01 -8.66029680e-01 2.02777490e-01 -9.19708073e-01 -7.64149785e-01 5.47026515e-01 4.01396960e-01 -2.56888121e-01 -5.30080140e-01 -5.23091733e-01 -9.03511226e-01 -9.53429863e-02 -2.64396191e-01 2.82444954e-01 -2.90000260e-01 -9.31161642e-01 4.69895720e-01 -4.00299519e-01 -1.52964735e+00 2.32576638e-01 -1.43767009e-02 -6.05394363e-01 4.98533309e-01 -1.45790660e+00 -4.06856328e-01 -6.43566191e-01 1.19666755e+00 -1.36449561e-02 4.28790152e-02 1.34894788e+00 9.13192213e-01 -2.02415988e-01 1.68664828e-01 2.32097760e-01 2.32276693e-03 4.58685637e-01 -5.23458719e-01 -2.06370741e-01 4.23660249e-01 -1.73055634e-01 5.61277688e-01 4.38873112e-01 -4.19256091e-01 -1.31633878e+00 -9.64022815e-01 1.26376462e+00 -3.92517820e-02 1.84261262e-01 -1.74619943e-01 -1.46395013e-01 3.88428092e-01 3.48862037e-02 1.64100006e-01 1.04954648e+00 -1.19524769e-01 3.63689601e-01 -8.85435939e-01 -1.73669994e+00 2.86811292e-01 7.57229507e-01 -2.11125344e-01 -3.78094286e-01 4.46544439e-01 3.12483042e-01 -1.14415072e-01 -9.67834115e-01 2.57423043e-01 7.18286812e-01 -7.92062521e-01 1.05085862e+00 1.29350349e-01 -5.57375252e-01 -2.66539723e-01 1.53225949e-02 -1.07748592e+00 -3.32649797e-01 -8.97237837e-01 4.21054929e-01 1.04104912e+00 5.40417843e-02 -1.35889554e+00 1.68490633e-01 5.71232200e-01 2.80573577e-01 -3.74457955e-01 -9.69349146e-01 -5.74949741e-01 -1.10771930e+00 -3.84831309e-01 1.14721334e+00 9.50977087e-01 8.19315672e-01 8.27331096e-02 -3.78077269e-01 3.65255803e-01 7.63381720e-01 -1.51103556e-01 4.63109851e-01 -1.47342134e+00 -8.19211826e-02 4.05491978e-01 -7.31201410e-01 -6.78775489e-01 -8.21383774e-01 -5.30460656e-01 -3.25483829e-01 -1.87458837e+00 -4.45743859e-01 -8.78894031e-01 -6.00392640e-01 1.43080324e-01 4.35860544e-01 4.97682720e-01 -1.68249488e-01 -1.70019254e-01 -5.29704690e-01 -3.85432541e-02 1.01675081e+00 -6.06211573e-02 -2.57667094e-01 6.95720434e-01 -3.74264687e-01 8.22776854e-01 1.25875390e+00 -3.78632545e-01 -1.93795651e-01 -3.19926202e-01 2.14799896e-01 3.03318024e-01 1.52607992e-01 -1.53667688e+00 2.61454910e-01 7.81995803e-02 6.79051697e-01 -2.66444355e-01 2.33077571e-01 -1.74459028e+00 5.74629307e-01 1.01482308e+00 3.73145670e-01 -1.54199228e-01 -3.07817161e-01 1.17321320e-01 1.64154664e-01 3.67227912e-01 7.26860821e-01 -5.40559329e-02 -5.24370857e-02 2.77451217e-01 -5.05591273e-01 -4.92068589e-01 1.38079500e+00 -3.76729190e-01 -1.76168904e-01 -3.71257573e-01 -7.87091494e-01 3.45042944e-02 -1.56990811e-01 1.37057975e-01 4.19821203e-01 -1.11546409e+00 -7.66508058e-02 7.64127374e-01 -2.36069039e-01 -1.42638713e-01 3.66506189e-01 1.05811954e+00 -3.98534149e-01 4.95473891e-01 -2.80356646e-01 -5.71883798e-01 -1.08367705e+00 4.43133652e-01 1.62921384e-01 4.90758978e-02 -7.81004429e-01 7.28719532e-02 -4.17252600e-01 -5.45426719e-02 3.47644210e-01 -4.82979447e-01 -2.74021804e-01 -6.71417564e-02 8.76154065e-01 7.23766983e-01 1.27517402e-01 -1.79485962e-01 -7.34303117e-01 8.28720689e-01 9.35792923e-01 2.48664588e-01 1.19984829e+00 -5.77967286e-01 -1.01472810e-01 2.52307564e-01 8.23658884e-01 5.50735474e-01 -2.04863191e-01 6.94694892e-02 -1.70906126e-01 -4.27168339e-01 -4.14732516e-01 -7.48025119e-01 -8.54817688e-01 6.49618328e-01 7.65160918e-01 8.30666721e-01 1.18630576e+00 9.15638804e-02 1.06685209e+00 4.94940102e-01 1.12028790e+00 -9.21645582e-01 -4.31071460e-01 -7.19541358e-03 -2.43118983e-02 -7.89698303e-01 -5.28654549e-03 -3.82428229e-01 1.36478906e-02 1.01920140e+00 -3.59668016e-01 3.27551574e-01 1.30861819e+00 5.47977030e-01 4.02247250e-01 -3.00861672e-02 1.25748053e-01 1.80642139e-02 -4.76490766e-01 8.57443631e-01 2.72293001e-01 1.54467896e-01 -6.44670665e-01 7.53413141e-01 -3.45173866e-01 5.41239679e-01 2.91558117e-01 7.83885539e-01 -6.26415670e-01 -1.00292826e+00 -6.69840157e-01 4.23875391e-01 -1.12694132e+00 4.33456123e-01 6.15932703e-01 2.36859113e-01 7.19744563e-01 1.34040701e+00 -1.13153264e-01 -1.82231888e-01 4.42116439e-01 -6.31999373e-02 2.37852201e-01 -2.31449217e-01 -4.53631490e-01 -4.53108102e-02 -3.84703353e-02 -7.53305554e-01 -4.66538697e-01 -2.01311335e-01 -1.41359162e+00 -3.25931668e-01 -1.59637183e-01 3.30430478e-01 1.12405586e+00 9.87855494e-01 4.77548629e-01 8.19682598e-01 9.18555498e-01 -3.62727761e-01 -3.36557150e-01 -7.15166628e-01 -9.09312308e-01 4.90910970e-02 1.93087265e-01 -2.44566575e-01 1.34802964e-02 -2.62166202e-01]
[6.545906066894531, 0.916495144367218]
3edb2550-939f-4b69-a7fc-467736e16335
fristograms-revealing-and-exploiting-light
2107.10563
null
https://arxiv.org/abs/2107.10563v1
https://arxiv.org/pdf/2107.10563v1.pdf
Fristograms: Revealing and Exploiting Light Field Internals
In recent years, light field (LF) capture and processing has become an integral part of media production. The richness of information available in LFs has enabled novel applications like post-capture depth-of-field editing, 3D reconstruction, segmentation and matting, saliency detection, object detection and recognition, and mixed reality. The efficacy of such applications depends on certain underlying requirements, which are often ignored. For example, some operations such as noise-reduction, or hyperfan-filtering are only possible if a scene point Lambertian radiator. Some other operations such as the removal of obstacles or looking behind objects are only possible if there is at least one ray capturing the required scene point. Consequently, the ray distribution representing a certain scene point is an important characteristic for evaluating processing possibilities. The primary idea in this paper is to establish a relation between the capturing setup and the rays of the LF. To this end, we discretize the view frustum. Traditionally, a uniform discretization of the view frustum results in voxels that represents a single sample on a regularly spaced, 3-D grid. Instead, we use frustum-shaped voxels (froxels), by using depth and capturing-setup dependent discretization of the view frustum. Based on such discretization, we count the number of rays mapping to the same pixel on the capturing device(s). By means of this count, we propose histograms of ray-counts over the froxels (fristograms). Fristograms can be used as a tool to analyze and reveal interesting aspects of the underlying LF, like the number of rays originating from a scene point and the color distribution of these rays. As an example, we show its ability by significantly reducing the number of rays which enables noise reduction while maintaining the realistic rendering of non-Lambertian or partially occluded regions.
['Robin Kremer', 'Tobias Lange', 'Kelvin Chelli', 'Thorsten Herfet']
2021-07-22
null
null
null
null
['image-matting']
['computer-vision']
[ 5.62931597e-01 -3.69084597e-01 3.10326159e-01 -1.41925484e-01 -1.29533783e-01 -4.65084255e-01 6.22643828e-01 5.64619243e-01 -4.24234748e-01 5.86729407e-01 -2.45954946e-01 -1.30138472e-01 -1.64949313e-01 -1.21023273e+00 -6.95910633e-01 -6.86945200e-01 1.31379068e-01 3.74882817e-01 5.10546625e-01 -6.74113929e-02 3.36014390e-01 1.15475953e+00 -2.01426268e+00 2.27607176e-01 8.56626570e-01 9.50770438e-01 4.63880420e-01 5.69366276e-01 -6.06117606e-01 3.55811805e-01 -5.67601025e-01 -4.17600647e-02 1.95606396e-01 -4.18907046e-01 -3.09428513e-01 2.88249791e-01 2.96206474e-01 -2.71053493e-01 2.19860718e-01 1.21754146e+00 1.40691385e-01 1.94063634e-01 6.76862657e-01 -9.49806392e-01 1.67523369e-01 -3.39451544e-02 -5.82135320e-01 9.94417910e-03 6.20607138e-01 -1.35947345e-02 4.54693675e-01 -8.19996357e-01 6.95245028e-01 9.17290807e-01 2.24156216e-01 6.80238903e-02 -1.26014662e+00 -3.32222521e-01 -9.89058539e-02 8.13805684e-02 -1.22848117e+00 -1.63933203e-01 1.13412023e+00 -5.59860885e-01 1.97757542e-01 7.71700203e-01 9.94276583e-01 4.02992368e-01 3.66208345e-01 3.85962754e-01 1.33185637e+00 -7.81144738e-01 5.12822807e-01 2.84792334e-01 8.68144557e-02 4.49723899e-01 1.42747745e-01 4.91530355e-03 -2.52259284e-01 -7.81421363e-02 1.06797779e+00 1.28389627e-01 -7.09869623e-01 -4.94326472e-01 -1.00328231e+00 3.66899163e-01 2.77857751e-01 4.26633388e-01 -3.04373741e-01 -6.97026104e-02 -4.97587994e-02 4.40536626e-03 5.35280645e-01 4.45204407e-01 -8.87593850e-02 1.07944347e-01 -9.63454306e-01 1.43208161e-01 4.31672633e-01 6.21202528e-01 1.16621101e+00 -2.00331271e-01 -1.49077841e-03 5.72753310e-01 -1.78624526e-01 3.89476717e-01 -4.67536831e-03 -9.30279195e-01 5.21767624e-02 8.13688815e-01 2.47261047e-01 -8.88567388e-01 -3.35025638e-01 -3.80603611e-01 -7.35893786e-01 8.89881253e-01 6.15602791e-01 1.47595719e-01 -8.11803818e-01 1.16682768e+00 6.62172198e-01 -2.80432086e-02 -2.90793478e-01 9.29638565e-01 4.08789665e-01 7.37895012e-01 -4.08607602e-01 -4.47586060e-01 1.45388472e+00 -1.97995543e-01 -6.13275051e-01 1.96641490e-01 1.58017933e-01 -1.01720846e+00 1.21678686e+00 8.22889030e-01 -1.23768175e+00 -4.53658819e-01 -6.89327598e-01 9.44457874e-02 -2.32183367e-01 1.05124906e-01 4.76172924e-01 3.98285836e-01 -6.31929040e-01 4.73113596e-01 -5.15949130e-01 -6.10805005e-02 2.48828724e-01 -2.63999235e-02 -1.80772007e-01 -3.16460222e-01 -6.22176170e-01 5.64431787e-01 1.53824553e-01 8.65468010e-02 -5.72610736e-01 -8.06399882e-01 -4.34907377e-01 2.14038104e-01 6.03265047e-01 -5.59280396e-01 6.43823922e-01 -9.36174154e-01 -1.30853343e+00 8.14087749e-01 -1.40343159e-01 -1.65544063e-01 6.50564671e-01 -9.75084081e-02 -3.78998369e-01 4.12511766e-01 6.07608631e-02 4.60828990e-02 9.96113598e-01 -1.53677130e+00 -6.97419047e-01 -4.49093699e-01 3.10881346e-01 1.61345631e-01 1.31610125e-01 -5.10833561e-02 -4.37215090e-01 -4.50147688e-01 3.67107332e-01 -4.54673201e-01 -9.49929357e-02 3.26690137e-01 -5.61770856e-01 1.17591314e-01 8.17577064e-01 -2.68352538e-01 9.21732247e-01 -2.22292805e+00 -7.71964863e-02 4.20021653e-01 2.20954284e-01 -5.32482229e-02 3.69277149e-01 2.81972796e-01 -2.54134368e-02 -3.01859468e-01 -4.57192004e-01 -1.14558026e-01 -5.87031186e-01 -6.83404729e-02 -6.68848604e-02 6.12907052e-01 -7.64919966e-02 1.63432971e-01 -8.08238208e-01 -3.68140161e-01 7.83990264e-01 6.38692677e-01 -5.11700034e-01 1.27502859e-01 -5.53320646e-01 8.29675198e-01 -6.17140293e-01 4.18140262e-01 9.34265614e-01 1.72899514e-01 -3.06232035e-01 -3.54561627e-01 -8.41089785e-01 -9.45613384e-02 -1.44101322e+00 1.42148650e+00 -6.27496719e-01 5.58319747e-01 2.34485894e-01 -5.42446494e-01 9.66588318e-01 -2.03624330e-02 5.99937975e-01 -7.12528348e-01 2.38688111e-01 1.84237108e-01 -4.00551379e-01 -2.78429180e-01 4.00963843e-01 -5.30697517e-02 3.95612925e-01 3.44289094e-01 -5.60929358e-01 -4.47884142e-01 2.49654353e-01 -9.11948010e-02 8.30109537e-01 -9.80006233e-02 2.30134696e-01 -2.89540380e-01 6.30858839e-01 3.44665200e-02 1.79630324e-01 4.94662851e-01 3.85743648e-01 8.55970442e-01 5.28871179e-01 -3.18119347e-01 -8.90844047e-01 -1.11093199e+00 -5.64893663e-01 4.82308567e-01 4.79675889e-01 -1.85512155e-01 -8.49819362e-01 -2.24428073e-01 -2.37525821e-01 8.63149643e-01 -4.64380741e-01 1.48422033e-01 -5.40995538e-01 -4.13998038e-01 -2.59600192e-01 -1.29134834e-01 5.48779428e-01 -9.19281662e-01 -1.53062057e+00 1.15564778e-01 -1.07075103e-01 -9.50767934e-01 1.15530863e-01 1.97718188e-01 -9.34907138e-01 -1.16536844e+00 -8.42915773e-01 -1.60950199e-01 8.56197059e-01 4.11819935e-01 1.15893269e+00 -1.83860093e-01 -5.49284399e-01 3.78945559e-01 -3.33410710e-01 -2.19485328e-01 -1.80188194e-01 -5.81445336e-01 -4.00327116e-01 3.69974703e-01 -1.46806002e-01 -5.79414964e-01 -7.90173590e-01 2.66891330e-01 -1.01936424e+00 3.50542545e-01 2.77415752e-01 3.66038233e-01 9.50177252e-01 4.20458019e-01 -1.28571928e-01 -7.79647112e-01 2.41785005e-01 -1.02616958e-01 -1.10748851e+00 1.42676353e-01 4.33235057e-02 -9.47305188e-02 7.58662045e-01 -2.64189065e-01 -1.11233115e+00 -1.31540289e-02 4.00571004e-02 -5.83369851e-01 -6.08524859e-01 1.75546780e-01 -2.86883891e-01 7.59475753e-02 6.18778944e-01 2.97518522e-01 -3.02395582e-01 -5.80419898e-01 2.37815976e-01 3.03625464e-01 4.03986365e-01 -3.26157272e-01 5.42056262e-01 1.09183800e+00 3.78068835e-01 -1.33081234e+00 -5.29279411e-01 -4.33038712e-01 -4.52647120e-01 -7.67618477e-01 9.30831015e-01 -2.80921131e-01 -7.96812594e-01 2.45302632e-01 -1.27783561e+00 -1.79236919e-01 -7.55913973e-01 5.33861101e-01 -4.69187230e-01 2.15977266e-01 -1.18020944e-01 -1.14280736e+00 1.34104162e-01 -1.14396966e+00 9.47222173e-01 3.01045209e-01 -5.39919138e-02 -7.43091404e-01 -8.74113664e-02 1.63488671e-01 1.47772834e-01 4.29171234e-01 1.19326699e+00 3.13616961e-01 -9.78641748e-01 -1.63798779e-01 -4.36990485e-02 2.45825201e-01 7.84912780e-02 1.55479923e-01 -1.03518546e+00 1.11136273e-01 3.02600056e-01 3.33942026e-01 6.43738985e-01 8.00609529e-01 1.27329051e+00 8.66264030e-02 -3.16823035e-01 6.89677477e-01 1.70425427e+00 3.56250972e-01 8.49258661e-01 2.42273748e-01 5.75758100e-01 9.42583978e-01 6.34386599e-01 5.47679782e-01 -1.76801130e-01 9.13304865e-01 7.66478360e-01 -2.80546546e-01 -2.46912420e-01 1.73975583e-02 -1.05300657e-02 1.97840810e-01 -3.84924918e-01 -2.52364427e-01 -6.87771678e-01 2.56916791e-01 -1.12331831e+00 -7.89152622e-01 -6.89589262e-01 2.70850635e+00 4.79478151e-01 1.30250126e-01 2.05050241e-02 4.93753344e-01 7.31574714e-01 8.28028005e-03 -2.11437091e-01 -3.30237925e-01 -1.15464486e-01 2.96019256e-01 4.43535388e-01 8.26706469e-01 -6.00906849e-01 4.73391622e-01 4.67844820e+00 9.29429173e-01 -1.32509899e+00 -6.47621155e-02 4.22031045e-01 -1.87365618e-02 -7.63606489e-01 1.10817157e-01 -6.61425173e-01 5.20549536e-01 5.54001220e-02 1.94370165e-01 3.84720504e-01 5.91773272e-01 4.65132385e-01 -9.84487474e-01 -8.71049643e-01 1.05040348e+00 -9.32869315e-02 -1.07029533e+00 4.07482944e-02 2.47876048e-02 5.85195184e-01 -5.26147008e-01 -1.00395195e-01 -5.74473441e-01 -2.71128088e-01 -6.96099579e-01 8.96016061e-01 7.90152192e-01 1.01125550e+00 -7.32822776e-01 2.67598927e-01 5.10821044e-01 -1.05247462e+00 1.64497539e-01 -3.80785018e-01 1.68079250e-02 4.68564957e-01 1.48859882e+00 -6.00739002e-01 6.45061255e-01 5.18861532e-01 2.12185860e-01 -2.52106071e-01 1.29689372e+00 -8.03883970e-02 1.55309290e-01 -5.27242005e-01 1.81226119e-01 -4.89599071e-02 -7.15432644e-01 9.24061298e-01 8.77481699e-01 4.28884238e-01 1.38279080e-01 -9.55522507e-02 1.27002609e+00 2.60483325e-01 1.55521929e-01 -5.32911003e-01 5.64220667e-01 2.28471324e-01 1.18450463e+00 -1.31514812e+00 -1.20868661e-01 -3.29147011e-01 9.42478061e-01 -1.66963339e-01 5.67399383e-01 -6.21458113e-01 -2.89752454e-01 3.57823461e-01 8.76072884e-01 9.94578078e-02 -1.51696041e-01 -5.27125776e-01 -7.92759061e-01 2.12970972e-01 -3.33853424e-01 -1.03322975e-01 -9.11626637e-01 -7.96236932e-01 6.36011481e-01 1.76859975e-01 -1.49834037e+00 1.47709742e-01 -3.06500167e-01 -5.00263453e-01 9.51916516e-01 -1.54461277e+00 -7.04603493e-01 -5.56224287e-01 8.76014769e-01 4.44743127e-01 4.48965758e-01 5.84021986e-01 2.87226319e-01 -1.20991342e-01 -2.19411045e-01 1.74549848e-01 -3.63885373e-01 1.39851451e-01 -9.71895874e-01 -2.84504801e-01 8.68777335e-01 6.25290051e-02 2.84622014e-01 7.99976230e-01 -6.88567936e-01 -9.50005889e-01 -8.04152727e-01 4.63111848e-01 -9.30692181e-02 2.36368757e-02 -5.24496973e-01 -9.06815112e-01 1.11592591e-01 -2.16697335e-01 6.56056404e-02 2.00995207e-02 -1.92479700e-01 2.32749298e-01 -2.76106149e-01 -1.11103106e+00 6.44098103e-01 6.40346289e-01 -3.49364460e-01 -1.58210143e-01 1.80328533e-01 8.70468989e-02 -3.49627614e-01 -3.83000463e-01 4.00148630e-01 4.59111154e-01 -1.71359432e+00 9.55956459e-01 1.28301725e-01 4.70054656e-01 -5.90230227e-01 7.23798946e-02 -1.12683439e+00 6.87773451e-02 -3.72533739e-01 1.27059698e-01 9.75410819e-01 -1.26513824e-01 -5.04356444e-01 7.31406748e-01 3.01965624e-01 -2.24609390e-01 -7.31218934e-01 -9.84461129e-01 -4.59820300e-01 -4.73962456e-01 -7.19623327e-01 3.41566741e-01 8.65125716e-01 -5.32032371e-01 -6.50621206e-02 1.95391223e-01 2.67387837e-01 8.16961229e-01 4.42212462e-01 7.40129650e-01 -1.52901912e+00 -4.18902367e-01 -3.20071042e-01 -3.74313504e-01 -1.04950213e+00 -4.31121171e-01 -3.83053571e-01 -1.65248632e-01 -1.63938618e+00 -2.06845090e-01 -8.79572451e-01 2.66696423e-01 -2.64474809e-01 1.38352230e-01 1.27531141e-01 1.34400025e-01 2.24060819e-01 -1.06002176e-02 2.17313319e-01 1.49147928e+00 3.11609805e-01 -4.58436340e-01 2.90149033e-01 1.06045984e-01 1.11324966e+00 5.49981177e-01 -2.73015589e-01 -3.60227704e-01 -2.96698034e-01 3.46873045e-01 2.14949325e-01 5.51345766e-01 -1.15184331e+00 1.48725152e-01 -2.05218479e-01 3.85342538e-01 -9.02949393e-01 6.74360693e-01 -1.10196328e+00 5.45668483e-01 2.81266093e-01 7.26104826e-02 -3.85049284e-01 -1.06609002e-01 4.13758218e-01 -1.14156477e-01 -5.33657730e-01 9.15080965e-01 -3.32156271e-01 -4.46923405e-01 -1.15771018e-01 -4.38277870e-01 -2.00331181e-01 1.30295968e+00 -7.62700558e-01 5.60815260e-03 -3.25886637e-01 -6.64967418e-01 -3.67689818e-01 8.13312531e-01 -2.90806860e-01 7.56410301e-01 -8.96604598e-01 -3.99582505e-01 6.60203993e-01 5.72927669e-02 3.93886417e-01 5.03079057e-01 7.66657114e-01 -8.43747079e-01 8.22610781e-02 -1.57683119e-01 -7.86219835e-01 -1.29404855e+00 3.65877151e-01 3.09345871e-01 1.02498673e-01 -8.22505355e-01 5.86450994e-01 7.00044155e-01 3.01669329e-01 1.82743687e-02 -7.07759500e-01 -3.06057215e-01 9.69550535e-02 4.71168190e-01 6.51174128e-01 2.16539562e-01 -3.92515749e-01 -3.28692347e-02 9.69802201e-01 3.19544226e-01 -1.38601884e-01 1.09784627e+00 -1.46674827e-01 -1.97583765e-01 7.67990947e-01 8.37197185e-01 6.68477058e-01 -1.21216488e+00 1.10178083e-01 -5.09463429e-01 -9.56536531e-01 2.58734822e-01 -5.36293328e-01 -8.82514417e-01 1.09960270e+00 5.24290800e-01 6.18183315e-01 1.42953992e+00 8.25247765e-02 3.47542733e-01 -3.77822727e-01 7.69819319e-01 -9.43594933e-01 -3.15889597e-01 2.23319113e-01 6.65137351e-01 -6.28371000e-01 -2.29843985e-02 -1.01893497e+00 -1.75329849e-01 1.37748742e+00 1.33184731e-01 -3.73926200e-02 4.72099900e-01 3.96617144e-01 -2.01803505e-01 -3.26035589e-01 -6.29997998e-02 -3.22110981e-01 2.21317351e-01 3.90011817e-01 2.82324791e-01 8.03359821e-02 -3.32848400e-01 5.33815324e-02 -1.64454907e-01 6.69515431e-02 6.37257099e-01 8.23842347e-01 -6.27145052e-01 -7.50339389e-01 -8.69618237e-01 4.36578661e-01 -2.57000774e-01 -1.46627314e-02 2.01458372e-02 6.06036663e-01 4.77575630e-01 6.15382791e-01 3.31474096e-01 1.96775571e-01 4.95363414e-01 -3.06082964e-01 7.35971093e-01 -7.62620091e-01 -2.47719333e-01 3.87084395e-01 -1.92273095e-01 -5.74306130e-01 -4.26717728e-01 -5.56575298e-01 -1.23621023e+00 -7.92304277e-02 -3.69735926e-01 -3.38082090e-02 8.57632160e-01 7.14481711e-01 -8.97586793e-02 4.62317705e-01 6.57661974e-01 -9.81381118e-01 1.81564331e-01 -4.35767889e-01 -8.92265260e-01 4.07732695e-01 3.74482900e-01 -8.14850569e-01 -5.30781031e-01 5.52306101e-02]
[9.670615196228027, -2.661588430404663]
9b5386ec-5157-4616-bcb6-f764178cbf44
action-machine-rethinking-action-recognition
1812.05770
null
http://arxiv.org/abs/1812.05770v2
http://arxiv.org/pdf/1812.05770v2.pdf
Action Machine: Rethinking Action Recognition in Trimmed Videos
Existing methods in video action recognition mostly do not distinguish human body from the environment and easily overfit the scenes and objects. In this work, we present a conceptually simple, general and high-performance framework for action recognition in trimmed videos, aiming at person-centric modeling. The method, called Action Machine, takes as inputs the videos cropped by person bounding boxes. It extends the Inflated 3D ConvNet (I3D) by adding a branch for human pose estimation and a 2D CNN for pose-based action recognition, being fast to train and test. Action Machine can benefit from the multi-task training of action recognition and pose estimation, the fusion of predictions from RGB images and poses. On NTU RGB-D, Action Machine achieves the state-of-the-art performance with top-1 accuracies of 97.2% and 94.3% on cross-view and cross-subject respectively. Action Machine also achieves competitive performance on another three smaller action recognition datasets: Northwestern UCLA Multiview Action3D, MSR Daily Activity3D and UTD-MHAD. Code will be made available.
['Jun-Jie Huang', 'Dalong Du', 'Wei Zou', 'Liang Xu', 'Manyu Chang', 'Guan Huang', 'Yiming Hu', 'Zheng Zhu', 'Jiagang Zhu']
2018-12-14
null
null
null
null
['multimodal-activity-recognition']
['computer-vision']
[ 7.50279948e-02 3.48573946e-03 -2.86227196e-01 -3.83396775e-01 -8.47346544e-01 -1.61771268e-01 5.15905142e-01 -7.56707370e-01 -4.11215305e-01 4.46197540e-01 6.77671492e-01 3.60797405e-01 4.04617071e-01 -1.97620764e-01 -8.33337307e-01 -6.02912664e-01 -8.24441016e-02 5.92821598e-01 3.08543533e-01 1.11195289e-01 -2.43312314e-01 4.52790320e-01 -1.60398173e+00 5.53356290e-01 1.16681464e-01 1.21778083e+00 -2.28785068e-01 8.69049072e-01 5.41174293e-01 1.05021560e+00 -3.78221840e-01 -3.74208361e-01 5.89785933e-01 -3.81087273e-01 -7.64019012e-01 7.73856819e-01 8.44380975e-01 -9.92635727e-01 -7.62973070e-01 3.11660558e-01 7.31933773e-01 8.38895515e-02 4.53240097e-01 -1.38418651e+00 -2.52629608e-01 -1.47805382e-02 -6.42322421e-01 1.57949731e-01 9.51497793e-01 4.42221433e-01 4.19743389e-01 -9.34601545e-01 6.37373388e-01 1.50768411e+00 7.00223207e-01 8.57407212e-01 -9.13986564e-01 -3.20745111e-01 1.56851307e-01 4.22467470e-01 -1.25780427e+00 -4.13024187e-01 5.39355755e-01 -6.11100554e-01 1.41832316e+00 2.17911825e-01 1.02665031e+00 1.68478274e+00 1.01648144e-01 1.39935410e+00 8.32496524e-01 -2.95613706e-01 1.39987655e-02 -3.84743750e-01 -3.27528775e-01 5.93140185e-01 -2.84280237e-02 5.35911694e-03 -8.41339767e-01 1.77729145e-01 1.01785493e+00 3.36972862e-01 -2.17146516e-01 -8.36859822e-01 -1.35863626e+00 3.58798206e-01 2.23969236e-01 -3.71792936e-03 -5.65921247e-01 2.52046794e-01 5.52861929e-01 -4.62359972e-02 5.59079468e-01 -2.31785461e-01 -6.71930492e-01 -5.56308627e-01 -7.07856357e-01 4.01279896e-01 3.11229825e-01 9.12069857e-01 -1.93752460e-02 1.15083940e-01 -4.30698186e-01 5.56927145e-01 3.43267560e-01 8.56420934e-01 5.52993715e-01 -1.01642227e+00 5.75075328e-01 6.89521849e-01 3.38271976e-01 -7.87731409e-01 -7.86401153e-01 -1.69061627e-02 -7.07020402e-01 2.32364252e-01 6.05477273e-01 -5.06291958e-03 -1.23485315e+00 1.41107988e+00 6.36908352e-01 8.32766294e-03 -5.32464832e-02 1.24838972e+00 9.78908002e-01 1.05675645e-01 1.48297533e-01 1.26398206e-01 1.26192093e+00 -1.27280474e+00 -5.08048594e-01 -3.86101931e-01 8.00829053e-01 -2.61203349e-01 6.52356803e-01 5.20110130e-01 -1.19128263e+00 -9.20817733e-01 -8.38855565e-01 -2.20243245e-01 -2.36848861e-01 6.43170655e-01 6.60076976e-01 6.67664528e-01 -9.05208707e-01 5.69158137e-01 -1.30552733e+00 -6.28364086e-01 5.86824834e-01 4.13199514e-01 -1.06817961e+00 -1.04737520e-01 -8.52116585e-01 1.07531476e+00 2.91453451e-01 2.14046910e-01 -1.13956654e+00 -3.11651617e-01 -1.11334252e+00 -4.50924903e-01 5.63203156e-01 -6.86200142e-01 1.32769191e+00 -1.11924148e+00 -1.48507619e+00 1.26945591e+00 1.76376343e-01 -6.10730469e-01 1.11181402e+00 -7.77962804e-01 -3.70348603e-01 4.50172782e-01 8.90181437e-02 8.02050650e-01 8.53232622e-01 -4.80311006e-01 -4.44683313e-01 -9.00039613e-01 -6.92504197e-02 3.77926528e-01 2.49423794e-02 1.24713555e-02 -7.93756008e-01 -6.72279418e-01 2.05623120e-01 -1.18956673e+00 -1.11306384e-02 2.38752455e-01 -3.56145352e-01 -1.93631753e-01 6.74552858e-01 -1.06290734e+00 5.87172091e-01 -1.96159041e+00 6.06359065e-01 -4.13918078e-01 -1.27860665e-01 2.81765759e-01 -1.42746754e-02 1.72755331e-01 -2.32097775e-01 -4.47490156e-01 2.63757855e-01 -5.55453479e-01 1.30623400e-01 2.47613534e-01 1.98169038e-01 9.15670693e-01 7.80774876e-02 1.05220175e+00 -5.07557511e-01 -5.43675661e-01 6.51615798e-01 6.36425197e-01 -5.38836539e-01 2.83405989e-01 4.88803014e-02 7.43813217e-01 -3.51605296e-01 1.07932234e+00 4.52767342e-01 -2.00994849e-01 1.15233997e-03 -3.27560216e-01 2.13263109e-01 -3.86003368e-02 -1.46589994e+00 2.10595131e+00 9.17569250e-02 2.77231842e-01 -1.45872673e-02 -8.59930933e-01 5.22297144e-01 4.60943639e-01 1.01482987e+00 -6.68827057e-01 1.38471201e-01 -5.61640486e-02 -3.44249070e-01 -7.42917001e-01 9.03784484e-02 6.50129244e-02 -1.03207506e-01 2.13553205e-01 4.51940387e-01 3.49582285e-01 -2.34717038e-02 -1.02046676e-01 1.09638417e+00 9.49256420e-01 4.09443527e-01 1.80276126e-01 5.44937551e-01 -2.20691308e-01 4.70281780e-01 4.70108360e-01 -5.68761528e-01 9.10610974e-01 3.24961305e-01 -8.40765178e-01 -9.27598834e-01 -1.09254372e+00 9.63676274e-02 1.18308461e+00 -1.54517338e-01 -4.15676355e-01 -7.24463105e-01 -1.02881801e+00 1.43409371e-01 1.51113108e-01 -9.63521361e-01 -4.45326678e-02 -6.97108269e-01 -4.58507508e-01 4.71145213e-01 1.22892070e+00 8.75740469e-01 -1.03084767e+00 -8.14297497e-01 -2.10420564e-02 -3.71536255e-01 -1.36772919e+00 -3.51228416e-01 -8.93307626e-02 -7.84518003e-01 -1.33671188e+00 -1.15723503e+00 -3.13474089e-01 2.22110897e-01 7.25484043e-02 9.14314806e-01 -4.16086167e-01 -4.13529247e-01 9.25614357e-01 -5.29831409e-01 -3.25701594e-01 1.52528405e-01 -3.04172695e-01 5.46103716e-01 2.79029965e-01 4.86236870e-01 -3.67732584e-01 -7.24037111e-01 4.63288248e-01 -3.49531889e-01 2.00203970e-01 7.74471879e-01 5.09266198e-01 6.95900917e-01 -6.18437529e-01 -6.10916093e-02 1.36323925e-02 -4.40101117e-01 -6.70632794e-02 -5.32888658e-02 2.19277889e-01 9.95618701e-02 -3.64615381e-01 3.87431495e-02 -4.31135237e-01 -9.34137642e-01 8.05499971e-01 -1.86532915e-01 -8.55634809e-01 -5.56522489e-01 -3.67585331e-01 -5.25143743e-01 4.58767042e-02 6.59433007e-01 2.78856009e-01 1.09782480e-01 -6.93386674e-01 1.76131546e-01 5.72269499e-01 6.50844693e-01 -2.03020677e-01 3.49178821e-01 8.12594473e-01 8.09864476e-02 -7.33859479e-01 -9.90264893e-01 -5.62278450e-01 -1.38705242e+00 -7.31200516e-01 1.55086136e+00 -1.33975661e+00 -6.11457884e-01 1.05012465e+00 -8.77354980e-01 -4.98223394e-01 -1.98848143e-01 8.63408089e-01 -1.06634414e+00 3.06421995e-01 -4.38826293e-01 -7.73030460e-01 -2.66126066e-01 -9.50209737e-01 1.69223642e+00 -9.00641084e-02 -2.02919289e-01 -4.59407389e-01 3.67412530e-03 9.62562740e-01 -6.70744777e-02 8.00520241e-01 -5.70868850e-02 -6.77597761e-01 -3.73374611e-01 -5.78061342e-01 1.18536435e-01 6.11909389e-01 -3.22809592e-02 -3.27445418e-01 -1.03541481e+00 -2.17723176e-01 -2.69363523e-01 -8.25530052e-01 7.46134639e-01 6.72372997e-01 1.02739847e+00 1.30162071e-02 -3.63223612e-01 6.26342654e-01 7.65754521e-01 -1.02996230e-02 8.23788285e-01 3.87925833e-01 9.93769765e-01 4.49690580e-01 7.85847306e-01 7.10302770e-01 2.88070470e-01 1.20038331e+00 4.19172555e-01 -4.87408079e-02 -1.81982979e-01 -2.28070021e-01 5.81264734e-01 8.44439194e-02 -7.35942602e-01 1.36030599e-01 -9.68706012e-01 1.54250965e-01 -2.01634860e+00 -1.16622961e+00 -1.89178050e-01 2.08546591e+00 3.66619796e-01 4.69743125e-02 7.93514013e-01 1.43466786e-01 3.12224060e-01 2.04645276e-01 -5.79490364e-01 2.29945555e-01 -4.78031971e-02 -2.09458217e-01 5.18683732e-01 5.57941832e-02 -1.80290496e+00 8.24108183e-01 5.94089317e+00 4.88004178e-01 -7.58751690e-01 1.63351908e-01 5.62548399e-01 -6.95407152e-01 8.97243142e-01 -7.03136146e-01 -8.99651587e-01 2.75978535e-01 7.92274117e-01 5.90380251e-01 -7.28186220e-02 1.22642303e+00 2.80954570e-01 -2.41765633e-01 -1.33229566e+00 1.44494748e+00 5.35093188e-01 -9.14658844e-01 -1.89754024e-01 4.17450964e-02 4.58956242e-01 5.37084341e-02 -2.61080265e-01 5.92939258e-01 -1.79747149e-01 -1.02092314e+00 8.16436350e-01 8.04121435e-01 6.40468299e-01 -5.35148978e-01 6.19054198e-01 4.09411222e-01 -1.08908796e+00 -2.57882237e-01 -6.54780045e-02 -2.27746114e-01 3.36688161e-01 -1.76898614e-01 -3.73834968e-01 4.46711421e-01 1.30228806e+00 1.16526544e+00 -7.87761092e-01 7.39356339e-01 -1.69643238e-01 2.91040055e-02 -1.03417329e-01 3.01987439e-01 1.04728296e-01 1.26454711e-01 3.06658924e-01 1.08652866e+00 1.40083805e-01 3.28369796e-01 4.67038363e-01 1.21865377e-01 3.37470651e-01 -5.01734167e-02 -5.82980752e-01 1.22459553e-01 -4.49092776e-01 9.83049273e-01 -4.94223088e-01 -4.57172215e-01 -5.31195581e-01 1.45440519e+00 8.57946724e-02 6.69764653e-02 -1.20845425e+00 3.05269122e-01 7.79105127e-01 2.91470617e-01 7.16237605e-01 -3.41369808e-01 1.67274445e-01 -1.38536847e+00 2.79209465e-01 -1.12150121e+00 5.37588596e-01 -1.04188979e+00 -8.80705357e-01 1.99508935e-01 3.46131086e-01 -1.60359943e+00 -4.49245960e-01 -1.17038405e+00 -3.58169689e-03 3.89585763e-01 -5.15902758e-01 -1.66772509e+00 -5.27602673e-01 9.81680751e-01 7.44721115e-01 -1.96020678e-01 7.65618503e-01 4.20853466e-01 -6.34871721e-01 4.12447453e-01 -3.36168617e-01 5.87772310e-01 7.07337201e-01 -1.15104330e+00 3.16731006e-01 6.87365830e-01 2.66477257e-01 -1.11109398e-01 5.20949960e-01 -7.57587016e-01 -1.62211573e+00 -1.09270096e+00 6.65281534e-01 -1.08057702e+00 1.98344678e-01 -4.59400743e-01 -3.81828696e-01 1.10068440e+00 -2.13821411e-01 2.20021263e-01 6.98463619e-01 -1.10191867e-01 -2.70181686e-01 -1.11596785e-01 -1.14930713e+00 4.77910340e-01 1.60583079e+00 -1.90199688e-01 -5.80270886e-01 9.04081762e-01 2.44456619e-01 -8.61180067e-01 -9.46958721e-01 4.99227077e-01 8.64556313e-01 -1.17407250e+00 1.33382106e+00 -1.01382840e+00 3.51537734e-01 -1.57008842e-01 -4.71497715e-01 -6.73939824e-01 -2.86957502e-01 -2.45164901e-01 -6.15927279e-01 6.90046012e-01 -1.64180174e-01 -3.15531641e-02 1.04980493e+00 7.52188802e-01 -1.01351112e-01 -7.25494266e-01 -1.18515313e+00 -1.04257500e+00 -3.63868833e-01 -6.61755323e-01 1.13162480e-01 3.26829404e-01 -1.45709276e-01 5.63737527e-02 -9.53531384e-01 -4.32986533e-03 6.88355684e-01 -8.69438723e-02 1.28899217e+00 -8.56377423e-01 -5.25382876e-01 -4.02886420e-02 -1.03142285e+00 -1.17177773e+00 -2.29580868e-02 -3.28331918e-01 -2.10883930e-01 -1.46385992e+00 2.50130415e-01 5.52454174e-01 1.25125840e-01 8.20077479e-01 1.83942720e-01 6.58153951e-01 2.65142828e-01 5.85927106e-02 -1.07217276e+00 7.64160216e-01 1.25839746e+00 -6.05782531e-02 3.31694670e-02 2.14884236e-01 1.98173486e-02 9.88274574e-01 4.34492171e-01 -1.06503807e-01 -1.32670000e-01 -2.11864382e-01 -5.01493514e-01 1.79226965e-01 8.75045419e-01 -1.53717721e+00 -1.68802395e-01 -3.39849554e-02 1.14838254e+00 -9.41124976e-01 1.00618112e+00 -8.24670613e-01 2.43883073e-01 7.31389642e-01 -1.39637142e-01 -1.62833512e-01 9.06819925e-02 6.29004061e-01 9.63575318e-02 4.79455680e-01 6.55647039e-01 -4.43271458e-01 -1.06425631e+00 4.70728755e-01 -1.87118009e-01 5.05165979e-02 1.37574708e+00 -5.91574132e-01 1.91398654e-02 -4.61419284e-01 -1.22356856e+00 8.69676843e-02 2.68148571e-01 7.74172604e-01 5.84694326e-01 -1.67277968e+00 -6.93648458e-01 2.92448491e-01 1.47047639e-01 -3.34961474e-01 7.14389265e-01 1.35896218e+00 -4.01126415e-01 6.90578699e-01 -6.16603374e-01 -8.70213151e-01 -1.67679667e+00 5.73859096e-01 7.20398188e-01 -4.95443679e-02 -9.03150141e-01 8.23672891e-01 3.28836106e-02 -4.54127520e-01 5.61313927e-01 -2.46738791e-01 -8.16654861e-02 7.35505484e-03 8.99682641e-01 6.49855077e-01 -3.56160142e-02 -1.14558280e+00 -8.24218750e-01 6.19990945e-01 2.78674036e-01 -5.28630465e-02 1.34713328e+00 1.16642527e-01 4.44725573e-01 3.86319786e-01 1.11214387e+00 -6.82182550e-01 -1.84943557e+00 -4.91356337e-03 -3.79334778e-01 -6.44208491e-01 -2.49446318e-01 -8.61708581e-01 -1.05075431e+00 8.10888231e-01 9.08667386e-01 -2.18190417e-01 1.03463042e+00 2.59539425e-01 5.08938193e-01 2.73331821e-01 4.72857773e-01 -1.39926267e+00 5.71300387e-01 2.79984653e-01 1.30371392e+00 -1.48651969e+00 2.55318701e-01 -1.02890015e-01 -9.89489377e-01 9.84282255e-01 1.09602332e+00 -4.07976918e-02 5.18297017e-01 -1.35717556e-01 1.03303464e-02 -1.66013673e-01 -3.64909559e-01 -3.65839303e-01 6.91538095e-01 8.19180071e-01 2.43080169e-01 9.38538462e-02 9.04406756e-02 6.70700908e-01 7.15747699e-02 1.08633526e-01 -9.26654786e-03 1.05901027e+00 -2.72730678e-01 -7.10938811e-01 -4.76295501e-01 2.14799523e-01 -4.21777904e-01 5.40475428e-01 -6.68712378e-01 1.20943594e+00 4.12797004e-01 7.28592396e-01 7.27001876e-02 -5.44219732e-01 6.97440326e-01 3.69491398e-01 8.87943089e-01 -3.79091918e-01 -3.45721424e-01 1.63331628e-01 2.79196084e-01 -1.37012887e+00 -7.80062854e-01 -1.15610147e+00 -8.94838452e-01 -7.99670666e-02 2.89202005e-01 -6.94360554e-01 2.98198164e-01 1.12670207e+00 3.86283129e-01 2.92501092e-01 8.85495096e-02 -1.50527239e+00 -5.90115905e-01 -1.20019412e+00 -7.58699775e-01 5.34108937e-01 1.91075221e-01 -1.04022729e+00 -7.31565803e-02 1.77022606e-01]
[7.891770362854004, 0.36835142970085144]
72dc129d-b56c-487d-bd36-a2d1b78e34d8
context-sensitive-malicious-spelling-error
1901.07688
null
http://arxiv.org/abs/1901.07688v1
http://arxiv.org/pdf/1901.07688v1.pdf
Context-Sensitive Malicious Spelling Error Correction
Misspelled words of the malicious kind work by changing specific keywords and are intended to thwart existing automated applications for cyber-environment control such as harassing content detection on the Internet and email spam detection. In this paper, we focus on malicious spelling correction, which requires an approach that relies on the context and the surface forms of targeted keywords. In the context of two applications--profanity detection and email spam detection--we show that malicious misspellings seriously degrade their performance. We then propose a context-sensitive approach for malicious spelling correction using word embeddings and demonstrate its superior performance compared to state-of-the-art spell checkers.
['Suma Bhat', 'Pramod Viswanath', 'Yuchen Li', 'Hongyu Gong']
2019-01-23
null
null
null
null
['spam-detection']
['natural-language-processing']
[ 6.48470521e-01 -4.87539470e-01 2.86449846e-02 -1.16697364e-02 -4.09779310e-01 -8.03862989e-01 8.70452464e-01 5.59127927e-01 -5.43604314e-01 5.64351916e-01 -1.17090754e-01 -7.67579854e-01 2.96959039e-02 -6.16643608e-01 -5.34954727e-01 -3.35856974e-01 3.48414093e-01 1.96788818e-01 5.93165755e-01 -5.50288379e-01 1.09452951e+00 6.91420019e-01 -1.21137309e+00 2.89345056e-01 8.92412126e-01 1.75679207e-01 -1.77640691e-01 1.11141443e+00 -4.79359508e-01 5.09564221e-01 -1.00904214e+00 -8.89103591e-01 8.67568702e-03 -3.42992097e-01 -6.18964136e-01 -2.61547744e-01 6.62412465e-01 -3.61345187e-02 -7.10325658e-01 1.65501916e+00 8.81625265e-02 -7.01983869e-02 5.35482347e-01 -1.28133976e+00 -8.55029881e-01 3.75432014e-01 -3.28350842e-01 3.28207016e-01 3.42243493e-01 1.50975972e-01 8.06796432e-01 -7.51421928e-01 6.46350920e-01 1.47706592e+00 6.62281692e-01 9.65021312e-01 -8.96386564e-01 -8.05578649e-01 2.07992513e-02 2.08993807e-01 -9.35361922e-01 -1.20539904e-01 5.93907773e-01 -3.87145549e-01 7.20555842e-01 6.60448909e-01 5.48485219e-02 1.35317707e+00 8.63848925e-01 3.75019759e-01 9.35337365e-01 -6.34268701e-01 1.20530449e-01 4.41439271e-01 5.42411268e-01 8.55531096e-01 9.55506027e-01 3.55928838e-02 -5.39248168e-01 -7.16378272e-01 2.39350230e-01 2.08334118e-01 -1.69927329e-01 -1.73207283e-01 -1.10406065e+00 1.02724624e+00 2.26634443e-02 5.22916377e-01 7.08743259e-02 5.13870001e-01 7.19964683e-01 1.52609512e-01 2.27696493e-01 1.02761590e+00 -4.51205909e-01 -7.47234300e-02 -6.66460037e-01 2.94775516e-01 8.49079132e-01 7.74201512e-01 4.43444073e-01 7.93887451e-02 -2.54365921e-01 4.82596904e-01 2.85089105e-01 9.59382832e-01 6.19577527e-01 -2.83026993e-01 3.86824846e-01 5.72301149e-01 2.94197917e-01 -1.20869625e+00 7.91061595e-02 -2.14732543e-01 -2.28095055e-01 -2.92901248e-02 3.93072695e-01 8.14160705e-02 -1.02798581e+00 1.04586232e+00 7.30735362e-02 1.63443327e-01 -3.23420852e-01 4.31882113e-01 2.56788760e-01 3.86445016e-01 6.42930120e-02 -1.43724665e-01 1.30677998e+00 -9.47697401e-01 -1.07458925e+00 -3.83797407e-01 8.03545535e-01 -9.45661843e-01 1.32124388e+00 4.28708762e-01 -4.69956845e-01 -1.02362745e-01 -1.17572629e+00 3.09004992e-01 -1.00869560e+00 -5.15306890e-01 2.35228136e-01 1.50848603e+00 -4.55930620e-01 8.34594429e-01 -2.07572937e-01 -3.36113244e-01 1.33949131e-01 1.46682173e-01 -1.68351248e-01 -4.18561734e-02 -1.40630460e+00 1.16325390e+00 6.12871088e-02 -3.94373208e-01 -7.15495467e-01 -6.34503841e-01 -5.15468478e-01 -5.83221950e-02 4.04584587e-01 -1.70411542e-01 1.34482205e+00 -4.38463986e-01 -1.02883315e+00 8.33024681e-01 -1.39922202e-01 -4.76994663e-01 4.52814639e-01 -4.10845160e-01 -9.49451864e-01 3.10509175e-01 -7.33244093e-03 -3.38319719e-01 1.49037457e+00 -1.25276756e+00 -5.01754463e-01 -3.73408705e-01 -4.06862259e-01 -5.58445394e-01 -8.44929576e-01 4.90716815e-01 1.27991131e-02 -9.97551024e-01 -6.09947145e-01 -9.68500674e-01 -1.60589874e-01 -4.89502698e-01 -3.64326537e-01 1.43302575e-01 1.36989534e+00 -8.30254495e-01 1.73388970e+00 -1.97092390e+00 -3.29252481e-01 5.48839748e-01 1.65573373e-01 1.24853671e+00 -1.51770696e-01 4.68744040e-01 6.11105859e-02 5.24627447e-01 -3.91348928e-01 4.63328063e-02 9.46038142e-02 -5.39293624e-02 -6.65161848e-01 6.70121729e-01 3.21117230e-02 1.05731881e+00 -1.19189632e+00 -2.97938287e-01 2.93132216e-01 1.95565492e-01 -2.65474260e-01 -1.21510267e-01 -1.38650596e-01 -3.66425782e-01 -4.85989511e-01 4.90813822e-01 5.42102039e-01 1.00243457e-01 1.33676767e-01 1.59348086e-01 2.08659917e-01 3.63394707e-01 -8.77605021e-01 7.81341314e-01 -5.37711084e-01 5.62852979e-01 1.41097128e-01 -3.89079094e-01 8.54449034e-01 -1.27461702e-01 -2.62735128e-01 -3.21067482e-01 3.10677379e-01 5.65986216e-01 -9.06108618e-02 -4.21141148e-01 9.59824383e-01 1.82033740e-02 -3.51085156e-01 5.52683055e-01 -2.25666210e-01 -1.07666261e-01 1.55248106e-01 6.46488905e-01 1.46729910e+00 -5.84935188e-01 1.72711074e-01 -2.84092516e-01 9.59661484e-01 -9.74529311e-02 1.65307105e-01 1.12662971e+00 -3.60297978e-01 1.61077723e-01 4.41964179e-01 -5.26573993e-02 -1.08253360e+00 -9.52893615e-01 1.05407864e-01 1.19219017e+00 2.90071666e-01 -6.39343381e-01 -1.17061138e+00 -1.49741030e+00 5.17580926e-01 1.22781193e+00 -4.46327746e-01 -6.84656322e-01 -8.80956233e-01 -4.67718571e-01 9.35756624e-01 3.04787815e-01 1.60095036e-01 -9.22758937e-01 -1.38594985e-01 2.15125456e-01 3.41167688e-01 -1.13442206e+00 -9.13839340e-01 8.28773081e-02 -4.77009863e-01 -1.34752917e+00 -2.93148786e-01 -6.42839432e-01 7.32195497e-01 4.23416346e-01 4.64276195e-01 5.79736888e-01 -5.76001883e-01 6.04798973e-01 -6.25284910e-01 -5.19079208e-01 -1.11160922e+00 7.23551810e-02 4.24116611e-01 1.03648596e-01 6.95266664e-01 5.99759025e-03 4.42423448e-02 2.71392941e-01 -1.12592614e+00 -9.64699388e-01 4.16784137e-01 7.78583169e-01 -3.48537803e-01 -9.28750411e-02 6.35228872e-01 -1.56021273e+00 1.23024857e+00 -5.81893101e-02 -3.98599893e-01 4.31566328e-01 -1.07656622e+00 2.35957801e-01 8.69909942e-01 -6.33094370e-01 -8.16067874e-01 -2.79527932e-01 -1.48013785e-01 -1.51205763e-01 -1.39374375e-01 -1.85516670e-01 -1.84561282e-01 -7.26008654e-01 8.00529003e-01 4.23081875e-01 1.27892084e-02 -6.09600663e-01 3.64144832e-01 1.16208529e+00 6.55705333e-01 -1.10272609e-01 1.42775905e+00 1.29218146e-01 -6.68638200e-02 -1.01867330e+00 -6.13178551e-01 -7.09390640e-01 -2.74304390e-01 -2.68333238e-02 4.95604724e-01 -1.00846253e-01 -5.75016856e-01 6.47074938e-01 -1.44645786e+00 2.16071576e-01 2.72593349e-01 6.54527992e-02 -1.39299020e-01 1.16493523e+00 -8.05676997e-01 -7.93480039e-01 -3.95713687e-01 -9.33298111e-01 8.57220829e-01 -1.36963516e-01 -4.71235871e-01 -9.33064103e-01 -1.26128159e-02 3.49135071e-01 4.06872392e-01 -2.69856274e-01 1.15645778e+00 -1.40495121e+00 -7.69610256e-02 -6.88668430e-01 -5.78056313e-02 6.79232776e-01 8.24539512e-02 -5.86175099e-02 -8.05013895e-01 -2.45278269e-01 1.11169377e-02 4.15432423e-01 8.08779836e-01 -4.67943877e-01 1.07678139e+00 -5.49886405e-01 -5.20051122e-01 1.18776985e-01 1.05983412e+00 2.73644447e-01 6.95545197e-01 5.53271592e-01 8.84976566e-01 4.34451729e-01 8.57368350e-01 3.45984519e-01 -5.94007194e-01 4.44322109e-01 4.10540760e-01 6.07507646e-01 6.64305389e-02 -6.05335772e-01 4.36445028e-01 6.57076478e-01 7.14311719e-01 -4.36712921e-01 -8.07301641e-01 6.00815773e-01 -1.71639502e+00 -9.19646025e-01 -7.52530813e-01 2.14825249e+00 7.59189367e-01 4.34772193e-01 -2.27699414e-01 4.26808298e-01 1.36323178e+00 2.82788068e-01 -2.33588576e-01 -1.17643845e+00 3.07719648e-01 3.02178591e-01 1.16773522e+00 7.46464670e-01 -1.13040662e+00 1.32687962e+00 6.47345352e+00 1.12422144e+00 -6.30562663e-01 2.60086268e-01 -8.26363415e-02 3.18190992e-01 -3.85799468e-01 -1.55885085e-01 -1.09520900e+00 8.18048656e-01 1.12862694e+00 -1.11239880e-01 3.89813602e-01 8.75345469e-01 5.23498431e-02 2.42799982e-01 -7.10270464e-01 9.00365353e-01 6.89353824e-01 -1.33217597e+00 2.14332268e-01 -2.39026602e-02 5.61185896e-01 -6.25407577e-01 1.46673352e-01 1.07324570e-01 3.20300132e-01 -7.99883604e-01 4.84714657e-01 2.32122332e-01 3.83352399e-01 -8.88472617e-01 8.15041900e-01 1.30119726e-01 -4.61895019e-01 -1.72469527e-01 -2.62837797e-01 1.67512566e-01 8.68509710e-02 7.46948361e-01 -9.96176839e-01 -7.70422444e-02 2.35802025e-01 2.29330242e-01 -8.36805820e-01 9.68868852e-01 -6.54619575e-01 7.72346377e-01 1.98305383e-01 -7.86906481e-01 2.31215239e-01 1.63287878e-01 9.33307171e-01 1.65534019e+00 8.94225538e-02 -4.47490722e-01 -2.30069607e-01 5.79527497e-01 -2.36805320e-01 -5.54245943e-03 -8.67690265e-01 -5.31004667e-01 6.70003772e-01 9.51111734e-01 -5.68161011e-01 -3.60783607e-01 -7.98595175e-02 1.33330882e+00 -2.15464592e-01 7.68776238e-02 -7.18037605e-01 -1.21065092e+00 1.11399448e+00 4.03574705e-01 4.24137384e-01 -4.33879584e-01 -4.81517047e-01 -1.02771258e+00 -6.52266294e-02 -1.05907440e+00 5.38128801e-02 -2.99421698e-01 -1.28951645e+00 2.25649685e-01 -2.98666179e-01 -8.83985341e-01 1.10810570e-01 -9.66877818e-01 -6.01007104e-01 5.16650259e-01 -1.24347615e+00 -9.72195148e-01 2.99432993e-01 3.07537585e-01 5.15048087e-01 -5.23362339e-01 5.81698477e-01 9.84845683e-02 -3.71568918e-01 7.17052996e-01 4.85190958e-01 1.80426151e-01 1.10186160e+00 -1.01391900e+00 1.03532159e+00 1.22784543e+00 1.98553428e-02 1.11020660e+00 1.04539931e+00 -1.22712028e+00 -1.47267210e+00 -1.24999273e+00 1.52233934e+00 -8.17351222e-01 1.25760651e+00 -6.65764451e-01 -9.56477821e-01 2.91625142e-01 5.49256196e-03 -3.86543423e-01 3.44592899e-01 -2.16247484e-01 -6.79356456e-01 1.99269801e-01 -1.41191351e+00 7.62311041e-01 8.22111845e-01 -7.74463296e-01 -8.49983692e-01 5.95197558e-01 9.61679637e-01 1.78022265e-01 -6.76172227e-02 -1.45735234e-01 2.36348733e-01 -3.74762952e-01 9.14613307e-01 -1.09872842e+00 2.16600090e-01 -2.53772497e-01 1.71116337e-01 -1.33597994e+00 -4.35655296e-01 -9.67733502e-01 -1.41258180e-01 1.27536678e+00 2.41783172e-01 -7.22379863e-01 5.54032564e-01 2.71648973e-01 8.16791058e-02 -5.46027981e-02 -6.42620564e-01 -1.01642621e+00 -7.30281835e-03 -3.65811527e-01 4.04221922e-01 8.90694439e-01 2.57383734e-01 2.77904063e-01 -5.56297660e-01 2.24630743e-01 7.11885273e-01 -3.98666203e-01 6.32837415e-01 -1.11715078e+00 7.40869567e-02 -2.97584772e-01 -4.81781334e-01 -5.92227340e-01 4.61528748e-01 -7.36530185e-01 1.05300255e-01 -8.89969945e-01 -1.18666887e-01 1.75457133e-03 -1.13212571e-01 1.35157213e-01 -5.78647137e-01 3.69815230e-01 3.54121208e-01 -2.17277244e-01 -7.08232522e-01 1.74872026e-01 6.05419755e-01 -3.99724394e-01 2.36093566e-01 -3.01370816e-03 -7.26805687e-01 8.88767123e-01 9.69514251e-01 -9.87297893e-01 2.89000459e-02 8.81367177e-03 3.78292352e-01 -6.31725550e-01 5.25044024e-01 -7.36055493e-01 -2.86633149e-02 -3.79492581e-01 -3.33086640e-01 -2.10104004e-01 -6.06696904e-02 -8.57091904e-01 -7.40585208e-01 8.83148670e-01 -6.33317888e-01 3.23204488e-01 -3.25234272e-02 1.11986613e+00 2.98766434e-01 -1.16393042e+00 9.25343394e-01 -1.22708760e-01 -6.17291272e-01 -1.66094542e-01 -1.15901637e+00 1.19753942e-01 1.15117633e+00 -5.42379729e-02 -6.98942065e-01 -2.07482412e-01 -1.59325004e-01 -1.68445349e-01 6.74712837e-01 7.72272766e-01 8.47702146e-01 -1.06871629e+00 -4.63262558e-01 2.88723737e-01 1.41834870e-01 -1.22807443e+00 -3.19923878e-01 3.41984808e-01 -8.28733504e-01 5.74659705e-01 5.67905605e-03 2.24145830e-01 -1.85120666e+00 9.73891437e-01 -6.61572739e-02 -1.83352023e-01 -2.34204590e-01 6.50510311e-01 -2.85812318e-01 -5.25957823e-01 2.79184878e-01 -5.79906115e-03 8.53113532e-02 -3.39884341e-01 9.49719787e-01 7.32700229e-01 3.42539549e-01 -5.78248143e-01 -6.58093691e-01 2.26339981e-01 -4.67923641e-01 2.14811593e-01 9.20029759e-01 5.97867295e-02 -4.24570769e-01 5.23853116e-02 1.33594537e+00 5.71983457e-01 -1.56088829e-01 1.61120445e-02 3.51656705e-01 -1.12234735e+00 -1.41340941e-02 -8.41314018e-01 -3.10573757e-01 9.32405949e-01 4.86727118e-01 4.30270374e-01 2.59189159e-01 -4.87162650e-01 1.27622557e+00 7.77252078e-01 3.18991572e-01 -1.39523745e+00 3.36768359e-01 8.30740988e-01 3.73837560e-01 -8.94217610e-01 -8.45334157e-02 -6.80215597e-01 -6.13521814e-01 1.08586872e+00 3.88828963e-01 -1.67216599e-01 3.78612965e-01 2.81541646e-01 -1.65559918e-01 -1.27443559e-02 -3.26059639e-01 1.10861719e-01 9.59067643e-02 8.04387748e-01 7.16430228e-03 1.28677720e-02 -9.08934116e-01 4.29572523e-01 1.14344209e-01 -3.87464762e-01 1.05895281e+00 1.11459279e+00 -9.16070163e-01 -1.58951819e+00 -8.90146136e-01 6.95468962e-01 -6.64106429e-01 -4.39160287e-01 -1.16095650e+00 2.93118566e-01 -2.29452744e-01 1.18210471e+00 -5.06159544e-01 -7.26221085e-01 2.98634857e-01 4.69561309e-01 1.85182780e-01 -6.43033266e-01 -1.19039214e+00 -4.33770210e-01 3.30041796e-01 -2.40028441e-01 1.86453044e-01 -5.89489341e-01 -9.18931663e-01 -7.36762106e-01 -5.98252654e-01 4.03382689e-01 8.12348425e-01 7.99196482e-01 3.59440267e-01 5.06803036e-01 4.95821625e-01 -2.92555183e-01 -1.21326578e+00 -7.77403355e-01 -7.04734027e-01 7.05326140e-01 2.00113416e-01 -5.86465418e-01 -6.32909119e-01 -1.46655649e-01]
[7.694363117218018, 9.85285758972168]
06396515-3774-40ac-995b-a13a055db7c7
preserving-commonsense-knowledge-from-pre
2306.10790
null
https://arxiv.org/abs/2306.10790v1
https://arxiv.org/pdf/2306.10790v1.pdf
Preserving Commonsense Knowledge from Pre-trained Language Models via Causal Inference
Fine-tuning has been proven to be a simple and effective technique to transfer the learned knowledge of Pre-trained Language Models (PLMs) to downstream tasks. However, vanilla fine-tuning easily overfits the target data and degrades the generalization ability. Most existing studies attribute it to catastrophic forgetting, and they retain the pre-trained knowledge indiscriminately without identifying what knowledge is transferable. Motivated by this, we frame fine-tuning into a causal graph and discover that the crux of catastrophic forgetting lies in the missing causal effects from the pretrained data. Based on the causal view, we propose a unified objective for fine-tuning to retrieve the causality back. Intriguingly, the unified objective can be seen as the sum of the vanilla fine-tuning objective, which learns new knowledge from target data, and the causal objective, which preserves old knowledge from PLMs. Therefore, our method is flexible and can mitigate negative transfer while preserving knowledge. Since endowing models with commonsense is a long-standing challenge, we implement our method on commonsense QA with a proposed heuristic estimation to verify its effectiveness. In the experiments, our method outperforms state-of-the-art fine-tuning methods on all six commonsense QA datasets and can be implemented as a plug-in module to inflate the performance of existing QA models.
['Haibin Chen', 'Xichen Shang', 'Huawen Feng', 'Junlong Liu', 'Peitian Ma', 'Yue Wu', 'Shengjie Qiu', 'Qianli Ma', 'Junhao Zheng']
2023-06-19
null
null
null
null
['causal-inference', 'causal-inference']
['knowledge-base', 'miscellaneous']
[ 6.39940798e-02 2.02745453e-01 -2.22774237e-01 -2.94390500e-01 -4.75899696e-01 -6.85712039e-01 6.17539048e-01 -1.00982273e-02 -3.52679342e-01 9.54339802e-01 5.76225877e-01 -2.18351245e-01 -1.61918759e-01 -1.08939970e+00 -1.09277534e+00 -6.13438666e-01 3.00733358e-01 5.06258428e-01 2.25706622e-01 -6.42563283e-01 1.13813289e-01 5.78538515e-02 -1.06817698e+00 2.94289321e-01 1.53832805e+00 6.38880134e-01 3.24326783e-01 3.83593654e-03 -1.78271666e-01 9.37082529e-01 -5.40831625e-01 -8.93552125e-01 -1.61328211e-01 -4.48719114e-01 -1.05869639e+00 -5.59164107e-01 3.40246081e-01 -4.33020890e-01 -4.77828920e-01 1.15389466e+00 3.58362198e-01 2.19376355e-01 6.76876903e-01 -1.15250075e+00 -1.62517118e+00 1.20453393e+00 -1.68350965e-01 2.98101276e-01 3.28847244e-02 4.51107353e-01 1.07974350e+00 -8.72720957e-01 4.85278279e-01 1.60711181e+00 7.23060966e-01 6.20684087e-01 -1.37897289e+00 -9.18887675e-01 1.23680227e-01 3.87677610e-01 -1.11917949e+00 -3.90412956e-01 7.96162009e-01 -3.02969545e-01 8.89756560e-01 -9.98426154e-02 6.67438447e-01 1.51105607e+00 2.54953921e-01 8.67386997e-01 1.19871759e+00 -2.27793530e-01 2.16830060e-01 2.25758040e-03 1.94006786e-01 8.97024632e-01 2.91461915e-01 3.78455639e-01 -7.24666059e-01 -7.43773952e-02 6.80743933e-01 1.64575856e-02 -3.65183532e-01 -4.10983831e-01 -1.23933625e+00 9.77305055e-01 7.67471671e-01 1.90239280e-01 -3.04090232e-01 3.84857565e-01 3.33595544e-01 4.69445109e-01 2.56272763e-01 7.66060948e-01 -7.47098684e-01 3.96944757e-04 -6.57592177e-01 1.32982194e-01 3.71579289e-01 7.54222572e-01 7.51035988e-01 2.08035600e-03 -6.85893118e-01 7.76247978e-01 1.93395570e-01 6.43010616e-01 7.74423897e-01 -8.65762353e-01 3.95756155e-01 7.27870286e-01 -7.86389038e-02 -7.38090336e-01 -1.66387632e-01 -6.91646755e-01 -7.97790706e-01 -2.36616924e-01 2.88436651e-01 1.81563813e-02 -9.90005493e-01 2.51395774e+00 -4.10662033e-02 8.09541419e-02 -6.20217761e-03 7.40404606e-01 6.73112869e-01 2.77250111e-01 4.67426449e-01 -1.69799492e-01 1.23260987e+00 -1.13933396e+00 -8.12724113e-01 -4.53110129e-01 4.89739686e-01 -3.36348951e-01 1.94869709e+00 1.88839227e-01 -9.67540860e-01 -3.75841588e-01 -1.03720713e+00 -4.75984126e-01 -5.00370860e-01 -1.89849347e-01 7.99516797e-01 4.23857927e-01 -8.32473040e-01 8.74002934e-01 -6.18457675e-01 -2.25801736e-01 7.06259668e-01 -9.89846978e-03 -1.16580963e-01 -3.25624943e-01 -1.90790820e+00 1.30796027e+00 5.86251497e-01 -2.20799774e-01 -1.32148993e+00 -1.15273964e+00 -6.56546712e-01 3.61452579e-01 4.77591395e-01 -1.51384270e+00 1.07501197e+00 -5.68221927e-01 -1.47107673e+00 6.76690876e-01 -1.53327972e-01 -3.59350532e-01 5.04877925e-01 -4.19887841e-01 -2.35897705e-01 -3.01327497e-01 2.22269297e-01 5.07256806e-01 1.01943672e+00 -1.20188427e+00 -2.74457604e-01 -3.27134103e-01 3.59097332e-01 3.26262638e-02 -5.57898998e-01 -5.72625577e-01 -1.63739279e-01 -9.83314812e-01 -2.72029400e-01 -6.16267800e-01 2.65314698e-01 -2.30144024e-01 -3.50750387e-01 -2.69922733e-01 3.15686971e-01 -6.59659028e-01 1.48179901e+00 -2.05679965e+00 4.24958348e-01 -2.58075178e-01 2.90789813e-01 1.87981069e-01 -4.58024532e-01 2.59299129e-01 -2.47430447e-02 2.92182982e-01 -4.23236698e-01 -2.02859446e-01 2.09408119e-01 3.02978218e-01 -9.44949627e-01 -2.52802782e-02 3.25763792e-01 1.59835386e+00 -1.39753580e+00 -2.72498727e-01 -1.58947021e-01 3.00394773e-01 -6.41504169e-01 1.36073112e-01 -4.53124940e-01 2.63294429e-01 -2.37512797e-01 3.90538335e-01 6.63009286e-01 -2.95172989e-01 -1.11569822e-01 -3.55785757e-01 4.58878338e-01 5.53975344e-01 -6.09363556e-01 2.04600263e+00 -4.72604692e-01 1.17193915e-01 -5.23597121e-01 -7.42563248e-01 5.78578711e-01 -1.06313534e-01 -2.85062760e-01 -9.62036252e-01 -3.45529951e-02 6.44250140e-02 -4.79203053e-02 -4.53245401e-01 3.78506750e-01 -6.99510813e-01 -9.37296450e-02 5.46202302e-01 4.80474830e-01 -1.85375541e-01 2.29832344e-02 5.12757659e-01 1.20094669e+00 1.55694202e-01 2.96539694e-01 -1.80859804e-01 2.15274110e-01 -1.27241546e-02 5.53277373e-01 9.17872727e-01 -2.86084026e-01 -1.54896621e-02 3.50664973e-01 -2.38207215e-03 -7.93458879e-01 -1.55954897e+00 2.16368467e-01 1.58689070e+00 1.61027879e-01 -4.01133269e-01 -6.08760178e-01 -9.42378700e-01 1.06930345e-01 1.27153897e+00 -1.07125902e+00 -1.01329470e+00 -3.48962307e-01 -6.45319045e-01 9.56654549e-01 4.97110963e-01 6.91834271e-01 -1.17971432e+00 -2.53764123e-01 7.48627186e-02 -6.13322556e-01 -6.42504930e-01 -6.43544912e-01 2.99078345e-01 -1.10834825e+00 -8.61780226e-01 -4.08191442e-01 -4.55154985e-01 4.39927638e-01 3.59860808e-01 1.62399733e+00 1.41734049e-01 1.17839620e-01 1.26917735e-01 -2.47474343e-01 -3.57799262e-01 -4.40645546e-01 1.85119212e-01 1.15132369e-01 -4.83518392e-01 3.80591720e-01 -9.12793398e-01 -4.93900537e-01 7.57666156e-02 -1.03582394e+00 3.09403837e-02 6.41851902e-01 1.31923056e+00 4.42180663e-01 1.07387125e-01 9.37570930e-01 -9.70277786e-01 1.06327534e+00 -6.25981152e-01 -1.15795635e-01 5.49715281e-01 -8.22149754e-01 6.50598764e-01 5.73176682e-01 -5.68423748e-01 -1.36325359e+00 -4.70196396e-01 1.58769399e-01 -5.82735300e-01 2.40812004e-01 7.51312912e-01 -4.20715272e-01 3.15360516e-01 8.57180536e-01 3.49632442e-01 -3.02159697e-01 -4.72668767e-01 1.16322029e+00 1.27613574e-01 7.47732341e-01 -9.56644773e-01 9.10135388e-01 4.91737872e-01 -3.82063210e-01 -1.16707586e-01 -1.63179517e+00 3.54565270e-02 -3.99878889e-01 2.84027964e-01 5.31960189e-01 -8.66514444e-01 -6.09983385e-01 3.31886023e-01 -1.12701702e+00 -5.39533019e-01 -5.36851764e-01 4.55952919e-04 -5.48053265e-01 2.40212217e-01 -5.70628822e-01 -3.21179301e-01 -4.00456458e-01 -7.00511754e-01 7.78075933e-01 2.14253590e-02 -2.50149816e-01 -1.28931940e+00 1.87320039e-01 3.89162481e-01 6.35620475e-01 -2.16150209e-01 1.59257782e+00 -2.65090585e-01 -4.46721435e-01 4.68082190e-01 -3.67435932e-01 3.74642819e-01 1.45433590e-01 -3.98317158e-01 -1.12219834e+00 -1.88852638e-01 1.29385248e-01 -7.18635976e-01 1.64331102e+00 1.43155158e-01 1.14845550e+00 -5.70917726e-01 -2.13656470e-01 5.60699403e-01 1.26020932e+00 -3.35851133e-01 7.30009794e-01 4.17952478e-01 6.37878001e-01 2.42737323e-01 5.31854391e-01 1.96987987e-01 7.40012050e-01 3.34526956e-01 5.18177092e-01 2.41243765e-01 -4.95291263e-01 -9.50848639e-01 5.84387004e-01 7.36965835e-01 6.34007677e-02 1.16076112e-01 -7.77667642e-01 7.55973279e-01 -1.91829264e+00 -1.14392674e+00 3.29362899e-01 1.95876610e+00 1.60834146e+00 1.18930861e-01 -2.19536081e-01 -1.23765707e-01 4.17467266e-01 5.66030096e-04 -9.47607577e-01 -1.61148071e-01 -3.54664266e-01 2.91923583e-01 1.40519440e-01 5.48782110e-01 -7.65894413e-01 1.54017246e+00 5.96437216e+00 1.14541972e+00 -9.31629956e-01 4.79367673e-01 1.82882413e-01 -7.48142302e-02 -8.99462879e-01 1.19789511e-01 -5.14197588e-01 5.06917477e-01 7.33992875e-01 -4.08289582e-01 9.19472277e-01 5.65632701e-01 -3.44005041e-02 1.46701276e-01 -1.24498487e+00 5.38844407e-01 -5.35813197e-02 -1.40456307e+00 6.90665007e-01 -3.14766049e-01 7.33751416e-01 6.64464086e-02 3.13499063e-01 9.99887526e-01 7.83974886e-01 -1.21785057e+00 8.08027506e-01 6.77620828e-01 7.55056679e-01 -5.90538740e-01 4.31928188e-01 5.43246269e-01 -5.62231481e-01 -3.22747082e-01 -5.36810338e-01 -2.56692201e-01 9.09350589e-02 8.33364248e-01 -6.80128276e-01 3.61321658e-01 6.85028434e-01 5.85391164e-01 -8.38073492e-01 6.67002082e-01 -9.12646174e-01 7.18290091e-01 1.28753692e-01 2.41239056e-01 1.51140811e-02 -3.81899327e-02 3.62501889e-01 1.11240304e+00 2.25257009e-01 1.82351410e-01 -2.88735271e-01 1.57415485e+00 -4.67125565e-01 -2.98530102e-01 -4.53338176e-01 -3.40222269e-01 7.63779938e-01 8.85452688e-01 -4.91241626e-02 -3.79648894e-01 3.48649472e-02 1.17188823e+00 1.06019282e+00 4.47821230e-01 -9.09319997e-01 -3.32814068e-01 7.26650298e-01 -2.87934721e-01 3.24376285e-01 -4.37387340e-02 -6.45850301e-01 -1.48925507e+00 -7.56673813e-02 -7.68289626e-01 5.36302090e-01 -1.04195035e+00 -1.81215227e+00 2.45196402e-01 -2.20694944e-01 -6.05240524e-01 2.61678528e-02 -2.93133229e-01 -4.15178150e-01 8.30366135e-01 -1.79897892e+00 -1.42555475e+00 -3.55125010e-01 8.88306081e-01 3.12944919e-01 -2.08435655e-02 9.44188118e-01 7.05509335e-02 -3.93548727e-01 8.26607287e-01 4.52773459e-02 -4.68330123e-02 1.03533447e+00 -1.32761371e+00 2.36568809e-01 8.75184119e-01 4.71234918e-02 1.26210988e+00 7.53212452e-01 -9.04083610e-01 -1.20808578e+00 -1.25054705e+00 9.65864301e-01 -1.01801813e+00 1.04614460e+00 -3.13716173e-01 -1.27973080e+00 7.79190719e-01 1.19187303e-01 -2.37595081e-01 5.52606106e-01 5.13267457e-01 -1.11534405e+00 9.59646553e-02 -9.42614913e-01 6.55645430e-01 1.51005828e+00 -6.27850831e-01 -1.37291372e+00 1.35159969e-01 1.41341805e+00 -1.79479614e-01 -7.41945207e-01 2.62949079e-01 2.19246909e-01 -7.39176154e-01 1.03907573e+00 -1.09697688e+00 9.03607547e-01 -2.00130463e-01 -1.28241166e-01 -2.09201527e+00 -7.18462825e-01 -4.09316510e-01 -4.75098759e-01 1.44052410e+00 3.99447888e-01 -5.92541277e-01 2.02964187e-01 3.53434563e-01 -9.99418572e-02 -4.93849546e-01 -7.77658224e-01 -1.02123737e+00 6.15904212e-01 -2.75636852e-01 8.18681777e-01 1.27474666e+00 8.98456275e-02 9.34958816e-01 -3.66630763e-01 2.42213756e-02 7.50260472e-01 1.61006033e-01 3.96219254e-01 -1.25413299e+00 -3.71817201e-01 -5.25564969e-01 2.67602086e-01 -9.23802853e-01 4.99395788e-01 -1.20720518e+00 -1.14424549e-01 -1.52307260e+00 7.23668277e-01 -5.30957639e-01 -6.40891135e-01 1.00727427e+00 -7.17817962e-01 -4.00202163e-02 2.19177961e-01 2.64916033e-01 -4.76390749e-01 1.08700490e+00 1.50527704e+00 -3.81334603e-01 -1.23060212e-01 -5.89837193e-01 -1.35520816e+00 6.42309248e-01 6.92399502e-01 -5.61574578e-01 -6.82922959e-01 -7.51031220e-01 7.93344557e-01 -4.59099829e-01 6.02286816e-01 -4.07859415e-01 1.66810885e-01 -4.48699862e-01 2.49342144e-01 -9.01618600e-02 1.92455783e-01 -5.38560390e-01 -2.02818289e-01 3.77486259e-01 -4.38318193e-01 -2.23117262e-01 2.58635253e-01 6.92068815e-01 -8.55853781e-02 1.19630629e-02 7.48210609e-01 -2.01141879e-01 -8.11623394e-01 8.87092650e-02 3.05463642e-01 6.37061894e-01 4.94651973e-01 2.04942346e-01 -1.05150676e+00 -1.43363625e-01 -5.44107795e-01 2.35863119e-01 4.42067534e-01 6.88591123e-01 6.03333771e-01 -1.49367738e+00 -6.89679325e-01 -6.20897189e-02 3.63873929e-01 -2.37315938e-01 4.19907451e-01 8.57315660e-01 3.18254620e-01 4.72451419e-01 -3.58103156e-01 -1.79481849e-01 -6.48408532e-01 9.53989267e-01 2.30752632e-01 -4.46609318e-01 -3.22763175e-01 9.32231486e-01 4.80315953e-01 -6.20049238e-01 8.78209993e-03 -4.55347091e-01 -4.15561423e-02 4.36653234e-02 4.23239887e-01 2.87311554e-01 -2.83438135e-02 -4.82973084e-03 -3.41454208e-01 2.30878651e-01 -1.22286998e-01 -3.91272791e-02 1.41561639e+00 -3.40084404e-01 -3.34195882e-01 4.96818036e-01 7.79335856e-01 2.74152309e-02 -1.11527741e+00 -5.55857599e-01 -1.90948382e-01 -3.03551763e-01 -7.36187771e-03 -1.58696318e+00 -7.73737133e-01 1.11206222e+00 2.43545696e-01 -2.85798609e-01 1.16383743e+00 2.59481370e-01 7.33081341e-01 5.77597082e-01 5.25021195e-01 -9.54843581e-01 4.67286944e-01 1.04602873e+00 1.20190048e+00 -1.18684638e+00 -3.14060450e-01 -2.31476799e-01 -6.81040764e-01 6.52828693e-01 7.07201958e-01 3.95871699e-02 3.83201331e-01 -1.47233576e-01 -2.02271670e-01 -1.81698993e-01 -1.01726222e+00 -1.69054568e-01 1.65699884e-01 7.06729650e-01 2.80068338e-01 2.00941935e-01 -1.71101585e-01 1.28380275e+00 -5.53968906e-01 3.93048674e-01 3.23968142e-01 4.42502946e-01 -4.27210003e-01 -7.31263697e-01 -2.92898938e-02 2.44232431e-01 -2.36505568e-02 -6.50531650e-01 -5.36195219e-01 5.94149828e-01 3.22850108e-01 7.86019325e-01 -4.44414556e-01 -3.86044592e-01 5.14670312e-01 3.59029800e-01 5.81235886e-01 -5.26994646e-01 -4.63003516e-01 -7.27376223e-01 -8.13245997e-02 -6.94321394e-01 1.89080015e-02 -1.15424626e-01 -1.29749429e+00 -5.23399174e-01 -2.22323284e-01 -7.11289272e-02 2.00286314e-01 1.16457367e+00 6.34576738e-01 7.35724449e-01 1.03656612e-01 -2.49504507e-01 -1.07580566e+00 -1.04142737e+00 -3.81738305e-01 7.46133745e-01 3.50520879e-01 -1.06688237e+00 -3.87756705e-01 8.69516805e-02]
[10.478271484375, 8.061951637268066]
8248c89c-7e52-4710-b31b-7149006016e3
joint-optimization-of-masks-and-deep
1502.04149
null
http://arxiv.org/abs/1502.04149v4
http://arxiv.org/pdf/1502.04149v4.pdf
Joint Optimization of Masks and Deep Recurrent Neural Networks for Monaural Source Separation
Monaural source separation is important for many real world applications. It is challenging because, with only a single channel of information available, without any constraints, an infinite number of solutions are possible. In this paper, we explore joint optimization of masking functions and deep recurrent neural networks for monaural source separation tasks, including monaural speech separation, monaural singing voice separation, and speech denoising. The joint optimization of the deep recurrent neural networks with an extra masking layer enforces a reconstruction constraint. Moreover, we explore a discriminative criterion for training neural networks to further enhance the separation performance. We evaluate the proposed system on the TSP, MIR-1K, and TIMIT datasets for speech separation, singing voice separation, and speech denoising tasks, respectively. Our approaches achieve 2.30--4.98 dB SDR gain compared to NMF models in the speech separation task, 2.30--2.48 dB GNSDR gain and 4.32--5.42 dB GSIR gain compared to existing models in the singing voice separation task, and outperform NMF and DNN baselines in the speech denoising task.
['Mark Hasegawa-Johnson', 'Po-Sen Huang', 'Paris Smaragdis', 'Minje Kim']
2015-02-13
null
null
null
null
['speech-denoising']
['speech']
[ 1.55394018e-01 -3.52608979e-01 3.43574643e-01 -5.47750629e-02 -1.33804667e+00 -5.16739070e-01 1.60295591e-01 -2.46312767e-01 -2.44761840e-01 4.67516512e-01 4.11163270e-01 -3.20349067e-01 2.96116639e-02 -5.01033701e-02 -4.86251503e-01 -9.78513956e-01 3.09229881e-01 -1.58182532e-01 -1.27579048e-01 -2.96922326e-01 -2.40756556e-01 2.83743888e-01 -1.69413829e+00 9.30830836e-02 1.14696479e+00 1.27622914e+00 4.70275104e-01 9.57607627e-01 2.86399066e-01 4.45863932e-01 -7.63478518e-01 -7.45633692e-02 3.86187106e-01 -7.54047930e-01 -1.55811593e-01 -1.75494194e-01 5.46265483e-01 -9.98163670e-02 -4.15438265e-01 1.14809787e+00 1.25167561e+00 4.50486243e-01 6.09388232e-01 -6.41694009e-01 -4.94567931e-01 6.83731556e-01 -3.61107826e-01 1.90123171e-01 -8.58741701e-02 1.43377990e-01 1.00570595e+00 -7.66155005e-01 -3.59282762e-01 1.11438894e+00 4.94548500e-01 6.49020076e-01 -1.13052118e+00 -8.91129136e-01 -2.81392843e-01 2.96489239e-01 -1.21261537e+00 -1.16451073e+00 6.62966728e-01 -1.98090062e-01 1.02164066e+00 5.15984297e-01 3.35430831e-01 8.02682996e-01 -2.47890934e-01 7.49767482e-01 1.03672469e+00 -3.50456297e-01 6.28177170e-03 -1.90391615e-01 1.93753898e-01 1.57912839e-02 -1.86182186e-01 2.78544992e-01 -6.86002970e-01 1.16491474e-01 5.34061909e-01 -3.89386892e-01 -6.56222463e-01 6.04807615e-01 -6.68598533e-01 3.69338363e-01 2.82035351e-01 2.36195400e-01 -3.54332685e-01 5.89879788e-02 2.93891430e-01 3.98777217e-01 6.18920445e-01 4.80775476e-01 -3.99129033e-01 -1.92462385e-01 -1.13161314e+00 2.86665689e-02 6.21423185e-01 4.88428980e-01 1.93979308e-01 8.92389059e-01 -3.19456846e-01 1.76271820e+00 2.34691188e-01 9.33518350e-01 6.42174304e-01 -1.03945065e+00 5.08269489e-01 -5.27668536e-01 -8.41339156e-02 -5.35631180e-01 -1.06109425e-01 -8.68002892e-01 -1.07768571e+00 3.61981168e-02 1.07376345e-01 -2.95584649e-01 -1.01630926e+00 1.75436592e+00 5.43315075e-02 5.75235188e-01 2.92479724e-01 1.14055943e+00 9.27576959e-01 9.75795329e-01 -5.38150609e-01 -7.38407493e-01 1.15013099e+00 -1.24828374e+00 -1.14936090e+00 -4.01008904e-01 -2.63660699e-01 -1.20974028e+00 9.58839476e-01 7.01151729e-01 -1.54040289e+00 -8.38830173e-01 -8.97238791e-01 -8.27022493e-02 2.31855154e-01 3.33792120e-01 -6.35807216e-02 7.19793916e-01 -1.00422633e+00 5.47340274e-01 -7.21897364e-01 1.74873769e-01 -6.86970130e-02 3.55644315e-01 5.31598404e-02 1.28824353e-01 -1.13933206e+00 5.65109849e-01 -1.27204299e-01 5.26179135e-01 -1.15407872e+00 -5.60720265e-01 -7.72551715e-01 2.90461630e-01 1.06211543e-01 -3.50626856e-01 1.55133212e+00 -6.89193904e-01 -1.83981669e+00 5.55980623e-01 -5.91978431e-01 -6.93089545e-01 3.62671390e-02 -5.81551015e-01 -7.57688463e-01 -1.26583531e-01 -1.52866855e-01 1.60234183e-01 1.10171163e+00 -1.06476927e+00 -5.29617310e-01 -3.01158130e-01 -4.90143478e-01 5.11473417e-01 -2.44847566e-01 3.63662452e-01 -2.76440203e-01 -9.94575560e-01 3.81215572e-01 -6.26510441e-01 -1.23838902e-01 -8.32511604e-01 -6.35119438e-01 2.23512039e-01 6.31615222e-01 -1.41681767e+00 1.30728281e+00 -2.53822827e+00 3.66265416e-01 -1.07532829e-01 7.24472059e-03 6.88153088e-01 -2.81878471e-01 -4.45304327e-02 -1.29605234e-01 -1.51652440e-01 -2.24890202e-01 -8.12777281e-01 2.36497074e-02 -6.79311752e-02 -5.66836238e-01 2.66503304e-01 -1.00412890e-01 4.36363280e-01 -3.94444942e-01 1.04553983e-01 1.45932108e-01 7.45875299e-01 -4.93645728e-01 5.97492993e-01 2.44221523e-01 3.87032896e-01 3.67976487e-01 6.02276087e-01 7.54851282e-01 4.92151916e-01 -1.33740172e-01 -1.54191941e-01 -1.55726880e-01 8.51962090e-01 -1.15139580e+00 1.41167176e+00 -8.07158232e-01 8.60334694e-01 8.75452280e-01 -7.42418110e-01 1.04378402e+00 7.68433213e-01 -2.09505707e-02 -6.51925743e-01 2.08563909e-01 5.95551133e-01 4.14686561e-01 -2.44480565e-01 4.15264517e-01 -5.06382644e-01 3.47357512e-01 1.15701281e-01 2.79740125e-01 -3.67638856e-01 -1.88620955e-01 -3.00958306e-01 8.66877556e-01 -5.78515112e-01 -1.94540307e-01 1.08811058e-01 5.00597596e-01 -9.32650208e-01 7.43533492e-01 5.80234885e-01 -1.78370953e-01 1.06243801e+00 1.38113111e-01 3.94198596e-01 -7.15968728e-01 -1.34744668e+00 -7.51825795e-02 1.10928488e+00 -1.11680180e-01 -2.65164733e-01 -8.65490139e-01 1.17706753e-01 -2.37132519e-01 8.09610546e-01 1.60396948e-01 -2.89976269e-01 -6.86865747e-01 -6.61463857e-01 8.69492888e-01 3.68563592e-01 3.86370927e-01 -8.97756875e-01 3.12034309e-01 1.03978351e-01 -5.62527776e-01 -1.05444372e+00 -8.35417092e-01 4.37161475e-01 -6.29341006e-01 -3.86947215e-01 -8.34290445e-01 -9.01031196e-01 -1.46546224e-02 5.47690213e-01 6.82255805e-01 -3.31448972e-01 5.16227074e-02 -4.18638475e-02 -8.18490684e-02 -3.79793495e-01 -4.88410532e-01 -1.54835984e-01 5.48891008e-01 1.13286577e-01 -3.11902240e-02 -9.53072906e-01 -4.75989223e-01 3.79166156e-01 -6.42767847e-01 -3.39077443e-01 4.19310927e-01 8.59623730e-01 6.24018669e-01 3.39721799e-01 8.35586011e-01 -4.47252542e-02 9.33490813e-01 -1.56407505e-01 -5.10917783e-01 -1.56653166e-01 -2.96690345e-01 -3.34148079e-01 7.72170544e-01 -5.03671646e-01 -1.25703597e+00 -2.49187320e-01 -6.80580497e-01 -7.07105815e-01 -2.19745234e-01 2.77030647e-01 -6.22354627e-01 3.42706114e-01 6.47185564e-01 2.40739480e-01 -1.44854993e-01 -1.03150392e+00 1.96742699e-01 1.27489817e+00 8.40003550e-01 -1.26159117e-01 6.38074875e-01 -2.66024610e-03 -5.51218033e-01 -1.29024601e+00 -7.42026627e-01 -6.94966197e-01 -1.16960049e-01 1.47290871e-01 6.83918774e-01 -1.11870372e+00 -5.14057755e-01 9.34320211e-01 -1.10530448e+00 -3.10597241e-01 -2.70624369e-01 8.68441820e-01 -4.70403016e-01 3.63393635e-01 -8.27159226e-01 -1.23598206e+00 -6.82840705e-01 -1.35025644e+00 6.27311528e-01 1.84751168e-01 1.31379157e-01 -3.88424993e-01 -7.27897882e-02 7.10908413e-01 5.88003099e-01 -4.24126178e-01 4.75526512e-01 -5.92965245e-01 -2.01919258e-01 7.79043287e-02 1.49756446e-01 1.27300620e+00 4.47271526e-01 -3.01411301e-01 -1.49847281e+00 -2.82102555e-01 5.05331576e-01 1.93280242e-02 1.05496466e+00 8.86325717e-01 9.94748294e-01 -3.96580547e-01 2.28161380e-01 8.49151313e-01 6.83431745e-01 5.62286794e-01 7.56534874e-01 -2.92929590e-01 7.17294574e-01 4.24953073e-01 2.88588762e-01 2.14728147e-01 -6.29485995e-02 6.71188295e-01 2.76988924e-01 -2.23884329e-01 -5.48287094e-01 5.04176691e-02 6.22804105e-01 1.66569042e+00 3.24264430e-02 -2.27261260e-01 -6.06530249e-01 7.70408154e-01 -1.42582011e+00 -7.61292815e-01 -1.93620011e-01 2.55096555e+00 1.10199463e+00 -9.87892374e-02 1.46680728e-01 4.90744859e-01 9.56651688e-01 2.51188844e-01 -5.42473495e-01 -6.44200623e-01 -3.58618140e-01 6.49267495e-01 2.51359820e-01 7.03277826e-01 -9.69134808e-01 8.84302020e-01 5.58244181e+00 1.28084266e+00 -1.30186045e+00 2.68920392e-01 4.56389338e-01 -5.65624118e-01 3.51899788e-02 -3.77579719e-01 -6.77323937e-01 3.94056022e-01 1.19215238e+00 1.00056425e-01 1.00228441e+00 3.49008828e-01 4.71714288e-01 1.37826860e-01 -8.76010656e-01 1.28521729e+00 7.57574216e-02 -6.78719521e-01 -3.38505596e-01 -2.24016562e-01 5.58429241e-01 2.18869910e-01 4.60144758e-01 2.06170514e-01 -2.96590477e-02 -1.30532944e+00 6.54232621e-01 1.51399359e-01 7.76497960e-01 -8.98488820e-01 4.92295086e-01 4.27669913e-01 -9.80613291e-01 -1.27747163e-01 -2.49243051e-01 3.41639156e-03 3.70341837e-01 8.01323295e-01 -7.92031586e-01 4.91742879e-01 8.05127978e-01 4.38524842e-01 8.15665722e-02 1.22741258e+00 -5.58752418e-01 1.26457012e+00 -3.75176489e-01 3.80380839e-01 -1.51923090e-01 -1.47218585e-01 9.57634747e-01 1.31540036e+00 3.80547762e-01 1.45941589e-03 -4.44940120e-01 5.83255470e-01 -1.90420911e-01 8.70053247e-02 -1.50303617e-01 -5.86623289e-02 5.28260529e-01 1.02646077e+00 -4.97440547e-02 6.41076341e-02 -4.25451659e-02 9.29217935e-01 -1.63747385e-01 7.41245508e-01 -8.90095234e-01 -8.48389089e-01 1.27137506e+00 -1.52566865e-01 4.43499357e-01 -2.80056179e-01 -3.41403335e-01 -1.01594388e+00 8.13730881e-02 -1.31936872e+00 -1.03333831e-01 -6.93347156e-01 -1.20531702e+00 8.33142161e-01 -5.86208940e-01 -1.00898623e+00 -4.00617272e-01 -5.80611706e-01 -7.97472835e-01 1.44638228e+00 -1.54797912e+00 -7.17545807e-01 1.83320746e-01 5.68720639e-01 6.21473849e-01 -3.57336074e-01 5.43266475e-01 7.28261888e-01 -7.59897888e-01 7.11359441e-01 5.55071831e-01 2.44481880e-02 8.73025715e-01 -1.08173144e+00 5.32734871e-01 1.05712616e+00 2.11372226e-01 5.68273365e-01 8.09298635e-01 -2.44366959e-01 -1.07273233e+00 -9.91628885e-01 6.95320666e-01 2.35522181e-01 4.80521649e-01 -5.70396543e-01 -1.12031543e+00 2.38825113e-01 3.82115394e-01 -2.58273572e-01 7.34933019e-01 1.49695605e-01 -2.89859504e-01 -4.67439502e-01 -7.91066945e-01 5.58267832e-01 7.52101958e-01 -8.04638922e-01 -6.55061364e-01 7.86304697e-02 1.11578214e+00 -4.61908162e-01 -4.25808579e-01 4.46516722e-01 3.61980110e-01 -8.56346488e-01 1.14273596e+00 -3.91760647e-01 1.62176475e-01 -4.25695598e-01 -5.66415906e-01 -1.79660428e+00 -7.37368986e-02 -1.17606032e+00 -1.55071557e-01 1.58480847e+00 4.80748147e-01 -6.41289830e-01 1.83947682e-01 -1.20054968e-02 -5.87801397e-01 -3.51256579e-01 -1.04948306e+00 -1.01294672e+00 7.65975788e-02 -5.87686121e-01 2.93358058e-01 6.12430692e-01 -3.38545620e-01 4.70613837e-01 -6.92140996e-01 4.72962409e-01 6.41767979e-01 -1.35899231e-01 5.70454776e-01 -7.47471333e-01 -8.19700658e-01 -5.59030354e-01 1.18701756e-01 -1.46961462e+00 2.04600811e-01 -6.84175432e-01 5.21216571e-01 -1.55200434e+00 -4.68729943e-01 1.00999484e-02 -6.83892608e-01 1.80223376e-01 -2.89653450e-01 1.11282445e-01 2.64712363e-01 -2.27884054e-02 -5.16901836e-02 8.11620772e-01 9.52537656e-01 -8.85937959e-02 -4.48564559e-01 4.83638942e-01 -6.99123979e-01 8.28121364e-01 9.69911098e-01 -2.99912483e-01 -2.48420209e-01 -6.38081908e-01 -3.45020860e-01 4.10026819e-01 1.91849068e-01 -9.67909634e-01 2.60891825e-01 1.60284683e-01 -9.52544808e-02 -4.75555748e-01 9.87602830e-01 -4.35165733e-01 9.99956299e-03 6.98632449e-02 -2.62629598e-01 -6.83698177e-01 5.40500045e-01 2.91676491e-01 -6.80259943e-01 -1.35297284e-01 8.81174028e-01 1.88964546e-01 -1.14942268e-02 -1.22027963e-01 -4.88975376e-01 1.37685016e-01 2.12005109e-01 1.22972101e-01 -1.58563197e-01 -6.81105852e-01 -8.65023136e-01 3.41339670e-02 -3.21839750e-01 3.48656654e-01 6.72514558e-01 -1.25563550e+00 -9.16108072e-01 4.06494796e-01 -6.33938015e-01 4.30586524e-02 5.31047702e-01 9.52661753e-01 6.60841763e-02 1.73532039e-01 1.78314559e-02 -4.42592144e-01 -1.50905800e+00 1.57773808e-01 7.00264275e-01 2.58307457e-01 -6.71482235e-02 1.21987200e+00 5.73760331e-01 -4.37733114e-01 6.64398968e-01 -3.21054131e-01 -7.90525377e-02 -8.10468495e-02 4.78181362e-01 8.09485495e-01 3.83862555e-01 -5.93180835e-01 -7.18036816e-02 3.73877138e-01 1.46522298e-02 -3.55309665e-01 1.22551870e+00 -3.77978086e-01 -3.01436782e-01 5.37767172e-01 1.16259897e+00 6.16261125e-01 -9.20103490e-01 -3.04506809e-01 -4.59434867e-01 -3.85441244e-01 4.56075698e-01 -1.04098630e+00 -1.04744780e+00 1.35052490e+00 5.76885462e-01 4.18812931e-01 1.69835925e+00 -1.61105901e-01 1.14363050e+00 1.75165012e-01 -3.66056323e-01 -1.12150872e+00 -1.29005192e-02 8.21600556e-01 1.10548723e+00 -9.32926595e-01 -6.40514970e-01 -2.24541917e-01 -5.34062028e-01 7.58650362e-01 5.35535514e-01 1.26988396e-01 5.04414916e-01 4.24148053e-01 4.11869228e-01 3.76542091e-01 -5.92831433e-01 -4.46281463e-01 5.66898823e-01 3.34951907e-01 5.85126102e-01 1.50103793e-01 8.26947466e-02 9.62091863e-01 -5.50816715e-01 -7.30209827e-01 2.34093875e-01 1.40892714e-01 -6.19405866e-01 -9.60532546e-01 -7.61339784e-01 2.25014538e-01 -9.16243553e-01 -6.71357870e-01 -4.64636236e-01 -3.52259278e-02 -1.48834452e-01 1.51764596e+00 -1.54214713e-03 -4.30690289e-01 5.81716716e-01 1.48236454e-01 1.47937566e-01 -5.97794294e-01 -7.34372377e-01 1.04693007e+00 1.01843916e-01 -9.23073590e-02 -9.11808908e-02 -6.65915132e-01 -1.12656748e+00 -8.04053769e-02 -7.25070536e-01 3.10680538e-01 7.46845722e-01 6.68931067e-01 3.01678926e-01 9.04799521e-01 8.71474266e-01 -6.57898366e-01 -6.69963300e-01 -1.16614318e+00 -9.12574828e-01 -8.92370120e-02 9.78622437e-01 -2.28662685e-01 -8.26284349e-01 1.19069917e-02]
[15.000879287719727, 5.865081787109375]
46b189c1-9d4a-4b75-8ce8-e10fc1ef35bb
tgdm-target-guided-dynamic-mixup-for-cross
2210.05392
null
https://arxiv.org/abs/2210.05392v2
https://arxiv.org/pdf/2210.05392v2.pdf
TGDM: Target Guided Dynamic Mixup for Cross-Domain Few-Shot Learning
Given sufficient training data on the source domain, cross-domain few-shot learning (CD-FSL) aims at recognizing new classes with a small number of labeled examples on the target domain. The key to addressing CD-FSL is to narrow the domain gap and transferring knowledge of a network trained on the source domain to the target domain. To help knowledge transfer, this paper introduces an intermediate domain generated by mixing images in the source and the target domain. Specifically, to generate the optimal intermediate domain for different target data, we propose a novel target guided dynamic mixup (TGDM) framework that leverages the target data to guide the generation of mixed images via dynamic mixup. The proposed TGDM framework contains a Mixup-3T network for learning classifiers and a dynamic ratio generation network (DRGN) for learning the optimal mix ratio. To better transfer the knowledge, the proposed Mixup-3T network contains three branches with shared parameters for classifying classes in the source domain, target domain, and intermediate domain. To generate the optimal intermediate domain, the DRGN learns to generate an optimal mix ratio according to the performance on auxiliary target data. Then, the whole TGDM framework is trained via bi-level meta-learning so that TGDM can rectify itself to achieve optimal performance on target data. Extensive experimental results on several benchmark datasets verify the effectiveness of our method.
['Yu-Gang Jiang', 'Yixin Cao', 'Jingjing Chen', 'Yuqian Fu', 'Linhai Zhuo']
2022-10-11
null
null
null
null
['cross-domain-few-shot', 'cross-domain-few-shot-learning']
['computer-vision', 'computer-vision']
[ 5.18494010e-01 1.48463309e-01 -4.76177245e-01 -2.71497101e-01 -8.83165061e-01 -2.92675674e-01 5.27571142e-01 -4.06049579e-01 -3.81927639e-02 6.11348271e-01 -6.13814443e-02 2.61457134e-02 1.35257438e-01 -1.08832598e+00 -6.21041000e-01 -6.68144643e-01 5.03376484e-01 5.56601048e-01 6.41340554e-01 -2.37889305e-01 4.53654118e-02 6.18534647e-02 -1.45642292e+00 6.09968603e-01 1.25561571e+00 1.28244913e+00 5.51119924e-01 1.15766764e-01 -4.68965143e-01 9.55118179e-01 -5.93045890e-01 -1.20376639e-01 5.37623167e-01 -7.78867364e-01 -6.21532798e-01 2.09449202e-01 1.43145293e-01 -4.00317460e-01 -1.50125936e-01 9.35979903e-01 5.69148898e-01 4.08893913e-01 7.83660889e-01 -1.58112931e+00 -8.62516463e-01 6.26577377e-01 -4.14989620e-01 1.87504724e-01 -1.80282276e-02 5.25786817e-01 6.44753456e-01 -9.10263777e-01 7.62472928e-01 1.31003737e+00 3.37773502e-01 7.92290449e-01 -9.45101619e-01 -9.65791106e-01 3.95054251e-01 3.84289682e-01 -1.14604592e+00 -3.79326791e-01 1.01027739e+00 -3.53487283e-01 5.10116398e-01 -4.66501594e-01 4.35667753e-01 1.15428483e+00 -2.31681079e-01 9.37506318e-01 1.18926275e+00 -4.30561870e-01 4.48999673e-01 3.89139920e-01 1.14425644e-01 4.47666794e-01 -6.54244274e-02 1.78594291e-01 -3.80015492e-01 1.21803544e-01 6.09887481e-01 2.13645786e-01 -1.94010168e-01 -7.15277970e-01 -9.78066623e-01 7.86104679e-01 5.75601220e-01 2.48146087e-01 -2.61116922e-01 -3.83312613e-01 4.59113568e-01 4.62522835e-01 5.22455394e-01 3.72467160e-01 -4.98989850e-01 3.39509726e-01 -6.68366194e-01 9.94940381e-03 5.15870094e-01 1.22876608e+00 1.10905778e+00 8.27899277e-02 -4.59208071e-01 1.28180647e+00 2.61669308e-02 5.27443826e-01 8.01906347e-01 -6.92146838e-01 9.31274772e-01 1.03210604e+00 -1.47840738e-01 -4.86445397e-01 4.78633419e-02 -4.24122661e-01 -6.50061905e-01 1.86594144e-01 1.84569210e-01 -2.76629478e-01 -1.22508740e+00 1.79080665e+00 6.10605299e-01 5.72616756e-01 5.25828004e-01 6.83709979e-01 8.90585959e-01 1.08492351e+00 -4.77698818e-03 -1.98357627e-01 8.92392755e-01 -1.34836483e+00 -2.98828006e-01 -5.99537730e-01 8.09836864e-01 -3.70149195e-01 1.05642760e+00 1.27515614e-01 -6.74867153e-01 -9.18232560e-01 -1.14151955e+00 2.11414129e-01 -5.29775441e-01 2.28611566e-02 -1.44014806e-02 1.47867203e-01 -5.50382853e-01 4.78440195e-01 -6.48395345e-02 -3.41595232e-01 7.10704207e-01 4.76223826e-02 -1.06510401e-01 -6.58389151e-01 -1.40846217e+00 7.83265293e-01 1.08191407e+00 -4.46181864e-01 -1.23828423e+00 -1.01233196e+00 -9.79553461e-01 -4.45118770e-02 5.77870250e-01 -4.16362464e-01 1.22164798e+00 -1.24448144e+00 -1.49316335e+00 7.55370975e-01 3.21648717e-01 -4.25985098e-01 5.11009753e-01 2.34004498e-01 -5.29375792e-01 2.00894147e-01 4.42869604e-01 8.21250200e-01 1.11999285e+00 -1.35026133e+00 -1.10551095e+00 -2.43268251e-01 -1.47965297e-01 4.85810101e-01 -4.28805828e-01 -6.11157179e-01 -3.96863073e-01 -5.95303237e-01 -2.47727096e-01 -7.08652198e-01 -3.14533412e-02 -1.98645994e-01 -1.38949558e-01 -1.95172578e-01 1.03710222e+00 -4.59097475e-01 1.00048137e+00 -2.15916514e+00 6.36345521e-02 -3.64411473e-02 3.41410339e-02 7.89644301e-01 -6.33597016e-01 -9.53199156e-03 -1.81855485e-01 -4.39311862e-01 -3.43455762e-01 6.50800020e-02 -2.82416463e-01 2.31345773e-01 -4.45232600e-01 -7.58643001e-02 3.70031923e-01 8.21342468e-01 -1.15343213e+00 -5.30728400e-01 4.57685262e-01 1.19291190e-02 -4.31901276e-01 5.13356686e-01 -4.21298236e-01 3.88454527e-01 -5.08666337e-01 6.10362530e-01 9.13485706e-01 -3.34936321e-01 1.74777389e-01 -2.90844858e-01 1.16081946e-01 -1.15044586e-01 -1.23831964e+00 1.50697005e+00 -6.89624190e-01 1.69963226e-01 -2.59531349e-01 -1.31524324e+00 1.39933741e+00 -9.69550852e-03 3.98894548e-01 -1.05901778e+00 3.54624331e-01 3.12404871e-01 -1.33309647e-01 -3.15676004e-01 9.31559280e-02 -4.33259815e-01 -1.59066528e-01 4.90193367e-01 5.46342432e-01 -4.27605025e-03 1.24821909e-01 2.25049257e-02 8.50405693e-01 1.27438828e-01 3.89390230e-01 5.90991154e-02 6.09606802e-01 2.10359186e-01 8.66446555e-01 6.04245067e-01 -5.05361497e-01 5.07020593e-01 2.13046193e-01 -3.76678646e-01 -1.07512248e+00 -1.05202043e+00 1.15692645e-01 1.33191121e+00 5.00991523e-01 2.44419187e-01 -7.43168473e-01 -1.15116215e+00 -5.84937148e-02 8.77417207e-01 -6.90569580e-01 -8.99671078e-01 -3.16509277e-01 -5.52568018e-01 1.75541222e-01 4.67935383e-01 1.14371812e+00 -1.18580782e+00 -4.24795926e-01 3.10616046e-01 -2.41657376e-01 -1.14554203e+00 -5.11283815e-01 1.89226016e-01 -8.27404976e-01 -1.21190703e+00 -9.76179898e-01 -1.07614255e+00 6.83531761e-01 6.31166220e-01 6.74748600e-01 -3.54844898e-01 -9.70632508e-02 1.36569589e-01 -6.48125708e-01 -2.02909634e-01 -6.71381593e-01 1.01189405e-01 -1.88048065e-01 3.30964297e-01 5.30699670e-01 -5.92055917e-01 -3.00161332e-01 5.34974813e-01 -9.85426605e-01 2.50972480e-01 7.62127340e-01 9.90053594e-01 4.60672468e-01 1.21045947e-01 8.70237827e-01 -1.10936022e+00 3.85724217e-01 -9.56301868e-01 -4.55229014e-01 4.17818308e-01 -7.55387843e-01 9.20268372e-02 9.92469251e-01 -8.90082657e-01 -1.37526131e+00 -5.40195368e-02 2.24490970e-01 -8.81391108e-01 -2.53461860e-02 2.72521168e-01 -5.47492921e-01 2.01652005e-01 9.00506079e-01 4.61120486e-01 1.12696692e-01 -3.54514569e-01 5.52184641e-01 8.77297878e-01 4.96335387e-01 -3.57978642e-01 8.30708444e-01 3.85107934e-01 -5.29274285e-01 -4.09021854e-01 -1.25801194e+00 -3.60285729e-01 -7.69435465e-01 -1.57703117e-01 6.32703006e-01 -9.82080162e-01 2.33815342e-01 8.23678434e-01 -8.76687706e-01 -7.17318058e-01 -6.62624478e-01 8.71636197e-02 -5.41174650e-01 -4.13664207e-02 -1.13436282e-01 -4.62838560e-01 -2.68027127e-01 -1.15279675e+00 8.60425830e-01 5.57244182e-01 2.05335557e-01 -1.01245403e+00 3.02299373e-02 3.78456801e-01 2.50083566e-01 1.85578302e-01 1.00191271e+00 -1.00645351e+00 -3.46214443e-01 1.00519225e-01 -4.55294907e-01 6.48792088e-01 4.70344841e-01 -4.99527305e-01 -9.04033422e-01 -2.29401872e-01 -1.32893145e-01 -7.37258077e-01 9.82288003e-01 2.36876562e-01 8.23470235e-01 -7.75145665e-02 -4.76181537e-01 6.03975773e-01 1.51805913e+00 5.87419271e-01 4.50761139e-01 4.89289194e-01 6.89874709e-01 5.10919690e-01 1.10182548e+00 4.40585494e-01 3.67646039e-01 5.16768396e-01 1.98485419e-01 9.60205719e-02 -5.84564090e-01 -4.88101304e-01 4.99908268e-01 4.65386182e-01 4.90577847e-01 -5.12493104e-02 -7.77834356e-01 7.66671121e-01 -1.75989079e+00 -9.83959436e-01 6.82117283e-01 2.08692408e+00 9.32080209e-01 2.72795767e-01 2.37499222e-01 -9.17048156e-02 1.25718677e+00 1.84066638e-01 -1.15342164e+00 -7.73748457e-02 -1.24921780e-02 6.76174238e-02 2.55574316e-01 2.96447247e-01 -9.75223422e-01 1.17500472e+00 4.78803205e+00 1.07788467e+00 -1.34236193e+00 2.08714321e-01 5.11962533e-01 5.19538112e-02 -1.62690327e-01 -3.19243185e-02 -1.05130827e+00 6.86507463e-01 5.54068089e-01 -4.75078255e-01 3.23140621e-01 1.22054291e+00 -7.43785873e-02 1.12159334e-01 -9.00847077e-01 8.35949779e-01 2.02985972e-01 -1.43865192e+00 4.22921836e-01 -2.03830063e-01 9.82661307e-01 -1.43084284e-02 1.66951060e-01 9.66790318e-01 6.10850215e-01 -2.63691783e-01 4.23655808e-01 2.44558215e-01 1.03422177e+00 -7.69671738e-01 5.21556377e-01 5.74954927e-01 -1.23905873e+00 -6.10006392e-01 -6.31213129e-01 3.85061562e-01 -1.26308233e-01 4.12376493e-01 -1.08488250e+00 6.14542603e-01 4.47137713e-01 1.03753030e+00 -6.00907326e-01 8.22143197e-01 -7.93221742e-02 3.49017471e-01 1.19792894e-01 3.10166359e-01 2.27655709e-01 -1.91579819e-01 4.74439114e-01 7.29472518e-01 4.25284326e-01 1.03736535e-01 3.19597691e-01 9.01911378e-01 -2.14082479e-01 -1.28137507e-02 -7.27127731e-01 -8.49674828e-03 9.27471757e-01 1.09470940e+00 -4.34364140e-01 -7.30265379e-01 -3.13581854e-01 9.67536628e-01 5.17913461e-01 2.70507514e-01 -8.12705815e-01 -5.25185108e-01 3.15949827e-01 -6.98474329e-03 5.00268400e-01 5.28618515e-01 -4.06863634e-03 -1.18277133e+00 -1.64459005e-01 -9.73840833e-01 7.19977260e-01 -7.37420321e-01 -1.52775717e+00 6.91754639e-01 1.27948955e-01 -1.71935248e+00 -1.29347101e-01 -4.92301464e-01 -8.82573068e-01 8.47526848e-01 -1.77777958e+00 -1.27456784e+00 -7.23787725e-01 8.63278925e-01 9.10414279e-01 -7.02956975e-01 4.42816019e-01 2.61769682e-01 -7.74757743e-01 6.44707918e-01 1.43409699e-01 1.13931827e-01 8.67824733e-01 -9.64867711e-01 1.82289317e-01 6.75062418e-01 -4.39903438e-01 1.45149231e-01 2.91547984e-01 -8.31427872e-01 -8.93876970e-01 -1.82973993e+00 1.47993252e-01 -4.09902725e-03 4.41990525e-01 -8.44299942e-02 -1.12256062e+00 6.15089774e-01 -7.85745084e-02 2.37853900e-01 5.75086713e-01 -4.09737438e-01 -6.44880950e-01 -5.14955342e-01 -1.22667968e+00 4.54657525e-01 9.77374971e-01 -2.33948603e-01 -9.45425153e-01 2.39298120e-01 9.13057029e-01 -2.95642942e-01 -6.45591080e-01 4.59641933e-01 1.08877219e-01 -9.07459438e-01 7.73754358e-01 -4.89063382e-01 7.50999093e-01 -2.13930100e-01 -1.06074765e-01 -1.80919576e+00 -3.72877389e-01 -9.85688344e-02 -1.39924943e-01 1.43736959e+00 2.05075145e-01 -5.32509446e-01 7.91109800e-01 2.15646729e-01 -3.64404649e-01 -7.13257849e-01 -6.31227314e-01 -9.68207657e-01 1.84244573e-01 -2.59860188e-01 7.92638659e-01 1.07932639e+00 -3.54423195e-01 6.33072078e-01 -3.85243088e-01 -3.99750359e-02 7.00985610e-01 4.88700956e-01 9.06399846e-01 -1.25143397e+00 -1.63641036e-01 -2.16107905e-01 -8.55649635e-02 -9.27809834e-01 2.50628263e-01 -1.17913997e+00 3.73078585e-02 -1.58866012e+00 2.72245854e-01 -7.00348914e-01 -3.76181126e-01 6.16657436e-01 -4.12835717e-01 -4.46804974e-04 4.23290938e-01 1.77917734e-01 -7.69314885e-01 8.33225071e-01 1.53737497e+00 -4.05239701e-01 -4.65854943e-01 7.97838997e-03 -9.43047225e-01 4.95170295e-01 7.14677036e-01 -3.83139968e-01 -9.30403948e-01 -1.50815800e-01 -5.27825475e-01 -4.28203866e-02 1.60220683e-01 -1.32339251e+00 7.98354223e-02 -3.77539217e-01 4.78042006e-01 -5.83100319e-01 2.10966170e-01 -7.51190841e-01 -2.13695347e-01 4.12671804e-01 -3.58096302e-01 -7.56663680e-01 8.93799439e-02 5.59235632e-01 -2.10778713e-01 -2.72617966e-01 1.44862616e+00 -2.01192141e-01 -1.37848938e+00 5.65082967e-01 1.54624194e-01 4.95825261e-01 1.56955314e+00 -3.98373127e-01 -5.47015905e-01 -7.09422007e-02 -6.76061928e-01 6.69975340e-01 4.07903850e-01 7.37887681e-01 7.87843108e-01 -1.67904782e+00 -5.20936072e-01 2.58439809e-01 5.72192967e-01 2.63076603e-01 7.05909073e-01 3.90834093e-01 -2.26204190e-02 3.44730429e-02 -6.09342098e-01 -5.03864825e-01 -8.20535898e-01 9.22620535e-01 5.66671789e-01 -3.42533410e-01 -4.96220291e-01 8.14934313e-01 4.51343805e-01 -7.85734534e-01 4.68426086e-02 9.51494724e-02 -3.66473615e-01 3.99383008e-01 8.26203465e-01 4.66129094e-01 -1.44262061e-01 -4.89184409e-01 -4.97497022e-02 3.86633366e-01 -3.62019598e-01 1.20270923e-01 1.30784202e+00 -1.68267190e-01 2.40561694e-01 4.77324396e-01 1.41539907e+00 -6.81459546e-01 -1.62059474e+00 -7.74073184e-01 -2.35069796e-01 -2.79977292e-01 -2.15707928e-01 -8.29448879e-01 -1.19946396e+00 8.60473990e-01 6.55385435e-01 -1.53370529e-01 1.45792329e+00 -3.76190692e-02 1.01605976e+00 1.70834571e-01 3.55736703e-01 -1.44259501e+00 5.74093103e-01 5.68122804e-01 5.20253539e-01 -1.29974449e+00 -3.73443484e-01 -3.10284972e-01 -1.04985797e+00 9.13719535e-01 1.32947004e+00 -1.27641231e-01 4.85090137e-01 -1.65111884e-01 7.87354484e-02 9.45799723e-02 -7.24734485e-01 -2.68158197e-01 7.75680840e-02 9.85644698e-01 -3.22419316e-01 -1.88706428e-01 2.21005648e-01 7.47393548e-01 2.12351918e-01 3.24709147e-01 4.16366577e-01 9.62654114e-01 -8.51256788e-01 -1.15778351e+00 -3.41876805e-01 6.75681710e-01 3.56993437e-01 3.98170426e-02 -2.48124018e-01 6.09139919e-01 6.15682244e-01 8.24086487e-01 5.82906939e-02 -7.05877721e-01 4.87513930e-01 2.96260893e-01 2.43924215e-01 -1.05064666e+00 -1.55753866e-01 -1.58219114e-01 -2.87252188e-01 -3.24143618e-01 -2.54787177e-01 -3.09856415e-01 -1.17051578e+00 1.24702208e-01 -1.83751896e-01 1.99205384e-01 -3.10414396e-02 1.15937281e+00 5.00125051e-01 7.47513115e-01 1.07853508e+00 -6.45511091e-01 -6.25944912e-01 -9.74990129e-01 -6.62293196e-01 4.51991320e-01 2.65881509e-01 -9.35708761e-01 -2.17845991e-01 2.73772888e-03]
[10.263811111450195, 2.9945411682128906]
ee491200-d50b-481f-9fc5-1cc7642f6f15
fc2rn-a-fully-convolutional-corner-refinement
2007.05113
null
https://arxiv.org/abs/2007.05113v1
https://arxiv.org/pdf/2007.05113v1.pdf
FC2RN: A Fully Convolutional Corner Refinement Network for Accurate Multi-Oriented Scene Text Detection
Recent scene text detection works mainly focus on curve text detection. However, in real applications, the curve texts are more scarce than the multi-oriented ones. Accurate detection of multi-oriented text with large variations of scales, orientations, and aspect ratios is of great significance. Among the multi-oriented detection methods, direct regression for the geometry of scene text shares a simple yet powerful pipeline and gets popular in academic and industrial communities, but it may produce imperfect detections, especially for long texts due to the limitation of the receptive field. In this work, we aim to improve this while keeping the pipeline simple. A fully convolutional corner refinement network (FC2RN) is proposed for accurate multi-oriented text detection, in which an initial corner prediction and a refined corner prediction are obtained at one pass. With a novel quadrilateral RoI convolution operation tailed for multi-oriented scene text, the initial quadrilateral prediction is encoded into the feature maps which can be further used to predict offset between the initial prediction and the ground-truth as well as output a refined confidence score. Experimental results on four public datasets including MSRA-TD500, ICDAR2017-RCTW, ICDAR2015, and COCO-Text demonstrate that FC2RN can outperform the state-of-the-art methods. The ablation study shows the effectiveness of corner refinement and scoring for accurate text localization.
['Yinliang Yue', 'Xugong Qin', 'Yu Zhou', 'Dayan Wu', 'Weiping Wang']
2020-07-10
null
null
null
null
['multi-oriented-scene-text-detection', 'scene-text-detection']
['computer-vision', 'computer-vision']
[-1.55119091e-01 -5.22194922e-01 1.92929551e-01 -5.29605616e-03 -8.77147257e-01 -4.05623525e-01 5.09344399e-01 3.72027010e-01 -3.95687819e-01 -5.80839477e-02 2.29964301e-01 -8.55166689e-02 3.54398370e-01 -6.85416877e-01 -5.20045638e-01 -6.81991339e-01 5.20869792e-01 6.26480877e-01 8.18209529e-01 -1.43853575e-01 5.85538924e-01 2.88170546e-01 -1.16617131e+00 4.67971295e-01 7.55970776e-01 9.62486446e-01 4.95122910e-01 7.18499720e-01 -2.35372692e-01 4.71450269e-01 -5.65626144e-01 -3.85421723e-01 -2.01814286e-02 -3.00377561e-03 -1.85799882e-01 2.37901211e-02 4.35285658e-01 -4.46326196e-01 -4.04747814e-01 8.68785918e-01 7.46245325e-01 -2.94686854e-01 8.23051631e-01 -9.11226869e-01 -3.41853231e-01 6.53764665e-01 -1.12899017e+00 4.99919318e-02 3.54475826e-01 -3.82975899e-02 1.16190827e+00 -1.34950638e+00 5.57243824e-01 1.05852294e+00 1.04528284e+00 1.25176227e-02 -6.45101726e-01 -7.26877451e-01 2.56271183e-01 8.38503391e-02 -1.65757263e+00 1.35031030e-01 6.03748679e-01 -3.70798647e-01 8.88477683e-01 1.29212618e-01 4.00839180e-01 9.19025123e-01 3.93196851e-01 1.33702457e+00 6.61118627e-01 -3.70909601e-01 -1.28679514e-01 1.23358734e-01 -6.07552715e-02 8.45221996e-01 3.52000594e-01 -4.08232331e-01 -7.17797339e-01 -2.09823512e-02 6.28575623e-01 2.17113003e-01 -3.97296607e-01 -2.89830863e-01 -1.48695171e+00 8.00942779e-01 6.09126508e-01 5.07834554e-01 -9.23271030e-02 1.31024709e-02 4.84101713e-01 -2.66530216e-01 5.43562770e-01 2.09484950e-01 -2.85309315e-01 1.55369520e-01 -1.18428898e+00 3.65770042e-01 3.68998498e-01 1.05038726e+00 3.67641538e-01 -2.15092927e-01 -5.16276002e-01 8.48856449e-01 4.34747964e-01 8.67280602e-01 5.94577789e-01 1.94206536e-01 9.27438438e-01 1.01238227e+00 -1.15000024e-01 -1.28185952e+00 -8.81740451e-01 -5.79618692e-01 -9.75414455e-01 -3.42837065e-01 4.96025413e-01 -1.62127651e-02 -9.33800340e-01 7.05690145e-01 3.74091893e-01 -2.86644772e-02 -2.26866871e-01 9.89172161e-01 1.09446442e+00 5.94556808e-01 -2.27790847e-01 3.31215322e-01 1.53240120e+00 -1.04510295e+00 -5.14318764e-01 -3.19717586e-01 1.05046153e+00 -1.31777465e+00 9.13420498e-01 4.26783621e-01 -6.40717745e-01 -3.51704597e-01 -1.00257361e+00 -2.57886529e-01 -4.28434551e-01 8.22200835e-01 2.91769207e-01 4.95729089e-01 -7.45745242e-01 1.45404011e-01 -6.40519977e-01 -4.94255990e-01 4.07062501e-01 6.46000430e-02 1.55103672e-02 -1.07918389e-01 -8.41324508e-01 5.45796275e-01 2.00350091e-01 2.26686627e-01 -2.82981128e-01 -6.31711543e-01 -7.53152907e-01 3.09240501e-02 3.93177301e-01 -3.01595896e-01 9.29661572e-01 -4.68261510e-01 -1.08988440e+00 6.29843712e-01 -1.57004241e-02 -2.51462191e-01 1.02235627e+00 -2.66238928e-01 -2.46231571e-01 2.38131046e-01 5.04936874e-01 6.29049182e-01 1.14118421e+00 -9.59798455e-01 -1.13615620e+00 -4.06268179e-01 -5.60615957e-01 4.02518898e-01 -4.29781467e-01 -2.52581835e-02 -9.48209167e-01 -9.19256032e-01 5.57209253e-01 -6.91628516e-01 1.31795496e-01 1.97327405e-01 -7.60731280e-01 -4.68079835e-01 1.30187941e+00 -6.43754780e-01 1.23636007e+00 -2.20087457e+00 -1.43485337e-01 2.36651033e-01 2.56573290e-01 -4.95847017e-02 1.05553597e-01 2.39107206e-01 3.71072859e-01 1.83882993e-02 1.01249389e-01 -5.00809789e-01 -2.42139753e-02 -5.69103241e-01 -2.40821734e-01 8.90362799e-01 6.51612505e-02 9.12308633e-01 -5.06666362e-01 -9.26902473e-01 5.47086716e-01 5.31895399e-01 -4.86043930e-01 -4.97294292e-02 -1.41539916e-01 -9.33571532e-02 -6.73285425e-01 8.77929807e-01 8.52769852e-01 -4.41788375e-01 -2.69366384e-01 -3.46621156e-01 -3.12589675e-01 -2.27954879e-01 -1.44014871e+00 1.27945602e+00 -1.91080630e-01 1.01240003e+00 -2.12353036e-01 -5.00484169e-01 1.04456723e+00 1.36443868e-01 3.77417833e-01 -6.68845952e-01 3.67315948e-01 1.86057776e-01 -3.52475226e-01 -3.29393357e-01 9.14398313e-01 2.97157079e-01 -9.36000273e-02 1.53015539e-01 -4.93135512e-01 -3.77409160e-01 9.90804881e-02 2.67666608e-01 8.75536799e-01 6.57304674e-02 1.00297339e-01 -1.22438043e-01 6.56109154e-01 1.02626011e-01 2.95823067e-01 7.99716473e-01 4.75950819e-03 1.24167681e+00 4.09283549e-01 -4.50992495e-01 -1.12852323e+00 -5.95060587e-01 -4.82573360e-01 1.01817811e+00 4.15574551e-01 -5.81930995e-01 -5.89296937e-01 -7.76201069e-01 6.51780292e-02 4.28186029e-01 -6.33148551e-01 3.17075044e-01 -6.96915746e-01 -8.40933740e-01 6.85956001e-01 7.78771579e-01 8.67479622e-01 -9.56756830e-01 -6.38229787e-01 7.76226148e-02 -3.83824766e-01 -1.42289019e+00 -9.11738753e-01 1.28382981e-01 -6.00368977e-01 -9.62374687e-01 -1.10612655e+00 -9.76742327e-01 7.08133161e-01 7.49551475e-01 6.79818034e-01 3.67286354e-01 -4.63894397e-01 1.67898789e-01 -5.39716661e-01 -4.47502196e-01 -8.00640732e-02 2.81318963e-01 -4.36909080e-01 3.12406551e-02 3.10527116e-01 3.95681083e-01 -7.19106019e-01 6.35313749e-01 -7.14449644e-01 2.49948189e-01 7.78979242e-01 9.27991688e-01 4.74643737e-01 7.54718482e-02 6.83600530e-02 -6.58533096e-01 3.49905282e-01 -1.40752867e-01 -6.11026227e-01 8.12802911e-02 -5.39385200e-01 -1.54144078e-01 6.44167423e-01 -3.97165298e-01 -9.27546322e-01 2.42122024e-01 -1.62889659e-01 -3.37805152e-01 -8.07119999e-03 3.69807094e-01 1.29572600e-01 3.88277434e-02 6.82087123e-01 4.91496414e-01 -5.73325932e-01 -2.74871826e-01 2.65945327e-02 9.66343820e-01 2.47490749e-01 -1.35721803e-01 9.08049464e-01 7.70583451e-01 -9.82502699e-02 -1.36647105e+00 -5.72909534e-01 -1.01944876e+00 -8.07073295e-01 -2.06291422e-01 8.62946332e-01 -1.01487815e+00 -5.08970737e-01 8.86535227e-01 -1.15140855e+00 -1.53709099e-01 2.66040176e-01 2.75622249e-01 -4.05736566e-02 6.92131221e-01 -4.80886817e-01 -5.79553306e-01 -6.56131804e-01 -1.20057929e+00 1.94444239e+00 3.46849412e-01 1.46308482e-01 -7.32369363e-01 -3.14259320e-01 3.99512380e-01 1.62412733e-01 -1.62999764e-01 6.34190202e-01 -5.72147369e-01 -6.94947243e-01 -6.74465418e-01 -6.99466527e-01 -3.31041396e-01 -3.50566715e-01 1.66761115e-01 -7.99674273e-01 -2.95932323e-01 -5.45979381e-01 -2.01729789e-01 9.58445132e-01 5.34126222e-01 1.14453435e+00 2.36462384e-01 -7.57343650e-01 6.93537951e-01 1.31688178e+00 -2.79525399e-01 3.91530246e-01 4.32718962e-01 1.03873968e+00 1.72705337e-01 8.21439207e-01 6.21025562e-01 4.95874405e-01 7.62225866e-01 3.43407601e-01 -1.57925740e-01 -1.43176764e-01 -1.69534251e-01 1.62021145e-01 5.40323079e-01 1.69011578e-01 -3.71857941e-01 -1.01663315e+00 4.76253748e-01 -1.72556031e+00 -6.85014963e-01 -7.94690669e-01 1.97490931e+00 2.97016114e-01 3.71391177e-01 4.65560518e-02 2.80635446e-01 9.33681548e-01 1.73223212e-01 -4.08177495e-01 1.96468741e-01 -4.05038118e-01 -2.90951997e-01 6.92174077e-01 9.32811350e-02 -1.48537195e+00 1.10937369e+00 5.00127077e+00 1.15576112e+00 -1.23524725e+00 -9.91562083e-02 5.03817439e-01 2.66716212e-01 1.55370444e-01 -4.07410026e-01 -1.41912639e+00 2.08594009e-01 1.62228286e-01 2.95099646e-01 -1.14887893e-01 9.88917708e-01 1.02621779e-01 -3.14359307e-01 -6.74475610e-01 1.20720100e+00 3.87238860e-01 -1.23907137e+00 -2.95566041e-02 -1.72112480e-01 7.23692000e-01 2.66351879e-01 4.63112108e-02 3.12229335e-01 -1.42716274e-01 -7.43149996e-01 8.83899748e-01 1.25768661e-01 7.56790400e-01 -6.44979775e-01 9.51275826e-01 4.09715295e-01 -1.78567016e+00 -7.13414401e-02 -5.20087004e-01 5.97487926e-01 -1.47908196e-01 5.46754897e-01 -9.32260633e-01 4.40258533e-01 9.33169127e-01 9.21576977e-01 -1.05953467e+00 1.23532712e+00 -2.58583844e-01 3.81183445e-01 -5.39419293e-01 -7.23292708e-01 2.94612825e-01 1.07925035e-01 5.08539081e-01 1.61707377e+00 3.97027194e-01 -2.60358572e-01 1.78148940e-01 6.96530044e-01 -5.58313392e-02 6.21497512e-01 -3.00964803e-01 3.70577902e-01 1.69674113e-01 1.64617395e+00 -1.40115225e+00 -2.18575209e-01 -5.61458051e-01 1.01197755e+00 2.26413831e-01 1.43910632e-01 -9.10749495e-01 -5.59085369e-01 -1.59885854e-01 1.43830389e-01 6.81387842e-01 -1.03351399e-01 -5.53274810e-01 -1.33252525e+00 7.08449036e-02 -7.23354518e-01 3.81477863e-01 -8.24782789e-01 -1.04284227e+00 4.27751213e-01 -3.57884586e-01 -1.26725447e+00 1.63651809e-01 -7.43083835e-01 -7.54911304e-01 6.38955712e-01 -1.37018597e+00 -1.65960431e+00 -6.97190762e-01 4.82609153e-01 1.03301919e+00 -1.02238711e-02 3.22598845e-01 1.36645168e-01 -7.94967473e-01 9.25550520e-01 3.94208729e-01 5.95326722e-01 8.84488881e-01 -1.30137074e+00 4.52386171e-01 7.09153473e-01 1.09358072e-01 -4.50526029e-02 6.48103476e-01 -9.74715173e-01 -1.37606192e+00 -1.25187922e+00 6.93776309e-01 -4.65321064e-01 5.77452183e-01 -6.16117656e-01 -9.46528912e-01 3.56980413e-01 -1.96810007e-01 1.21242553e-01 -4.04768251e-02 -2.27217942e-01 -2.51149356e-01 1.42465413e-01 -8.38274419e-01 8.41934383e-01 7.21504033e-01 -2.32884690e-01 -2.50002831e-01 4.70063895e-01 2.92456776e-01 -7.34879673e-01 -4.28695709e-01 2.47560188e-01 6.11090124e-01 -1.00225723e+00 8.83742273e-01 2.97253609e-01 3.88555527e-01 -2.78969854e-01 2.96498891e-02 -8.73633921e-01 -1.76559284e-01 -1.29394442e-01 2.06434071e-01 1.01555359e+00 3.80239755e-01 -4.02490944e-01 1.05636024e+00 -1.02731831e-01 -2.10015014e-01 -8.48707795e-01 -9.47205245e-01 -3.15903574e-01 1.28919423e-01 -4.20878351e-01 3.41345519e-01 6.53981805e-01 -9.66381207e-02 3.49084556e-01 -9.27051902e-02 4.52234060e-01 5.27491152e-01 3.04874182e-01 9.43216860e-01 -1.21846724e+00 -2.46213358e-02 -6.25929356e-01 -3.96205157e-01 -1.46438456e+00 -2.46651679e-01 -7.38014698e-01 2.70415992e-01 -1.59958851e+00 3.74408454e-01 -3.67476940e-01 3.03767651e-01 1.77444085e-01 -4.44014281e-01 4.60215181e-01 9.14084166e-02 3.81545514e-01 -7.73356199e-01 5.05856633e-01 1.22728550e+00 -3.23432326e-01 -2.73007065e-01 1.55918911e-01 -1.87512055e-01 9.00777042e-01 6.15198672e-01 -3.73304307e-01 1.85436979e-01 -1.84804946e-01 4.20231164e-01 -2.25060284e-01 3.01195532e-01 -1.13423443e+00 5.94754755e-01 3.06272417e-01 8.43727291e-01 -1.58675718e+00 1.20378248e-02 -8.52171302e-01 -6.25605106e-01 5.00364423e-01 -5.55113368e-02 -3.99556533e-02 1.78028002e-01 7.17756152e-01 1.44214377e-01 -3.18866372e-01 8.27193201e-01 2.44932324e-01 -3.64172667e-01 1.84883744e-01 -3.72296572e-01 8.52461308e-02 9.27311063e-01 -3.07878762e-01 -4.30555552e-01 -2.16690376e-01 -8.20861682e-02 4.53555167e-01 3.29716146e-01 5.18142283e-01 8.13434243e-01 -9.21717346e-01 -8.53023708e-01 2.27093771e-01 4.47826058e-01 3.95317942e-01 1.66589305e-01 1.01446235e+00 -7.94447184e-01 6.96403682e-01 3.93505752e-01 -1.14978659e+00 -1.30781293e+00 4.18467283e-01 5.02619684e-01 -4.25471067e-01 -1.12587547e+00 5.61960936e-01 3.82100672e-01 -2.63605952e-01 5.04656374e-01 -6.85179234e-01 -3.20420295e-01 1.95117086e-01 4.19014990e-01 3.49064380e-01 2.36603498e-01 -7.65053391e-01 -3.58137965e-01 1.19204521e+00 -3.65692884e-01 2.19472572e-01 9.77961719e-01 -1.79161236e-01 3.91182750e-01 1.83057979e-01 8.56993973e-01 1.72057137e-01 -1.12570238e+00 -2.62977690e-01 -1.74553335e-01 -3.94393861e-01 2.59160817e-01 -5.53343892e-01 -9.56298172e-01 9.93393958e-01 6.35463953e-01 1.11534692e-01 6.72438562e-01 9.48121324e-02 7.47205794e-01 4.34360325e-01 7.41261616e-03 -1.28926814e+00 5.19608974e-01 5.07810295e-01 8.31107140e-01 -1.49180818e+00 2.56538182e-01 -5.00224531e-01 -6.52949452e-01 1.47633231e+00 7.67728627e-01 -5.04289754e-02 5.83414614e-01 4.83736098e-01 5.52498102e-02 -2.91808009e-01 -1.50461063e-01 -1.85858697e-01 4.44693625e-01 3.27768862e-01 4.74295199e-01 -1.00611731e-01 -6.33762702e-02 3.18440467e-01 -7.62267858e-02 -4.48175162e-01 3.72998148e-01 6.72729313e-01 -6.09658301e-01 -4.62469101e-01 -8.39977562e-01 7.21479654e-01 -4.97225821e-01 -1.84432834e-01 -4.16979194e-01 1.01857328e+00 -1.40901119e-01 7.66555786e-01 1.80367753e-01 -1.02524847e-01 4.45646822e-01 -2.27873921e-01 -6.04417594e-03 -4.24021214e-01 -7.73473740e-01 6.22434616e-01 -3.53613377e-01 -2.44169712e-01 1.93484172e-01 -8.67071986e-01 -1.63597250e+00 -1.40301198e-01 -9.94984806e-01 -2.24138603e-01 7.83014417e-01 8.71181905e-01 8.51932354e-03 5.31581879e-01 6.48547590e-01 -9.21791553e-01 -4.05174017e-01 -1.15269232e+00 -5.50014377e-01 2.64169157e-01 1.36102140e-01 -5.10195196e-01 -5.71266234e-01 -1.64271221e-01]
[12.08687686920166, 2.291288375854492]
920aa896-3e12-4f2a-a770-bf2bcf7d9479
is-artificial-data-useful-for-biomedical
1907.01055
null
https://arxiv.org/abs/1907.01055v2
https://arxiv.org/pdf/1907.01055v2.pdf
Is artificial data useful for biomedical Natural Language Processing algorithms?
A major obstacle to the development of Natural Language Processing (NLP) methods in the biomedical domain is data accessibility. This problem can be addressed by generating medical data artificially. Most previous studies have focused on the generation of short clinical text, and evaluation of the data utility has been limited. We propose a generic methodology to guide the generation of clinical text with key phrases. We use the artificial data as additional training data in two key biomedical NLP tasks: text classification and temporal relation extraction. We show that artificially generated training data used in conjunction with real training data can lead to performance boosts for data-greedy neural network algorithms. We also demonstrate the usefulness of the generated data for NLP setups where it fully replaces real training data.
['Lucia Specia', 'Julia Ive', 'Zixu Wang', 'Sumithra Velupillai']
2019-07-01
is-artificial-data-useful-for-biomedical-1
https://aclanthology.org/W19-5026
https://aclanthology.org/W19-5026.pdf
ws-2019-8
['temporal-relation-extraction']
['natural-language-processing']
[ 7.50730276e-01 7.91948974e-01 -1.57058388e-01 -4.95978236e-01 -8.90634120e-01 -2.94872165e-01 5.25361598e-01 8.94607008e-01 -7.81940222e-01 1.23683178e+00 3.96526128e-01 -6.07472539e-01 -2.27241874e-01 -6.92853987e-01 -3.98002356e-01 -4.82444048e-01 -1.58828378e-01 8.64729106e-01 -1.87498495e-01 -1.35539681e-01 1.12014217e-02 4.86759514e-01 -1.08160853e+00 8.23153198e-01 8.00471187e-01 5.00788689e-01 2.44615581e-02 7.19424486e-01 -3.06786209e-01 6.30361557e-01 -8.82961512e-01 -6.85575455e-02 8.20902511e-02 -5.00298083e-01 -9.38674033e-01 -2.67333627e-01 -3.53704959e-01 3.97086740e-02 1.33382753e-01 6.17780685e-01 8.72956574e-01 -2.01254919e-01 5.78172684e-01 -1.05797625e+00 -1.21594191e-01 9.44516778e-01 7.49872327e-02 1.23608097e-01 5.96091211e-01 3.74745205e-03 6.31419420e-01 -7.17650414e-01 1.02958667e+00 9.60576296e-01 6.70237720e-01 8.54419589e-01 -1.23681498e+00 -2.84825772e-01 -3.83293927e-01 -1.98551893e-01 -1.26597297e+00 -4.17419404e-01 5.14589846e-01 -4.05247271e-01 1.21416271e+00 4.36918527e-01 6.10002220e-01 1.23642111e+00 4.45386142e-01 7.53004014e-01 9.44232404e-01 -1.01366699e+00 3.39566082e-01 3.78030598e-01 2.92189956e-01 5.80253541e-01 3.33306551e-01 2.04083011e-01 -4.23433959e-01 -4.32585865e-01 4.59356844e-01 -3.36439341e-01 -2.27568865e-01 3.67844552e-01 -1.37149465e+00 9.26014543e-01 5.59433550e-02 5.89080274e-01 -6.01659358e-01 -3.27989578e-01 5.95055163e-01 3.15087557e-01 6.11498654e-01 1.08346534e+00 -9.09638166e-01 5.43372780e-02 -1.17913985e+00 5.06825447e-01 1.03269410e+00 1.06320226e+00 -6.55296221e-02 -2.87134916e-01 -4.47865158e-01 8.55010390e-01 1.05190851e-01 1.03583969e-01 9.72523928e-01 -3.92922431e-01 4.88268971e-01 7.14708269e-01 6.91150203e-02 -8.19303513e-01 -1.03464854e+00 -2.35208180e-02 -7.31280625e-01 -2.77641207e-01 4.47880268e-01 -6.73675478e-01 -1.07422531e+00 1.38482261e+00 3.23877573e-01 -4.56840456e-01 5.52986264e-01 2.70508677e-01 1.11511660e+00 5.23358703e-01 1.82887465e-01 -7.19037175e-01 1.41430891e+00 -4.79403079e-01 -1.09647727e+00 -1.01741210e-01 1.21059418e+00 -5.89620292e-01 6.49261653e-01 4.33649778e-01 -1.13187110e+00 -1.76116362e-01 -7.65739501e-01 -1.46542996e-01 -6.93362117e-01 4.91583534e-02 6.36311591e-01 4.59481150e-01 -8.52908015e-01 7.00874090e-01 -8.12384427e-01 -4.79924560e-01 4.38486606e-01 6.84896350e-01 -4.37500924e-01 5.30181266e-02 -1.56782913e+00 9.54464912e-01 1.00687277e+00 -2.38086898e-02 -1.10971451e-01 -9.29932237e-01 -8.71360540e-01 -3.21344018e-01 1.88813612e-01 -9.63465929e-01 1.30133080e+00 -4.78130728e-01 -1.10133064e+00 9.20727432e-01 6.86291326e-03 -7.96500683e-01 6.26225948e-01 7.82049820e-02 -4.59647149e-01 2.40541652e-01 8.99473280e-02 9.73678172e-01 3.63815516e-01 -8.07374060e-01 -5.56502461e-01 -2.37040117e-01 -5.25972664e-01 -7.99167976e-02 -2.54776865e-01 1.42738447e-01 -2.12238699e-01 -9.51577604e-01 -2.70561278e-01 -8.40821743e-01 -7.42604017e-01 -2.38754943e-01 -7.37339735e-01 -2.24985465e-01 3.03169668e-01 -7.40695715e-01 1.40505981e+00 -1.75499773e+00 -2.81746477e-01 3.62557471e-01 1.60226338e-02 3.13800186e-01 -3.49621028e-02 6.21954262e-01 -5.19353271e-01 4.26633626e-01 -3.38189960e-01 5.95715158e-02 -4.06949639e-01 4.55844909e-01 -1.79546833e-01 -3.87842767e-02 4.45415109e-01 1.08738565e+00 -9.73442972e-01 -8.77735317e-01 -1.01334371e-01 3.08231562e-01 -5.23171008e-01 1.66807413e-01 -4.26262051e-01 5.37762642e-01 -6.17115676e-01 4.30981696e-01 1.55231401e-01 -1.27189502e-01 2.73237765e-01 -1.04811698e-01 1.73707783e-01 4.95241970e-01 -7.67512083e-01 1.50454283e+00 -3.02272499e-01 3.79968584e-01 -4.63478178e-01 -9.04200912e-01 6.47615075e-01 8.49856257e-01 9.09261703e-01 -5.62499881e-01 2.12621808e-01 1.42341172e-02 9.82629508e-02 -9.84258056e-01 3.44805360e-01 -4.57584560e-01 -1.28010929e-01 4.68753189e-01 -1.23019302e-02 -2.15666950e-01 6.41294003e-01 1.22120425e-01 1.22775948e+00 3.43246236e-02 8.08973074e-01 -2.60467380e-01 3.78336340e-01 6.39711320e-01 4.78784084e-01 7.69533992e-01 1.79903880e-01 6.43133700e-01 6.65729880e-01 -4.60777909e-01 -1.11396635e+00 -3.10324967e-01 -5.83767295e-01 5.55927873e-01 -7.72580624e-01 -6.62800670e-01 -8.62686872e-01 -9.22598839e-01 -1.38645753e-01 9.94721293e-01 -7.55241930e-01 -7.09759891e-02 -7.35435307e-01 -1.38336182e+00 7.40029037e-01 3.75521719e-01 -1.45866781e-01 -1.51967621e+00 -7.83676803e-01 6.42016172e-01 -2.18366176e-01 -1.38987374e+00 -2.13457067e-02 4.77849573e-01 -1.15386343e+00 -1.15018129e+00 -5.99165082e-01 -6.32560909e-01 1.07075608e+00 -6.53773725e-01 1.05067801e+00 1.08455168e-03 -6.91031635e-01 3.16509642e-02 -5.66354454e-01 -1.02303994e+00 -1.18860459e+00 1.91229463e-01 -4.55743112e-02 -4.97436941e-01 5.50322354e-01 -2.39785925e-01 -4.26882714e-01 -8.80954638e-02 -1.25636125e+00 4.37691867e-01 6.04635358e-01 1.08744204e+00 4.30642247e-01 7.93807656e-02 7.66939580e-01 -1.50378382e+00 1.20739412e+00 -4.63513047e-01 -1.33467421e-01 1.62211880e-02 -7.94279277e-01 5.35217464e-01 5.87814093e-01 -4.06146705e-01 -9.14895475e-01 3.04824769e-01 -5.62489212e-01 2.16375127e-01 -5.01897812e-01 1.05050302e+00 2.22381100e-01 3.36088538e-01 1.16132367e+00 -8.27665105e-02 1.01855122e-01 -3.73875111e-01 2.89993763e-01 7.81187832e-01 2.14225292e-01 -4.33525532e-01 1.71344966e-01 1.68694749e-01 1.24362536e-01 -8.51118803e-01 -5.59836686e-01 -2.78301388e-01 -7.12546051e-01 2.81360179e-01 7.04855561e-01 -4.32527781e-01 -3.32779080e-01 -2.83045452e-02 -1.14937866e+00 -3.39095831e-01 -6.52911663e-01 5.72006702e-01 -5.43373168e-01 1.71920642e-01 -5.12467742e-01 -5.12544990e-01 -7.80257285e-01 -8.64499271e-01 1.16961670e+00 -3.84842604e-01 -8.62032175e-01 -1.04177594e+00 1.20365374e-01 1.01280212e-01 -5.75563461e-02 6.46717191e-01 1.35877800e+00 -1.25107288e+00 1.79079294e-01 -5.80166757e-01 7.45289549e-02 -3.65299955e-02 3.47466946e-01 -8.24216604e-02 -8.40364575e-01 1.39171518e-02 -6.67916462e-02 -2.37138703e-01 5.34651160e-01 4.06746924e-01 1.03241014e+00 -7.29351103e-01 -8.05608213e-01 6.70468509e-02 1.09220326e+00 4.47726250e-01 4.22360778e-01 1.32178012e-02 3.71438771e-01 1.05897617e+00 6.87193692e-01 4.07220930e-01 -1.30059972e-01 4.66665387e-01 -3.54296744e-01 -2.92788208e-01 1.94403484e-01 -1.86084732e-02 -1.14222609e-01 5.81449926e-01 1.34815261e-01 -3.08240294e-01 -1.40123785e+00 7.03572094e-01 -1.80855501e+00 -5.07301152e-01 -1.70660421e-01 1.72808385e+00 1.56504214e+00 3.20400119e-01 -7.20124692e-03 5.09999931e-01 2.52003938e-01 -5.50585985e-01 -1.44982964e-01 -3.23134571e-01 2.77446657e-01 4.95891482e-01 3.52404296e-01 4.16447997e-01 -9.10351872e-01 6.62208438e-01 7.26019144e+00 5.93088806e-01 -1.04037869e+00 -1.67939276e-01 7.01776266e-01 -2.55620003e-01 -5.39781339e-02 -4.54143435e-01 -8.23132396e-01 3.91518980e-01 1.45922482e+00 -3.79151523e-01 -3.62222314e-01 5.58587015e-01 8.68652523e-01 -1.23514980e-01 -1.56913662e+00 7.34461546e-01 -2.06042811e-01 -1.53451848e+00 3.09971422e-01 -2.25331150e-02 4.89455730e-01 -2.69237638e-01 -3.95106643e-01 7.86355585e-02 2.74884313e-01 -1.11454666e+00 8.52903947e-02 4.25883442e-01 8.60456407e-01 -5.62885821e-01 1.00483179e+00 4.37096268e-01 -4.57902849e-01 2.43063532e-02 -1.27109429e-02 2.25957602e-01 2.91812509e-01 9.85197425e-01 -1.90259910e+00 7.65354514e-01 2.27761447e-01 4.21885729e-01 -6.28047466e-01 8.97863388e-01 -7.34082013e-02 5.94213784e-01 -5.38561046e-01 -2.26387128e-01 1.71332493e-01 2.76613027e-01 3.55355948e-01 1.59297752e+00 1.51017666e-01 2.26175293e-01 8.61489102e-02 5.55233359e-01 8.76018852e-02 5.33684611e-01 -9.26162839e-01 -4.27025735e-01 8.57763588e-02 1.02082384e+00 -8.72061431e-01 -5.41476846e-01 -8.16813111e-03 6.67839885e-01 -5.18090241e-02 2.29031354e-01 -3.13381106e-01 -3.72657686e-01 -9.30663794e-02 2.08040819e-01 -2.62981743e-01 3.14394295e-01 -4.63415056e-01 -7.81594932e-01 -4.44758572e-02 -1.10867190e+00 8.16015780e-01 -7.30909526e-01 -1.20373452e+00 8.83428574e-01 2.95031101e-01 -1.01930428e+00 -8.93737376e-01 -7.48650253e-01 -1.19313948e-01 8.98758233e-01 -8.99638772e-01 -9.41636860e-01 1.00519627e-01 3.50440115e-01 5.46152532e-01 -1.63608730e-01 1.39130259e+00 2.64003724e-01 -3.35203737e-01 4.87721175e-01 -1.97617188e-01 3.09647053e-01 6.65760219e-01 -1.32926762e+00 3.18709075e-01 3.70874226e-01 -2.71885004e-02 8.47662926e-01 8.45078826e-01 -8.95048022e-01 -8.10817301e-01 -1.22552896e+00 1.43680596e+00 -5.21838009e-01 4.77225393e-01 -3.08564663e-01 -8.59844565e-01 4.91073102e-01 8.49738643e-02 -2.44878262e-01 1.05461931e+00 -9.67322886e-02 3.75342399e-01 2.40413457e-01 -1.40031850e+00 6.14805460e-01 4.97834593e-01 -2.08438158e-01 -8.38283777e-01 8.80520582e-01 7.58169472e-01 -3.96790743e-01 -1.08523548e+00 5.85609496e-01 2.55114138e-01 -7.93429092e-02 7.55161166e-01 -1.15056169e+00 6.32221997e-01 5.68350479e-02 4.60689157e-01 -1.41023576e+00 2.27921456e-01 -7.11992502e-01 1.38277873e-01 8.41282070e-01 1.09686399e+00 -3.69946331e-01 8.32775116e-01 1.03487682e+00 1.49653167e-01 -9.08724189e-01 -6.65963888e-01 -2.01912284e-01 1.62504703e-01 -5.17578363e-01 2.98288912e-01 1.12747741e+00 7.05783129e-01 5.55376351e-01 -1.20961577e-01 -1.77347913e-01 5.20364009e-02 -2.17070460e-01 2.90395051e-01 -1.08092546e+00 -1.24177434e-01 -1.97220623e-01 -2.64041722e-01 -3.00924063e-01 -2.11809710e-01 -9.65604961e-01 1.84226945e-01 -1.75285947e+00 -6.40160441e-02 -4.58048165e-01 -4.83732037e-02 8.49122524e-01 -3.00151289e-01 -8.19526613e-02 -2.10039631e-01 -1.86027780e-01 1.54204369e-01 -1.21278673e-01 1.07525337e+00 -3.33475508e-02 -6.35855913e-01 8.20309669e-03 -5.93640625e-01 5.89718342e-01 9.17122543e-01 -8.94676685e-01 -4.99986380e-01 8.34558606e-02 4.16215867e-01 3.03371251e-01 -4.67227623e-02 -5.73301256e-01 1.66366473e-01 -4.10847813e-02 3.29947293e-01 -6.84019268e-01 -1.80642769e-01 -8.30703139e-01 7.36315101e-02 6.70350015e-01 -7.72659123e-01 1.30288944e-01 5.32714963e-01 3.61526489e-01 -1.72645167e-01 -5.03326297e-01 5.00682116e-01 -4.28075194e-01 -1.11763306e-01 -2.84643583e-02 -6.20863140e-01 1.30688697e-02 9.64865565e-01 -6.21487154e-03 4.55873422e-02 -5.92126162e-04 -1.23760521e+00 2.45332494e-01 -2.70006984e-01 3.31638277e-01 6.26960099e-01 -9.96048093e-01 -9.55308735e-01 2.07140237e-01 1.88494429e-01 1.83096558e-01 -1.69621542e-01 7.93876708e-01 -8.02108705e-01 8.13871801e-01 -2.08486207e-02 -3.40530902e-01 -1.57545459e+00 9.84352648e-01 1.93938702e-01 -7.27314711e-01 -7.86811888e-01 3.68788481e-01 -1.99295193e-01 -3.45517457e-01 2.48415440e-01 -6.52460158e-01 -5.33628404e-01 3.02339673e-01 6.73598349e-01 -1.91769913e-01 3.91741544e-01 6.39030859e-02 -2.61423320e-01 -1.84504688e-01 -4.47232187e-01 -4.30531740e-01 1.51077962e+00 4.54050004e-01 -4.70447168e-02 4.52295303e-01 9.68134522e-01 -2.32185572e-01 -1.87035501e-01 -1.20948404e-01 4.68935549e-01 1.75366476e-01 -1.72012001e-01 -1.13238811e+00 -4.99179929e-01 6.59100592e-01 3.63524467e-01 2.30540276e-01 1.03670907e+00 -1.27542794e-01 4.10597056e-01 7.56436765e-01 1.52756795e-01 -1.13627493e+00 -2.59758860e-01 1.91980526e-01 9.17688131e-01 -1.05921805e+00 2.42113099e-01 -5.41568637e-01 -5.85331142e-01 1.21390653e+00 1.13415867e-01 3.93657148e-01 7.19241560e-01 6.12488508e-01 2.41067842e-01 -3.90944541e-01 -8.47430289e-01 6.07883409e-02 1.52989000e-01 5.95276594e-01 7.17956841e-01 -2.31898725e-01 -8.67565870e-01 6.30957484e-01 -2.91586459e-01 6.74728811e-01 5.75001836e-01 1.29372466e+00 5.19744456e-02 -1.50740087e+00 -3.26091617e-01 8.43571484e-01 -9.08391833e-01 -5.96162438e-01 -5.24736524e-01 8.49025965e-01 1.66221052e-01 8.66994977e-01 -3.30990791e-01 9.81005877e-02 3.34137619e-01 4.64746654e-01 2.68681258e-01 -9.66026068e-01 -7.92297423e-01 1.13790214e-01 7.48246849e-01 -2.36522034e-01 -4.99838084e-01 -5.17072737e-01 -1.52261293e+00 2.20245048e-01 -2.09579155e-01 5.62012255e-01 5.66218019e-01 1.10247231e+00 4.68104124e-01 9.09654260e-01 8.74155834e-02 -2.37273529e-01 -2.19550624e-01 -1.21808600e+00 -2.08155766e-01 5.20049393e-01 2.80737728e-01 -1.06516428e-01 1.30694121e-01 7.09184289e-01]
[8.508461952209473, 8.709741592407227]
cdd5c42e-a538-4e2e-b65e-7c3dae3636a3
zero-shot-aspect-based-scientific-document-1
null
null
https://aclanthology.org/2022.bionlp-1.5
https://aclanthology.org/2022.bionlp-1.5.pdf
Zero-Shot Aspect-Based Scientific Document Summarization using Self-Supervised Pre-training
We study the zero-shot setting for the aspect-based scientific document summarization task. Summarizing scientific documents with respect to an aspect can remarkably improve document assistance systems and readers experience. However, existing large-scale datasets contain a limited variety of aspects, causing summarization models to over-fit to a small set of aspects and a specific domain. We establish baseline results in zero-shot performance (over unseen aspects and the presence of domain shift), paraphrasing, leave-one-out, and limited supervised samples experimental setups. We propose a self-supervised pre-training approach to enhance the zero-shot performance. We leverage the PubMed structured abstracts to create a biomedical aspect-based summarization dataset. Experimental results on the PubMed and FacetSum aspect-based datasets show promising performance when the model is pre-trained using unlabelled in-domain data.
['Salah Ait Mokhtar', 'Benoit Favre', 'Vassilina Nikoulina', 'Amir Soleimani']
null
null
null
null
bionlp-acl-2022-5
['scientific-article-summarization']
['natural-language-processing']
[ 5.41358650e-01 5.31193078e-01 -7.02492893e-01 -3.49916816e-01 -1.48283529e+00 -4.23757672e-01 6.08061671e-01 7.48599112e-01 -3.31686497e-01 1.04064727e+00 9.53733623e-01 1.37723060e-02 -1.24912836e-01 -4.56855863e-01 -7.60057986e-01 -4.33914840e-01 2.94192195e-01 8.08297575e-01 2.31868565e-01 -4.23605777e-02 5.59329093e-01 -5.82229234e-02 -1.27372658e+00 6.09489143e-01 1.28861403e+00 1.99714094e-01 1.78316515e-02 8.91713202e-01 -3.87167245e-01 4.12433922e-01 -1.13695073e+00 -3.27861816e-01 -2.38331139e-01 -7.14578927e-01 -8.78520429e-01 5.14423959e-02 5.25160074e-01 1.12500191e-01 -7.50575587e-02 8.48887205e-01 1.07240367e+00 1.98975086e-01 9.35372293e-01 -7.43113458e-01 -6.27508581e-01 7.37818658e-01 -6.71541750e-01 2.67425388e-01 5.59629023e-01 -5.05847344e-03 1.04746962e+00 -5.18847525e-01 1.34170771e+00 1.14457309e+00 6.66759431e-01 7.08101511e-01 -1.33637547e+00 -2.58402079e-01 -8.82269442e-03 5.04010282e-02 -8.21664572e-01 -6.73222005e-01 4.16132241e-01 -1.16252512e-01 1.26747859e+00 3.93501371e-01 5.19109786e-01 1.35198784e+00 4.25961882e-01 8.57876539e-01 5.65205574e-01 -2.68684447e-01 6.19512618e-01 1.32734664e-02 9.23311591e-01 2.71189660e-01 8.14719915e-01 -7.59204507e-01 -6.65794730e-01 -6.97109282e-01 -1.12461112e-01 -1.39741942e-01 -4.09162968e-01 -1.08340137e-01 -1.33136868e+00 6.75244570e-01 -6.04159459e-02 1.52530491e-01 -2.98096329e-01 -4.34015572e-01 7.93202460e-01 2.72146821e-01 8.49212289e-01 1.14412153e+00 -5.79906046e-01 -1.23324439e-01 -1.43953907e+00 4.66166854e-01 1.17457759e+00 1.29973948e+00 4.27358747e-01 -4.49963689e-01 -1.08356440e+00 1.07026756e+00 -6.05901659e-01 2.60065228e-01 8.06871057e-01 -8.91590536e-01 4.06593829e-01 6.34343565e-01 -9.86946896e-02 -3.91406983e-01 -5.88030100e-01 -5.84143460e-01 -8.31151426e-01 -5.81868112e-01 -4.48032320e-02 -2.02354148e-01 -1.24960601e+00 1.36417305e+00 2.89831281e-01 4.50098999e-02 4.73096013e-01 4.92089778e-01 1.67932093e+00 6.24690592e-01 1.31877407e-01 -5.49404085e-01 1.74342883e+00 -1.08794594e+00 -1.13925970e+00 -1.15308352e-01 8.86298180e-01 -6.00673974e-01 1.02264774e+00 2.41120964e-01 -1.20918894e+00 -1.31949946e-01 -9.97837782e-01 -5.05238593e-01 -3.96927148e-01 5.45953251e-02 3.89574319e-01 1.86665833e-01 -8.70504558e-01 7.00204313e-01 -6.19300783e-01 -7.33964860e-01 7.33153522e-01 3.45513597e-02 -4.58365798e-01 -3.12170058e-01 -8.79640222e-01 6.54732823e-01 5.50964475e-01 -9.27574515e-01 -5.27534306e-01 -1.49737406e+00 -7.45835662e-01 3.84571940e-01 5.67854702e-01 -1.32429266e+00 1.20967293e+00 -1.29753783e-01 -9.09860194e-01 9.35335338e-01 -6.00977182e-01 -4.76659864e-01 2.66460210e-01 -1.37226641e-01 -1.36070669e-01 5.17211020e-01 6.54863536e-01 5.01018345e-01 4.20715213e-01 -9.92211580e-01 -3.05166364e-01 -4.86356467e-01 -3.32138330e-01 2.81407505e-01 -2.15738550e-01 -1.07735805e-01 -5.90430498e-01 -6.47984207e-01 -2.88815290e-01 -5.02647400e-01 -3.57594222e-01 -4.43925947e-01 -8.92605543e-01 -2.99601108e-01 4.80833977e-01 -5.66726267e-01 1.31821692e+00 -1.68533969e+00 7.62477294e-02 -4.96550083e-01 2.96459675e-01 3.22016627e-01 -3.39178681e-01 4.89482969e-01 -1.62720740e-01 2.95366317e-01 -5.42832315e-01 -3.96917701e-01 -4.27392006e-01 1.41097173e-01 -7.23096803e-02 9.14174765e-02 2.21249402e-01 1.04406333e+00 -1.24234402e+00 -8.69865060e-01 -5.25828421e-01 -8.08979198e-02 -6.88360274e-01 7.70223811e-02 -4.22020406e-01 1.26372293e-01 -6.18373394e-01 7.63128042e-01 6.28315389e-01 -4.33741063e-01 -1.31277680e-01 -1.69345245e-01 2.06057161e-01 3.26973855e-01 -4.99016583e-01 2.17005777e+00 -3.44332531e-02 4.01427716e-01 -3.59817743e-01 -1.03691590e+00 5.71579933e-01 4.66265708e-01 5.70249438e-01 -2.99350619e-01 -1.25315607e-01 1.40161693e-01 -1.36612505e-01 -7.02510118e-01 8.81851256e-01 -2.00181141e-01 -2.11858273e-01 5.71146905e-01 6.26558363e-01 -1.78005397e-01 6.40329123e-01 8.50828707e-01 1.45528483e+00 -2.62697130e-01 9.54101562e-01 -4.30360883e-01 8.69642496e-02 5.71039975e-01 5.83870947e-01 1.15900612e+00 -1.54675776e-02 1.12037361e+00 1.04709041e+00 5.42442426e-02 -1.03069448e+00 -5.99678099e-01 -3.30461770e-01 1.02013493e+00 -1.80102527e-01 -7.26944566e-01 -7.53692448e-01 -8.73992562e-01 -2.48184633e-02 1.27583396e+00 -7.06431627e-01 -5.18424213e-01 2.26228815e-02 -9.53529596e-01 6.30796432e-01 3.19930583e-01 4.50326223e-03 -8.00388157e-01 -4.13391292e-01 2.28309020e-01 -2.58968323e-01 -1.01654708e+00 -6.35369956e-01 3.20423931e-01 -9.20376778e-01 -1.12341356e+00 -1.25361478e+00 -6.63006723e-01 6.62076056e-01 4.08617020e-01 1.30135429e+00 -4.29864526e-01 -3.96029472e-01 4.08817977e-01 -3.19387197e-01 -9.17761385e-01 -4.39113170e-01 5.29013216e-01 -2.45195046e-01 -7.31052816e-01 4.85017091e-01 -3.68984044e-01 -6.25548720e-01 -3.59700888e-01 -9.13035333e-01 2.51229350e-02 8.31400871e-01 1.03247440e+00 6.48734093e-01 -6.26812935e-01 9.44929302e-01 -1.59010017e+00 1.02591169e+00 -6.85468554e-01 3.49297762e-01 6.11930490e-01 -6.25456154e-01 2.48816118e-01 4.15665179e-01 -4.50680137e-01 -1.17972612e+00 -4.54110503e-01 2.31168494e-02 -1.64776742e-01 -1.18572474e-01 7.61115849e-01 -1.19953826e-01 5.28628111e-01 1.05529928e+00 3.46013427e-01 2.97422223e-02 -5.67095816e-01 4.65066403e-01 8.28629255e-01 6.32891059e-01 -4.09689218e-01 8.00947249e-02 3.58527005e-01 -8.85198563e-02 -1.04529846e+00 -1.32514620e+00 -1.02728426e+00 -4.26903456e-01 3.51768374e-01 7.16113985e-01 -1.00582874e+00 -7.82250464e-02 -1.19306996e-01 -1.37070966e+00 2.82897651e-01 -7.90812731e-01 2.05476239e-01 -4.76692885e-01 6.46951079e-01 -3.71546656e-01 -3.39795440e-01 -1.09102201e+00 -9.11259472e-01 1.54119313e+00 3.64246100e-01 -6.79500043e-01 -7.53305972e-01 4.07021880e-01 3.07559878e-01 2.52393028e-03 3.96247506e-01 1.27987468e+00 -1.52075958e+00 1.04299761e-01 -3.71408463e-01 -5.18755428e-02 -1.13105297e-01 1.94577307e-01 -3.81546885e-01 -9.16085839e-01 -2.88572982e-02 -1.27826273e-01 -3.89391214e-01 1.43552768e+00 5.80580771e-01 1.04696524e+00 -4.72187251e-01 -6.48228586e-01 4.15750057e-01 9.78203595e-01 -1.11101441e-01 4.40497398e-01 2.29094833e-01 5.26221275e-01 5.52840471e-01 6.05560899e-01 4.97320175e-01 1.88329130e-01 1.52903035e-01 -4.77469712e-01 -7.90403113e-02 -3.45654488e-01 -1.43531650e-01 -1.25779286e-01 8.25293899e-01 1.69391736e-01 -4.86868083e-01 -7.29819894e-01 8.32393825e-01 -1.87947667e+00 -1.06228817e+00 2.05920767e-02 2.05061483e+00 1.44985569e+00 -2.92582642e-02 9.90380794e-02 -3.26073259e-01 4.94729221e-01 2.13979855e-01 -7.98754871e-01 -4.98465538e-01 -3.11198324e-01 2.65587300e-01 3.53225619e-01 1.49783149e-01 -8.23487699e-01 9.34954107e-01 6.61694050e+00 1.08924341e+00 -6.73866868e-01 2.62682080e-01 6.34843051e-01 -4.15349096e-01 -5.78982115e-01 -9.63840708e-02 -9.04466093e-01 3.50590497e-01 1.09658897e+00 -1.01830685e+00 -3.83324414e-01 8.83028030e-01 2.50735283e-01 -2.54353344e-01 -1.27757478e+00 6.19153976e-01 5.00188589e-01 -1.65845788e+00 6.85800910e-01 -9.73939449e-02 9.86580133e-01 -7.72433775e-03 -4.60850209e-01 5.17389357e-01 1.54316351e-01 -7.30633318e-01 -2.35246103e-02 6.69930756e-01 9.48553443e-01 -5.10076940e-01 8.39241564e-01 4.48578060e-01 -2.65319735e-01 5.16287446e-01 -7.75234401e-01 5.34782469e-01 4.66760881e-02 9.92783189e-01 -9.72938538e-01 9.55683470e-01 4.15646911e-01 9.02110696e-01 -6.45633698e-01 1.26164019e+00 7.39381835e-02 5.89006186e-01 1.70179438e-02 -1.23387910e-01 -2.27945801e-02 1.21817878e-02 1.12319577e+00 1.53658712e+00 1.89581528e-01 2.66831845e-01 -2.36175824e-02 6.22421861e-01 -4.77167219e-01 2.35347942e-01 -6.24231339e-01 -2.59358436e-01 1.33552685e-01 1.24073994e+00 -6.64384067e-01 -9.97653782e-01 -2.96595156e-01 9.30647254e-01 2.13076919e-01 3.93245906e-01 -2.43863210e-01 -8.80115867e-01 4.22969162e-01 -8.42583925e-03 2.17933476e-01 4.22567368e-01 -6.69435859e-01 -1.54001033e+00 -2.58664727e-01 -8.73356283e-01 7.03612387e-01 -5.89779794e-01 -1.10048711e+00 3.45221013e-01 2.78037250e-01 -1.05702019e+00 -2.46043533e-01 -8.17758963e-02 -9.97967541e-01 5.60583115e-01 -1.49548101e+00 -7.70305097e-01 -1.44489184e-01 -3.97233404e-02 1.05424583e+00 -2.57215977e-01 9.06467974e-01 -2.99878865e-01 -6.01428270e-01 7.06004083e-01 4.87503648e-01 -4.45379347e-01 1.33286202e+00 -1.43037641e+00 3.43698859e-01 5.99408150e-01 -3.90629292e-01 9.87287879e-01 1.09196281e+00 -1.06284952e+00 -1.25534081e+00 -1.25469160e+00 1.18415225e+00 -5.59160054e-01 3.80862027e-01 -6.53022304e-02 -1.28112257e+00 4.20643508e-01 5.60117483e-01 -4.00031179e-01 1.21640038e+00 4.44776237e-01 -1.52794361e-01 3.68812829e-01 -1.20791411e+00 6.34214997e-01 1.10711598e+00 -1.79612026e-01 -1.37832916e+00 6.68493927e-01 1.01568902e+00 -3.00273150e-01 -9.37940538e-01 3.09810847e-01 3.96499544e-01 -3.79076213e-01 8.56463194e-01 -1.24808574e+00 9.84140038e-01 1.16522856e-01 3.82669955e-01 -1.65924537e+00 -2.79889107e-01 -6.90247595e-01 -2.54653454e-01 1.37595713e+00 5.60838401e-01 -2.16224328e-01 6.69732511e-01 5.60693204e-01 -4.28170115e-01 -7.60285914e-01 -7.33562410e-01 -5.99492669e-01 2.07628816e-01 1.83479533e-01 3.54972988e-01 8.25962424e-01 6.78394377e-01 1.06571805e+00 -5.73879592e-02 -4.84966457e-01 6.24758840e-01 3.07541162e-01 7.31232464e-01 -1.27266681e+00 -1.94415852e-01 -3.46990228e-01 -2.22184658e-01 -6.78258419e-01 2.42311135e-01 -1.14536870e+00 6.08041547e-02 -2.17807150e+00 1.15397346e+00 3.88551623e-01 -1.41530544e-01 4.93197531e-01 -9.97632086e-01 -2.58643419e-01 -3.25883389e-01 3.26608777e-01 -1.16089451e+00 7.11723864e-01 1.23407066e+00 -4.84331727e-01 -3.34915251e-01 -1.63658336e-02 -1.33535337e+00 3.54132563e-01 5.71452856e-01 -6.08973444e-01 -4.36860532e-01 -4.77945469e-02 -2.04475015e-01 4.24822159e-02 -4.34624404e-01 -7.62342632e-01 4.80647922e-01 5.09092696e-02 3.88712436e-01 -9.31703329e-01 -5.60985245e-02 6.50731847e-02 -3.85850400e-01 3.43867034e-01 -9.94328320e-01 -4.56959218e-01 3.66989523e-01 9.07255888e-01 3.29211690e-02 -4.43837464e-01 5.78302383e-01 -4.13601875e-01 -3.40803355e-01 7.11791217e-02 -3.71919990e-01 8.34820151e-01 7.48401284e-01 -1.04018740e-01 -7.56842554e-01 -3.38015527e-01 -4.61285502e-01 5.65506101e-01 4.26497281e-01 2.46720314e-01 4.08024907e-01 -8.38263690e-01 -8.74372065e-01 -2.41404772e-01 7.17008352e-01 1.76584944e-01 4.97242659e-01 7.65215814e-01 -1.46507397e-01 6.68867648e-01 -1.20735742e-01 -4.77495015e-01 -1.41131008e+00 6.56908095e-01 -4.40846175e-01 -6.23002231e-01 -7.84117460e-01 6.24285102e-01 3.21251005e-01 -5.41010916e-01 1.09441429e-01 -3.94129366e-01 -4.25599098e-01 4.41010118e-01 7.92952538e-01 4.79303658e-01 3.19302469e-01 -7.32432306e-02 -1.90032899e-01 2.40779832e-01 -6.88460171e-01 -3.69106270e-02 1.44766653e+00 1.78297713e-01 -1.61173027e-02 5.27274370e-01 1.40280652e+00 -1.67350806e-02 -4.56430703e-01 -3.74721497e-01 1.85499802e-01 6.36012331e-02 1.22670978e-01 -9.31308687e-01 -3.38799894e-01 5.85263848e-01 -1.48770019e-01 -2.64899850e-01 7.22034514e-01 2.75208533e-01 7.67841339e-01 6.84469819e-01 -2.08402097e-01 -1.16080940e+00 -5.40115237e-02 4.14236099e-01 8.62604678e-01 -1.28203058e+00 6.21784687e-01 -3.37054551e-01 -9.69086409e-01 8.85520220e-01 2.95541018e-01 2.26958454e-01 2.88346738e-01 3.29129510e-02 -2.19088569e-01 -4.28713799e-01 -1.12620127e+00 -1.79739773e-01 5.08662105e-01 6.90628648e-01 5.51849902e-01 -9.94268581e-02 -8.88209283e-01 1.07790756e+00 -2.37093121e-01 1.15364701e-01 8.27203929e-01 1.06696296e+00 -6.15481198e-01 -7.10739374e-01 -1.16108492e-01 1.23540926e+00 -7.58382797e-01 -3.09368044e-01 -7.03601658e-01 4.40835178e-01 -5.15424967e-01 8.10429394e-01 -1.19922876e-01 1.86553478e-01 5.98243296e-01 2.91837364e-01 1.80992618e-01 -1.16015065e+00 -6.56757951e-01 2.39662185e-01 3.49565387e-01 -3.86253744e-01 -2.25171581e-01 -6.90012515e-01 -1.08367550e+00 2.26341598e-02 -1.06805131e-01 5.67408979e-01 2.87506223e-01 7.91314185e-01 1.04319227e+00 8.97276461e-01 6.70687854e-02 -6.30794704e-01 -6.37181222e-01 -1.25588429e+00 -4.93450850e-01 4.51041251e-01 3.64217252e-01 -3.08116943e-01 -2.40258738e-01 1.33564606e-01]
[12.353708267211914, 9.488912582397461]
b052dc3a-41a2-4a5d-951b-14b7c1be358c
manifold-contrastive-learning-with
2306.13544
null
https://arxiv.org/abs/2306.13544v1
https://arxiv.org/pdf/2306.13544v1.pdf
Manifold Contrastive Learning with Variational Lie Group Operators
Self-supervised learning of deep neural networks has become a prevalent paradigm for learning representations that transfer to a variety of downstream tasks. Similar to proposed models of the ventral stream of biological vision, it is observed that these networks lead to a separation of category manifolds in the representations of the penultimate layer. Although this observation matches the manifold hypothesis of representation learning, current self-supervised approaches are limited in their ability to explicitly model this manifold. Indeed, current approaches often only apply augmentations from a pre-specified set of "positive pairs" during learning. In this work, we propose a contrastive learning approach that directly models the latent manifold using Lie group operators parameterized by coefficients with a sparsity-promoting prior. A variational distribution over these coefficients provides a generative model of the manifold, with samples which provide feature augmentations applicable both during contrastive training and downstream tasks. Additionally, learned coefficient distributions provide a quantification of which transformations are most likely at each point on the manifold while preserving identity. We demonstrate benefits in self-supervised benchmarks for image datasets, as well as a downstream semi-supervised task. In the former case, we demonstrate that the proposed methods can effectively apply manifold feature augmentations and improve learning both with and without a projection head. In the latter case, we demonstrate that feature augmentations sampled from learned Lie group operators can improve classification performance when using few labels.
['Christopher J. Rozell', 'Kyle A. Johnsen', 'Alec Helbling', 'Kion Fallah']
2023-06-23
null
null
null
null
['contrastive-learning', 'self-supervised-learning', 'contrastive-learning']
['computer-vision', 'computer-vision', 'methodology']
[ 3.49590242e-01 3.06822240e-01 -4.07642543e-01 -4.09846663e-01 -3.96997094e-01 -6.38848186e-01 1.10175383e+00 2.05106921e-02 -1.88331187e-01 4.21651423e-01 2.70592928e-01 -3.30702849e-02 -1.85240239e-01 -7.05061197e-01 -9.93339181e-01 -8.14972818e-01 -6.83416575e-02 3.26465786e-01 -3.00279349e-01 -2.48300165e-01 1.31923646e-01 5.52046299e-01 -1.55185378e+00 2.88560092e-01 7.53782332e-01 9.11715508e-01 -5.04390709e-02 1.67425379e-01 -2.42481783e-01 4.65049863e-01 -1.09956995e-01 -7.20579773e-02 6.12854302e-01 -4.06442016e-01 -7.89172709e-01 4.67093855e-01 8.48465860e-01 1.92026561e-03 -4.05937195e-01 1.04742384e+00 -1.01086132e-01 2.51828969e-01 1.34197640e+00 -1.40269315e+00 -7.82827914e-01 4.59413230e-01 -5.27373612e-01 -2.19667293e-02 -1.18406020e-01 -7.90962726e-02 1.37543678e+00 -1.26540828e+00 6.91291749e-01 1.08509314e+00 5.54933012e-01 6.53357327e-01 -1.72507930e+00 -4.46472466e-01 2.04808027e-01 1.80019103e-02 -1.20372546e+00 -4.99649376e-01 1.03215981e+00 -7.96020508e-01 4.83516186e-01 -2.69195456e-02 5.52984953e-01 9.90369141e-01 1.54526439e-02 7.84992576e-01 1.13580763e+00 -4.04545307e-01 2.58506000e-01 2.74899691e-01 3.38784218e-01 8.10337782e-01 -2.36267932e-02 -2.78661177e-02 -7.58770525e-01 -1.12752564e-01 1.02933681e+00 3.94766033e-01 -2.47827441e-01 -1.12234318e+00 -1.31485510e+00 1.04854667e+00 7.22726047e-01 2.20284849e-01 -2.65427381e-01 1.06530003e-01 1.93262473e-01 3.76420975e-01 5.69105208e-01 3.57706428e-01 -1.73571870e-01 4.09703612e-01 -9.10807312e-01 -2.77806576e-02 7.07181931e-01 9.92973685e-01 1.24902451e+00 1.11242168e-01 -1.78106084e-01 7.36862659e-01 5.29862821e-01 1.07425325e-01 5.12802422e-01 -9.60288227e-01 2.75473922e-01 6.75377250e-01 -2.57591069e-01 -7.26490617e-01 -1.27744198e-01 -7.68824697e-01 -9.49998915e-01 4.08004045e-01 5.77970505e-01 1.52476266e-01 -9.41621065e-01 2.10054469e+00 1.25173256e-01 3.73801142e-01 1.03798829e-01 7.09276736e-01 3.74217927e-01 4.32751864e-01 -2.02382088e-01 -1.24781594e-01 1.04242682e+00 -8.84855270e-01 -5.55997849e-01 -1.42824939e-02 8.15588117e-01 -3.45476389e-01 1.08822405e+00 1.75677210e-01 -9.63986158e-01 -5.03192306e-01 -1.07975173e+00 -1.41837463e-01 -3.15158218e-01 9.75477397e-02 6.17541194e-01 3.23916823e-01 -1.26094413e+00 9.78176415e-01 -1.08116221e+00 -4.49550241e-01 7.88517296e-01 4.60327923e-01 -5.54620504e-01 -3.88686633e-04 -6.15287244e-01 7.51662076e-01 4.38089073e-02 -2.37503156e-01 -1.10222936e+00 -8.85560989e-01 -1.03411984e+00 8.02293867e-02 -1.40066117e-01 -8.45769107e-01 7.62351334e-01 -1.06515574e+00 -1.39102268e+00 1.01369834e+00 -2.58722097e-01 -6.84583902e-01 4.36316550e-01 -2.00756550e-01 1.22740731e-01 3.22496116e-01 1.82733178e-01 9.30346727e-01 1.32255328e+00 -1.35137308e+00 -2.83092171e-01 -5.05725265e-01 2.38630325e-02 2.71339834e-01 -9.06077206e-01 -4.43165779e-01 5.14630936e-02 -5.47672451e-01 4.41494972e-01 -9.49351430e-01 -1.43628195e-01 5.18600106e-01 -3.18707168e-01 -1.81748182e-01 1.00239789e+00 -3.47062141e-01 6.59965217e-01 -2.31648374e+00 5.66225767e-01 2.44612381e-01 3.51648301e-01 -4.25067283e-02 -2.44478419e-01 3.54632229e-01 -3.37148309e-01 -4.46090773e-02 -5.24151802e-01 -7.63942778e-01 2.45947000e-02 2.94610798e-01 -7.12401986e-01 7.92618036e-01 5.53515613e-01 8.22475135e-01 -9.00093734e-01 -9.98816043e-02 2.38025501e-01 6.30653620e-01 -7.19067693e-01 1.89076439e-01 -1.04815356e-01 7.85178006e-01 -1.03329755e-01 1.63171247e-01 4.19106752e-01 -3.77431631e-01 -1.26706570e-01 -2.76677608e-01 5.33469245e-02 3.58311534e-01 -1.00388503e+00 2.03897738e+00 -4.77948725e-01 5.65752864e-01 7.73537531e-02 -1.49655533e+00 9.21399295e-01 1.78397253e-01 5.46317101e-01 3.12207919e-02 7.91958123e-02 2.01438904e-01 9.31513123e-03 -1.27421305e-01 1.25784367e-01 -2.41101503e-01 3.79002959e-01 4.86902326e-01 7.12614536e-01 5.36137400e-03 7.93626681e-02 2.91244656e-01 9.40304518e-01 3.26645136e-01 1.52162746e-01 -5.44115067e-01 5.08791804e-01 -1.56455517e-01 2.57700890e-01 4.07849193e-01 4.95991781e-02 6.68146610e-01 3.83403182e-01 -1.78092569e-01 -9.69265163e-01 -1.32111216e+00 -4.17346537e-01 1.05959845e+00 -7.73362294e-02 -2.48858854e-01 -7.23521888e-01 -6.84243500e-01 -2.93003861e-02 5.24799466e-01 -7.52954960e-01 -5.10104418e-01 -2.28334501e-01 -4.52956527e-01 3.21388900e-01 4.79070693e-01 3.32329363e-01 -7.77256966e-01 -2.03830704e-01 -1.36238009e-01 2.58422166e-01 -1.04668498e+00 -3.85069370e-01 3.84501666e-01 -1.25565684e+00 -9.85423744e-01 -8.45019162e-01 -1.10800493e+00 1.16934514e+00 3.54135096e-01 6.47621393e-01 -1.17203422e-01 -7.47181401e-02 7.73073494e-01 -5.08423336e-02 -9.62510854e-02 -3.90300930e-01 -2.59495787e-02 2.99144298e-01 6.22425437e-01 1.85575321e-01 -9.48144913e-01 -3.82703930e-01 5.23654334e-02 -8.96265566e-01 4.12832908e-02 4.12250757e-01 1.17459249e+00 5.24673760e-01 -6.00745022e-01 5.81723094e-01 -7.90019929e-01 2.27010235e-01 -7.05299377e-01 -3.14108014e-01 -5.70692196e-02 -5.33165574e-01 4.98617202e-01 8.10508668e-01 -4.68195260e-01 -8.23077440e-01 2.97028869e-01 2.70255804e-01 -8.45226705e-01 -3.49734366e-01 4.77666318e-01 -1.19615249e-01 -2.60549843e-01 8.60786021e-01 3.28677386e-01 5.67038536e-01 -4.89378065e-01 6.92758620e-01 2.83225656e-01 5.19736350e-01 -6.30718529e-01 1.17341852e+00 9.49248135e-01 3.20561975e-01 -9.17431056e-01 -9.59682107e-01 -6.23027921e-01 -1.05890858e+00 5.81831597e-02 7.38406777e-01 -8.61605823e-01 -2.59566694e-01 2.27889135e-01 -9.12674665e-01 -3.90396953e-01 -7.28060484e-01 5.19058645e-01 -9.20695722e-01 3.89556468e-01 -5.71088016e-01 -5.33432126e-01 9.84161720e-02 -8.28350365e-01 9.86517310e-01 -7.24776015e-02 -8.46080631e-02 -1.42812383e+00 -8.38571787e-02 7.21143112e-02 1.61805198e-01 1.64123490e-01 9.50841904e-01 -7.13387549e-01 -5.40978312e-01 1.87224168e-02 -2.32846737e-02 6.17361426e-01 3.52745831e-01 -2.96996504e-01 -1.26794255e+00 -4.72454399e-01 8.28304291e-02 -3.00491661e-01 1.26926541e+00 2.77991474e-01 1.06179154e+00 -2.85700798e-01 -3.36267501e-01 9.59717572e-01 1.16737950e+00 -3.47169966e-01 2.19933704e-01 1.11963816e-01 9.21131611e-01 9.79529142e-01 1.98648006e-01 1.46559536e-01 1.21973924e-01 4.28599805e-01 6.01750255e-01 -1.27227575e-01 -5.25397062e-02 -4.53116030e-01 4.84391809e-01 6.15313053e-01 -9.83576700e-02 3.26870143e-01 -7.40170002e-01 6.47899389e-01 -1.87049472e+00 -7.25732803e-01 -6.01586327e-03 2.37905169e+00 7.44130552e-01 -1.14620559e-01 2.56322138e-02 2.80234575e-01 6.74035668e-01 1.08278826e-01 -6.43961132e-01 8.90931934e-02 -1.36097625e-01 2.85830677e-01 2.71268427e-01 4.66503263e-01 -1.27118444e+00 8.79818261e-01 5.90954542e+00 3.73449206e-01 -1.19755661e+00 1.29933029e-01 3.03296417e-01 1.47791520e-01 -4.03402954e-01 1.94797680e-01 -7.01404512e-01 4.08694483e-02 7.08257794e-01 -2.56114602e-01 4.02418882e-01 7.38366961e-01 -2.74808984e-02 6.31649613e-01 -1.75927532e+00 9.03664410e-01 1.73936784e-01 -1.52465045e+00 4.15156454e-01 4.37572420e-01 9.27971423e-01 -2.84287948e-02 5.01352310e-01 2.19151735e-01 2.39275917e-02 -1.03898954e+00 6.45249248e-01 4.89207715e-01 7.09323168e-01 -4.46795136e-01 1.44423142e-01 4.83986109e-01 -9.01370645e-01 -1.02790490e-01 -3.52558792e-01 -1.79712072e-01 -1.02424603e-02 3.14567685e-01 -8.82527113e-01 3.49179715e-01 2.99575746e-01 1.37035382e+00 -4.82964218e-01 8.46700788e-01 -2.70770192e-01 6.77473307e-01 -1.78908750e-01 3.44270080e-01 2.45607764e-01 -5.79545259e-01 7.14939058e-01 9.09170866e-01 2.62779504e-01 -2.87482083e-01 2.58481465e-02 1.35658216e+00 -2.01380745e-01 2.16907531e-01 -1.01562166e+00 3.75307314e-02 1.60970330e-01 1.40215218e+00 -5.08761823e-01 -2.41790548e-01 -4.25531298e-01 8.94165039e-01 6.01129115e-01 5.82685947e-01 -2.65895009e-01 -3.31188296e-03 8.65182400e-01 2.68872350e-01 2.87458986e-01 -5.05222261e-01 -3.81217629e-01 -1.37340355e+00 -1.64042283e-02 -4.51500833e-01 1.14516020e-01 -3.80738795e-01 -1.49352944e+00 2.75864094e-01 6.96623698e-02 -1.53431582e+00 -3.19590062e-01 -9.31156754e-01 -7.56083608e-01 8.00436497e-01 -1.55349493e+00 -1.42512918e+00 -2.59584397e-01 7.69783795e-01 3.41022849e-01 -5.27203739e-01 8.66470695e-01 7.95626193e-02 -2.37336636e-01 5.73080540e-01 2.24835709e-01 1.64935336e-01 6.34815693e-01 -1.46955633e+00 4.56293896e-02 7.57038355e-01 6.57622755e-01 1.04006708e+00 5.13870895e-01 -1.95839152e-01 -1.29597962e+00 -1.29725897e+00 2.80431509e-01 -3.34302604e-01 7.99874485e-01 -5.75673461e-01 -1.13752139e+00 9.17616963e-01 5.41474344e-03 4.87955958e-01 7.38954544e-01 1.42844290e-01 -6.05173111e-01 3.54904421e-02 -8.80365551e-01 6.08420908e-01 1.30865717e+00 -8.30260575e-01 -5.97603977e-01 4.75054473e-01 4.76301342e-01 -2.44609285e-02 -9.15394127e-01 1.78530008e-01 2.52569377e-01 -7.66292572e-01 8.57850373e-01 -9.66262281e-01 5.06858170e-01 -2.69049078e-01 -1.61450788e-01 -1.50816810e+00 -1.95351928e-01 -6.73577607e-01 -4.43660170e-01 1.21996510e+00 2.72653013e-01 -7.17788994e-01 8.91310453e-01 2.11184025e-01 -4.70322937e-01 -6.54471576e-01 -7.98960984e-01 -8.99344087e-01 4.95541662e-01 -1.58116773e-01 -8.15365463e-03 1.24006832e+00 2.67707855e-02 4.89182293e-01 -6.20062053e-02 1.08376034e-01 9.70026970e-01 -5.42572513e-02 6.45696223e-01 -1.47014344e+00 -2.22055301e-01 -4.80341196e-01 -7.87083089e-01 -1.31220186e+00 7.42990255e-01 -1.61875176e+00 -1.82439372e-01 -1.34106827e+00 1.42659202e-01 -4.24362004e-01 -2.77077794e-01 4.66853499e-01 2.06153497e-01 2.01233774e-01 9.85707790e-02 5.31950295e-01 -9.47174579e-02 8.88921201e-01 1.08654428e+00 -1.65667266e-01 -1.93733692e-01 -4.64582630e-03 -6.08402193e-01 9.25480783e-01 6.17194772e-01 -1.92845911e-01 -5.13608277e-01 -4.07173604e-01 -2.49797627e-02 -4.25165564e-01 7.62747049e-01 -8.82166386e-01 2.52944857e-01 8.18664059e-02 2.37220660e-01 -1.13655187e-01 4.89313215e-01 -7.09574401e-01 -3.21939826e-01 3.22847426e-01 -6.31490648e-01 -5.52835643e-01 -7.37337172e-02 8.70338440e-01 -2.72833437e-01 -2.31037691e-01 8.90320897e-01 4.35958169e-02 -4.73066688e-01 5.68470955e-01 -1.24494858e-01 -9.48740263e-03 9.47176933e-01 -1.95887521e-01 -3.85080501e-02 -3.68677109e-01 -1.05513775e+00 2.07297076e-02 5.57494164e-01 3.57826382e-01 5.70197761e-01 -1.53020108e+00 -5.04915774e-01 5.25014400e-01 2.46258691e-01 2.28652894e-01 -1.62421301e-01 9.24162686e-01 -1.06301241e-01 9.32242647e-02 -5.60127318e-01 -1.00412166e+00 -8.28076065e-01 4.52830106e-01 4.26448315e-01 4.95070294e-02 -5.72807968e-01 7.16655195e-01 6.82643294e-01 -5.67959547e-01 2.38833636e-01 -2.48754978e-01 -3.89371008e-01 1.10046044e-01 2.80400485e-01 2.19201848e-01 -9.92868096e-02 -9.45129395e-01 4.53593694e-02 5.50285697e-01 3.18888538e-02 -3.08867961e-01 1.47454405e+00 1.93388741e-02 -7.66500160e-02 8.28203142e-01 1.51343036e+00 -1.89027265e-01 -1.60281301e+00 -6.27573431e-01 1.21959448e-01 -1.87163591e-01 -2.49927640e-02 6.30311342e-03 -9.29428339e-01 1.30370653e+00 4.28905308e-01 1.72462255e-01 7.27185249e-01 1.91843167e-01 3.20426077e-01 4.81701165e-01 3.60579163e-01 -7.77542293e-01 3.52558732e-01 5.10909319e-01 1.09792197e+00 -1.28979599e+00 -2.56250203e-01 -5.85054636e-01 -3.71076465e-01 1.14495099e+00 4.59147125e-01 -6.95329547e-01 9.33213592e-01 -1.86456501e-01 -9.66802537e-02 -1.37960568e-01 -6.28425241e-01 -1.78036928e-01 6.17397606e-01 7.73350060e-01 4.67966378e-01 -1.39724016e-01 -4.49289791e-02 2.58092314e-01 -2.17577592e-01 -4.90651220e-01 4.67365384e-01 8.13875914e-01 -2.94918507e-01 -1.07145202e+00 -1.91709131e-01 6.09951794e-01 -1.46052524e-01 1.06034279e-02 -3.14601213e-01 5.52402854e-01 -5.42505644e-02 5.50896049e-01 3.33555549e-01 -2.32364163e-01 -3.65509428e-02 2.91757584e-01 5.82280159e-01 -1.26519084e+00 -1.91906497e-01 8.34102109e-02 -3.48818809e-01 -3.43080193e-01 -5.44534326e-01 -9.71513629e-01 -1.36976576e+00 3.66190523e-01 -1.58673182e-01 6.86717927e-02 6.46186411e-01 1.08063316e+00 4.21550244e-01 2.73354948e-01 7.58391917e-01 -1.16192102e+00 -1.02602899e+00 -1.05849838e+00 -8.12158585e-01 7.55523562e-01 5.23251772e-01 -1.00610411e+00 -6.39622390e-01 5.04620492e-01]
[9.02013111114502, 2.8636019229888916]
9586c75c-f899-4510-8918-075f9542fb5b
mask-detection-and-classification-in-thermal
2304.02931
null
https://arxiv.org/abs/2304.02931v1
https://arxiv.org/pdf/2304.02931v1.pdf
Mask Detection and Classification in Thermal Face Images
Face masks are recommended to reduce the transmission of many viruses, especially SARS-CoV-2. Therefore, the automatic detection of whether there is a mask on the face, what type of mask is worn, and how it is worn is an important research topic. In this work, the use of thermal imaging was considered to analyze the possibility of detecting (localizing) a mask on the face, as well as to check whether it is possible to classify the type of mask on the face. The previously proposed dataset of thermal images was extended and annotated with the description of a type of mask and a location of a mask within a face. Different deep learning models were adapted. The best model for face mask detection turned out to be the Yolov5 model in the "nano" version, reaching mAP higher than 97% and precision of about 95%. High accuracy was also obtained for mask type classification. The best results were obtained for the convolutional neural network model built on an autoencoder initially trained in the thermal image reconstruction problem. The pretrained encoder was used to train a classifier which achieved an accuracy of 91%.
['Jacek Rumiński', 'Natalia Kowalczyk']
2023-04-06
null
null
null
null
['type']
['speech']
[ 2.25258067e-01 1.07194647e-01 4.06336397e-01 -2.33675048e-01 -6.97040334e-02 -4.50722098e-01 5.25999308e-01 -1.52527571e-01 -3.76462787e-01 3.52603614e-01 -4.33664352e-01 -7.88794830e-02 2.67363131e-01 -5.87890744e-01 -6.72648847e-01 -1.06422496e+00 5.50321117e-03 5.80971658e-01 9.22465138e-03 -6.09695241e-02 -5.73225878e-02 9.41667378e-01 -1.71379662e+00 6.03519380e-01 2.97051847e-01 1.21386158e+00 6.22361362e-01 3.44070822e-01 2.77975231e-01 4.30779666e-01 -9.91096437e-01 -1.27176225e-01 2.02295855e-01 -2.36463860e-01 -3.69572669e-01 9.06931609e-02 4.87347066e-01 -4.89291519e-01 2.42773533e-01 8.88795555e-01 1.64918870e-01 -4.07238334e-01 8.85768831e-01 -7.48499572e-01 -8.20640251e-02 1.85021907e-01 -2.52689451e-01 3.55701089e-01 2.05797017e-01 8.30440745e-02 1.97173402e-01 -8.71577859e-01 7.77459562e-01 9.39726591e-01 5.50846815e-01 5.90512753e-01 -1.15298605e+00 -6.12338543e-01 -5.86157024e-01 4.14613217e-01 -1.63408995e+00 -3.48160118e-01 5.96758962e-01 -9.31559324e-01 7.49469280e-01 2.40839526e-01 7.05441296e-01 1.12115562e+00 4.81115580e-01 6.02154545e-02 1.65522385e+00 -4.76954728e-01 1.88581020e-01 8.73273969e-01 -2.07843259e-01 8.47706556e-01 2.76876688e-01 6.94481283e-02 7.45605379e-02 9.00578592e-03 4.87928331e-01 -1.44327700e-01 -7.78405666e-02 1.44029886e-01 -4.51784164e-01 7.34322071e-01 4.60370421e-01 1.06574273e+00 -6.69142783e-01 -2.54417866e-01 2.38768861e-01 -1.48101836e-01 6.86513424e-01 2.79931635e-01 -3.47007066e-01 3.62945557e-01 -1.00596380e+00 -2.21560165e-01 6.13376796e-01 7.32298791e-02 9.61936057e-01 8.90586376e-02 -1.46655425e-01 5.90453148e-01 1.89666972e-01 5.96320033e-01 3.78071249e-01 -3.03687155e-01 -1.10654317e-01 8.57592940e-01 2.80380435e-03 -9.56033707e-01 -4.62536007e-01 -3.67168635e-01 -7.42801189e-01 5.28040171e-01 2.27279425e-01 -4.21140313e-01 -1.13361371e+00 1.40190661e+00 4.98997808e-01 2.79791981e-01 -1.37016192e-01 7.32727945e-01 7.76012599e-01 8.17402422e-01 -4.34990823e-01 -2.33279109e-01 1.78756797e+00 -3.88171405e-01 -8.33257020e-01 -2.30957508e-01 4.94963557e-01 -7.59967506e-01 1.71381995e-01 2.79259801e-01 -2.11309537e-01 -7.24292219e-01 -1.19236541e+00 4.63230759e-01 -7.30937362e-01 6.83716476e-01 6.21914538e-03 1.19203770e+00 -1.30679572e+00 5.97513139e-01 -6.09476805e-01 -6.47450209e-01 2.87843019e-01 5.38164377e-01 -5.87450624e-01 1.62746713e-01 -8.36706460e-01 1.31033647e+00 3.45361501e-01 6.21553898e-01 -1.06673932e+00 -2.71362513e-01 -5.94646215e-01 -7.83096701e-02 5.13039343e-02 -7.58891553e-02 5.27036369e-01 -1.42903936e+00 -1.47796047e+00 1.35514140e+00 -3.01807553e-01 -5.36255598e-01 4.29393858e-01 1.62320510e-01 -7.66787708e-01 4.79075223e-01 -5.40587045e-02 6.06949449e-01 1.52690852e+00 -1.38829684e+00 -1.71625257e-01 -6.26221299e-01 -2.51436979e-01 -4.16954815e-01 -3.37593824e-01 3.28135252e-01 -4.29317020e-02 -2.14745075e-01 -4.16080594e-01 -9.88436639e-01 2.22508624e-01 -3.90671104e-01 -3.13352972e-01 -2.46987194e-01 1.25551248e+00 -1.26592267e+00 8.64185035e-01 -2.14052081e+00 -2.27516934e-01 3.76421332e-01 7.21325129e-02 7.88244247e-01 -2.13768817e-02 3.30128253e-01 -2.52421737e-01 -1.30243704e-01 -2.28800446e-01 -1.68931246e-01 -4.66738433e-01 1.98350951e-01 7.09687397e-02 8.54743600e-01 2.02842012e-01 4.83648419e-01 -5.46883158e-02 -3.45868707e-01 5.17641366e-01 1.01485085e+00 -1.18035756e-01 5.57167232e-01 -8.02701935e-02 5.53988576e-01 -1.32671386e-01 4.40637171e-01 1.03387606e+00 1.33147374e-01 2.90435255e-01 -4.24897403e-01 -2.17969015e-01 -3.05087924e-01 -1.06738293e+00 7.62348235e-01 -3.88620108e-01 8.52836192e-01 4.32876021e-01 -8.16417038e-01 1.19157147e+00 7.02508807e-01 5.18190861e-01 -5.16363263e-01 4.13374782e-01 1.74684316e-01 1.41336918e-01 -9.22122598e-01 6.17000125e-02 -1.33373171e-01 6.53820455e-01 2.33355716e-01 -5.56156673e-02 2.01367661e-01 -6.54713586e-02 -5.69444060e-01 7.74623573e-01 -1.11828916e-01 3.04384418e-02 -5.36526263e-01 8.26302648e-01 -1.58495411e-01 1.23112565e-02 2.37982303e-01 -1.11039184e-01 3.80133092e-01 3.46877038e-01 -7.34892011e-01 -7.13019371e-01 -3.82572234e-01 -3.98309708e-01 7.26412117e-01 -1.28350765e-01 4.36354466e-02 -1.48888779e+00 -3.65628958e-01 -1.35528803e-01 3.94525856e-01 -1.09843445e+00 9.21960454e-04 -3.46525162e-01 -7.20811844e-01 2.57502228e-01 -1.02891207e-01 4.15292770e-01 -1.25279272e+00 -9.77869153e-01 -1.04688436e-01 -4.26095352e-02 -1.03321671e+00 2.37815633e-01 3.13790470e-01 -6.30450964e-01 -1.36015856e+00 -4.64661777e-01 -7.01966941e-01 7.92032778e-01 -1.67010382e-01 5.25755405e-01 1.45699963e-01 -6.69556737e-01 1.25324786e-01 -1.51429623e-01 -6.18597388e-01 -7.27266729e-01 -1.00873090e-01 1.75399393e-01 7.51549065e-01 4.01009738e-01 1.56222284e-01 -6.37131095e-01 3.92968714e-01 -7.86905885e-01 -5.47285199e-01 5.13089716e-01 3.56574446e-01 2.48847052e-01 2.30348408e-01 1.50903970e-01 -6.25997603e-01 2.52667218e-01 -2.08949164e-01 -6.52534842e-01 1.78825811e-01 -3.14371705e-01 -1.21406846e-01 4.72584844e-01 -2.37233996e-01 -9.99598026e-01 2.93443143e-01 -5.87375581e-01 -5.10281563e-01 -6.62247717e-01 -1.70387805e-01 -9.95325819e-02 -4.47519451e-01 7.42781520e-01 5.54083511e-02 4.41335887e-01 -4.72140461e-01 -2.79707193e-01 8.24206769e-01 -9.36600864e-02 1.70811102e-01 7.65371025e-01 7.07419872e-01 1.29270330e-01 -1.39444005e+00 -3.48770797e-01 -4.79168743e-01 -7.38422692e-01 -6.16753399e-01 1.30666995e+00 -6.08723462e-01 -7.35004723e-01 5.96265078e-01 -1.22721124e+00 -3.07152569e-01 4.13393170e-01 4.11336720e-01 -8.29532221e-02 1.00653335e-01 -4.12720650e-01 -1.08050811e+00 -4.83086288e-01 -1.31683540e+00 9.65770602e-01 6.13396242e-03 2.35561039e-02 -9.11629319e-01 8.74318630e-02 5.69535911e-01 6.27282619e-01 1.59044087e-01 5.98578811e-01 -6.48260832e-01 -2.08691061e-01 -5.12962461e-01 1.27450088e-02 7.07913935e-01 3.77447098e-01 2.52320826e-01 -1.66439605e+00 -3.56650680e-01 6.31598771e-01 1.21610664e-01 8.68648589e-01 4.74667013e-01 1.07556677e+00 -2.91824579e-01 -6.17074609e-01 3.27596068e-01 1.61295187e+00 5.83173752e-01 6.82295203e-01 -5.25195524e-02 4.54330802e-01 8.73182476e-01 3.62584740e-01 6.43412694e-02 -5.73297441e-01 1.03232312e+00 7.29364872e-01 -1.92384973e-01 9.37985033e-02 2.87082434e-01 4.96996164e-01 3.10676247e-01 -2.20364749e-01 -2.21166149e-01 -6.99926198e-01 3.81040610e-02 -1.02044272e+00 -8.73823047e-01 -1.51883483e-01 2.18627095e+00 9.24171358e-02 -1.64352149e-01 1.54120237e-01 1.34073362e-01 1.07028031e+00 1.06073327e-01 -1.63100800e-03 -7.68830359e-01 5.50920628e-02 3.56963843e-01 2.54703760e-01 6.22482777e-01 -1.28675497e+00 7.07277119e-01 6.08574772e+00 7.92637348e-01 -1.73065281e+00 2.27711037e-01 7.90080249e-01 3.16452324e-01 3.78636181e-01 -5.68845809e-01 -8.88651490e-01 6.24817669e-01 1.00909746e+00 8.24074626e-01 5.57921112e-01 5.45502961e-01 1.87701166e-01 -2.74907649e-01 -7.84159362e-01 8.80234659e-01 5.60574949e-01 -1.05369747e+00 -2.12532908e-01 2.39611328e-01 3.16308022e-01 -1.24332912e-01 -1.30949933e-02 -2.51225561e-01 -7.93843031e-01 -1.27593946e+00 4.13687885e-01 4.18037653e-01 7.77769089e-01 -6.39748931e-01 1.10496092e+00 3.20597082e-01 -1.14015114e+00 -6.88043535e-02 -2.90208846e-01 5.53475097e-02 -2.27764547e-01 4.00341362e-01 -1.36449778e+00 2.47761860e-01 7.64166415e-01 3.03734571e-01 -6.67620122e-01 6.63144112e-01 -1.48860529e-01 4.99840468e-01 -5.31451285e-01 -2.20847189e-01 -4.14563641e-02 -3.10235173e-01 2.88222253e-01 1.32867002e+00 4.57077682e-01 -2.72322029e-01 -2.02383518e-01 8.21094155e-01 2.36659959e-01 1.10311419e-01 -8.69117022e-01 1.16499521e-01 1.37721434e-01 1.66471839e+00 -9.10933197e-01 -2.63071120e-01 -2.38705538e-02 1.00877821e+00 7.81841576e-03 2.10807264e-01 -6.64537191e-01 3.78333479e-02 6.12843454e-01 4.97224003e-01 6.52008653e-01 2.86655933e-01 1.09764814e-01 -4.89165872e-01 -7.62340054e-03 -5.09225488e-01 1.90621670e-02 -7.96964228e-01 -7.23653316e-01 9.75528777e-01 -8.45452249e-02 -8.66730273e-01 -2.50743926e-01 -1.30584335e+00 -6.02292538e-01 1.00749218e+00 -8.07971478e-01 -9.94450748e-01 -3.44181985e-01 2.22490713e-01 3.70509848e-02 -2.24914312e-01 1.05364704e+00 2.92707473e-01 -7.49690175e-01 2.25346759e-01 1.19583793e-01 1.58427373e-01 2.67273247e-01 -8.82321417e-01 -3.36493522e-01 7.45213032e-01 8.45217630e-02 3.37450415e-01 7.60959148e-01 -5.95608771e-01 -1.29567492e+00 -1.00986600e+00 7.77446806e-01 -4.15631890e-01 3.02139223e-01 -6.10531747e-01 -9.82398748e-01 4.42321271e-01 6.26851022e-01 -2.07175821e-01 2.98224896e-01 -3.29202086e-01 -1.98132545e-01 -5.10982692e-01 -1.59333026e+00 1.14974894e-01 2.90329307e-01 -6.75916374e-01 -3.69235456e-01 5.47765672e-01 1.18192416e-02 -1.61894336e-01 -6.50442302e-01 3.11363220e-01 4.69897866e-01 -1.39505792e+00 7.63861895e-01 1.13553308e-01 7.44557083e-02 -2.08087236e-01 1.98855892e-01 -1.15911520e+00 -2.39306360e-01 -2.51711886e-02 1.77529141e-01 1.03056788e+00 2.52909124e-01 -7.21761107e-01 7.93752193e-01 -5.86425588e-02 9.14779082e-02 -6.05212629e-01 -1.24249005e+00 -6.64917946e-01 -4.53786165e-01 1.23673780e-02 2.94345170e-01 7.31919527e-01 -5.99067509e-01 7.29054287e-02 -2.01876685e-01 4.57203448e-01 4.00988847e-01 -1.58604339e-01 4.72454727e-01 -1.12570226e+00 -6.29785284e-02 -3.62555295e-01 -7.41592884e-01 -1.88811142e-02 2.61423111e-01 -6.60584569e-01 -6.95847273e-02 -1.24158120e+00 -2.45403107e-02 -3.46578564e-03 -2.00944811e-01 3.59647334e-01 2.68120676e-01 5.91020286e-01 -2.67057884e-02 -7.13306591e-02 3.43410909e-01 -1.69201046e-01 7.47080863e-01 -1.10822424e-01 -3.80774997e-02 1.08503118e-01 1.02061834e-02 4.89845097e-01 9.16561007e-01 -2.32899755e-01 9.35954321e-03 -1.87531114e-01 3.06389295e-02 -2.09266782e-01 5.01344383e-01 -1.33700788e+00 -1.20043643e-01 3.09198171e-01 6.58660352e-01 -6.36358023e-01 7.99154818e-01 -1.33831680e+00 6.46881342e-01 1.08166432e+00 2.77138531e-01 -1.89496547e-01 4.21252400e-01 1.92076087e-01 4.09731120e-02 -4.83478874e-01 1.03724253e+00 -1.41351730e-01 -5.44725358e-01 -2.55027916e-02 -8.57499719e-01 -7.24229097e-01 1.30958426e+00 -3.71142566e-01 -1.49798080e-01 8.97673741e-02 -6.81938767e-01 -4.77571905e-01 3.38689536e-01 2.36657351e-01 5.37198365e-01 -8.09573352e-01 -5.99886298e-01 5.98178983e-01 1.49697706e-01 -5.96606672e-01 5.36519051e-01 7.35305309e-01 -8.05367947e-01 5.36100209e-01 -4.41378772e-01 -7.56886721e-01 -1.81757259e+00 8.87482166e-01 9.13156509e-01 1.64613053e-01 -2.16864467e-01 7.19581842e-01 7.97538906e-02 1.44354729e-02 1.50941517e-02 -2.96916842e-01 -7.32119977e-01 4.40569162e-01 5.95511734e-01 3.92609835e-01 4.30637807e-01 -1.00092471e+00 -6.63416624e-01 8.75505090e-01 2.24911138e-01 3.22335482e-01 1.16979671e+00 2.61625379e-01 -6.84606552e-01 3.57390970e-01 1.37942195e+00 4.99507450e-02 -9.98125076e-01 2.26674810e-01 -2.59059608e-01 -8.95562172e-02 -3.50163989e-02 -8.23507369e-01 -1.09518921e+00 1.04318285e+00 1.38777900e+00 4.12648171e-01 1.04212630e+00 -9.55204107e-03 1.03804708e-01 1.15128562e-01 4.17544782e-01 -9.86751735e-01 -9.81344879e-02 5.27243409e-03 9.83220816e-01 -1.35582852e+00 -1.79877207e-01 -4.49262172e-01 -3.62764835e-01 1.12203431e+00 4.09995794e-01 -1.02563262e-01 8.45307648e-01 3.14556211e-01 1.77318290e-01 -5.36703527e-01 -2.72119939e-01 -1.70598745e-01 4.88003850e-01 7.14533091e-01 2.34107390e-01 5.38384378e-01 -6.57199845e-02 -1.62760243e-01 -3.40571627e-02 6.31573498e-02 2.63197690e-01 4.54975635e-01 -4.97425854e-01 -6.03280485e-01 -7.88269818e-01 6.08134091e-01 -5.37118256e-01 1.92333475e-01 -6.86578393e-01 5.94044566e-01 8.05647790e-01 1.00589585e+00 3.16536784e-01 -6.06750250e-01 -1.69274509e-01 3.17055583e-01 6.28927171e-01 -6.42652571e-01 -8.29912901e-01 -3.13460007e-02 -8.96681771e-02 -3.50907981e-01 -4.97713059e-01 -3.76054466e-01 -7.12757409e-01 -7.47822523e-02 -1.37538657e-01 -1.10253703e-03 1.07037652e+00 1.24898696e+00 7.09596798e-02 1.61023989e-01 7.35167205e-01 -8.47152531e-01 4.09227610e-02 -1.28246963e+00 -7.31512070e-01 2.63856262e-01 4.71421152e-01 -6.22784317e-01 -3.92180592e-01 -5.46993464e-02]
[13.20423412322998, 0.8564512133598328]
ddddcfab-67aa-464c-8186-635f2429b6f9
decontamination-of-the-scientific-literature
2210.15912
null
https://arxiv.org/abs/2210.15912v1
https://arxiv.org/pdf/2210.15912v1.pdf
Decontamination of the scientific literature
Research misconduct and frauds pollute the scientific literature. Honest errors and malevolent data fabrication, image manipulation, journal hijacking, and plagiarism passed peer review unnoticed. Problematic papers deceive readers, authors citing them, and AI-powered literature-based discovery. Flagship publishers accepted hundreds flawed papers despite claiming to enforce peer review. This application ambitions to decontaminate the scientific literature using curative and preventive actions.
['Guillaume Cabanac']
2022-10-28
null
null
null
null
['image-manipulation']
['computer-vision']
[-7.24442899e-02 1.80908442e-01 -2.21548840e-01 3.09210628e-01 -3.21690559e-01 -1.04786813e+00 7.07068503e-01 1.31979048e-01 -5.64645112e-01 1.27760303e+00 -5.18463366e-02 -1.16520166e+00 1.48191765e-01 -4.13057476e-01 -1.25232375e+00 -2.11324796e-01 5.50761819e-01 -1.16506122e-01 -4.91907805e-01 5.33079743e-01 1.73626864e+00 6.65867627e-01 -7.42805064e-01 -3.87770772e-01 1.03193700e+00 2.83826375e-03 -2.45345205e-01 6.01011753e-01 -1.01974130e-01 1.17799878e+00 -1.32483315e+00 -1.17251694e+00 1.30825862e-01 -2.53143668e-01 -4.45729524e-01 -3.89056504e-01 7.68244922e-01 -3.74661714e-01 -2.16632620e-01 1.57313240e+00 -8.20006803e-02 -5.23443639e-01 1.35213174e-02 -1.32704556e+00 -1.70094037e+00 4.20267910e-01 -9.77999210e-01 5.94832480e-01 3.39083970e-01 4.78392690e-01 3.97511750e-01 -1.07731342e+00 1.17070699e+00 1.32761788e+00 4.58909810e-01 2.93153703e-01 -1.06766343e+00 -1.46101081e+00 -3.39920193e-01 -7.39146248e-02 -1.31609452e+00 -9.21360075e-01 4.21538442e-01 -9.01253283e-01 2.39675149e-01 2.30599195e-01 5.98439097e-01 1.31266427e+00 1.16595244e+00 -1.72338426e-01 1.20730066e+00 -8.29729810e-02 2.13866621e-01 3.02597284e-01 2.45531812e-01 4.63697493e-01 2.17574501e+00 -1.45287439e-01 -6.93272769e-01 -7.18263626e-01 7.99840868e-01 1.65925361e-02 -3.82785469e-01 3.15771312e-01 -1.49117303e+00 5.47924936e-01 -2.00087830e-01 2.12631822e-01 -3.62946093e-01 3.06017011e-01 4.59204763e-01 3.55141342e-01 8.56235623e-03 1.40080595e+00 1.89912751e-01 -4.87538695e-01 -7.89161742e-01 8.00133348e-02 5.92822850e-01 7.03600705e-01 3.26024979e-01 -7.36784041e-02 1.54293284e-01 5.79888634e-02 3.70940834e-01 7.78193533e-01 3.67383808e-01 -1.35685337e+00 1.54855520e-01 4.48122948e-01 4.55564052e-01 -1.67651320e+00 3.18813920e-01 -4.07618761e-01 -4.46829796e-01 2.05384538e-01 2.72495508e-01 -1.53611958e-01 -4.73986357e-01 8.50607336e-01 -2.46994987e-01 -1.09983869e-01 -1.09197482e-01 8.37879539e-01 6.96238101e-01 4.23024803e-01 3.79063427e-01 -3.86535138e-01 9.78165329e-01 -4.78126258e-01 -1.37691092e+00 1.90242603e-01 4.17452306e-01 -1.24893713e+00 7.26576030e-01 8.71340573e-01 -1.61521232e+00 2.00879499e-01 -1.10239482e+00 -2.79630959e-01 -4.11044180e-01 -4.71770354e-02 2.06637248e-01 7.88741589e-01 -5.35866082e-01 9.36127961e-01 -2.79935449e-01 5.40847778e-02 1.44709671e+00 -1.75117508e-01 -3.53958368e-01 -2.99081653e-01 -4.21112925e-01 1.15956080e+00 -2.20829174e-01 2.89861768e-01 -5.16935527e-01 -1.05846667e+00 -3.04491073e-01 -1.90690488e-01 3.76819730e-01 -6.09772444e-01 7.47891903e-01 -4.18032140e-01 -8.82524788e-01 1.34369183e+00 6.87227324e-02 -5.23991406e-01 6.17578864e-01 -5.05890548e-01 -7.24031568e-01 4.61233407e-01 6.76366270e-01 -9.33500007e-02 9.69014525e-01 -1.20564246e+00 -2.19445437e-01 -5.81807792e-01 -6.84583366e-01 -6.07106805e-01 -1.84395269e-01 4.06415492e-01 5.28858066e-01 -8.82209122e-01 -1.63761958e-01 -7.11921990e-01 1.54118821e-01 -2.17411146e-02 -7.93494940e-01 3.91879141e-01 1.18221283e+00 -6.82755530e-01 1.00251925e+00 -2.08550787e+00 -8.47338676e-01 -1.63221955e-01 8.71839702e-01 5.45154452e-01 2.78883189e-01 2.91138530e-01 4.35202807e-01 1.39727628e+00 4.29668456e-01 4.05679405e-01 4.94787353e-04 -1.07894585e-01 -4.48432148e-01 1.10468960e+00 -1.23291062e-02 1.28112113e+00 -1.05160129e+00 -2.64956713e-01 -3.32739919e-01 5.55307046e-02 2.10218534e-01 -1.45439714e-01 4.73090291e-01 2.38733545e-01 -5.02407014e-01 9.64374185e-01 1.26891923e+00 -4.41438645e-01 7.50835463e-02 2.09136412e-01 -6.54346108e-01 4.85236168e-01 -2.60957748e-01 5.14402807e-01 7.64314979e-02 1.20468187e+00 3.17912787e-01 -4.84103024e-01 1.08241773e+00 8.61884952e-02 -2.57977396e-01 -5.07410645e-01 7.83837587e-02 6.97700918e-01 -2.19124183e-02 -6.62072659e-01 7.67165244e-01 -8.82032737e-02 2.66967416e-01 6.76936328e-01 -4.63579953e-01 -2.00889707e-02 -3.12493980e-01 6.07090890e-01 9.52121079e-01 -6.67261779e-02 2.40607606e-03 -2.36560464e-01 -1.54488189e-02 1.85878560e-01 5.20627677e-01 9.70912814e-01 -5.79000652e-01 1.67612061e-01 6.12768769e-01 -3.63641322e-01 -1.24915695e+00 -8.96541178e-01 -2.62176931e-01 4.73550230e-01 1.18013911e-01 -1.02782749e-01 -4.10927296e-01 -5.58931231e-01 4.40523416e-01 8.99643183e-01 -3.93541425e-01 -2.10823417e-01 -1.03028156e-02 -2.25355312e-01 8.97930086e-01 -3.71855587e-01 3.22175503e-01 -7.43799508e-01 -1.03956735e+00 1.06468596e-01 4.12377656e-01 -1.08878338e+00 -1.71440616e-01 -5.27685046e-01 -8.28871191e-01 -1.50911045e+00 -9.73704517e-01 -3.50066945e-02 8.78652215e-01 6.98229611e-01 6.06256068e-01 4.83330011e-01 -4.92385536e-01 1.00586802e-01 5.30832028e-03 -9.66750622e-01 -1.00853002e+00 -5.11106014e-01 -1.67703360e-01 -6.48416042e-01 6.01655960e-01 -2.01590255e-01 -3.49184006e-01 -4.28664275e-02 -5.19356310e-01 -4.36971962e-01 5.14793217e-01 3.07883590e-01 -5.18870950e-02 -4.91520792e-01 1.15394998e+00 -1.38150895e+00 7.65670955e-01 -4.85370964e-01 -6.46105707e-01 2.94591188e-01 -1.39187908e+00 -5.66720486e-01 5.17748237e-01 -2.25687355e-01 -9.85544324e-01 -1.04583395e+00 8.38330925e-01 -4.35500979e-01 -7.77267590e-02 2.86378652e-01 5.53269088e-02 -7.46726990e-01 5.82854807e-01 -2.86003470e-01 4.72032458e-01 -4.44739282e-01 -2.59400666e-01 3.30799371e-01 7.44297802e-01 -3.93271260e-02 8.22480977e-01 4.67039675e-01 2.76287757e-02 -7.45086968e-01 -5.59822142e-01 -1.64649904e-01 2.41828412e-01 -1.94629475e-01 3.36124867e-01 -8.35437238e-01 -1.07477891e+00 2.58091867e-01 -1.58234334e+00 5.62641263e-01 -5.24742864e-02 6.73494458e-01 4.15337086e-01 6.63991153e-01 -4.86373872e-01 -7.54602492e-01 -3.25810164e-01 -5.75408995e-01 1.59977257e-01 3.67609173e-01 -3.93463403e-01 -2.79826641e-01 -1.23818457e-01 7.46409178e-01 3.99001598e-01 6.04029536e-01 1.88348457e-01 -4.77787614e-01 -7.82144189e-01 -2.70941049e-01 -6.84923708e-01 -5.97228967e-02 -2.71502677e-02 1.05793190e+00 -7.23167360e-01 1.28091544e-01 1.54220447e-01 -1.33767635e-01 3.87001365e-01 1.34026393e-01 9.92213547e-01 -1.20653141e+00 -3.79203945e-01 2.56897062e-01 9.96196389e-01 4.05173719e-01 1.07319617e+00 9.62492466e-01 8.96091580e-01 5.79417646e-01 3.42154741e-01 4.97263253e-01 -1.13539234e-01 -3.92637432e-01 9.90364030e-02 4.09993678e-01 2.94751346e-01 -3.14136237e-01 1.05055325e-01 4.76813644e-01 4.97344583e-02 4.73095402e-02 -8.47860456e-01 6.69715464e-01 -1.34247458e+00 -1.07733655e+00 -1.26905227e+00 2.15152240e+00 5.91231227e-01 4.64497507e-01 -2.06701696e-01 -4.92056936e-01 9.60119247e-01 -1.13319665e-01 -5.91845572e-01 -9.68030691e-01 -3.66893977e-01 -2.00060934e-01 1.21097314e+00 -1.84331730e-03 -2.00899139e-01 8.40711594e-01 6.99024868e+00 2.37399146e-01 -9.68966603e-01 1.44727513e-01 6.69091463e-01 -5.72497100e-02 -8.56219709e-01 2.13926539e-01 -3.90970677e-01 6.97036505e-01 1.06659019e+00 -1.14497244e+00 8.23839158e-02 5.62114179e-01 6.30182624e-01 -4.67148274e-01 -3.32559735e-01 7.67964840e-01 -2.65091956e-02 -2.18963647e+00 1.49073958e-01 4.94509131e-01 6.23761415e-01 -2.73792386e-01 9.73909795e-02 -4.88059968e-01 3.44478250e-01 -1.13506007e+00 7.18633115e-01 8.31670225e-01 5.71195841e-01 -5.00508368e-01 5.11102378e-01 -2.07684651e-01 4.32247907e-01 7.70235285e-02 -4.83660668e-01 -6.36057615e-01 1.32229943e-02 1.23683214e+00 -6.92372978e-01 4.43965793e-02 5.78843355e-01 7.14416087e-01 -8.17124367e-01 1.14257276e+00 -4.51268196e-01 1.06931674e+00 2.68576056e-01 -6.96085989e-02 2.09676757e-01 -1.78205356e-01 1.07781291e+00 1.02758539e+00 6.09148368e-02 -6.45386055e-02 -1.05869055e+00 1.54670584e+00 -5.96561849e-01 -3.17426533e-01 -1.02334213e+00 -1.25703681e+00 9.76231933e-01 8.44676554e-01 -7.18851089e-01 -2.46103272e-01 -5.28112128e-02 6.40956581e-01 -2.29957342e-01 2.93636322e-01 -1.12749904e-01 -5.42782247e-01 3.10938716e-01 3.39869380e-01 4.22553383e-02 -2.45970711e-01 -1.11588454e+00 -1.08138978e+00 -1.18837625e-01 -8.26930404e-01 -3.54636610e-02 -8.27136338e-01 -1.06393301e+00 -4.22792405e-01 -5.59185922e-01 -8.14935565e-01 5.78740478e-01 -1.60175830e-01 -8.14885557e-01 8.16759586e-01 -1.30475557e+00 -6.37966514e-01 2.65472680e-01 -4.29926246e-01 -2.80983150e-01 -4.01486307e-01 2.62221098e-01 -2.09000394e-01 -6.94621980e-01 5.75744450e-01 2.32003123e-01 -2.41324320e-01 1.03042543e+00 -5.89019954e-01 5.35717309e-01 6.97416961e-01 -5.53920150e-01 1.31569386e+00 7.32109725e-01 -1.17278886e+00 -1.81363642e+00 -7.28167295e-01 1.34994614e+00 -6.55419171e-01 1.19142246e+00 1.29370615e-01 -1.48595643e+00 5.05470812e-01 2.38205001e-01 -3.15942615e-01 7.31091917e-01 -1.26600146e-01 -5.88031590e-01 3.93191516e-01 -1.18859708e+00 6.43771291e-01 4.28831935e-01 -4.35827911e-01 -8.56010497e-01 3.51327181e-01 5.15110910e-01 2.49574438e-01 -5.27216375e-01 -6.08760059e-01 8.15884411e-01 -2.99339533e-01 7.09192634e-01 -5.95186293e-01 1.06324875e+00 -9.59727466e-02 7.78413117e-01 -4.67750311e-01 -1.99118271e-01 -1.24768400e+00 2.63435453e-01 1.11794102e+00 2.31428310e-01 -7.91099489e-01 4.09848243e-01 1.09201622e+00 -4.54881154e-02 -2.38149576e-02 -5.81742823e-01 -7.68938363e-01 3.25762272e-01 2.77979225e-01 3.15433025e-01 1.76129282e+00 5.38325191e-01 1.09912939e-01 -2.38545567e-01 -2.54618898e-02 1.16986585e+00 -1.86899319e-01 8.42402816e-01 -1.12109685e+00 5.01267970e-01 -6.74953043e-01 -1.97533220e-01 9.36928689e-02 -1.97520554e-01 -3.58835518e-01 -4.16463286e-01 -1.13354111e+00 2.40153633e-03 -5.23877405e-02 2.23148972e-01 1.09444156e-01 -1.81956738e-01 4.63155955e-02 5.06092846e-01 8.79988670e-01 -6.81681395e-01 -2.11118534e-01 1.64681554e+00 -6.07635751e-02 4.83335070e-02 -5.69500029e-01 -1.44671154e+00 5.09511709e-01 7.77107477e-01 -9.06690300e-01 2.46392787e-01 -4.26117219e-02 9.50054944e-01 -1.43391445e-01 1.11687493e+00 -4.92122382e-01 3.31224024e-01 -7.25248039e-01 2.83987433e-01 -2.31546462e-01 -6.99844599e-01 -4.98188227e-01 4.95809525e-01 5.66395521e-01 -3.35381329e-01 3.43680643e-02 2.65074968e-01 5.01803815e-01 2.58813947e-01 -8.29076409e-01 5.78981757e-01 -2.84387261e-01 1.99577689e-01 -3.87886018e-01 -7.85180867e-01 7.60283843e-02 9.62196529e-01 -4.23454016e-01 -1.32311094e+00 -1.84217468e-01 2.69213319e-02 1.39932528e-01 1.07968831e+00 1.15343712e-01 6.92449331e-01 -6.96111321e-01 -7.75906384e-01 -3.81125391e-01 -2.10402250e-01 -3.49801332e-01 2.42965862e-01 6.85639977e-01 -7.65696287e-01 2.85788864e-01 -4.99760419e-01 4.09266442e-01 -7.28360355e-01 6.59996927e-01 -2.30740771e-01 5.83645165e-01 -7.71371245e-01 5.84479988e-01 -2.67128140e-01 4.44777817e-01 -1.17839620e-01 4.79719698e-01 1.34432986e-01 -2.35101327e-01 9.23362970e-01 1.12332952e+00 -1.04146704e-01 -3.32369268e-01 -5.08369625e-01 -1.31328642e-01 -7.46922612e-01 2.56194919e-02 9.89738703e-01 -3.04184377e-01 -4.66666937e-01 7.57497907e-01 1.38189483e+00 4.21100825e-01 -5.24044394e-01 5.20760238e-01 9.07621309e-02 -1.21758938e+00 2.71746099e-01 -1.17762685e+00 -3.55528772e-01 6.44302428e-01 -3.87746900e-01 5.76964319e-01 2.34176964e-02 -4.11942959e-01 7.87767708e-01 4.16320711e-01 -5.92062660e-02 -1.38411844e+00 -2.17788264e-01 -8.47461745e-02 1.06292534e+00 -1.01752985e+00 7.64316201e-01 -1.63643703e-01 -5.05940020e-01 1.11490417e+00 4.65867907e-01 -9.80478451e-02 1.83334425e-01 -1.20578473e-02 -9.35264453e-02 -7.42884040e-01 -5.79086006e-01 1.20707762e+00 -2.78594851e-01 7.16669321e-01 4.64123428e-01 6.10966347e-02 -1.51430702e+00 5.74277222e-01 1.49756566e-01 7.39545047e-01 1.58136523e+00 1.13417196e+00 -2.78088808e-01 -5.05188763e-01 -1.48241985e+00 5.82889616e-01 -1.10152626e+00 9.18440968e-02 -9.55578029e-01 7.20479250e-01 -1.79456443e-01 8.38082671e-01 8.36533383e-02 3.03809017e-01 -7.97160938e-02 -3.26979935e-01 -4.10437770e-02 -1.48466334e-01 -7.21716642e-01 -2.31057825e-03 1.64156497e-01 -1.82961255e-01 -2.14913830e-01 -6.89741015e-01 -1.01315439e+00 -1.19167113e+00 -4.66376156e-01 4.20562983e-01 1.07979178e+00 7.09842145e-01 1.23983788e+00 -1.28713071e-01 3.77741307e-01 7.73239136e-02 -3.21052641e-01 -4.56772327e-01 -7.11070716e-01 6.93501830e-02 5.22594333e-01 -4.18693632e-01 -6.33926690e-01 1.01108007e-01]
[8.965596199035645, 6.542915344238281]
16e8f1f8-3078-4bcf-92a6-b4fcb76bba5f
seamless-multimodal-biometrics-for-continuous
2301.03045
null
https://arxiv.org/abs/2301.03045v2
https://arxiv.org/pdf/2301.03045v2.pdf
Seamless Multimodal Biometrics for Continuous Personalised Wellbeing Monitoring
Artificially intelligent perception is increasingly present in the lives of every one of us. Vehicles are no exception, (...) In the near future, pattern recognition will have an even stronger role in vehicles, as self-driving cars will require automated ways to understand what is happening around (and within) them and act accordingly. (...) This doctoral work focused on advancing in-vehicle sensing through the research of novel computer vision and pattern recognition methodologies for both biometrics and wellbeing monitoring. The main focus has been on electrocardiogram (ECG) biometrics, a trait well-known for its potential for seamless driver monitoring. Major efforts were devoted to achieving improved performance in identification and identity verification in off-the-person scenarios, well-known for increased noise and variability. Here, end-to-end deep learning ECG biometric solutions were proposed and important topics were addressed such as cross-database and long-term performance, waveform relevance through explainability, and interlead conversion. Face biometrics, a natural complement to the ECG in seamless unconstrained scenarios, was also studied in this work. The open challenges of masked face recognition and interpretability in biometrics were tackled in an effort to evolve towards algorithms that are more transparent, trustworthy, and robust to significant occlusions. Within the topic of wellbeing monitoring, improved solutions to multimodal emotion recognition in groups of people and activity/violence recognition in in-vehicle scenarios were proposed. At last, we also proposed a novel way to learn template security within end-to-end models, dismissing additional separate encryption processes, and a self-supervised learning approach tailored to sequential data, in order to ensure data security and optimal performance. (...)
['João Ribeiro Pinto']
2023-01-08
null
null
null
null
['multimodal-emotion-recognition', 'multimodal-emotion-recognition']
['computer-vision', 'speech']
[ 2.80756444e-01 1.50686130e-02 1.61903396e-01 -7.39091158e-01 -6.27977431e-01 -4.50683296e-01 1.90084323e-01 -1.84147552e-01 -3.87979418e-01 5.77813923e-01 -1.43445924e-01 -3.26206237e-01 -1.63857266e-01 -5.55117965e-01 -4.20041293e-01 -7.85803080e-01 9.41229388e-02 -1.63444832e-01 -6.86285615e-01 -2.21944004e-01 6.95430189e-02 7.97570705e-01 -1.97025490e+00 1.83145091e-01 6.44178271e-01 1.34799492e+00 -6.18188977e-01 6.45473063e-01 4.27419782e-01 2.58942932e-01 -5.24782002e-01 -9.79427934e-01 2.96519488e-01 -2.50832528e-01 -3.14875752e-01 -2.18291692e-02 5.93284249e-01 -1.39248520e-01 -3.88230532e-01 6.92520320e-01 1.14721525e+00 -2.94908404e-01 4.47485775e-01 -1.64636552e+00 -3.60189557e-01 1.77775566e-02 -4.57853287e-01 -5.34239970e-02 2.49615252e-01 6.09766126e-01 1.72995135e-01 -8.32904756e-01 7.58755282e-02 8.16616058e-01 1.07026196e+00 8.57316852e-01 -1.03417575e+00 -1.05979013e+00 -3.44235450e-01 7.27736175e-01 -1.68382478e+00 -9.22561824e-01 8.65014553e-01 -2.92561471e-01 9.27306056e-01 6.12261057e-01 7.18415260e-01 1.35494554e+00 2.36487895e-01 2.48721272e-01 1.14492738e+00 -1.97073758e-01 -1.23711079e-02 6.49905920e-01 1.69634447e-01 4.36166734e-01 2.57315248e-01 5.07776558e-01 -7.46245980e-01 -8.09663087e-02 -5.10665104e-02 -1.94201455e-01 -9.78180394e-02 -1.12848528e-01 -8.38560045e-01 4.80673671e-01 -3.43793362e-01 2.30556622e-01 -4.40811425e-01 1.74994275e-01 6.69624150e-01 2.60371834e-01 2.06503332e-01 -4.13271450e-02 -3.21503043e-01 -4.90484893e-01 -9.82849538e-01 7.53123388e-02 8.46057713e-01 6.03688538e-01 5.55794895e-01 4.54311192e-01 -2.47333348e-01 5.51866770e-01 2.26253867e-01 1.03944242e+00 1.73784897e-01 -9.79083657e-01 2.19526067e-01 3.50662619e-01 -1.08110383e-01 -1.18851721e+00 -5.89216650e-01 -5.78154981e-01 -1.18062127e+00 5.12499034e-01 1.43796682e-01 -4.47495341e-01 -4.95794296e-01 1.74413228e+00 2.63851464e-01 3.97696704e-01 2.32676402e-01 7.06415236e-01 8.35100234e-01 2.70359725e-01 -2.48226114e-02 -3.20746452e-01 1.64907324e+00 1.68964337e-03 -9.65787828e-01 5.82702868e-02 2.37433851e-01 -5.81601441e-01 7.07752466e-01 5.64159930e-01 -9.85149443e-01 -9.79408443e-01 -1.23037708e+00 1.65896833e-01 -5.67931175e-01 1.46340683e-01 3.16788316e-01 1.85094154e+00 -1.22482526e+00 2.02287361e-01 -4.13698494e-01 -2.74046779e-01 7.08731472e-01 7.59916425e-01 -5.43381810e-01 2.67941773e-01 -1.44664538e+00 1.11886096e+00 -3.73949319e-01 5.58691323e-01 -6.60682917e-01 -7.32317805e-01 -8.74019265e-01 -2.07278490e-01 -9.27421227e-02 -6.47609174e-01 5.61303794e-01 -9.19633210e-01 -1.44874549e+00 1.24816406e+00 -5.03639758e-01 -7.76568770e-01 5.65840304e-01 3.59994099e-02 -1.02547300e+00 -1.16737664e-01 -4.02094990e-01 4.57875103e-01 1.03424263e+00 -1.04514790e+00 -2.94367462e-01 -7.74002492e-01 -4.54416394e-01 -5.91266528e-02 -4.97043163e-01 2.37883568e-01 1.29785851e-01 -1.79965466e-01 -2.61418939e-01 -7.75547087e-01 2.33825281e-01 -1.07843779e-01 5.42584807e-02 2.38357950e-02 1.09516609e+00 -9.20969248e-01 1.09631574e+00 -2.31276870e+00 -4.86522138e-01 4.31355804e-01 3.13018918e-01 5.70300460e-01 2.81540081e-02 1.29363507e-01 -2.33476639e-01 -3.58689763e-02 -3.09422195e-01 -4.36578095e-01 1.90604627e-01 3.95607799e-02 -1.40836224e-01 8.34029555e-01 3.90070885e-01 1.04482424e+00 -2.55816698e-01 -1.97073430e-01 3.20892811e-01 9.39573169e-01 -9.46280360e-03 5.22665940e-02 7.39414811e-01 4.33851033e-01 1.35118023e-01 7.58026481e-01 1.06799710e+00 5.94211876e-01 -1.68170512e-01 -4.95871425e-01 -4.89780530e-02 -4.39087361e-01 -1.30375481e+00 1.08114469e+00 -4.26669896e-01 7.91027486e-01 3.01220506e-01 -1.18760943e+00 1.29552209e+00 6.70155108e-01 7.23514020e-01 -1.08460462e+00 2.69092828e-01 5.07639721e-02 3.67542990e-02 -1.00470686e+00 4.85098809e-01 -1.74886063e-01 -1.19463876e-01 1.51815608e-01 -3.29672605e-01 1.97764024e-01 -3.39255124e-01 -2.76197404e-01 6.72718823e-01 -5.81537746e-02 -3.26319672e-02 -2.94226017e-02 7.82989323e-01 -4.98613745e-01 5.47624648e-01 4.69445974e-01 -7.07269609e-01 4.06268686e-01 1.59995839e-01 -3.82992595e-01 -6.79645479e-01 -7.95809925e-01 -4.56535429e-01 3.83352071e-01 2.48566307e-02 5.15918201e-03 -1.02667809e+00 -2.58982450e-01 1.72909454e-01 5.36673367e-01 -5.82141042e-01 -6.05312407e-01 -4.14955109e-01 -7.70757437e-01 1.37381828e+00 4.64456111e-01 7.02471554e-01 -8.29060018e-01 -9.57440734e-01 1.71624959e-01 -2.41319597e-01 -1.33727074e+00 -1.41350731e-01 -9.02659968e-02 -4.67640102e-01 -9.59024489e-01 -5.75001121e-01 -3.51446301e-01 1.26912877e-01 -2.10776627e-02 8.44797790e-01 -5.82182035e-02 -6.52469218e-01 9.37805355e-01 1.35094732e-01 -9.23631907e-01 -3.86665255e-01 -4.13608521e-01 5.08000493e-01 8.82002890e-01 8.51963460e-01 -4.83651102e-01 -7.42108285e-01 5.42425215e-01 -4.64054555e-01 -4.71368074e-01 3.30451876e-01 6.73324049e-01 2.76032478e-01 -1.19935013e-01 9.99242544e-01 -3.41266543e-01 5.52038908e-01 -2.49447048e-01 -2.67555505e-01 3.55042696e-01 -8.93223763e-01 -6.03699982e-01 2.72819102e-01 -2.00277597e-01 -9.54276860e-01 2.51022074e-02 -4.67460901e-01 -2.77785808e-01 -6.38458848e-01 9.06222239e-02 -6.50898755e-01 -3.78874213e-01 6.36883974e-01 2.56232023e-01 5.07708848e-01 6.77518025e-02 1.63635582e-01 1.28194618e+00 8.01142752e-01 -3.05964708e-01 6.29267216e-01 5.38882256e-01 1.31192014e-01 -1.15754056e+00 1.52274325e-01 -3.53798389e-01 -4.79588538e-01 -7.21268833e-01 8.07471156e-01 -1.00919521e+00 -1.30902421e+00 9.83443975e-01 -1.10225451e+00 1.22157581e-01 -2.42499068e-01 4.78949070e-01 -3.91918153e-01 4.70698208e-01 -7.32513368e-02 -1.51861024e+00 -5.74258864e-01 -9.74835038e-01 9.31464076e-01 4.24991250e-01 -3.80899817e-01 -5.81604362e-01 -2.70652473e-01 8.98932874e-01 7.78341413e-01 4.31685597e-01 3.95456493e-01 -3.52580726e-01 -2.04761058e-01 -5.83757639e-01 -1.42810747e-01 7.38567412e-01 1.00736842e-02 -1.31555140e-01 -1.67052615e+00 -2.47380540e-01 3.86265785e-01 -3.26303765e-02 4.64830577e-01 2.26907954e-01 1.09382963e+00 -8.32633227e-02 -9.59130749e-02 7.10042477e-01 1.04626584e+00 3.50294322e-01 1.17334855e+00 -2.31551364e-01 4.62089539e-01 9.19201314e-01 3.65389198e-01 4.12370652e-01 5.72601080e-01 6.69836044e-01 3.19073439e-01 -3.97544026e-01 -1.28011838e-01 3.18414897e-01 6.33940339e-01 2.92439163e-01 -2.41873696e-01 7.52262846e-02 -7.08387613e-01 2.83004373e-01 -1.48382223e+00 -1.30406463e+00 -4.05828565e-01 2.27570796e+00 3.82498622e-01 -1.51563197e-01 2.39622474e-01 5.95502794e-01 6.05394661e-01 -2.60005385e-01 -7.66901255e-01 -7.88686991e-01 -5.32661259e-01 4.18355972e-01 4.56641346e-01 1.15662374e-01 -9.33476806e-01 2.67082840e-01 5.50349474e+00 5.96596718e-01 -1.47267663e+00 2.50308245e-01 1.09032857e+00 -5.79887703e-02 7.19900895e-03 -4.80046481e-01 -8.15395594e-01 5.39417624e-01 1.36293459e+00 8.05952325e-02 3.38959992e-01 3.99659723e-01 5.24916232e-01 -5.69710396e-02 -9.53634858e-01 1.49113476e+00 5.86778164e-01 -1.05957985e+00 -6.71307504e-01 2.18928486e-01 2.92319596e-01 -2.60770947e-01 3.51057082e-01 1.99898213e-01 -8.84114921e-01 -1.30216432e+00 6.85820401e-01 9.73909676e-01 1.17159712e+00 -9.12322044e-01 9.41021144e-01 9.26395655e-02 -1.04249322e+00 -2.53129750e-01 5.36794290e-02 1.47664128e-02 7.70320594e-02 5.41225970e-01 -3.35900456e-01 5.84339738e-01 8.44673574e-01 3.45102310e-01 -5.04986703e-01 7.58490801e-01 3.62065792e-01 5.69247186e-01 -2.25016922e-01 -7.95235559e-02 -5.28534830e-01 -3.01188976e-02 3.87540907e-01 1.37703955e+00 4.04272825e-01 3.26584280e-02 -4.20137107e-01 6.96767330e-01 1.00537255e-01 -1.02134064e-01 -7.55444705e-01 2.33991712e-01 2.04926074e-01 1.38761866e+00 -3.13982666e-01 -8.40747207e-02 -2.48042047e-01 8.09731841e-01 -5.09630144e-01 4.37566459e-01 -1.14516294e+00 -4.50742424e-01 9.44826722e-01 3.61780137e-01 -9.41529050e-02 -8.00256655e-02 -7.57670462e-01 -7.63379991e-01 3.00189286e-01 -1.09886193e+00 2.21694320e-01 -4.80276316e-01 -1.18435299e+00 4.18488711e-01 -2.64305204e-01 -1.20520675e+00 -1.15590692e-01 -5.47206521e-01 -4.43969071e-01 1.19755316e+00 -1.47490323e+00 -1.36653221e+00 -4.85236853e-01 8.04858804e-01 -1.98485032e-02 -3.96327436e-01 1.18966126e+00 7.69871116e-01 -4.12143528e-01 1.32518661e+00 -1.45135194e-01 3.83787379e-02 6.92347050e-01 -6.52516186e-01 1.95567891e-01 8.35942805e-01 6.18749261e-02 4.25969779e-01 4.59917098e-01 -2.61663914e-01 -1.88760269e+00 -9.46559370e-01 8.57340097e-01 -6.10944152e-01 -8.70779529e-02 -5.62787235e-01 -7.48196065e-01 -3.22330333e-02 4.22104359e-01 -3.04972399e-02 1.02687609e+00 1.07469987e-02 -1.95804402e-01 -9.05022740e-01 -1.53391182e+00 2.27350637e-01 7.81168461e-01 -9.50850189e-01 -4.83964644e-02 -2.48909637e-01 -7.27356300e-02 -2.74511546e-01 -6.74869001e-01 5.75715542e-01 1.10820556e+00 -1.09457552e+00 9.47106898e-01 -3.26390803e-01 -2.51084119e-01 -3.96261096e-01 -1.55804873e-01 -7.79922426e-01 1.02840737e-01 -1.06930959e+00 -2.80673057e-01 1.42152488e+00 3.09168071e-01 -9.61664081e-01 8.20870936e-01 9.97762620e-01 1.26027390e-01 -7.74043322e-01 -1.18327034e+00 -6.13880217e-01 -2.13734731e-01 -9.97297883e-01 7.53304064e-01 6.85600400e-01 -9.28012058e-02 1.02916723e-02 -6.37938440e-01 2.99771070e-01 7.28677869e-01 -3.08840364e-01 9.72339451e-01 -1.10948813e+00 -2.28709541e-02 -3.37877929e-01 -1.07242322e+00 -2.68282443e-01 4.92062122e-02 -7.31859803e-01 -1.57155678e-01 -9.93339002e-01 -3.47205698e-02 -9.69316438e-02 -4.42109406e-01 2.45085254e-01 3.02607901e-02 7.71173894e-01 1.75500847e-02 -5.34069419e-01 1.85860274e-03 2.57492274e-01 6.52553380e-01 -3.46302748e-01 5.04963547e-02 2.75164515e-01 -9.92100179e-01 1.59313485e-01 9.98222411e-01 -1.81047574e-01 -3.34741265e-01 1.18795685e-01 8.74189138e-02 1.39059931e-01 9.22556520e-01 -1.28740382e+00 4.32736516e-01 2.72110522e-01 5.28687358e-01 -4.62926894e-01 6.84978426e-01 -1.04915786e+00 5.13584137e-01 2.90724784e-01 8.76301527e-02 3.27863283e-02 5.13218045e-01 2.64474422e-01 -4.01375145e-02 2.13524908e-01 8.38610113e-01 4.25970107e-01 -4.48014110e-01 3.04281950e-01 -4.07059610e-01 -2.66437560e-01 1.29788625e+00 -9.33579266e-01 3.29833850e-02 -5.49673676e-01 -7.28687108e-01 9.52434987e-02 -3.90343629e-02 5.60343087e-01 8.36363137e-01 -1.04223633e+00 -9.43235695e-01 7.58015275e-01 1.75005287e-01 -6.75652921e-01 7.92461812e-01 1.17664039e+00 5.18262982e-02 1.90784261e-01 -3.43587935e-01 -6.49053872e-01 -1.71575856e+00 3.26442003e-01 7.15732336e-01 3.81212801e-01 -1.84186310e-01 6.29338920e-01 -3.58103067e-01 -3.19635481e-01 5.60604155e-01 8.40017498e-02 -2.42794707e-01 2.92564929e-01 7.57237613e-01 5.65257967e-01 5.51731884e-01 -1.03444016e+00 -5.06950557e-01 7.34384835e-01 4.16763484e-01 3.54797728e-02 1.07114434e+00 -3.70096207e-01 -2.08767373e-02 1.71523973e-01 1.20435643e+00 -4.68683094e-02 -8.55075121e-01 2.75992274e-01 -1.92520916e-01 -2.25480169e-01 -9.49877799e-02 -1.09023237e+00 -1.16953540e+00 1.23539424e+00 1.52603722e+00 1.22224145e-01 1.38412261e+00 -5.70105374e-01 8.91302049e-01 1.95704192e-01 3.33916813e-01 -1.19077146e+00 -5.34775853e-01 1.09846093e-01 6.72017574e-01 -1.22573602e+00 -2.19332978e-01 -5.47910072e-02 -6.81963444e-01 1.21440887e+00 3.41255724e-01 5.69840252e-01 9.39685225e-01 5.60432732e-01 3.79168659e-01 -1.30095482e-01 -2.93580741e-01 -9.71573815e-02 3.25727969e-01 1.07789600e+00 2.59639353e-01 1.17686801e-01 -1.30035162e-01 1.03649783e+00 -1.21165588e-01 1.73693210e-01 1.43117711e-01 5.14334679e-01 1.58303857e-01 -1.12789845e+00 -6.25689864e-01 4.75218296e-01 -6.28448069e-01 2.46084169e-01 -3.11446667e-01 2.91275233e-01 7.68381715e-01 1.48864865e+00 -1.91423997e-01 -6.99804723e-01 5.64016402e-01 4.58270758e-01 3.18587273e-01 1.37169465e-01 -9.37405944e-01 -4.39556748e-01 1.61542490e-01 -5.77202737e-01 -5.63804090e-01 -8.31972539e-01 -1.08668923e+00 -4.92970318e-01 -8.60157162e-02 -7.01474175e-02 1.16938066e+00 8.49303484e-01 7.57161975e-01 4.44141299e-01 8.91133428e-01 -5.91708004e-01 -4.58632886e-01 -5.82539797e-01 -4.69147176e-01 2.15223178e-01 2.88251609e-01 -2.44403392e-01 -1.02660798e-01 1.68669730e-01]
[13.277771949768066, 1.1472382545471191]
60298304-e728-4e3a-af6c-0832039ba3cb
the-winnability-of-klondike-and-many-other
1906.12314
null
https://arxiv.org/abs/1906.12314v4
https://arxiv.org/pdf/1906.12314v4.pdf
The Winnability of Klondike Solitaire and Many Other Patience Games
Our ignorance of the winnability percentage of the game in the Windows Solitaire program, more properly called 'Klondike', has been described as "one of the embarrassments of applied mathematics". Klondike is just one of many single-player card games, generically called 'patience' or 'solitaire' games, for which players have long wanted to know how likely a particular game is to be winnable. A number of different games have been studied empirically in the academic literature and by non-academic enthusiasts. Here we show that a single general purpose Artificial Intelligence program, called "Solvitaire", can be used to determine the winnability percentage of 45 different single-player card games with a 95% confidence interval of +/- 0.1% or better. For example, we report the winnability of Klondike as 81.956% +/- 0.096% (in the 'thoughtful' variant where the player knows the location of all cards), a 30-fold reduction in confidence interval over the best previous result. Almost all our results are either entirely new or represent significant improvements on previous knowledge.
['Ian P. Gent', 'Charlie Blake']
2019-06-28
null
null
null
null
['klondike', 'solitaire', 'card-games']
['playing-games', 'playing-games', 'playing-games']
[-4.53218728e-01 1.38198689e-01 4.85238396e-02 4.82142493e-02 -6.16272449e-01 -8.60978305e-01 1.38082623e-01 4.65025008e-02 -7.53353179e-01 1.10032034e+00 -4.63773429e-01 -9.99266207e-01 -6.50811791e-01 -1.07808888e+00 -7.31322706e-01 -5.50114810e-01 -7.75154978e-02 7.37986088e-01 4.48305815e-01 -4.37313318e-01 8.04113030e-01 2.88466718e-02 -1.30526125e+00 3.58372852e-02 7.29715288e-01 6.48274064e-01 6.69100210e-02 1.05195510e+00 3.05399567e-01 8.43611181e-01 -8.86590302e-01 -8.28817785e-01 1.98728278e-01 -1.60746783e-01 -8.96806657e-01 -6.69666350e-01 -1.68810874e-01 -2.50217885e-01 5.49242124e-02 1.28549695e+00 2.03361839e-01 -2.02419441e-02 4.05786961e-01 -1.43846941e+00 -1.64413363e-01 8.45386386e-01 -7.22656012e-01 5.69816947e-01 4.37915236e-01 7.41998181e-02 9.98268723e-01 -1.64745152e-01 2.31471404e-01 7.79961228e-01 9.01378095e-01 1.17805250e-01 -9.30294216e-01 -9.48130727e-01 -4.05196846e-01 1.72155380e-01 -1.72531509e+00 1.29080653e-01 2.25778058e-01 -4.92648512e-01 7.95682371e-01 7.66971827e-01 6.48987293e-01 3.65680665e-01 3.68273407e-01 3.14426810e-01 1.09314930e+00 -6.48475528e-01 3.24448526e-01 4.76580828e-01 -5.12380451e-02 2.35855475e-01 7.75834858e-01 2.49925077e-01 -2.25138873e-01 -4.24223125e-01 1.18912387e+00 -3.17812264e-01 8.33810046e-02 6.32303394e-03 -9.87121105e-01 1.27697504e+00 -1.80155143e-01 6.14128299e-02 -6.55856133e-02 8.09208527e-02 1.96473703e-01 2.39719510e-01 4.08992141e-01 7.59024203e-01 -5.50371945e-01 -8.77708077e-01 -6.84633076e-01 7.44460762e-01 1.27213335e+00 5.90614259e-01 3.24633151e-01 -3.29012841e-01 4.62328881e-01 4.72541392e-01 1.35937229e-01 1.53046742e-01 3.55626017e-01 -1.07821381e+00 3.24367017e-01 3.00883710e-01 5.63814819e-01 -1.21394861e+00 -3.65880072e-01 -2.82923162e-01 -3.86876106e-01 6.16299510e-01 1.14761031e+00 -4.96003687e-01 -1.53173491e-01 1.50621259e+00 -2.20285237e-01 1.92396536e-01 -2.84998883e-02 6.01787031e-01 4.28876668e-01 5.27480066e-01 7.90930353e-03 -5.25448024e-02 1.30236959e+00 -2.71183372e-01 -1.77022532e-01 -9.42948908e-02 4.71925646e-01 -1.02762747e+00 9.28735673e-01 1.01225102e+00 -1.30316699e+00 -5.21921040e-03 -1.11421418e+00 6.67270303e-01 -2.15668797e-01 -2.93913513e-01 1.14844286e+00 1.36310291e+00 -7.93880999e-01 7.08810687e-01 -7.64861345e-01 -2.09954102e-03 1.44422010e-01 3.23062718e-01 -1.01263836e-01 3.37690294e-01 -1.19235194e+00 1.02607656e+00 6.51084721e-01 -4.68694061e-01 -3.77133399e-01 -8.99090409e-01 -3.76371086e-01 9.87494066e-02 9.49342430e-01 -1.26681119e-01 1.35614073e+00 -6.28379464e-01 -1.17459106e+00 1.00433385e+00 1.73915774e-01 -6.04898870e-01 6.74686074e-01 4.10473756e-02 -3.26710910e-01 -1.46238327e-01 2.77834564e-01 -5.28602973e-02 2.03412071e-01 -7.43242562e-01 -7.84964085e-01 -1.25370964e-01 5.26215971e-01 2.15122297e-01 2.73088574e-01 5.53049922e-01 -2.82736063e-01 -6.83962405e-01 -6.16081394e-02 -8.23012710e-01 -4.81319606e-01 -3.21669608e-01 -2.74770290e-01 -2.75078386e-01 8.93917456e-02 -1.76342070e-01 1.66384399e+00 -1.76632750e+00 -6.71809137e-01 3.29426825e-01 3.90600443e-01 2.77251840e-01 4.09214258e-01 3.98929179e-01 -3.89603227e-01 4.13146734e-01 3.71900767e-01 5.49449086e-01 1.18284419e-01 -6.81305677e-02 -4.10918035e-02 4.65434194e-01 -3.11026245e-01 6.46573424e-01 -7.97808468e-01 -8.13206360e-02 2.44350106e-01 -1.81473270e-01 -6.40700936e-01 -2.11351648e-01 2.34545678e-01 -3.87735665e-01 -2.43327335e-01 6.41853213e-02 8.27769518e-01 -3.31188202e-01 1.39151514e-01 4.68661219e-01 -4.15628105e-01 3.38584900e-01 -1.48069143e+00 1.03351367e+00 6.11132085e-02 6.60853207e-01 -4.12628740e-01 -8.92731845e-01 7.45526969e-01 2.25114614e-01 4.91992794e-02 -4.48810577e-01 2.20468462e-01 8.75828937e-02 3.46580774e-01 -3.22988212e-01 7.79466808e-01 -5.59117138e-01 -2.68306494e-01 8.08155417e-01 -5.24883151e-01 -1.63188994e-01 3.54545206e-01 3.97414595e-01 1.04169691e+00 -3.35717589e-01 6.69194400e-01 -5.06321609e-01 4.95429337e-02 1.88608229e-01 3.95213515e-01 1.22392690e+00 -3.80573958e-01 6.95370317e-01 1.12233269e+00 -5.14547646e-01 -1.14797461e+00 -1.25599873e+00 -2.06957743e-01 9.41264272e-01 2.43127942e-01 -6.13828719e-01 -8.13223302e-01 -6.50455356e-02 -1.29161954e-01 8.73382807e-01 -5.64955473e-01 -1.35242060e-01 2.99975779e-02 -9.32390571e-01 8.01527739e-01 5.11917174e-01 3.45070273e-01 -7.90331960e-01 -7.85795748e-01 1.49254575e-01 -1.05441786e-01 -8.33949745e-01 -1.30839288e-01 2.09205419e-01 -4.85389352e-01 -1.25710273e+00 -4.18545604e-01 -1.62367150e-01 6.08569868e-02 2.13729948e-01 1.41230309e+00 2.11660191e-01 -1.53736725e-01 -5.79525568e-02 -4.72868234e-01 -8.24105024e-01 -3.30537021e-01 -1.43199772e-01 1.45795709e-02 -7.55779386e-01 8.01824272e-01 -4.99569923e-01 -5.19897759e-01 4.60842788e-01 -5.13492644e-01 -7.73904547e-02 3.24547917e-01 4.91002828e-01 -9.53923836e-02 6.13762736e-01 5.89418709e-01 -1.08543789e+00 7.92895377e-01 -6.14183605e-01 -7.72074819e-01 -7.67149106e-02 -5.45317471e-01 -2.01675594e-01 4.75429684e-01 -5.46529472e-01 -4.83603835e-01 -4.64397788e-01 -6.02027662e-02 1.98271573e-01 -2.64343888e-01 6.18560910e-01 4.32752557e-02 -9.76538137e-02 9.56057131e-01 -5.51590249e-02 9.68569145e-02 -9.35321748e-02 -1.55061468e-01 5.32292485e-01 7.46887207e-01 -7.53021002e-01 6.17784798e-01 9.54353809e-02 -3.04207087e-01 -5.75829268e-01 -5.36015630e-01 -4.24820185e-01 5.38928434e-02 -1.27854332e-01 3.23731780e-01 -6.46269202e-01 -1.68773282e+00 6.25482440e-01 -9.56129849e-01 -2.40872636e-01 5.62703349e-02 6.28471315e-01 -6.05362236e-01 2.81102836e-01 -3.68273169e-01 -1.10686147e+00 1.01730041e-01 -8.45978498e-01 2.12218463e-01 6.14972413e-01 -7.09344506e-01 -1.08339608e+00 1.04535669e-01 4.41607058e-01 2.55206525e-01 1.83368966e-01 6.49531066e-01 -1.02121580e+00 -8.30898359e-02 -6.64468586e-01 -2.75575995e-01 5.47080003e-02 -1.95499510e-01 1.17523745e-01 -5.49159408e-01 1.71341468e-02 -4.43879701e-02 -7.58555066e-03 1.23725966e-01 6.18376315e-01 7.88947463e-01 -4.05677676e-01 -6.94566146e-02 7.97408596e-02 1.50764370e+00 6.66218400e-01 1.15347779e+00 9.47474062e-01 -2.61885244e-02 1.43690675e-01 6.89732075e-01 1.11130548e+00 3.61268014e-01 5.57511926e-01 3.43302101e-01 3.42544377e-01 9.82352495e-01 -1.73810348e-01 -3.90104540e-02 7.54101649e-02 -6.24907196e-01 -1.08421020e-01 -9.93536294e-01 4.50391144e-01 -1.84446132e+00 -1.23686397e+00 -2.44240850e-01 2.61509776e+00 7.96835840e-01 8.89845908e-01 6.61939621e-01 4.35841620e-01 7.79825747e-01 -1.67232335e-01 -1.75125107e-01 -8.39033842e-01 1.84335157e-01 6.04433954e-01 7.72447169e-01 6.02333009e-01 -9.68388438e-01 7.43660212e-01 6.79668856e+00 1.30212414e+00 -5.59666395e-01 -2.68414289e-01 7.09233224e-01 -1.33143840e-02 8.14108104e-02 2.80934304e-01 -5.19056261e-01 7.75669098e-01 1.10938883e+00 -9.31617260e-01 3.56946647e-01 9.29570794e-01 4.18051690e-01 -9.94969547e-01 -6.98076546e-01 8.59384656e-01 -1.57369182e-01 -1.46301520e+00 -3.28159839e-01 1.32776663e-01 3.31034511e-01 -6.57503068e-01 2.14233279e-01 3.58167231e-01 8.09648216e-01 -1.48448205e+00 6.44359469e-01 4.07438219e-01 5.70441723e-01 -1.42601526e+00 8.67000878e-01 6.56232417e-01 -7.53095448e-01 3.26707184e-01 -5.25404155e-01 -1.04004705e+00 -3.37578982e-01 4.60364640e-01 -9.20977533e-01 2.52406478e-01 9.05917943e-01 2.94706621e-03 -2.92661488e-01 1.47309828e+00 4.45154682e-02 8.14570546e-01 -5.80672204e-01 -4.82508332e-01 3.44826251e-01 -2.24071607e-01 3.90320003e-01 5.85031331e-01 2.15370774e-01 5.63381016e-01 -3.95505965e-01 9.12190974e-01 4.47858244e-01 -1.07376829e-01 -2.72212416e-01 -6.58563571e-03 6.51371181e-01 8.01743269e-01 -7.99965739e-01 -1.57419909e-02 -1.97188333e-01 4.48125422e-01 -7.93930143e-02 -1.45794882e-04 -1.02701008e+00 -9.42267060e-01 6.68082118e-01 2.53141582e-01 1.94920510e-01 2.55116001e-02 -6.50699437e-01 -8.67904782e-01 -1.53202012e-01 -8.66199255e-01 3.21563154e-01 -9.01388764e-01 -1.03798878e+00 3.25490773e-01 1.88999876e-01 -1.00117373e+00 -5.40035009e-01 -8.10822368e-01 -1.10080135e+00 1.01474226e+00 -4.88423139e-01 -3.51299226e-01 1.77352473e-01 4.58587497e-01 7.04606250e-02 -2.81337321e-01 8.33575845e-01 -5.40353544e-02 -3.31816405e-01 8.57924163e-01 2.30832592e-01 2.07037002e-01 3.73677611e-01 -1.33807468e+00 2.86975622e-01 6.06861353e-01 2.04721894e-02 7.37518489e-01 1.23277724e+00 -3.58473808e-01 -8.09022844e-01 -2.89474159e-01 7.77486145e-01 -6.92695260e-01 9.68324244e-01 9.17883217e-02 -5.85999787e-01 8.07944655e-01 -3.06611776e-01 -6.14510417e-01 7.39664018e-01 4.37496692e-01 -2.60633767e-01 2.32545570e-01 -9.91126895e-01 8.80314112e-01 1.87727854e-01 -1.44350141e-01 -7.15918064e-01 2.50271186e-02 3.68394613e-01 -4.92678791e-01 -6.55100524e-01 6.49585351e-02 8.07702124e-01 -1.63602448e+00 1.12425184e+00 -7.37446964e-01 4.15228754e-01 4.23451595e-04 3.72640900e-02 -8.91391814e-01 -1.94848344e-01 -8.84922445e-01 5.71100295e-01 7.67283916e-01 5.43891490e-01 -7.62390673e-01 1.42278790e+00 1.10667348e+00 2.68671542e-01 -6.19663954e-01 -9.50118482e-01 -8.57402921e-01 7.08881080e-01 -1.16438937e+00 5.13626993e-01 9.68280911e-01 6.84845567e-01 -1.47909466e-02 -4.61069494e-01 1.02240339e-01 5.85645795e-01 -2.13001370e-01 7.08200932e-01 -1.18589497e+00 -6.30587101e-01 -7.40661621e-01 -7.72489488e-01 -7.64443576e-01 -4.34108078e-01 -4.57854539e-01 -3.04310083e-01 -7.85072327e-01 5.99921584e-01 -6.02004111e-01 -2.10693236e-02 3.59581739e-01 -1.92661405e-01 2.64382243e-01 6.97005838e-02 -1.39799714e-01 -6.59769833e-01 -4.14602131e-01 8.21652710e-01 3.31072360e-01 -1.33459628e-01 6.36840224e-01 -1.31897759e+00 1.15655005e+00 8.89342129e-01 -5.22489607e-01 -1.74937800e-01 2.57558525e-01 9.41840529e-01 2.63833463e-01 4.25089538e-01 -1.03285956e+00 4.56025034e-01 -5.73152602e-01 1.54824927e-01 -3.48359138e-01 2.12653838e-02 -4.35160667e-01 4.87249464e-01 5.37059009e-01 -1.31270483e-01 1.57440093e-03 4.44604188e-01 1.95888951e-01 1.34798139e-01 -7.92490602e-01 5.39632440e-01 -4.29860562e-01 -5.99262476e-01 -1.97622180e-01 -7.68501043e-01 3.51196855e-01 1.24644864e+00 -4.74120587e-01 -4.70297009e-01 -8.22957456e-01 -6.76484704e-01 -9.57465917e-02 2.81329662e-01 -1.80463165e-01 4.38212067e-01 -8.75250340e-01 -6.93133056e-01 -1.71307087e-01 -1.26698524e-01 -3.33364904e-01 2.56708384e-01 6.15183234e-01 -1.15149081e+00 3.65620643e-01 -3.10628206e-01 -4.37334292e-02 -1.15153897e+00 3.61237794e-01 2.33259752e-01 -4.31166440e-01 -3.53713483e-01 8.84413838e-01 -1.24379791e-01 -1.80721879e-01 1.66978855e-02 1.05533384e-01 6.51504621e-02 -2.86946148e-01 8.04697216e-01 7.51543283e-01 -1.05191551e-01 -1.35559425e-01 -3.91649008e-01 2.23512694e-01 -3.42502773e-01 -3.14605117e-01 1.16330075e+00 7.34615698e-02 -1.72712624e-01 4.12764877e-01 6.32183790e-01 4.21100296e-02 -7.98317611e-01 2.19390258e-01 -1.25243738e-01 -6.63928807e-01 -3.39626670e-01 -9.56288636e-01 -6.83298230e-01 6.48627758e-01 8.98263231e-02 6.26989901e-01 7.34088540e-01 -1.85449243e-01 2.84781367e-01 3.04658264e-01 7.78159618e-01 -7.45550036e-01 -1.92776635e-01 7.15206921e-01 4.48273331e-01 -1.19741011e+00 1.86293766e-01 -3.54736656e-01 -8.44947338e-01 9.87835407e-01 5.16700804e-01 -4.11292464e-01 7.03616023e-01 5.48459828e-01 -2.11881086e-01 -5.02474494e-02 -7.18753755e-01 2.22828880e-01 -1.77773938e-01 7.16738522e-01 2.99268812e-01 4.91047770e-01 -5.62302291e-01 1.62687123e+00 -9.73766148e-01 2.00646833e-01 1.14517415e+00 7.24667609e-01 -6.70974255e-01 -7.32115090e-01 -7.46517420e-01 4.93994325e-01 -7.11104870e-01 -3.91416788e-01 -9.79368165e-02 1.07176375e+00 -2.95428429e-02 1.20215559e+00 2.18030274e-01 -5.97918212e-01 1.05820179e-01 -3.48346353e-01 3.54156286e-01 -3.72439414e-01 -5.64011395e-01 -1.89733416e-01 1.68940201e-01 -2.47025445e-01 -2.13433430e-02 -4.09681320e-01 -1.04071045e+00 -1.55534279e+00 -3.91015708e-01 6.68216705e-01 1.90913752e-01 1.08576906e+00 -2.46136382e-01 1.14447158e-02 2.24029884e-01 -5.51554501e-01 -4.39991295e-01 -5.86886346e-01 -1.22875857e+00 -1.93029307e-02 -3.63969594e-01 -5.15879810e-01 -6.28026664e-01 -5.10655284e-01]
[3.4973032474517822, 1.5352567434310913]
641beedd-d9d8-410e-bb89-1a6acb6867c7
specificity-preserving-rgb-d-saliency
2108.08162
null
https://arxiv.org/abs/2108.08162v2
https://arxiv.org/pdf/2108.08162v2.pdf
Specificity-preserving RGB-D Saliency Detection
Salient object detection (SOD) on RGB and depth images has attracted more and more research interests, due to its effectiveness and the fact that depth cues can now be conveniently captured. Existing RGB-D SOD models usually adopt different fusion strategies to learn a shared representation from the two modalities (\ie, RGB and depth), while few methods explicitly consider how to preserve modality-specific characteristics. In this study, we propose a novel framework, termed SPNet} (Specificity-preserving network), which benefits SOD performance by exploring both the shared information and modality-specific properties (\eg, specificity). Specifically, we propose to adopt two modality-specific networks and a shared learning network to generate individual and shared saliency prediction maps, respectively. To effectively fuse cross-modal features in the shared learning network, we propose a cross-enhanced integration module (CIM) and then propagate the fused feature to the next layer for integrating cross-level information. Moreover, to capture rich complementary multi-modal information for boosting the SOD performance, we propose a multi-modal feature aggregation (MFA) module to integrate the modality-specific features from each individual decoder into the shared decoder. By using a skip connection, the hierarchical features between the encoder and decoder layers can be fully combined. Extensive experiments demonstrate that our~\ours~outperforms cutting-edge approaches on six popular RGB-D SOD and three camouflaged object detection benchmarks. The project is publicly available at: https://github.com/taozh2017/SPNet.
['Deng-Ping Fan', 'Yi Zhou', 'Geng Chen', 'Huazhu Fu', 'Tao Zhou']
2021-08-18
null
http://openaccess.thecvf.com//content/ICCV2021/html/Zhou_Specificity-Preserving_RGB-D_Saliency_Detection_ICCV_2021_paper.html
http://openaccess.thecvf.com//content/ICCV2021/papers/Zhou_Specificity-Preserving_RGB-D_Saliency_Detection_ICCV_2021_paper.pdf
iccv-2021-1
['thermal-image-segmentation']
['computer-vision']
[ 3.32252860e-01 -1.88496336e-01 -4.17201698e-01 -4.49395180e-01 -8.19102764e-01 -1.44279182e-01 3.46647173e-01 -2.72356778e-01 -2.13769406e-01 5.73608220e-01 3.48751485e-01 1.56772912e-01 3.06047890e-02 -6.60961926e-01 -7.40911841e-01 -7.67930031e-01 4.55295682e-01 -5.00505328e-01 6.71423316e-01 -2.78894544e-01 7.89792687e-02 2.71292150e-01 -1.81044877e+00 4.51971710e-01 1.05600834e+00 1.46382391e+00 6.73329234e-01 2.62351364e-01 4.47900705e-02 9.25297081e-01 -1.99915487e-02 -3.53766352e-01 2.77103961e-01 -3.87418449e-01 -4.75395709e-01 4.02795114e-02 3.40240180e-01 -5.08609951e-01 -7.14192271e-01 1.34583127e+00 6.47122025e-01 -6.46657050e-02 1.64223433e-01 -1.58701372e+00 -7.44348764e-01 4.16121155e-01 -8.77694190e-01 3.41320753e-01 3.54367971e-01 5.05020976e-01 9.85919416e-01 -8.66205335e-01 6.19229555e-01 1.12488520e+00 4.50697631e-01 4.99816537e-01 -9.65342820e-01 -8.20643604e-01 3.57812405e-01 4.78778422e-01 -1.30427396e+00 -3.80190700e-01 1.25755227e+00 -3.29633839e-02 6.95291698e-01 7.21438304e-02 7.23075330e-01 1.05216300e+00 5.22776060e-02 1.40236962e+00 1.18486691e+00 -1.53910652e-01 -1.85092822e-01 1.68986246e-01 -1.00196600e-01 9.18191493e-01 1.73295349e-01 1.24756962e-01 -9.70409811e-01 3.30318689e-01 8.11532676e-01 3.00054312e-01 -5.00225186e-01 -5.48105240e-01 -1.32813144e+00 6.07118666e-01 1.05559719e+00 2.56621271e-01 -2.48171940e-01 2.10134178e-01 3.16335410e-01 -1.26397297e-01 4.23974961e-01 -6.40427694e-02 -4.37411040e-01 7.10117519e-02 -6.85154676e-01 8.76878873e-02 1.22182034e-01 1.06179929e+00 1.18051338e+00 -1.49123862e-01 -3.11440289e-01 7.87910998e-01 5.80550909e-01 6.14374340e-01 5.10366976e-01 -8.85621190e-01 6.65321410e-01 9.18421924e-01 -4.94062603e-02 -1.04534483e+00 -4.14076924e-01 -4.26051497e-01 -9.11837339e-01 2.23669022e-01 -5.43487146e-02 -1.09110484e-02 -9.66643989e-01 1.97195184e+00 3.57880861e-01 5.69494188e-01 2.16925945e-02 1.30268931e+00 1.23737121e+00 4.02600765e-01 1.12400532e-01 1.26079898e-02 1.25227082e+00 -1.08428621e+00 -6.36812091e-01 -3.96864980e-01 4.89658475e-01 -5.99937320e-01 1.05219030e+00 -1.16161974e-02 -1.20353854e+00 -5.52682340e-01 -1.23738945e+00 -6.57553256e-01 -4.61149544e-01 1.89754546e-01 6.44326210e-01 3.33224565e-01 -9.24191475e-01 2.56327152e-01 -8.46490920e-01 -6.09269962e-02 6.88611567e-01 3.97232205e-01 -3.61035734e-01 -3.16159904e-01 -1.34051239e+00 8.57501566e-01 4.49424624e-01 1.62850678e-01 -8.36208344e-01 -5.85563719e-01 -1.16642690e+00 -1.16041951e-01 3.47231597e-01 -9.11264479e-01 1.05929255e+00 -1.00278330e+00 -1.34481215e+00 7.98138738e-01 -3.72117907e-01 -4.05752286e-02 1.53141335e-01 -1.58157110e-01 -3.82378250e-01 3.29830170e-01 2.47073606e-01 1.02867293e+00 8.21367979e-01 -1.47156584e+00 -1.07753766e+00 -3.52057546e-01 2.91300416e-01 5.72199941e-01 -4.95129853e-01 -7.31868446e-02 -7.49244690e-01 -6.42491579e-01 3.75966936e-01 -5.86560428e-01 -2.10747439e-02 2.52107859e-01 -6.43889189e-01 -3.44694294e-02 8.96040618e-01 -5.64449012e-01 1.20739257e+00 -2.27065611e+00 4.82963294e-01 -7.02547431e-02 4.68261123e-01 1.52022734e-01 -1.41710117e-01 -9.91828740e-02 7.81103894e-02 -2.25666553e-01 -4.14183497e-01 -6.74347699e-01 8.71937573e-02 9.24732015e-02 -5.31171635e-02 4.22660649e-01 4.23971891e-01 1.15086317e+00 -1.07227719e+00 -5.75091422e-01 4.94531572e-01 6.76114023e-01 -4.35721159e-01 -1.64554361e-02 -7.73705840e-02 3.51424634e-01 -6.45565927e-01 9.94764328e-01 8.45677733e-01 -3.11473429e-01 -3.35309893e-01 -5.65145552e-01 -1.12356685e-01 1.46332458e-01 -1.07255173e+00 2.21040583e+00 -3.79223287e-01 4.27829593e-01 -3.32799666e-02 -6.96473897e-01 8.18157732e-01 6.41340464e-02 3.75504136e-01 -9.32437718e-01 3.82982641e-01 4.16810364e-01 -3.56503457e-01 -3.95610809e-01 4.17858839e-01 -8.99294987e-02 -1.01854444e-01 2.08302289e-01 2.37428233e-01 9.68670398e-02 -2.49629766e-01 1.42545879e-01 8.41742814e-01 2.05500424e-01 3.94010618e-02 2.00536296e-01 6.57444417e-01 -8.05398077e-02 7.90040314e-01 3.45481247e-01 -5.50158143e-01 8.33780050e-01 3.74058217e-01 2.71829162e-02 -6.05717182e-01 -1.15080190e+00 1.93775669e-02 1.00303710e+00 1.00721908e+00 -9.72308591e-02 -3.61862659e-01 -7.57163286e-01 4.98487987e-02 4.14648622e-01 -6.97362602e-01 -6.32412434e-01 -3.41683388e-01 -5.50533295e-01 4.32362646e-01 6.56079471e-01 1.08132851e+00 -1.02062964e+00 -5.80504000e-01 -4.13049497e-02 -4.24816549e-01 -1.08793461e+00 -3.99742544e-01 3.22919399e-01 -7.60906696e-01 -8.63195658e-01 -7.83882678e-01 -8.88522208e-01 4.16831642e-01 7.98821926e-01 7.11954296e-01 -1.03479244e-01 -9.29236263e-02 3.68810833e-01 -3.94399524e-01 -2.61851966e-01 3.50487649e-01 1.36775494e-01 -1.77954748e-01 1.20797433e-01 4.20437396e-01 -5.27681828e-01 -9.25475001e-01 1.99394420e-01 -1.08707833e+00 5.27688503e-01 7.61238635e-01 6.94731295e-01 6.36870146e-01 -1.98875740e-01 5.63238561e-01 -2.40441397e-01 1.68970972e-01 -5.57048142e-01 -2.28077754e-01 2.19982132e-01 -1.68187261e-01 -1.36867359e-01 1.01164028e-01 -7.23003522e-02 -1.40445876e+00 1.94987342e-01 -5.07054850e-02 -7.54865825e-01 -9.79755297e-02 3.36496174e-01 -7.14817405e-01 -2.99669564e-01 1.10904656e-01 4.13162470e-01 -2.11756583e-02 -5.16404748e-01 5.21423459e-01 5.16320705e-01 6.15806103e-01 -1.81057408e-01 7.61953592e-01 5.71638405e-01 -1.49767980e-01 -1.72500506e-01 -1.11790645e+00 -4.86007631e-01 -4.99688387e-01 -2.38160998e-01 9.40318406e-01 -1.32148457e+00 -5.25814950e-01 7.73540914e-01 -9.88312483e-01 -1.26382172e-01 -2.86736161e-01 5.04432201e-01 -5.33102810e-01 2.60664523e-01 -5.26536584e-01 -3.25764120e-01 -7.90337920e-02 -1.39675570e+00 1.41702306e+00 7.32098520e-01 4.41349834e-01 -8.39711964e-01 -1.31279558e-01 3.46050322e-01 3.10876280e-01 2.02104166e-01 6.36117995e-01 -1.49951622e-01 -8.83016586e-01 -2.89491587e-03 -9.49069321e-01 4.73779321e-01 2.44640529e-01 -3.63127351e-01 -1.24809408e+00 -2.23793872e-02 -6.36006519e-02 -3.30755979e-01 1.24753118e+00 4.36104536e-01 1.15094364e+00 2.09152713e-01 -4.21111375e-01 8.12266290e-01 1.59620261e+00 -1.95677429e-01 5.64772129e-01 4.87487942e-01 1.06774259e+00 3.36480737e-01 7.22262144e-01 5.14032960e-01 8.38001907e-01 6.23920381e-01 8.52716684e-01 -2.23276138e-01 -4.86147851e-01 -1.94270745e-01 4.98798341e-01 6.04586720e-01 -2.95826346e-02 -1.16232418e-01 -6.46040916e-01 6.03465974e-01 -1.98640895e+00 -8.46502185e-01 4.03263681e-02 1.86067069e+00 9.17838633e-01 4.19257358e-02 2.46793348e-02 2.42900159e-02 7.71664083e-01 3.62330794e-01 -7.25552320e-01 9.75575000e-02 -6.47403538e-01 -5.34632578e-02 5.06193995e-01 2.61157572e-01 -1.26416719e+00 8.97518933e-01 4.74731684e+00 1.01862502e+00 -1.18361688e+00 3.40242058e-01 5.26875973e-01 -3.96217138e-01 -5.99467576e-01 -1.24273218e-01 -8.09925437e-01 5.09910822e-01 2.38481089e-01 -8.25168714e-02 -4.27996926e-03 6.69143140e-01 1.09513506e-01 -3.50002080e-01 -8.13846648e-01 1.06752205e+00 2.03450486e-01 -1.34906375e+00 4.52501653e-03 -8.09064060e-02 8.54086697e-01 2.09886387e-01 3.71028215e-01 1.94836602e-01 5.73580572e-03 -6.05970979e-01 8.52646530e-01 8.14798951e-01 6.81948662e-01 -8.02970469e-01 7.55233347e-01 1.44191951e-01 -1.45233655e+00 -1.99100658e-01 -3.00038904e-01 7.56549314e-02 1.81294397e-01 5.68435729e-01 -9.76809561e-02 8.15275013e-01 9.72713172e-01 1.37262189e+00 -7.86626339e-01 1.24786758e+00 -2.53185004e-01 2.19121817e-02 -2.62894303e-01 1.51314914e-01 3.30369264e-01 1.26282632e-01 5.27500927e-01 9.40366268e-01 3.30571115e-01 9.27171037e-02 3.38183530e-02 7.98119962e-01 -2.55862307e-02 -2.35966250e-01 -3.98755282e-01 4.35743093e-01 3.41057450e-01 1.23661411e+00 -4.34397310e-01 -2.34472170e-01 -8.01230848e-01 1.11756122e+00 2.51047224e-01 3.49219650e-01 -1.15438008e+00 -3.72459292e-01 8.73200953e-01 -2.77709484e-01 5.44362247e-01 9.79663804e-03 -5.90070903e-01 -1.35618401e+00 1.56121984e-01 -5.58501899e-01 3.01390886e-01 -1.14031863e+00 -1.25322032e+00 4.03609425e-01 -1.10500246e-01 -1.68180549e+00 3.79735321e-01 -5.40724099e-01 -3.63297850e-01 9.25219178e-01 -2.14817882e+00 -1.57272661e+00 -6.28333986e-01 1.00409722e+00 2.61120915e-01 1.42182961e-01 2.39999011e-01 5.16571224e-01 -8.39898288e-01 5.71001530e-01 -1.61958709e-01 -1.01684801e-01 7.06028819e-01 -9.90808606e-01 -2.81866193e-01 9.45301890e-01 -2.19037145e-01 3.66599560e-01 2.33372092e-01 -5.22020578e-01 -1.39492548e+00 -1.22693563e+00 7.07133412e-01 -2.50870138e-01 4.91839498e-01 -8.18545818e-02 -8.97524893e-01 6.07692301e-01 1.12037241e-01 4.13203508e-01 4.56916451e-01 -3.02741647e-01 -4.11541462e-01 -3.26580077e-01 -1.05312455e+00 4.88393605e-01 1.32393992e+00 -7.88649201e-01 -5.70872605e-01 4.65299413e-02 1.15499294e+00 -4.76419032e-01 -8.02216887e-01 6.45797968e-01 4.01395291e-01 -1.40199959e+00 1.05821061e+00 -1.95909310e-02 7.62482584e-01 -7.14747250e-01 -4.51976418e-01 -9.21222448e-01 -2.27387756e-01 -1.20100483e-01 -2.91495144e-01 1.38665128e+00 1.38016373e-01 -4.91482407e-01 6.50588870e-01 4.10441279e-01 -5.42631507e-01 -9.60599422e-01 -1.08227456e+00 -4.59979177e-01 -3.49974573e-01 -6.95290744e-01 7.22649515e-01 7.35841811e-01 -7.88339321e-03 5.87616339e-02 -4.90237027e-01 3.81662786e-01 5.53585470e-01 3.31071913e-01 4.38557506e-01 -8.36404979e-01 -4.26390581e-02 -5.96435666e-01 -5.85834086e-01 -1.31308377e+00 -7.46659786e-02 -9.26242471e-01 1.63989693e-01 -1.59393728e+00 3.58583689e-01 -4.65818256e-01 -8.15002143e-01 7.29496479e-01 -4.51358318e-01 6.25291765e-01 3.58975440e-01 1.23405263e-01 -9.86169577e-01 1.08024657e+00 1.58504272e+00 -2.95088850e-02 -2.27834418e-01 -2.99268126e-01 -9.18811738e-01 7.97052622e-01 5.60510755e-01 -2.17925876e-01 -3.74021292e-01 -6.26855254e-01 9.36609283e-02 -1.16600774e-01 9.22552645e-01 -1.24822843e+00 4.10342753e-01 -2.32293960e-02 5.64253509e-01 -7.04315960e-01 5.04466772e-01 -7.87937641e-01 -2.49870822e-01 2.08528891e-01 -9.22093987e-02 -4.17352766e-01 2.35459551e-01 7.38912821e-01 -5.47359943e-01 2.18315393e-01 7.72201836e-01 1.70341715e-01 -1.30499470e+00 5.84870338e-01 1.97488174e-01 -1.98392868e-01 1.08205318e+00 -4.52126592e-01 -5.84833205e-01 -6.07404672e-02 -6.20205045e-01 3.96113932e-01 5.79026401e-01 6.32611156e-01 9.53811884e-01 -1.54595065e+00 -3.14858645e-01 2.23542064e-01 4.19116825e-01 2.51413852e-01 6.87507391e-01 1.26423645e+00 -1.44262582e-01 1.51427224e-01 -5.17997622e-01 -7.76023984e-01 -9.60984409e-01 3.67676914e-01 3.62636715e-01 1.98738463e-02 -4.80023146e-01 1.26751792e+00 4.17490482e-01 -1.74357951e-01 2.37379909e-01 -4.01654214e-01 -1.50305554e-01 5.66712916e-02 4.12802845e-01 2.39104077e-01 -1.85826451e-01 -9.11075890e-01 -5.45019984e-01 6.97705805e-01 3.20517197e-02 8.59246850e-02 1.27712870e+00 -5.73602974e-01 -9.27361473e-02 3.76341373e-01 1.33428502e+00 -3.29811990e-01 -1.71993697e+00 -7.55507469e-01 -3.48473012e-01 -5.87429106e-01 3.72644424e-01 -6.95387781e-01 -1.54892409e+00 8.78504097e-01 7.27726996e-01 -2.40113929e-01 1.80052829e+00 2.33963400e-01 1.00412798e+00 -7.69031942e-02 3.12886775e-01 -7.75476575e-01 2.65599638e-01 2.39876747e-01 7.21296668e-01 -1.52263701e+00 -7.22603174e-03 -6.97724164e-01 -8.18118930e-01 7.92032242e-01 9.27958012e-01 -1.89488396e-01 7.19904542e-01 -4.36121970e-02 -1.14555247e-01 -1.54146090e-01 -5.54984510e-01 -6.36787832e-01 4.35920596e-01 6.79179788e-01 4.48295623e-02 -1.51431158e-01 3.76982912e-02 1.00415730e+00 2.33422875e-01 1.50394991e-01 1.45754412e-01 1.10668612e+00 -5.39572060e-01 -8.09168756e-01 -1.03148185e-01 4.05164957e-01 5.38844392e-02 -1.79884151e-01 -1.73275799e-01 6.84252560e-01 8.37952077e-01 8.38992417e-01 -1.61391065e-01 -7.24749386e-01 2.56735861e-01 -2.39513338e-01 3.82371873e-01 -5.16491532e-01 -4.05207932e-01 -3.11545767e-02 -2.24852145e-01 -8.83052826e-01 -8.74630451e-01 -7.39445508e-01 -1.23736989e+00 -1.28085852e-01 -4.03959423e-01 -5.44515789e-01 3.67478549e-01 1.02876365e+00 5.63918829e-01 7.78991699e-01 6.32527590e-01 -1.15060568e+00 6.42679259e-02 -6.16246045e-01 -6.93146169e-01 2.26070926e-01 5.23237526e-01 -1.03885245e+00 -3.73258770e-01 -5.79547957e-02]
[9.65461540222168, -0.8142433166503906]
0ad67646-e791-4a41-93a1-049fffcc65d7
adversarial-deep-structured-nets-for-mass
1710.09288
null
http://arxiv.org/abs/1710.09288v2
http://arxiv.org/pdf/1710.09288v2.pdf
Adversarial Deep Structured Nets for Mass Segmentation from Mammograms
Mass segmentation provides effective morphological features which are important for mass diagnosis. In this work, we propose a novel end-to-end network for mammographic mass segmentation which employs a fully convolutional network (FCN) to model a potential function, followed by a CRF to perform structured learning. Because the mass distribution varies greatly with pixel position, the FCN is combined with a position priori. Further, we employ adversarial training to eliminate over-fitting due to the small sizes of mammogram datasets. Multi-scale FCN is employed to improve the segmentation performance. Experimental results on two public datasets, INbreast and DDSM-BCRP, demonstrate that our end-to-end network achieves better performance than state-of-the-art approaches. \footnote{https://github.com/wentaozhu/adversarial-deep-structural-networks.git}
['Trac. D. Tran', 'Xiang Xiang', 'Wentao Zhu', 'Xiaohui Xie', 'Gregory D. Hager']
2017-10-24
null
null
null
null
['mass-segmentation-from-mammograms']
['medical']
[ 1.95526436e-01 5.76847017e-01 -3.00590754e-01 -7.25187659e-01 -8.97567272e-01 3.78179811e-02 1.90974519e-01 2.37577432e-03 -4.53803927e-01 5.73799491e-01 9.28556100e-02 -5.91162205e-01 3.72856796e-01 -1.02089405e+00 -8.90034616e-01 -7.14092016e-01 -1.49147943e-01 5.40320992e-01 4.85575765e-01 -4.43959236e-02 -3.17321718e-01 1.80393279e-01 -5.90023041e-01 2.47673988e-01 1.00037348e+00 1.22871566e+00 2.04491943e-01 5.89173257e-01 -1.40170708e-01 7.53546178e-01 -1.55309111e-01 -6.72525406e-01 2.57195592e-01 -4.76719081e-01 -9.07193720e-01 4.02204879e-02 2.60128796e-01 -5.83365798e-01 -6.55709803e-01 1.25323999e+00 5.45040190e-01 -1.49883017e-01 6.84051037e-01 -8.53320241e-01 -4.55096811e-01 8.31767023e-01 -8.81512046e-01 3.84772271e-01 -3.45074356e-01 8.56712684e-02 4.89448428e-01 -5.75876176e-01 4.87393290e-01 1.03457260e+00 9.66308773e-01 7.08910048e-01 -8.68831277e-01 -9.36827481e-01 -1.00819208e-01 -2.36791983e-01 -1.28042483e+00 -1.08379386e-01 6.01312876e-01 -1.64173737e-01 1.75746933e-01 3.17959398e-01 6.54031515e-01 7.32379556e-01 4.78712797e-01 1.00838554e+00 7.15280533e-01 -8.73917714e-02 -3.69738303e-02 -3.49159241e-01 -2.28949323e-01 1.13821602e+00 9.88980681e-02 -5.53234257e-02 1.53424039e-01 -2.29423881e-01 1.05192983e+00 2.99337208e-01 3.99848931e-02 -1.26920119e-01 -8.23521137e-01 9.47629988e-01 9.36484277e-01 3.19103628e-01 -2.88746387e-01 3.94737005e-01 4.84870613e-01 -1.69128194e-01 7.05840290e-01 -1.92796454e-01 -1.53002933e-01 4.05106783e-01 -1.21789336e+00 1.50640190e-01 5.93415201e-01 6.78963363e-01 3.18955183e-01 -7.53700435e-02 -2.89416224e-01 7.76550770e-01 6.17480218e-01 6.73544288e-01 6.52520835e-01 -6.96241975e-01 3.64688784e-01 5.36473632e-01 -4.97140974e-01 -7.71642685e-01 -8.45614314e-01 -5.50314009e-01 -1.28257060e+00 -3.66911329e-02 4.81055707e-01 -2.64006346e-01 -1.63794839e+00 1.36611056e+00 5.30325711e-01 2.75964350e-01 -1.04328774e-01 1.01171947e+00 1.30741191e+00 4.51373398e-01 4.18717355e-01 1.57212988e-02 1.50742495e+00 -9.89066005e-01 -4.15717781e-01 -2.82425463e-01 5.72178066e-01 -3.91023129e-01 6.94408298e-01 4.98207249e-02 -1.25136137e+00 -4.30394292e-01 -7.69358695e-01 -1.69982150e-01 -5.76612714e-04 -4.60437685e-02 7.48147488e-01 4.36235309e-01 -7.18860149e-01 6.40436590e-01 -1.68771434e+00 7.42558017e-02 1.09948313e+00 4.98057663e-01 7.22884312e-02 7.67562911e-02 -1.16445458e+00 5.73247850e-01 5.20285428e-01 6.34157285e-02 -9.90834296e-01 -7.24036694e-01 -8.72904241e-01 -1.76544443e-01 4.36651140e-01 -6.56309724e-01 1.61777616e+00 -8.80224824e-01 -1.05284667e+00 9.90279317e-01 5.01573607e-02 -7.94970810e-01 9.71552908e-01 2.29845002e-01 -2.68361926e-01 5.20403743e-01 1.93469465e-01 9.69765961e-01 6.90540791e-01 -1.10429275e+00 -5.57787418e-01 -3.64153743e-01 -3.91862541e-01 1.13243282e-01 -5.62117100e-02 4.16144766e-02 -8.47876489e-01 -7.90315151e-01 3.89849454e-01 -9.25948679e-01 -6.44269168e-01 2.56619006e-01 -6.22990787e-01 1.01328209e-01 6.30200684e-01 -1.10324526e+00 1.10555673e+00 -2.03163719e+00 -1.71352461e-01 2.98594505e-01 4.14451510e-01 2.30078593e-01 1.20183609e-01 -2.30250105e-01 7.67762065e-02 1.81506544e-01 -7.04503834e-01 -4.88896817e-01 -2.05349922e-01 1.34679899e-01 2.93875396e-01 5.69644868e-01 1.17949836e-01 1.50892925e+00 -8.22339654e-01 -1.19023073e+00 1.25479445e-01 5.17440677e-01 -2.02023864e-01 -2.88977381e-02 -4.08856690e-01 6.71719909e-01 -8.66432369e-01 9.98141170e-01 9.81553018e-01 -5.58444321e-01 1.44604091e-02 8.06374475e-03 4.15506899e-01 -2.14442819e-01 -6.21884108e-01 1.79058504e+00 -1.64188489e-01 -1.67160053e-02 3.25009882e-01 -9.63939250e-01 5.79123199e-01 8.49369392e-02 6.80052161e-01 -7.15156913e-01 6.51927888e-01 3.37862581e-01 1.44671172e-01 -3.33679020e-01 1.76211074e-01 -2.48606846e-01 -9.82848331e-02 2.50775870e-02 -1.75499797e-01 -2.34612480e-01 8.09518695e-02 3.16701978e-01 1.00225925e+00 -3.87526155e-02 1.99473962e-01 -2.53947020e-01 2.96828091e-01 -4.34094109e-02 7.92292118e-01 4.79879260e-01 -2.60604560e-01 8.85459542e-01 5.96728683e-01 -2.28463709e-01 -8.44747126e-01 -1.02114356e+00 -5.63371301e-01 8.01487327e-01 3.67723793e-01 1.13918474e-02 -7.64197290e-01 -9.22892034e-01 4.33908440e-02 4.33506012e-01 -9.45038199e-01 -4.33336049e-02 -6.41667306e-01 -1.08176434e+00 7.54305780e-01 9.86981332e-01 1.00173438e+00 -1.01127017e+00 -4.17475253e-01 3.85193646e-01 -2.14467213e-01 -7.89289892e-01 -6.23724580e-01 -4.62169126e-02 -1.11618721e+00 -9.85650957e-01 -1.13489723e+00 -8.90897155e-01 9.88159359e-01 -3.92155200e-01 1.22070003e+00 4.17072058e-01 -4.65965688e-01 -3.27362806e-01 -2.94056803e-01 -6.38046622e-01 -7.41905272e-01 2.08068103e-01 -6.94931686e-01 -3.13311666e-01 2.04255834e-01 -5.51804185e-01 -1.11410975e+00 3.19984049e-01 -1.10704160e+00 3.24331284e-01 6.92785442e-01 8.54543269e-01 1.04159832e+00 1.11830309e-02 4.28806812e-01 -1.28491163e+00 1.68080181e-01 -5.77934444e-01 -4.10137355e-01 1.70451179e-01 -1.66548818e-01 -3.48648787e-01 3.20975304e-01 -3.35758120e-01 -8.65998387e-01 2.50624537e-01 -6.24246657e-01 -3.10151488e-01 -7.90635571e-02 5.87920010e-01 5.74233942e-03 -2.36268505e-01 5.03367722e-01 2.08450735e-01 2.07946315e-01 -2.78807223e-01 6.52326196e-02 5.46838582e-01 8.73343110e-01 -1.35867909e-01 7.33573258e-01 6.76526904e-01 2.69980460e-01 -3.20346296e-01 -8.82447124e-01 -1.82938859e-01 -4.75795180e-01 1.02760769e-01 1.18608522e+00 -9.59511280e-01 -3.06083411e-01 7.16235280e-01 -6.17593706e-01 -6.93933547e-01 -2.62332529e-01 4.33543026e-01 -3.25135022e-01 3.32130522e-01 -1.22844613e+00 -3.94457191e-01 -9.54868078e-01 -1.11924660e+00 1.06123042e+00 6.41503990e-01 3.20095807e-01 -9.77929592e-01 -3.18274945e-01 5.02228498e-01 4.67661142e-01 7.47142315e-01 4.19588178e-01 -6.40798390e-01 -3.63257110e-01 -2.92945266e-01 -4.30227816e-01 2.60386914e-01 5.01460806e-02 -2.35507682e-01 -6.43043578e-01 -2.42355362e-01 -1.85098290e-01 -4.62072611e-01 1.26005375e+00 9.06607985e-01 1.82112849e+00 -1.66186411e-02 -7.25354075e-01 1.11095655e+00 1.22358763e+00 1.54956549e-01 7.78625011e-01 1.28084138e-01 8.34687173e-01 -6.02402538e-02 6.42150283e-01 2.50272930e-01 4.55875814e-01 5.02708182e-02 6.28176093e-01 -7.69985557e-01 -1.26625061e-01 -2.86303073e-01 -3.35524887e-01 2.76702374e-01 3.72047313e-02 -2.13961080e-01 -9.94561136e-01 3.68982077e-01 -1.64984846e+00 -5.73837578e-01 -1.00284263e-01 1.56843996e+00 1.02394092e+00 3.02845180e-01 1.12375915e-01 -3.45063865e-01 6.01453602e-01 2.36098975e-01 -9.19869721e-01 2.04503521e-01 1.52318507e-01 2.47768193e-01 9.68925655e-01 3.16408902e-01 -1.56171644e+00 7.42372513e-01 5.32670641e+00 1.25566006e+00 -1.18175471e+00 3.48136812e-01 1.38048911e+00 4.60659526e-02 -5.31659760e-02 -3.76030952e-01 -7.15756476e-01 7.03993917e-01 7.00325787e-01 1.51283905e-01 -1.52557373e-01 7.43840039e-01 -8.45609531e-02 -2.06754953e-01 -5.03713489e-01 5.44896960e-01 -8.56589302e-02 -1.27245533e+00 -3.76512021e-01 8.76602083e-02 7.70885408e-01 3.98677915e-01 1.23166870e-02 2.81452626e-01 2.81578094e-01 -1.19617879e+00 3.93146276e-01 4.91129637e-01 1.07864094e+00 -7.69406021e-01 9.09337580e-01 3.52072597e-01 -1.29044604e+00 3.68471384e-01 -3.73205692e-01 6.53032541e-01 3.12665284e-01 5.42303562e-01 -8.34765553e-01 5.63259900e-01 4.65829611e-01 4.86752957e-01 -7.89557993e-01 1.18331397e+00 -7.20927417e-02 7.82789171e-01 -5.14889777e-01 1.40860438e-01 1.78554788e-01 4.05753441e-02 2.39067167e-01 1.32966065e+00 2.10879609e-01 3.49295735e-01 4.48428780e-01 8.79510641e-01 -5.55831313e-01 2.98404377e-02 6.01416044e-02 -6.67630360e-02 1.06581770e-01 1.45027387e+00 -1.29498613e+00 -3.84746730e-01 -3.51045072e-01 8.40336919e-01 -1.32404760e-01 -3.47053669e-02 -1.19926381e+00 -1.94762602e-01 -2.06257507e-01 3.03930312e-01 3.38064283e-01 2.01019406e-01 -1.21204823e-01 -9.54259276e-01 -3.45999599e-02 -5.95859587e-01 5.39864123e-01 -3.15681905e-01 -1.41481745e+00 5.15855432e-01 3.85412090e-02 -1.03904688e+00 1.28455102e-01 -1.92319810e-01 -8.96049261e-01 7.10566580e-01 -1.46000600e+00 -1.53992498e+00 -4.65319097e-01 4.36421841e-01 3.65970939e-01 5.47803119e-02 4.82409179e-01 4.68748420e-01 -2.71470249e-01 8.39795470e-01 1.58821493e-02 7.23708451e-01 3.96034896e-01 -1.37234843e+00 5.93893826e-01 6.60690606e-01 -4.60725605e-01 7.65212206e-03 2.12762564e-01 -1.12991619e+00 -9.72428858e-01 -1.50525498e+00 2.28604525e-01 -1.02863684e-01 5.55265367e-01 -2.80106813e-01 -1.05337143e+00 6.98549032e-01 -3.15478407e-02 7.26057112e-01 4.52720314e-01 -4.96174186e-01 3.05011958e-01 1.40181497e-01 -1.47132540e+00 1.61705539e-01 9.86545384e-01 7.99813680e-03 -2.63542950e-01 5.57737947e-01 9.15060103e-01 -1.32577801e+00 -1.09262800e+00 8.22877944e-01 3.75658661e-01 -5.41872442e-01 8.80519032e-01 -2.62697041e-01 8.24855328e-01 -2.44103782e-02 1.88544109e-01 -1.00004375e+00 -1.61026940e-01 -2.44863123e-01 -1.58337057e-01 1.00847673e+00 6.21718049e-01 -5.83596468e-01 1.19911683e+00 6.60229743e-01 -2.76550353e-01 -1.19357967e+00 -8.53147030e-01 -4.84628797e-01 5.22673488e-01 -2.30791077e-01 6.02797508e-01 6.71456039e-01 -4.48174387e-01 -1.56088695e-01 -8.98827389e-02 1.35731772e-01 6.94873333e-01 9.92175117e-02 3.05088758e-01 -9.49789822e-01 -4.26678866e-01 -3.73239934e-01 -5.31512439e-01 -1.02202439e+00 1.82116050e-02 -1.08575523e+00 -2.90383548e-02 -1.61737657e+00 4.66232717e-01 -5.22287548e-01 -2.76239932e-01 6.74995661e-01 -4.11448687e-01 6.25961900e-01 3.35749462e-02 -5.85550852e-02 -6.47874713e-01 3.85822177e-01 1.87470973e+00 -2.91616350e-01 -1.18017174e-01 4.03283447e-01 -6.37612045e-01 8.13385844e-01 9.92301941e-01 -6.25707686e-01 -9.94516015e-02 -3.28585625e-01 -2.36355424e-01 4.58667338e-01 5.62942028e-01 -9.68195379e-01 3.65181118e-02 -6.77692369e-02 9.19854283e-01 -9.57787216e-01 1.67187184e-01 -5.68708599e-01 2.72804499e-02 7.21309841e-01 -2.33583570e-01 -5.09611428e-01 4.05220121e-01 4.46608722e-01 -9.39460322e-02 -3.27120095e-01 9.84385431e-01 -3.93956482e-01 -1.83282942e-01 9.51031804e-01 1.31915241e-01 1.94941476e-01 9.81303990e-01 1.39155090e-01 -1.49226353e-01 -2.04792306e-01 -1.06374490e+00 8.02261710e-01 3.56625646e-01 -8.56165867e-03 4.88766372e-01 -1.19565368e+00 -9.75631356e-01 -1.33878300e-02 -2.71109760e-01 8.83958399e-01 4.18020070e-01 1.10560644e+00 -9.19842899e-01 -9.29451063e-02 -2.78333742e-02 -5.62597036e-01 -1.32293344e+00 1.95966572e-01 8.53038788e-01 -6.13498449e-01 -9.99013662e-01 1.15668368e+00 2.05268502e-01 -4.07424837e-01 3.17347705e-01 -5.31159341e-01 1.20552570e-01 -4.10005331e-01 4.65626955e-01 -3.20557281e-02 -8.51143599e-02 -4.68826711e-01 -2.60216057e-01 2.66881257e-01 -3.65579307e-01 1.95025176e-01 1.25849307e+00 2.39528399e-02 1.29807880e-02 -1.57831818e-01 1.15714657e+00 -2.52278447e-01 -1.34495902e+00 -4.06495482e-01 -4.08082217e-01 -1.78671256e-01 3.30408752e-01 -8.11704576e-01 -1.80489743e+00 7.30421484e-01 8.88028204e-01 -1.30885309e-02 1.35343456e+00 2.32172012e-01 1.18310857e+00 1.03144482e-01 -8.97616788e-04 -7.28782594e-01 -2.28824705e-01 1.19802892e-01 7.03499913e-01 -1.62634146e+00 2.74502784e-01 -6.03827417e-01 -7.60013521e-01 9.60685253e-01 7.19955444e-01 -1.83041692e-01 8.79401803e-01 3.80172491e-01 1.51736081e-01 -3.51617783e-01 -1.02349922e-01 -1.77370816e-01 2.73932934e-01 3.41112524e-01 2.62636840e-01 3.05142999e-01 -4.18916374e-01 7.73539186e-01 -2.05953181e-01 2.10612670e-01 6.84749335e-02 1.03914940e+00 -3.78095388e-01 -9.96193349e-01 -1.76139936e-01 9.97298121e-01 -9.57649708e-01 -1.39828920e-01 -1.20561518e-01 9.16618168e-01 3.53073776e-01 5.15803456e-01 3.40010412e-02 -2.71766800e-02 3.76783982e-02 -2.12459832e-01 2.59375781e-01 -4.80063647e-01 -6.52800262e-01 4.90049452e-01 -1.89953133e-01 -4.07471240e-01 -2.60497838e-01 -5.87022305e-01 -1.95045567e+00 -8.54677856e-02 -3.21743101e-01 -3.09954416e-02 4.84106988e-01 6.78967118e-01 -8.03752244e-02 8.29845846e-01 4.49172884e-01 -7.26513267e-01 -6.23410404e-01 -1.27784288e+00 -6.84084356e-01 3.76655042e-01 2.70683587e-01 -3.10201406e-01 2.08408479e-02 5.60316816e-02]
[14.845076560974121, -2.4297332763671875]
4d5a2001-1554-452f-b6d9-db57cdb95153
network-giant-fully-distributed-newton-type
2305.07898
null
https://arxiv.org/abs/2305.07898v1
https://arxiv.org/pdf/2305.07898v1.pdf
Network-GIANT: Fully distributed Newton-type optimization via harmonic Hessian consensus
This paper considers the problem of distributed multi-agent learning, where the global aim is to minimize a sum of local objective (empirical loss) functions through local optimization and information exchange between neighbouring nodes. We introduce a Newton-type fully distributed optimization algorithm, Network-GIANT, which is based on GIANT, a Federated learning algorithm that relies on a centralized parameter server. The Network-GIANT algorithm is designed via a combination of gradient-tracking and a Newton-type iterative algorithm at each node with consensus based averaging of local gradient and Newton updates. We prove that our algorithm guarantees semi-global and exponential convergence to the exact solution over the network assuming strongly convex and smooth loss functions. We provide empirical evidence of the superior convergence performance of Network-GIANT over other state-of-art distributed learning algorithms such as Network-DANE and Newton-Raphson Consensus.
['Subhrakanti Dey', 'Luca Schenato', 'Ganesh Sharma', 'Alessio Maritan']
2023-05-13
null
null
null
null
['distributed-optimization', 'type']
['methodology', 'speech']
[-6.49768054e-01 7.45093375e-02 4.01629768e-02 -3.13558549e-01 -1.26629484e+00 -4.35752153e-01 2.52305299e-01 3.42152089e-01 -7.26850927e-01 1.10879922e+00 -5.11660948e-02 9.93471071e-02 -6.44903660e-01 -6.56140387e-01 -8.46599817e-01 -1.14645123e+00 -7.56354332e-01 1.03226793e+00 -7.30784163e-02 -1.04408152e-02 -5.35024935e-03 1.76774561e-01 -7.98745871e-01 -1.24308839e-01 7.57415771e-01 9.82385635e-01 -1.18557096e-01 1.12895751e+00 2.45850265e-01 1.06038117e+00 -3.99385065e-01 -3.85469466e-01 7.44166732e-01 -4.24513191e-01 -7.60073781e-01 -1.03568867e-01 5.96076727e-01 -3.79807293e-01 -5.20683378e-02 1.09439802e+00 8.44244957e-01 3.01855475e-01 3.26894045e-01 -1.45465732e+00 -1.37958393e-01 9.27696943e-01 -5.69220662e-01 -6.72209859e-02 -5.84607460e-02 1.42756343e-01 1.32653546e+00 -6.59521580e-01 6.14369035e-01 1.30384004e+00 1.21477151e+00 3.90734613e-01 -1.11565292e+00 -4.63645935e-01 1.37513876e-01 1.57952413e-01 -1.19300497e+00 -2.13336945e-01 4.86145765e-01 1.22266347e-02 5.82724750e-01 2.75067091e-01 5.59344709e-01 3.54327768e-01 4.35091913e-01 8.05585325e-01 9.65808630e-01 -4.85060602e-01 7.73404360e-01 -5.50360307e-02 -4.24816608e-01 1.25110579e+00 2.53650367e-01 -8.30901340e-02 -9.26620126e-01 -9.13706124e-01 6.29215300e-01 1.82699412e-02 -7.68631771e-02 -6.41271055e-01 -1.04304874e+00 1.13185573e+00 5.84224105e-01 -8.10969919e-02 -9.30474997e-01 6.89375877e-01 5.48572481e-01 9.09867823e-01 9.61444020e-01 -1.22430272e-01 -7.34314203e-01 -7.15107322e-02 -9.48872209e-01 2.97468722e-01 1.71868265e+00 3.33464980e-01 1.24837613e+00 4.36183810e-02 3.10103506e-01 5.70504785e-01 7.49864399e-01 6.94316208e-01 2.34174222e-01 -1.51041031e+00 3.48326683e-01 2.90547848e-01 1.48958340e-01 -1.03526556e+00 -4.58518595e-01 -5.51288068e-01 -9.56357419e-01 6.31842136e-01 4.39910442e-01 -1.02306211e+00 1.17691062e-01 1.76550114e+00 1.01083064e+00 2.78794050e-01 8.96590725e-02 1.10854220e+00 -2.28549521e-02 5.56848109e-01 -2.81364322e-01 -5.72811604e-01 3.75300974e-01 -1.53496051e+00 -4.06553686e-01 1.48922056e-01 1.03465152e+00 -3.54313165e-01 1.27117261e-01 4.53289688e-01 -1.21776557e+00 2.61121303e-01 -5.94130278e-01 4.76709574e-01 -5.33647425e-02 -3.03052604e-01 6.73316061e-01 5.06137252e-01 -1.65883315e+00 1.06871927e+00 -9.86705720e-01 -3.44922960e-01 2.83641100e-01 5.92631698e-01 -3.69779140e-01 -1.86200887e-02 -6.89146101e-01 6.72914505e-01 1.35837272e-01 1.37064859e-01 -1.33312011e+00 -9.94051099e-01 -3.41112643e-01 -9.58484784e-02 4.29186672e-01 -1.15734863e+00 1.29220164e+00 -1.34498489e+00 -1.77373266e+00 3.80327851e-01 5.33010103e-02 -7.00902998e-01 1.00022435e+00 -3.57818127e-01 2.98612118e-01 6.81583658e-02 -5.55172637e-02 -7.38238404e-03 7.70456791e-01 -1.21634412e+00 -9.18661773e-01 -4.90579188e-01 -2.29406446e-01 5.06984174e-01 -6.36173904e-01 -1.80239290e-01 1.02605931e-01 -1.24058537e-01 -4.58452284e-01 -9.13492024e-01 -6.73531711e-01 4.21105295e-01 -1.47018075e-01 -4.91089433e-01 1.11722863e+00 -4.98778343e-01 8.81535351e-01 -1.51008868e+00 3.14877898e-01 6.44745946e-01 6.49838567e-01 -2.12948829e-01 -4.89400625e-01 9.06637371e-01 5.66484332e-01 -1.15207866e-01 4.52998243e-02 -7.61235058e-01 1.54672772e-01 2.67947942e-01 1.94326490e-01 1.15875018e+00 -8.40725064e-01 7.32026219e-01 -1.22907174e+00 -5.71857333e-01 -1.39901236e-01 2.15908512e-01 -6.10429287e-01 2.04994291e-01 -3.47302228e-01 9.59175378e-02 -7.41496980e-01 4.35685694e-01 3.47197115e-01 -4.79696393e-01 6.33222222e-01 2.97028851e-02 -1.50697589e-01 -3.43168944e-01 -1.50047457e+00 1.89687145e+00 -5.66479206e-01 2.65480131e-01 1.41219640e+00 -1.04609179e+00 5.87620556e-01 5.53024113e-01 1.03394365e+00 1.38131455e-01 -1.20063005e-02 5.93909442e-01 -4.36608315e-01 4.72606067e-03 -1.72020290e-02 2.15829045e-01 3.01184386e-01 1.26478839e+00 1.91343024e-01 4.35846159e-03 4.15677298e-03 6.33803546e-01 1.53343427e+00 -3.00437093e-01 6.53864220e-02 -6.73931539e-01 4.29411173e-01 -4.62410264e-02 6.99583173e-01 1.28380227e+00 -2.71690637e-01 -2.29066163e-01 1.77973762e-01 -7.37049937e-01 -1.10963154e+00 -1.01025200e+00 7.50099361e-01 1.66695166e+00 -6.23929240e-02 -5.23701012e-01 -7.10699558e-01 -8.78592551e-01 4.67398018e-01 2.35244744e-02 -4.38518971e-01 2.37472758e-01 -3.33885223e-01 -6.88802898e-01 3.02102655e-01 -9.48139355e-02 5.63659251e-01 -5.61905921e-01 -3.06254417e-01 5.41372716e-01 1.92802429e-01 -3.60785425e-01 -8.56799424e-01 7.20377192e-02 -9.17710602e-01 -1.25576818e+00 -4.83287543e-01 -5.40977478e-01 7.36890972e-01 2.04698294e-02 1.18723941e+00 2.02271298e-01 -9.18811709e-02 1.32602406e+00 8.39119181e-02 -3.60540360e-01 -4.28815395e-01 3.26420784e-01 3.78566086e-01 5.51151752e-01 -4.63872284e-01 -9.16288733e-01 -8.82519066e-01 2.02388763e-01 -6.76354349e-01 -2.73100674e-01 6.04830444e-01 8.59076858e-01 4.48975652e-01 -1.28234088e-01 5.51270247e-01 -8.28933001e-01 1.02049565e+00 -6.74421787e-01 -8.93078268e-01 5.16889453e-01 -8.68003428e-01 -2.48735398e-02 8.66759479e-01 -3.16697866e-01 -8.78133833e-01 3.95978540e-01 6.84548914e-01 -5.60555935e-01 5.08165240e-01 5.94511211e-01 5.32805979e-01 -9.77565348e-01 6.53452575e-01 2.71135986e-01 6.16546869e-01 -3.25045675e-01 7.43409693e-01 6.00877047e-01 2.27266863e-01 -1.02506018e+00 7.63729751e-01 6.94670677e-01 1.80114880e-01 -6.38358593e-01 -7.61878908e-01 -4.95450944e-01 -2.54920095e-01 -6.36629760e-01 1.32511988e-01 -1.00762260e+00 -1.43610442e+00 7.07845211e-01 -1.10165966e+00 -8.33103597e-01 -4.01685864e-01 4.75753307e-01 -7.80551016e-01 3.43975157e-01 -8.96520972e-01 -9.59873259e-01 -1.06538928e+00 -3.18351895e-01 6.37388289e-01 2.48969510e-01 2.19429106e-01 -1.90125322e+00 8.49578440e-01 2.26090968e-01 1.06203616e+00 2.74784386e-01 -6.28117099e-02 -9.20949817e-01 -5.50795436e-01 -2.22462133e-01 1.07036062e-01 2.82760918e-01 -3.02467570e-02 -5.62364198e-02 -3.12853158e-01 -1.02625334e+00 -1.14886165e-01 -9.73505497e-01 5.79590440e-01 4.44233686e-01 5.52636325e-01 -1.01542401e+00 -2.06899092e-01 5.48790157e-01 1.95412385e+00 -7.42962122e-01 -3.20394307e-01 1.51354343e-01 6.85253263e-01 1.51704609e-01 2.64322460e-02 1.19857264e+00 7.36979842e-01 1.83670193e-01 7.29565561e-01 1.15563214e-01 2.21265972e-01 -4.95626300e-04 6.45650268e-01 1.19991326e+00 -1.30429327e-01 2.58274358e-02 -7.84359574e-01 6.93889380e-01 -2.71172714e+00 -8.13648999e-01 5.23167811e-02 2.00876880e+00 1.17537677e+00 -6.43039644e-01 2.19209254e-01 -7.01117933e-01 7.40346074e-01 1.03723682e-01 -9.37176168e-01 -2.65902936e-01 -1.67937919e-01 -1.14644557e-01 1.03233290e+00 7.35324800e-01 -8.79315615e-01 6.49325430e-01 6.52024412e+00 9.26235616e-01 -9.28821087e-01 5.37730455e-01 5.14391780e-01 -4.27155465e-01 -2.40641292e-02 -4.11846340e-02 -4.52903628e-01 1.78595096e-01 1.10029340e+00 -5.74808419e-01 1.06004620e+00 1.11655068e+00 3.65441889e-01 3.87205742e-03 -8.99137497e-01 7.78679132e-01 -1.78942740e-01 -1.68298411e+00 -3.82195622e-01 2.03577101e-01 1.60785365e+00 8.73261213e-01 -3.86267304e-01 -1.32679552e-01 1.46486759e+00 -5.84913492e-01 4.06650811e-01 6.35343254e-01 1.08996630e-01 -7.07431853e-01 5.33217430e-01 4.45977360e-01 -1.20489478e+00 -3.37802857e-01 -4.20713484e-01 -7.13990033e-02 1.99337989e-01 9.89838064e-01 -3.44318688e-01 5.75521469e-01 6.94468200e-01 7.75768757e-01 3.67584676e-02 1.32841790e+00 8.27648416e-02 8.11042011e-01 -9.56890583e-01 -1.91522270e-01 5.54695189e-01 -5.50030828e-01 8.31303298e-01 1.02475750e+00 -6.57062903e-02 -3.17689031e-01 8.64925683e-01 5.05628109e-01 -4.48390990e-01 3.28306407e-01 -2.59567827e-01 4.17248607e-01 6.72942460e-01 1.82823181e+00 -7.59260282e-02 -3.66051674e-01 -3.68952930e-01 8.60361040e-01 9.52007592e-01 4.49344844e-01 -3.28782231e-01 -3.34573597e-01 7.84551322e-01 -5.99382579e-01 4.48457837e-01 -2.55864590e-01 5.82712553e-02 -1.01241791e+00 -2.67125051e-02 -8.08715999e-01 8.20714116e-01 -1.84371069e-01 -1.94443715e+00 -3.56857362e-03 -6.76556885e-01 -4.57714289e-01 -2.96093762e-01 -1.69675633e-01 -1.22974968e+00 3.81502867e-01 -1.30962157e+00 -1.22988772e+00 -5.09624695e-03 1.02608705e+00 7.02309012e-02 -3.30468208e-01 7.51042962e-01 3.47704105e-02 -4.81239587e-01 5.88730454e-01 1.07379103e+00 3.48342210e-02 8.00487459e-01 -1.48831558e+00 -4.94003773e-01 4.43411082e-01 -2.39612944e-02 1.43322153e-02 6.40433192e-01 -5.57265460e-01 -2.13420320e+00 -1.32538760e+00 5.35547256e-01 6.86938316e-02 1.38697100e+00 1.75713804e-02 -4.40611660e-01 8.46946120e-01 4.38846022e-01 6.30131662e-01 3.29047441e-01 1.28100619e-01 -2.05283731e-01 -7.83710241e-01 -1.36749411e+00 1.48388788e-01 6.24409556e-01 -3.47766876e-01 1.49055570e-01 1.03971851e+00 3.65828067e-01 -3.45544040e-01 -1.22004187e+00 -3.12832594e-01 3.55504543e-01 -6.93653345e-01 5.16215026e-01 -7.30999053e-01 -2.03742459e-01 -1.03880651e-01 -2.28627138e-02 -1.82859099e+00 -1.50558516e-01 -1.61421287e+00 -5.20491123e-01 8.74769211e-01 3.33483577e-01 -1.11321986e+00 1.10633063e+00 5.79415500e-01 1.92032918e-01 -7.72345543e-01 -1.44497395e+00 -8.74484599e-01 1.18283182e-01 1.48062870e-01 -8.21369961e-02 9.19272780e-01 1.81052193e-01 -1.01499811e-01 -5.52013874e-01 2.72214144e-01 1.63642204e+00 -1.77919865e-02 9.39320683e-01 -1.09412849e+00 -3.72214824e-01 -2.97202349e-01 -8.19536820e-02 -7.57875264e-01 4.94716108e-01 -8.05262625e-01 1.45554438e-01 -1.28397381e+00 2.93332547e-01 -5.72150946e-01 -3.01395506e-01 6.06464028e-01 2.23877087e-01 -1.07672393e-01 2.69424140e-01 4.09446448e-01 -1.70737040e+00 6.37733281e-01 8.43378901e-01 -1.52107418e-01 -2.07055807e-01 9.61495861e-02 -2.59117663e-01 5.05947709e-01 7.30349779e-01 -8.77207279e-01 -5.81650585e-02 -5.20752728e-01 4.65331823e-01 2.31927216e-01 4.13805604e-01 -7.58628488e-01 1.32224917e+00 -2.50238627e-01 -1.90567777e-01 7.04008862e-02 -9.84046236e-02 -8.00762653e-01 1.33525789e-01 8.51300478e-01 -5.35856664e-01 2.05050200e-01 -4.55097675e-01 1.04511249e+00 3.68431248e-02 9.64472964e-02 7.17228234e-01 -3.03247243e-01 -3.47127616e-01 6.19710207e-01 -2.10757509e-01 1.79265678e-01 1.11211407e+00 6.49083734e-01 -3.42503250e-01 -9.07130122e-01 -6.27384603e-01 9.80003715e-01 1.59835383e-01 -3.86308908e-01 3.77415836e-01 -1.22695780e+00 -1.35888803e+00 -5.17350316e-01 -7.06119955e-01 -7.43246973e-02 -8.76564234e-02 1.22881961e+00 -4.39837962e-01 -3.87439691e-02 2.77126580e-01 -4.19563383e-01 -1.13757014e+00 -1.56408980e-01 8.43253732e-01 -5.96396506e-01 -3.56164813e-01 7.95617580e-01 -6.76478982e-01 -1.01174152e+00 5.31322300e-01 5.22064805e-01 8.23203266e-01 -2.86678195e-01 4.56406921e-01 1.07292330e+00 -1.41398057e-01 1.79067507e-01 -2.81208634e-01 2.99282193e-01 4.71208766e-02 -2.24914864e-01 1.82763147e+00 -4.36307043e-01 -8.66444707e-01 2.76264757e-01 1.29863620e+00 -1.17542215e-01 -1.38970959e+00 -6.80304229e-01 -1.30881995e-01 -1.18444160e-01 4.07174766e-01 -9.01064754e-01 -1.52146864e+00 -1.07605703e-01 4.34892774e-01 1.79387182e-01 6.69576824e-01 -2.60016676e-02 6.59827113e-01 9.50429618e-01 6.17959142e-01 -1.43785489e+00 -1.08511977e-01 5.43999791e-01 5.48421144e-01 -1.24540961e+00 2.11624414e-01 3.92080992e-01 -1.19246900e-01 1.28360486e+00 5.15199244e-01 -6.11440539e-01 9.72644687e-01 2.63662398e-01 1.91384807e-01 -1.86313853e-01 -1.53618789e+00 2.78968841e-01 -1.32775232e-01 3.28256130e-01 -1.17494300e-01 -5.72066195e-02 -1.90365955e-01 4.09886427e-02 2.54283130e-01 -6.19928055e-02 2.36663073e-01 9.85074461e-01 -7.56870866e-01 -9.09836531e-01 -3.10321718e-01 4.83995974e-01 -4.51654762e-01 1.50428623e-01 -3.43878746e-01 4.54047859e-01 -4.65855271e-01 9.40692842e-01 -1.67119533e-01 1.33436576e-01 -2.52278239e-01 -1.74942344e-01 1.91887423e-01 -4.38732728e-02 -1.01430893e+00 -1.47870913e-01 -5.04758544e-02 -1.00415325e+00 -5.84329963e-01 -4.30139989e-01 -1.06540847e+00 -9.29386199e-01 -3.99069607e-01 7.68797696e-01 1.02988982e+00 9.80146468e-01 6.54548824e-01 -8.51343647e-02 1.13634443e+00 -1.00757873e+00 -1.49554324e+00 -6.05301142e-01 -8.95867348e-01 1.71662301e-01 4.14094031e-01 2.44684413e-01 -9.56833303e-01 -3.19617093e-01]
[6.197488784790039, 5.059884548187256]
f52cfd10-d71a-4ca4-9806-c23b85e678a6
accuracy-of-segment-anything-model-sam-in
2304.09324
null
https://arxiv.org/abs/2304.09324v3
https://arxiv.org/pdf/2304.09324v3.pdf
Computer-Vision Benchmark Segment-Anything Model (SAM) in Medical Images: Accuracy in 12 Datasets
Background: The segment-anything model (SAM), introduced in April 2023, shows promise as a benchmark model and a universal solution to segment various natural images. It comes without previously-required re-training or fine-tuning specific to each new dataset. Purpose: To test SAM's accuracy in various medical image segmentation tasks and investigate potential factors that may affect its accuracy in medical images. Methods: SAM was tested on 12 public medical image segmentation datasets involving 7,451 subjects. The accuracy was measured by the Dice overlap between the algorithm-segmented and ground-truth masks. SAM was compared with five state-of-the-art algorithms specifically designed for medical image segmentation tasks. Associations of SAM's accuracy with six factors were computed, independently and jointly, including segmentation difficulties as measured by segmentation ability score and by Dice overlap in U-Net, image dimension, size of the target region, image modality, and contrast. Results: The Dice overlaps from SAM were significantly lower than the five medical-image-based algorithms in all 12 medical image segmentation datasets, by a margin of 0.1-0.5 and even 0.6-0.7 Dice. SAM-Semantic was significantly associated with medical image segmentation difficulty and the image modality, and SAM-Point and SAM-Box were significantly associated with image segmentation difficulty, image dimension, target region size, and target-vs-background contrast. All these 3 variations of SAM were more accurate in 2D medical images, larger target region sizes, easier cases with a higher Segmentation Ability score and higher U-Net Dice, and higher foreground-background contrast.
['Yangming Ou', 'Atle Bjornerud', 'Jeffrey Stout', 'P. Ellen Grant', 'Jingpeng Li', 'Rina Bao', 'Sheng He']
2023-04-18
null
null
null
null
['zero-shot-segmentation']
['computer-vision']
[ 4.02083665e-01 1.80073544e-01 -3.21221977e-01 -4.96701062e-01 -9.43898022e-01 -7.01488614e-01 2.09884942e-01 2.76116759e-01 -7.98348963e-01 3.59824687e-01 -1.64066404e-02 -3.55605841e-01 -1.83752745e-01 -5.21453202e-01 -3.17326546e-01 -5.76983154e-01 -2.32289173e-02 5.56823075e-01 4.30941075e-01 2.12745532e-01 2.80189842e-01 4.39766884e-01 -8.41559887e-01 1.26693264e-01 1.17170012e+00 9.66374874e-01 4.27550346e-01 7.63964117e-01 7.94588253e-02 2.20532998e-01 -5.96996188e-01 -2.24154025e-01 3.76102507e-01 -6.85119033e-01 -9.00765777e-01 4.13830489e-01 6.29492760e-01 -2.10302770e-01 4.05232310e-02 9.17484343e-01 7.09554732e-01 -6.26146793e-02 9.96452332e-01 -8.02311718e-01 -6.66549802e-01 4.44493383e-01 -8.08682919e-01 5.41693032e-01 -2.46787607e-03 5.76605618e-01 4.04279411e-01 -1.74578220e-01 8.35885108e-01 9.06815112e-01 9.45761144e-01 4.64839339e-01 -1.34107506e+00 -4.73518312e-01 -3.72059017e-01 -1.96414813e-01 -1.12777340e+00 7.43775964e-02 2.51035154e-01 -7.79942811e-01 6.25904620e-01 5.69729090e-01 6.14467025e-01 2.06712097e-01 5.37816703e-01 6.20654583e-01 1.44218206e+00 -1.35604009e-01 5.20679653e-02 1.16086155e-01 8.14088853e-04 6.37013733e-01 2.40563869e-01 -2.56457090e-01 3.01231831e-01 1.21232569e-02 1.16707516e+00 -3.29019487e-01 -1.20613307e-01 -2.33038887e-02 -1.45735753e+00 7.59719849e-01 5.23539782e-01 6.91848636e-01 -3.19477379e-01 -1.82060361e-01 4.83920544e-01 -1.37900319e-02 4.65764463e-01 8.06021631e-01 -3.36626917e-01 6.68018609e-02 -1.44377160e+00 -8.81070197e-02 2.24655703e-01 3.71888518e-01 3.17063719e-01 -2.07118943e-01 -4.46473449e-01 1.02011383e+00 -1.27034009e-01 2.64428526e-01 9.05750036e-01 -1.09276581e+00 1.44993216e-01 5.89155376e-01 -3.02977294e-01 -1.02444434e+00 -9.52753484e-01 -4.83537227e-01 -7.74086118e-01 1.34297743e-01 7.59911060e-01 -1.79731265e-01 -1.31216252e+00 1.40493464e+00 2.87950397e-01 -3.09370965e-01 -4.16469216e-01 1.13950396e+00 7.53811181e-01 4.40110177e-01 1.53502092e-01 -3.23786795e-01 1.43256962e+00 -8.51573527e-01 -5.86916208e-01 -3.80021006e-01 6.12296164e-01 -9.68934596e-01 1.39976859e+00 1.66840211e-01 -1.34126008e+00 -6.87741101e-01 -8.17734897e-01 1.40150070e-01 -1.89773127e-01 2.46773601e-01 2.49501973e-01 1.04345095e+00 -1.05488074e+00 6.23033345e-01 -7.78369665e-01 -2.86119103e-01 6.94077015e-01 3.56389463e-01 -3.43935072e-01 -5.55453487e-02 -5.95788956e-01 1.11881399e+00 4.72053349e-01 -1.48720771e-01 -3.71005386e-01 -8.53328407e-01 -6.32831514e-01 -3.69999975e-01 8.04703459e-02 -6.77754760e-01 8.66057515e-01 -1.14641726e+00 -1.04861045e+00 1.46213007e+00 1.84417754e-01 -3.51029605e-01 7.54069030e-01 2.35947981e-01 -3.71229559e-01 4.76764530e-01 4.35118616e-01 9.79504943e-01 5.55570126e-01 -1.29567134e+00 -3.20282102e-01 -6.88645184e-01 -4.27810311e-01 3.13460886e-01 4.32851940e-01 1.32810980e-01 -4.74252254e-01 -7.65296340e-01 3.26467007e-01 -1.01427650e+00 -5.22505403e-01 2.11788803e-01 -2.61911392e-01 4.85599004e-02 6.38514757e-01 -1.10066080e+00 1.09303415e+00 -2.07049775e+00 -2.54982412e-01 4.95778680e-01 3.45543981e-01 3.83340120e-01 -9.63376909e-02 -6.13016069e-01 -5.09853363e-02 4.73760664e-01 -6.29150808e-01 2.40994930e-01 -2.75078148e-01 -4.13477980e-02 7.80691385e-01 7.75055289e-01 8.31246972e-02 1.01445794e+00 -8.52524340e-01 -8.89036596e-01 4.93454486e-01 2.45805353e-01 -4.84577090e-01 2.61101983e-02 2.02534139e-01 6.63584054e-01 -5.60036115e-02 5.44210792e-01 8.82548809e-01 -2.89039224e-01 2.77899057e-02 -1.19542986e-01 -6.54490516e-02 -4.39347148e-01 -1.04758668e+00 1.45103788e+00 -1.92229703e-01 8.05788338e-01 1.50359586e-01 -7.93353736e-01 7.82033145e-01 2.48031020e-01 7.00854182e-01 -8.43981624e-01 3.16972286e-01 4.83106166e-01 5.82722843e-01 -5.56851864e-01 -5.30283293e-03 -2.86128551e-01 2.68846571e-01 2.12592155e-01 -2.12024003e-01 -7.51482308e-01 4.00038213e-01 3.12070195e-02 5.70779681e-01 -4.03527230e-01 2.31082037e-01 -5.85024297e-01 4.00036186e-01 5.82118854e-02 3.06360990e-01 7.66524851e-01 -6.54134572e-01 1.10208070e+00 7.01057732e-01 -2.52419800e-01 -8.61116886e-01 -1.29305422e+00 -6.30656719e-01 5.03897667e-01 2.87807703e-01 1.32731006e-01 -1.05775392e+00 -7.46201813e-01 -2.27785334e-01 6.56240404e-01 -7.57323921e-01 6.55568168e-02 -4.32016522e-01 -9.04635668e-01 4.69000578e-01 4.08897251e-01 5.55914700e-01 -1.06350613e+00 -9.32105303e-01 7.78937414e-02 -3.39285642e-01 -1.12943172e+00 -8.36399317e-01 -2.03756958e-01 -1.21891701e+00 -1.13966894e+00 -1.29306912e+00 -7.24487841e-01 9.71337557e-01 -7.58331865e-02 1.26067841e+00 2.08435476e-01 -8.21452320e-01 2.82365352e-01 -1.95805565e-01 -2.35687479e-01 -5.00241339e-01 -1.24444976e-01 -4.11004722e-01 -4.22611088e-01 -2.58623600e-01 -2.19998807e-02 -1.02019012e+00 6.73868597e-01 -1.26006413e+00 1.17743663e-01 7.27444589e-01 7.30545878e-01 7.98038185e-01 5.42066395e-02 9.63014960e-02 -8.33997309e-01 4.56340522e-01 -1.44880414e-01 -2.81192839e-01 3.62470001e-01 -7.66192257e-01 -4.71057653e-01 2.64848117e-02 -4.55917537e-01 -8.41037452e-01 -1.65238604e-01 3.31313908e-02 9.33410376e-02 -2.71712571e-01 3.42806399e-01 2.85527289e-01 -1.52760357e-01 7.45956540e-01 -2.04484984e-01 4.78039742e-01 -4.41104025e-02 7.61735588e-02 4.61445779e-01 5.31739950e-01 -3.92639607e-01 2.33595118e-01 5.02468884e-01 -2.88023725e-02 -7.36038089e-01 -5.51151931e-01 -4.84115154e-01 -9.95939314e-01 -3.71613115e-01 1.47149897e+00 -3.99863452e-01 -5.78520000e-02 6.56640649e-01 -7.87533581e-01 -5.60677946e-01 -2.18511537e-01 7.71921158e-01 -4.25347567e-01 3.50547493e-01 -4.58345890e-01 -2.81444579e-01 -5.42817414e-01 -1.87273872e+00 8.73869181e-01 4.42549288e-01 -4.38881516e-01 -1.03636098e+00 -2.35825464e-01 7.72152722e-01 4.11034554e-01 6.36392772e-01 9.86487448e-01 -4.93523687e-01 -1.54097630e-02 -9.27424729e-02 -6.50987744e-01 6.56942606e-01 3.39255244e-01 1.29033372e-01 -4.81630981e-01 8.78160670e-02 8.35464802e-03 1.18516833e-01 6.04297817e-01 1.36348605e+00 1.40792537e+00 -2.16001924e-02 -1.63883537e-01 5.87850928e-01 1.35851490e+00 4.88874644e-01 6.79130375e-01 2.64002800e-01 5.48198462e-01 7.13671029e-01 5.53336978e-01 -7.04913586e-02 8.58772453e-03 5.22726655e-01 4.59120423e-02 -7.03881204e-01 -3.87069553e-01 2.37239838e-01 -4.13319618e-02 5.43258369e-01 -3.49940397e-02 1.57250777e-01 -1.23012900e+00 6.99111223e-01 -1.06941926e+00 -3.88825566e-01 -5.40878475e-01 1.87032461e+00 7.63428271e-01 2.50650287e-01 5.90890944e-01 -1.43850505e-01 8.89579475e-01 -1.35692522e-01 -6.01143181e-01 -4.29351121e-01 -1.88516021e-01 1.86316460e-01 8.33140194e-01 4.21520919e-01 -9.57160115e-01 6.80957913e-01 7.15752602e+00 9.07217085e-01 -1.17004693e+00 1.83490485e-01 1.43551898e+00 -1.93231240e-01 -1.41569957e-01 -3.57447386e-01 -1.61570504e-01 5.85437477e-01 7.20357716e-01 1.58482283e-01 3.19380015e-02 4.35312122e-01 2.76841372e-01 -6.61164045e-01 -7.32107818e-01 8.72850716e-01 8.01429525e-02 -1.31552505e+00 -1.76093847e-01 2.83667352e-02 1.02550316e+00 -7.06807673e-02 4.01038110e-01 -2.27628663e-01 -3.13497841e-01 -1.16604483e+00 4.72548068e-01 2.89941907e-01 1.25043440e+00 -3.41929346e-01 1.01650310e+00 -8.72747228e-02 -6.99680209e-01 2.83181399e-01 -2.52834596e-02 3.66178960e-01 1.64007470e-01 7.85533130e-01 -8.67037296e-01 1.08630165e-01 8.02654386e-01 1.43578604e-01 -7.20016360e-01 1.17614400e+00 2.84525692e-01 5.37739575e-01 -2.49383032e-01 3.37398380e-01 5.72433650e-01 -4.09487754e-01 4.18262482e-01 1.37619638e+00 7.22855330e-02 3.35466027e-01 -1.83551148e-01 9.13463533e-01 2.78634608e-01 3.15699369e-01 -3.60102355e-02 6.82317466e-02 1.58305347e-01 1.23374355e+00 -1.69735515e+00 -5.10963559e-01 -3.49912405e-01 9.52457011e-01 -5.57907462e-01 2.32997209e-01 -8.94796908e-01 -2.31558278e-01 1.66120008e-01 4.84939486e-01 -9.47323516e-02 1.32577345e-01 -1.06329668e+00 -6.04035318e-01 -2.39829004e-01 -9.17662263e-01 5.19238770e-01 -7.48174787e-01 -1.21442497e+00 4.08703536e-01 2.08841965e-01 -8.55476499e-01 2.03935876e-01 -6.03888929e-01 -5.26454866e-01 8.89233053e-01 -8.98570538e-01 -7.91594744e-01 -1.69456750e-01 4.31724727e-01 4.71995890e-01 2.06225198e-02 5.02776146e-01 2.73341715e-01 -5.09921551e-01 6.02239013e-01 1.80175707e-01 2.62128204e-01 7.47190356e-01 -1.38265550e+00 2.43208826e-01 5.46013236e-01 -2.89468229e-01 4.55243438e-01 4.37996328e-01 -7.71128833e-01 -4.74288017e-01 -6.96885109e-01 4.16198373e-01 -4.51728761e-01 3.41011643e-01 4.28834468e-01 -5.71129322e-01 4.04055595e-01 -4.37671356e-02 3.63345034e-02 8.27028871e-01 -2.73791820e-01 8.24475139e-02 1.25659570e-01 -1.77728009e+00 4.25983936e-01 6.18631363e-01 -1.13547988e-01 -5.04395366e-01 2.75848240e-01 4.12885725e-01 -7.88981318e-01 -1.31443167e+00 5.02414346e-01 6.71926498e-01 -1.08758962e+00 1.09879029e+00 -5.56230135e-02 4.98162776e-01 -1.36461005e-01 2.05971152e-01 -1.08558214e+00 -3.92926931e-01 -1.83476418e-01 7.77936816e-01 7.64338374e-01 7.94676065e-01 -5.90631366e-01 7.39864469e-01 7.99392223e-01 -2.47004271e-01 -8.70651603e-01 -1.10363972e+00 -4.62707162e-01 3.86951864e-01 -3.78824234e-01 2.55288422e-01 9.80180562e-01 -3.75985146e-01 -1.68930650e-01 2.54261583e-01 -2.66261727e-01 5.23250461e-01 -3.19464654e-01 2.59429753e-01 -9.87474918e-01 -1.25785753e-01 -1.06682515e+00 -4.66351718e-01 -5.59227705e-01 -2.77473897e-01 -9.30437207e-01 -1.40924633e-01 -1.96312010e+00 3.41650546e-01 -4.52032387e-01 -1.36480913e-01 2.50589222e-01 -4.61432129e-01 5.13311446e-01 3.55632603e-01 1.94069877e-01 -3.05038467e-02 -3.01752537e-01 1.83306503e+00 -2.30043575e-01 -4.35079932e-01 3.56353745e-02 -5.80778837e-01 6.74539506e-01 9.21535969e-01 -3.13630491e-01 -3.85439038e-01 -3.17656249e-01 -3.70208502e-01 1.54731870e-01 3.47987205e-01 -1.19030821e+00 -2.03721657e-01 -9.61648822e-02 8.34166288e-01 -6.18758678e-01 -1.01377577e-01 -8.04258943e-01 2.14960068e-01 8.86165559e-01 -3.13199937e-01 2.32777834e-01 3.95512283e-01 -1.10794939e-01 1.17905423e-01 -3.14161539e-01 1.31110501e+00 -3.05382997e-01 -4.30188477e-01 -2.11700946e-02 -2.71935672e-01 1.74824983e-01 1.20759118e+00 -7.91931510e-01 -5.07859029e-02 -1.31289527e-01 -9.22442436e-01 6.03012517e-02 4.59260046e-01 8.22905004e-02 4.18943763e-01 -9.27258253e-01 -8.11114013e-01 6.91461116e-02 -1.79651186e-01 -7.23149776e-02 6.39487088e-01 1.51834881e+00 -1.11793375e+00 2.86722958e-01 -4.54076827e-01 -8.35498691e-01 -1.27970099e+00 1.30298749e-01 6.96844637e-01 -3.59917253e-01 -4.93659794e-01 1.00365233e+00 2.47171864e-01 -3.95038545e-01 -1.07651919e-01 -6.73044384e-01 2.31046706e-01 7.14691952e-02 3.03267926e-01 7.72911608e-01 -1.59065202e-02 -9.29040372e-01 -3.33942413e-01 9.19197917e-01 6.76952153e-02 -2.02271864e-01 8.27204883e-01 -2.52076745e-01 -2.46730983e-01 3.27926785e-01 1.22098148e+00 -3.31795007e-01 -9.15715396e-01 2.02388987e-01 -2.51239181e-01 -5.57315707e-01 3.26183826e-01 -1.29622066e+00 -1.29169881e+00 5.85918486e-01 1.37326753e+00 1.65659189e-01 1.04115486e+00 5.52808531e-02 8.95567536e-01 -6.77055717e-01 -1.56461895e-01 -1.23054123e+00 -9.49994773e-02 -3.57186678e-03 6.24907911e-01 -1.47775805e+00 1.97290212e-01 -3.78900081e-01 -1.06189072e+00 8.39267015e-01 5.86290359e-01 1.12674415e-01 5.94453394e-01 -1.10349236e-02 4.11441565e-01 -2.99475580e-01 3.64241362e-01 5.48932068e-02 9.95448172e-01 7.95419872e-01 6.39355063e-01 3.71264637e-01 -7.94432580e-01 3.25282782e-01 -2.69084066e-01 -1.34400740e-01 2.08616734e-01 4.46054667e-01 -3.45834434e-01 -6.50199354e-01 -6.68984711e-01 9.63963330e-01 -7.66338468e-01 1.26310140e-01 -3.04873496e-01 9.60601091e-01 5.20877659e-01 8.09307575e-01 3.62737447e-01 -3.40993479e-02 2.24137411e-01 -3.54113102e-01 5.25420308e-01 -4.30198759e-01 -8.56382430e-01 2.22567275e-01 -9.58040208e-02 -5.18986225e-01 -5.81487000e-01 -7.97057807e-01 -1.34575033e+00 -3.02106708e-01 -3.21467072e-01 -1.04384780e-01 6.79906368e-01 8.40726078e-01 -2.19048541e-02 3.99753660e-01 1.89663485e-01 -6.65065706e-01 4.78068367e-02 -8.70740592e-01 -7.47160137e-01 4.29506153e-01 2.14566469e-01 -2.78623730e-01 -3.28931063e-01 9.77235436e-02]
[14.535049438476562, -2.401785373687744]
6554f4b7-52fb-4f02-b731-b035708005e0
specular-to-diffuse-translation-for-multi
1807.05439
null
http://arxiv.org/abs/1807.05439v3
http://arxiv.org/pdf/1807.05439v3.pdf
Specular-to-Diffuse Translation for Multi-View Reconstruction
Most multi-view 3D reconstruction algorithms, especially when shape-from-shading cues are used, assume that object appearance is predominantly diffuse. To alleviate this restriction, we introduce S2Dnet, a generative adversarial network for transferring multiple views of objects with specular reflection into diffuse ones, so that multi-view reconstruction methods can be applied more effectively. Our network extends unsupervised image-to-image translation to multi-view "specular to diffuse" translation. To preserve object appearance across multiple views, we introduce a Multi-View Coherence loss (MVC) that evaluates the similarity and faithfulness of local patches after the view-transformation. Our MVC loss ensures that the similarity of local correspondences among multi-view images is preserved under the image-to-image translation. As a result, our network yields significantly better results than several single-view baseline techniques. In addition, we carefully design and generate a large synthetic training data set using physically-based rendering. During testing, our network takes only the raw glossy images as input, without extra information such as segmentation masks or lighting estimation. Results demonstrate that multi-view reconstruction can be significantly improved using the images filtered by our network. We also show promising performance on real world training and testing data.
['Danny Cohen-Or', 'Shihao Wu', 'Hui Huang', 'Matthias Zwicker', 'Matan Sela', 'Tiziano Portenier', 'Ron Kimmel']
2018-07-14
specular-to-diffuse-translation-for-multi-1
http://openaccess.thecvf.com/content_ECCV_2018/html/Shihao_Wu_Specular-to-Diffuse_Translation_for_ECCV_2018_paper.html
http://openaccess.thecvf.com/content_ECCV_2018/papers/Shihao_Wu_Specular-to-Diffuse_Translation_for_ECCV_2018_paper.pdf
eccv-2018-9
['lighting-estimation']
['computer-vision']
[ 3.51193547e-01 -1.96885273e-01 3.17184448e-01 -5.28206110e-01 -7.25874126e-01 -7.95145035e-01 5.65639615e-01 -9.20549810e-01 1.14945605e-01 4.83470201e-01 1.24019325e-01 3.48623618e-02 4.16081697e-01 -9.95517135e-01 -9.91055548e-01 -8.97656798e-01 6.80575252e-01 2.40507200e-01 2.00976923e-01 -2.06908360e-01 3.15024331e-03 6.45752728e-01 -1.36218750e+00 5.77104986e-01 6.21168435e-01 6.76734209e-01 1.72954008e-01 6.44552350e-01 2.20610157e-01 4.83671874e-01 -4.55213428e-01 -4.85173434e-01 7.24200606e-01 -4.88674343e-01 -4.90946740e-01 5.07652998e-01 1.03190780e+00 -7.86638916e-01 -2.96754539e-01 1.12667048e+00 5.91453731e-01 8.62212405e-02 4.21826899e-01 -9.81044292e-01 -8.51154864e-01 -1.17956594e-01 -8.01118135e-01 -2.30057359e-01 5.76756299e-01 2.23711357e-01 6.96907520e-01 -1.32489908e+00 8.79931867e-01 1.37611842e+00 5.28433621e-01 5.19898295e-01 -1.52559900e+00 -3.54204744e-01 1.77960098e-01 -1.66331515e-01 -1.04990089e+00 -5.01169443e-01 1.13818192e+00 -1.44775733e-01 6.99480951e-01 4.39491242e-01 6.71331584e-01 1.14424872e+00 4.49674815e-01 6.30054593e-01 1.42950118e+00 -3.68576467e-01 -1.10439330e-01 1.57290503e-01 -4.90772814e-01 7.79971004e-01 1.63460955e-01 2.67276734e-01 -4.13613796e-01 -1.13592535e-01 1.12713301e+00 2.33853936e-01 -6.99003160e-01 -7.46285021e-01 -1.16686344e+00 6.03041530e-01 2.47215629e-01 -1.21514887e-01 -1.85143158e-01 1.87057197e-01 4.99669509e-03 4.12273020e-01 7.33849406e-01 1.43776953e-01 -1.61376804e-01 4.60310102e-01 -6.17947102e-01 3.69061567e-02 6.61324501e-01 9.62253273e-01 8.82289231e-01 3.88595581e-01 2.44348541e-01 9.70233977e-01 3.44416767e-01 1.03811157e+00 3.27961668e-02 -1.49429667e+00 4.67569679e-01 3.07955205e-01 2.45238721e-01 -9.57042813e-01 3.23937945e-02 -4.54396844e-01 -8.54063392e-01 7.44521320e-01 1.26970798e-01 9.07122865e-02 -9.31147993e-01 1.66400433e+00 5.23232341e-01 -1.62779003e-01 1.01962835e-01 1.09912121e+00 7.62405038e-01 5.53042769e-01 -8.25668395e-01 -2.43121177e-01 9.76898432e-01 -1.00107014e+00 -6.79635465e-01 -3.04669917e-01 -3.67658585e-02 -1.14873648e+00 1.25017357e+00 5.44035316e-01 -1.60192943e+00 -5.07368147e-01 -9.19719636e-01 -1.44491792e-01 8.91175941e-02 -1.32174879e-01 3.86397481e-01 5.66245139e-01 -1.05418360e+00 3.57900560e-01 -8.50635171e-01 1.88695546e-02 1.83527857e-01 1.13715716e-01 -5.09705663e-01 -6.50439084e-01 -7.11459517e-01 6.72345638e-01 -1.49838462e-01 1.42968625e-01 -9.96504605e-01 -7.37094760e-01 -8.34966123e-01 -2.23836571e-01 2.93999195e-01 -1.22133553e+00 8.29781234e-01 -1.15004027e+00 -1.64870048e+00 1.08881760e+00 -2.05080554e-01 1.89558506e-01 5.43679774e-01 -2.72162825e-01 -2.95840681e-01 3.77838403e-01 5.72148785e-02 3.60167384e-01 9.94239092e-01 -2.19290376e+00 -9.69527587e-02 -3.85223955e-01 1.49911582e-01 4.47887033e-01 1.21910036e-01 -1.13907605e-01 -6.92313731e-01 -7.50916183e-01 4.42766011e-01 -9.18834269e-01 6.83348998e-02 3.06416005e-01 -5.96624315e-01 6.31727517e-01 9.72280085e-01 -6.11062706e-01 4.15875971e-01 -2.12971544e+00 2.41834521e-01 4.41254601e-02 1.44963205e-01 -1.26492128e-01 -3.32019061e-01 4.37284887e-01 -1.90117225e-01 -2.50687450e-01 -2.48982713e-01 -6.16111279e-01 -1.68567732e-01 4.33099240e-01 -3.78231078e-01 6.33338392e-01 -2.24379659e-01 8.90896499e-01 -6.51799083e-01 -1.66952431e-01 4.71696526e-01 7.05496788e-01 -8.32550526e-01 4.68217909e-01 -2.33828858e-01 8.06544483e-01 -1.96883768e-01 6.54980600e-01 1.04872739e+00 -3.60938102e-01 1.96453910e-02 -5.11797369e-01 1.59258276e-01 -4.43306565e-02 -9.03834224e-01 1.87897933e+00 -8.43704700e-01 4.77117062e-01 3.35330069e-01 -5.25790811e-01 6.86099410e-01 1.05724201e-01 5.54777861e-01 -6.47326052e-01 -2.07891893e-02 1.79342568e-01 -2.80755848e-01 -3.20759296e-01 3.91032845e-01 -4.03094351e-01 3.58643889e-01 6.27592742e-01 -2.77472019e-01 -7.19649255e-01 -2.74677843e-01 1.21688664e-01 6.12358034e-01 3.22564453e-01 -1.88871801e-01 1.26983345e-01 3.68159801e-01 -4.64582592e-01 5.83593011e-01 2.68581569e-01 3.85877609e-01 1.38828743e+00 2.73673665e-02 -4.85873818e-01 -1.13740695e+00 -1.49654591e+00 5.31318821e-02 6.29561543e-01 4.25175518e-01 2.36842439e-01 -6.99033141e-01 -5.88604987e-01 -1.53935596e-01 8.08932066e-01 -3.63205582e-01 -9.66203883e-02 -6.92899346e-01 -5.22791803e-01 1.26878962e-01 3.44313949e-01 6.90634847e-01 -8.15127134e-01 -3.14786047e-01 -5.77628799e-02 -3.82002860e-01 -1.34961343e+00 -8.10152650e-01 -2.01481953e-01 -9.63477790e-01 -1.00883865e+00 -8.43695402e-01 -6.35787308e-01 1.00422597e+00 8.16348910e-01 1.38391423e+00 -1.85217440e-01 -1.56230733e-01 7.39833295e-01 -5.89803793e-02 1.18718661e-01 -5.75712800e-01 -6.87109232e-01 -6.54708371e-02 2.54870832e-01 -3.30729008e-01 -1.04774916e+00 -9.69660461e-01 6.88094676e-01 -1.08039403e+00 3.89285147e-01 3.35144639e-01 8.82388592e-01 8.81183207e-01 -2.24072859e-01 -5.70601895e-02 -8.83852124e-01 8.73257294e-02 1.28061548e-01 -5.67718148e-01 2.76613533e-01 -3.98498446e-01 -2.67608017e-01 7.04608142e-01 -3.43434125e-01 -1.41992378e+00 -1.91138506e-01 -1.29299521e-01 -1.04751956e+00 -6.15105815e-02 -7.59893581e-02 -5.46346009e-01 -3.20092291e-01 4.48920190e-01 4.93795753e-01 6.77450970e-02 -3.43556732e-01 6.21587276e-01 1.55703679e-01 4.84814823e-01 -4.73817825e-01 9.37794864e-01 1.08344650e+00 -1.18978910e-01 -5.86984634e-01 -9.98313487e-01 -1.92914903e-01 -5.06316662e-01 -2.30809659e-01 8.92654538e-01 -1.04620540e+00 -5.62703907e-01 5.57814717e-01 -1.24221480e+00 -5.68895400e-01 -3.60985994e-01 4.82340962e-01 -7.63714254e-01 5.13702273e-01 -6.40484154e-01 -4.30998027e-01 -2.75386184e-01 -1.23413527e+00 1.29898918e+00 -9.49490890e-02 3.04690778e-01 -1.18386364e+00 3.36774066e-02 7.72480488e-01 3.17738682e-01 4.07945693e-01 8.01073730e-01 1.72560602e-01 -9.68782783e-01 1.80412054e-01 -2.19184458e-01 9.01904762e-01 4.87691998e-01 -7.86127001e-02 -1.11419702e+00 -7.04226017e-01 4.10277426e-01 -3.36284250e-01 7.80098677e-01 4.02383238e-01 1.17305291e+00 -2.84921795e-01 -3.85308377e-02 1.07326305e+00 1.66209507e+00 7.91584402e-02 7.72308648e-01 3.61961465e-05 1.14800251e+00 4.86530632e-01 3.71426940e-01 2.39605367e-01 2.74804920e-01 7.87038565e-01 7.46788621e-01 -5.01253366e-01 -5.55491984e-01 -1.28374606e-01 5.13658822e-01 1.00224769e+00 -1.85140356e-01 -6.96984947e-01 -4.41926479e-01 2.75244534e-01 -1.30422962e+00 -1.02311075e+00 -8.12677816e-02 2.32847905e+00 5.59476197e-01 -8.23699683e-02 -3.32874507e-01 -3.68789464e-01 4.59103912e-01 3.47672641e-01 -6.24954224e-01 -2.12291881e-01 -2.94123054e-01 4.93702926e-02 4.50085223e-01 8.13325167e-01 -6.03449106e-01 7.77320623e-01 6.24466038e+00 5.79150259e-01 -1.28013802e+00 1.81676432e-01 6.81810081e-01 -3.09641749e-01 -1.10159731e+00 -2.05269516e-01 -3.52180809e-01 2.31920943e-01 1.22037917e-01 4.76547897e-01 7.06694722e-01 4.94931281e-01 3.47230673e-01 -7.62776285e-02 -1.06996703e+00 9.77576733e-01 4.47557569e-01 -1.09505379e+00 3.19291949e-01 1.61929443e-01 1.24761152e+00 1.91572025e-01 3.58205825e-01 -3.73781025e-01 4.31788474e-01 -7.90286303e-01 6.04182124e-01 5.87691724e-01 1.01569867e+00 -5.88851154e-01 3.76211524e-01 9.55684111e-02 -9.37890410e-01 5.01135230e-01 -3.75704944e-01 5.88935435e-01 5.38243175e-01 7.74204850e-01 -3.69713992e-01 9.20762002e-01 4.76535678e-01 6.65828228e-01 -2.12605879e-01 4.94322330e-01 -2.28532851e-01 2.37276956e-01 -2.29317904e-01 6.84660077e-01 -1.19925700e-01 -6.81856632e-01 7.67230153e-01 6.66872382e-01 3.22309017e-01 3.07457875e-02 2.45771945e-01 1.19507158e+00 -9.49473307e-02 -2.46930465e-01 -9.29020047e-01 4.51051444e-01 3.44257317e-02 1.10255170e+00 -5.28507710e-01 -1.93333134e-01 -6.22691810e-01 1.58246708e+00 -7.13031134e-03 8.43396604e-01 -7.97622740e-01 5.09180054e-02 4.96844113e-01 3.46881747e-01 3.99765313e-01 -2.55446196e-01 -2.32391283e-01 -1.56566370e+00 2.16599971e-01 -9.05673802e-01 -1.70743510e-01 -1.36421883e+00 -1.43815577e+00 5.40054619e-01 -5.41194119e-02 -1.37300551e+00 -1.22583650e-01 -4.97392356e-01 -5.95535159e-01 9.23629880e-01 -1.63749981e+00 -1.48084760e+00 -4.94053215e-01 7.56238282e-01 7.11884022e-01 -1.51639357e-02 6.24876916e-01 3.18652451e-01 -5.84404804e-02 4.71134841e-01 2.86203951e-01 -1.43756747e-01 8.91797602e-01 -1.14513278e+00 3.96954358e-01 8.38093638e-01 1.54712483e-01 7.02523530e-01 4.74887371e-01 -4.97757494e-01 -1.63710058e+00 -1.08693790e+00 8.65836963e-02 -5.13088942e-01 1.96455508e-01 -3.40704620e-01 -9.00017798e-01 7.93215275e-01 5.36844015e-01 4.24259931e-01 4.52238560e-01 -3.08880746e-01 -4.60625857e-01 -1.92480236e-01 -1.18591070e+00 6.14203513e-01 1.05616331e+00 -7.18858778e-01 -2.01185644e-01 3.36097062e-01 7.58389235e-01 -7.94421375e-01 -1.01507306e+00 4.16837364e-01 7.16040313e-01 -1.50936711e+00 1.37850177e+00 -2.18332514e-01 7.34114945e-01 -3.67180020e-01 -5.65772295e-01 -1.56301963e+00 -1.08980596e-01 -6.21746838e-01 1.40991643e-01 1.04739130e+00 2.46265188e-01 -9.10549402e-01 6.28634214e-01 2.99875021e-01 -4.02343243e-01 -7.66411304e-01 -6.75075173e-01 -6.73041105e-01 -5.89926308e-03 -1.17566414e-01 3.72260064e-01 1.04540539e+00 -1.03363442e+00 1.98624372e-01 -4.95322168e-01 3.70466530e-01 8.93510401e-01 7.28058696e-01 1.05734253e+00 -6.38952971e-01 -7.08608210e-01 -3.72902639e-02 1.63277507e-01 -1.25057876e+00 1.86033398e-02 -6.93357050e-01 -1.46921538e-02 -1.47537887e+00 3.89178216e-01 -2.92722195e-01 1.18297249e-01 4.78042476e-02 -2.89017730e-03 6.35535777e-01 1.16438255e-01 2.66200036e-01 -2.04345673e-01 8.63990068e-01 2.19447565e+00 4.06485163e-02 2.45153047e-02 8.27962756e-02 -4.33306396e-01 1.01645935e+00 5.72312236e-01 -2.52154976e-01 -5.75769305e-01 -8.35307121e-01 2.41269186e-01 3.28180701e-01 6.00391090e-01 -5.36431134e-01 -1.84575960e-01 -2.59162933e-01 4.58754420e-01 -6.84434712e-01 8.66807222e-01 -8.77111554e-01 4.18233007e-01 1.22246563e-01 -4.66234684e-02 8.07130896e-03 4.51384895e-02 6.91096246e-01 -1.83432415e-01 1.17851354e-01 9.95773315e-01 -3.62801641e-01 -1.21739708e-01 4.42208707e-01 7.64896646e-02 8.73049274e-02 6.87813759e-01 -4.49940652e-01 -3.43557388e-01 -5.64999878e-01 -6.44128084e-01 -1.61248803e-01 1.12014914e+00 2.01853305e-01 9.75556970e-01 -1.48031604e+00 -5.86254299e-01 4.87686634e-01 1.73449982e-04 3.32783490e-01 2.24645004e-01 7.94275045e-01 -7.79781818e-01 -1.89636931e-01 -1.11158162e-01 -8.22800338e-01 -1.45379686e+00 3.79797339e-01 5.12335300e-01 -6.04592413e-02 -9.02373314e-01 6.21267557e-01 1.00059330e+00 -7.52573311e-01 -1.82054222e-01 -1.98776081e-01 4.33509022e-01 -6.10751688e-01 2.29675591e-01 1.88799039e-01 -5.49278259e-02 -4.88396078e-01 -7.29223806e-03 9.62355018e-01 -1.74845681e-02 -3.92076671e-01 1.54693067e+00 -3.86442184e-01 -2.53612757e-01 4.08197910e-01 1.35241735e+00 5.08995533e-01 -1.53063631e+00 -1.52092636e-01 -1.07183290e+00 -8.92186761e-01 7.72419646e-02 -6.96145356e-01 -1.54827726e+00 9.46722031e-01 5.44148028e-01 -4.15236093e-02 1.24995232e+00 -1.92236081e-01 9.31357920e-01 2.52662271e-01 4.37737375e-01 -6.68161809e-01 6.18829250e-01 3.36112767e-01 1.16585612e+00 -1.22754931e+00 1.86803207e-01 -7.39528060e-01 -5.91524661e-01 1.01850498e+00 6.62833035e-01 -2.79494524e-01 4.52018648e-01 2.62404025e-01 2.40318835e-01 -4.75137502e-01 -5.19378066e-01 2.51673311e-01 3.20774376e-01 5.57327151e-01 2.04304323e-01 -2.53948271e-01 3.23433131e-01 -2.20178202e-01 -1.71915926e-02 -4.05722886e-01 6.16374791e-01 5.81570148e-01 -1.22884758e-01 -1.09569395e+00 -5.41463315e-01 3.94682772e-02 -3.66257012e-01 -1.12131640e-01 -3.16584498e-01 8.24137390e-01 -3.61350775e-02 6.06457710e-01 2.98129898e-02 -1.69129759e-01 4.08883542e-01 -3.40656430e-01 9.18834150e-01 -6.54810011e-01 -3.52499992e-01 5.55405080e-01 -2.02324428e-02 -7.76274920e-01 -7.64345646e-01 -4.68203992e-01 -9.50593829e-01 -4.64070231e-01 -4.45580155e-01 -4.16976690e-01 4.32797730e-01 6.07431173e-01 2.67402202e-01 5.91712713e-01 1.13078594e+00 -1.02905238e+00 -3.01883340e-01 -5.06585002e-01 -5.68171918e-01 6.10081315e-01 3.73777986e-01 -4.98038203e-01 -4.92375135e-01 1.97417825e-01]
[9.323426246643066, -3.057081699371338]
1f239abe-2a8d-4155-be54-31c5096b09f9
self-attention-presents-low-dimensional
2112.10644
null
https://arxiv.org/abs/2112.10644v3
https://arxiv.org/pdf/2112.10644v3.pdf
Self-attention Presents Low-dimensional Knowledge Graph Embeddings for Link Prediction
A few models have tried to tackle the link prediction problem, also known as knowledge graph completion, by embedding knowledge graphs in comparably lower dimensions. However, the state-of-the-art results are attained at the cost of considerably increasing the dimensionality of embeddings which causes scalability issues in the case of huge knowledge bases. Transformers have been successfully used recently as powerful encoders for knowledge graphs, but available models still have scalability issues. To address this limitation, we introduce a Transformer-based model to gain expressive low-dimensional embeddings. We utilize a large number of self-attention heads as the key to applying query-dependent projections to capture mutual information between entities and relations. Empirical results on WN18RR and FB15k-237 as standard link prediction benchmarks demonstrate that our model has favorably comparable performance with the current state-of-the-art models. Notably, we yield our promising results with a significant reduction of 66.9% in the dimensionality of embeddings compared to the five best recent state-of-the-art competitors on average.
['Hadi Moradi', 'Reshad Hosseini', 'Peyman Baghershahi']
2021-12-20
null
null
null
null
['knowledge-graph-embeddings', 'knowledge-graph-embeddings']
['graphs', 'methodology']
[-3.01489770e-01 5.30638158e-01 -7.11026609e-01 -3.18507105e-02 -4.78446960e-01 -3.33594650e-01 6.37933969e-01 1.87656686e-01 -3.89792889e-01 6.64719701e-01 4.96184438e-01 -4.20347214e-01 -5.49592376e-01 -1.03602612e+00 -7.61099160e-01 -2.05059722e-01 -3.79684389e-01 8.85934353e-01 2.15257540e-01 -3.54439646e-01 -3.99816930e-01 1.23481564e-01 -1.27926576e+00 5.01297303e-02 7.91105390e-01 7.28697240e-01 -2.97237962e-01 3.45613092e-01 -2.15420485e-01 7.99634516e-01 -1.23361982e-02 -1.15127015e+00 7.88384527e-02 1.86878398e-01 -1.14039624e+00 -5.06011307e-01 3.95555466e-01 -3.35588574e-01 -1.16646218e+00 8.40380013e-01 4.83430713e-01 3.51290032e-02 5.02456367e-01 -1.32969546e+00 -1.40384674e+00 9.52149451e-01 -2.96983510e-01 3.03496748e-01 3.53178144e-01 -5.09387434e-01 1.73729086e+00 -1.01565540e+00 8.63962054e-01 1.20889747e+00 8.00281465e-01 3.07023644e-01 -1.43174875e+00 -5.64456820e-01 1.16037861e-01 9.04566050e-01 -1.66732526e+00 -3.68273944e-01 5.75494289e-01 -2.08612964e-01 1.59615350e+00 -4.27232161e-02 5.89886189e-01 1.00283480e+00 -1.60785243e-01 6.16127014e-01 5.31422675e-01 -3.17496389e-01 -2.30496466e-01 1.67110905e-01 2.13097379e-01 9.43989456e-01 6.02482498e-01 -8.81848484e-02 -7.01322377e-01 -3.44764650e-01 5.24417400e-01 -1.57097623e-01 -3.68046016e-01 -7.97736526e-01 -1.18634129e+00 8.65215957e-01 8.11206520e-01 1.36121348e-01 -2.84322798e-01 3.47992510e-01 3.27712834e-01 4.42992479e-01 4.05267954e-01 4.83712792e-01 -6.61779642e-01 -8.86136815e-02 -4.34966981e-01 1.23724513e-01 1.12299287e+00 1.13746047e+00 5.74260235e-01 -2.59605557e-01 -6.22480400e-02 7.53739834e-01 4.52752590e-01 1.69074252e-01 1.49252519e-01 -6.01921678e-01 7.98879743e-01 7.85068512e-01 -1.93251923e-01 -1.12315595e+00 -2.83343822e-01 -6.39647782e-01 -6.80873811e-01 -4.35748398e-01 1.16531789e-01 1.24963902e-01 -7.53620803e-01 1.68468463e+00 3.54146630e-01 3.32031816e-01 3.18120211e-01 6.96481049e-01 9.46216524e-01 4.40280527e-01 9.69317630e-02 1.86225280e-01 1.41846716e+00 -9.79590058e-01 -7.44476199e-01 -1.53200522e-01 8.87746572e-01 -2.91974515e-01 7.60488808e-01 -1.83810905e-01 -7.59019554e-01 -1.91309303e-01 -1.03795493e+00 -3.28751326e-01 -9.22217906e-01 -1.10554494e-01 1.31446755e+00 5.49738169e-01 -1.05334663e+00 5.61168313e-01 -7.44181156e-01 -5.93769670e-01 6.28130794e-01 4.86328751e-01 -8.04926157e-01 -2.93606013e-01 -1.73290181e+00 1.07918572e+00 5.85156441e-01 3.10196858e-02 -5.74012339e-01 -1.10325456e+00 -8.99048984e-01 3.88066262e-01 4.74368423e-01 -9.39639628e-01 4.51125205e-01 8.33880380e-02 -1.09717274e+00 7.14120030e-01 -5.09842597e-02 -5.74760854e-01 1.81557819e-01 -4.40149546e-01 -7.72144437e-01 -1.10687330e-01 -7.51237497e-02 5.08360088e-01 3.43197584e-01 -8.80407751e-01 -3.04635465e-01 -2.28839949e-01 3.86010647e-01 1.32996500e-01 -1.04479444e+00 -3.43705386e-01 -8.67654622e-01 -2.80761421e-01 -1.13808423e-01 -9.40001011e-01 7.42027462e-02 -1.04127146e-01 -5.70352793e-01 -4.24508363e-01 7.26757288e-01 -5.65673113e-01 1.43118358e+00 -1.85929239e+00 4.39188987e-01 1.33906126e-01 5.68193197e-01 5.46326280e-01 -3.80050510e-01 6.91871583e-01 -2.18290731e-01 2.22464442e-01 1.73777238e-01 -3.05269480e-01 3.25377136e-01 4.87220019e-01 -2.65365213e-01 1.75611898e-01 3.94360960e-01 1.44614637e+00 -1.01318359e+00 -4.81702685e-01 -8.65299180e-02 7.59912014e-01 -6.66135550e-01 6.28095716e-02 -1.20585859e-01 -2.59056062e-01 -5.57074845e-01 5.85276306e-01 3.15547377e-01 -7.35561013e-01 7.79083133e-01 -5.82716763e-01 4.38238442e-01 5.93399882e-01 -9.19868708e-01 1.73649228e+00 -3.07123929e-01 6.37704253e-01 -4.64917749e-01 -1.10115767e+00 6.13047779e-01 3.65533501e-01 4.35479313e-01 -5.48399389e-01 -1.31664827e-01 1.81781016e-02 7.84553885e-02 -2.69696265e-01 5.42444170e-01 2.23292589e-01 2.33486861e-01 2.42844328e-01 3.20985168e-01 4.91312385e-01 1.80285290e-01 6.06261790e-01 1.54860592e+00 1.28654242e-01 1.14563502e-01 -1.41626196e-02 2.31256813e-01 -1.43220142e-01 4.40092236e-01 4.36569691e-01 4.13035974e-02 5.78018278e-02 6.77221596e-01 -4.42973405e-01 -8.54359746e-01 -1.15468919e+00 -7.32671395e-02 1.00515580e+00 -5.05277067e-02 -8.93452704e-01 -1.77253798e-01 -9.52911794e-01 5.41343808e-01 5.83256602e-01 -8.20384204e-01 -4.11679059e-01 -3.51763427e-01 -8.45394492e-01 7.59100139e-01 8.33294868e-01 2.22993270e-01 -5.46691418e-01 3.03300351e-01 3.20694774e-01 -3.58379595e-02 -1.62623811e+00 -9.62731093e-02 2.10048884e-01 -7.83594549e-01 -1.21939850e+00 -3.94031554e-01 -7.00186968e-01 5.11873126e-01 1.17883667e-01 1.39548910e+00 -5.61611801e-02 -2.56671876e-01 4.50311482e-01 -3.30325007e-01 -8.93159211e-02 1.46118462e-01 4.19889778e-01 2.62876928e-01 -3.11565816e-01 6.19823158e-01 -8.59890640e-01 -4.04763341e-01 1.09493352e-01 -6.57479942e-01 -3.27023774e-01 6.07746780e-01 9.88026738e-01 5.19006491e-01 1.84700981e-01 8.60407770e-01 -9.90417600e-01 7.11404264e-01 -5.89986682e-01 -4.17423934e-01 5.60244143e-01 -1.02066362e+00 4.64381754e-01 5.34601450e-01 -1.36870459e-01 -7.29412854e-01 -2.49598593e-01 1.38159633e-01 -5.91148913e-01 4.20540214e-01 8.51365864e-01 -4.60621640e-02 -2.77044505e-01 3.79191339e-01 -3.18975858e-02 -2.00932503e-01 -5.33979893e-01 9.89329040e-01 3.95627081e-01 3.36457133e-01 -3.45294982e-01 1.10028017e+00 3.08617026e-01 2.14685231e-01 -5.34834921e-01 -1.03645754e+00 -5.34998357e-01 -7.10950315e-01 3.64340484e-01 6.35373831e-01 -1.17549610e+00 -7.15653777e-01 -2.11555943e-01 -1.06756198e+00 5.69167547e-03 -1.55967116e-01 5.51544428e-01 -2.47623548e-01 3.09762150e-01 -6.02974832e-01 -3.34388256e-01 -4.07584935e-01 -6.31934404e-01 6.00707769e-01 -1.33176744e-01 7.47863622e-03 -1.34073758e+00 2.58893758e-01 5.71990788e-01 4.22834367e-01 3.79599258e-02 1.46925449e+00 -8.74629617e-01 -7.53586233e-01 -3.17883939e-01 -5.33883512e-01 1.45167917e-01 5.99354357e-02 -3.70599717e-01 -7.86419690e-01 -1.13250226e-01 -1.14800560e+00 -4.24087495e-01 1.20277822e+00 -2.40090281e-01 8.95661712e-01 -1.90984055e-01 -8.38984787e-01 6.55595601e-01 1.42907906e+00 -4.55301821e-01 6.37422264e-01 2.28489101e-01 1.05518579e+00 2.22623229e-01 3.83846700e-01 1.49145320e-01 1.02315223e+00 7.98621655e-01 4.32382435e-01 9.32705775e-02 -4.62795615e-01 -7.09553480e-01 1.50655732e-01 1.12048566e+00 -2.90018469e-01 -3.03361058e-01 -9.38154995e-01 9.51009095e-01 -2.04838514e+00 -8.60933125e-01 -8.36422741e-02 1.89108646e+00 9.16564822e-01 1.35251313e-01 -1.29444033e-01 -1.82945877e-02 2.92036116e-01 2.76460409e-01 -3.99015665e-01 -1.33853659e-01 -5.93742169e-02 2.80189484e-01 7.31434643e-01 3.95235091e-01 -1.05617893e+00 1.05353498e+00 6.69636154e+00 6.31536543e-01 -5.15874803e-01 1.53998435e-01 -4.53304611e-02 -1.94538623e-01 -5.79389691e-01 1.15693703e-01 -9.70432937e-01 3.36319543e-02 1.02732146e+00 -2.84804821e-01 4.79494125e-01 7.37439454e-01 -5.56106627e-01 6.09040558e-01 -1.40140545e+00 9.85553026e-01 2.88711935e-02 -1.59544039e+00 1.92169279e-01 3.01791310e-01 8.13930869e-01 4.23845679e-01 7.36501999e-04 7.11146891e-01 4.76524979e-01 -1.21482563e+00 -9.23752263e-02 7.20458269e-01 8.08990896e-01 -7.27372468e-01 8.39907587e-01 -1.77283809e-01 -1.37560666e+00 8.66284966e-03 -7.80396223e-01 4.90562655e-02 1.33327484e-01 7.84479380e-01 -9.75439191e-01 1.10496390e+00 6.05042338e-01 9.48502421e-01 -5.35797715e-01 7.10332394e-01 -4.17398781e-01 5.94390094e-01 -4.47677106e-01 4.34477553e-02 1.07361361e-01 9.61520001e-02 3.26844633e-01 1.10930729e+00 1.30574852e-01 -1.25842586e-01 -1.43698603e-01 8.62761736e-01 -7.67715871e-01 1.31142745e-02 -7.37277687e-01 -5.57326853e-01 7.79572368e-01 1.11050713e+00 5.02625741e-02 -2.18107685e-01 -7.73078144e-01 8.59813631e-01 1.09399819e+00 4.28268671e-01 -8.65773618e-01 -5.62699318e-01 9.52101648e-01 6.12754300e-02 7.17462063e-01 -2.76374519e-01 2.75801510e-01 -1.15657055e+00 1.67617723e-01 -4.73469436e-01 6.02316499e-01 -3.55903208e-01 -1.55318582e+00 3.75478208e-01 -1.45988777e-01 -6.97391629e-01 -8.00889730e-02 -7.57631838e-01 -1.88147575e-01 7.45503843e-01 -2.05364299e+00 -1.45175397e+00 -5.70441317e-03 5.29452682e-01 -3.33297491e-01 -3.62767994e-01 1.38333333e+00 7.38606572e-01 -6.91962779e-01 9.74341571e-01 3.94306749e-01 5.13982058e-01 5.95474362e-01 -1.34604847e+00 5.99523664e-01 4.36005265e-01 5.68648815e-01 7.46735752e-01 3.02171886e-01 -5.55191159e-01 -2.00365853e+00 -1.16988862e+00 1.25043154e+00 -7.13445842e-01 1.23869801e+00 -3.72134596e-01 -7.93911457e-01 1.09187949e+00 -2.09726933e-02 5.65998673e-01 9.79841113e-01 1.07636583e+00 -8.29788089e-01 -2.27447480e-01 -6.43780053e-01 5.55666924e-01 1.48479617e+00 -8.14185739e-01 -7.16052949e-01 3.13232720e-01 9.69189405e-01 -8.88146758e-02 -1.63137114e+00 5.35950661e-01 7.32092857e-01 -5.27161896e-01 1.35409892e+00 -1.13483059e+00 3.91160041e-01 -1.68769047e-01 -1.59034014e-01 -1.35580361e+00 -7.80189812e-01 -5.10641694e-01 -1.02606201e+00 1.27473676e+00 6.44037187e-01 -6.65268660e-01 9.59017694e-01 3.95376235e-01 1.91298470e-01 -1.09271920e+00 -9.97677267e-01 -1.01241636e+00 -6.45850077e-02 -3.07466745e-01 6.18553579e-01 1.29491007e+00 5.06086648e-01 7.13372290e-01 -4.42138135e-01 2.99562484e-01 7.28712261e-01 1.25367761e-01 6.73333526e-01 -1.36853886e+00 -2.22245589e-01 -1.27147049e-01 -9.26173210e-01 -1.11352372e+00 5.81061304e-01 -1.37694550e+00 -6.96680009e-01 -1.98359013e+00 3.36845577e-01 -4.93024766e-01 -7.35041499e-01 7.10663915e-01 -2.77912885e-01 7.29972571e-02 -3.77275497e-02 -9.16521847e-02 -8.66637766e-01 8.86334419e-01 1.00979543e+00 -3.31267059e-01 3.37737054e-02 -5.06891906e-01 -8.83158147e-01 3.31796318e-01 5.52614331e-01 -3.61629725e-01 -6.67208612e-01 -7.36732125e-01 6.61994934e-01 -3.94175619e-01 3.98469865e-01 -6.44402981e-01 4.81289059e-01 3.28238785e-01 2.19433904e-01 -3.38018298e-01 5.61203718e-01 -8.10290992e-01 1.70391336e-01 1.98816046e-01 -1.21155791e-01 -1.31588772e-01 1.82145789e-01 1.09366095e+00 -2.09316596e-01 2.35755727e-01 8.72252136e-02 3.13262314e-01 -9.67853963e-01 5.79005778e-01 2.86632538e-01 2.20498607e-01 8.77546847e-01 1.59943774e-01 -6.98921978e-01 -2.69594550e-01 -7.27309525e-01 3.61904204e-01 -2.10024957e-02 6.77054524e-01 6.72618747e-01 -1.76157022e+00 -7.44767725e-01 -5.51876761e-02 5.25331378e-01 -3.36915106e-01 5.97386323e-02 9.00614202e-01 -1.69460643e-02 8.83544207e-01 9.21256840e-02 1.79048143e-02 -9.86219883e-01 7.78773010e-01 1.21515147e-01 -7.05193281e-01 -7.45562553e-01 9.15177345e-01 -2.93472826e-01 -4.67421860e-01 2.42047727e-01 -1.13394573e-01 -2.08548278e-01 9.96703729e-02 2.75583833e-01 5.31832337e-01 1.58673480e-01 -2.76342571e-01 -7.24196911e-01 4.83830869e-01 -3.38141233e-01 5.01270056e-01 1.50349832e+00 1.20137244e-01 -1.48262739e-01 1.40907289e-03 1.35151422e+00 -1.03871770e-01 -6.71834707e-01 -7.18813717e-01 2.21840084e-01 -3.63632411e-01 1.88847363e-01 -7.45302379e-01 -1.03996527e+00 6.38804138e-01 2.43769705e-01 1.53473154e-01 5.68371654e-01 3.68840277e-01 8.67935300e-01 8.33845913e-01 4.62584734e-01 -9.64406312e-01 -2.27816492e-01 7.06164360e-01 6.24115109e-01 -1.27853107e+00 3.19837034e-01 -6.23917222e-01 -4.40312654e-01 8.34860921e-01 3.80863667e-01 6.24008663e-02 9.51716304e-01 2.26317346e-02 -3.91565710e-01 -4.92449343e-01 -1.17707539e+00 -5.33582985e-01 6.51906550e-01 9.40739393e-01 5.26909828e-01 3.20653528e-01 -1.09688900e-01 6.67387128e-01 -1.52683675e-01 -1.04146741e-01 5.66405617e-02 5.14381826e-01 -1.27009720e-01 -1.33608663e+00 3.02121043e-01 6.37735665e-01 -4.31655228e-01 -4.67814177e-01 -3.85065198e-01 9.08954918e-01 -2.33009592e-01 8.16046357e-01 -1.70855418e-01 -6.62416697e-01 4.95651901e-01 2.23914117e-01 5.36974549e-01 -4.93434727e-01 -7.22127408e-02 -7.17941701e-01 5.97049475e-01 -7.19959617e-01 -3.38392735e-01 -2.10355178e-01 -1.09035087e+00 -5.37373006e-01 -3.79327059e-01 1.26291454e-01 2.39137113e-01 6.76935732e-01 7.89876997e-01 7.74098217e-01 6.20943904e-02 -1.66740999e-01 -6.34378016e-01 -8.26522529e-01 -6.14105940e-01 3.66688430e-01 -3.68094444e-03 -9.35082912e-01 -5.00278771e-02 -3.67001593e-01]
[8.769235610961914, 7.883674144744873]
88522dcb-d1a9-4acd-af6d-0d44c9b77dc4
faceqgen-semi-supervised-deep-learning-for
2201.00770
null
https://arxiv.org/abs/2201.00770v1
https://arxiv.org/pdf/2201.00770v1.pdf
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment
In this paper we develop FaceQgen, a No-Reference Quality Assessment approach for face images based on a Generative Adversarial Network that generates a scalar quality measure related with the face recognition accuracy. FaceQgen does not require labelled quality measures for training. It is trained from scratch using the SCface database. FaceQgen applies image restoration to a face image of unknown quality, transforming it into a canonical high quality image, i.e., frontal pose, homogeneous background, etc. The quality estimation is built as the similarity between the original and the restored images, since low quality images experience bigger changes due to restoration. We compare three different numerical quality measures: a) the MSE between the original and the restored images, b) their SSIM, and c) the output score of the Discriminator of the GAN. The results demonstrate that FaceQgen's quality measures are good estimators of face recognition accuracy. Our experiments include a comparison with other quality assessment methods designed for faces and for general images, in order to position FaceQgen in the state of the art. This comparison shows that, even though FaceQgen does not surpass the best existing face quality assessment methods in terms of face recognition accuracy prediction, it achieves good enough results to demonstrate the potential of semi-supervised learning approaches for quality estimation (in particular, data-driven learning based on a single high quality image per subject), having the capacity to improve its performance in the future with adequate refinement of the model and the significant advantage over competing methods of not needing quality labels for its development. This makes FaceQgen flexible and scalable without expensive data curation.
['Aythami Morales', 'Ignacio Serna', 'Julian Fierrez', 'Javier Hernandez-Ortega']
2022-01-03
null
null
null
null
['face-image-quality', 'face-image-quality-assessment']
['computer-vision', 'computer-vision']
[ 2.38767475e-01 1.69490799e-01 1.00730553e-01 -5.37360787e-01 -9.06226695e-01 -3.49889308e-01 6.23157442e-01 -4.17628169e-01 -6.11243304e-04 7.07223177e-01 1.93941407e-02 1.43607616e-01 -3.60745639e-01 -9.10378456e-01 -6.22950971e-01 -9.84183073e-01 -4.28344160e-02 4.93728071e-01 -3.09054494e-01 -1.70593739e-01 8.53654221e-02 7.83577800e-01 -1.82355452e+00 1.70317888e-01 7.40795493e-01 1.26870751e+00 -3.18895727e-01 4.76130515e-01 3.12411666e-01 5.46075940e-01 -9.06851113e-01 -8.80919397e-01 4.36425418e-01 -7.29739487e-01 -7.82310069e-01 1.75864339e-01 8.39124322e-01 -3.74998629e-01 -5.88038713e-02 1.06352842e+00 6.78953290e-01 -3.61343116e-01 7.22443938e-01 -1.52615881e+00 -5.44689834e-01 2.93319169e-02 -7.75077417e-02 1.16567880e-01 5.78166127e-01 4.80001569e-01 6.69360936e-01 -8.77322674e-01 6.44629359e-01 1.43642223e+00 6.87818646e-01 8.27329159e-01 -1.32992578e+00 -8.56887281e-01 -5.43260276e-01 6.05822206e-02 -1.22326887e+00 -8.70332301e-01 5.83351493e-01 -4.78045464e-01 5.45121789e-01 2.06071675e-01 5.12793660e-01 1.14136040e+00 2.90132731e-01 1.39873296e-01 1.62340760e+00 -3.84448975e-01 3.65244657e-01 7.57135972e-02 -3.80222946e-01 8.97592247e-01 1.33548342e-02 7.43322194e-01 -3.96791577e-01 -6.35876060e-02 7.57720232e-01 -3.91566306e-01 -2.49364108e-01 -3.23474944e-01 -8.20275962e-01 7.06064641e-01 4.30028915e-01 5.26898921e-01 -3.60419035e-01 1.15400746e-01 8.52087513e-02 7.56724298e-01 4.34026331e-01 3.60372990e-01 -1.86938584e-01 -1.27753001e-02 -1.27241552e+00 8.32185522e-02 6.27839267e-01 5.09184957e-01 7.40168929e-01 4.14158434e-01 -3.18863660e-01 7.55733132e-01 3.52013290e-01 8.47712755e-01 3.69121552e-01 -1.25853920e+00 8.36636871e-02 4.80565369e-01 -1.20594956e-01 -9.71275330e-01 -1.18086129e-01 -4.21847284e-01 -7.77650476e-01 8.41665983e-01 4.59322244e-01 6.60206005e-02 -9.66942906e-01 1.73344469e+00 5.96802123e-02 1.89911366e-01 3.40819806e-02 6.81773067e-01 8.95044029e-01 4.75642413e-01 -1.74427330e-01 -3.96318704e-01 9.43555653e-01 -4.72112417e-01 -6.38887227e-01 2.14057446e-01 1.77552495e-02 -7.62473285e-01 1.00108302e+00 6.30115688e-01 -1.31802344e+00 -9.50691700e-01 -1.16097736e+00 6.08044147e-01 -2.32636601e-01 -5.24162455e-03 3.07698011e-01 1.41307950e+00 -1.49291289e+00 8.56009960e-01 -5.16294062e-01 -7.62215927e-02 6.03569031e-01 5.23913682e-01 -6.94834173e-01 -2.17689216e-01 -1.03846753e+00 9.80845869e-01 3.29781370e-03 -1.82720467e-01 -1.41760314e+00 -8.04756284e-01 -7.15487123e-01 -1.02893360e-01 1.85100660e-02 -4.55635935e-01 8.62033784e-01 -1.41552186e+00 -1.69647110e+00 1.07043397e+00 9.70645547e-02 -8.04997534e-02 4.92734879e-01 2.28413776e-01 -7.61429965e-01 3.26991111e-01 -6.68168962e-02 6.34017229e-01 1.38822949e+00 -1.36111271e+00 -1.08746372e-01 -5.23228228e-01 -5.07093817e-02 -2.41766945e-01 -1.03251562e-01 1.54347792e-01 -2.36150637e-01 -5.56277454e-01 -1.44314364e-01 -6.80427372e-01 2.34942406e-01 1.28869534e-01 -7.82768428e-02 -5.68785146e-02 5.32552779e-01 -7.27519155e-01 7.12851167e-01 -2.14149094e+00 1.46369830e-01 4.29205686e-01 -1.39363911e-02 4.16619897e-01 -5.42166829e-01 1.87079847e-01 -4.20387417e-01 3.22738022e-01 -3.21440876e-01 -2.14665756e-01 -1.19848542e-01 3.30482908e-02 3.05841833e-01 6.83071196e-01 5.88176906e-01 8.81342649e-01 -6.77602708e-01 -3.75284106e-01 1.59088448e-01 8.22825611e-01 -5.54188728e-01 3.95891279e-01 1.81004688e-01 5.52481651e-01 4.37676422e-02 5.78451514e-01 9.29125369e-01 1.19837306e-01 -4.19513024e-02 -3.85140806e-01 4.36575681e-01 -1.03053182e-01 -1.25819850e+00 1.46535742e+00 -4.40246314e-01 3.13393205e-01 1.99353471e-01 -9.02555227e-01 1.08519959e+00 6.34561300e-01 6.39104605e-01 -9.62177277e-01 1.96210325e-01 2.48479277e-01 -2.63616648e-02 -1.86818719e-01 -1.32854715e-01 -4.18433428e-01 2.89499462e-01 3.62343073e-01 7.81562090e-01 -3.35097730e-01 1.79936469e-01 -7.86551014e-02 9.81622815e-01 4.72114235e-02 -5.09877726e-02 -4.50328171e-01 7.65025556e-01 -7.04039872e-01 3.71370792e-01 2.00934023e-01 -1.50384590e-01 7.71197379e-01 5.09846032e-01 -1.10934183e-01 -1.19677329e+00 -1.26063156e+00 -3.35292131e-01 5.13853788e-01 -2.37228066e-01 -2.95442343e-01 -1.28853405e+00 -8.02804470e-01 -1.06940232e-01 2.45204136e-01 -7.82312691e-01 -3.46314549e-01 -3.17823380e-01 -6.93292499e-01 5.73877990e-01 1.66747198e-01 6.22976363e-01 -1.19744432e+00 -1.76578954e-01 -1.67650320e-02 3.94550785e-02 -9.29564238e-01 -2.83121049e-01 -2.29705587e-01 -8.13108504e-01 -1.33942330e+00 -8.03560674e-01 -4.35533792e-01 6.44372880e-01 -3.26834768e-01 1.48265290e+00 4.28892285e-01 -2.13580862e-01 6.00857854e-01 -3.11164588e-01 1.36736943e-03 -9.20943797e-01 -4.40298438e-01 1.69979826e-01 2.49165103e-01 -7.21773133e-02 -6.40111268e-01 -5.92542768e-01 6.08278513e-01 -1.02285385e+00 -5.29712319e-01 4.69421953e-01 9.80808616e-01 4.05398190e-01 4.26789999e-01 6.80723667e-01 -6.26823962e-01 4.09284979e-01 -7.75407329e-02 -5.47817528e-01 1.84942052e-01 -1.06326890e+00 6.46740869e-02 4.54133749e-01 -9.22774076e-02 -9.52902079e-01 -2.06244618e-01 -5.13994217e-01 -3.19298953e-01 -1.24697037e-01 4.68592383e-02 -6.26915514e-01 -5.04196882e-01 9.12120819e-01 3.09094712e-02 3.75066698e-01 -3.69202763e-01 2.25192875e-01 4.09273267e-01 5.40875316e-01 -4.48689520e-01 1.11046648e+00 2.09047347e-01 1.42372504e-01 -6.33771360e-01 -3.77095789e-01 8.03184137e-02 -5.61576068e-01 -5.14885783e-01 5.59152961e-01 -7.74449944e-01 -7.98680067e-01 5.91631651e-01 -6.48550153e-01 -1.82817191e-01 -5.23212016e-01 1.82494536e-01 -7.73547769e-01 1.31114125e-01 -6.50916815e-01 -7.54129350e-01 -4.21123028e-01 -1.26552951e+00 1.09780014e+00 1.41034037e-01 2.50763625e-01 -8.88355434e-01 -7.37985745e-02 5.56621373e-01 5.15839159e-01 4.81891364e-01 7.41829515e-01 -5.27337939e-03 -3.94051373e-01 -1.43351674e-01 -6.78861216e-02 1.02606761e+00 2.14786261e-01 3.89358476e-02 -1.11771691e+00 -7.11209238e-01 1.94375306e-01 -5.32002687e-01 4.94955510e-01 2.32430443e-01 8.81428242e-01 -3.81805301e-01 2.18921468e-01 6.01044238e-01 1.61506736e+00 2.09010512e-01 1.17976749e+00 -3.48884650e-02 3.18505913e-01 6.76845372e-01 4.28965300e-01 5.56242168e-02 -1.90491870e-01 9.25779402e-01 6.68132722e-01 -3.09768319e-01 -6.10152125e-01 -1.39200285e-01 6.79711938e-01 4.52880502e-01 -1.99756131e-01 -4.52103503e-02 -6.80065393e-01 1.12608500e-01 -9.63716924e-01 -1.13309622e+00 2.10238218e-01 2.30907345e+00 6.78336680e-01 -9.19230282e-03 3.03692490e-01 7.03394055e-01 4.64147091e-01 -1.45216212e-01 -3.19890529e-01 -3.92999053e-01 -1.18136942e-01 9.02487040e-01 2.72255745e-02 4.22358543e-01 -8.26006293e-01 5.59710801e-01 7.30569601e+00 7.73521960e-01 -1.13827372e+00 3.50465208e-01 9.57050860e-01 1.18123770e-01 -2.68654913e-01 -3.80413771e-01 -5.65873921e-01 6.07550025e-01 1.23752952e+00 1.61524817e-01 6.64155185e-01 5.91647267e-01 -3.49894054e-02 3.23278196e-02 -1.14416409e+00 1.11655533e+00 4.03388709e-01 -9.54978466e-01 5.18759303e-02 2.99099863e-01 7.05493391e-01 -3.60837579e-01 3.48565698e-01 3.43245082e-02 4.35201451e-02 -1.65976346e+00 6.44623518e-01 8.17700684e-01 1.26013756e+00 -9.89485741e-01 9.71746266e-01 3.16743664e-02 -7.46811509e-01 2.26648618e-02 -2.82743484e-01 3.68501931e-01 -2.51349837e-01 7.49469697e-01 -4.40067172e-01 6.43034577e-01 7.45992780e-01 4.05175149e-01 -9.29810047e-01 6.53257430e-01 -1.49202600e-01 7.12455332e-01 -2.18973514e-02 5.09860218e-01 -1.83911473e-01 -2.32899696e-01 3.93334389e-01 8.31005633e-01 5.53001940e-01 -1.52627975e-01 -2.20208392e-01 9.48623538e-01 -1.00869559e-01 1.41760811e-01 -4.99246001e-01 8.90840590e-02 2.54426301e-02 1.19193828e+00 -5.42337000e-01 -1.57317191e-01 -1.24347061e-01 9.46285307e-01 -9.45604295e-02 1.44881129e-01 -6.57779038e-01 9.86572430e-02 5.22817910e-01 3.19473594e-01 7.66670853e-02 2.64764607e-01 3.38961855e-02 -8.97525728e-01 8.29345062e-02 -1.36640072e+00 1.33892030e-01 -7.37841427e-01 -1.23092806e+00 1.00044024e+00 -1.48295686e-01 -1.15752709e+00 -5.18069744e-01 -7.47868121e-01 -2.30226710e-01 1.04125977e+00 -1.34907544e+00 -1.06998301e+00 -4.11836982e-01 6.66759253e-01 6.64621666e-02 -5.98449707e-01 1.03013110e+00 5.29605985e-01 -2.21465424e-01 1.01270461e+00 -1.39829576e-01 5.05865663e-02 5.33450603e-01 -1.13049698e+00 2.37656698e-01 7.24823713e-01 1.89511716e-01 1.84120819e-01 6.35046482e-01 -2.75590152e-01 -1.27479672e+00 -8.71871352e-01 4.36256111e-01 -5.67104459e-01 -8.32071342e-03 -1.66212514e-01 -6.94715798e-01 4.34099138e-02 1.80903405e-01 2.40316823e-01 5.76324999e-01 -1.65271088e-01 -3.40140879e-01 -6.59029126e-01 -1.75292826e+00 -3.42320725e-02 9.56894636e-01 -5.56492746e-01 -3.11649710e-01 9.91905555e-02 1.28168389e-01 5.61562851e-02 -1.26413429e+00 6.16732717e-01 4.87188786e-01 -1.45351517e+00 1.06513214e+00 -1.87500298e-01 4.18322891e-01 -2.31288180e-01 -1.59673035e-01 -1.48941505e+00 -4.18036878e-01 -3.47709119e-01 6.60458580e-02 1.50001419e+00 2.98286825e-01 -4.96161133e-01 9.26238894e-01 9.54983085e-02 2.69600153e-01 -6.12042546e-01 -1.17642987e+00 -1.02983606e+00 2.42006972e-01 -7.51130581e-02 9.77309465e-01 6.48390353e-01 -6.05167568e-01 2.86257446e-01 -4.34085339e-01 -9.38296020e-02 8.18750918e-01 -2.14587465e-01 6.77793860e-01 -1.47840881e+00 -2.54856914e-01 -3.65011901e-01 -9.31595981e-01 -1.18459627e-01 2.20173776e-01 -9.37644780e-01 -9.05968249e-02 -1.13429785e+00 2.07053140e-01 -4.36784446e-01 -2.49836996e-01 3.55404317e-01 -4.44024941e-03 8.66790295e-01 1.42750978e-01 -2.80208476e-02 -9.50973108e-02 5.18807650e-01 1.44456220e+00 -3.89074683e-01 2.19015390e-01 -2.31740288e-02 -5.07791758e-01 3.11210692e-01 7.83022702e-01 -4.05065626e-01 -4.94749516e-01 1.26952916e-01 9.29138735e-02 2.63505429e-01 4.44515646e-01 -1.65508699e+00 -3.75029117e-01 1.56125411e-01 7.24104881e-01 1.81524515e-01 3.51890504e-01 -1.01322627e+00 7.36804605e-01 6.29589319e-01 -4.64753322e-02 -7.72100389e-02 1.03336014e-03 6.17494546e-02 -3.99499655e-01 -3.71207327e-01 1.30718458e+00 -4.02335897e-02 -3.39718223e-01 4.25372064e-01 1.21065206e-03 -1.63291141e-01 8.27508032e-01 -3.88321668e-01 -4.88189496e-02 -4.55666244e-01 -7.83894122e-01 -4.66803432e-01 7.27066636e-01 3.46930385e-01 7.06828117e-01 -1.62176645e+00 -1.00112939e+00 5.38827181e-01 4.50203530e-02 -7.36553848e-01 1.93649366e-01 4.44548458e-01 -3.81034017e-01 1.10843875e-01 -7.09867060e-01 -5.34151733e-01 -1.35974956e+00 6.43097222e-01 7.76896775e-01 -2.60320485e-01 -2.62866288e-01 5.40388763e-01 -1.24652989e-01 -4.64868098e-01 8.28704834e-02 1.99809879e-01 -2.12221563e-01 4.16172249e-03 6.85383916e-01 3.23012024e-01 6.00419343e-01 -1.05626118e+00 -3.56509715e-01 7.28933930e-01 5.19297183e-01 -1.83983982e-01 1.30987716e+00 2.13978201e-01 -1.82449728e-01 1.32359304e-02 1.32363605e+00 -4.46278229e-02 -1.14102519e+00 1.47707283e-01 -2.26008177e-01 -5.78607500e-01 2.88029313e-01 -1.18497872e+00 -1.74837732e+00 7.00655639e-01 1.48272979e+00 9.07647610e-02 1.60590756e+00 -1.35839269e-01 2.68697500e-01 -1.46859407e-01 6.03233516e-01 -7.88789690e-01 5.38509607e-01 -2.74489187e-02 1.17924821e+00 -1.13504696e+00 8.02332908e-02 -4.43028092e-01 -1.72383964e-01 9.37471688e-01 3.65165859e-01 -5.10032177e-02 6.66267216e-01 2.73080230e-01 2.15328857e-01 -3.58152837e-01 -3.69304508e-01 -1.04000829e-01 5.74380279e-01 9.40119147e-01 3.53482902e-01 6.61184406e-03 -2.40692928e-01 1.64464608e-01 -4.25954580e-01 1.21917918e-01 1.40721112e-01 4.92098391e-01 -8.28829035e-02 -1.48524606e+00 -5.90661287e-01 5.64335465e-01 -5.86787462e-01 2.29547292e-01 -2.67156422e-01 6.14166081e-01 5.40288210e-01 1.16207671e+00 -2.36455634e-01 -4.88266319e-01 4.75366503e-01 1.38833553e-01 9.33819056e-01 -3.94599795e-01 -7.07438946e-01 -3.08014423e-01 -1.90299481e-01 -8.43937337e-01 -7.70852923e-01 -5.89062095e-01 -5.94381213e-01 -4.82048154e-01 -2.45681211e-01 1.94023103e-01 7.49832630e-01 7.16769099e-01 1.11550942e-01 4.57384646e-01 1.03146493e+00 -8.45038176e-01 -3.90823007e-01 -9.84935224e-01 -6.44247949e-01 7.11657584e-01 2.22075522e-01 -8.30207467e-01 -3.31650376e-01 1.24180011e-01]
[13.008182525634766, 0.7440258264541626]
84f91aae-a478-4215-9f76-df1287f13929
trailers12k-evaluating-transfer-learning-for
2210.07983
null
https://arxiv.org/abs/2210.07983v4
https://arxiv.org/pdf/2210.07983v4.pdf
Improving Transfer Learning with a Dual Image and Video Transformer for Multi-label Movie Trailer Genre Classification
In this paper, we study the transferability of ImageNet spatial and Kinetics spatio-temporal representations to multi-label Movie Trailer Genre Classification (MTGC). In particular, we present an extensive evaluation of the transferability of ConvNet and Transformer models pretrained on ImageNet and Kinetics to Trailers12k, a new manually-curated movie trailer dataset composed of 12,000 videos labeled with 10 different genres and associated metadata. We analyze different aspects that can influence transferability, such as frame rate, input video extension, and spatio-temporal modeling. In order to reduce the spatio-temporal structure gap between ImageNet/Kinetics and Trailers12k, we propose Dual Image and Video Transformer Architecture (DIViTA), which performs shot detection so as to segment the trailer into highly correlated clips, providing a more cohesive input for pretrained backbones and improving transferability (a 1.83% increase for ImageNet and 3.75% for Kinetics). Our results demonstrate that representations learned on either ImageNet or Kinetics are comparatively transferable to Trailers12k. Moreover, both datasets provide complementary information that can be combined to improve classification performance (a 2.91% gain compared to the top single pretraining). Interestingly, using lightweight ConvNets as pretrained backbones resulted in only a 3.46% drop in classification performance compared with the top Transformer while requiring only 11.82% of its parameters and 0.81% of its FLOPS.
['Gibran Fuentes-Pineda', 'Berenice Montalvo-Lezama', 'Ricardo Montalvo-Lezama']
2022-10-14
null
null
null
null
['genre-classification']
['computer-vision']
[ 6.48892671e-02 -4.67199266e-01 -1.93432391e-01 -1.58966273e-01 -6.13852680e-01 -8.78432751e-01 4.75735754e-01 -1.56789497e-02 -7.65135229e-01 3.92623484e-01 1.00463055e-01 -4.28279154e-02 -2.50954945e-02 -5.61911523e-01 -9.75590765e-01 -6.32591903e-01 -2.51844496e-01 7.12160394e-02 4.86657351e-01 -2.55387396e-01 -9.39614475e-02 3.15057129e-01 -1.57830763e+00 1.08330190e+00 4.16938782e-01 1.68654323e+00 6.54945821e-02 7.98475981e-01 3.48665923e-01 1.26438355e+00 -5.80292404e-01 -3.95349681e-01 2.67611623e-01 -1.73081204e-01 -7.53865957e-01 6.98154047e-02 1.02046895e+00 -4.91075337e-01 -7.56394565e-01 3.91276777e-01 2.45103136e-01 3.17292720e-01 8.07301521e-01 -1.39136732e+00 -6.53933108e-01 5.99153996e-01 -4.27553535e-01 5.82490981e-01 1.15656666e-01 2.35144615e-01 9.40085709e-01 -8.03183615e-01 9.16946411e-01 1.04366720e+00 8.13907862e-01 3.09198946e-01 -1.03291523e+00 -8.37046921e-01 1.74352080e-01 7.65323818e-01 -1.33957219e+00 -4.31501180e-01 4.87451524e-01 -5.90432048e-01 9.34550107e-01 1.15545996e-01 6.95686162e-01 1.49743533e+00 3.56088251e-01 8.66342902e-01 1.07271349e+00 4.11719605e-02 -1.68523267e-02 1.43803656e-01 7.99697489e-02 6.10071957e-01 -1.16841376e-01 -3.60745117e-02 -8.37759793e-01 4.00194585e-01 7.80999720e-01 -5.76614477e-02 -2.22409606e-01 -2.52327602e-02 -1.13171399e+00 8.18288326e-01 6.34891689e-01 3.24417859e-01 -1.32370502e-01 5.14017344e-01 8.57409120e-01 4.18328553e-01 4.80346471e-01 2.86715895e-01 -4.22469705e-01 -3.32610667e-01 -1.01905024e+00 3.08011413e-01 3.50564092e-01 1.05595541e+00 6.70615852e-01 7.01857582e-02 -3.09559673e-01 7.63398230e-01 -1.48377419e-01 4.41276997e-01 4.75685060e-01 -1.12114406e+00 5.90589702e-01 4.59071696e-01 -3.12285185e-01 -1.03545713e+00 -3.40512961e-01 -5.04404247e-01 -7.42288530e-01 -1.34251729e-01 5.75842500e-01 5.35042882e-02 -1.02041447e+00 1.38758969e+00 -1.38262838e-01 1.70172691e-01 -1.18445531e-01 9.10517097e-01 9.27288353e-01 8.42515349e-01 1.62927538e-01 -6.61558434e-02 1.34295022e+00 -1.31262636e+00 -4.12343919e-01 5.67895249e-02 8.09214890e-01 -6.44020498e-01 1.10501444e+00 6.27898037e-01 -9.43966687e-01 -7.32946754e-01 -9.91730034e-01 -1.90155730e-01 -4.92186189e-01 3.20901215e-01 4.19873923e-01 2.48447537e-01 -1.16158187e+00 9.03738439e-01 -5.89303136e-01 -3.58150095e-01 6.34140909e-01 2.91264623e-01 -5.43661833e-01 -3.28436583e-01 -1.06556237e+00 6.25888884e-01 4.95528072e-01 -2.75027901e-01 -1.39375031e+00 -9.42087352e-01 -7.26735413e-01 -6.15200214e-03 3.81905109e-01 -2.93185830e-01 1.06892705e+00 -1.25160086e+00 -1.23788857e+00 6.40771329e-01 2.38799572e-01 -6.65876687e-01 4.97490168e-01 -3.37341964e-01 -4.82143670e-01 7.60618925e-01 4.11558077e-02 8.98677170e-01 8.59844565e-01 -9.38539028e-01 -7.61988699e-01 4.86777537e-03 4.44648951e-01 1.31100163e-01 -8.15637946e-01 1.57678366e-01 -7.75051117e-01 -8.25707257e-01 -4.38607067e-01 -1.05643940e+00 1.93654642e-01 -1.87154934e-01 6.09277263e-02 -7.29946271e-02 8.36009204e-01 -7.51979411e-01 1.18095171e+00 -2.23211002e+00 3.35983336e-01 -2.69491792e-01 2.40948632e-01 1.45407066e-01 -4.82994318e-01 5.21222711e-01 1.37717336e-01 2.40858495e-01 1.45790443e-01 -4.75031674e-01 -3.12271923e-01 1.14274636e-01 -2.50215232e-01 5.54320872e-01 1.62305962e-02 9.08116400e-01 -8.16748321e-01 -4.44727510e-01 1.66619405e-01 4.53738779e-01 -6.00775838e-01 3.58541496e-02 -9.21885595e-02 3.58778149e-01 7.11136777e-03 5.91283023e-01 3.28440845e-01 -2.97424883e-01 1.02055609e-01 -5.62434018e-01 -2.85589956e-02 1.07846364e-01 -5.67218423e-01 1.80811965e+00 -5.52993000e-01 1.03202140e+00 -2.27011099e-01 -8.01693559e-01 6.40767634e-01 3.00981849e-01 7.65615046e-01 -1.18599164e+00 3.79766405e-01 1.95667706e-02 -3.27952206e-01 -5.30492127e-01 7.48861313e-01 1.17732892e-02 -1.51778892e-01 2.14209527e-01 4.40694958e-01 5.52524328e-01 5.10847390e-01 4.39945102e-01 1.16658127e+00 1.98577091e-01 -3.45353037e-01 -2.03991100e-01 2.72802442e-01 2.16512308e-01 5.59072077e-01 5.80394745e-01 -1.04620911e-01 6.56692982e-01 3.88870150e-01 -6.52940452e-01 -1.03225684e+00 -9.34416115e-01 1.38898149e-01 1.39113653e+00 2.86274880e-01 -8.14775884e-01 -5.73155701e-01 -9.19083655e-01 -9.68175083e-02 3.16893578e-01 -8.72071147e-01 -2.39925459e-01 -7.73078442e-01 -5.96778691e-01 8.67190003e-01 7.91707337e-01 6.34613514e-01 -8.90971780e-01 -6.02295280e-01 1.40887842e-01 -3.50250423e-01 -1.46373212e+00 -4.84607816e-01 7.67280757e-02 -8.13099921e-01 -1.07775939e+00 -6.94522262e-01 -6.08516872e-01 2.36278206e-01 3.50315809e-01 1.02974343e+00 -7.64799267e-02 -1.72924355e-01 4.68285263e-01 -9.28375840e-01 1.10670321e-01 -2.50895292e-01 2.98687905e-01 1.48030013e-01 1.71990991e-01 -1.15737565e-01 -4.64588702e-01 -6.09900236e-01 5.19380689e-01 -9.40706551e-01 1.52875677e-01 3.74772280e-01 7.07670510e-01 3.16043288e-01 2.79868934e-02 2.60574400e-01 -6.01463497e-01 1.12370066e-01 -5.73543012e-01 -2.71943271e-01 1.58557430e-01 -4.23926592e-01 -3.80422771e-01 9.37185407e-01 -8.08742583e-01 -7.91002810e-01 -5.31958193e-02 2.18821689e-01 -1.08318722e+00 -1.41793534e-01 5.00314176e-01 3.37540478e-01 -1.75567418e-01 6.31721258e-01 1.97974369e-01 -1.44965872e-01 -7.05141306e-01 4.33028251e-01 3.85334939e-01 4.93967533e-01 -5.02647579e-01 5.22623181e-01 5.63821852e-01 -1.99158892e-01 -6.13643110e-01 -6.94109559e-01 -5.74345291e-01 -6.92184508e-01 -5.48038304e-01 1.05167282e+00 -1.04903722e+00 -9.60198224e-01 6.10375583e-01 -9.39951718e-01 -6.69143379e-01 -1.86652601e-01 4.51076180e-01 -5.45755804e-01 1.82811946e-01 -1.06729901e+00 -2.53983289e-01 -1.95056945e-01 -1.18283093e+00 9.72463846e-01 -8.75876099e-02 2.82405205e-02 -9.52196717e-01 -2.30062068e-01 6.27194047e-01 3.78514349e-01 2.64372826e-01 6.19383752e-01 -4.08900470e-01 -5.30340314e-01 2.98172352e-03 -3.40707600e-01 5.47091126e-01 -2.84709245e-01 -9.87742692e-02 -1.02931798e+00 -5.36643386e-01 -3.37012798e-01 -7.45731890e-01 1.28766501e+00 2.05744520e-01 1.16701436e+00 -5.13105631e-01 -1.22530274e-01 8.19191635e-01 1.39612353e+00 3.30979675e-01 6.00891352e-01 6.07070625e-01 9.67712104e-01 5.36883354e-01 7.28787661e-01 3.88967395e-01 4.06367362e-01 1.02534151e+00 4.38005954e-01 -1.06739057e-02 -4.49087322e-01 -1.16294079e-01 8.92282844e-01 9.52155709e-01 -3.50840271e-01 -5.61271310e-01 -7.82948196e-01 5.21131217e-01 -1.83971941e+00 -9.52684641e-01 -2.79547926e-02 1.91361082e+00 5.72229028e-01 -8.50324854e-02 4.70605910e-01 2.03894660e-01 4.17953163e-01 1.86512619e-01 -2.25639775e-01 -3.05862337e-01 -2.38454774e-01 -1.05910413e-01 8.83257508e-01 8.37407932e-02 -1.12943840e+00 1.06448281e+00 6.19068193e+00 1.28880060e+00 -1.43023658e+00 3.55999649e-01 7.18909740e-01 -5.08951068e-01 2.62090918e-02 -2.11409211e-01 -7.26983190e-01 4.49597597e-01 1.24198341e+00 5.46564758e-02 5.96874595e-01 7.20623016e-01 1.91328511e-01 4.63890508e-02 -1.23253560e+00 1.15614045e+00 3.20959300e-01 -1.77356720e+00 3.25466841e-01 1.70151547e-01 6.42142475e-01 9.94525552e-02 1.56982854e-01 4.71288830e-01 -2.91094091e-03 -1.15692306e+00 1.32504714e+00 2.35697716e-01 1.13698065e+00 -6.19903147e-01 6.61746681e-01 -2.76725348e-02 -1.45193505e+00 -2.42992580e-01 -2.45758355e-01 -4.68689092e-02 1.36721149e-01 1.48600876e-01 -6.89703763e-01 7.25554109e-01 1.21936536e+00 1.24735403e+00 -8.15145612e-01 7.66740620e-01 2.06978396e-01 8.19814086e-01 -1.15219675e-01 2.65869260e-01 4.80226278e-01 7.48526230e-02 2.96890795e-01 1.48473680e+00 1.56324133e-01 -9.92516279e-02 3.04281473e-01 3.69846582e-01 -3.61846685e-01 9.00769159e-02 -4.48747993e-01 -5.83296977e-02 2.62923002e-01 1.33810115e+00 -8.25595558e-01 -6.44948304e-01 -3.70519698e-01 1.09072709e+00 3.96071494e-01 5.24899602e-01 -1.30172288e+00 4.23252285e-02 5.25486887e-01 3.36615384e-01 4.76625621e-01 -1.83192730e-01 1.41478911e-01 -1.15595782e+00 -2.01672390e-01 -8.43376696e-01 5.24009287e-01 -7.27205038e-01 -1.13650417e+00 8.80423844e-01 2.43127435e-01 -1.29557598e+00 1.04994580e-01 -7.97281861e-01 -2.58832484e-01 2.14174137e-01 -1.23549688e+00 -1.35041738e+00 -4.79416996e-01 8.78357410e-01 7.30243504e-01 -1.00445718e-01 3.67530644e-01 7.21477866e-01 -6.17772877e-01 9.51918125e-01 9.74033028e-02 1.54238597e-01 7.23704278e-01 -9.46808696e-01 -2.65922546e-02 6.00551665e-01 2.07387179e-01 2.37780437e-01 3.61634672e-01 -2.65134305e-01 -1.43472290e+00 -1.59018731e+00 4.66771215e-01 -4.42698359e-01 7.65669644e-01 -5.57823062e-01 -5.84468305e-01 7.08007693e-01 1.93352044e-01 6.70141503e-02 4.71435338e-01 -5.67456372e-02 -7.27908731e-01 -4.69588935e-01 -7.90258646e-01 3.54600221e-01 1.18991518e+00 -5.54238319e-01 -5.46830595e-02 2.67747581e-01 7.57800341e-01 -2.86019683e-01 -1.38686526e+00 4.13024068e-01 6.96074963e-01 -9.81384695e-01 8.73447061e-01 -4.03727204e-01 7.47425616e-01 -2.47954149e-02 -3.00819159e-01 -9.49651659e-01 -6.09023631e-01 -3.55485320e-01 -1.52632054e-02 1.15700221e+00 1.94784090e-01 -1.46891311e-01 7.79822290e-01 1.56215923e-02 -4.90062833e-01 -8.91774535e-01 -8.91297996e-01 -1.10712147e+00 1.58606276e-01 -6.18003190e-01 1.07328564e-01 9.67454314e-01 -6.83228076e-02 3.50245506e-01 -7.91479886e-01 -2.42761821e-01 2.94776917e-01 -3.90593186e-02 6.10567510e-01 -7.08844721e-01 -2.70825565e-01 -2.97545671e-01 -5.25075018e-01 -1.04949796e+00 -9.02353972e-02 -1.10651934e+00 -1.75357059e-01 -1.17148519e+00 3.21434140e-01 -5.06848574e-01 -5.70441842e-01 7.76224256e-01 4.14583862e-01 9.28116739e-01 5.86267650e-01 4.10659641e-01 -1.01398456e+00 5.91407359e-01 1.18384635e+00 -3.59856963e-01 -2.84987260e-02 -6.70834422e-01 -2.88197607e-01 5.27094603e-01 7.20465422e-01 -3.81720752e-01 -5.86436570e-01 -6.48818672e-01 5.30837178e-02 7.15884119e-02 4.92554009e-01 -1.26280379e+00 5.78046143e-02 2.21568197e-02 3.82366419e-01 -3.76031846e-01 5.91514826e-01 -5.54478824e-01 3.00373822e-01 2.53655374e-01 -4.60543394e-01 2.18728647e-01 5.23604333e-01 6.06229782e-01 -3.50773901e-01 1.36867389e-01 6.24601364e-01 -7.91124478e-02 -1.04340410e+00 4.65436727e-01 -7.23268092e-01 -2.26291735e-02 1.09918380e+00 -2.88410962e-01 -5.91917753e-01 -2.81387806e-01 -7.26882815e-01 1.49883023e-02 5.67146063e-01 7.61908829e-01 6.32640123e-01 -1.25762594e+00 -5.85065126e-01 -2.65670419e-01 2.76735365e-01 -5.46879351e-01 5.44334888e-01 1.01945102e+00 -6.44792855e-01 4.48970050e-01 -5.34957409e-01 -6.25961900e-01 -1.42423761e+00 6.69167399e-01 1.50948003e-01 -3.05966407e-01 -6.41616940e-01 8.92139554e-01 3.97228509e-01 1.58332765e-01 2.16580302e-01 -3.52729082e-01 -3.74360144e-01 3.86464715e-01 3.70676756e-01 5.98893881e-01 1.91908389e-01 -8.87828708e-01 -5.09534597e-01 5.97961307e-01 -2.86434263e-01 -6.78640231e-02 1.27362716e+00 4.36349399e-02 1.79895744e-01 3.94944340e-01 1.53666270e+00 -3.05124640e-01 -1.42602897e+00 2.93316599e-03 -3.45100939e-01 -3.55383575e-01 1.93305343e-01 -8.05957019e-01 -1.49895453e+00 8.11124504e-01 5.53582489e-01 -2.80426014e-02 1.26444435e+00 9.70606357e-02 9.87035692e-01 8.94170627e-02 4.47673053e-01 -9.13915694e-01 4.90974367e-01 4.37715024e-01 9.85594213e-01 -9.73266125e-01 -1.69891670e-01 -4.02227342e-01 -8.36721659e-01 1.11080635e+00 6.70767486e-01 -2.25859806e-01 2.99027622e-01 1.24664437e-02 1.81634147e-02 -3.28738004e-01 -1.03458154e+00 8.57838392e-02 3.83244395e-01 3.24859262e-01 3.15929174e-01 -1.75191790e-01 -1.20414481e-01 5.14171779e-01 -9.13130641e-02 1.07045360e-01 5.01152396e-01 7.35599458e-01 -6.56127408e-02 -7.70749331e-01 -6.64175525e-02 3.64273041e-01 -4.61685181e-01 -1.36275455e-01 -1.70588180e-01 7.85742760e-01 4.98513192e-01 9.47248042e-01 1.55697465e-01 -1.06635487e+00 1.46456227e-01 -4.49401259e-01 4.95668083e-01 -4.44551140e-01 -9.59493756e-01 7.40347952e-02 4.08968240e-01 -9.21396613e-01 -4.16473389e-01 -4.87220258e-01 -8.26336741e-01 -5.30355513e-01 -5.60234785e-02 6.19545095e-02 4.82209653e-01 7.76005507e-01 4.98296887e-01 7.51489758e-01 4.36484993e-01 -1.07572758e+00 -6.88375980e-02 -8.61700177e-01 -5.28490603e-01 7.12356389e-01 1.01649232e-01 -7.88062811e-01 -2.46056795e-01 5.38211167e-01]
[9.299049377441406, 0.784055769443512]
4a740db7-dbe7-4b6f-8620-46df0d6fbb9b
video-object-segmentation-using-supervoxel
1704.05165
null
http://arxiv.org/abs/1704.05165v1
http://arxiv.org/pdf/1704.05165v1.pdf
Video Object Segmentation using Supervoxel-Based Gerrymandering
Pixels operate locally. Superpixels have some potential to collect information across many pixels; supervoxels have more potential by implicitly operating across time. In this paper, we explore this well established notion thoroughly analyzing how supervoxels can be used in place of and in conjunction with other means of aggregating information across space-time. Focusing on the problem of strictly unsupervised video object segmentation, we devise a method called supervoxel gerrymandering that links masks of foregroundness and backgroundness via local and non-local consensus measures. We pose and answer a series of critical questions about the ability of supervoxels to adequately sway local voting; the questions regard type and scale of supervoxels as well as local versus non-local consensus, and the questions are posed in a general way so as to impact the broader knowledge of the use of supervoxels in video understanding. We work with the DAVIS dataset and find that our analysis yields an unsupervised method that outperforms all other known unsupervised methods and even many supervised ones.
['Jason J. Corso', 'Brent A. Griffin']
2017-04-18
null
null
null
null
['unsupervised-video-object-segmentation']
['computer-vision']
[ 5.57291508e-01 -7.29857385e-02 -2.83805102e-01 -4.13366616e-01 -5.52722991e-01 -9.70958471e-01 8.99530053e-01 2.63072371e-01 -4.93206203e-01 3.63993287e-01 2.17799678e-01 -3.57773483e-01 -3.60638618e-01 -4.66080725e-01 -5.16088843e-01 -9.29693580e-01 -2.57417355e-02 2.10944206e-01 8.13889623e-01 -3.21293138e-02 4.46011573e-01 2.78231651e-01 -1.52360463e+00 3.27230513e-01 9.01210189e-01 6.96431994e-01 -7.31036067e-04 8.65281641e-01 9.21479464e-02 1.10696805e+00 -6.01352036e-01 -1.61902636e-01 3.29434216e-01 -4.51541603e-01 -7.78898180e-01 6.06869102e-01 9.86684680e-01 -1.37606129e-01 6.02544993e-02 1.16170621e+00 3.43665704e-02 1.54445276e-01 6.39705896e-01 -1.10488033e+00 -3.38318169e-01 5.93648195e-01 -6.07280314e-01 7.23533332e-01 6.84710294e-02 2.30232030e-01 1.16550457e+00 -5.04989684e-01 7.72819579e-01 1.15411937e+00 7.06286788e-01 2.41549343e-01 -1.24399674e+00 -3.24114934e-02 4.57699418e-01 3.28302868e-02 -1.26464486e+00 -3.76124024e-01 4.07602489e-01 -6.80098295e-01 6.59869790e-01 5.99871933e-01 6.02698267e-01 5.96708715e-01 6.76690042e-02 8.90401006e-01 1.35571492e+00 -5.50506294e-01 2.08429083e-01 -7.89751858e-02 4.70949054e-01 6.96011841e-01 2.72722036e-01 -5.76245748e-02 -5.55950284e-01 -1.24049574e-01 9.16633010e-01 -2.02029258e-01 -2.91214406e-01 -3.10808331e-01 -1.46720743e+00 6.54001236e-01 1.21747963e-01 5.38950443e-01 -6.49141744e-02 3.53576511e-01 3.23392570e-01 -2.14842055e-02 5.48362672e-01 3.42302024e-01 -4.35658813e-01 2.13967383e-01 -1.26212335e+00 1.67342916e-01 6.32330894e-01 6.82610512e-01 9.15747404e-01 -1.33089095e-01 -4.53045033e-03 5.23640931e-01 2.10649282e-01 1.53292760e-01 1.38427317e-01 -1.46135128e+00 2.06260204e-01 3.92634928e-01 6.80844784e-02 -9.85208452e-01 -9.46641713e-02 -6.27673641e-02 -3.47453386e-01 3.82873744e-01 7.95141101e-01 -1.47860423e-01 -9.27840590e-01 1.59963584e+00 3.99679989e-01 2.36464471e-01 -3.68674159e-01 8.52614105e-01 5.17767608e-01 5.87076604e-01 3.10667217e-01 -3.53293896e-01 1.15903008e+00 -8.59029174e-01 -6.01755500e-01 -1.22861199e-01 4.14223969e-01 -8.25991392e-01 5.49826682e-01 5.12729883e-01 -1.06430793e+00 -6.46365106e-01 -9.74375308e-01 -1.08541131e-01 -4.23411995e-01 -9.97311324e-02 7.69131541e-01 6.93372786e-01 -1.45896888e+00 7.26709247e-01 -8.48216593e-01 -7.14404166e-01 1.36094719e-01 2.14243665e-01 -7.50568658e-02 2.98463166e-01 -6.68865323e-01 9.87188339e-01 5.78639686e-01 2.29996413e-01 -8.22484672e-01 -3.98662060e-01 -6.38182044e-01 -3.57977659e-01 6.47726178e-01 -4.69642669e-01 1.06368887e+00 -1.55884373e+00 -9.88437116e-01 1.22711194e+00 -2.72962600e-01 -4.64670151e-01 6.79714203e-01 -9.47285593e-02 -3.78900826e-01 4.11038548e-01 2.75011480e-01 8.31287086e-01 8.40876639e-01 -1.28348780e+00 -9.79504943e-01 -4.28840488e-01 2.76616871e-01 2.18199819e-01 -3.22937183e-02 2.09870189e-01 -5.76449454e-01 -7.16564238e-01 3.75087142e-01 -7.14062035e-01 -2.06878901e-01 3.42276022e-02 -3.72462481e-01 -5.38338542e-01 9.35147524e-01 -5.67952693e-01 1.29392636e+00 -2.18869901e+00 9.93547291e-02 2.73902774e-01 4.38367397e-01 8.65101069e-02 3.51935364e-02 2.34498948e-01 -6.64571598e-02 2.70293415e-01 -4.82675850e-01 1.18991211e-01 -1.08007960e-01 4.44599569e-01 -1.14929721e-01 7.27295518e-01 2.90638715e-01 8.09719980e-01 -1.10611844e+00 -9.35992479e-01 3.77629280e-01 1.88835114e-01 -2.58846879e-01 -4.29136306e-01 -3.69313598e-01 1.98415205e-01 -4.28488880e-01 7.22313464e-01 4.86723244e-01 -1.21685065e-01 3.17871541e-01 -1.09307237e-01 -6.05135202e-01 1.32059291e-01 -1.22937655e+00 1.37416732e+00 4.39224452e-01 1.06288135e+00 2.75209934e-01 -9.80182648e-01 5.31225324e-01 7.92339519e-02 6.43215716e-01 -1.62563026e-01 8.24110303e-03 2.11835414e-01 -2.99458802e-02 -5.47303081e-01 6.92436934e-01 -1.56400859e-01 1.69690818e-01 5.30355215e-01 3.67172882e-02 -1.62067920e-01 5.94195187e-01 4.16819602e-01 1.10795414e+00 3.91453952e-01 2.49624029e-01 -8.41617942e-01 3.68551463e-01 3.31172347e-01 4.76439685e-01 8.83354485e-01 -5.84692895e-01 6.71261251e-01 4.61054206e-01 -2.08927408e-01 -8.52446973e-01 -1.20394790e+00 -2.64172614e-01 1.36342239e+00 4.41638291e-01 -4.00532931e-01 -9.93766665e-01 -7.42275238e-01 -9.56338719e-02 4.13412988e-01 -7.20237017e-01 4.32158142e-01 -5.70629001e-01 -9.00931776e-01 3.78196865e-01 6.32993758e-01 3.72251302e-01 -9.14236784e-01 -9.46289361e-01 7.91000947e-02 -1.00254208e-01 -1.09752822e+00 -5.56149840e-01 4.64643329e-01 -9.83727992e-01 -1.03966081e+00 -5.56280613e-01 -6.04634643e-01 7.42435038e-01 5.97566426e-01 1.27416551e+00 2.38419324e-01 -1.10546313e-01 7.20543027e-01 -3.80012512e-01 -3.06385487e-01 -2.98232883e-01 -1.20228320e-01 -2.51393765e-01 5.38755842e-02 6.01223409e-01 -3.24498713e-01 -5.43884158e-01 4.33982521e-01 -1.17998362e+00 -2.18814686e-01 3.97651821e-01 3.38538170e-01 3.75417978e-01 2.48301759e-01 1.04857802e-01 -1.18276310e+00 2.67625451e-01 -2.71835297e-01 -6.28089964e-01 3.38359326e-01 -4.00019109e-01 -7.94983432e-02 -1.33556917e-01 -3.05059582e-01 -1.21268594e+00 4.46234317e-03 3.64625931e-01 -1.54196367e-01 -2.37651721e-01 2.91985571e-01 3.59245110e-03 -3.00033707e-02 6.69526398e-01 -1.21109501e-01 -2.10868701e-01 -1.04726791e-01 5.99578202e-01 3.47978860e-01 6.83276296e-01 -6.78235292e-01 6.41213059e-01 1.07452154e+00 -2.13461801e-01 -1.03205454e+00 -8.67005885e-01 -9.02789772e-01 -1.06785595e+00 -5.62042117e-01 1.25199461e+00 -6.73849404e-01 -2.30407327e-01 3.31852555e-01 -9.87799406e-01 -4.45507050e-01 -4.40588295e-01 1.13477595e-01 -5.14638484e-01 6.33703828e-01 -5.67238212e-01 -8.40423465e-01 3.28806728e-01 -8.66271257e-01 1.02428925e+00 2.28494093e-01 -5.85649431e-01 -1.20733345e+00 3.39939957e-03 5.94303548e-01 -1.37351658e-02 3.46018046e-01 5.13059080e-01 -4.27101433e-01 -8.78336549e-01 1.23980321e-01 -3.49089593e-01 3.87924135e-01 2.04639137e-02 6.95914388e-01 -1.02347040e+00 -4.77861986e-02 9.68402624e-02 8.73659402e-02 1.21140981e+00 6.71686888e-01 7.64657974e-01 -7.67547712e-02 -1.66040584e-01 2.24188671e-01 1.66206980e+00 7.80633762e-02 5.36854208e-01 3.77943069e-01 7.37210572e-01 9.50865448e-01 6.12013102e-01 1.87469646e-01 1.56371146e-01 3.06150228e-01 2.30375066e-01 -1.41280204e-01 -9.12994668e-02 5.12940958e-02 4.33646202e-01 6.98047280e-01 -4.96420085e-01 -1.87849194e-01 -8.13476026e-01 8.11056972e-01 -2.15522051e+00 -1.18878317e+00 -7.48069882e-01 2.01285553e+00 6.24507248e-01 2.04490215e-01 2.62602657e-01 6.65944666e-02 9.12354708e-01 5.52050591e-01 -1.75650224e-01 -2.18311325e-01 -5.22512317e-01 4.71725278e-02 8.48268151e-01 5.54592252e-01 -1.44527161e+00 9.29149747e-01 7.38954592e+00 7.35734642e-01 -8.06578696e-01 2.25251168e-01 7.82150567e-01 2.71460354e-01 -2.61235654e-01 4.38591301e-01 -5.85471451e-01 2.46353373e-01 5.11021793e-01 3.55620742e-01 1.61750540e-01 5.18674970e-01 3.70377123e-01 -8.08893502e-01 -1.20499158e+00 5.38149595e-01 2.51486331e-01 -1.11535466e+00 -2.26324663e-01 -4.15621065e-02 1.29484415e+00 9.80373565e-03 -1.36815652e-01 -4.08592016e-01 6.06810689e-01 -7.88753211e-01 1.12450802e+00 4.47125912e-01 1.64792076e-01 -2.00613230e-01 4.65909928e-01 1.10070415e-01 -1.17050529e+00 6.92370534e-02 -7.47693256e-02 -2.06467539e-01 1.61601648e-01 5.54464936e-01 -4.11236405e-01 3.63335609e-01 6.83998704e-01 8.83207262e-01 -7.89880753e-01 9.39092755e-01 -3.84328514e-01 6.12568855e-01 -3.75038147e-01 1.96841493e-01 4.86918807e-01 -3.98374081e-01 5.03089309e-01 1.46622014e+00 -1.18706241e-01 3.41048762e-02 1.98848352e-01 7.56858110e-01 4.57274437e-01 -1.10030174e-01 -4.12231505e-01 1.54160103e-02 2.17782199e-01 1.21705735e+00 -1.39953911e+00 -6.67687774e-01 -4.06608075e-01 9.11285281e-01 -1.76535830e-01 6.01337016e-01 -8.34032595e-01 2.38865286e-01 2.99246281e-01 2.45795906e-01 3.68592441e-01 -3.83769959e-01 -5.41204095e-01 -1.17022586e+00 -5.98713160e-02 -7.33893633e-01 6.57963514e-01 -9.75998223e-01 -1.33482385e+00 9.73879453e-03 2.65588224e-01 -1.05849695e+00 2.37168148e-02 -8.37406397e-01 -7.69292593e-01 3.10386509e-01 -1.26172745e+00 -1.00119805e+00 -1.99774504e-01 4.38757747e-01 6.47733748e-01 5.30059934e-01 1.94191545e-01 2.35457458e-02 -4.90375042e-01 -1.69473231e-01 -1.68807376e-02 2.29050234e-01 6.58707559e-01 -1.43970227e+00 -4.48348075e-02 1.34235048e+00 5.26685357e-01 8.12217414e-01 8.93468738e-01 -5.55934548e-01 -9.94198680e-01 -8.78076613e-01 8.06779563e-01 -9.40245509e-01 9.34846938e-01 -4.26286459e-03 -7.22396135e-01 8.24432075e-01 4.36352789e-01 -7.85023421e-02 2.66575545e-01 1.50277838e-01 -2.50588149e-01 -1.04970805e-01 -6.88028932e-01 5.69216669e-01 1.05276191e+00 -6.04131579e-01 -6.85887992e-01 2.47698069e-01 2.31905863e-01 5.66219725e-02 -5.66873252e-01 4.59117144e-01 4.79666263e-01 -1.34210908e+00 8.65077555e-01 -3.33216161e-01 3.09394985e-01 -7.49026895e-01 -2.05184042e-01 -6.85422242e-01 -1.53952852e-01 -6.10519767e-01 3.20910245e-01 1.27264845e+00 4.30372536e-01 -4.95633870e-01 8.30091238e-01 5.28346598e-01 -1.73595801e-01 -3.39427918e-01 -8.20417821e-01 -6.88935816e-01 -3.44463922e-02 -5.92151344e-01 -1.53342962e-01 1.07473874e+00 -1.31588951e-01 1.27239853e-01 2.48623565e-02 5.76580837e-02 7.51438260e-01 -8.97092894e-02 6.81134164e-01 -1.22130501e+00 -2.19814807e-01 -6.82548761e-01 -5.30793130e-01 -1.15358531e+00 -1.48710117e-01 -5.19382894e-01 2.34504953e-01 -1.31573856e+00 4.35105950e-01 -3.00282270e-01 -3.58177394e-01 2.43508175e-01 -2.62011349e-01 5.40820777e-01 1.11083955e-01 2.86058009e-01 -1.08619797e+00 -2.74720132e-01 1.15929353e+00 -2.40242511e-01 -1.04202880e-02 -3.19292098e-01 -5.33889711e-01 1.12539506e+00 5.77364564e-01 -1.75471559e-01 -4.02861804e-01 -5.11385083e-01 2.40064356e-02 -4.34910893e-01 6.24302983e-01 -7.41235614e-01 3.21159363e-01 -4.10579681e-01 3.60466927e-01 -5.33449411e-01 -2.52931751e-02 -6.90466225e-01 6.99342415e-02 5.12381829e-02 -2.63797730e-01 1.75566524e-01 -1.41708434e-01 6.41324937e-01 -2.87342817e-01 -4.23314542e-01 8.20460260e-01 -5.34002244e-01 -1.27299798e+00 -9.46091115e-02 -6.06436431e-01 6.68006614e-02 1.24640679e+00 -7.81396270e-01 -3.85759622e-01 -1.95148781e-01 -8.59388888e-01 1.52332321e-01 7.86435068e-01 1.99556202e-01 2.40617454e-01 -8.33851397e-01 -5.03340065e-01 -1.83202066e-02 2.20746994e-02 -1.48251548e-01 1.31578535e-01 1.26576149e+00 -7.34264314e-01 2.34012097e-01 1.70779601e-02 -1.03933322e+00 -1.36599410e+00 3.74976635e-01 3.67593914e-01 -9.62584559e-03 -4.31842029e-01 9.51036334e-01 4.21155632e-01 5.38210236e-02 1.65548638e-01 -4.70778972e-01 8.80286843e-02 3.48882198e-01 2.03013748e-01 4.54240263e-01 -2.52686918e-01 -8.08112442e-01 -3.25669140e-01 7.04935610e-01 9.86896828e-02 -3.55141640e-01 1.09016633e+00 -3.60192448e-01 -5.25029778e-01 7.72795141e-01 8.21016610e-01 5.05269207e-02 -1.44765091e+00 6.95732934e-03 4.58894223e-01 -4.72785115e-01 -1.02470793e-01 -5.43616295e-01 -8.25529456e-01 7.14792311e-01 4.18911040e-01 6.68944061e-01 1.12246752e+00 4.79709774e-01 2.49123409e-01 -1.08212486e-01 1.23200491e-01 -1.43124712e+00 6.80488870e-02 3.45405847e-01 2.39049762e-01 -1.33162749e+00 3.50550354e-01 -5.99213958e-01 -5.28896570e-01 1.11234689e+00 3.81496757e-01 -1.73700497e-01 4.25598830e-01 2.39610299e-01 2.64596969e-01 -4.70817506e-01 -5.84115267e-01 -5.36682427e-01 2.80079186e-01 4.18096900e-01 5.30147076e-01 1.04932375e-01 -4.01037395e-01 -2.88717747e-01 1.09015062e-01 -1.76928192e-01 3.66377771e-01 1.19840455e+00 -7.80382037e-01 -1.00960815e+00 -5.36106646e-01 2.81711847e-01 -5.71206450e-01 1.45704008e-03 -6.93998098e-01 9.29237723e-01 7.38646746e-01 1.14428210e+00 1.96995169e-01 -9.36393887e-02 -1.84760064e-01 -4.71977256e-02 6.05531991e-01 -6.10191584e-01 -5.55681765e-01 5.98025501e-01 1.37488768e-01 -3.83690327e-01 -1.33288980e+00 -1.04666960e+00 -9.91988778e-01 -8.05843771e-02 -6.48405492e-01 4.10097428e-02 3.95225525e-01 1.27168012e+00 -3.71894628e-01 4.26642716e-01 1.36101708e-01 -7.92615950e-01 -1.25204951e-01 -7.45040476e-01 -7.20282257e-01 4.73257810e-01 3.56030762e-01 -2.46731728e-01 -5.25962472e-01 6.68533325e-01]
[9.080535888671875, -0.33820340037345886]
1e709c36-68e9-449f-8597-82e675a4d5e7
deep-multi-branch-cnn-architecture-for-early
2210.12331
null
https://arxiv.org/abs/2210.12331v3
https://arxiv.org/pdf/2210.12331v3.pdf
Deep Multi-Branch CNN Architecture for Early Alzheimer's Detection from Brain MRIs
Alzheimer's disease (AD) is a neuro-degenerative disease that can cause dementia and result severe reduction in brain function inhibiting simple tasks especially if no preventative care is taken. Over 1 in 9 Americans suffer from AD induced dementia and unpaid care for people with AD related dementia is valued at $271.6 billion. Hence, various approaches have been developed for early AD diagnosis to prevent its further progression. In this paper, we first review other approaches that could be used for early detection of AD. We then give an overview of our dataset that was from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and propose a deep Convolutional Neural Network (CNN) architecture consisting of 7,866,819 parameters. This model has three different convolutional branches with each having a different length. Each branch is comprised of different kernel sizes. This model can predict whether a patient is non-demented, mild-demented, or moderately demented with a 99.05% three class accuracy.
['Rakesh Mahto', 'Paul K. Mandal']
2022-10-22
null
null
null
null
['alzheimer-s-disease-detection']
['medical']
[-6.40599579e-02 4.71615121e-02 1.13227956e-01 -6.71157837e-01 -3.62659991e-01 -1.76509336e-01 2.83283025e-01 8.08912795e-03 -9.05505896e-01 1.23977208e+00 3.41085672e-01 -4.96822655e-01 1.13860153e-01 -8.16018283e-01 -3.48815918e-01 -2.78478891e-01 -5.06953835e-01 6.35334194e-01 4.70020533e-01 1.22263260e-01 -2.16065407e-01 5.13824284e-01 -9.64915037e-01 4.78680551e-01 1.15866661e+00 1.10842001e+00 3.78179580e-01 7.71733701e-01 1.20786846e-01 6.47140682e-01 -6.60327554e-01 -2.13419929e-01 2.21058249e-01 -1.30617231e-01 -8.26328516e-01 -2.15659007e-01 4.38553631e-01 -1.23175395e+00 -3.72027129e-01 9.67577517e-01 7.06202269e-01 -4.83935148e-01 8.22718441e-01 -9.38520849e-01 -6.87432170e-01 3.24625410e-02 -1.91672981e-01 8.91444087e-01 -2.35963181e-01 4.41466607e-02 4.10175771e-01 -6.65874720e-01 1.87316671e-01 1.39575446e+00 8.04563642e-01 7.80218840e-01 -9.01088059e-01 -6.51424885e-01 7.49368370e-02 7.28065431e-01 -8.02627265e-01 -2.29401901e-01 1.46962211e-01 -7.55207896e-01 1.02851355e+00 -9.48143974e-02 1.29011774e+00 9.86001730e-01 7.14087844e-01 3.17077935e-01 1.15731180e+00 -1.26170367e-01 5.04146695e-01 -3.06299239e-01 7.44610727e-01 3.72324467e-01 7.18726814e-01 -3.09772581e-01 4.02051151e-01 -6.09807432e-01 7.74572134e-01 2.83167481e-01 -6.03429191e-02 3.06694070e-03 -9.23312485e-01 9.29741800e-01 7.04484582e-01 1.30137444e-01 -5.08150220e-01 -7.96619132e-02 4.76784468e-01 3.59037876e-01 2.62951285e-01 -1.52424917e-01 -7.03816235e-01 3.61574441e-01 -5.60341001e-01 5.79506695e-01 3.02649856e-01 3.31796527e-01 1.84065834e-01 -1.21940017e-01 -1.14888817e-01 1.10416245e+00 5.85765302e-01 4.33173895e-01 7.67237544e-01 -9.51746225e-01 2.70997316e-01 9.59709466e-01 -7.44856074e-02 -2.01026872e-01 -7.76497543e-01 -2.91977018e-01 -1.02680540e+00 7.73125589e-01 4.01180655e-01 -5.43460786e-01 -1.09785736e+00 1.32852423e+00 -1.00870430e-01 -1.86301157e-01 -1.24104835e-01 7.79180169e-01 6.43493950e-01 3.71313214e-01 5.52097023e-01 1.09914802e-01 1.95989335e+00 -6.84084415e-01 -5.18875062e-01 -6.45117521e-01 5.05088329e-01 -2.66156763e-01 6.84147418e-01 2.18569383e-01 -8.73027146e-01 -1.85318381e-01 -1.24516475e+00 -3.72365862e-01 -5.63086808e-01 3.33852440e-01 4.91993338e-01 8.04630339e-01 -1.29716146e+00 2.11916015e-01 -9.71358359e-01 -5.91454446e-01 1.14483535e+00 5.73154032e-01 -3.21311414e-01 -2.69648552e-01 -1.15397191e+00 1.44536769e+00 1.82194427e-01 -1.84248418e-01 -8.60525072e-01 -7.93403327e-01 -1.60799548e-01 -1.47538543e-01 -4.08141762e-01 -1.12686324e+00 1.42704070e+00 -6.11894608e-01 -6.19933248e-01 9.19447303e-01 -5.91851324e-02 -9.41976070e-01 6.57270253e-01 -6.38714969e-01 -6.85823798e-01 1.77994087e-01 2.93510973e-01 1.04257369e+00 2.24675387e-01 -4.21909094e-01 -8.83070469e-01 -1.05966425e+00 -2.49153259e-03 6.57559978e-03 -4.30333316e-01 5.25507212e-01 4.64719296e-01 -6.22246742e-01 -1.55819744e-01 -8.93998384e-01 -4.35793400e-01 9.34615195e-01 -2.32436046e-01 -2.11359710e-01 8.73891652e-01 -1.05723035e+00 7.88264573e-01 -1.61214674e+00 -5.53147733e-01 -5.06954253e-01 7.67812014e-01 7.44070470e-01 3.03585738e-01 -3.69395465e-01 -2.39335045e-01 1.00467466e-01 -3.70016277e-01 1.44207567e-01 -3.27961355e-01 1.71348691e-01 2.14971989e-01 2.97467619e-01 3.53102952e-01 7.81086028e-01 -5.56489229e-01 5.66861033e-02 4.01066430e-02 8.90912533e-01 -3.86687487e-01 4.59634773e-02 1.38062969e-01 1.80409193e-01 -6.60121143e-01 5.30472577e-01 8.97412539e-01 -2.27291748e-01 8.08677673e-02 9.42420214e-02 -1.44394338e-01 3.81638169e-01 -4.31830645e-01 7.41432965e-01 1.86340779e-01 7.74240971e-01 -3.83144580e-02 -9.34444785e-01 6.57069206e-01 2.81808436e-01 2.57026523e-01 -7.58005917e-01 2.78459281e-01 4.32912916e-01 4.70567137e-01 -4.72496361e-01 -4.48090076e-01 7.86479786e-02 5.39082646e-01 3.35290432e-01 -3.96609217e-01 1.08141208e+00 1.60405949e-01 -9.94968787e-02 1.63900399e+00 -7.41493225e-01 6.44099355e-01 -4.15502727e-01 5.57379007e-01 -3.53904106e-02 7.35149324e-01 5.22939801e-01 -7.58858800e-01 4.13414091e-01 6.44867241e-01 -1.15385497e+00 -1.19989061e+00 -1.36438227e+00 -5.51595867e-01 5.78289390e-01 -6.51544988e-01 6.30547181e-02 -7.97239423e-01 -5.64995885e-01 7.61538744e-03 3.74159425e-01 -4.79947478e-01 -3.85443658e-01 -8.31548870e-01 -1.44428408e+00 5.92409074e-01 8.57789338e-01 1.42415214e+00 -8.67936850e-01 -7.45175064e-01 2.85747975e-01 2.69737486e-02 -6.62654579e-01 5.09772450e-02 1.13733023e-01 -1.46771228e+00 -1.33831418e+00 -1.54722083e+00 -1.23749280e+00 7.28056371e-01 2.16979235e-01 9.28093553e-01 -1.66170910e-01 -6.16480887e-01 -1.10884406e-01 3.86232547e-02 -5.87436378e-01 -1.72603548e-01 -7.35890195e-02 2.57611752e-01 -4.70568895e-01 9.16841567e-01 -8.41631293e-01 -1.26338828e+00 -3.72570157e-02 -3.90625089e-01 -2.50445485e-01 9.11183655e-01 6.76160678e-02 2.45983317e-01 -2.27810726e-01 9.48961318e-01 -4.19979572e-01 8.93165767e-01 -5.86263537e-01 -1.86351135e-01 8.35133418e-02 -7.10737348e-01 -2.33538941e-01 1.84031323e-01 -4.58566964e-01 -7.49078214e-01 3.39983374e-01 -1.96677655e-01 2.51474530e-01 -5.98391891e-01 -2.22182814e-02 -3.46949399e-01 1.40767142e-01 5.23356497e-01 -1.40963554e-01 1.12851083e-01 -8.91313612e-01 -1.48077950e-01 1.04154134e+00 4.27454174e-01 -6.43219873e-02 8.74733701e-02 2.76315957e-01 -2.71447062e-01 -9.13365066e-01 -6.24257267e-01 -8.78027678e-02 -6.85567439e-01 -1.02901004e-01 1.23085845e+00 -1.12737811e+00 -2.67515004e-01 1.06149805e+00 -1.29345703e+00 -3.95082712e-01 3.70807946e-01 6.55542552e-01 -2.88660415e-02 5.36384471e-02 -7.07990170e-01 -3.80618125e-01 -8.67801428e-01 -1.06445396e+00 3.76821697e-01 2.70029247e-01 -3.57815713e-01 -7.95185924e-01 1.61240727e-01 3.00550342e-01 6.29689336e-01 1.59354791e-01 1.42048883e+00 -7.52363145e-01 -2.20855474e-01 -2.25481555e-01 -9.45081294e-01 5.87980747e-01 3.79191041e-01 -6.62305057e-01 -6.04245603e-01 -1.82423353e-01 1.20368779e-01 -4.73498069e-02 9.51367378e-01 8.26053977e-01 5.75791836e-01 -4.41647112e-01 -4.52836603e-01 7.74837583e-02 1.03583241e+00 8.18990886e-01 1.03868937e+00 1.07900512e+00 3.40796709e-01 8.83254558e-02 -2.21436039e-01 1.26291603e-01 5.19145012e-01 3.58079880e-01 4.99626189e-01 6.85248375e-02 -3.80448908e-01 8.22873831e-01 4.16603565e-01 2.15973798e-03 -3.52738023e-01 1.08067103e-01 -1.04632080e+00 4.62316841e-01 -1.46370053e+00 -7.10408747e-01 -7.27932632e-01 2.01056385e+00 7.96108902e-01 2.74268091e-01 4.75207090e-01 -5.57580926e-02 9.88934696e-01 -3.83947223e-01 -8.81058991e-01 -8.33250508e-02 -9.97646898e-02 2.35520214e-01 4.13885146e-01 -4.28740755e-02 -1.23486805e+00 2.87349463e-01 7.07154989e+00 -3.58881027e-01 -8.65320027e-01 2.21249193e-01 8.16982269e-01 -1.30356848e-01 6.28173351e-01 -4.44078773e-01 -8.28114927e-01 6.44510448e-01 1.07609427e+00 -1.06464766e-01 -5.42664528e-03 1.04755449e+00 3.61613035e-01 -1.84169397e-01 -7.24196851e-01 5.96007764e-01 -2.50409663e-01 -1.03075540e+00 2.10726649e-01 3.96402389e-01 3.25716287e-01 3.01638424e-01 -1.24492943e-01 1.48221180e-01 2.07534298e-01 -8.57954562e-01 3.18587989e-01 8.22895825e-01 6.11877739e-01 -6.85731947e-01 8.73225212e-01 -1.27775282e-01 -8.77084017e-01 -3.29384923e-01 -3.75511348e-01 -4.18802738e-01 2.36870334e-01 8.78619611e-01 -9.09252942e-01 -5.12403548e-01 1.16058445e+00 6.12580001e-01 -9.75428462e-01 1.75302029e+00 -1.15130141e-01 5.96816182e-01 -9.56849828e-02 1.57643303e-01 1.89303011e-01 1.50676385e-01 3.72683346e-01 8.65319967e-01 5.56035042e-01 1.54185772e-01 -6.18066303e-02 8.11972439e-01 2.56350581e-02 -3.10413450e-01 -1.19862452e-01 1.64333329e-01 2.19432607e-01 8.99470747e-01 -5.82321465e-01 -4.79764909e-01 -6.60684824e-01 1.06867647e+00 1.49973825e-01 1.08750343e-01 -4.56127763e-01 -2.97722131e-01 8.84340823e-01 4.75678504e-01 7.22633526e-02 -2.60854781e-01 -4.23700750e-01 -7.24297941e-01 1.29207686e-01 -4.89065498e-01 3.99040520e-01 -8.50134909e-01 -1.44737709e+00 6.60552680e-01 -1.54196233e-01 -8.08455586e-01 3.30549292e-02 -1.21801484e+00 -8.83801460e-01 1.01827610e+00 -1.27150977e+00 -8.37281942e-01 -3.71775746e-01 4.77307677e-01 4.82605070e-01 -5.11015534e-01 9.61700261e-01 6.79018974e-01 -7.15258896e-01 -4.13337499e-02 1.19243339e-01 4.91070092e-01 8.01341832e-01 -1.35585022e+00 4.80852038e-01 3.60591054e-01 -1.39104879e+00 6.91326678e-01 2.48652965e-01 -1.02497709e+00 -4.01198804e-01 -1.50802135e+00 1.18476641e+00 -6.92920089e-02 5.30328810e-01 1.58543345e-02 -9.68419194e-01 7.92245150e-01 3.40547897e-02 -2.08721042e-01 6.48024917e-01 -3.26325655e-01 -1.30824983e-01 -6.39469698e-02 -1.53293419e+00 5.41383505e-01 7.83981025e-01 8.10723230e-02 -9.83065188e-01 4.47799236e-01 3.52722406e-01 2.81499594e-01 -7.57742763e-01 2.75252670e-01 7.06911445e-01 -1.02301311e+00 1.36064780e+00 -7.81463146e-01 3.49339157e-01 -1.54673969e-02 -2.39894968e-02 -9.74398434e-01 -5.90962887e-01 2.38555461e-01 -3.28013778e-01 7.60624766e-01 1.30414605e-01 -8.57370555e-01 6.67116642e-01 1.00716805e+00 -2.67857611e-01 -7.42548525e-01 -9.31514204e-01 -9.55725551e-01 6.33945823e-01 1.11139238e-01 3.71570885e-01 5.07391095e-01 -5.26509643e-01 5.16148508e-01 7.85892159e-02 6.87570125e-02 6.77955329e-01 -8.81228447e-01 -1.51495442e-01 -2.11662221e+00 6.74759269e-01 -5.50337374e-01 -7.50979424e-01 -4.18182075e-01 -3.51995140e-01 -6.55265808e-01 -6.41546190e-01 -2.17330813e+00 5.34680903e-01 -1.33406162e-01 -4.06828225e-01 7.92546868e-01 4.38507386e-02 2.01746553e-01 -3.02621722e-01 2.55548447e-01 -6.11360967e-02 2.16339827e-01 9.54514742e-01 -3.69304389e-01 -2.30530754e-01 2.21284747e-01 -7.98515558e-01 9.12777722e-01 1.35310423e+00 -2.97822744e-01 -3.26903254e-01 -4.25092012e-01 -1.03365690e-01 -6.31192327e-01 9.77576613e-01 -1.53720570e+00 -6.88864589e-02 2.47302964e-01 1.19638634e+00 -6.05396688e-01 3.38300139e-01 -5.66290736e-01 3.06273671e-03 1.02819371e+00 -1.36289477e-01 -1.31042330e-02 2.81285588e-02 3.31823975e-01 5.05410016e-01 -2.58609563e-01 1.13796520e+00 -4.40421820e-01 -6.56937540e-01 3.43425304e-01 -1.26226258e+00 -2.37794355e-01 1.10615730e+00 -1.07025735e-01 -6.14784062e-01 6.08889572e-02 -1.00708163e+00 1.54804230e-01 -8.03192556e-02 2.91511983e-01 5.85330904e-01 -1.55639887e+00 -6.87788844e-01 -1.98242411e-01 -1.03863694e-01 -3.37761819e-01 1.48315415e-01 7.48114705e-01 -7.35585511e-01 6.58911467e-01 -9.53518450e-01 -4.08666655e-02 -1.28952777e+00 2.05861807e-01 5.97592890e-01 -8.43667611e-02 -1.19493496e+00 4.38303888e-01 -2.32518930e-02 5.39735146e-02 2.90139109e-01 -4.64634091e-01 -5.71868956e-01 8.93589482e-02 1.37986481e+00 9.23233867e-01 2.23663673e-01 -4.59064960e-01 -5.46485543e-01 3.34633067e-02 -8.32192957e-01 1.03456728e-01 1.57226562e+00 -9.34741944e-02 -4.19566810e-01 1.37564346e-01 1.08487272e+00 -1.01105034e+00 -1.03666520e+00 1.91612288e-01 9.31141805e-03 3.00065547e-01 4.91630942e-01 -1.20938265e+00 -1.03320038e+00 7.98795462e-01 1.65460777e+00 1.36909321e-01 7.09675789e-01 1.41995728e-01 1.35469687e+00 7.36349046e-01 2.48119354e-01 -7.66459942e-01 -1.09962344e-01 4.99764681e-01 9.26715016e-01 -1.04009211e+00 -3.72101157e-03 -4.12560850e-02 -1.27156794e-01 1.51031399e+00 5.73069036e-01 -5.67294419e-01 8.68609726e-01 -2.92080827e-02 9.59112346e-02 -1.74027652e-01 -3.94134849e-01 -5.52727766e-02 1.02811478e-01 1.05087399e+00 4.64797974e-01 2.26336345e-01 -5.36535442e-01 1.09614277e+00 -8.11233521e-02 4.88308936e-01 2.81497389e-01 1.12573707e+00 -1.22956800e+00 -9.77601290e-01 -3.77738953e-01 1.25563204e+00 -5.07428825e-01 -2.73595378e-02 -7.83538043e-01 5.86718261e-01 3.83368403e-01 6.53841257e-01 3.10553044e-01 1.79397091e-01 2.26318434e-01 3.40430230e-01 2.90171236e-01 -4.02375698e-01 6.00050911e-02 -2.22210601e-01 2.39138767e-01 -1.55079156e-01 -3.55412304e-01 -7.39276826e-01 -1.39844000e+00 -2.41159633e-01 5.58876634e-01 -5.66159308e-01 3.50042522e-01 9.64955807e-01 4.32937622e-01 6.96010113e-01 -2.07110271e-01 -6.81006014e-01 -1.06791779e-01 -1.10183299e+00 -6.55681014e-01 -4.50390756e-01 5.27439773e-01 -8.57769251e-01 -2.67753839e-01 2.24114686e-01]
[14.164098739624023, -1.7420815229415894]
f7b81179-843d-493a-b0ce-945422323d01
playing-atari-games-with-deep-reinforcement
1607.05077
null
http://arxiv.org/abs/1607.05077v1
http://arxiv.org/pdf/1607.05077v1.pdf
Playing Atari Games with Deep Reinforcement Learning and Human Checkpoint Replay
This paper introduces a novel method for learning how to play the most difficult Atari 2600 games from the Arcade Learning Environment using deep reinforcement learning. The proposed method, human checkpoint replay, consists in using checkpoints sampled from human gameplay as starting points for the learning process. This is meant to compensate for the difficulties of current exploration strategies, such as epsilon-greedy, to find successful control policies in games with sparse rewards. Like other deep reinforcement learning architectures, our model uses a convolutional neural network that receives only raw pixel inputs to estimate the state value function. We tested our method on Montezuma's Revenge and Private Eye, two of the most challenging games from the Atari platform. The results we obtained show a substantial improvement compared to previous learning approaches, as well as over a random player. We also propose a method for training deep reinforcement learning agents using human gameplay experience, which we call human experience replay.
['Ionel-Alexandru Hosu', 'Traian Rebedea']
2016-07-18
null
null
null
null
['montezumas-revenge']
['playing-games']
[-3.47729176e-01 1.97766498e-01 -2.90552080e-02 2.07262591e-01 -7.79217184e-01 -5.62832773e-01 7.59357035e-01 -2.17055887e-01 -9.68101740e-01 9.95907605e-01 -1.53056279e-01 -3.67897660e-01 9.40841213e-02 -8.38755369e-01 -7.97934175e-01 -7.84823239e-01 -4.00718361e-01 6.55598342e-01 3.29513550e-01 -5.92684031e-01 3.64777088e-01 1.28100961e-01 -1.41355646e+00 7.41862655e-02 5.62165201e-01 7.66415477e-01 2.43368804e-01 1.07266605e+00 3.23510945e-01 1.64336383e+00 -9.33121800e-01 4.10327725e-02 4.11468297e-01 -4.92159545e-01 -9.78259206e-01 5.39373606e-02 -3.28583330e-01 -8.01454365e-01 -5.61880946e-01 8.54588687e-01 5.27192354e-01 4.26289111e-01 1.93703294e-01 -1.19805777e+00 9.20495689e-02 6.99599445e-01 -5.53231299e-01 2.10335881e-01 3.47889155e-01 7.65942395e-01 7.68315256e-01 -8.00831467e-02 6.75116301e-01 9.67879474e-01 4.26798642e-01 7.26843297e-01 -7.62411714e-01 -5.38286209e-01 -6.72767013e-02 3.83177072e-01 -1.01798069e+00 -1.10657640e-01 4.34287041e-01 -1.26285702e-01 1.30201077e+00 -1.95572689e-01 9.48616505e-01 1.18731546e+00 5.13035953e-01 1.03168190e+00 1.37475431e+00 -3.59065294e-01 7.76018262e-01 -4.76288050e-01 -5.39187610e-01 9.23563540e-01 -3.64567637e-01 8.82219434e-01 -3.45000356e-01 -2.18647316e-01 1.01547992e+00 -2.74173677e-01 -6.93631917e-02 -3.08217615e-01 -1.08694255e+00 8.73612702e-01 5.00501394e-01 -1.51450425e-01 -6.91026211e-01 7.70297945e-01 5.16095400e-01 6.14980936e-01 -3.04438509e-02 8.07396948e-01 -4.09750164e-01 -8.74504149e-01 -5.50868332e-01 6.21353090e-01 7.76496947e-01 3.99543524e-01 7.85092473e-01 4.36637729e-01 -3.44977863e-02 3.62723917e-01 2.41055544e-02 3.76696587e-01 5.66197336e-01 -1.41670609e+00 1.07301652e-01 1.77698210e-01 5.08251369e-01 -2.17263684e-01 -5.93198836e-01 -8.37696791e-02 -3.56916606e-01 1.36145866e+00 5.42049646e-01 -8.07842612e-01 -1.02263165e+00 1.47159505e+00 1.71157151e-01 4.12222177e-01 5.32781839e-01 1.09845674e+00 3.49297523e-01 7.79650509e-01 -1.03345998e-01 1.21408679e-01 1.05460489e+00 -1.13965225e+00 -2.22662583e-01 -3.06889504e-01 6.86767399e-01 -2.34381169e-01 1.05229139e+00 9.19657111e-01 -1.25972676e+00 -4.14437324e-01 -1.13439262e+00 4.95331347e-01 -1.24044731e-01 -1.17997751e-02 8.76761973e-01 4.47295278e-01 -1.24156296e+00 8.65340889e-01 -1.21978748e+00 -9.82334316e-02 1.54263347e-01 4.21830356e-01 -2.18721345e-01 1.96791664e-01 -1.05132067e+00 1.00697637e+00 7.05997288e-01 -2.11742997e-01 -1.77463651e+00 -8.25448111e-02 -7.87515879e-01 3.16561222e-01 1.02566886e+00 -1.59456149e-01 1.90776396e+00 -8.94269466e-01 -2.22587562e+00 4.94581759e-01 6.26876533e-01 -9.24785793e-01 4.34228003e-01 -3.45388889e-01 1.81341857e-01 1.22900836e-01 -1.45201683e-01 8.43214989e-01 5.70403516e-01 -9.64591205e-01 -8.20276797e-01 -4.17890549e-02 6.34154022e-01 4.58825499e-01 3.15814644e-01 -7.55194277e-02 -1.87788263e-01 -1.76716670e-01 -6.44818902e-01 -1.21690547e+00 -7.23734200e-01 -5.01314700e-01 -7.46481121e-03 -3.17179173e-01 5.67402065e-01 -2.92343259e-01 6.68237090e-01 -1.81698608e+00 2.53534406e-01 1.50975794e-01 1.04719199e-01 3.34941268e-01 -2.04838276e-01 6.34713113e-01 1.68247268e-01 -3.94138992e-01 1.50582880e-01 5.51562272e-02 -2.04998814e-02 4.31669652e-01 -3.22600424e-01 1.70279771e-01 3.19064073e-02 8.68954659e-01 -1.32917798e+00 -7.36882165e-02 1.56015262e-01 -1.12675339e-01 -5.57082951e-01 5.00565052e-01 -6.38764441e-01 4.53745276e-01 -3.61536413e-01 3.60617876e-01 2.01787874e-01 -9.24942940e-02 3.68438721e-01 7.96718061e-01 -3.27744901e-01 2.29401782e-01 -9.89596426e-01 1.91612101e+00 -4.15734053e-01 4.53290612e-01 9.94189531e-02 -8.57434392e-01 8.72827530e-01 4.30077702e-01 4.03659701e-01 -1.03296387e+00 2.82588720e-01 2.64079031e-02 6.01588190e-02 -2.75551379e-01 7.83604741e-01 -2.43176380e-03 -3.91249388e-01 7.08104789e-01 9.09665003e-02 -4.48823452e-01 3.14438105e-01 1.36294514e-01 1.73876870e+00 5.39220452e-01 4.34484959e-01 -2.22197175e-02 8.70095100e-04 4.43717331e-01 6.51311100e-01 1.19638622e+00 -3.92419785e-01 2.10643098e-01 1.01726246e+00 -7.55862772e-01 -9.57574606e-01 -1.08564758e+00 8.95539999e-01 1.15754592e+00 6.52986988e-02 -5.33112526e-01 -8.95411015e-01 -8.42406154e-01 -5.06512642e-01 5.66034138e-01 -6.69278979e-01 -2.39170253e-01 -6.63003802e-01 -3.52405280e-01 6.19003236e-01 5.94474137e-01 8.02330256e-01 -1.80543160e+00 -1.47100139e+00 4.01181102e-01 1.62695959e-01 -7.11902738e-01 -3.81834693e-02 6.39675498e-01 -5.52301168e-01 -1.31111455e+00 -5.67610800e-01 -5.64199388e-01 4.71074916e-02 -4.32409197e-02 1.24491048e+00 2.32462689e-01 -1.50719449e-01 3.30143332e-01 -4.45917815e-01 -4.00926858e-01 -6.26296699e-01 1.93090692e-01 -5.15151918e-02 -7.70520687e-01 8.60916153e-02 -3.31833035e-01 -5.70464790e-01 4.57348377e-02 -7.62501180e-01 3.22278738e-02 6.01163864e-01 1.27163506e+00 3.02999884e-01 2.25766525e-01 4.87091810e-01 -7.88246155e-01 1.03130269e+00 -4.09739792e-01 -1.18305528e+00 -7.05146044e-02 -5.05530417e-01 2.59722710e-01 8.69500935e-01 -2.64937848e-01 -9.31581020e-01 3.44173424e-02 -2.60088116e-01 -4.31797475e-01 -3.06728840e-01 4.38723862e-01 4.36873734e-01 8.05127621e-02 9.68662202e-01 2.62871683e-01 2.75000662e-01 5.18522933e-02 2.35417992e-01 3.37526917e-01 5.70906341e-01 -7.55445957e-01 3.18246365e-01 1.57625362e-01 -1.91729203e-01 -3.90792131e-01 -2.40608156e-01 -2.16266647e-01 8.37203413e-02 -4.57196891e-01 7.99802482e-01 -9.82972383e-01 -1.47644770e+00 1.00603998e+00 -8.24023545e-01 -1.32025778e+00 -5.27040243e-01 2.80178428e-01 -1.28499579e+00 3.76453213e-02 -1.03465927e+00 -7.03801751e-01 -2.24516273e-01 -1.34572709e+00 8.27493966e-01 6.69984579e-01 1.37249708e-01 -7.40353465e-01 7.67800152e-01 -1.04564145e-01 4.59077269e-01 2.64756560e-01 4.37418371e-01 -3.69103968e-01 -5.95925152e-01 7.85850137e-02 3.01491618e-01 1.10805966e-01 -1.52700529e-01 -2.58006811e-01 -7.85887122e-01 -5.05758643e-01 -2.67122239e-01 -1.24590039e+00 6.79886103e-01 2.51505345e-01 8.95728409e-01 -6.03254326e-02 -5.64165153e-02 3.34430486e-01 1.29097188e+00 5.56313455e-01 1.15935802e+00 8.40146542e-01 1.84916973e-01 8.09844490e-03 9.62947190e-01 7.16367364e-01 3.40094447e-01 6.33078158e-01 9.68653262e-01 -6.65720925e-02 2.57918119e-01 -2.18700245e-01 6.63312376e-01 7.51506463e-02 -3.70992213e-01 -1.88053250e-01 -1.04578578e+00 4.27563310e-01 -2.02601647e+00 -1.11046457e+00 6.55830562e-01 1.95764709e+00 7.45067954e-01 4.45644647e-01 5.08077800e-01 -1.00344986e-01 1.51402339e-01 1.29858404e-01 -6.62129998e-01 -8.18381548e-01 3.32704216e-01 7.59764373e-01 4.64123368e-01 5.06814361e-01 -9.57296014e-01 1.50836957e+00 6.39778185e+00 7.56400347e-01 -1.16126359e+00 -4.24433500e-02 4.53788996e-01 -9.01999697e-02 3.30615252e-01 7.74618685e-02 -3.09471399e-01 2.27237314e-01 1.18939698e+00 1.25248834e-01 9.96587634e-01 1.07776141e+00 2.90562421e-01 -6.34024978e-01 -5.87967992e-01 6.72531664e-01 -4.19921875e-01 -1.49806666e+00 -7.45389462e-01 1.41010582e-01 6.92790031e-01 2.93381333e-01 3.15107480e-02 1.00456619e+00 1.48088276e+00 -1.11914229e+00 5.11135936e-01 2.21321657e-01 5.29391468e-01 -1.29226375e+00 7.33559608e-01 5.44001997e-01 -7.78545737e-01 -2.68046200e-01 -4.28931564e-01 -6.60351932e-01 -5.18264361e-02 -2.21644804e-01 -1.18629408e+00 2.34509736e-01 7.11706579e-01 4.01121467e-01 -2.02630743e-01 9.64391828e-01 -5.31545699e-01 7.72151291e-01 -1.12582639e-01 -2.63594687e-01 8.49249005e-01 -5.55550791e-02 2.52219498e-01 6.19568288e-01 2.33321950e-01 7.19197989e-02 5.04128933e-01 5.64855099e-01 1.60643682e-01 -4.37670231e-01 -8.18159580e-01 -1.82994865e-02 2.18041331e-01 1.19313347e+00 -8.34183991e-01 -2.83088833e-01 -8.32689404e-02 1.05266166e+00 6.89949453e-01 2.86564648e-01 -7.62815833e-01 -4.08947587e-01 7.38877118e-01 -2.33831733e-01 4.42916155e-01 -3.60501707e-01 2.10480735e-01 -8.97926271e-01 -4.27886873e-01 -1.32056713e+00 3.35283875e-01 -8.96699727e-01 -5.84043145e-01 6.65597796e-01 -5.85679114e-02 -1.15840113e+00 -1.05836356e+00 -7.02848613e-01 -1.03603673e+00 4.80765343e-01 -1.40880466e+00 -6.80687845e-01 -1.47444040e-01 7.49335706e-01 6.31159842e-01 -4.70121175e-01 8.74213159e-01 -4.19728547e-01 -2.38964751e-01 3.45925748e-01 1.91190634e-02 1.01673618e-01 4.12869573e-01 -1.69153619e+00 7.76968956e-01 5.95765769e-01 -5.27157485e-02 1.53966881e-02 6.90123200e-01 -4.49646145e-01 -1.26527977e+00 -5.68410873e-01 -2.00346798e-01 7.59846391e-03 6.75236106e-01 -9.32353884e-02 -5.84631562e-01 7.25190938e-01 8.65505099e-01 -2.27838457e-01 1.07794464e-01 7.35288784e-02 3.04915421e-02 1.85103700e-01 -8.98581445e-01 8.47223997e-01 5.86992979e-01 -1.48362994e-01 -3.73729348e-01 -6.22473881e-02 3.49546283e-01 -9.64611709e-01 -4.50979888e-01 -8.54863524e-02 2.74114281e-01 -1.26618397e+00 5.80307066e-01 -7.66002595e-01 5.81884146e-01 -2.64799893e-01 2.99363315e-01 -2.06584620e+00 -1.51180744e-01 -1.04410911e+00 -1.15034416e-01 3.55276018e-01 -1.94983110e-02 -3.41608346e-01 1.24787867e+00 5.24252057e-02 -1.18680239e-01 -7.39532948e-01 -8.98623765e-01 -7.21138477e-01 3.18060875e-01 -2.08900228e-01 4.74964410e-01 5.41535199e-01 3.31255615e-01 2.10933134e-01 -6.88129127e-01 4.73783184e-05 4.08896774e-01 4.07719612e-03 1.13527870e+00 -6.27886593e-01 -8.88009131e-01 -2.57545143e-01 -4.01910067e-01 -1.03067541e+00 2.73542076e-01 -4.00773346e-01 5.78366101e-01 -1.23949587e+00 -3.87433395e-02 -3.20696145e-01 -1.41091198e-01 8.22219908e-01 -9.63421538e-02 -2.60725971e-02 3.37934345e-01 -2.06152290e-01 -9.60354388e-01 5.92021286e-01 1.30700111e+00 -5.13902158e-02 -3.24366659e-01 7.63815194e-02 -4.93189543e-01 6.72931790e-01 1.06818056e+00 -3.68830740e-01 -4.78535414e-01 -2.65702307e-01 4.09076691e-01 7.08099127e-01 4.46998835e-01 -1.34870303e+00 3.11725914e-01 -3.87648404e-01 1.43305331e-01 -3.35586071e-01 3.20188254e-01 -5.37105203e-01 -1.67630419e-01 8.98306787e-01 -3.01360130e-01 5.11739790e-01 3.14517945e-01 5.07642984e-01 -5.56072928e-02 -2.92851716e-01 6.59514844e-01 -5.94409347e-01 -1.22864461e+00 -5.31015694e-02 -1.19412172e+00 1.51797518e-01 1.17170477e+00 1.63842857e-01 -4.49734509e-01 -8.61526489e-01 -8.72661293e-01 6.48088992e-01 6.27111018e-01 2.15933174e-01 6.60583258e-01 -1.03876579e+00 -5.55997014e-01 2.62823105e-02 -1.25857502e-01 -1.35389656e-01 1.13045171e-01 2.51263887e-01 -9.55697179e-01 -1.61291108e-01 -8.00404787e-01 -3.12002540e-01 -8.22973967e-01 3.94567102e-01 7.24255741e-01 -1.07968497e+00 -7.90087759e-01 4.75276113e-01 -2.55160391e-01 -5.43048978e-01 1.18904702e-01 -8.42086449e-02 -5.33146039e-02 -5.03145576e-01 6.40709460e-01 2.60548532e-01 1.72886793e-02 1.70860738e-01 -6.72026277e-02 -1.36604726e-01 -2.97785193e-01 -5.16342640e-01 1.26672721e+00 3.11039627e-01 3.77244294e-01 1.26657531e-01 4.09293413e-01 -3.41929078e-01 -1.96609437e+00 1.59100015e-02 -4.02219817e-02 -2.33752608e-01 6.00432679e-02 -1.02891040e+00 -1.01266289e+00 6.91460073e-01 6.87348068e-01 1.70324758e-01 1.04307353e+00 -4.14937079e-01 7.11321175e-01 8.80737126e-01 9.63028908e-01 -1.37374246e+00 5.61692476e-01 9.63100493e-01 5.44268787e-01 -1.35329318e+00 -3.72901529e-01 5.39487064e-01 -1.08985519e+00 1.08978462e+00 1.13822973e+00 -5.90176046e-01 1.08562656e-01 5.76945305e-01 3.67305130e-01 -3.26351821e-01 -1.19360685e+00 -4.20396090e-01 -7.76135623e-01 8.40417147e-01 -1.17386438e-01 6.39773086e-02 6.09486662e-02 2.44704947e-01 -1.59375474e-01 3.14386874e-01 1.07959580e+00 1.34587443e+00 -6.10827565e-01 -9.95894134e-01 -2.92585075e-01 8.69066492e-02 -3.17470878e-01 2.63519704e-01 -1.35221407e-01 9.49077666e-01 -3.27816397e-01 8.09435606e-01 6.93626031e-02 -5.39697230e-01 1.37179673e-01 -1.93356961e-01 5.61848521e-01 -5.83567917e-01 -9.42923427e-01 -9.84769389e-02 9.04001519e-02 -9.60908651e-01 5.51223867e-02 -2.77284175e-01 -1.62916470e+00 -4.44599897e-01 8.04819092e-02 3.02068770e-01 3.63642991e-01 9.92668450e-01 1.11679852e-01 6.89037383e-01 6.35883272e-01 -1.14251649e+00 -8.98001611e-01 -7.64982641e-01 -7.36229897e-01 8.04482102e-02 2.26156607e-01 -6.49114966e-01 8.07063207e-02 -3.63731921e-01]
[3.737663984298706, 1.533073902130127]
1a55376f-3a7a-4d13-85bc-f9b3fc04aebc
augmented-dual-contrastive-aggregation
null
null
https://dl.acm.org/doi/abs/10.1145/3503161.3548198
https://dl.acm.org/doi/abs/10.1145/3503161.3548198
Augmented Dual-Contrastive Aggregation Learning for Unsupervised Visible-Infrared Person Re-Identification
Visible infrared person re-identification (VI-ReID) aims at searching out the corresponding infrared (visible) images from a gallery set captured by other spectrum cameras. Recent works mainly focus on supervised VI-ReID methods that require plenty of cross-modality (visible-infrared) identity labels which are more expensive than the annotations in single-modality person ReID. For the unsupervised learning visible infrared re-identification (USL-VI-ReID), the large cross-modality discrepancies lead to difficulties in generating reliable cross-modality labels and learning modality-invariant features without any annotations. To address this problem, we propose a novel Augmented Dual-Contrastive Aggregation (ADCA) learning framework. Specifically, a dual-path contrastive learning framework with two modality-specific memories is proposed to learn the intra-modality person representation. To associate positive cross-modality identities, we design a cross-modality memory aggregation module with count priority to select highly associated positive samples, and aggregate their corresponding memory features at the cluster level, ensuring that the optimization is explicitly concentrated on the modality-irrelevant perspective. Extensive experiments demonstrate that our proposed ADCA significantly outperforms existing unsupervised methods under various settings, and even surpasses some supervised counterparts, facilitating VI-ReID to real-world deployment.
['Zesen Wu', 'Jun Chen', 'Mang Ye', 'Bin Yang']
2022-10-14
null
null
null
acm-mm-2022-10
['person-re-identification']
['computer-vision']
[ 3.72130990e-01 -5.98258376e-01 -2.45982826e-01 -3.47369254e-01 -9.80098009e-01 -6.30517125e-01 6.85912967e-01 -9.44703445e-03 -5.36742210e-01 4.46804106e-01 1.82583988e-01 1.92725420e-01 -3.29835534e-01 -5.31964540e-01 -4.65665698e-01 -9.60037231e-01 1.80484384e-01 4.07467186e-01 -5.00361681e-01 9.83461961e-02 1.11633815e-01 3.65131587e-01 -1.84912121e+00 2.08244205e-01 7.40718722e-01 8.43560755e-01 -9.74865854e-02 2.97726572e-01 -4.03264128e-02 6.42902493e-01 -4.42879468e-01 -5.74499488e-01 4.61437136e-01 -2.72725463e-01 -7.09479511e-01 1.76754668e-02 9.50292289e-01 -3.99689637e-02 -2.34373450e-01 1.14928424e+00 6.56466484e-01 5.02565503e-01 7.19106793e-01 -1.49222469e+00 -1.07237840e+00 2.61230975e-01 -1.04032278e+00 2.36049443e-01 6.92765951e-01 -1.71055235e-02 6.70586586e-01 -9.40935671e-01 2.81823874e-01 1.40476191e+00 8.27769399e-01 8.53942692e-01 -1.30385053e+00 -1.07938266e+00 3.83921027e-01 3.99539858e-01 -1.85970664e+00 -4.84670311e-01 8.25645208e-01 -3.61160398e-01 5.55884898e-01 5.93361020e-01 2.47238815e-01 1.24600625e+00 -3.25248480e-01 6.68044329e-01 1.36794829e+00 -3.92519087e-01 -6.40691817e-02 3.37928295e-01 3.36303443e-01 4.84757096e-01 2.25924596e-01 1.94961220e-01 -7.93525398e-01 -3.83695275e-01 4.35436487e-01 3.75689417e-01 -7.91663751e-02 -1.63713396e-01 -1.38614964e+00 3.23511302e-01 4.21218812e-01 1.22614101e-01 -1.30578816e-01 -3.54921639e-01 3.15414429e-01 3.24937046e-01 5.15340507e-01 9.76475030e-02 -1.01257421e-01 5.52256346e-01 -5.09156585e-01 -7.25186467e-02 2.10146993e-01 1.03904510e+00 1.03844690e+00 -3.43047649e-01 -3.11843634e-01 1.09626818e+00 2.93432951e-01 7.16170788e-01 3.37139010e-01 -4.86393422e-01 4.86157060e-01 6.88736081e-01 1.37155324e-01 -7.17443228e-01 -4.04981613e-01 -5.62705278e-01 -1.16129375e+00 4.96754460e-02 2.59247363e-01 3.91861051e-02 -7.73328424e-01 1.79393518e+00 5.05240142e-01 4.82772350e-01 2.17749819e-01 1.17440677e+00 1.05575669e+00 4.43078279e-01 7.29302466e-01 -1.75091684e-01 1.52707517e+00 -7.83267736e-01 -3.61434728e-01 -3.93468738e-01 4.16803479e-01 -7.00479507e-01 7.97190130e-01 -5.34960926e-02 -5.47881603e-01 -8.16947043e-01 -7.66302526e-01 3.31033170e-02 -5.35233557e-01 4.96401727e-01 4.74049032e-01 7.13793755e-01 -9.66276944e-01 -5.91157079e-02 1.81775372e-02 -5.25192499e-01 9.47016180e-02 6.51907146e-01 -8.63173962e-01 -2.84027100e-01 -1.06375635e+00 5.60369134e-01 4.12615955e-01 4.17096257e-01 -3.62150609e-01 -6.96488619e-01 -9.86859143e-01 -2.80014396e-01 1.87435955e-01 -8.07095528e-01 5.53250909e-01 -1.13669872e+00 -1.08486915e+00 1.39216578e+00 -2.65527308e-01 3.37408066e-01 3.30656976e-01 -8.79608653e-03 -8.21161509e-01 4.11288105e-02 2.95645058e-01 6.82154119e-01 9.38740373e-01 -1.76606393e+00 -7.41266489e-01 -7.48818159e-01 -5.08202873e-02 5.35751939e-01 -6.42071962e-01 2.33018473e-01 -4.54571009e-01 -7.47846365e-01 1.45183086e-01 -1.02418160e+00 2.90115923e-01 -2.73857892e-01 -4.32957232e-01 -6.07733607e-01 5.39981365e-01 -6.89159930e-01 6.91972077e-01 -2.25614738e+00 1.19939499e-01 3.92791390e-01 1.06593885e-01 3.30725275e-02 -3.11014950e-01 1.55821562e-01 -3.92830908e-01 -2.98289090e-01 9.07661170e-02 -8.44108582e-01 -1.28613077e-02 -2.05405623e-01 -1.08900979e-01 8.21757793e-01 -7.81859905e-02 5.84702373e-01 -1.00113165e+00 -7.42954969e-01 3.43856961e-01 5.72529197e-01 1.36364073e-01 3.29770505e-01 5.42116404e-01 9.05103862e-01 -2.71667182e-01 1.06157029e+00 9.40792561e-01 -1.37472004e-01 5.50456941e-02 -5.16437352e-01 -9.27992165e-02 -5.05970359e-01 -1.09797335e+00 1.61040270e+00 -2.70850003e-01 1.58967391e-01 -7.30847493e-02 -8.44882667e-01 9.81687307e-01 1.09946311e-01 6.24303699e-01 -1.01480031e+00 -6.14815317e-02 -2.08573304e-02 -7.43061602e-01 -4.23484623e-01 5.96303582e-01 -8.45102221e-02 -1.78625688e-01 4.50336754e-01 -4.21984717e-02 1.02424693e+00 -2.55833834e-01 -7.35892449e-03 4.16958809e-01 1.17769346e-01 -1.43366158e-01 -7.74148256e-02 1.03025222e+00 -1.21431187e-01 6.68128192e-01 8.66049886e-01 -2.63038278e-01 5.62614322e-01 -4.12675679e-01 -3.24526787e-01 -7.15197146e-01 -1.23989773e+00 -1.47866577e-01 1.60078800e+00 8.40010703e-01 1.88128557e-02 -4.38359052e-01 -6.95630610e-01 6.14704527e-02 2.22092614e-01 -6.84681475e-01 -1.42421886e-01 -3.71062696e-01 -1.00786471e+00 5.56166172e-01 5.48912406e-01 7.30416536e-01 -6.67030692e-01 2.89556891e-01 -5.10508895e-01 -5.43626308e-01 -1.00100791e+00 -7.98726439e-01 -3.31094712e-01 -4.42486554e-01 -1.07458150e+00 -1.11337376e+00 -1.18188441e+00 9.93834317e-01 8.97626698e-01 7.14245141e-01 1.56234074e-02 -2.64968395e-01 1.00022459e+00 -2.79895276e-01 -2.58881599e-03 1.35132849e-01 1.95825621e-02 4.86330837e-01 7.23953605e-01 9.05845046e-01 -2.69777745e-01 -6.73462808e-01 5.00799179e-01 -5.98353386e-01 -3.27337608e-02 6.86231852e-01 9.01719272e-01 5.87308645e-01 -1.12776197e-01 6.74859583e-01 -4.72876221e-01 2.55416691e-01 -5.72613955e-01 -4.10439193e-01 8.42972159e-01 -5.48884869e-01 -1.11232489e-01 3.63249481e-01 -7.27863014e-01 -1.33357680e+00 3.12820464e-01 3.48499328e-01 -5.63789845e-01 -3.79177958e-01 1.04648568e-01 -3.22568595e-01 -3.60414326e-01 5.64453125e-01 4.33139712e-01 -2.66618431e-01 -4.81466353e-01 2.03773260e-01 7.99494505e-01 1.09598541e+00 -6.82411075e-01 1.13670528e+00 5.66983819e-01 -2.15997681e-01 -6.05936766e-01 -7.57932961e-01 -1.12627935e+00 -7.71384954e-01 -5.23468256e-01 9.74907637e-01 -1.43539464e+00 -1.14392376e+00 6.31059766e-01 -7.35249579e-01 1.09748647e-01 8.19358751e-02 6.45283461e-01 -8.10083672e-02 6.25697374e-01 -4.49862719e-01 -1.19829345e+00 -4.62889642e-01 -6.64527237e-01 1.42377710e+00 7.37079561e-01 6.12972043e-02 -8.06806803e-01 1.26726732e-01 8.31920981e-01 6.68763742e-02 -8.88138637e-03 4.85620558e-01 -4.71368998e-01 -3.72938812e-01 -3.29342365e-01 -6.40027940e-01 -1.28821015e-01 2.67501175e-01 -6.66420698e-01 -1.50268960e+00 -5.84095597e-01 -5.67345262e-01 -3.35864425e-01 9.38948035e-01 -9.81042832e-02 1.02962160e+00 -4.50693220e-02 -4.92621779e-01 7.35050321e-01 1.32792318e+00 -2.14449227e-01 3.57133925e-01 4.97265846e-01 1.16794753e+00 8.07652712e-01 6.41559005e-01 3.15258920e-01 7.56551921e-01 7.43749142e-01 6.35540113e-02 -3.18459719e-01 -3.71965729e-02 -2.65565455e-01 4.16633219e-01 3.43681753e-01 -3.81799877e-01 2.82144477e-03 -5.30108571e-01 4.73852217e-01 -1.88841820e+00 -1.30125093e+00 -7.88204372e-03 2.60264349e+00 5.62462926e-01 -6.74250245e-01 4.69901621e-01 6.64229179e-03 1.31669843e+00 -4.60438654e-02 -5.80780625e-01 3.82076234e-01 -4.21513349e-01 -3.13132048e-01 6.36311293e-01 3.00597131e-01 -1.48453915e+00 5.51829994e-01 5.97160244e+00 7.28675723e-01 -8.49085212e-01 2.50302017e-01 4.87978399e-01 1.13948673e-01 -2.38212407e-01 -2.43134663e-01 -8.56727064e-01 4.73779261e-01 3.81326258e-01 9.58182365e-02 4.08650279e-01 6.57493711e-01 -2.48774424e-01 -1.41287908e-01 -1.09060776e+00 1.75112128e+00 4.96990919e-01 -8.03038776e-01 -7.28645846e-02 4.91135269e-02 6.79124236e-01 -4.35824513e-01 3.03499162e-01 2.37315595e-01 5.79101071e-02 -8.77963781e-01 6.60126150e-01 7.55578518e-01 1.04562438e+00 -8.67055714e-01 6.97879374e-01 1.02201372e-01 -1.66242838e+00 -4.21034753e-01 -3.65693033e-01 3.66009027e-01 -1.91682503e-01 6.79955482e-02 -3.09020013e-01 9.72434819e-01 9.58474934e-01 7.16879845e-01 -7.50677526e-01 9.57388997e-01 3.05397332e-01 3.22674289e-02 -5.96798249e-02 3.66103053e-01 -3.22250366e-01 -2.53750324e-01 2.84813166e-01 1.23996329e+00 1.71799660e-01 1.09467596e-01 4.98544782e-01 7.08078742e-01 -1.18318014e-01 5.76380454e-03 -3.39587450e-01 3.93086314e-01 5.76651692e-01 1.34446573e+00 -4.60354984e-01 -2.40128592e-01 -5.21235526e-01 1.37597847e+00 2.53838956e-01 7.51832426e-01 -7.55742788e-01 -6.73908740e-02 7.01767027e-01 -3.02771538e-01 -3.02917480e-01 -2.25790627e-02 -1.26993716e-01 -1.29434943e+00 1.03688598e-01 -4.09673929e-01 1.11552215e+00 -6.67118788e-01 -2.03731346e+00 3.70097220e-01 9.77681130e-02 -1.53962779e+00 1.26811221e-01 -3.40555400e-01 -4.07223910e-01 1.06487656e+00 -1.81251049e+00 -1.83732724e+00 -7.66772568e-01 1.14738965e+00 1.72545716e-01 -4.30269629e-01 8.63119125e-01 7.40350008e-01 -9.17971671e-01 1.34520578e+00 6.42802566e-04 3.36514145e-01 1.20670748e+00 -9.27111328e-01 -1.64964095e-01 8.27744007e-01 -9.86955911e-02 6.91166759e-01 3.37335825e-01 -6.72103524e-01 -1.75578928e+00 -1.25391090e+00 7.54577756e-01 -5.17777383e-01 2.23022550e-01 -2.98543870e-01 -7.10935414e-01 6.64515257e-01 -9.89101380e-02 1.73271075e-01 1.10085702e+00 3.77073646e-01 -8.30934167e-01 -5.02987504e-01 -1.25854254e+00 2.65967190e-01 1.34170723e+00 -1.08463597e+00 -3.89621615e-01 4.14310187e-01 1.57647491e-01 -7.56437331e-02 -9.23949838e-01 2.92108804e-01 6.50143623e-01 -6.57577455e-01 1.51687336e+00 -2.98064351e-01 -3.11525643e-01 -6.47688150e-01 2.61842627e-02 -8.42925847e-01 -5.65173149e-01 -3.03352684e-01 1.90624520e-01 1.73481011e+00 -1.34700537e-01 -8.69050682e-01 5.39536953e-01 8.22746634e-01 2.98123837e-01 2.24949017e-01 -8.87053192e-01 -9.64485407e-01 -4.32094216e-01 2.53759064e-02 5.80494702e-01 1.33553743e+00 -2.60099135e-02 9.98125076e-02 -7.06032991e-01 7.98945546e-01 1.32695127e+00 3.06657434e-01 6.77471161e-01 -1.38518965e+00 -2.59320009e-02 -2.06331894e-01 -5.07959843e-01 -7.31011748e-01 6.04940891e-01 -1.02739477e+00 1.52972639e-02 -1.09998488e+00 7.74344206e-01 -9.35850143e-01 -7.59403586e-01 5.81050336e-01 -5.53326130e-01 7.47049928e-01 5.51058725e-02 6.68802381e-01 -9.27888870e-01 3.72578889e-01 5.49004793e-01 -6.26254499e-01 -2.13458538e-01 -1.11780196e-01 -8.05694342e-01 2.44735390e-01 5.40422797e-01 -1.66849822e-01 -2.98661828e-01 -4.22028810e-01 -1.21423649e-02 -3.33797067e-01 7.90560484e-01 -1.05946755e+00 7.13943660e-01 -2.00078011e-01 9.16666985e-01 -5.78087389e-01 4.43316936e-01 -8.02185595e-01 3.96419823e-01 -1.31108880e-01 -3.99324208e-01 2.46864501e-02 -1.26596279e-02 7.47450531e-01 -4.97381277e-02 1.24287605e-01 6.02719069e-01 -4.09461930e-02 -1.12276268e+00 4.61285233e-01 1.16244256e-02 -3.80733490e-01 1.00710273e+00 -4.04410362e-01 -5.70697725e-01 -9.10382569e-02 -6.22438788e-01 3.78749609e-01 6.45305514e-01 6.66666746e-01 5.61396301e-01 -1.65739036e+00 -7.69858956e-01 2.39044219e-01 7.96362638e-01 -3.27949464e-01 9.11638141e-01 7.49176145e-01 1.40472621e-01 1.60285190e-01 -2.05186725e-01 -8.37537646e-01 -1.59526455e+00 9.74953532e-01 3.18027198e-01 1.13289103e-01 -5.78120828e-01 8.73912275e-01 4.15420800e-01 -6.69839561e-01 3.77006233e-01 6.70020640e-01 -4.88886714e-01 1.33717462e-01 9.25693989e-01 5.52276731e-01 -1.81502596e-01 -1.29201984e+00 -6.39055848e-01 1.04286492e+00 5.93423247e-02 1.53443336e-01 9.63041723e-01 -4.83344615e-01 -2.92405218e-01 2.64119297e-01 1.10823131e+00 -1.80320032e-02 -9.82139111e-01 -5.83548784e-01 -7.35536218e-02 -6.29795015e-01 -3.05433869e-01 -6.33704126e-01 -1.04417419e+00 2.96265006e-01 1.21506000e+00 -1.85034752e-01 1.40533400e+00 1.17104679e-01 6.79924011e-01 3.71864587e-01 5.45445800e-01 -1.24300838e+00 -6.52662665e-02 -6.47596419e-02 4.18378443e-01 -1.62262714e+00 8.33725110e-02 -5.91726601e-01 -5.75511456e-01 9.23363566e-01 7.54767895e-01 3.09780747e-01 2.78591633e-01 -1.67566061e-01 2.11973622e-01 2.38448456e-02 3.59948128e-02 -4.87473518e-01 5.10963857e-01 9.41426158e-01 1.74751282e-01 1.50974214e-01 1.80321127e-01 3.18921983e-01 2.85550416e-01 -2.96840549e-01 -2.23231345e-01 7.41488993e-01 -1.18126543e-02 -1.02219272e+00 -1.07019711e+00 6.24286234e-02 -3.21131796e-02 1.56187952e-01 -5.22027731e-01 3.04342061e-01 3.42089176e-01 1.24973178e+00 1.36915833e-01 -7.31672287e-01 9.59535763e-02 9.38515961e-02 5.79477370e-01 -1.54056579e-01 -6.36457682e-01 -1.82819247e-01 -5.75418212e-02 -2.36124679e-01 -1.09267318e+00 -6.86094403e-01 -9.50228810e-01 -5.31693876e-01 -2.87150204e-01 6.20318204e-03 3.62073153e-01 1.03430057e+00 4.11667407e-01 5.20745339e-03 9.18393731e-01 -1.00582087e+00 -1.63340062e-01 -6.24883652e-01 -5.94231904e-01 7.65051484e-01 4.46784019e-01 -8.17473114e-01 -2.77737767e-01 7.29572102e-02]
[14.727742195129395, 0.9515729546546936]
207f9989-0ce3-41fd-b5bd-dfb0c1c62e7d
fast-passage-re-ranking-with-contextualized
2108.08513
null
https://arxiv.org/abs/2108.08513v2
https://arxiv.org/pdf/2108.08513v2.pdf
Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion
BERT-based information retrieval models are expensive, in both time (query latency) and computational resources (energy, hardware cost), making many of these models impractical especially under resource constraints. The reliance on a query encoder that only performs tokenization and on the pre-processing of passage representations at indexing, has allowed the recently proposed TILDE method to overcome the high query latency issue typical of BERT-based models. This however is at the expense of a lower effectiveness compared to other BERT-based re-rankers and dense retrievers. In addition, the original TILDE method is characterised by indexes with a very high memory footprint, as it expands each passage into the size of the BERT vocabulary. In this paper, we propose TILDEv2, a new model that stems from the original TILDE but that addresses its limitations. TILDEv2 relies on contextualized exact term matching with expanded passages. This requires to only store in the index the score of tokens that appear in the expanded passages (rather than all the vocabulary), thus producing indexes that are 99% smaller than those of TILDE. This matching mechanism also improves ranking effectiveness by 24%, without adding to the query latency. This makes TILDEv2 the state-of-the-art passage re-ranking method for CPU-only environments, capable of maintaining query latency below 100ms on commodity hardware.
['Guido Zuccon', 'Shengyao Zhuang']
2021-08-19
null
null
null
null
['passage-re-ranking']
['natural-language-processing']
[ 2.36783903e-02 -4.03998971e-01 -3.63102406e-01 1.93947032e-01 -1.22969997e+00 -4.96582747e-01 6.26976848e-01 8.49479079e-01 -1.01010633e+00 4.40886080e-01 1.21500745e-01 -3.15477401e-01 -4.30648774e-01 -1.13175678e+00 -4.36609834e-01 -1.03378467e-01 -1.94404215e-01 9.09096479e-01 9.79329050e-01 -4.43063587e-01 5.96044123e-01 5.94973922e-01 -1.98729050e+00 3.12050968e-01 5.34783185e-01 1.00282931e+00 3.08411807e-01 7.80353904e-01 -5.62602341e-01 6.58103228e-01 -8.75169218e-01 -7.92987198e-02 2.35790178e-01 2.77157798e-02 -9.59225833e-01 -9.87102270e-01 4.34667587e-01 -7.10900545e-01 -5.56938052e-01 3.29742730e-01 7.05867171e-01 2.32372209e-01 2.88811266e-01 -8.01380038e-01 -3.55413437e-01 5.84516525e-01 -4.17261094e-01 4.29063231e-01 7.70198226e-01 -6.44130647e-01 1.14579892e+00 -8.77056777e-01 7.00328708e-01 8.48131120e-01 5.20320535e-01 2.29279265e-01 -9.95907664e-01 -3.67920488e-01 -2.20762417e-01 2.73038507e-01 -1.94182265e+00 -5.88197231e-01 4.71632257e-02 2.47434244e-01 1.86774766e+00 9.07984793e-01 7.33224571e-01 2.09220469e-01 1.27667382e-01 6.84540272e-01 5.81237555e-01 -8.25468421e-01 2.36087784e-01 2.90972274e-03 1.98603675e-01 3.73967201e-01 2.77033865e-01 -9.13141575e-03 -6.58942342e-01 -4.69797909e-01 3.56632233e-01 1.58493929e-02 -2.48351172e-02 -1.69753358e-01 -8.66959333e-01 4.38715488e-01 3.02030981e-01 4.75485682e-01 -4.28781420e-01 4.19195741e-01 6.75433755e-01 5.69755256e-01 1.52860254e-01 6.13169432e-01 -2.72139937e-01 -5.09982824e-01 -1.51161945e+00 4.66162890e-01 9.67286468e-01 1.03612590e+00 8.71916354e-01 -3.76086593e-01 -4.45508748e-01 6.41305804e-01 2.53186822e-01 5.90952039e-01 5.86193562e-01 -5.15706778e-01 3.55931818e-01 6.36662722e-01 1.44810632e-01 -8.20075810e-01 -3.77545387e-01 -5.38336992e-01 -4.10254747e-01 -3.31237197e-01 -1.32459328e-01 6.89083695e-01 -8.83927643e-01 1.26493168e+00 8.27015862e-02 -2.63147086e-01 -1.33927897e-01 5.90971470e-01 6.48752928e-01 8.44969511e-01 -1.64829474e-02 -2.11763203e-01 1.50674629e+00 -8.38245630e-01 -4.56212819e-01 6.28141165e-02 1.04933286e+00 -1.12873304e+00 1.01038539e+00 2.52131850e-01 -1.31357551e+00 -2.56901473e-01 -1.28580499e+00 -5.14531672e-01 -4.91172642e-01 -3.27389866e-01 6.89070344e-01 6.73554003e-01 -1.65135252e+00 4.50355321e-01 -8.38243604e-01 -4.60816026e-01 -3.62724841e-01 6.33000612e-01 2.37882230e-02 -7.95854479e-02 -1.31654549e+00 1.04126441e+00 4.63547409e-01 -3.02706867e-01 -1.63900867e-01 -8.24037552e-01 -3.86638492e-01 5.76352298e-01 3.49762022e-01 -5.87824285e-01 1.26352203e+00 -5.97326867e-02 -1.21782887e+00 5.49896061e-01 -4.15603310e-01 -5.20091236e-01 1.86787724e-01 -2.66474783e-01 -5.58505952e-01 3.70621234e-01 -8.88042450e-02 5.20920455e-01 3.14747363e-01 -7.38922238e-01 -5.87341189e-01 -1.49445385e-01 8.98825899e-02 3.34671080e-01 -5.24636030e-01 1.19718961e-01 -1.05380547e+00 -3.14318389e-01 -5.32582775e-02 -7.22966850e-01 8.23060144e-03 -2.13666677e-01 6.18862510e-02 -4.72274721e-01 6.83243215e-01 -4.08518940e-01 2.02700782e+00 -2.12603927e+00 -4.48114306e-01 5.36370635e-01 1.27449393e-01 6.15389526e-01 -2.01824501e-01 1.27518082e+00 5.72442710e-01 2.85448879e-01 2.33423352e-01 -3.51045310e-01 7.47698545e-02 2.34389454e-01 -5.84026992e-01 8.25859308e-02 -3.16902488e-01 9.07405436e-01 -8.11699092e-01 -8.58817577e-01 1.79427937e-01 4.83569443e-01 -6.37444198e-01 -1.68288186e-01 -1.08826905e-01 -4.74740207e-01 -4.75828350e-01 4.05562520e-01 5.68523407e-01 2.87727099e-02 -5.44063002e-02 -3.65469642e-02 -4.90091443e-01 8.38245988e-01 -9.89534795e-01 1.71580434e+00 -7.69419312e-01 3.74450684e-01 -2.99027979e-01 -5.75144827e-01 7.96556413e-01 4.13434744e-01 7.92683601e-01 -1.40601456e+00 -2.30266333e-01 8.35257471e-01 -6.18824601e-01 -4.17101271e-02 1.36990595e+00 2.82565594e-01 -1.68305412e-01 6.48073792e-01 -4.24660414e-01 -2.07387730e-01 6.68067157e-01 5.65634549e-01 1.40946972e+00 -1.22212343e-01 4.19691438e-03 -1.82877779e-01 3.49490792e-01 2.24502251e-01 1.84395760e-01 1.20263600e+00 3.06778967e-01 3.91051590e-01 -1.31222725e-01 -1.99562058e-01 -1.16335225e+00 -8.67500544e-01 -2.39916772e-01 1.13471234e+00 4.83266920e-01 -1.04627872e+00 -4.02980804e-01 -1.00236177e-01 1.86971188e-01 7.01262593e-01 9.36749354e-02 -3.25224012e-01 -8.47446620e-01 -2.13441432e-01 8.38947713e-01 3.69167536e-01 3.83597791e-01 -6.88922763e-01 -1.07200944e+00 6.01379275e-01 -1.61126927e-01 -8.16724181e-01 -3.90289694e-01 1.84927255e-01 -9.14794683e-01 -6.52351975e-01 -5.59728980e-01 -5.11752069e-01 2.57482916e-01 5.46672881e-01 1.44999826e+00 6.19526923e-01 -5.05497038e-01 4.08247471e-01 -7.38856792e-01 -4.34649885e-01 -8.65389109e-02 4.26382571e-01 -2.01462969e-01 -8.38429928e-01 6.71504855e-01 -3.98741573e-01 -8.34611118e-01 3.25155586e-01 -1.34572685e+00 -1.46764040e-01 6.83359623e-01 7.42579460e-01 7.69280314e-01 1.41560920e-02 3.77603918e-01 -5.14106929e-01 6.22618496e-01 -3.65495563e-01 -7.28319407e-01 4.72030371e-01 -1.25589669e+00 2.88526177e-01 4.48224306e-01 -1.98494464e-01 -6.13544285e-01 -3.45576435e-01 -3.58999074e-01 -4.86751124e-02 5.81234276e-01 7.75520682e-01 6.57540619e-01 -1.85716841e-02 5.90878367e-01 3.83734733e-01 -1.48517400e-01 -8.17790747e-01 2.22309396e-01 8.79416406e-01 2.60229230e-01 -3.71877611e-01 5.10520458e-01 2.16082886e-01 1.16372138e-01 -7.29690552e-01 -2.36485288e-01 -1.10267174e+00 -3.71652991e-01 1.12535665e-02 2.43255392e-01 -8.25419724e-01 -6.29993200e-01 5.82017936e-02 -8.64845932e-01 1.02710649e-02 -5.63907146e-01 4.94295865e-01 -3.02934468e-01 4.86442804e-01 -7.35974371e-01 -7.39531577e-01 -7.14931250e-01 -7.83144951e-01 1.32602179e+00 -1.90427471e-02 -3.45448673e-01 -4.47802871e-01 2.43006229e-01 8.93046185e-02 9.17703390e-01 -2.89792418e-01 1.04549634e+00 -6.35446548e-01 -7.49143422e-01 -6.15893006e-01 -2.97133744e-01 -3.04425925e-01 -3.95451039e-01 -1.75537422e-01 -6.16367102e-01 -5.81807613e-01 -3.15080404e-01 -2.57601708e-01 9.15162027e-01 -1.25275493e-01 7.81226218e-01 -1.98622029e-02 -5.37375450e-01 2.17699781e-01 1.78654134e+00 3.23038101e-01 8.16672146e-01 7.23022461e-01 3.48547846e-02 1.33742735e-01 7.44604826e-01 4.79736894e-01 1.86174229e-01 1.20868552e+00 2.03339770e-01 -4.81375344e-02 -3.05818498e-01 -3.23304385e-01 2.47274861e-01 1.15672505e+00 1.79427743e-01 -7.25015521e-01 -9.06727612e-01 7.03374386e-01 -1.75599074e+00 -8.70605826e-01 -6.41591996e-02 2.76091623e+00 8.72781515e-01 7.72941038e-02 -7.60215754e-03 4.80561733e-01 2.66730011e-01 7.72144496e-02 -2.76169389e-01 -1.00128126e+00 2.77384352e-02 7.89517462e-01 9.22445416e-01 4.60075170e-01 -6.24042869e-01 7.96799183e-01 6.71466303e+00 1.02847993e+00 -9.15125489e-01 1.99993532e-02 -1.39474228e-01 -5.31254113e-01 -4.09588009e-01 8.81192684e-02 -9.48478580e-01 1.40873715e-01 1.32789505e+00 -4.96542513e-01 4.59489316e-01 6.28192604e-01 -1.30204469e-01 -4.31877732e-01 -1.09462249e+00 9.58828807e-01 6.98998496e-02 -1.17991590e+00 2.62261838e-01 3.74831371e-02 2.60599047e-01 1.48789898e-01 -1.01197235e-01 5.10488808e-01 -5.43831363e-02 -7.08937824e-01 6.99840903e-01 4.46218759e-01 1.05465686e+00 -8.10591698e-01 8.82456005e-01 2.03582302e-01 -1.48616445e+00 1.03891373e-01 -4.97200429e-01 2.97256578e-02 1.54053539e-01 5.76283336e-01 -8.46842766e-01 6.33620322e-01 6.64412618e-01 -4.49495390e-02 -5.17715871e-01 1.30771148e+00 5.05789757e-01 3.18199933e-01 -8.42114270e-01 -3.69025588e-01 2.62907267e-01 3.31963301e-01 4.11977589e-01 1.31268251e+00 6.38180375e-01 -7.13279024e-02 5.24400920e-02 2.13534921e-01 -7.82832317e-03 3.11058581e-01 -2.42639184e-01 8.62368345e-02 1.05826116e+00 6.55464232e-01 -5.56608081e-01 -5.13292134e-01 -3.94430488e-01 9.79901016e-01 1.05031863e-01 4.74634394e-02 -5.46732068e-01 -9.63098943e-01 2.19437584e-01 3.66739631e-01 3.34542841e-01 -2.60029137e-01 1.35657981e-01 -6.90491259e-01 4.26585972e-01 -5.98080754e-01 3.69785637e-01 -3.72268558e-01 -5.36606789e-01 5.75942814e-01 3.05988699e-01 -1.17393672e+00 -5.18262148e-01 -8.86749104e-02 1.29381850e-01 9.18540835e-01 -1.67531431e+00 -6.53618991e-01 -4.78098606e-04 5.49069464e-01 2.55112886e-01 2.80769825e-01 1.14292991e+00 8.50287199e-01 -2.95162238e-02 9.54590857e-01 6.43140972e-01 -3.84929538e-01 7.32374370e-01 -1.11165166e+00 4.52223688e-01 5.10474980e-01 2.59270400e-01 1.02482462e+00 4.65690643e-01 -3.72120798e-01 -1.85669518e+00 -6.21876001e-01 1.63291287e+00 -1.65482327e-01 3.89043272e-01 -2.71033674e-01 -8.89469326e-01 1.05909184e-01 -3.66622247e-02 -2.85551250e-01 5.37410975e-01 1.94004133e-01 -3.85908693e-01 -4.54120696e-01 -9.59250271e-01 6.03744566e-01 1.00415528e+00 -8.84856105e-01 -5.81340134e-01 3.08916956e-01 6.64196312e-01 -3.70018810e-01 -9.17442322e-01 3.00722957e-01 8.18976283e-01 -8.54777098e-01 1.22147596e+00 6.83030486e-02 -2.46497110e-01 -2.83331990e-01 -2.82270927e-02 -5.85484982e-01 -2.74530441e-01 -5.60266197e-01 -4.27932620e-01 1.11199605e+00 4.46625262e-01 -7.05273509e-01 6.37002409e-01 6.87409103e-01 -4.43295948e-02 -8.40527773e-01 -1.15356886e+00 -1.02579463e+00 -2.27893785e-01 -2.62707561e-01 8.74253273e-01 1.66877300e-01 1.81799978e-01 1.64090797e-01 -3.94912511e-02 -3.13733131e-01 1.26572549e-01 1.58702552e-01 5.47117770e-01 -1.14332545e+00 -3.25828582e-01 -4.97269005e-01 -5.12971997e-01 -1.52557707e+00 -4.84197170e-01 -8.75711560e-01 1.34873893e-02 -1.63208675e+00 3.00136954e-01 -1.05920672e+00 -5.59577286e-01 5.28842092e-01 1.21499106e-01 3.83611828e-01 1.95335850e-01 8.13282609e-01 -7.45840192e-01 3.12095791e-01 6.40397310e-01 -2.00018868e-01 -3.19328010e-01 -2.57476866e-01 -3.01321805e-01 -9.25989896e-02 4.87419039e-01 -6.34967148e-01 -6.65422142e-01 -8.23908567e-01 7.12985814e-01 1.56834468e-01 8.37717876e-02 -1.11264551e+00 6.64071739e-01 3.83268058e-01 -4.83959727e-02 -9.39471543e-01 5.15355468e-01 -9.21218812e-01 2.78371692e-01 6.21278524e-01 -4.83171821e-01 6.48249090e-01 3.14690262e-01 4.33683783e-01 -5.29960573e-01 -4.27082896e-01 1.61452025e-01 8.09577331e-02 -7.49250174e-01 1.62120715e-01 -6.22049391e-01 -1.54919520e-01 6.13242865e-01 -3.19508255e-01 -3.59354049e-01 -1.78622991e-01 -1.24579094e-01 9.92031023e-02 5.82123876e-01 2.68503547e-01 5.58838308e-01 -1.08494031e+00 -5.03413975e-01 5.73924668e-02 2.81923532e-01 -1.27106890e-01 1.30463894e-02 5.87105751e-01 -1.02059460e+00 1.10292017e+00 3.32143486e-01 -2.88764715e-01 -1.42824483e+00 6.41647279e-01 -1.44157007e-01 -8.75887096e-01 -7.00222909e-01 7.33824253e-01 -4.61543202e-01 6.17001131e-02 2.55805373e-01 -1.68823019e-01 -3.25702094e-02 -1.62227638e-02 6.68208480e-01 5.26782155e-01 7.29364872e-01 -1.92441955e-01 -5.06239235e-01 5.35315216e-01 -4.14808065e-01 -4.05801177e-01 9.39304531e-01 -1.79539993e-01 -3.51548523e-01 1.76404759e-01 1.47601724e+00 3.24545056e-01 -7.13319406e-02 -3.77902001e-01 4.25865352e-01 -6.07042015e-01 4.64818656e-01 -8.59819531e-01 -4.28605646e-01 4.36698407e-01 6.31519914e-01 2.31195942e-01 1.40425718e+00 -3.12436759e-01 1.41520464e+00 7.39269495e-01 9.09945607e-01 -1.25502312e+00 -3.30281973e-01 6.12943649e-01 5.57229638e-01 -5.85721910e-01 3.41711640e-01 -1.39638916e-01 1.22959375e-01 9.25303459e-01 6.79169893e-02 5.94328530e-03 5.13171077e-01 3.95117849e-01 -1.68591082e-01 -2.67979950e-01 -8.39500964e-01 -2.39994645e-01 2.64216095e-01 1.37603089e-01 4.52530921e-01 -1.50840566e-01 -9.78703499e-01 -1.40711233e-01 -1.75986409e-01 1.32846758e-01 -7.05142245e-02 1.50096416e+00 -5.71366429e-01 -1.63704908e+00 -2.29742542e-01 6.21637583e-01 -5.62733352e-01 -5.99578202e-01 -3.40292245e-01 8.23493898e-01 -2.38669634e-01 1.21345162e+00 3.96883368e-01 -4.72206801e-01 4.65842605e-01 8.15983210e-03 3.45823169e-01 -5.19563079e-01 -9.49547470e-01 -6.29418343e-02 2.38409042e-01 -7.83865392e-01 4.55436204e-03 -3.06371391e-01 -1.38762701e+00 -5.25545895e-01 -6.31266952e-01 7.40382552e-01 8.97360444e-01 4.72391307e-01 8.61204028e-01 2.88408756e-01 5.59893429e-01 -4.43251699e-01 -7.34484732e-01 -7.50661016e-01 -4.77685601e-01 1.19373947e-01 1.60742715e-01 -4.91239130e-01 -6.35640621e-02 -6.47248626e-01]
[11.442876815795898, 7.565459728240967]
6f5c2264-2323-48ed-bf11-15f8a17774af
unsupervised-few-shot-learning-via-deep
2210.03595
null
https://arxiv.org/abs/2210.03595v1
https://arxiv.org/pdf/2210.03595v1.pdf
Unsupervised Few-shot Learning via Deep Laplacian Eigenmaps
Learning a new task from a handful of examples remains an open challenge in machine learning. Despite the recent progress in few-shot learning, most methods rely on supervised pretraining or meta-learning on labeled meta-training data and cannot be applied to the case where the pretraining data is unlabeled. In this study, we present an unsupervised few-shot learning method via deep Laplacian eigenmaps. Our method learns representation from unlabeled data by grouping similar samples together and can be intuitively interpreted by random walks on augmented training data. We analytically show how deep Laplacian eigenmaps avoid collapsed representation in unsupervised learning without explicit comparison between positive and negative samples. The proposed method significantly closes the performance gap between supervised and unsupervised few-shot learning. Our method also achieves comparable performance to current state-of-the-art self-supervised learning methods under linear evaluation protocol.
['Chi-Guhn Lee', 'Kuilin Chen']
2022-10-07
null
null
null
null
['unsupervised-few-shot-learning', 'unsupervised-few-shot-image-classification']
['computer-vision', 'computer-vision']
[ 3.90896618e-01 3.88995647e-01 -4.87502754e-01 -6.16139591e-01 -8.38130891e-01 -1.52584314e-01 7.03617513e-01 2.78847992e-01 -4.44661885e-01 6.47486210e-01 2.73173273e-01 1.74357250e-01 -1.27480403e-01 -9.15368080e-01 -4.80907738e-01 -5.88626802e-01 -1.15141543e-02 8.24002087e-01 3.82159173e-01 -1.31327271e-01 2.73433439e-02 -1.74810648e-01 -1.68687880e+00 2.88848788e-01 6.53529942e-01 6.83128893e-01 4.68257032e-02 5.60655415e-01 -4.85353410e-01 7.50253975e-01 -1.70739815e-01 -1.81624189e-01 2.35896006e-01 -6.37786269e-01 -8.78437102e-01 2.87899792e-01 3.46630663e-01 -1.12402335e-01 -2.50563741e-01 1.04670799e+00 6.42757058e-01 6.86307311e-01 1.09420180e+00 -1.21256804e+00 -7.65650630e-01 5.21485269e-01 -6.30453408e-01 2.15555623e-01 -1.16796233e-01 1.35507032e-01 1.14268649e+00 -1.20105028e+00 9.23721135e-01 1.00972402e+00 6.54534161e-01 6.96775317e-01 -1.37971830e+00 -2.80445307e-01 -5.40865436e-02 5.51247954e-01 -1.06822717e+00 -3.25311780e-01 9.01781797e-01 -4.70860541e-01 1.05018568e+00 -3.45921397e-01 5.43637574e-01 9.84746993e-01 -3.40698957e-01 8.87830019e-01 9.55169857e-01 -8.00788641e-01 8.33878994e-01 2.34951586e-01 7.58949876e-01 8.56167257e-01 1.96693569e-01 -1.45401433e-01 -5.25104761e-01 -6.77233040e-02 3.42365742e-01 5.78802586e-01 2.28525952e-01 -1.00959229e+00 -7.86707580e-01 1.03310907e+00 3.23776513e-01 3.75139028e-01 -1.89891547e-01 1.84477359e-01 5.16776860e-01 3.65309536e-01 6.71743572e-01 2.10169226e-01 -2.95704573e-01 -1.19988889e-01 -9.51112092e-01 -3.97974342e-01 7.12591410e-01 8.22662890e-01 1.43253016e+00 1.15380637e-01 -1.33362442e-01 1.04042554e+00 1.36525691e-01 2.69259840e-01 1.00121021e+00 -7.42083490e-01 2.04393283e-01 6.64128244e-01 -1.25004604e-01 -4.68999267e-01 -2.57916719e-01 -3.02778125e-01 -6.54195607e-01 2.46087700e-01 1.26394168e-01 -4.56670344e-01 -1.17754209e+00 1.45654249e+00 2.16962963e-01 4.55984712e-01 2.29616955e-01 5.85764587e-01 7.20493734e-01 4.32216525e-01 3.85549963e-02 -4.83847946e-01 8.49216521e-01 -1.40870059e+00 -7.45611250e-01 -4.63597655e-01 7.66947925e-01 -2.68913925e-01 1.22232604e+00 -1.71857048e-03 -7.48832941e-01 -5.70159197e-01 -1.14846432e+00 1.42700672e-01 -7.32513368e-01 -1.83156297e-01 7.40629077e-01 7.42333174e-01 -8.08253467e-01 8.29142272e-01 -9.52474952e-01 -8.17149699e-01 6.75938487e-01 2.61497051e-01 -3.93898189e-01 -3.15105617e-01 -9.17708278e-01 8.14598024e-01 5.05783677e-01 -4.99841988e-01 -9.73376930e-01 -5.02017081e-01 -1.16833651e+00 2.09963769e-01 5.48694372e-01 -5.16228557e-01 1.33407342e+00 -8.69158804e-01 -1.49857986e+00 9.35367286e-01 -3.39348793e-01 -4.40415829e-01 2.12559626e-01 -1.79491356e-01 -2.67167658e-01 9.49388072e-02 1.48813635e-01 6.18737578e-01 9.27786469e-01 -1.18356967e+00 -3.47065449e-01 -4.40922499e-01 -3.79174322e-01 1.73216805e-01 -7.38613009e-01 -4.95134473e-01 -3.07280779e-01 -3.78553927e-01 -2.27576345e-02 -7.52940536e-01 -4.98942614e-01 -1.01784572e-01 -2.58773297e-01 -2.22067028e-01 1.10075152e+00 2.88353831e-01 9.70094502e-01 -2.02970386e+00 5.29407384e-03 6.90649971e-02 1.79874003e-01 4.21395212e-01 -1.88241363e-01 6.30287409e-01 -2.48135671e-01 -6.59820959e-02 -4.25268054e-01 -4.52744722e-01 9.86082777e-02 3.65030915e-01 -3.16555172e-01 4.97702181e-01 1.72056958e-01 1.16570199e+00 -1.50544965e+00 -6.22965634e-01 4.28479701e-01 1.85242206e-01 -3.60865146e-01 2.58175611e-01 -7.01722354e-02 -9.65080187e-02 -1.39734805e-01 5.64166784e-01 3.83006394e-01 -6.65810704e-01 3.43053281e-01 4.29733694e-02 3.14457685e-01 -2.32586741e-01 -1.15701365e+00 1.92306376e+00 -4.91754204e-01 6.49051547e-01 -5.33556342e-01 -1.40655184e+00 9.21416879e-01 1.99763864e-01 2.90461957e-01 -3.24535102e-01 5.60168661e-02 -5.11830524e-02 -1.63153440e-01 -6.40353322e-01 1.37767658e-01 -6.48249030e-01 1.38640180e-01 9.26189721e-01 8.89042974e-01 -3.11621670e-02 3.73057038e-01 2.51605570e-01 1.26043332e+00 9.76025835e-02 7.94085085e-01 8.64476711e-02 2.19207294e-02 -2.89860629e-02 3.96608293e-01 8.58812869e-01 -3.84966105e-01 7.09693670e-01 2.29395106e-01 -5.23924291e-01 -9.50302064e-01 -1.27936661e+00 -2.40896735e-02 1.67614007e+00 -1.11579262e-02 -6.01254880e-01 -5.39919794e-01 -1.00797737e+00 -1.41386196e-01 8.56417060e-01 -9.34113324e-01 -4.49925035e-01 -4.83921869e-03 -9.25171614e-01 7.82398209e-02 6.86800480e-01 3.52478534e-01 -1.05857742e+00 -5.75325251e-01 2.61866599e-01 1.82471380e-01 -6.64503098e-01 -1.64611354e-01 6.63290441e-01 -1.21693861e+00 -1.11602461e+00 -8.96837592e-01 -1.03223884e+00 9.01844144e-01 5.47158659e-01 8.64344716e-01 -3.46780300e-01 -5.76128125e-01 6.75415397e-01 -4.48953390e-01 -4.94455367e-01 -1.29961058e-01 -3.92006105e-03 2.52748013e-01 1.62403107e-01 9.53794360e-01 -7.62710929e-01 -3.82411301e-01 1.11944966e-01 -8.90014231e-01 -1.49908826e-01 5.93745768e-01 1.20883596e+00 7.65828967e-01 -1.00095265e-01 7.17020929e-01 -1.43732572e+00 4.55673218e-01 -7.83511698e-01 -2.26573497e-02 5.83253503e-01 -7.58359015e-01 4.58825916e-01 5.26221871e-01 -5.35807490e-01 -1.15236485e+00 3.84214997e-01 3.58183295e-01 -6.60997033e-01 -3.50282401e-01 4.42851931e-01 2.06317335e-01 6.54086098e-02 1.02603865e+00 1.19712017e-01 3.00679612e-03 -5.95707059e-01 8.30719769e-01 6.83620512e-01 1.91941515e-01 -2.37314582e-01 6.65085793e-01 8.66073012e-01 -1.26550496e-01 -1.00490856e+00 -1.16418600e+00 -9.03012156e-01 -1.22248876e+00 -2.25887910e-01 6.56559050e-01 -5.96541941e-01 -1.42916664e-01 2.39131283e-02 -6.31108403e-01 -4.18136239e-01 -8.60826313e-01 4.46934670e-01 -7.54460990e-01 6.11872017e-01 -3.33782554e-01 -1.02874744e+00 -2.87235916e-01 -5.12243509e-01 7.92079091e-01 1.41809672e-01 -2.60443360e-01 -1.29114842e+00 7.13657081e-01 4.98549454e-02 2.84432441e-01 7.68691152e-02 7.32016265e-01 -1.08933365e+00 9.30229668e-03 -5.56778908e-01 5.95952831e-02 1.70388073e-01 3.76624107e-01 -2.03353837e-01 -1.25036538e+00 -1.98285505e-01 -6.54520318e-02 -9.96221960e-01 1.37441421e+00 2.31086791e-01 8.27770114e-01 -6.27106875e-02 -3.76790315e-01 3.18263859e-01 1.46152020e+00 -2.86873579e-01 4.29574162e-01 3.71453539e-02 5.18538177e-01 7.25319326e-01 5.48378229e-01 5.71480274e-01 2.63783187e-02 1.35755539e-01 2.97845066e-01 1.95866942e-01 -9.65367258e-03 -3.94363403e-01 1.71451837e-01 8.17278266e-01 -6.58394322e-02 2.07713187e-01 -1.08949924e+00 7.10507512e-01 -2.30310488e+00 -1.40018487e+00 2.82687694e-01 2.17433333e+00 7.34468579e-01 2.27402061e-01 -3.32421996e-02 9.60687250e-02 9.07718956e-01 2.79414952e-01 -8.29583645e-01 -1.11216687e-01 9.79622006e-02 4.20943201e-01 2.29046926e-01 2.99920827e-01 -1.36400533e+00 1.09966266e+00 6.94763184e+00 9.41604078e-01 -7.78009355e-01 4.46790636e-01 5.02275646e-01 -2.16087386e-01 -3.88790369e-02 2.53062639e-02 -5.88634551e-01 -1.27222780e-02 8.76272082e-01 -3.81401986e-01 1.14340007e-01 1.36829913e+00 -2.04719454e-01 -4.37861383e-02 -1.24688506e+00 1.02972114e+00 4.16217834e-01 -1.36543572e+00 -6.70396164e-02 -2.77266353e-01 1.23146355e+00 2.97027975e-01 1.19649358e-01 7.86616623e-01 7.26031482e-01 -8.57007325e-01 -6.43698946e-02 4.21273321e-01 8.16089749e-01 -4.77976918e-01 6.62691236e-01 5.38240254e-01 -1.06441915e+00 -2.34717801e-01 -7.60011613e-01 -3.09836030e-01 9.78189036e-02 4.88105297e-01 -1.05097091e+00 7.26586357e-02 3.35927129e-01 1.07875991e+00 -6.92403376e-01 1.08040261e+00 -2.13992387e-01 7.84827411e-01 -6.71067163e-02 -1.87759951e-01 4.09272105e-01 -1.11792553e-02 2.25271866e-01 1.20189011e+00 6.79978356e-02 -3.39900404e-02 2.81468153e-01 6.35595798e-01 -8.70634541e-02 3.26793402e-01 -1.02752125e+00 -2.35268995e-01 1.00032650e-01 1.35244799e+00 -9.11782801e-01 -8.98619533e-01 -5.16888738e-01 1.06936729e+00 8.03434849e-01 4.98362213e-01 -2.39282697e-01 -5.44008434e-01 3.14064324e-01 2.50574085e-03 5.49596786e-01 4.32444327e-02 -3.01105589e-01 -1.38692939e+00 -4.08241987e-01 -1.13366030e-01 6.88586533e-01 -6.08273983e-01 -1.78533602e+00 2.45389879e-01 -3.33969630e-02 -1.52316070e+00 -6.30580127e-01 -5.79272747e-01 -1.10872185e+00 2.52298474e-01 -1.28826106e+00 -8.37586701e-01 -1.88275129e-01 5.28798699e-01 8.54243338e-01 -4.90795046e-01 1.22895360e+00 -2.25732446e-01 -3.94609571e-01 3.55821609e-01 6.33141279e-01 1.47291645e-01 9.24944639e-01 -1.47217309e+00 2.69617766e-01 6.03499949e-01 5.35634279e-01 6.61500096e-01 6.27258658e-01 -6.29939437e-01 -1.14959300e+00 -1.19080007e+00 6.05812967e-01 -3.14544380e-01 8.36630881e-01 -1.80858895e-01 -1.00241446e+00 6.69120610e-01 2.78746963e-01 5.24680555e-01 1.47934031e+00 3.52534801e-01 -6.60405934e-01 7.33365715e-02 -1.02412415e+00 4.81111020e-01 9.47579563e-01 -7.45315611e-01 -1.04691255e+00 5.19205749e-01 5.93803465e-01 3.45589995e-01 -3.87310326e-01 2.08889529e-01 3.34690213e-01 -8.94438565e-01 8.35477531e-01 -1.18813860e+00 3.60674709e-01 1.91114955e-02 -1.44254267e-01 -1.59711874e+00 -3.34835261e-01 -4.25775021e-01 -6.01486087e-01 7.41178334e-01 3.52650374e-01 -1.79450616e-01 1.13701534e+00 5.45130432e-01 9.50687230e-02 -6.11415684e-01 -6.74754798e-01 -9.49053705e-01 5.15443645e-02 -4.70842987e-01 -1.38468906e-01 1.15511346e+00 7.27852762e-01 7.30670691e-01 -4.97938752e-01 -4.42372233e-01 1.08767712e+00 1.87556118e-01 7.11465418e-01 -1.40340590e+00 -4.79106814e-01 -1.94556668e-01 -5.17296851e-01 -6.73461974e-01 3.06488335e-01 -1.22800136e+00 8.43237862e-02 -1.77490056e+00 6.38517976e-01 2.18688130e-01 -4.94224370e-01 8.18404913e-01 -2.36486390e-01 5.51555932e-01 5.80751933e-02 2.01260418e-01 -1.29874992e+00 7.28041470e-01 7.81317532e-01 -3.40219885e-01 -3.41591090e-01 -1.42827183e-01 -3.44835401e-01 9.56742406e-01 8.52651656e-01 -6.16139650e-01 -6.48127317e-01 -6.49832264e-02 3.53408307e-02 -3.51617426e-01 6.28293976e-02 -1.02900529e+00 4.58303571e-01 -1.17430016e-01 3.46772820e-01 -3.94775391e-01 4.12097812e-01 -7.20170140e-01 -3.30326408e-01 5.07460952e-01 -5.90084672e-01 -6.31662011e-01 -2.58708000e-01 1.14043272e+00 -1.65057406e-01 -6.94861293e-01 8.77762198e-01 -4.78172570e-01 -1.23974693e+00 3.28053802e-01 -3.64741385e-01 4.15915906e-01 1.24293554e+00 -2.43241385e-01 -2.63197273e-01 -3.76513332e-01 -1.23414230e+00 1.99617371e-01 3.91620517e-01 2.86522776e-01 8.39718103e-01 -1.52194250e+00 -2.61863828e-01 1.80067286e-01 6.97662950e-01 -3.83318752e-01 3.99895340e-01 5.63691735e-01 -5.67384101e-02 1.48585215e-01 -3.10570151e-01 -3.92543405e-01 -1.05796242e+00 9.36996102e-01 -1.11500464e-01 -2.71170944e-01 -5.96585512e-01 6.05280757e-01 -5.45391142e-02 -5.72769463e-01 4.01648909e-01 1.76382661e-01 -3.69804293e-01 4.56497639e-01 6.84754491e-01 6.34912312e-01 -3.02934527e-01 -4.84578371e-01 -9.02989507e-02 4.06959444e-01 -2.36523241e-01 -2.46855244e-01 1.60655892e+00 -2.84353760e-03 2.85820872e-01 1.34256899e+00 1.63732910e+00 -5.50803959e-01 -1.10836971e+00 -6.83981597e-01 1.18996240e-01 -4.03326184e-01 -2.02597037e-01 -4.24759358e-01 -6.82711959e-01 1.52073121e+00 5.84414482e-01 2.52070036e-02 5.65678239e-01 1.71727806e-01 5.66019058e-01 1.18426776e+00 3.11828047e-01 -1.60106909e+00 7.91923285e-01 5.52395046e-01 2.52807260e-01 -1.90908003e+00 -1.02938026e-01 -1.16050281e-01 -9.56408262e-01 1.23504317e+00 6.33470118e-01 -3.26214939e-01 1.15000868e+00 -5.68354689e-02 -1.48404278e-02 -3.11689198e-01 -9.61046040e-01 -6.57199085e-01 2.35793218e-01 8.93449605e-01 3.78248274e-01 -7.61083364e-02 -9.64671001e-03 6.35804355e-01 3.31915706e-01 1.71752259e-01 5.64949334e-01 1.26157999e+00 -9.78066981e-01 -9.13971841e-01 6.71168566e-02 7.15776920e-01 -1.32773504e-01 -1.55841872e-01 -4.31252629e-01 4.34935808e-01 -1.34958044e-01 7.09081233e-01 1.53886512e-01 -3.83738726e-01 -5.36095798e-02 7.66435564e-01 2.43489712e-01 -1.39155769e+00 -6.87500462e-02 9.41946730e-03 -3.15141290e-01 -1.85337201e-01 -6.02089167e-01 -3.99986267e-01 -1.40675056e+00 2.33532518e-01 -3.49573165e-01 1.35390669e-01 3.38801593e-01 1.06938207e+00 2.52330989e-01 2.62891650e-01 5.84197819e-01 -1.13588059e+00 -7.72517562e-01 -1.00129449e+00 -8.13307047e-01 6.28728032e-01 9.11756158e-02 -7.37659395e-01 -4.49047297e-01 2.66442478e-01]
[9.960832595825195, 3.0390193462371826]
7574ec54-f3a3-412b-9b32-06832db8109f
state-representation-learning-using-an
2305.10267
null
https://arxiv.org/abs/2305.10267v1
https://arxiv.org/pdf/2305.10267v1.pdf
State Representation Learning Using an Unbalanced Atlas
The manifold hypothesis posits that high-dimensional data often lies on a lower-dimensional manifold and that utilizing this manifold as the target space yields more efficient representations. While numerous traditional manifold-based techniques exist for dimensionality reduction, their application in self-supervised learning has witnessed slow progress. The recent MSIMCLR method combines manifold encoding with SimCLR but requires extremely low target encoding dimensions to outperform SimCLR, limiting its applicability. This paper introduces a novel learning paradigm using an unbalanced atlas (UA), capable of surpassing state-of-the-art self-supervised learning approaches. We meticulously investigated and engineered the DeepInfomax with an unbalanced atlas (DIM-UA) method by systematically adapting the Spatiotemporal DeepInfomax (ST-DIM) framework to align with our proposed UA paradigm, employing rigorous scientific methodologies throughout the process. The efficacy of DIM-UA is demonstrated through training and evaluation on the Atari Annotated RAM Interface (AtariARI) benchmark, a modified version of the Atari 2600 framework that produces annotated image samples for representation learning. The UA paradigm improves the existing algorithm significantly when the number of target encoding dimensions grows. For instance, the mean F1 score averaged over categories of DIM-UA is ~75% compared to ~70% of ST-DIM when using 16384 hidden units.
['Paal Engelstad', 'Anis Yazidi', 'Morten Goodwin', 'Li Meng']
2023-05-17
null
null
null
null
['dimensionality-reduction']
['methodology']
[-4.94420109e-03 8.29975381e-02 -1.87919959e-01 -1.49042696e-01 -7.77123213e-01 -4.36349660e-01 7.28648007e-01 -1.26330450e-01 -3.22896808e-01 4.52890009e-01 2.06494898e-01 -2.05717534e-01 -4.09069479e-01 -6.34583175e-01 -6.83401346e-01 -6.64312065e-01 -5.34512877e-01 5.14438093e-01 -3.06686223e-01 -2.69729674e-01 2.46737272e-01 6.45933747e-01 -2.11012816e+00 6.99860081e-02 6.54418588e-01 1.09273136e+00 6.65933788e-02 5.00444412e-01 -1.68323532e-01 6.90968513e-01 -7.24553525e-01 6.75158156e-03 4.20940250e-01 -3.72156769e-01 -8.41939628e-01 -7.41703138e-02 8.37924600e-01 -2.11908482e-02 -6.52433395e-01 9.03055847e-01 4.62708652e-01 4.56682205e-01 8.43607187e-01 -1.06335974e+00 -9.31399167e-01 3.95555824e-01 -5.02052188e-01 4.56217229e-01 -2.05085844e-01 -4.48634773e-02 9.50708032e-01 -7.96475232e-01 7.01383233e-01 1.18047333e+00 4.67050612e-01 5.58780491e-01 -1.37580872e+00 -4.31085914e-01 -8.02614167e-02 3.17544818e-01 -1.59926939e+00 -2.64742196e-01 8.10910046e-01 -3.96666110e-01 1.25699079e+00 1.61857367e-01 3.61336291e-01 1.13277745e+00 2.19752893e-01 6.89791501e-01 9.56055045e-01 -3.21288586e-01 6.21894777e-01 -1.46735441e-02 2.98396856e-01 5.19707799e-01 8.61020014e-02 2.42158741e-01 -6.22280836e-01 -9.57401656e-03 7.75486708e-01 -1.97318405e-01 -3.57705727e-02 -7.57759333e-01 -1.50900650e+00 8.43863487e-01 5.39188743e-01 5.55322647e-01 -2.12015018e-01 1.08746149e-01 6.34747267e-01 5.59501469e-01 5.39055467e-01 7.60938406e-01 -2.45183647e-01 -3.36300820e-01 -9.92466211e-01 1.36273373e-02 4.40587252e-01 8.83488655e-01 7.94236839e-01 4.07026798e-01 6.31609559e-02 7.81327128e-01 8.89762342e-02 2.73932785e-01 1.20406318e+00 -9.14195895e-01 3.55905592e-01 9.26304460e-01 -3.53351027e-01 -9.12339568e-01 -4.39810932e-01 -7.24527776e-01 -1.06329668e+00 3.25207293e-01 7.34564513e-02 1.32844374e-01 -8.85365129e-01 1.69833410e+00 1.47226974e-01 3.15513164e-01 4.00637239e-01 9.07454073e-01 5.53813457e-01 7.40815461e-01 -1.22810982e-01 1.86251495e-02 1.10777092e+00 -7.14506567e-01 -7.27617502e-01 9.61896479e-02 1.08229840e+00 -1.28708988e-01 1.41507745e+00 6.24247253e-01 -7.32901931e-01 -7.26819396e-01 -1.52699697e+00 -1.03633553e-01 -6.38623536e-01 3.72442544e-01 6.12589180e-01 6.15860343e-01 -1.18459761e+00 8.86855364e-01 -8.80540967e-01 -2.09411338e-01 4.16660905e-01 4.69654799e-01 -6.46167636e-01 9.73299146e-02 -1.14800084e+00 8.78824294e-01 5.24058998e-01 -2.73180276e-01 -9.95533109e-01 -8.53945494e-01 -9.82323527e-01 -9.94973928e-02 1.29312719e-03 -2.29037717e-01 6.80680454e-01 -7.11988866e-01 -1.52407718e+00 7.54993379e-01 1.33168429e-01 -7.76345909e-01 1.42277181e-01 -3.70428801e-01 -5.76219797e-01 3.73197019e-01 -2.22479343e-01 8.84564936e-01 1.13404500e+00 -8.69139373e-01 -1.03226833e-01 -6.01714969e-01 -1.85060680e-01 2.90047705e-01 -1.00413728e+00 -5.56320310e-01 -5.62624857e-02 -6.90649748e-01 8.56236741e-02 -9.76355970e-01 4.19304799e-03 -2.09602058e-01 -1.37861803e-01 -4.03998643e-01 1.30774748e+00 -3.65843177e-01 1.37451303e+00 -2.30180669e+00 6.33991599e-01 -4.03496288e-02 3.79605144e-01 4.00008202e-01 -3.47962201e-01 2.66729236e-01 -6.15231216e-01 -1.58067077e-01 -3.73404562e-01 -4.63983327e-01 9.85673178e-05 1.78598866e-01 -3.71303082e-01 6.99728429e-01 3.64661127e-01 7.43324578e-01 -7.91559041e-01 -2.70701259e-01 4.50582892e-01 6.62519753e-01 -4.83841628e-01 1.65003046e-01 -1.76393434e-01 2.06161246e-01 -2.89830491e-02 5.13155460e-01 4.58905071e-01 -2.63014555e-01 -1.10975996e-01 -4.14455682e-01 -8.45227167e-02 8.71713683e-02 -1.06560922e+00 2.34569407e+00 -4.83647734e-01 8.49626184e-01 -2.84806311e-01 -1.26627970e+00 1.24434507e+00 8.70459899e-02 7.81197548e-01 -8.77306283e-01 8.01407848e-04 1.60628766e-01 -3.57628167e-02 -3.20879608e-01 6.42400801e-01 1.05035022e-01 -1.15547448e-01 4.28660423e-01 6.37219489e-01 1.52497351e-01 1.39050871e-01 2.80686498e-01 1.25012755e+00 4.15323555e-01 7.30626211e-02 -5.98235071e-01 4.50108200e-01 7.02889264e-02 1.10206746e-01 2.91781008e-01 -2.94151187e-01 6.75517261e-01 3.51997763e-01 -4.84457672e-01 -1.07820868e+00 -1.31423724e+00 -4.99450237e-01 8.50009739e-01 -2.01172773e-02 -6.20119691e-01 -8.13071787e-01 -7.45267153e-01 -6.54753968e-02 1.04494965e+00 -7.68754363e-01 -5.60940206e-01 -3.73869181e-01 -9.43298817e-01 7.27100372e-01 4.15951580e-01 4.37766284e-01 -8.96825850e-01 -7.72219241e-01 -3.71552184e-02 2.55789906e-01 -8.07914674e-01 -1.08956262e-01 2.78993964e-01 -1.08538532e+00 -8.98716986e-01 -6.47041142e-01 -4.07296240e-01 4.63415861e-01 1.79403454e-01 1.09030128e+00 -3.44416410e-01 -5.69790304e-01 5.79813063e-01 -3.55147004e-01 -1.30827859e-01 -4.13748294e-01 4.26288635e-01 4.13323194e-01 -1.60556629e-01 7.16557682e-01 -5.55390179e-01 -5.44222474e-01 2.54799277e-01 -1.20983267e+00 -1.18558459e-01 7.01237798e-01 7.81933486e-01 7.07623601e-01 3.59891169e-03 9.87424970e-01 -4.90828514e-01 4.07901675e-01 -7.58283436e-01 -3.40965986e-01 -6.54456168e-02 -8.08788955e-01 4.40713763e-01 6.22644603e-01 -5.52999794e-01 -6.08691096e-01 1.75145015e-01 9.81484130e-02 -9.71795201e-01 -1.95028394e-01 3.16493630e-01 -2.20083788e-01 8.59740898e-02 1.06043386e+00 2.15942293e-01 5.23066521e-01 -4.33405519e-01 6.57055318e-01 8.89569283e-01 6.99346721e-01 -5.51216185e-01 7.19677508e-01 4.53672409e-01 1.26298323e-01 -1.08769858e+00 -6.74389958e-01 -4.06493098e-01 -9.33692336e-01 -4.50857766e-02 8.01352620e-01 -9.57980931e-01 -3.72705370e-01 2.15239570e-01 -6.21365786e-01 -2.91098416e-01 -6.29801869e-01 6.08967185e-01 -9.36967969e-01 3.06526363e-01 -2.84212172e-01 -5.53427935e-01 -3.83286476e-01 -1.18584156e+00 1.22350812e+00 -2.04081416e-01 -3.64785969e-01 -1.20881009e+00 1.36719510e-01 1.52777970e-01 6.24204814e-01 2.92032093e-01 1.03307807e+00 -8.46762657e-01 -1.40032232e-01 -2.28438944e-01 -1.51284216e-02 5.84487796e-01 2.65143573e-01 -4.56148833e-01 -1.09572899e+00 -4.79088336e-01 1.28460050e-01 -4.20512229e-01 6.38406038e-01 6.99596666e-03 1.44617581e+00 -3.62464823e-02 -5.54614849e-02 5.77127218e-01 1.42154002e+00 -1.28595978e-01 8.66088867e-01 6.31285846e-01 8.54965866e-01 5.24611533e-01 5.07383347e-01 1.96846262e-01 2.38897428e-01 8.23920429e-01 6.66115761e-01 -1.64749492e-02 -2.34445602e-01 6.82147667e-02 6.10283434e-01 9.53673661e-01 3.27451438e-01 1.50669500e-01 -9.91628706e-01 5.97864807e-01 -1.57988834e+00 -6.98089242e-01 1.21220455e-01 2.36427879e+00 6.80035949e-01 -6.57730773e-02 1.35204062e-01 4.49658662e-01 4.12815899e-01 1.49231657e-01 -8.57841551e-01 -3.23307753e-01 -1.75077811e-01 1.84419498e-01 3.55484962e-01 1.50413727e-02 -1.24355984e+00 7.60990798e-01 6.16804361e+00 8.58513296e-01 -1.20097029e+00 -3.56308627e-03 5.94936728e-01 -4.09736365e-01 1.09795509e-02 -4.09758776e-01 -8.00817549e-01 2.75695801e-01 1.65004385e+00 -2.65444487e-01 5.51660001e-01 1.19924951e+00 1.07208239e-02 1.96840465e-01 -1.39892745e+00 1.28626955e+00 4.23977494e-01 -1.41183221e+00 3.34994227e-01 2.93545067e-01 6.49981558e-01 2.33741730e-01 4.31154221e-01 5.65165699e-01 -4.46638912e-02 -1.33182859e+00 3.98304999e-01 4.20500964e-01 1.00003064e+00 -8.54519546e-01 4.82818425e-01 2.56321937e-01 -9.95783627e-01 -7.01313019e-02 -5.42782843e-01 2.75699914e-01 -2.97856420e-01 3.23954165e-01 -5.30426025e-01 8.05434585e-01 6.71958745e-01 1.05055046e+00 -1.04407370e+00 5.73079646e-01 4.56608802e-01 6.59596980e-01 -2.14737654e-01 2.88793564e-01 3.46961111e-01 -3.58238995e-01 8.13247561e-01 1.00267148e+00 4.43947375e-01 -4.09215122e-01 -2.65237987e-01 8.97990108e-01 -1.22630689e-02 1.05859220e-01 -9.49862361e-01 -2.42344558e-01 3.67232591e-01 1.31074929e+00 -3.93187255e-01 -3.36143225e-01 -3.36199224e-01 9.79810476e-01 4.92748797e-01 7.18194023e-02 -5.83938718e-01 -3.19822460e-01 8.57363343e-01 -1.24520287e-04 2.63437688e-01 -4.28494662e-01 -2.39346847e-01 -1.10525286e+00 -1.82262436e-01 -1.05384350e+00 4.19518471e-01 -5.25372326e-01 -1.27959573e+00 8.83134544e-01 2.79993474e-01 -1.69131315e+00 -4.50706631e-01 -8.65464032e-01 -2.10520670e-01 6.52968824e-01 -1.32055116e+00 -8.95309806e-01 -3.08782279e-01 6.27292871e-01 5.85143805e-01 -8.59246016e-01 1.21731329e+00 3.97366732e-01 -6.49271786e-01 5.92336535e-01 4.14487958e-01 -2.05963582e-01 5.05843639e-01 -1.57992578e+00 3.00673902e-01 6.13016605e-01 3.97247106e-01 8.32971215e-01 5.39647579e-01 -2.74019659e-01 -1.97873712e+00 -1.46911824e+00 -6.94356337e-02 -4.87764835e-01 8.08545709e-01 -4.07150894e-01 -1.21306169e+00 4.74065006e-01 1.14423022e-01 1.17305420e-01 8.51149619e-01 -1.51161209e-01 -4.19536740e-01 -6.30111713e-03 -1.02752185e+00 5.64540744e-01 1.09634078e+00 -5.56383073e-01 -6.02757394e-01 2.48896673e-01 7.83110499e-01 -1.18961416e-01 -1.37776029e+00 3.64504606e-01 1.11090794e-01 -7.72106230e-01 9.60711896e-01 -5.73768497e-01 3.43122989e-01 -4.46123898e-01 -5.26222646e-01 -1.55646443e+00 -3.86436731e-02 -5.07943749e-01 -8.20178330e-01 1.15794742e+00 1.69602465e-02 -3.65549713e-01 8.90000045e-01 1.25065416e-01 -2.85291374e-01 -7.97212601e-01 -1.27234507e+00 -1.13216686e+00 5.01588166e-01 -3.31439555e-01 5.53800762e-01 1.04283690e+00 -4.48286757e-02 3.27613890e-01 -1.13600098e-01 -1.45526320e-01 8.49046171e-01 -2.58163035e-01 7.93341875e-01 -1.41939950e+00 -1.73756912e-01 -3.87164742e-01 -9.84495938e-01 -7.09446907e-01 3.93744141e-01 -1.27010047e+00 -5.38948774e-01 -1.20604742e+00 -2.87125379e-01 -3.65690559e-01 -3.54422003e-01 2.74126858e-01 1.79907560e-01 1.74472705e-01 -4.50087748e-02 4.03431237e-01 -5.76402545e-01 9.65815127e-01 8.01263630e-01 -1.29201472e-01 -3.05865139e-01 -5.55512786e-01 -5.46871424e-01 2.87008822e-01 8.17250252e-01 -9.82663631e-02 -7.89525509e-01 -2.96144038e-01 -7.48957917e-02 -5.40876746e-01 2.73648471e-01 -1.44375098e+00 -6.97358325e-02 5.30454874e-01 4.18579668e-01 -7.21751332e-01 4.00000662e-01 -7.23004580e-01 4.98059876e-02 2.10084513e-01 -4.30491358e-01 2.17260882e-01 4.38734323e-01 6.95525408e-01 -3.06542456e-01 -4.38575894e-02 6.58312798e-01 9.52079445e-02 -9.51603770e-01 1.67782590e-01 -2.08558619e-01 -1.49015561e-01 1.18491626e+00 -1.91503957e-01 -4.58974332e-01 1.21648628e-02 -5.99050462e-01 -3.04695759e-02 3.86966914e-01 8.08170319e-01 6.69279814e-01 -1.53340256e+00 -5.22462070e-01 2.92666793e-01 3.58983189e-01 -8.84463359e-03 1.71903074e-01 6.61014557e-01 -3.98045808e-01 4.16410506e-01 -3.02947879e-01 -9.21426296e-01 -8.83429289e-01 7.33120441e-01 4.77443904e-01 -1.84582382e-01 -1.07902277e+00 2.69356579e-01 2.97947638e-02 -5.61172068e-01 4.03312087e-01 3.62573527e-02 -4.13493454e-01 1.47871628e-01 6.80255353e-01 6.63207829e-01 3.98004144e-01 -8.35665584e-01 2.35710014e-03 3.60342681e-01 -2.12059423e-01 -9.09579247e-02 1.45300996e+00 -5.17024212e-02 1.15198735e-03 8.43185961e-01 1.68326175e+00 -5.60206413e-01 -1.21185434e+00 -2.13202864e-01 2.64946610e-01 -1.89274460e-01 5.00928283e-01 -3.71043116e-01 -9.03865218e-01 9.83124912e-01 1.30803585e+00 2.28698671e-01 9.86080825e-01 -5.68137616e-02 5.24583519e-01 5.91554999e-01 4.46083337e-01 -1.06475103e+00 4.79930788e-01 3.30710292e-01 1.08025444e+00 -1.12957585e+00 -6.24772608e-02 7.72987753e-02 -6.99436843e-01 1.19716978e+00 6.92101300e-01 -3.11113089e-01 6.89855635e-01 1.01495400e-01 -6.29537851e-02 -5.26452959e-01 -6.84757233e-01 7.62762427e-02 4.76683557e-01 6.83805883e-01 4.70030308e-01 -1.42855063e-01 5.87462634e-02 3.59716386e-01 -4.22775775e-01 -3.18247706e-01 3.67473930e-01 8.40553224e-01 -1.59429163e-01 -8.80533874e-01 -3.68711382e-01 5.89546740e-01 -2.25688145e-01 1.01159491e-01 -1.91919789e-01 8.24083865e-01 -2.18853503e-01 5.80307364e-01 4.72511172e-01 -6.06132329e-01 1.33958131e-01 1.81403592e-01 2.83722043e-01 -5.53845882e-01 -3.83569479e-01 -3.08773637e-01 -3.63509178e-01 -6.90862477e-01 -3.94274861e-01 -7.11888254e-01 -1.31516159e+00 7.59649975e-03 -1.38522565e-01 3.15690152e-02 9.89448726e-01 6.76048577e-01 8.43481600e-01 6.81880891e-01 7.04775989e-01 -1.09815454e+00 -8.05110335e-01 -1.11326158e+00 -5.35731137e-01 5.63628852e-01 1.39724597e-01 -1.04531050e+00 -4.16951895e-01 3.93863441e-03]
[9.18376636505127, 3.0624663829803467]
9af32409-b39c-4a78-88ce-3d204e4b850f
experiencing-the-communication-advantage-of
null
null
https://ieeexplore.ieee.org/document/9593171
https://spawc2021.myquadra.it/wp-content/paper/1570721633-1.pdf
Experiencing the communication advantage of the Indefinite Causal Orders
Many recent studies deal with the Superposition of Causal Orders, a quantum operation with promising advantages in both communication or computing. To experience the advantages, there are several way of implementing it. In literature, most of the set-ups are photonic-based. Instead, our interest is witnessing the Superpositon of Causal Orders within a programmable technology, based on superconductors. To do that, we focus on a specific case of the subject operation, which could be useful for the future of quantum communication.
['Daniele Cuomo; Marcello Caleffi; Angela Sara Cacciapuoti']
2021-11-19
null
null
null
ieee-spawc-2021-11
['noise-estimation']
['medical']
[ 4.01327103e-01 -2.33438984e-02 -1.44686148e-01 -1.13860182e-01 3.98069769e-01 -4.39359874e-01 6.22871935e-01 -6.61343694e-01 6.42608404e-02 9.91513908e-01 3.01508307e-02 -2.60636091e-01 -3.13887149e-01 -1.19052446e+00 -4.22858119e-01 -9.67692852e-01 -3.14137995e-01 -9.69337150e-02 6.27014399e-01 -5.05627751e-01 8.81486297e-01 2.79479176e-01 -1.62901592e+00 3.41307551e-01 7.54167438e-01 1.11319661e+00 2.26348490e-02 2.96740383e-01 5.19490838e-02 4.38031018e-01 -4.50361341e-01 -2.09922105e-01 2.71164924e-01 -8.68592799e-01 -6.15542710e-01 -5.81710815e-01 -1.79282919e-01 -2.13185370e-01 -7.92116344e-01 1.42030263e+00 3.97570096e-02 -3.36568147e-01 3.24189574e-01 -1.07789803e+00 -6.99423790e-01 9.42035913e-01 7.81403333e-02 6.69830292e-02 4.21064407e-01 2.64701039e-01 9.29937363e-01 -8.85086805e-02 6.69988036e-01 7.64440715e-01 -9.91952419e-02 6.51779771e-01 -1.09006906e+00 -8.85949135e-01 -8.34009111e-01 5.82092285e-01 -1.12085986e+00 -4.47592407e-01 8.22234571e-01 -1.87059015e-01 6.99253559e-01 3.22838932e-01 9.13378298e-01 7.79707253e-01 7.61981249e-01 2.31518045e-01 1.97954583e+00 -6.93876863e-01 3.94511253e-01 2.90951252e-01 3.34635496e-01 4.90292877e-01 3.24404806e-01 7.97503173e-01 -1.14628899e+00 2.23825425e-01 7.66986609e-01 -4.59626198e-01 -5.26800692e-01 -2.95428652e-02 -1.28546882e+00 2.32537687e-01 5.56772470e-01 8.60569835e-01 -1.72562927e-01 4.18595701e-01 -1.11413918e-01 4.65721786e-01 4.26504202e-03 9.65965509e-01 1.55185178e-01 -3.82668167e-01 -7.00116217e-01 -1.59521684e-01 9.52778697e-01 8.31400156e-01 5.83623469e-01 -3.09881181e-01 1.92081947e-02 -2.01408982e-01 8.68727416e-02 4.78751183e-01 7.15506226e-02 -6.06779158e-01 -6.86294809e-02 1.69406638e-01 4.95605469e-02 -4.55845892e-01 -3.86556208e-01 -8.18077847e-02 -8.92205000e-01 1.11325845e-01 7.54337683e-02 -1.36949867e-01 -5.68056285e-01 1.25302923e+00 -1.41620919e-01 4.85860080e-01 3.19841415e-01 1.03067267e+00 7.96475828e-01 9.27665055e-01 -6.68459594e-01 -6.14332020e-01 1.16474223e+00 -3.89886588e-01 -1.14003861e+00 4.79705632e-01 2.30035931e-01 -8.34083438e-01 3.73989671e-01 6.06069565e-01 -6.74720526e-01 -2.75611997e-01 -1.28408015e+00 3.84358227e-01 -3.09302211e-01 -1.97934493e-01 1.09754264e+00 1.02971244e+00 -1.15178692e+00 1.02162051e+00 -6.01590991e-01 -4.27604824e-01 -1.76605627e-01 4.38527226e-01 -1.23130023e-01 3.57224762e-01 -1.35531557e+00 9.27405298e-01 6.79008603e-01 1.19995952e-01 -7.76598826e-02 -3.73038054e-01 3.07060838e-01 1.92583442e-01 1.81258395e-01 -6.60319030e-01 7.24067807e-01 -1.90011546e-01 -2.42015553e+00 6.98871076e-01 1.13230690e-01 -4.45643902e-01 -6.60011321e-02 1.04639679e-02 -7.33781993e-01 1.47609234e-01 -2.05653861e-01 -1.02797806e-01 6.62657559e-01 -8.02999496e-01 -4.82614696e-01 -1.58377841e-01 2.51359731e-01 -5.51641643e-01 -3.77123922e-01 1.17534749e-01 2.26663589e-01 1.49514616e-01 5.36116779e-01 -1.20202816e+00 -3.90298516e-02 -6.31091237e-01 -6.38474226e-01 -3.41228813e-01 7.96194375e-01 2.41909400e-01 9.91285324e-01 -2.21864629e+00 1.77624509e-01 -1.48497859e-03 1.04017459e-01 2.56608009e-01 2.66292691e-01 1.07287526e+00 1.91197187e-01 3.58883053e-01 1.62842274e-01 4.88197297e-01 -7.62011632e-02 -7.04765990e-02 -7.43609130e-01 5.37297130e-01 7.74901211e-02 8.46100569e-01 -8.19602668e-01 -1.18340023e-01 2.67860621e-01 4.67431322e-02 -7.45113015e-01 9.71709341e-02 -3.82961780e-02 9.07515526e-01 -8.00249577e-01 4.30586666e-01 8.41055274e-01 -2.38639981e-01 4.65945780e-01 -3.54422569e-01 -1.11474097e+00 7.68967688e-01 -1.02592587e+00 1.47515512e+00 -9.63952541e-02 6.43635273e-01 -1.40404105e-01 -8.44861984e-01 6.87929451e-01 4.55942661e-01 4.16063696e-01 -8.73015761e-01 5.20743197e-04 6.41822278e-01 5.09930491e-01 -7.28225708e-01 7.18623281e-01 -4.96625841e-01 -8.10275227e-02 5.40531516e-01 2.01895520e-01 -8.89067292e-01 3.03716481e-01 1.34327978e-01 1.34136605e+00 5.47553673e-02 2.46922597e-01 -5.54874659e-01 2.00781450e-01 -7.47112185e-02 2.95523971e-01 7.71701574e-01 1.92306787e-02 1.99924499e-01 4.07954156e-01 -2.76182741e-01 -9.33745921e-01 -1.20479107e+00 -6.10437453e-01 -4.80725281e-02 1.06945562e+00 -6.83062494e-01 -1.88110948e-01 1.31271601e-01 -4.21536058e-01 7.04695165e-01 2.27141589e-01 1.18100524e-01 -4.30582762e-01 -9.40991521e-01 1.30504072e-01 -1.57897279e-01 8.37347984e-01 -1.05837929e+00 -6.84725285e-01 3.03797990e-01 1.48547217e-01 -1.30549133e+00 5.54597974e-01 2.28822604e-01 -8.04425776e-01 -8.01635861e-01 -6.53424934e-02 -1.03911288e-01 2.94543624e-01 1.90527260e-01 7.14792848e-01 3.77741866e-02 -5.94445281e-02 2.36779481e-01 -6.64872527e-01 -3.84542853e-01 -4.88565683e-01 -1.16471931e-01 4.72722471e-01 -4.11623530e-02 1.93589658e-01 -1.08062017e+00 -4.77676392e-01 -8.44804421e-02 -4.53632176e-01 1.67023748e-01 7.25523710e-01 5.60026526e-01 -7.14273751e-02 5.47804475e-01 -9.94383264e-03 -6.31189764e-01 5.50968528e-01 -1.75286338e-01 -7.79783964e-01 -4.54642111e-03 -3.63472462e-01 1.57291159e-01 8.06660771e-01 1.79225385e-01 -9.21253562e-01 -3.38564873e-01 1.53433457e-01 4.22154099e-01 -1.63990989e-01 4.26507741e-01 2.84463644e-01 -5.39093971e-01 4.39754814e-01 4.46325958e-01 -3.76909047e-01 -1.00617707e-02 3.10946375e-01 9.44845378e-01 1.57369465e-01 -4.03143108e-01 1.00934839e+00 6.60685003e-01 8.30886304e-01 -1.08519518e+00 -5.69737971e-01 -2.65681326e-01 -5.79096019e-01 -4.52226609e-01 7.91748166e-01 -1.84899271e-01 -1.19347656e+00 5.05029976e-01 -1.57763851e+00 1.62553877e-01 -8.53927210e-02 9.33796167e-01 -5.62316895e-01 1.70028321e-02 -7.25941181e-01 -1.15553105e+00 1.60668895e-01 -1.06498826e+00 6.40214264e-01 5.50806880e-01 1.97113708e-01 -4.34385836e-01 1.34824276e-01 3.91825996e-02 7.89653897e-01 -1.88120961e-01 8.29048216e-01 4.20163795e-02 -1.66548932e+00 -1.64651722e-01 -2.35046387e-01 1.55500337e-01 -2.51937602e-02 8.39259997e-02 -9.44083631e-01 8.14364478e-02 3.94088179e-01 -1.37216330e-01 6.55711174e-01 7.76688755e-02 8.68038595e-01 7.03392848e-02 -6.35378659e-01 3.03173125e-01 1.64530373e+00 6.35153532e-01 9.78111267e-01 -5.49778864e-02 1.98473051e-01 4.70875353e-01 2.55329281e-01 2.24453032e-01 -1.54270321e-01 9.14241076e-01 4.74967986e-01 5.21991491e-01 9.18848664e-02 -3.60094421e-02 1.20823711e-01 1.48761427e+00 -8.62660527e-01 -1.14963256e-01 -5.29337227e-01 -8.84037018e-02 -1.55641377e+00 -1.29439795e+00 -7.74229109e-01 2.18773055e+00 4.60877955e-01 1.19065017e-01 -4.93771881e-01 8.38341266e-02 6.78999364e-01 2.44428396e-01 1.43978298e-01 -4.10057724e-01 4.89399245e-04 5.10229945e-01 4.96055782e-01 -7.18759596e-02 -7.48899221e-01 8.14570010e-01 7.19887733e+00 5.09658694e-01 -1.62895334e+00 2.12812364e-01 -2.72056788e-01 1.81578591e-01 -2.69870341e-01 7.18519807e-01 -6.94586754e-01 8.53019416e-01 1.00598001e+00 -2.76764065e-01 7.43718982e-01 2.07323611e-01 1.45186231e-01 -6.47502422e-01 -9.55876112e-01 9.19635057e-01 -4.89561141e-01 -1.56850827e+00 -2.92827994e-01 2.08634093e-01 7.59751081e-01 -3.47919405e-01 2.00979318e-02 -2.73022521e-02 -2.48877764e-01 -6.21884644e-01 4.93546396e-01 7.86981225e-01 6.07990146e-01 -2.45720878e-01 7.50325739e-01 5.04891038e-01 -7.13554144e-01 -1.62688512e-02 -2.40311965e-01 -8.35957527e-01 6.63449943e-01 1.16002822e+00 -3.10226470e-01 8.35511684e-01 5.40884197e-01 5.63042045e-01 3.01098734e-01 1.16470802e+00 -6.17273211e-01 7.68567145e-01 -4.23226982e-01 -8.83888841e-01 -1.36372969e-01 -7.79653668e-01 7.53989041e-01 4.97350574e-01 8.12630415e-01 7.48166740e-01 -3.16978872e-01 1.24602771e+00 9.66595188e-02 -2.50673711e-01 -8.86920810e-01 -5.73790550e-01 3.17930162e-01 1.14659107e+00 -7.36746490e-01 -2.88693547e-01 -2.80535400e-01 9.44301128e-01 -2.24769890e-01 -6.73230067e-02 -7.69557297e-01 -5.57879627e-01 2.95188725e-01 1.24763653e-01 -3.18582468e-02 -7.04889953e-01 -4.14570421e-01 -1.41772437e+00 -7.01192170e-02 -1.64530307e-01 -5.82857430e-01 -6.06842577e-01 -1.13288498e+00 3.29640448e-01 -1.61391392e-01 -1.46287906e+00 1.96696565e-01 -7.26493478e-01 -6.63658738e-01 6.39441431e-01 -1.34701455e+00 -5.48605740e-01 -3.23473625e-02 3.91184948e-02 -3.64367813e-01 5.67718558e-02 8.27479661e-01 1.53057814e-01 -1.41081765e-01 -2.96065420e-01 2.58468568e-01 -5.63367367e-01 6.97445929e-01 -9.91163373e-01 1.18287615e-02 7.99772561e-01 1.31192297e-01 9.95099783e-01 1.06205702e+00 -4.40899014e-01 -1.92502809e+00 -8.09457004e-02 9.72508013e-01 -9.34342593e-02 1.14101970e+00 -4.78829175e-01 -2.31205136e-01 4.86872979e-02 5.85408628e-01 -1.73368856e-01 3.72854859e-01 3.22627842e-01 1.12994127e-01 -2.37552419e-01 -8.68723214e-01 4.19878840e-01 1.37273908e+00 -7.13915348e-01 -4.22800452e-01 4.80069786e-01 4.71896559e-01 -4.66463029e-01 -8.19342256e-01 7.07106531e-01 7.75386155e-01 -1.63757336e+00 3.97011548e-01 -2.38569323e-02 6.70503616e-01 -4.81537461e-01 -4.55557667e-02 -1.50741339e+00 -2.92820513e-01 -1.10555255e+00 2.42242739e-01 9.21933234e-01 1.43179029e-01 -1.14274526e+00 6.04665577e-01 1.65845022e-01 -4.07161385e-01 -1.76801041e-01 -1.30622351e+00 -1.01542115e+00 -2.87852556e-01 -1.37578860e-01 5.22738397e-01 6.81505799e-01 8.14694285e-01 3.95846307e-01 -5.66310525e-01 2.86378890e-01 4.83109683e-01 5.91357112e-01 5.50550044e-01 -1.15801203e+00 -4.18537438e-01 -2.78400630e-01 -8.98169339e-01 -1.26483870e+00 -1.42847210e-01 -8.65126729e-01 2.56649643e-01 -1.13371265e+00 1.97302625e-01 -6.59025013e-01 -2.44113401e-01 -2.96322465e-01 3.29386801e-01 3.72681558e-01 3.73129249e-01 3.89872223e-01 -2.73105890e-01 5.33947289e-01 1.45257246e+00 5.26458770e-02 -2.64189422e-01 1.83268264e-01 4.81883474e-02 3.14583153e-01 8.40647519e-01 -3.38058412e-01 6.66861758e-02 1.31832971e-03 4.63126987e-01 2.89858341e-01 4.23300296e-01 -1.54945636e+00 7.63058424e-01 -3.20512950e-01 -5.68171501e-01 -3.40072513e-01 5.71770191e-01 -6.00693166e-01 4.19697970e-01 8.33347440e-01 1.62974790e-01 -5.71966052e-01 -5.05208850e-01 3.00661981e-01 -4.83986497e-01 -5.11418641e-01 6.91517651e-01 -3.30846757e-01 -7.44805276e-01 -1.27959132e-01 -6.51885271e-01 -5.10259748e-01 1.11762321e+00 4.08542417e-02 -9.36823130e-01 2.00605616e-02 -3.09645981e-01 -5.34101307e-01 3.61364335e-01 4.92599653e-03 1.12824403e-01 -1.19607222e+00 -8.27226639e-02 1.72447905e-01 -1.63108230e-01 -7.29243875e-01 1.43548682e-01 1.12037289e+00 -6.50691926e-01 1.19583893e+00 -6.10160828e-01 -4.95193690e-01 -7.45051026e-01 6.02712572e-01 4.99159358e-02 1.76630896e-02 -4.20042098e-01 5.87258220e-01 -3.77871655e-02 8.02661031e-02 -6.11373544e-01 -2.87757427e-01 6.44092038e-02 -3.95714760e-01 3.47724110e-01 1.75322667e-01 -2.14455321e-01 -2.08998576e-01 -3.72066975e-01 6.08525455e-01 5.13141453e-01 -2.73872733e-01 1.35037541e+00 2.16089323e-01 -9.64394629e-01 7.62888610e-01 6.03460729e-01 5.24904847e-01 -4.85090166e-01 1.37306586e-01 -1.66125655e-01 -4.66721773e-01 7.97378793e-02 -4.71947730e-01 -6.20532930e-01 1.00817859e+00 5.87401032e-01 1.09444809e+00 1.02837360e+00 1.07517555e-01 6.13487184e-01 5.03911972e-01 1.50836837e+00 -9.65581775e-01 -2.04413131e-01 5.51272571e-01 4.86554831e-01 -8.50402117e-01 4.75713313e-02 -9.23426509e-01 2.93408662e-01 1.50059223e+00 2.44107082e-01 -2.38798499e-01 9.01436090e-01 3.99717689e-01 -4.12744492e-01 -4.40110743e-01 -6.56561852e-01 -2.74258494e-01 4.71019968e-02 2.57196397e-01 7.17084408e-01 5.03674805e-01 -1.17926383e+00 1.71192035e-01 -3.47935796e-01 4.05002624e-01 1.07773089e+00 8.98853779e-01 -5.37039101e-01 -1.42179120e+00 -2.78043538e-01 3.95883948e-01 -1.87135309e-01 -3.64766598e-01 -2.97486544e-01 4.97339040e-01 4.64853972e-01 9.68344152e-01 -6.67137206e-02 -8.31605315e-01 1.99684605e-01 -1.08014725e-01 9.84887600e-01 -6.86315358e-01 -1.57402039e-01 -4.37843978e-01 1.49434611e-01 -6.75790668e-01 -1.06702340e+00 -3.48184466e-01 -1.00650382e+00 -5.70511937e-01 -6.36977732e-01 1.76862791e-01 7.48712361e-01 1.22431302e+00 2.02598974e-01 4.28038299e-01 6.65393591e-01 -6.19542301e-01 -2.18668669e-01 -7.78176010e-01 -1.18251348e+00 -1.68568119e-01 3.33649479e-02 -6.73416972e-01 -3.56417388e-01 -4.58310604e-01]
[5.605099678039551, 4.901496410369873]
50e465a8-fc4e-406b-867c-c78dc9745b97
a-gaussian-scale-space-approach-for-exudates
1505.00737
null
http://arxiv.org/abs/1505.00737v1
http://arxiv.org/pdf/1505.00737v1.pdf
A Gaussian Scale Space Approach For Exudates Detection, Classification And Severity Prediction
In the context of Computer Aided Diagnosis system for diabetic retinopathy, we present a novel method for detection of exudates and their classification for disease severity prediction. The method is based on Gaussian scale space based interest map and mathematical morphology. It makes use of support vector machine for classification and location information of the optic disc and the macula region for severity prediction. It can efficiently handle luminance variation and it is suitable for varied sized exudates. The method has been probed in publicly available DIARETDB1V2 and e-ophthaEX databases. For exudate detection the proposed method achieved a sensitivity of 96.54% and prediction of 98.35% in DIARETDB1V2 database.
['Samarendra Dandapat', 'Rohit Sinha', 'Mrinal Haloi']
2015-05-04
null
null
null
null
['severity-prediction']
['computer-vision']
[-2.25742534e-01 -1.81466877e-01 3.44042063e-01 -1.71937346e-01 -2.83065915e-01 -2.79609889e-01 2.59984005e-02 3.60553145e-01 -5.28231442e-01 7.38630056e-01 3.20150346e-01 -6.02011919e-01 -4.34780568e-01 -6.55366063e-01 1.54167876e-01 -7.61118233e-01 -1.56282812e-01 2.64626712e-01 6.82472944e-01 2.03368932e-01 5.80051005e-01 1.07607913e+00 -1.77218497e+00 7.24305093e-01 1.06204259e+00 1.19480336e+00 5.32745361e-01 1.28059614e+00 1.47846550e-01 7.42616236e-01 -4.15772229e-01 -6.63531944e-02 4.48791891e-01 -2.11218059e-01 -5.56858897e-01 2.14827284e-01 9.21794057e-01 -3.07023108e-01 -2.78628260e-01 6.71967626e-01 1.17440295e+00 -3.08176994e-01 1.27133226e+00 -4.87841249e-01 -4.45169151e-01 -6.74230754e-01 -5.65372229e-01 8.66063237e-01 -1.41050011e-01 1.63644627e-01 1.63879752e-01 -7.63963521e-01 7.64268160e-01 9.89570260e-01 5.37916362e-01 8.23030099e-02 -8.04288268e-01 -1.03044227e-01 -6.58378661e-01 6.34758115e-01 -1.20743799e+00 -1.47952378e-01 2.16413736e-02 -1.05796874e+00 8.82120907e-01 5.41083038e-01 8.04761767e-01 -1.89039335e-01 6.34133101e-01 5.17836809e-01 1.93787897e+00 -5.71492076e-01 1.69324189e-01 5.70412353e-02 3.99139106e-01 9.22329843e-01 3.26367050e-01 1.41556114e-01 3.26469868e-01 -4.05807614e-01 9.75448728e-01 -3.59295905e-01 -3.25608164e-01 -9.36495489e-04 -7.95653880e-01 6.00271344e-01 2.20416427e-01 -9.63930339e-02 -5.87064147e-01 -3.97542059e-01 3.75960320e-01 2.40041316e-01 3.59874964e-01 3.33903402e-01 -3.33416283e-01 2.49713331e-01 -5.54055274e-01 4.05917376e-01 3.50536704e-01 6.85042441e-01 -3.20419669e-02 -4.63618547e-01 -8.44519019e-01 8.26040864e-01 4.96523798e-01 4.29970592e-01 5.51997244e-01 -1.03959250e+00 1.28290877e-01 9.51870084e-01 4.32531655e-01 -3.57941061e-01 -6.16140246e-01 -6.91000745e-02 -5.42606354e-01 1.28098464e+00 7.03192174e-01 -3.11081469e-01 -1.47918355e+00 2.48834923e-01 3.97533119e-01 1.21452682e-01 2.20954731e-01 1.02171075e+00 1.03195369e+00 1.46235704e-01 -1.40136689e-01 -1.54637694e-01 1.46526694e+00 -4.42952722e-01 -4.85356122e-01 4.94125158e-01 7.85986781e-01 -1.11377752e+00 7.69374967e-01 6.06681347e-01 -1.04590535e+00 -2.98123538e-01 -5.22496760e-01 -2.64721662e-01 -1.30407855e-01 8.64660382e-01 5.09272635e-01 4.80621189e-01 -1.23340142e+00 1.82365447e-01 -4.86186892e-01 -8.14984918e-01 8.33217323e-01 3.25124830e-01 -2.58794904e-01 -1.95590004e-01 -9.65126827e-02 1.19661248e+00 7.34779686e-02 -6.63784072e-02 5.46334162e-02 -4.37519521e-01 -4.37087685e-01 -5.47200441e-01 -6.24618411e-01 -9.32784498e-01 9.19189572e-01 -1.73219204e-01 -1.24055970e+00 1.38177693e+00 -6.52629256e-01 -7.30644643e-01 8.37498605e-01 4.94099706e-02 -5.16470194e-01 5.85244715e-01 -5.97489998e-02 1.53146967e-01 5.54851353e-01 -7.01100647e-01 -1.32390451e+00 -7.87933588e-01 -4.80924904e-01 2.23256290e-01 3.70794952e-01 5.63686311e-01 3.24056819e-02 -5.15196085e-01 3.61246973e-01 -7.41872787e-01 -2.14661732e-01 6.58746898e-01 -2.07446456e-01 -4.38445330e-01 7.52671242e-01 -1.04029334e+00 1.17027450e+00 -1.88914502e+00 -5.28515220e-01 1.49448022e-01 5.48310220e-01 8.20537210e-01 2.70189226e-01 -1.27182633e-01 3.70834768e-03 -1.80001438e-01 2.91896880e-01 5.95975704e-02 -4.70102459e-01 -8.67940634e-02 1.59255087e-01 7.81086445e-01 1.84975669e-01 6.77587092e-01 -3.69679987e-01 -8.41952264e-01 4.95696545e-01 4.51727211e-01 -1.55761927e-01 5.80355041e-02 1.94357008e-01 9.28194448e-02 -3.15301895e-01 9.23548460e-01 8.78083587e-01 -1.01406723e-01 -5.60032606e-01 -3.36465180e-01 -5.78722179e-01 -4.36701685e-01 -1.14259088e+00 6.68106318e-01 2.12364476e-02 1.11157131e+00 -1.46547884e-01 -5.44633448e-01 1.02628386e+00 2.07085252e-01 1.62552834e-01 -2.51729876e-01 3.38622361e-01 2.70498872e-01 2.67097920e-01 -1.41245759e+00 -1.83689445e-01 -1.17861725e-01 1.13659966e+00 -2.00739428e-01 -5.12608171e-01 2.52688527e-01 2.49911591e-01 -3.82255584e-01 1.07438934e+00 -2.42834866e-01 6.80044055e-01 -1.93918437e-01 6.75765932e-01 9.89559144e-02 2.47339040e-01 3.92708570e-01 -6.76353514e-01 8.08478236e-01 4.94966656e-01 -7.39867866e-01 -1.07249177e+00 -1.10837460e+00 -1.00995564e+00 5.99069744e-02 -9.36751254e-03 2.95885742e-01 -3.52736443e-01 -4.17272717e-01 5.17805278e-01 2.14447156e-01 -7.40828156e-01 5.17903686e-01 -2.15287477e-01 -9.19218540e-01 1.04032040e-01 3.63206059e-01 4.77798671e-01 -6.21018946e-01 -6.02258086e-01 1.12791592e-02 4.14201111e-01 -7.53994942e-01 1.70706343e-02 -7.62727082e-01 -1.04028642e+00 -1.57369018e+00 -1.25271130e+00 -1.21037340e+00 6.51879072e-01 1.12675861e-01 6.68294370e-01 -1.33006290e-01 -1.31085348e+00 4.48911339e-02 -1.36583447e-01 -1.01014519e+00 -3.53262067e-01 -9.59516943e-01 -1.30657762e-01 3.41615051e-01 7.38498390e-01 -3.54503453e-01 -1.24504447e+00 3.53503287e-01 -2.99749169e-02 -2.69825429e-01 8.82179558e-01 3.54666263e-01 7.66432226e-01 -2.76454762e-02 2.81679124e-01 -4.54638004e-01 7.44885921e-01 -1.08790420e-01 -8.48997414e-01 2.12938234e-01 -8.03487957e-01 -5.05400002e-01 -2.41572708e-01 -1.03895724e-01 -7.35788226e-01 -1.35542650e-04 5.95861971e-01 -2.19306216e-01 -5.17404675e-01 1.46898225e-01 3.27198207e-01 -5.94280899e-01 1.13405550e+00 -3.17463353e-02 6.49302542e-01 -7.56323397e-01 -3.36597353e-01 1.53802013e+00 5.79950988e-01 2.20679834e-01 -1.42667487e-01 7.02103078e-01 5.83323181e-01 -1.01547301e+00 -4.18479025e-01 -9.93084729e-01 -6.18767083e-01 -2.06486344e-01 9.95784044e-01 -7.60849833e-01 -6.59798503e-01 9.58463311e-01 -1.06312919e+00 -4.64100949e-02 -7.32106417e-02 9.15270984e-01 -4.04571146e-01 4.52994227e-01 -4.57667679e-01 -8.42511415e-01 -4.65833634e-01 -9.37488854e-01 5.64423680e-01 3.81780922e-01 1.40016735e-01 -8.85960698e-01 -1.13397434e-01 5.10998428e-01 4.38726813e-01 7.02203870e-01 1.10570705e+00 -9.90585163e-02 -3.96476299e-01 -6.83474958e-01 -9.88236368e-01 5.86092889e-01 3.65493536e-01 3.48372430e-01 -6.97620451e-01 1.72778983e-02 -3.14463615e-01 3.98211837e-01 9.35893714e-01 1.12426221e+00 9.94951487e-01 1.21120075e-02 -4.84067768e-01 4.81248528e-01 1.64984095e+00 3.02952230e-01 1.12576509e+00 4.60678160e-01 1.88992023e-01 5.75450361e-01 7.33480275e-01 5.60775757e-01 4.29115325e-01 5.30143440e-01 3.80216986e-01 -3.57230544e-01 -8.48401666e-01 7.60595739e-01 -4.83584344e-01 -2.39009783e-01 -7.78778434e-01 7.57967830e-02 -1.23955619e+00 7.88552165e-01 -1.68064821e+00 -6.96231425e-01 -8.78045321e-01 2.07904029e+00 7.57297575e-01 -2.79147148e-01 3.14446181e-01 -1.19109541e-01 8.73220325e-01 -8.04931521e-01 -2.80011237e-01 -4.18901116e-01 -2.49542341e-01 3.17678422e-01 8.33776891e-01 5.75707495e-01 -1.11544192e+00 5.45834601e-01 6.72713900e+00 2.17631340e-01 -1.01260412e+00 -1.69910818e-01 4.13842380e-01 -1.42558321e-01 8.27047408e-01 -3.46902698e-01 -9.91609514e-01 6.18763030e-01 3.42554688e-01 -2.83296015e-02 -2.22244456e-01 2.92480141e-01 7.96500683e-01 -6.41936779e-01 -4.63782400e-01 1.01286280e+00 -2.08992362e-01 -1.58754623e+00 -4.67600524e-02 2.41495311e-01 5.33467293e-01 2.90617108e-01 4.88180220e-02 -5.84536493e-01 -1.95210859e-01 -1.18058562e+00 -2.70231247e-01 1.35351169e+00 1.00958884e+00 -5.11447012e-01 1.14580715e+00 -2.66764581e-01 -5.52085400e-01 -2.91431874e-01 -5.85117340e-01 -4.32788618e-02 -1.54792160e-01 4.57013816e-01 -1.40378094e+00 -2.49799743e-01 7.49438941e-01 6.72092319e-01 -8.69191170e-01 2.54122424e+00 1.82035238e-01 6.14826500e-01 -1.88759044e-01 5.64787090e-02 -1.31114861e-02 -3.26891869e-01 9.90685642e-01 1.22270489e+00 5.41780949e-01 3.75806212e-01 -1.73393518e-01 3.52669686e-01 7.99088299e-01 5.49619436e-01 -3.37910056e-01 4.06783998e-01 2.93262929e-01 7.74218082e-01 -3.81641567e-01 -2.14643210e-01 -3.90034288e-01 6.03325486e-01 -3.03643614e-01 4.66577202e-01 -9.64423120e-02 -7.47658134e-01 7.52051711e-01 7.87767470e-01 2.21245006e-01 1.33305388e-02 -6.17386937e-01 -5.42075813e-01 1.02603346e-01 -3.44532549e-01 4.20263797e-01 -1.11642134e+00 -1.11909044e+00 4.35998797e-01 -4.76772934e-01 -1.48236763e+00 4.03811395e-01 -1.39602017e+00 -8.81578743e-01 1.59848392e+00 -1.70161808e+00 -1.31439686e+00 -5.52182555e-01 6.04372501e-01 2.19663605e-02 -9.36038852e-01 8.26892436e-01 -7.53099918e-02 -3.06328535e-01 2.90513158e-01 4.38052028e-01 -4.73610349e-02 9.65977907e-01 -1.67155516e+00 -2.22287327e-01 5.46028435e-01 -9.37809587e-01 1.90344334e-01 7.45614290e-01 -7.29264617e-01 -6.68927193e-01 -1.35520494e+00 9.99446273e-01 -7.00573742e-01 5.24613738e-01 6.33051276e-01 -6.92475021e-01 1.27250552e-01 -2.58726627e-01 5.20743072e-01 6.55068040e-01 -4.05240834e-01 1.76884592e-01 -7.25613832e-02 -1.51613140e+00 5.03545046e-01 4.77809399e-01 1.17638912e-02 -4.40579534e-01 7.78856635e-01 -5.51211908e-02 -6.70096874e-01 -1.29400682e+00 5.84141195e-01 5.02456665e-01 -1.09578931e+00 7.95081198e-01 -7.28521585e-01 4.24405448e-02 -5.09895027e-01 -6.70352876e-02 -5.67139626e-01 -3.46179724e-01 -6.54965937e-01 -1.74647182e-01 4.83151048e-01 3.40170413e-01 -9.18103158e-01 8.11101079e-01 4.09623802e-01 -1.17105007e-01 -9.84929740e-01 -9.11966085e-01 -4.24865365e-01 -1.29699871e-01 1.13584749e-01 -1.15838461e-02 3.78145754e-01 -5.77247441e-01 -2.57851958e-01 3.78040224e-01 7.36201644e-01 7.57963121e-01 2.14287177e-01 6.18593216e-01 -1.77023494e+00 1.11801252e-01 -4.01026905e-01 -1.54866326e+00 -1.74705178e-01 -5.90589285e-01 -6.30101562e-01 -6.52998388e-01 -2.18607378e+00 -8.37521702e-02 -4.93062347e-01 -3.59407723e-01 1.77656114e-01 -4.34098672e-03 4.29247051e-01 -3.72248709e-01 2.59303749e-01 1.58645719e-01 -3.68651539e-01 1.62600756e+00 2.93794513e-01 -6.18838906e-01 7.76508749e-01 -4.90121543e-01 7.10732341e-01 9.27867711e-01 2.86142938e-02 -4.23336595e-01 2.03683257e-01 -2.37921804e-01 -8.99955854e-02 1.02029681e+00 -1.07721186e+00 6.47693947e-02 -1.83354706e-01 4.14763153e-01 -7.73046255e-01 2.32156709e-01 -2.83326596e-01 -4.80985373e-01 4.97867763e-01 8.81095529e-02 -6.15091205e-01 2.44626313e-01 6.96233869e-01 -1.12399429e-01 -1.31269023e-01 1.23264503e+00 3.01324520e-02 -7.57306039e-01 2.50580370e-01 -5.82120299e-01 -2.06409261e-01 1.37181532e+00 -8.17785800e-01 -6.01791680e-01 1.85013607e-01 -1.14948618e+00 1.00915343e-01 5.31035602e-01 -3.15033295e-03 8.29131782e-01 -8.13410640e-01 -1.36416197e+00 1.06290027e-01 4.55847561e-01 -6.79007173e-02 -4.75663245e-02 1.43067205e+00 -1.24156940e+00 4.63282526e-01 -4.80980635e-01 -6.32183015e-01 -2.30664778e+00 1.03679627e-01 9.10707533e-01 5.21750391e-01 -1.03097272e+00 8.62011194e-01 -9.49201658e-02 5.13541579e-01 1.59811392e-01 -6.84742868e-01 -8.59446406e-01 -4.79604192e-02 9.91820395e-01 8.08741152e-01 1.22483276e-01 -5.11040688e-01 4.10359763e-02 9.20104444e-01 -2.29861319e-01 3.89691442e-01 1.15502584e+00 -3.77974719e-01 -6.47319913e-01 1.53452754e-02 9.17021215e-01 -8.27655494e-02 -9.10857201e-01 -2.81091183e-01 -1.14676215e-01 -7.31642902e-01 6.51019514e-01 -1.30369687e+00 -4.51509923e-01 7.49627054e-01 1.74625278e+00 3.14208120e-02 1.24905610e+00 -8.98278877e-02 3.83627981e-01 1.69792578e-01 1.09250778e-02 -9.18002725e-01 -5.72008133e-01 2.19872311e-01 1.00860023e+00 -1.38121068e+00 9.93700102e-02 -7.82116592e-01 -6.95617378e-01 1.36231685e+00 2.45073244e-01 -2.61741906e-01 9.17764783e-01 1.55116040e-02 5.89243054e-01 -3.36423010e-01 -4.35152084e-01 -5.44503272e-01 9.10487533e-01 1.13339221e+00 3.29308093e-01 3.23245257e-01 -7.41420329e-01 2.89886266e-01 9.28061903e-02 4.81157005e-01 7.67192066e-01 8.63054395e-01 -1.20337999e+00 -5.20804465e-01 -2.22560376e-01 1.02264571e+00 -5.83364904e-01 -1.27607197e-01 -2.89921552e-01 6.74310446e-01 4.09243464e-01 6.07493520e-01 2.66653150e-02 2.61728525e-01 3.39697987e-01 -1.17867798e-01 5.84953547e-01 -5.38125992e-01 4.51269895e-02 1.21449493e-01 3.88559252e-01 -3.56027693e-01 -2.62188286e-01 -8.47432554e-01 -1.16532063e+00 2.92128652e-01 -2.49968022e-02 -2.99418092e-01 6.67374730e-01 7.06870377e-01 5.82695425e-01 -2.33360324e-02 4.15713519e-01 -2.66053230e-01 -2.99582571e-01 -1.17247415e+00 -1.21936464e+00 -2.31152743e-01 7.77324259e-01 -6.19859099e-01 -2.03381091e-01 4.08367604e-01]
[15.83108139038086, -4.0093865394592285]
7808b8f5-7aee-46cd-a35c-b35eb33f771a
physics-based-shadow-image-decomposition-for
2012.13018
null
https://arxiv.org/abs/2012.13018v2
https://arxiv.org/pdf/2012.13018v2.pdf
Physics-based Shadow Image Decomposition for Shadow Removal
We propose a novel deep learning method for shadow removal. Inspired by physical models of shadow formation, we use a linear illumination transformation to model the shadow effects in the image that allows the shadow image to be expressed as a combination of the shadow-free image, the shadow parameters, and a matte layer. We use two deep networks, namely SP-Net and M-Net, to predict the shadow parameters and the shadow matte respectively. This system allows us to remove the shadow effects from images. We then employ an inpainting network, I-Net, to further refine the results. We train and test our framework on the most challenging shadow removal dataset (ISTD). Our method improves the state-of-the-art in terms of root mean square error (RMSE) for the shadow area by 20\%. Furthermore, this decomposition allows us to formulate a patch-based weakly-supervised shadow removal method. This model can be trained without any shadow-free images (that are cumbersome to acquire) and achieves competitive shadow removal results compared to state-of-the-art methods that are trained with fully paired shadow and shadow-free images. Last, we introduce SBU-Timelapse, a video shadow removal dataset for evaluating shadow removal methods.
['Dimitris Samaras', 'Hieu Le']
2020-12-23
null
null
null
null
['shadow-removal']
['computer-vision']
[ 6.70461893e-01 5.86396568e-02 5.32564104e-01 -2.57281840e-01 -4.00042534e-01 -1.51493773e-01 3.49234700e-01 -7.73621678e-01 -1.47130221e-01 8.06379914e-01 6.55700415e-02 -2.66607732e-01 5.65190554e-01 -5.46875238e-01 -9.74692822e-01 -1.17039204e+00 4.38146949e-01 2.86107123e-01 5.62003732e-01 -3.07702214e-01 9.25018080e-03 5.99901497e-01 -1.28425086e+00 1.13713734e-01 1.33303463e+00 9.82240200e-01 7.36158371e-01 6.85275614e-01 2.07912207e-01 7.56226599e-01 -7.76465237e-01 2.11669691e-02 4.44685340e-01 -4.48976487e-01 -3.91849093e-02 7.87609071e-02 6.57980323e-01 -9.42730784e-01 -8.12251449e-01 4.55730736e-01 5.61101854e-01 1.05338551e-01 6.62488341e-01 -1.07768953e+00 -6.88070476e-01 -2.99543232e-01 -6.38512313e-01 -2.26628929e-01 1.59903005e-01 1.14692070e-01 4.72586989e-01 -1.17213619e+00 6.70644343e-01 1.19295776e+00 9.81169820e-01 2.14227498e-01 -1.10263395e+00 -6.37536824e-01 -3.94714363e-02 2.07385018e-01 -1.09072495e+00 -4.67497408e-01 8.35448802e-01 1.39264449e-01 5.95426023e-01 3.45181197e-01 6.53931856e-01 1.20177162e+00 7.70672619e-01 1.19761682e+00 1.42404628e+00 -4.22052354e-01 2.64079031e-02 -1.23091228e-01 -2.51124173e-01 9.78193939e-01 3.99648249e-02 2.09010541e-01 -6.72100365e-01 -6.81465026e-03 5.64990938e-01 2.85818845e-01 -7.63557196e-01 -3.95712674e-01 -7.54088998e-01 4.74391162e-01 6.41479313e-01 -3.70944411e-01 -3.13815266e-01 2.75547147e-01 -1.80056110e-01 -1.30075775e-02 7.36870527e-01 1.84935242e-01 -3.49802256e-01 5.07237017e-01 -1.19856894e+00 3.00760120e-01 8.91358733e-01 6.88066781e-01 9.33565676e-01 1.94876522e-01 -3.88118386e-01 8.11177313e-01 2.08117798e-01 1.37305200e+00 -2.02669278e-01 -1.02724099e+00 9.09373388e-02 1.11909308e-01 4.29461896e-01 -9.35005605e-01 -2.82625645e-01 -3.60354394e-01 -8.45954418e-01 5.55625319e-01 2.47170627e-02 -1.17352501e-01 -1.47826064e+00 1.33910310e+00 1.64923191e-01 5.29060006e-01 5.50668351e-02 1.01571131e+00 1.02032793e+00 7.92544782e-01 -6.65487230e-01 -3.59972775e-01 8.76296639e-01 -1.48722589e+00 -9.80860353e-01 -5.36729991e-01 5.99279217e-02 -9.51461911e-01 1.12790787e+00 3.24305385e-01 -8.19500983e-01 -2.55335659e-01 -1.14692700e+00 -2.07610652e-01 -2.37195909e-01 2.36749679e-01 5.89551151e-01 2.02759817e-01 -1.02909112e+00 5.37702620e-01 -7.58929670e-01 -5.88152483e-02 6.57921314e-01 2.40282435e-02 4.24719695e-03 -3.75524551e-01 -8.88796329e-01 8.92241478e-01 -2.96222955e-01 5.02546549e-01 -1.48582578e+00 -9.55758810e-01 -7.60367870e-01 1.09705441e-01 8.50420654e-01 -6.16157472e-01 9.40127194e-01 -1.06942642e+00 -1.45161211e+00 3.92843157e-01 -5.83405495e-01 -2.89035380e-01 6.18957162e-01 -6.91769302e-01 -1.37960494e-01 1.07424453e-01 1.22155912e-01 2.34528363e-01 1.29931712e+00 -2.23320866e+00 -2.34971717e-01 9.39162672e-02 1.48268845e-02 3.74756783e-01 1.34997353e-01 -2.89949507e-01 -7.75144160e-01 -8.40027690e-01 -7.76351616e-02 -1.26383221e+00 -2.28141416e-02 3.31846088e-01 -7.38338053e-01 6.63403928e-01 1.57606483e+00 -1.17689705e+00 8.09572756e-01 -1.93443036e+00 -2.50244103e-02 5.70687428e-02 4.55203116e-01 4.32303965e-01 -2.88753748e-01 3.05533320e-01 2.37203896e-01 -4.79627669e-01 -9.87732649e-01 -1.03455257e+00 -2.17642598e-02 5.93937337e-01 -7.68544614e-01 5.73024631e-01 -2.07228228e-01 1.09363377e+00 -6.04777038e-01 -3.68628144e-01 4.07886028e-01 8.65248203e-01 -8.06179717e-02 7.06373334e-01 -2.91449219e-01 2.60012269e-01 7.15308543e-03 8.50088239e-01 1.25499082e+00 1.48033593e-02 1.20268978e-01 -2.51361579e-01 -4.43272665e-02 -1.22611821e-01 -7.06611574e-01 1.47751462e+00 -7.60231376e-01 1.15742731e+00 5.28152943e-01 -2.50287652e-01 6.22079372e-01 -1.04674846e-01 3.68299931e-01 -8.12271833e-01 1.06993847e-01 1.24075212e-01 -4.00664449e-01 -2.53035039e-01 4.30813581e-01 -1.19937308e-01 3.58297676e-01 5.85487545e-01 -3.82443994e-01 -3.95919085e-01 -3.32374752e-01 3.09051216e-01 1.26212347e+00 4.02398109e-01 -2.60267586e-01 -2.04519719e-01 2.14823261e-01 -4.59779322e-01 7.05771625e-01 7.75517106e-01 1.88926443e-01 1.09490967e+00 2.57645875e-01 -2.57638603e-01 -6.49070382e-01 -1.42436528e+00 8.74426141e-02 1.08838570e+00 6.08430624e-01 -8.28838348e-02 -9.04564977e-01 -7.37752736e-01 2.28163257e-01 8.02319884e-01 -8.82639587e-01 -9.71713066e-02 -6.58502996e-01 -8.02163303e-01 2.83912003e-01 3.65518808e-01 7.52186954e-01 -1.26551902e+00 -7.31911063e-01 -1.66717723e-01 -3.67859066e-01 -1.12963200e+00 -6.21575952e-01 3.68262142e-01 -3.27671975e-01 -1.19763541e+00 -8.04246664e-01 -4.28028792e-01 6.88335240e-01 8.92342687e-01 1.15036857e+00 5.48934162e-01 -4.29624915e-01 2.67531633e-01 -3.33672643e-01 -7.94387937e-01 -2.26629376e-01 -4.17156816e-01 -1.31556943e-01 2.21198738e-01 -4.90007043e-01 -8.11943769e-01 -1.00971675e+00 3.00994635e-01 -1.15266085e+00 4.27598298e-01 9.96103823e-01 9.27286685e-01 5.10243475e-01 -2.40596030e-02 -9.95449349e-02 -1.14150023e+00 3.59053940e-01 -2.22209930e-01 -5.95889986e-01 3.13143045e-01 -8.18993211e-01 -1.73263520e-01 6.39366388e-01 -4.47125286e-02 -1.81914997e+00 1.24882922e-01 1.48682296e-01 -6.44124031e-01 1.52126953e-01 -1.41490251e-01 -3.66391003e-01 -6.17333055e-01 4.65668559e-01 4.82720703e-01 -2.08003879e-01 -4.68729734e-01 3.29624295e-01 2.33393878e-01 6.85581148e-01 -1.81717440e-01 1.40023971e+00 1.13925552e+00 5.32952733e-02 -1.00636840e+00 -1.39722788e+00 -2.31989846e-01 -7.44572878e-01 -3.27714831e-01 6.89346910e-01 -7.98830092e-01 -4.20351118e-01 9.73795712e-01 -1.26120090e+00 -1.26170540e+00 3.99297811e-02 -2.55781591e-01 -4.11961555e-01 7.06781626e-01 -4.29407269e-01 -7.36646831e-01 -4.92632836e-01 -8.60365570e-01 1.47107399e+00 2.24903777e-01 4.49423581e-01 -9.15452600e-01 -5.13648316e-02 4.37110722e-01 4.62387055e-01 4.13488328e-01 5.58627009e-01 3.69671404e-01 -1.05281579e+00 2.24800855e-01 -7.04852045e-01 7.47562587e-01 1.92908958e-01 -2.88121521e-01 -1.33279419e+00 -3.22391808e-01 8.73952731e-02 -1.88462123e-01 1.55820382e+00 5.96547127e-01 1.18879569e+00 -2.47533068e-01 -5.86559653e-01 1.12584305e+00 1.42183590e+00 -1.43929616e-01 1.01932991e+00 1.01427168e-01 1.27557576e+00 2.05172032e-01 7.96220422e-01 4.38368201e-01 3.69587272e-01 6.06689095e-01 5.31611741e-01 -8.83758783e-01 -8.16520095e-01 3.40984762e-02 2.51069158e-01 4.25691098e-01 -1.81501895e-01 -6.92765534e-01 -6.85817838e-01 2.94174999e-01 -1.89634049e+00 -5.78691840e-01 -2.28368759e-01 1.77674150e+00 5.93261361e-01 1.01599703e-02 -6.71847224e-01 -2.23923042e-01 1.27256632e-01 7.79616237e-01 -7.57642329e-01 1.00745177e-02 -5.10248363e-01 3.23989391e-01 8.39222491e-01 1.02144539e+00 -9.67997730e-01 1.37101674e+00 6.23064184e+00 7.26088762e-01 -1.07578897e+00 2.03115419e-01 2.54030347e-01 7.15218782e-02 -5.41321397e-01 1.37206972e-01 -2.83853978e-01 4.69361871e-01 4.81971443e-01 5.50861835e-01 8.56019378e-01 4.33145732e-01 3.27900887e-01 -8.00145447e-01 -6.19291008e-01 8.97119522e-01 6.47248268e-01 -1.19409108e+00 -2.61836350e-01 -7.32780844e-02 1.01162601e+00 1.57457128e-01 -5.17205000e-02 1.91238731e-01 1.90566942e-01 -1.02945459e+00 6.80303574e-01 1.06418908e+00 8.55398893e-01 -4.15940493e-01 8.25898767e-01 1.65164679e-01 -1.13240385e+00 -2.41734367e-02 -3.17214251e-01 3.80839556e-02 3.02952170e-01 9.86388326e-01 -8.82904768e-01 6.23884201e-01 8.53053391e-01 5.56709468e-01 -4.93503153e-01 7.14955866e-01 -6.76300883e-01 5.05380452e-01 -1.68648183e-01 5.24903953e-01 -1.43614560e-01 -4.50745285e-01 4.58229780e-01 1.39371347e+00 2.33850181e-02 2.96860486e-01 1.60081193e-01 8.59668672e-01 -2.48266071e-01 -4.46274757e-01 -4.02662247e-01 4.97001410e-01 2.07736641e-01 1.36108339e+00 -7.83509433e-01 -3.50861043e-01 -1.47309139e-01 1.81428742e+00 3.27619761e-02 8.71428549e-01 -1.16648400e+00 -2.93562889e-01 6.06800854e-01 1.60372302e-01 3.22375298e-01 -1.79585084e-01 -3.29116344e-01 -9.86215234e-01 5.90034649e-02 -7.40678728e-01 -4.73047107e-01 -1.32659984e+00 -8.79409552e-01 3.79941374e-01 -2.24009693e-01 -8.06389451e-01 4.00057763e-01 -4.17415291e-01 -8.16373050e-01 8.75086963e-01 -2.13696742e+00 -1.39212203e+00 -1.07323325e+00 4.50150251e-01 5.38886428e-01 1.05184071e-01 6.32741749e-01 1.13284335e-01 -4.62647885e-01 2.94577211e-01 3.61969262e-01 -7.55996183e-02 1.19603622e+00 -1.27530527e+00 4.76702690e-01 1.08102834e+00 -3.43949795e-01 1.09644026e-01 9.62212682e-01 -9.90464211e-01 -1.67438757e+00 -1.22476399e+00 4.28617448e-01 -5.72641015e-01 1.85810879e-01 -6.92127109e-01 -9.80505109e-01 5.19296944e-01 1.63321912e-01 2.16433093e-01 2.33238384e-01 -2.68099397e-01 -3.61546695e-01 -4.47396040e-01 -9.29794371e-01 6.83318496e-01 1.26645339e+00 -6.34003520e-01 -2.88649440e-01 6.56980157e-01 8.48464131e-01 -8.38416100e-01 -1.21468611e-01 5.08873105e-01 6.87953234e-01 -1.50982034e+00 9.95404065e-01 2.71663845e-01 4.97569859e-01 -3.23360145e-01 -1.97725147e-01 -1.46198356e+00 -8.50405768e-02 -5.87112963e-01 -5.25709867e-01 9.05107796e-01 2.05173790e-01 -6.78627133e-01 8.56016934e-01 3.19132864e-01 -8.05537283e-01 -1.01944506e+00 -4.35116410e-01 -6.29521132e-01 -5.29451668e-01 -1.91994444e-01 2.78255463e-01 4.49476570e-01 -1.08232617e+00 1.38249964e-01 -8.34509134e-01 5.45376241e-01 9.68471825e-01 6.88054442e-01 1.12166119e+00 -1.00329769e+00 -4.33081239e-01 1.19016312e-01 5.66161275e-01 -1.24301755e+00 5.46293914e-01 -3.55748832e-01 8.95064473e-01 -1.95875859e+00 4.75418806e-01 -4.89115804e-01 -7.87435994e-02 6.92936480e-01 -4.29375798e-01 5.27698338e-01 3.30455720e-01 3.21190655e-01 -6.11685395e-01 1.11864793e+00 1.57126975e+00 -7.12115839e-02 -3.04781765e-01 -1.93934795e-02 -3.98992807e-01 8.58190119e-01 4.37214553e-01 -4.65799183e-01 -2.91617125e-01 -5.30945957e-01 -2.33637005e-01 -5.40537573e-02 6.62535369e-01 -9.55842793e-01 -9.57490653e-02 -3.27212125e-01 6.33940697e-01 -8.54647577e-01 1.05069888e+00 -8.14607024e-01 -4.49464284e-02 4.28542405e-01 2.66128480e-01 -6.47280037e-01 1.25189409e-01 7.52813160e-01 2.53431231e-01 3.45677406e-01 7.36494005e-01 1.36414111e-01 -4.48560268e-01 3.70680362e-01 -2.27673233e-01 -2.69691855e-01 7.31452227e-01 -1.06904149e-01 -5.09489059e-01 -6.47850215e-01 -1.14797533e-01 1.06454492e-01 8.27342212e-01 9.27799642e-02 1.01305974e+00 -9.50320363e-01 -5.57472587e-01 1.31705239e-01 -2.70845741e-01 1.67535871e-01 3.70607018e-01 1.00533819e+00 -7.52366781e-01 1.23536517e-03 -6.69420511e-02 -2.50595808e-01 -1.43709588e+00 2.97228903e-01 3.64385515e-01 -2.14800444e-02 -9.86234248e-01 8.60692441e-01 1.01849854e+00 -5.15749753e-01 2.41509423e-01 -1.94434479e-01 4.92060453e-01 -4.00702715e-01 2.79229909e-01 4.29011345e-01 4.31968691e-03 -4.28525299e-01 -3.20392907e-01 4.64901447e-01 3.21131676e-01 1.00314200e-01 1.42909145e+00 -2.25634202e-01 -3.56486410e-01 2.55842537e-01 1.01895273e+00 3.87934178e-01 -2.06838202e+00 -1.69449523e-01 -7.12352514e-01 -6.59285843e-01 2.75314629e-01 -1.16362691e+00 -1.20952833e+00 6.68870628e-01 6.98087633e-01 -2.60771543e-01 1.38801014e+00 -2.15944156e-01 1.44642663e+00 5.53887963e-01 -1.51437866e-02 -1.16216576e+00 3.58173519e-01 7.03515828e-01 1.34499741e+00 -1.34353328e+00 4.51487422e-01 -7.79716074e-01 -4.18914735e-01 9.04093266e-01 4.08893943e-01 -2.94208407e-01 7.08480477e-01 6.47035420e-01 4.53184903e-01 -1.74059868e-01 -3.42612743e-01 -7.60193765e-02 3.75149310e-01 7.14669347e-01 -1.63097709e-01 1.95143685e-01 1.05228148e-01 2.97952205e-01 -2.76324395e-02 -3.06784004e-01 5.92984676e-01 8.45349371e-01 -5.58391273e-01 -7.72466481e-01 -6.72221005e-01 4.75188196e-01 2.47912452e-01 -4.29467350e-01 -7.50596464e-01 6.36326969e-01 2.73128748e-01 9.15351152e-01 -4.09526765e-01 -3.48294646e-01 1.77638277e-01 -3.94549221e-01 4.74089652e-01 -4.94671285e-01 2.14350112e-02 4.10318077e-02 2.01132372e-02 -9.38398838e-01 -1.90479442e-01 -4.41587180e-01 -1.28623521e+00 -3.66557598e-01 -3.12840492e-01 -3.56543779e-01 5.94369948e-01 1.18757915e+00 2.03180030e-01 9.19081569e-01 6.50602698e-01 -1.59868085e+00 2.21301734e-01 -7.89699614e-01 -6.94846570e-01 8.83390307e-02 7.42627919e-01 -9.06066418e-01 -4.53591555e-01 3.06401290e-02]
[10.84497356414795, -4.104945182800293]
3b2334c0-c917-4db1-8376-9acc3299a553
decomposed-temporal-dynamic-cnn-efficient
2203.15277
null
https://arxiv.org/abs/2203.15277v2
https://arxiv.org/pdf/2203.15277v2.pdf
Decomposed Temporal Dynamic CNN: Efficient Time-Adaptive Network for Text-Independent Speaker Verification Explained with Speaker Activation Map
To extract accurate speaker information for text-independent speaker verification, temporal dynamic CNNs (TDY-CNNs) adapting kernels to each time bin was proposed. However, model size of TDY-CNN is too large and the adaptive kernel's degree of freedom is limited. To address these limitations, we propose decomposed temporal dynamic CNNs (DTDY-CNNs) which forms time-adaptive kernel by combining static kernel with dynamic residual based on matrix decomposition. Proposed DTDY-ResNet-34(x0.50) using attentive statistical pooling without data augmentation shows EER of 0.96%, which is better than other state-of-the-art methods. DTDY-CNNs are successful upgrade of TDY-CNNs, reducing the model size by 64% and enhancing the performance. We showed that DTDY-CNNs extract more accurate frame-level speaker embeddings as well compared to TDY-CNNs. Detailed behaviors of DTDY-ResNet-34(x0.50) on extraction of speaker information were analyzed using speaker activation map (SAM) produced by modified gradient-weighted class activation mapping (Grad-CAM) for speaker verification. DTDY-ResNet-34(x0.50) effectively extracts speaker information from not only formant frequencies but also high frequency information of unvoiced phonemes, thus explaining its outstanding performance on text-independent speaker verification.
['Yong-Hwa Park', 'Hyeonuk Nam', 'Seong-Hu Kim']
2022-03-29
null
null
null
null
['text-independent-speaker-verification']
['speech']
[-3.29318881e-01 -2.66801149e-01 1.75246537e-01 -3.71311665e-01 -8.85887921e-01 -4.20444191e-01 1.43143684e-01 -3.64499301e-01 -6.36319399e-01 3.18953037e-01 3.86524409e-01 -3.84038955e-01 3.73436630e-01 -3.07138592e-01 -3.62642258e-01 -8.35709751e-01 -3.16364348e-01 -2.96896607e-01 3.47910859e-02 -2.43685037e-01 -2.18901664e-01 5.42931318e-01 -1.36771345e+00 2.42755890e-01 7.69632459e-01 9.21390295e-01 7.02145025e-02 9.51751471e-01 -1.57077890e-02 4.65275228e-01 -9.67416644e-01 -1.03769727e-01 -2.96402834e-02 -3.64461154e-01 -3.75516683e-01 -3.68005484e-01 4.12373096e-01 -3.56071144e-01 -6.02545738e-01 8.67400408e-01 1.03437710e+00 4.40403640e-01 4.76494104e-01 -1.18767369e+00 -1.04631412e+00 8.53936851e-01 -4.30225283e-01 8.53758812e-01 1.80525538e-02 1.75344974e-01 6.99950874e-01 -1.23375750e+00 6.44932315e-02 1.44499218e+00 7.82660723e-01 1.10682619e+00 -1.06323600e+00 -1.26873612e+00 4.55575138e-01 5.17965853e-01 -1.68181419e+00 -8.23275149e-01 8.19359899e-01 -1.06900446e-01 1.40891981e+00 3.61211121e-01 5.37170649e-01 1.23606801e+00 6.44230023e-02 8.23639810e-01 8.71505976e-01 -4.29119438e-01 2.12801903e-01 1.74460206e-02 5.83953679e-01 6.31940126e-01 -4.84596580e-01 3.59561771e-01 -1.00516248e+00 7.42093623e-02 5.43329358e-01 -1.81601629e-01 -4.49385375e-01 6.02197349e-01 -1.14530909e+00 6.86298609e-01 4.06365067e-01 6.46924198e-01 -1.71125770e-01 8.92194733e-02 6.86960459e-01 5.95439076e-01 5.84071815e-01 -7.88460299e-02 -6.30827665e-01 -1.82275832e-01 -9.99794424e-01 -1.37710541e-01 3.54530394e-01 6.93102002e-01 2.85309792e-01 1.11970580e+00 -3.15265059e-01 9.70377803e-01 2.36965016e-01 5.81103146e-01 1.13683581e+00 -1.84670314e-01 2.27376461e-01 3.83262992e-01 -4.31841969e-01 -3.89034539e-01 -3.62219393e-01 -4.94019181e-01 -1.02009344e+00 1.64812863e-01 2.08170712e-01 -3.05909097e-01 -1.35759354e+00 1.95471108e+00 2.50482887e-01 5.08619964e-01 3.64477098e-01 8.33971739e-01 1.23947954e+00 1.14834452e+00 2.33862847e-01 -1.70705751e-01 1.64559889e+00 -9.18864012e-01 -1.02478158e+00 1.54330939e-01 4.56371725e-01 -6.33764982e-01 1.05427730e+00 1.08422354e-01 -7.56760597e-01 -1.02942860e+00 -1.17113280e+00 5.17140143e-02 -5.76615572e-01 3.77168030e-01 1.24635033e-01 1.16402674e+00 -1.56489646e+00 1.67910963e-01 -9.10227060e-01 -1.48583472e-01 1.28950834e-01 6.00131691e-01 -4.21310633e-01 5.45076668e-01 -1.54089165e+00 7.62086749e-01 1.97282016e-01 3.67073923e-01 -1.07368422e+00 -9.94773865e-01 -1.08639836e+00 2.30112255e-01 -2.15224952e-01 -2.67456442e-01 1.30647576e+00 -7.96331823e-01 -2.28444099e+00 4.97759402e-01 -5.64595461e-01 -6.43484950e-01 6.11967258e-02 3.51297669e-02 -1.13013399e+00 1.10552087e-01 -2.70042837e-01 7.31939554e-01 1.31407309e+00 -5.08112907e-01 -3.16714078e-01 -3.84014457e-01 -3.32579046e-01 2.81657483e-02 -9.37473714e-01 3.57492685e-01 -1.37506515e-01 -8.68792772e-01 8.85060132e-02 -7.70042002e-01 1.36123925e-01 -4.20925468e-01 -3.99880528e-01 -5.62308967e-01 1.42151880e+00 -1.07867074e+00 1.45999503e+00 -2.53946209e+00 -2.06991598e-01 -3.05396825e-01 1.55059174e-01 6.78460777e-01 -4.02780741e-01 1.33526558e-02 -3.29825997e-01 1.16072349e-01 -1.01639181e-02 -5.77628374e-01 1.32364273e-01 -3.07563722e-01 -4.47225034e-01 5.30545115e-01 3.32138658e-01 9.98361170e-01 -3.80092084e-01 -3.31715435e-01 4.03484344e-01 1.01321018e+00 -3.55952799e-01 3.91880348e-02 2.69923955e-01 2.50019908e-01 -7.43175447e-02 7.25480974e-01 9.22758758e-01 4.08779949e-01 -2.74850994e-01 -3.49092513e-01 -2.31536567e-01 3.73543948e-01 -9.31497276e-01 1.47246420e+00 -6.52452111e-01 1.13629842e+00 1.95883736e-01 -5.89496136e-01 9.74794149e-01 7.61975944e-01 1.25909045e-01 -6.59396231e-01 1.90670550e-01 3.12497541e-02 8.88542905e-02 -1.87349856e-01 5.06855011e-01 -3.57489318e-01 -1.55581813e-02 2.19583988e-01 4.77665484e-01 2.11465776e-01 -3.95849913e-01 7.11099058e-03 7.75512993e-01 -4.62703228e-01 -1.05979003e-01 -3.63881856e-01 8.15658748e-01 -7.38781810e-01 6.10159338e-01 4.84099060e-01 -6.37269318e-01 4.40056533e-01 -4.42059711e-02 -3.06887746e-01 -6.87872350e-01 -1.03504884e+00 -3.50272119e-01 1.37022889e+00 -2.86702693e-01 -3.05139601e-01 -9.75965738e-01 -5.37560582e-01 -9.74452123e-02 7.31415451e-01 -7.86822736e-01 -2.86807954e-01 -8.34108889e-01 -7.78936446e-01 1.26871836e+00 6.93272829e-01 7.07253158e-01 -1.01407242e+00 -7.59999454e-02 4.10349011e-01 -1.09256849e-01 -1.20570719e+00 -1.13033617e+00 2.73806930e-01 -8.34867716e-01 -4.92904991e-01 -1.05351543e+00 -8.91422153e-01 4.01273370e-01 8.79011825e-02 4.94352758e-01 -4.49506909e-01 -6.62132576e-02 2.64380813e-01 -2.67646044e-01 -4.64401454e-01 -4.72798973e-01 1.55534908e-01 5.89985609e-01 3.20014834e-01 7.03111529e-01 -5.11237025e-01 -4.67031628e-01 4.24286395e-01 -6.26968503e-01 -3.89423341e-01 2.57789969e-01 9.46088552e-01 1.40671805e-01 -8.69051367e-02 9.96856928e-01 -5.88254929e-02 6.49395943e-01 1.97433174e-01 -5.68777740e-01 4.14606035e-02 -2.54376203e-01 -1.27036735e-01 6.79190397e-01 -9.33488309e-01 -1.16367424e+00 -2.24461287e-01 -5.00526309e-01 -7.90845633e-01 1.73815973e-02 1.43596470e-01 -1.09687127e-01 -8.46486539e-03 5.88896036e-01 6.54671609e-01 1.03626579e-01 -4.91195083e-01 1.81798249e-01 9.07939196e-01 5.26582479e-01 -7.57780299e-02 6.35266602e-01 1.60920501e-01 -7.42689312e-01 -1.44676781e+00 -2.42920429e-01 -4.18027252e-01 -5.22508383e-01 -1.54626667e-01 1.04644620e+00 -1.24278581e+00 -1.18212271e+00 9.95476723e-01 -1.10609710e+00 -3.72905314e-01 -2.38459855e-01 8.23085308e-01 1.34166747e-01 9.32786092e-02 -9.42780256e-01 -1.15336335e+00 -8.51271093e-01 -1.10992539e+00 1.00496244e+00 3.49086046e-01 1.20106541e-01 -1.01989889e+00 -9.60411727e-02 2.40641534e-01 9.35680151e-01 -1.72750175e-01 4.69227672e-01 -6.86988890e-01 -1.72454819e-01 -2.32394934e-01 2.07036398e-02 7.75514305e-01 8.24788436e-02 2.16722814e-03 -1.72635162e+00 -6.24673843e-01 2.43294075e-01 8.03098306e-02 1.13004506e+00 8.60223532e-01 9.39313889e-01 -3.69103551e-01 -2.92667821e-02 6.36910081e-01 8.66434932e-01 3.55420738e-01 5.04252195e-01 4.39840294e-02 5.58504164e-01 1.64598435e-01 -6.10919930e-02 6.76380247e-02 3.64825279e-01 9.57917631e-01 -1.10535674e-01 -1.95292115e-01 -5.19152105e-01 -6.43116459e-02 1.18024969e+00 1.39020872e+00 7.24945366e-02 -1.87718332e-01 -5.43746173e-01 5.69011867e-01 -1.22552896e+00 -9.26020741e-01 1.39431536e-01 1.85642242e+00 6.16920412e-01 1.38732484e-02 3.07399094e-01 3.73520792e-01 1.10107374e+00 3.44864964e-01 -7.25643516e-01 -5.84865153e-01 -3.01359326e-01 2.81664222e-01 1.45141378e-01 6.01858974e-01 -1.04115081e+00 1.05436516e+00 6.03089142e+00 1.06224918e+00 -1.69810343e+00 5.52532196e-01 3.93000871e-01 -2.17440188e-01 2.45003015e-01 -5.72117031e-01 -1.25504112e+00 3.63616019e-01 1.54656899e+00 -1.84315026e-01 9.97074470e-02 8.80387366e-01 3.24539810e-01 3.22104305e-01 -8.13581944e-01 1.17172492e+00 2.88248748e-01 -1.10491168e+00 -1.18565321e-01 -2.44297739e-02 4.07850623e-01 1.14917912e-01 3.13566118e-01 6.99121654e-01 2.46041670e-01 -9.95694458e-01 8.20195496e-01 2.85635460e-02 1.02373254e+00 -8.38856101e-01 7.78440654e-01 -5.30835688e-02 -1.61252010e+00 -2.07804143e-01 -3.31862599e-01 2.11706877e-01 1.31406963e-01 6.43563032e-01 -1.07179236e+00 1.95896775e-01 9.69679534e-01 6.33240163e-01 -4.07801092e-01 4.90760803e-01 1.22104675e-01 1.14253306e+00 -5.03310204e-01 -1.86457932e-01 1.70704395e-01 3.39593053e-01 7.08582163e-01 1.67957795e+00 2.92714775e-01 -1.92462169e-02 -3.16316873e-01 6.67860091e-01 -1.60909250e-01 -1.64601430e-02 -2.99356848e-01 -1.10292546e-02 5.48295677e-01 1.10447431e+00 -4.05825526e-01 -4.70835358e-01 -2.21317802e-02 9.91976976e-01 6.15371726e-02 6.43310368e-01 -9.36789632e-01 -5.70580184e-01 1.07929444e+00 -2.43398875e-01 4.71144199e-01 -3.68672103e-01 -6.79121315e-02 -1.27632725e+00 -4.30493467e-02 -6.21474028e-01 3.52427542e-01 -4.58662719e-01 -1.02973342e+00 1.18596864e+00 -3.13549578e-01 -1.22972095e+00 -2.29189955e-02 -5.45907259e-01 -6.50375903e-01 1.06729198e+00 -1.66325462e+00 -1.26352906e+00 -9.44309682e-02 9.51713979e-01 8.75992954e-01 -5.46077490e-01 1.03328979e+00 3.37362885e-01 -9.52342033e-01 1.45207155e+00 -1.05991572e-01 5.40447474e-01 5.94976544e-01 -1.00001252e+00 7.88510919e-01 1.01975822e+00 2.29482725e-02 6.78637624e-01 2.34206036e-01 -5.49733043e-02 -1.31958818e+00 -1.10510302e+00 8.41969550e-01 -2.78938025e-01 4.54939514e-01 -7.92574108e-01 -1.03314829e+00 5.04611135e-01 3.08333337e-01 5.63735701e-02 8.02188456e-01 -1.27600580e-01 -7.10410178e-01 -3.63016963e-01 -1.17564952e+00 3.53308260e-01 5.83834052e-01 -1.15202355e+00 -5.33351779e-01 -7.12853149e-02 1.15191793e+00 -4.02069688e-01 -7.40396440e-01 2.67263383e-01 6.06848836e-01 -9.01526690e-01 9.89450574e-01 -2.75956690e-01 -3.17784429e-01 -3.57180029e-01 -1.77504122e-01 -1.27454352e+00 -2.48244449e-01 -6.84985042e-01 -1.59990698e-01 1.42085648e+00 4.93247151e-01 -9.86637771e-01 5.15164137e-01 1.98371992e-01 -5.38748145e-01 -3.47156733e-01 -1.64895546e+00 -1.08445740e+00 1.35545270e-03 -6.51308477e-01 7.00761139e-01 9.05769348e-01 -1.37470052e-01 1.11860961e-01 -2.76212990e-01 4.47504640e-01 3.67606997e-01 -4.29968715e-01 3.78129333e-01 -7.81013668e-01 1.12683348e-01 -5.17823517e-01 -6.94880724e-01 -1.03027511e+00 4.88256186e-01 -8.17404866e-01 -1.54615343e-02 -8.34513545e-01 -2.11562797e-01 1.26748821e-02 -6.10792398e-01 6.45548224e-01 -2.62108266e-01 4.79308665e-01 1.41532630e-01 -1.80257261e-01 -1.49951018e-02 7.94447005e-01 1.00641799e+00 -4.10621762e-01 -7.62407959e-01 -1.18210964e-01 -2.52828866e-01 3.53907138e-01 8.95062208e-01 -1.55303001e-01 -1.56149834e-01 -1.12070948e-01 -6.76779687e-01 5.13306935e-04 3.10186744e-01 -1.13542914e+00 4.09045726e-01 4.41871375e-01 5.11138260e-01 -6.88396335e-01 7.00811803e-01 -3.91660690e-01 -1.28650248e-01 5.22446096e-01 -2.52815664e-01 1.06965072e-01 7.92176068e-01 3.61090511e-01 -6.17240608e-01 1.65522039e-01 9.52019155e-01 2.16459006e-01 -7.70256877e-01 2.24294320e-01 -7.81156540e-01 -4.01133031e-01 6.63900912e-01 -4.32845980e-01 -1.93831325e-01 -3.09969068e-01 -8.59988928e-01 -2.04250634e-01 -2.24235162e-01 5.85630059e-01 8.41286778e-01 -1.39249313e+00 -9.33215439e-01 5.70395231e-01 -1.04179911e-01 -4.10375744e-01 9.11674619e-01 7.83225596e-01 -8.25216696e-02 6.57344639e-01 -4.23284844e-02 -6.92837834e-01 -1.56832075e+00 3.66431296e-01 5.75408220e-01 6.25384152e-02 -6.85722947e-01 1.21870935e+00 3.08518291e-01 -5.47064543e-01 4.84249949e-01 -6.97749794e-01 -2.83754706e-01 2.68303156e-01 8.49285245e-01 2.50722945e-01 3.40429157e-01 -8.42062235e-01 -6.54675424e-01 5.63375771e-01 -3.03719878e-01 -3.05794120e-01 1.31955826e+00 -5.32863252e-02 1.76283270e-01 3.70227277e-01 1.41204643e+00 5.66074662e-02 -1.06810999e+00 -1.98584199e-01 -4.40778822e-01 6.00026222e-03 3.64798486e-01 -5.93350470e-01 -1.21595919e+00 1.15030479e+00 1.07611656e+00 6.88114390e-02 1.27716064e+00 -2.10440740e-01 1.07030034e+00 7.10515901e-02 -2.49159068e-01 -9.68651235e-01 2.17206448e-01 6.90335929e-01 1.00188923e+00 -1.06770849e+00 -5.67707062e-01 -9.69321001e-03 -5.36614656e-01 1.34806550e+00 6.95357561e-01 2.21087277e-01 1.11120653e+00 2.84930766e-01 5.13726473e-01 1.41647413e-01 -6.85059488e-01 3.58652743e-03 4.55350548e-01 6.61414683e-01 4.58485663e-01 1.66379184e-01 3.60961467e-01 6.49402082e-01 -6.20783269e-01 -3.72783244e-01 2.25830078e-01 5.81498682e-01 -1.87534854e-01 -6.54045284e-01 -7.15273380e-01 2.40283292e-02 -3.05784285e-01 -3.55942160e-01 -6.42488450e-02 4.90813255e-01 -2.21439824e-01 1.09526312e+00 7.37154707e-02 -7.83773661e-01 4.03084338e-01 5.25206327e-01 7.17682168e-02 -1.80125937e-01 -8.74122500e-01 2.77360946e-01 -2.57388890e-01 -1.22082792e-01 -2.51713961e-01 -4.49349403e-01 -1.14909017e+00 -2.96794415e-01 -7.14967847e-01 1.76268980e-01 1.05506730e+00 6.54263794e-01 5.15599847e-01 9.46220934e-01 8.47542524e-01 -9.20159757e-01 -3.74946296e-01 -1.44235289e+00 -6.27697825e-01 -1.89845651e-01 9.78595853e-01 -3.79864246e-01 -7.38781035e-01 4.19462547e-02]
[14.372838973999023, 6.087403774261475]
c503381b-a88a-4a44-a728-003f65eaedf5
a-novel-transferability-attention-neural
2009.09585
null
https://arxiv.org/abs/2009.09585v1
https://arxiv.org/pdf/2009.09585v1.pdf
A Novel Transferability Attention Neural Network Model for EEG Emotion Recognition
The existed methods for electroencephalograph (EEG) emotion recognition always train the models based on all the EEG samples indistinguishably. However, some of the source (training) samples may lead to a negative influence because they are significant dissimilar with the target (test) samples. So it is necessary to give more attention to the EEG samples with strong transferability rather than forcefully training a classification model by all the samples. Furthermore, for an EEG sample, from the aspect of neuroscience, not all the brain regions of an EEG sample contains emotional information that can transferred to the test data effectively. Even some brain region data will make strong negative effect for learning the emotional classification model. Considering these two issues, in this paper, we propose a transferable attention neural network (TANN) for EEG emotion recognition, which learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively through local and global attention mechanism. This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator. We conduct the extensive experiments on three public EEG emotional datasets. The results validate that the proposed model achieves the state-of-the-art performance.
['Guangming Shi', 'Boxun Fu', 'Yang Li', 'Wenming Zheng', 'Fu Li']
2020-09-21
null
null
null
null
['eeg-emotion-recognition']
['miscellaneous']
[-5.00102807e-03 -1.79257691e-01 3.72864097e-01 -8.30105841e-01 -3.50495964e-01 -1.30274385e-01 -3.10878642e-02 -1.38959676e-01 -2.51298338e-01 9.41153169e-01 -2.72516645e-02 3.61082554e-01 -9.69081447e-02 -6.26851499e-01 -6.73142731e-01 -9.81299996e-01 -2.33451873e-01 -2.29881257e-02 -2.45139807e-01 -1.26081169e-01 3.34747076e-01 3.52551907e-01 -1.41234159e+00 6.37324750e-01 1.12654364e+00 1.45847189e+00 1.89284876e-01 2.12311536e-01 6.71741785e-03 6.72328949e-01 -1.00771463e+00 -5.80705740e-02 -1.41935125e-01 -8.25617433e-01 -5.61179876e-01 -2.38278255e-01 -1.51586607e-01 -1.01343188e-02 -6.80191591e-02 1.42051125e+00 8.07849884e-01 1.03171118e-01 8.52539420e-01 -1.59412003e+00 -1.08207119e+00 2.89617449e-01 -5.47459900e-01 5.43366134e-01 3.48811895e-01 1.90053210e-02 4.97098505e-01 -1.05990052e+00 1.07867733e-01 8.53059351e-01 1.61020935e-01 5.73319495e-01 -7.75568485e-01 -1.24844909e+00 3.53909016e-01 6.87995493e-01 -1.44833112e+00 -3.52997810e-01 1.07133770e+00 -2.62031108e-01 7.14892566e-01 2.86045015e-01 1.07937491e+00 1.39606845e+00 8.22479904e-01 8.06741655e-01 1.56969738e+00 1.98880762e-01 2.93754995e-01 5.97926855e-01 2.86910385e-01 1.95749015e-01 -2.08688408e-01 -2.94766971e-03 -4.66631711e-01 4.16860692e-02 3.25315475e-01 1.41256884e-01 -7.46888101e-01 2.02050194e-01 -8.42698216e-01 3.09874058e-01 7.33640134e-01 5.00881910e-01 -5.86768687e-01 -1.82204828e-01 5.31144559e-01 6.41359031e-01 4.99851644e-01 3.67525101e-01 -5.26048720e-01 -1.59465238e-01 -6.77764058e-01 -3.89729679e-01 6.13689959e-01 9.02145803e-01 9.17921126e-01 1.70720533e-01 -2.33800143e-01 6.50991857e-01 5.44132199e-03 3.07757378e-01 8.80943239e-01 -1.16757959e-01 2.25343406e-01 7.01245725e-01 -4.23484832e-01 -1.22479737e+00 -2.45483860e-01 -7.08609045e-01 -1.16130185e+00 1.18746422e-01 -3.24454337e-01 -3.93088698e-01 -6.18036807e-01 1.68502617e+00 -2.09915880e-02 4.77445513e-01 1.54905930e-01 1.14554930e+00 9.69287932e-01 8.95127177e-01 2.43284911e-01 -4.22442436e-01 1.39316201e+00 -7.80219495e-01 -8.93650413e-01 -3.14714372e-01 1.17646806e-01 -3.09913605e-01 1.16025305e+00 6.45841718e-01 -8.08793247e-01 -7.44563818e-01 -1.22325170e+00 3.37380946e-01 -5.31727731e-01 -5.73739968e-02 3.48838866e-01 4.24454749e-01 -7.65809536e-01 3.95721257e-01 -3.18157852e-01 -5.62397353e-02 6.30114913e-01 5.61279535e-01 -4.64293987e-01 1.24146894e-01 -1.43074811e+00 8.69885683e-01 3.96894395e-01 3.70240837e-01 -8.73867571e-01 -5.31103492e-01 -4.34533387e-01 5.26854873e-01 -1.78220883e-01 -1.41167641e-01 5.95344901e-01 -2.06798911e+00 -1.40963781e+00 5.02670825e-01 7.30924401e-03 1.40527397e-01 2.15708971e-01 -3.55875865e-02 -8.70178580e-01 1.82661667e-01 -3.00809801e-01 6.45448923e-01 7.75897264e-01 -1.09119999e+00 -3.25624317e-01 -3.86828899e-01 -4.31508869e-01 1.36245698e-01 -7.50236690e-01 2.67827839e-01 1.15599431e-01 -4.90116239e-01 -2.18433782e-01 -4.85229671e-01 4.11238045e-01 -3.11361849e-01 -1.56265631e-01 -3.35237771e-01 8.62169027e-01 -6.86785042e-01 9.48702872e-01 -2.33614111e+00 1.71978995e-01 3.87248367e-01 8.39561895e-02 -5.15743494e-02 -2.59970516e-01 -4.45592590e-02 -5.43424904e-01 4.38485295e-02 -2.67938286e-01 3.50284547e-01 -9.74948108e-02 -1.97197925e-02 -2.21839279e-01 3.76993388e-01 5.87697804e-01 9.58197236e-01 -9.27291870e-01 -3.74965429e-01 -7.45269610e-03 5.09591699e-01 -2.76093841e-01 5.28473735e-01 5.45509815e-01 6.12142861e-01 -6.18373394e-01 5.76149583e-01 7.96603024e-01 2.05470636e-01 -2.63362020e-01 -3.36710304e-01 5.10609671e-02 -1.18269615e-01 -9.02376175e-01 1.38403249e+00 -2.00150564e-01 6.73961699e-01 -7.72409216e-02 -1.28545177e+00 1.19268334e+00 6.67196333e-01 3.32136929e-01 -9.01807606e-01 5.51392555e-01 6.34375662e-02 3.76208663e-01 -8.28633249e-01 -3.41763273e-02 -4.07610238e-01 1.45113274e-01 4.83781517e-01 3.10863882e-01 2.26961121e-01 -6.89208984e-01 -3.16637009e-01 8.22981477e-01 -1.84550375e-01 1.02805652e-01 -6.91598535e-01 6.74033880e-01 -5.97553253e-01 7.63514817e-01 2.46428832e-01 -4.96595562e-01 2.00442106e-01 5.26882946e-01 -2.29134396e-01 -5.64312279e-01 -7.39311695e-01 -4.29224789e-01 1.04359424e+00 3.71284574e-01 1.24138772e-01 -8.85748744e-01 -7.23940015e-01 -4.02484208e-01 7.12438941e-01 -9.76101935e-01 -1.07807362e+00 1.20402940e-01 -9.29692626e-01 4.13648456e-01 6.87161028e-01 8.00385416e-01 -1.62663805e+00 -6.59213662e-01 3.33103314e-02 -3.71151045e-02 -5.06431580e-01 -2.72921801e-01 5.78114748e-01 -5.74936211e-01 -8.25264454e-01 -5.80487192e-01 -1.01723385e+00 9.69101667e-01 -1.44172862e-01 9.55136895e-01 6.73562959e-02 -1.33398503e-01 1.59769684e-01 -4.50160056e-01 -7.06634343e-01 1.80714533e-01 -2.31675401e-01 1.90075740e-01 4.11947340e-01 8.12594056e-01 -7.12713361e-01 -6.56467736e-01 3.16781759e-01 -7.90124774e-01 -2.96585932e-02 6.50140524e-01 9.09675717e-01 4.54544812e-01 3.02492142e-01 1.16276836e+00 -3.59105855e-01 1.02003455e+00 -8.81718338e-01 1.95235923e-01 4.07557786e-01 -3.36024106e-01 -1.58808365e-01 9.71563578e-01 -8.40022027e-01 -1.05533910e+00 -4.79742318e-01 -7.37859011e-02 -5.01944184e-01 -3.98394674e-01 4.94451046e-01 -5.54291248e-01 -2.34831661e-01 3.93109679e-01 5.20151138e-01 -5.10730386e-01 -9.83865857e-02 -3.14933658e-01 1.08847129e+00 2.62337863e-01 -6.62157774e-01 2.03070417e-01 -1.43076241e-01 -3.99682403e-01 -4.29886311e-01 -2.77530789e-01 9.89176705e-02 -3.91205579e-01 -6.11449361e-01 9.25196648e-01 -6.72867775e-01 -7.43481159e-01 4.43403184e-01 -1.03086400e+00 -6.40896559e-02 -6.75310865e-02 6.82985067e-01 -2.49780715e-01 -1.49554675e-02 -5.63265026e-01 -8.53890657e-01 -4.59712774e-01 -1.26560605e+00 7.95756340e-01 4.63139683e-01 -1.20677561e-01 -5.33044457e-01 -1.31089821e-01 -4.35678899e-01 2.86040068e-01 1.07427098e-01 1.01921618e+00 -8.47921908e-01 -1.16819642e-01 -9.02755558e-02 -2.67458469e-01 6.69013083e-01 2.01208785e-01 3.90001684e-02 -1.43266964e+00 -1.89332381e-01 6.59430563e-01 -7.49012411e-01 5.16116560e-01 7.89102912e-02 1.70983195e+00 -2.34379590e-01 -4.42306399e-02 7.89117813e-01 1.23826945e+00 7.87213862e-01 8.47095132e-01 5.15704192e-02 3.55595231e-01 6.89373434e-01 3.55129778e-01 3.03428024e-01 1.57477874e-02 5.15646785e-02 2.76065946e-01 -2.65893638e-01 6.02012277e-01 9.08480808e-02 5.62965155e-01 1.23969853e+00 -2.59952396e-01 -1.90726101e-01 -6.65877879e-01 2.55257368e-01 -1.48870039e+00 -8.90199721e-01 8.90670344e-02 1.88467562e+00 7.88035929e-01 -1.77440658e-01 -4.08504248e-01 1.65999576e-01 7.79964209e-01 -2.93749094e-01 -8.97896171e-01 -5.46597064e-01 -2.45666996e-01 5.17144978e-01 -2.69091725e-01 -2.04142019e-01 -7.74248242e-01 3.84270221e-01 5.93872881e+00 7.89257586e-01 -1.54737210e+00 7.24268705e-02 1.14850998e+00 -2.95091838e-01 -2.31970385e-01 -5.41307867e-01 2.59838700e-02 9.56924498e-01 9.90153670e-01 -4.76376891e-01 6.57057643e-01 8.94070446e-01 7.39866048e-02 8.05161819e-02 -1.34446681e+00 1.30949211e+00 1.32032439e-01 -3.72209817e-01 5.74069098e-03 -6.88714683e-02 5.89366972e-01 -2.21567139e-01 1.51315853e-01 6.56482100e-01 -4.29179281e-01 -1.29148138e+00 6.35677457e-01 9.18913662e-01 6.97907865e-01 -1.09268665e+00 1.04123163e+00 3.37348193e-01 -1.00058532e+00 -6.98472485e-02 -8.07645440e-01 -1.79420531e-01 -4.96468604e-01 4.14637089e-01 -1.41128734e-01 5.45256078e-01 1.08849049e+00 9.03274119e-01 -5.15695572e-01 8.14626217e-01 -2.93327034e-01 6.41034544e-01 9.77094993e-02 -3.91069651e-01 2.73684710e-02 -4.45544511e-01 1.74780861e-01 1.31025934e+00 6.25104070e-01 5.89633644e-01 -1.73163518e-01 1.09949696e+00 -3.49522173e-01 4.55176085e-01 -5.33818424e-01 8.65330175e-02 2.40237355e-01 1.49279046e+00 -4.95759547e-01 -5.74328303e-01 -3.26983094e-01 1.20079768e+00 4.02963549e-01 5.42404950e-01 -1.04220045e+00 -8.41500461e-01 4.82314050e-01 -5.59541941e-01 -2.79040337e-01 5.08229077e-01 -1.66417226e-01 -1.23273540e+00 9.88742337e-02 -8.47837985e-01 1.60509825e-01 -1.23949850e+00 -1.74097085e+00 1.01493037e+00 -3.43565553e-01 -1.21031833e+00 3.03063303e-01 -5.45430660e-01 -1.09664953e+00 1.03727126e+00 -1.34210134e+00 -5.25538027e-01 -6.45816326e-01 9.73897338e-01 2.81086355e-01 -1.38231814e-01 9.08182621e-01 3.78681660e-01 -6.07393682e-01 6.41600728e-01 -4.81010787e-02 2.06737220e-01 9.08512414e-01 -1.00205827e+00 -5.02680361e-01 4.84435558e-01 -1.96492583e-01 6.46379769e-01 4.04361457e-01 -2.94161379e-01 -1.28318655e+00 -9.93115783e-01 3.98971796e-01 -7.09621534e-02 4.23388600e-01 -4.70659584e-01 -1.35503352e+00 6.90660775e-01 7.86831021e-01 -7.16515854e-02 1.02717304e+00 1.27292156e-01 8.75109360e-02 -4.93845701e-01 -1.29979968e+00 2.83860147e-01 7.75303364e-01 -6.91794157e-01 -1.08941174e+00 4.40602750e-02 3.04577917e-01 9.94728357e-02 -8.97565842e-01 4.42823112e-01 5.86955726e-01 -9.77141559e-01 3.72383744e-01 -7.31187344e-01 5.67387283e-01 -1.08069502e-01 4.12608646e-02 -1.88306952e+00 -5.49426496e-01 1.54581964e-01 2.32171565e-01 1.23369730e+00 1.14953451e-01 -9.37968791e-01 1.90211967e-01 8.02055657e-01 -2.56337315e-01 -9.50014472e-01 -9.54574525e-01 -4.49239105e-01 7.32074752e-02 -2.92981595e-01 9.66600955e-01 1.24463189e+00 5.49908578e-01 3.04363787e-01 -2.36226335e-01 5.38620129e-02 3.23271379e-02 3.51706967e-02 1.27321526e-01 -1.06562471e+00 -2.19547730e-02 -4.77808505e-01 -7.28706181e-01 -6.21957839e-01 4.42066133e-01 -1.12186956e+00 1.54645771e-01 -1.10237312e+00 5.10204017e-01 -1.49132252e-01 -1.28730011e+00 6.02643013e-01 -3.79368395e-01 1.16018496e-01 -1.45891771e-01 -1.74946815e-01 -5.10836124e-01 9.88520920e-01 1.38759351e+00 -3.26322258e-01 -9.26906392e-02 -4.03138340e-01 -8.15779924e-01 5.08857191e-01 8.20243895e-01 -5.39852798e-01 -6.01218879e-01 -3.10201079e-01 5.35995290e-02 -3.11321635e-02 3.25987637e-01 -1.26065755e+00 2.77287841e-01 -7.84743428e-02 1.13632643e+00 -6.87888712e-02 1.50198758e-01 -1.06707597e+00 8.83749649e-02 3.48710537e-01 -2.79533803e-01 3.53392474e-02 3.42707247e-01 2.81351358e-01 -4.01728511e-01 -1.39897168e-01 6.92060649e-01 -4.81202044e-02 -5.63734889e-01 5.26219010e-01 -5.15904784e-01 7.38868490e-02 1.28539026e+00 -2.78057158e-01 -3.64519417e-01 -2.14200512e-01 -5.97631812e-01 3.69364738e-01 2.27905847e-02 4.06061620e-01 9.21669483e-01 -1.54282510e+00 -6.99876070e-01 7.70599842e-01 2.20137060e-01 -5.15767038e-01 4.87889022e-01 9.86961484e-01 1.24701612e-01 -2.87411362e-02 -9.49855566e-01 -5.23186028e-01 -1.09686446e+00 7.01059341e-01 6.32591128e-01 4.73414481e-01 -3.11674982e-01 8.04088056e-01 7.47414231e-01 -2.02960506e-01 -5.04511967e-02 -3.57377797e-01 -3.85964841e-01 1.34318635e-01 6.61484957e-01 1.24144271e-01 -1.41694192e-02 -4.52286422e-01 -5.09872913e-01 4.19460952e-01 2.26986080e-01 1.71503365e-01 1.49827933e+00 2.81428456e-01 -4.32266176e-01 7.19568074e-01 1.40956974e+00 -2.02798426e-01 -1.01562583e+00 2.89469332e-01 -4.15063888e-01 -3.39725912e-01 9.74124447e-02 -1.06614220e+00 -1.49992108e+00 1.32480049e+00 7.60760665e-01 1.32584706e-01 1.69231224e+00 -1.88754857e-01 4.24899489e-01 4.23927695e-01 4.93869394e-01 -1.26509547e+00 4.16295528e-02 2.44097248e-01 1.00145543e+00 -9.58087742e-01 -5.24266601e-01 2.12513119e-01 -8.07654440e-01 1.26713622e+00 9.18321490e-01 -4.25016224e-01 7.81190753e-01 2.70071030e-01 -6.01461232e-02 -2.99723208e-01 -8.90502930e-01 5.26149869e-01 5.29833436e-01 4.91538793e-01 3.29076141e-01 8.79716724e-02 -1.56182751e-01 1.45329762e+00 -4.11220044e-02 9.35252681e-02 7.12915659e-02 6.26221716e-01 -5.48261225e-01 -5.96205235e-01 -2.69790232e-01 7.18190432e-01 -3.12230736e-01 -2.55078107e-01 -5.13997316e-01 5.85911930e-01 4.28115338e-01 8.46397698e-01 1.91676512e-01 -8.59061956e-01 2.74223626e-01 5.34255147e-01 3.94234151e-01 -2.93481082e-01 -8.21471393e-01 -1.62457362e-01 -4.78892833e-01 -4.23801452e-01 -3.77362579e-01 -3.40268016e-01 -1.40498459e+00 -3.40435915e-02 -2.51038522e-01 5.82196653e-01 3.15226883e-01 8.67655694e-01 5.09483457e-01 9.95244145e-01 9.30199087e-01 -7.17584610e-01 -1.17782958e-01 -1.28065658e+00 -9.95139837e-01 4.68559414e-01 1.35133073e-01 -6.67893887e-01 -6.01822972e-01 -5.90147562e-02]
[13.123860359191895, 3.493354082107544]
c47b763f-d45d-4e6f-9e09-2ae24c39b288
visualizing-global-explanations-of-point
2203.09505
null
https://arxiv.org/abs/2203.09505v2
https://arxiv.org/pdf/2203.09505v2.pdf
Visualizing Global Explanations of Point Cloud DNNs
In the field of autonomous driving and robotics, point clouds are showing their excellent real-time performance as raw data from most of the mainstream 3D sensors. Therefore, point cloud neural networks have become a popular research direction in recent years. So far, however, there has been little discussion about the explainability of deep neural networks for point clouds. In this paper, we propose a point cloud-applicable explainability approach based on a local surrogate model-based method to show which components contribute to the classification. Moreover, we propose quantitative fidelity validations for generated explanations that enhance the persuasive power of explainability and compare the plausibility of different existing point cloud-applicable explainability methods. Our new explainability approach provides a fairly accurate, more semantically coherent and widely applicable explanation for point cloud classification tasks. Our code is available at https://github.com/Explain3D/LIME-3D
['Hanxiao Tan']
2022-03-17
null
null
null
null
['point-cloud-classification']
['computer-vision']
[-3.10843259e-01 2.75142640e-01 -3.89467806e-01 -7.28678405e-01 -3.02683890e-01 -2.14447394e-01 7.92651832e-01 1.45471364e-01 3.52669120e-01 5.40093958e-01 -3.85535620e-02 -6.26670361e-01 -4.79142457e-01 -7.32985198e-01 -1.00688374e+00 -4.12640601e-01 2.05586344e-01 6.84486568e-01 -3.05897649e-03 -2.74842829e-01 2.70422906e-01 7.95209646e-01 -1.94699001e+00 1.11326508e-01 1.16418624e+00 9.30215418e-01 2.65672863e-01 2.57774979e-01 -2.64385074e-01 1.94183841e-01 -1.96049824e-01 -1.67115092e-01 2.39375487e-01 -8.48860294e-02 -5.18570006e-01 -2.31326938e-01 3.94748241e-01 -1.51865348e-01 -3.51534724e-01 9.12670970e-01 -2.12248601e-02 3.68420370e-02 6.85710788e-01 -1.93552303e+00 -1.01863444e+00 4.77594435e-01 -2.17767984e-01 -1.33338422e-01 -9.29913297e-02 1.86686113e-01 8.85926664e-01 -1.10562277e+00 1.88481748e-01 1.23472834e+00 7.41742671e-01 7.19190717e-01 -7.09822774e-01 -9.69417036e-01 1.14577182e-01 3.32004964e-01 -1.16074002e+00 -3.80583443e-02 8.33276212e-01 -4.34835196e-01 8.98341954e-01 4.05464500e-01 8.71169865e-01 1.02677882e+00 5.14050245e-01 6.10202610e-01 8.72421861e-01 -1.03021272e-01 3.06134522e-01 9.35570672e-02 2.67752528e-01 5.43517232e-01 5.83463073e-01 5.96720636e-01 -4.59393650e-01 1.10288538e-01 6.98030353e-01 5.55494308e-01 -2.69676894e-01 -5.44946492e-01 -1.11402261e+00 8.96412909e-01 1.08746696e+00 7.68090710e-02 -3.46489936e-01 7.31394947e-01 -1.09990850e-01 -1.59270242e-01 7.45328784e-01 4.23892528e-01 -4.95341390e-01 3.98765728e-02 -6.89908504e-01 6.50303841e-01 2.99311638e-01 1.26339018e+00 9.01218235e-01 1.38275355e-01 2.99076647e-01 2.87364870e-01 7.21363008e-01 6.98589683e-01 1.29815983e-02 -1.10386956e+00 1.82119697e-01 8.27487409e-01 7.07115382e-02 -9.52778161e-01 -4.51398581e-01 -6.20201111e-01 -9.11990941e-01 6.66240096e-01 -8.42020288e-02 3.03686678e-01 -7.89035916e-01 1.43173313e+00 1.78821191e-01 4.02406007e-01 -1.06308363e-01 1.30241883e+00 1.00613320e+00 6.14843786e-01 -2.36805584e-02 4.97625649e-01 9.36412275e-01 -8.07530224e-01 -4.83691067e-01 -1.58382639e-01 4.72760230e-01 -3.47608745e-01 1.12028694e+00 7.25753754e-02 -8.99400473e-01 -7.53485143e-01 -1.28903842e+00 -2.58982390e-01 -4.51123893e-01 -1.76212907e-01 1.06139278e+00 2.78724492e-01 -9.10025179e-01 8.99588943e-01 -1.09009695e+00 -3.50345492e-01 5.38586318e-01 3.94861072e-01 -4.38768685e-01 -3.17743272e-02 -9.13232446e-01 1.09276557e+00 3.33560377e-01 1.19866297e-01 -7.25688338e-01 -7.30816185e-01 -6.73193753e-01 1.54876158e-01 -1.65060833e-01 -1.10931325e+00 1.20583248e+00 -5.49144149e-01 -1.03332686e+00 6.05002344e-01 -3.64467174e-01 -6.06727660e-01 2.25423962e-01 -2.44247153e-01 -2.07009301e-01 -2.56024808e-01 1.98197559e-01 1.17957199e+00 3.29640806e-01 -1.65935707e+00 -4.03168619e-01 -3.27575654e-01 1.64761648e-01 3.89978699e-02 2.72002190e-01 -6.09297276e-01 -1.30036727e-01 -1.73914552e-01 5.86930037e-01 -1.10354233e+00 -1.51803255e-01 5.45180023e-01 -4.05626267e-01 -4.19306189e-01 7.60942101e-01 -1.58636197e-01 4.10842568e-01 -2.21839237e+00 -1.13423213e-01 -6.50018677e-02 6.58839166e-01 -2.95653474e-02 5.39846942e-02 9.62437540e-02 -3.12578708e-01 5.13343751e-01 -4.14040267e-01 -4.73254651e-01 3.65210593e-01 4.39352959e-01 -5.46082258e-01 3.81465614e-01 5.62966704e-01 1.01150441e+00 -7.81170845e-01 -1.17531195e-01 7.15833187e-01 7.59014010e-01 -4.69540745e-01 2.13295855e-02 -3.13314468e-01 5.49150705e-01 -6.27227902e-01 5.51056623e-01 9.38730001e-01 -1.94189280e-01 -6.58193707e-01 8.34454969e-02 -2.06587672e-01 2.75037140e-01 -6.57348990e-01 1.75433743e+00 -2.84201413e-01 1.06725192e+00 -5.56595027e-01 -7.13572264e-01 1.29693615e+00 9.18963850e-02 2.89858580e-01 -3.85157198e-01 2.53629923e-01 5.44288397e-01 1.95184369e-02 -3.09066087e-01 7.46681571e-01 -3.49429995e-01 1.72391117e-01 1.26175106e-01 -3.17604721e-01 -6.14403784e-01 -5.02502382e-01 3.96487489e-02 8.45412493e-01 4.19597745e-01 1.54813454e-01 -2.73754150e-01 1.43286496e-01 5.54769218e-01 3.32619160e-01 5.69045961e-01 -3.18360150e-01 1.12413800e+00 -1.30196035e-01 -7.95992434e-01 -1.32362461e+00 -9.80456829e-01 -4.20761853e-01 8.20910931e-02 7.77830541e-01 -2.22717628e-01 -5.69641590e-01 -3.84166420e-01 4.32393461e-01 1.10139322e+00 -5.83845139e-01 -4.27312046e-01 -2.05915630e-01 -5.19185923e-02 3.97239685e-01 6.97871387e-01 5.30872583e-01 -8.95643592e-01 -3.93904090e-01 -1.89255700e-01 -1.94923133e-01 -7.83745050e-01 2.45438993e-01 1.90281525e-01 -1.12629843e+00 -8.52367103e-01 -1.98788002e-01 -1.75660610e-01 5.72263777e-01 8.71797144e-01 1.14438033e+00 6.26471579e-01 2.17146471e-01 3.77362110e-02 -2.45228142e-01 -1.01831639e+00 -3.58185709e-01 7.89519697e-02 3.31091642e-01 -6.16167545e-01 7.73775518e-01 -5.79446614e-01 -5.20992339e-01 3.33760858e-01 -7.67313480e-01 5.22236168e-01 4.94285554e-01 2.56477445e-01 7.42918134e-01 -2.12865889e-01 3.65148067e-01 -3.95597488e-01 3.36789995e-01 -7.06825197e-01 -4.63182718e-01 -2.86117136e-01 -7.29846895e-01 2.85592288e-01 4.06158626e-01 7.22602755e-03 -6.50864065e-01 -3.06221191e-02 -2.61630893e-01 -9.11546946e-01 -4.45550233e-01 4.67803508e-01 -9.73536819e-02 -6.20193481e-02 8.30664277e-01 -1.43827081e-01 1.17583305e-01 -3.78959984e-01 4.59309191e-01 5.91783285e-01 5.23765743e-01 -4.68971819e-01 1.18648779e+00 7.84707785e-01 2.04137489e-01 -3.87193382e-01 -6.31096363e-01 -2.88486898e-01 -5.28051674e-01 -4.12872553e-01 7.66269505e-01 -8.97969902e-01 -6.70630157e-01 -1.50814816e-01 -1.66236353e+00 -4.81460728e-02 -3.53988230e-01 7.18291342e-01 -6.82972729e-01 4.29209433e-02 -2.49090008e-02 -7.82173574e-01 -1.32380605e-01 -1.32818294e+00 1.34761906e+00 2.37651557e-01 -3.72710884e-01 -7.85894275e-01 -1.53894231e-01 2.81359434e-01 3.59201729e-01 4.57329690e-01 7.85775304e-01 -4.78226125e-01 -1.18957257e+00 -1.91227108e-01 -5.15969396e-01 -1.68584157e-02 -1.84817519e-02 2.06048906e-01 -1.10228741e+00 2.10059017e-01 -7.63116544e-03 2.18268901e-01 8.38509321e-01 6.39037728e-01 1.26665485e+00 -2.89731286e-02 -5.85344434e-01 6.99424982e-01 1.36318493e+00 1.92186888e-02 5.28579354e-01 5.75368881e-01 7.25985467e-01 6.00080848e-01 7.01169491e-01 1.10909052e-01 4.68725950e-01 5.96166551e-01 1.21665227e+00 -1.72889665e-01 -1.58935174e-01 -3.81998777e-01 -3.89361642e-02 6.92723751e-01 -2.87115395e-01 -3.12766790e-01 -1.16310966e+00 4.85950172e-01 -2.19028401e+00 -8.24854195e-01 -9.56282318e-01 1.94045949e+00 7.01995566e-02 1.90869093e-01 -4.05706584e-01 2.21561268e-01 7.63331831e-01 -1.30747885e-01 -7.28240788e-01 -3.73190194e-01 -1.11195788e-01 -6.57034889e-02 4.12197798e-01 5.77504516e-01 -6.82772636e-01 7.16778934e-01 5.63260651e+00 3.72302771e-01 -1.07932258e+00 1.31669819e-01 3.50788087e-01 -4.29692343e-02 -9.58391905e-01 3.11232239e-01 -5.45966983e-01 3.15351397e-01 8.18064213e-01 -1.61864027e-01 1.06751718e-01 1.21221316e+00 5.92687070e-01 3.54459137e-01 -1.27047563e+00 9.86428857e-01 -1.80827111e-01 -1.78015363e+00 2.18468592e-01 3.25483948e-01 6.33759797e-01 3.95011574e-01 2.27109566e-01 1.50297493e-01 6.09416142e-02 -1.18880844e+00 1.08984256e+00 6.59707129e-01 5.44151247e-01 -6.32567465e-01 8.30451369e-01 4.68465418e-01 -8.69618714e-01 2.16933697e-01 -8.13207507e-01 -4.05190170e-01 1.18858144e-01 8.00596356e-01 -7.66789615e-01 7.31143773e-01 8.62495482e-01 9.54495192e-01 -3.57303739e-01 1.10784638e+00 -5.07852316e-01 4.60646391e-01 -4.01851892e-01 -1.66463703e-01 2.56690592e-01 2.10569566e-03 7.62388349e-01 5.93765020e-01 6.81731284e-01 7.89694339e-02 -2.72764921e-01 1.65800917e+00 1.05678104e-01 -3.80942881e-01 -1.03651202e+00 3.47673386e-01 4.82986480e-01 9.72974896e-01 -4.77374166e-01 -5.32187894e-02 -1.11992665e-01 4.31573123e-01 1.96450427e-01 1.62321121e-01 -1.13154614e+00 -9.48973596e-02 9.97416973e-01 2.38687828e-01 -1.02917597e-01 -4.50436592e-01 -9.91972744e-01 -1.03732216e+00 2.30302468e-01 -3.04876089e-01 -3.77308756e-01 -1.59649527e+00 -1.16102040e+00 7.26555288e-01 2.24098787e-01 -1.65672731e+00 -1.79134205e-01 -8.49970520e-01 -7.70900190e-01 1.01648676e+00 -1.69117332e+00 -1.24783313e+00 -9.68852520e-01 1.11768171e-01 5.19246995e-01 -2.69107916e-03 6.66341543e-01 -3.24207023e-02 -1.75067797e-01 -4.65363823e-02 -4.01313193e-02 -4.98708308e-01 2.34207153e-01 -1.14293742e+00 1.01787364e+00 6.36555314e-01 1.71879232e-01 7.64820695e-01 1.11511922e+00 -6.35423541e-01 -1.30263841e+00 -1.18592179e+00 8.27628493e-01 -9.08689082e-01 3.53327751e-01 -2.02893779e-01 -1.13290417e+00 6.41000748e-01 1.38670141e-02 4.32402194e-02 2.66744584e-01 1.69552505e-01 -2.57021129e-01 -7.74002215e-03 -9.49365079e-01 5.11880755e-01 1.23314238e+00 -3.01526248e-01 -6.50597095e-01 3.49990219e-01 1.06786203e+00 -4.31590259e-01 -5.26932418e-01 7.34537780e-01 4.72671956e-01 -1.23173869e+00 7.31392801e-01 -4.33309823e-01 9.01360273e-01 -6.82856321e-01 -2.84755141e-01 -1.24189377e+00 -4.61655527e-01 1.17745344e-02 5.14415503e-02 8.29151630e-01 6.05672836e-01 -7.97801197e-01 1.02633488e+00 7.64453173e-01 -8.86087894e-01 -7.78966248e-01 -1.00081670e+00 -8.02490413e-01 3.33365887e-01 -8.87584090e-01 1.26372647e+00 8.67291093e-01 -1.14558928e-01 4.72438969e-02 2.36362331e-02 6.26499891e-01 5.70563018e-01 2.73367167e-01 9.72935319e-01 -1.65649164e+00 5.71110584e-02 -6.20531678e-01 -7.92361915e-01 -9.84178543e-01 2.65775532e-01 -1.11430109e+00 1.47709534e-01 -2.02751088e+00 1.38578385e-01 -7.47206807e-01 -1.05000146e-01 4.16048199e-01 -3.82203199e-02 7.53403679e-02 3.16189647e-01 6.40776515e-01 -1.37822434e-01 8.96845162e-01 1.03589272e+00 -3.44008505e-01 1.69218898e-01 -6.11340292e-02 -8.00923347e-01 6.84033811e-01 1.18575907e+00 -7.23050594e-01 -4.24211144e-01 -8.73465896e-01 2.62905955e-01 -1.77610904e-01 7.38602996e-01 -1.31811619e+00 9.99371484e-02 -2.77866244e-01 3.08223218e-01 -8.24738801e-01 5.65295041e-01 -1.05800045e+00 6.35226846e-01 4.79115516e-01 -8.75466168e-02 1.83391586e-01 4.32474822e-01 6.03872836e-01 -2.36993730e-01 -4.61530462e-02 4.69014525e-01 7.08126873e-02 -5.82343638e-01 6.40938163e-01 3.22213881e-02 -6.27361655e-01 8.91197264e-01 -6.11937881e-01 -5.08067667e-01 -4.77814078e-01 -3.01652610e-01 1.27508506e-01 7.52351820e-01 8.24738026e-01 9.30992305e-01 -1.51921070e+00 -7.45011687e-01 8.40072557e-02 5.38416922e-01 3.73124599e-01 1.41019240e-01 3.33499283e-01 -6.77707136e-01 6.59049511e-01 -2.42836922e-01 -1.12929595e+00 -7.71786928e-01 4.53454047e-01 4.64251131e-01 5.99080503e-01 -7.54670501e-01 6.35667801e-01 4.85535532e-01 -8.14617991e-01 -2.45094448e-01 -8.45006049e-01 8.05630088e-02 -9.42416787e-01 6.55844063e-02 3.30858640e-02 4.83836457e-02 -6.80316985e-01 -3.95594358e-01 5.90478361e-01 4.79000956e-01 -4.48770225e-02 1.28516316e+00 7.36776069e-02 1.93742812e-01 6.80690050e-01 7.95703292e-01 -5.05558789e-01 -1.37578559e+00 2.50031710e-01 -1.38370454e-01 -5.60548902e-01 1.00979544e-02 -5.79091609e-01 -9.14929867e-01 1.29186213e+00 5.55773199e-01 3.19391280e-01 6.12060726e-01 2.07548648e-01 5.15952408e-01 2.24978328e-01 5.48754811e-01 -2.44114265e-01 -4.26316142e-01 3.36932570e-01 1.19272804e+00 -1.38215113e+00 -1.46502350e-02 -5.89934886e-01 -4.10046816e-01 9.46621120e-01 6.21996641e-01 -2.25714430e-01 5.93509912e-01 -1.56787395e-01 -3.15839797e-02 -4.24430728e-01 -7.49274969e-01 -5.48185520e-02 3.71966869e-01 7.50755906e-01 2.37763360e-01 2.98842937e-01 9.37178433e-02 6.96550786e-01 -6.90088511e-01 -8.72516930e-02 4.33671921e-01 3.73933613e-01 -5.91780365e-01 -8.01710010e-01 -2.84935713e-01 2.54987389e-01 1.97215781e-01 -2.93090120e-02 -5.40250123e-01 1.06777966e+00 2.79266775e-01 1.04893661e+00 2.02568069e-01 -7.04379261e-01 3.65923226e-01 -2.18409076e-01 9.72739011e-02 -4.47637320e-01 -1.73664868e-01 -6.66868091e-01 -2.31158406e-01 -5.58184564e-01 -5.21466911e-01 -4.33754802e-01 -1.71902168e+00 -8.61565888e-01 -5.73748767e-01 2.34103665e-01 1.34363413e+00 1.07648695e+00 7.98512757e-01 4.93594229e-01 3.77234578e-01 -1.16615188e+00 -1.25562340e-01 -8.44151080e-01 -2.39295140e-01 3.77466559e-01 3.96984428e-01 -1.08455038e+00 -5.48588157e-01 -3.70311439e-01]
[8.115801811218262, -3.4908127784729004]
a55e8795-6258-4361-9d39-63871e0b52e0
naomi-non-autoregressive-multiresolution
1901.10946
null
https://arxiv.org/abs/1901.10946v3
https://arxiv.org/pdf/1901.10946v3.pdf
NAOMI: Non-Autoregressive Multiresolution Sequence Imputation
Missing value imputation is a fundamental problem in spatiotemporal modeling, from motion tracking to the dynamics of physical systems. Deep autoregressive models suffer from error propagation which becomes catastrophic for imputing long-range sequences. In this paper, we take a non-autoregressive approach and propose a novel deep generative model: Non-AutOregressive Multiresolution Imputation (NAOMI) to impute long-range sequences given arbitrary missing patterns. NAOMI exploits the multiresolution structure of spatiotemporal data and decodes recursively from coarse to fine-grained resolutions using a divide-and-conquer strategy. We further enhance our model with adversarial training. When evaluated extensively on benchmark datasets from systems of both deterministic and stochastic dynamics. NAOMI demonstrates significant improvement in imputation accuracy (reducing average prediction error by 60% compared to autoregressive counterparts) and generalization for long range sequences.
['Yukai Liu', 'Yisong Yue', 'Rose Yu', 'Stephan Zheng', 'Eric Zhan']
2019-01-30
naomi-non-autoregressive-multiresolution-1
http://papers.nips.cc/paper/9302-naomi-non-autoregressive-multiresolution-sequence-imputation
http://papers.nips.cc/paper/9302-naomi-non-autoregressive-multiresolution-sequence-imputation.pdf
neurips-2019-12
['multivariate-time-series-imputation']
['time-series']
[ 3.22095841e-01 -4.31007355e-01 -1.21548414e-01 -3.04166734e-01 -1.21425533e+00 -5.53739250e-01 6.23132706e-01 -5.57352901e-01 -9.17713568e-02 1.30961454e+00 5.81006765e-01 -1.84053808e-01 -2.86322623e-01 -8.70208561e-01 -1.12278318e+00 -7.96005785e-01 -2.48650044e-01 4.14170921e-01 -8.49206522e-02 -2.34860331e-01 -1.12255923e-01 4.30386722e-01 -1.31735122e+00 4.50060964e-01 7.40939021e-01 7.29238391e-01 -2.28844807e-01 1.10083139e+00 2.35244393e-01 1.47931659e+00 -5.68155944e-01 -1.43936694e-01 1.36901915e-01 -2.48797506e-01 -2.43434995e-01 -4.07200247e-01 1.84486941e-01 -5.43145597e-01 -6.66525483e-01 3.85036528e-01 3.63026083e-01 3.44339639e-01 9.13683593e-01 -1.31887925e+00 -9.09449518e-01 4.58577961e-01 -6.71459377e-01 3.45348209e-01 1.15816519e-01 3.11901361e-01 3.43113869e-01 -7.91475534e-01 4.04617101e-01 1.04111075e+00 1.24542093e+00 4.03194815e-01 -1.49886751e+00 -7.10998595e-01 3.04627288e-02 -1.25561625e-01 -1.43539035e+00 -5.73021352e-01 5.58620453e-01 -7.98069715e-01 1.14959204e+00 2.40943596e-01 5.67262769e-02 1.76541352e+00 7.28669763e-01 3.30532104e-01 9.37368810e-01 3.43661487e-01 2.65822083e-01 -6.89762950e-01 4.00164016e-02 6.32175282e-02 9.01018381e-02 4.66222703e-01 -7.42512524e-01 -4.02407408e-01 1.13909554e+00 3.31826150e-01 8.71168077e-02 7.99008831e-02 -1.22743917e+00 4.14854974e-01 2.59955898e-02 -1.92130148e-01 -9.10073698e-01 8.18403304e-01 1.35262892e-01 2.75419146e-01 5.27122557e-01 -5.19469082e-02 -3.06009561e-01 -6.30658150e-01 -1.26845121e+00 4.79459077e-01 4.76521581e-01 8.27953339e-01 4.34286922e-01 7.18928218e-01 -3.64390165e-01 6.36429727e-01 -7.11004138e-02 9.01000798e-01 2.19668835e-01 -1.24755204e+00 5.58318973e-01 -9.59860831e-02 5.36697745e-01 -9.90059674e-01 -2.20738396e-01 -6.69517934e-01 -1.63900065e+00 2.83379257e-01 3.26487064e-01 -5.01240373e-01 -1.08667135e+00 1.88682795e+00 1.25484094e-01 9.47070897e-01 2.39824668e-01 1.01179862e+00 4.78556752e-01 9.40321743e-01 3.32988441e-01 -8.20315406e-02 8.05945516e-01 -4.33683693e-01 -6.57442927e-01 -1.58238653e-02 6.25277683e-02 -3.71554434e-01 7.81449258e-01 4.12863165e-01 -1.12727368e+00 -6.45028412e-01 -6.89363539e-01 -1.54052794e-01 -7.68516362e-02 -2.18249679e-01 3.68881792e-01 3.45714420e-01 -8.94913673e-01 5.51902354e-01 -1.32509172e+00 3.50323468e-01 3.35006624e-01 3.19536477e-01 -4.05034482e-01 1.68831870e-01 -1.24932778e+00 4.70489502e-01 -3.01605254e-01 2.23584890e-01 -1.27598619e+00 -1.23800457e+00 -8.74167383e-01 9.53354612e-02 6.43508285e-02 -1.19057107e+00 8.00714493e-01 -4.08157527e-01 -1.40319419e+00 2.53275722e-01 -7.38252819e-01 -9.93050754e-01 7.81877279e-01 -5.16920745e-01 -4.41688329e-01 -4.24795151e-01 1.07136868e-01 1.87511906e-01 1.05476201e+00 -1.00795877e+00 -1.52742937e-01 -3.32441151e-01 -3.31071228e-01 -1.97546750e-01 4.02589768e-01 -3.18182975e-01 1.38084143e-01 -1.14957571e+00 1.23223290e-01 -1.00856173e+00 -4.98483181e-01 -5.45445383e-01 -4.85540330e-01 3.62685293e-01 6.81631804e-01 -9.72596824e-01 1.15286982e+00 -1.74416745e+00 3.47024143e-01 -1.07462786e-01 1.53404832e-01 -2.87593246e-01 -9.19259042e-02 4.36944306e-01 -5.97189404e-02 1.15230791e-01 -5.51866949e-01 -5.84516406e-01 -1.91970840e-02 4.80829209e-01 -9.95675683e-01 3.71567994e-01 1.99875817e-01 1.18005955e+00 -6.19246125e-01 6.92733079e-02 1.69940189e-01 9.85110104e-01 -3.93427074e-01 2.07771853e-01 -1.33987188e-01 1.09261119e+00 -2.44204611e-01 6.18399382e-01 7.62470245e-01 -2.89900333e-01 -2.25047782e-01 1.15420461e-01 1.11312568e-01 -4.82366346e-02 -9.90670025e-01 1.54094207e+00 -6.06294036e-01 5.32219470e-01 -2.07216993e-01 -6.63741648e-01 1.02030921e+00 2.56868958e-01 6.15806878e-01 -4.22729850e-01 -2.75219560e-01 -1.55413806e-01 -5.32121420e-01 -3.20473522e-01 8.34557354e-01 -1.83771998e-01 -5.24532497e-01 3.19455057e-01 -3.67681861e-01 3.84319633e-01 -3.52441013e-01 1.40518039e-01 1.41155398e+00 5.49794853e-01 -1.15474857e-01 7.01362565e-02 1.22958802e-01 4.35819887e-02 8.38540673e-01 1.30881858e+00 1.65150285e-01 9.28431273e-01 4.29638416e-01 -7.25601256e-01 -1.18406057e+00 -1.56354833e+00 1.21010788e-01 1.11009765e+00 -1.88094780e-01 4.70319614e-02 -4.28395152e-01 -2.01268643e-01 4.05029744e-01 8.46584737e-01 -8.82595420e-01 -8.41077045e-02 -8.62479925e-01 -1.09495747e+00 8.12253296e-01 9.42733526e-01 2.48090416e-01 -9.06836629e-01 -5.61673641e-01 4.83914912e-01 -4.14670616e-01 -1.22587919e+00 -2.06831545e-01 -8.74536186e-02 -8.21285307e-01 -4.13781375e-01 -7.43837118e-01 8.27952474e-02 9.30006206e-02 -5.85513078e-02 1.27309632e+00 -3.46466064e-01 4.13741618e-02 8.95235166e-02 7.19647110e-02 -1.21787056e-01 -4.15440083e-01 8.76276791e-02 2.39681184e-01 1.09709240e-01 1.06866695e-01 -1.18322051e+00 -5.64598918e-01 2.73490518e-01 -6.87436283e-01 -4.43659648e-02 3.77561510e-01 8.81635725e-01 9.64640677e-01 -2.63185382e-01 9.37526047e-01 -6.91592097e-01 5.01664996e-01 -1.07552660e+00 -6.53774440e-01 -1.30678147e-01 -1.55097008e-01 5.75520855e-04 7.51769602e-01 -4.56186026e-01 -1.07284117e+00 1.65256619e-01 -1.93921223e-01 -9.88034725e-01 -3.22980940e-01 4.36126888e-01 3.02265678e-02 3.47065419e-01 4.34373826e-01 6.65788174e-01 -9.14319009e-02 -5.10806859e-01 2.59380639e-01 2.60386556e-01 1.22366583e+00 -5.75835943e-01 7.08167195e-01 6.91174865e-01 4.35439616e-01 -7.36538470e-01 -6.01160109e-01 -2.58585978e-02 -5.78052163e-01 -1.42393485e-01 7.48948276e-01 -1.36322010e+00 -8.09702396e-01 6.44320428e-01 -1.16929936e+00 -7.23020554e-01 -3.14898759e-01 4.48500961e-01 -9.26320374e-01 5.70731573e-02 -8.48654866e-01 -1.03785622e+00 -3.09845448e-01 -8.02018881e-01 1.34422028e+00 -1.71826750e-01 -3.72788697e-01 -8.01458359e-01 3.12311977e-01 2.15281934e-01 6.56499743e-01 9.24736857e-01 5.12418449e-01 -2.14281693e-01 -9.92689013e-01 -1.17841750e-01 -4.47076373e-03 -1.50364518e-01 -1.62537217e-01 -1.09862767e-01 -8.19245636e-01 1.37855606e-02 -3.66805345e-02 9.06637684e-02 1.03807676e+00 8.77580762e-01 1.21827018e+00 -4.07718778e-01 -1.17473133e-01 9.71583843e-01 1.36069703e+00 -1.54898778e-01 1.14160109e+00 2.18156561e-01 8.02319527e-01 1.79811791e-01 3.61040205e-01 7.33163059e-01 4.84274358e-01 6.53883815e-01 4.49106216e-01 2.18856230e-01 3.68686803e-02 -5.15584528e-01 3.61114383e-01 4.21696186e-01 -2.77946293e-01 -4.25705314e-01 -1.00728464e+00 7.39288568e-01 -2.10635352e+00 -1.53164089e+00 -5.91744006e-01 2.24767256e+00 4.53718662e-01 -3.19844633e-02 2.07825288e-01 -2.11547539e-01 3.88141841e-01 1.69623926e-01 -8.24984252e-01 -2.49183014e-01 -4.67806220e-01 2.95352954e-02 6.80548072e-01 6.06460571e-01 -1.16119695e+00 8.32513392e-01 6.66062689e+00 5.12728870e-01 -9.09229398e-01 3.08296084e-01 7.15028703e-01 -2.40994453e-01 -1.82783008e-01 -3.46176088e-01 -8.08102071e-01 8.37364495e-01 1.51363599e+00 2.66856756e-02 4.13921863e-01 4.81748790e-01 7.04655588e-01 1.93353012e-01 -6.80589795e-01 8.80872965e-01 -2.88921267e-01 -1.79970849e+00 2.17148140e-02 2.17076749e-01 9.28246915e-01 4.06793833e-01 3.71454686e-01 3.27070594e-01 8.72395098e-01 -1.45257378e+00 4.57676947e-01 1.33239686e+00 6.66245580e-01 -8.73187125e-01 5.88116050e-01 6.51488185e-01 -1.03143489e+00 1.63453236e-01 -3.29804540e-01 -2.82676160e-01 7.01240242e-01 6.29347026e-01 -1.92024678e-01 4.46693063e-01 7.85514057e-01 7.64986336e-01 -1.52150631e-01 6.31140053e-01 -1.72036572e-03 1.00587344e+00 -4.46191311e-01 6.33405030e-01 1.13245065e-03 -2.53766388e-01 8.96110415e-01 1.15045381e+00 6.17609322e-01 1.67628437e-01 -3.56415845e-02 9.34404135e-01 -6.69490844e-02 -7.57165313e-01 -7.85753191e-01 4.43425685e-01 4.85769033e-01 6.60147011e-01 -6.48280457e-02 -4.56158876e-01 -3.78328077e-02 9.72171724e-01 3.84737439e-02 8.06239903e-01 -1.42924726e+00 3.09084114e-02 9.45724905e-01 2.87543863e-01 4.69756365e-01 -6.55534387e-01 -6.73294067e-01 -1.21885347e+00 -1.43310338e-01 -6.29844308e-01 2.78897077e-01 -1.15062928e+00 -1.39678836e+00 7.28578806e-01 1.75101068e-02 -1.22665226e+00 -8.86957705e-01 1.53216556e-01 -4.91913289e-01 1.17579818e+00 -1.31191182e+00 -1.43509030e+00 -4.53055501e-01 6.46860421e-01 5.20029366e-01 2.66753859e-03 7.47881353e-01 2.63234735e-01 -4.51585650e-01 4.53952402e-01 6.53542459e-01 1.29091799e-01 3.65635127e-01 -1.05195463e+00 9.40295815e-01 1.02446902e+00 7.91726336e-02 6.24454618e-01 9.86658812e-01 -9.01518464e-01 -1.54803252e+00 -1.64952075e+00 6.49311185e-01 -7.71771729e-01 7.00951576e-01 -2.80248374e-01 -1.36731458e+00 1.07792699e+00 -7.02921767e-03 1.46944508e-01 5.60622990e-01 -2.72032730e-02 -4.68144476e-01 8.76160860e-02 -1.04421520e+00 3.64889979e-01 1.02051532e+00 -4.31609660e-01 -3.79760206e-01 5.44995666e-02 8.03200781e-01 -4.87488687e-01 -1.28838241e+00 5.66677570e-01 8.55358660e-01 -8.98606598e-01 1.32931292e+00 -8.84195983e-01 7.58221805e-01 -5.18206179e-01 -4.37914312e-01 -1.14122736e+00 -4.20747399e-01 -9.60822761e-01 -6.62665308e-01 1.03284478e+00 3.48561108e-01 -5.41457772e-01 1.06694126e+00 6.77672267e-01 -2.33467687e-02 -5.18824339e-01 -1.05975568e+00 -9.92049098e-01 3.92203987e-01 -7.43960142e-01 9.47272956e-01 8.34426165e-01 -7.57823229e-01 -4.68909666e-02 -1.30926359e+00 6.40911281e-01 1.05345666e+00 1.74924433e-01 1.12378216e+00 -8.54653537e-01 -5.13263106e-01 1.92323297e-01 -3.85104746e-01 -1.24550128e+00 2.90144086e-01 -3.22608709e-01 -1.72895435e-02 -1.27416193e+00 7.31911361e-02 -2.79921681e-01 -2.61071891e-01 3.15995455e-01 -4.08553369e-02 5.10635138e-01 -8.13358501e-02 5.73021948e-01 -4.74164277e-01 6.29990220e-01 6.20261550e-01 -3.97520550e-02 -2.27107868e-01 8.62330198e-02 -1.71876341e-01 5.54946661e-01 8.69472384e-01 -6.67219400e-01 -2.39979506e-01 -7.28282332e-01 1.77982878e-02 7.62765288e-01 9.64574277e-01 -1.11616790e+00 2.24970281e-01 -3.36886793e-01 7.48280466e-01 -1.01065743e+00 7.34995186e-01 -5.62478542e-01 1.19988811e+00 1.15457810e-01 -3.51663828e-01 3.74428451e-01 2.92007983e-01 1.08461690e+00 -7.71413743e-02 5.24431884e-01 4.60305005e-01 1.61808640e-01 -6.04214668e-01 3.78474176e-01 -6.22672617e-01 -1.05938567e-02 7.42535949e-01 -2.42299169e-01 -4.82396811e-01 -8.19553018e-01 -1.28127337e+00 5.63414209e-02 4.19700414e-01 3.96283418e-01 7.65968919e-01 -1.18525624e+00 -1.06293941e+00 2.28105828e-01 -3.02927017e-01 -2.14415789e-01 8.48940670e-01 9.39131379e-01 -2.26471260e-01 2.20174730e-01 -5.70386015e-02 -8.09509099e-01 -9.00551081e-01 4.88695204e-01 4.15028185e-01 -5.08442938e-01 -7.33274817e-01 2.95564801e-01 1.54246977e-02 -3.59696627e-01 -2.52463520e-01 -1.69272691e-01 1.93219438e-01 -3.74519646e-01 5.76823711e-01 6.72161758e-01 -1.28080040e-01 -1.00537872e+00 -2.42342681e-01 5.36401331e-01 3.74476731e-01 -8.33000615e-02 1.52013087e+00 -3.45569640e-01 1.53794631e-01 6.74311697e-01 1.03219652e+00 -3.67762684e-03 -1.79692745e+00 8.68865252e-02 -2.12319046e-01 -4.02802676e-01 -1.31457299e-01 -8.17091942e-01 -7.50243068e-01 8.71383071e-01 4.16512102e-01 3.74678299e-02 9.19501066e-01 -2.52630353e-01 1.03862560e+00 -2.79418677e-02 5.11690199e-01 -2.65166670e-01 -4.79779243e-01 7.03930974e-01 9.94552016e-01 -1.03962505e+00 -2.08489507e-01 -8.94393697e-02 -6.67480111e-01 5.62558949e-01 2.22991273e-01 -5.34228742e-01 6.67672515e-01 6.78230345e-01 -2.50191748e-01 1.88473508e-01 -1.13120294e+00 1.77875742e-01 1.31986961e-02 8.14619839e-01 2.46779323e-01 1.48127109e-01 4.13187921e-01 9.15245473e-01 -1.56471238e-01 5.53687096e-01 6.10754609e-01 5.86447001e-01 -8.33424330e-02 -6.89258575e-01 -4.73655611e-01 4.61290419e-01 -5.55762053e-01 -1.46441102e-01 2.54883826e-01 6.26786709e-01 -3.16624284e-01 9.24203694e-01 2.59855062e-01 -3.39365959e-01 2.21938640e-01 -1.47726536e-01 7.54856912e-04 1.15719289e-01 -4.99625683e-01 8.86449497e-03 -9.05576274e-02 -6.77786648e-01 -1.65699124e-01 -7.45248914e-01 -1.05726516e+00 -7.48395443e-01 5.05929172e-01 -3.94641645e-02 4.10064608e-01 7.24626541e-01 1.07813668e+00 8.51955831e-01 2.45178491e-01 -8.56432915e-01 -6.41108751e-01 -7.58197963e-01 -2.54415780e-01 3.86909395e-01 7.33887613e-01 -5.94297647e-01 -2.73509085e-01 3.06562513e-01]
[7.036133289337158, 3.2579617500305176]
935fe2c8-a11f-447a-a309-b385fdf836ca
attentive-one-dimensional-heatmap-regression
2004.02108
null
https://arxiv.org/abs/2004.02108v7
https://arxiv.org/pdf/2004.02108v7.pdf
Attentive One-Dimensional Heatmap Regression for Facial Landmark Detection and Tracking
Although heatmap regression is considered a state-of-the-art method to locate facial landmarks, it suffers from huge spatial complexity and is prone to quantization error. To address this, we propose a novel attentive one-dimensional heatmap regression method for facial landmark localization. First, we predict two groups of 1D heatmaps to represent the marginal distributions of the x and y coordinates. These 1D heatmaps reduce spatial complexity significantly compared to current heatmap regression methods, which use 2D heatmaps to represent the joint distributions of x and y coordinates. With much lower spatial complexity, the proposed method can output high-resolution 1D heatmaps despite limited GPU memory, significantly alleviating the quantization error. Second, a co-attention mechanism is adopted to model the inherent spatial patterns existing in x and y coordinates, and therefore the joint distributions on the x and y axes are also captured. Third, based on the 1D heatmap structures, we propose a facial landmark detector capturing spatial patterns for landmark detection on an image; and a tracker further capturing temporal patterns with a temporal refinement mechanism for landmark tracking. Experimental results on four benchmark databases demonstrate the superiority of our method.
['Shangfei Wang', 'Enhong Chen', 'Xiaoping Chen', 'Shi Yin']
2020-04-05
null
null
null
null
['landmark-tracking']
['computer-vision']
[-2.78916627e-01 -1.78394392e-01 -2.37146780e-01 -5.05352736e-01 -8.01326513e-01 -7.07847178e-02 4.39498335e-01 5.60688786e-02 -2.75644273e-01 2.17268690e-01 -1.29432958e-02 1.00791410e-01 6.22986350e-03 -6.89357340e-01 -5.68264663e-01 -8.41033995e-01 -7.94461966e-02 1.71275765e-01 9.72067192e-02 2.89396942e-01 4.28002983e-01 5.74962199e-01 -1.57983851e+00 -2.76178122e-01 7.37457573e-01 1.35133183e+00 -1.05846614e-01 2.10066959e-01 -2.63904899e-01 1.96751326e-01 -3.27281922e-01 1.11445887e-02 6.88146800e-02 -2.33330801e-01 -2.73205906e-01 -1.60647616e-01 7.60943532e-01 -2.39934906e-01 -2.13022381e-01 1.10428631e+00 4.86151993e-01 2.65871082e-02 6.47269607e-01 -1.41985989e+00 -8.47174704e-01 -9.95856151e-02 -1.18912268e+00 -7.95969814e-02 3.39017242e-01 -4.42993976e-02 6.26165867e-01 -1.32105064e+00 3.43275100e-01 1.35556960e+00 8.63363504e-01 4.45103347e-01 -1.26542699e+00 -1.19074178e+00 2.41099879e-01 2.15696782e-01 -2.24122715e+00 -4.16728020e-01 9.32752311e-01 -3.39845598e-01 5.79469264e-01 9.85002816e-02 5.84746301e-01 3.95849437e-01 2.40116298e-01 6.18405521e-01 1.03678191e+00 -2.66219914e-01 2.09550828e-01 -8.95236507e-02 -2.94162422e-01 1.18050599e+00 -2.13091955e-01 -6.24768101e-02 -7.00387657e-01 -3.01492423e-01 9.99595881e-01 2.92344332e-01 -2.85212874e-01 -5.97766101e-01 -8.09975803e-01 6.93347096e-01 8.10729682e-01 2.09125951e-01 -4.39483851e-01 2.37411767e-01 3.67817394e-02 -2.65382230e-01 6.36809707e-01 -1.54119596e-01 -7.27628097e-02 -1.20350324e-01 -1.19638813e+00 -9.74424556e-02 9.18982923e-02 1.04753780e+00 1.20842111e+00 -2.48713702e-01 -2.52289295e-01 8.05239260e-01 7.28300095e-01 6.36160851e-01 4.59800333e-01 -6.34435236e-01 4.23264742e-01 9.53307867e-01 8.75219926e-02 -1.69669330e+00 -7.66733527e-01 1.58542842e-01 -1.01359749e+00 3.41673851e-01 4.09662604e-01 5.75534776e-02 -1.03817344e+00 1.67165077e+00 5.84987521e-01 4.26210642e-01 -5.31460464e-01 1.04071259e+00 7.11919904e-01 7.99145103e-01 2.53625602e-01 -2.10890055e-01 1.19057810e+00 -7.64830351e-01 -6.03798509e-01 1.59189373e-01 4.29501235e-01 -6.24901891e-01 8.59674990e-01 -1.27957508e-01 -9.48424160e-01 -6.61039770e-01 -7.86902964e-01 -2.53595054e-01 -4.14930373e-01 3.64065677e-01 4.07137275e-01 7.15218663e-01 -1.35890996e+00 3.74178231e-01 -1.10035622e+00 -2.95373023e-01 6.34596050e-01 4.95564133e-01 -3.84273618e-01 3.63882743e-02 -8.00102651e-01 5.51838636e-01 -9.42768082e-02 4.79132473e-01 -3.07322383e-01 -9.32096004e-01 -1.10662866e+00 2.23623917e-01 4.82009538e-02 -3.17947529e-02 6.81809366e-01 -2.76027620e-01 -1.48677206e+00 6.46273196e-01 -6.77073240e-01 2.76076734e-01 3.38424981e-01 -1.93575136e-02 -3.64965796e-01 1.46966964e-01 1.59895718e-01 1.04363120e+00 1.15329456e+00 -9.77206290e-01 -7.27864623e-01 -6.90617323e-01 -6.49538040e-01 2.09901109e-01 -3.99406344e-01 -1.09089829e-01 -8.29555988e-01 -3.82242322e-01 5.61773241e-01 -8.14627111e-01 -2.11818025e-01 5.78760326e-01 -4.46522325e-01 -4.54915345e-01 8.67178917e-01 -4.28267032e-01 1.43813097e+00 -2.41226172e+00 -6.35510907e-02 5.81645370e-01 3.45540464e-01 7.85741061e-02 4.17618174e-03 -5.56138717e-02 2.21211486e-03 1.36601537e-01 -2.57850103e-02 -5.94905198e-01 4.20150300e-03 -1.47954196e-01 -1.00481234e-01 7.58818448e-01 4.58664685e-01 8.06865633e-01 -7.96705544e-01 -7.86887527e-01 3.24003100e-01 9.69387174e-01 -4.07014459e-01 2.40202211e-02 2.87727594e-01 3.82232666e-01 -5.36199927e-01 8.46966565e-01 1.06953979e+00 -1.78608090e-01 -2.00477436e-01 -3.60958040e-01 -3.28221709e-01 -4.57763821e-02 -1.09766233e+00 1.84481013e+00 -3.07446420e-01 5.36633611e-01 -1.31356195e-01 -5.44448256e-01 1.41516364e+00 7.14488998e-02 6.85194314e-01 -1.02518237e+00 8.81981626e-02 -4.25029919e-02 -6.46305203e-01 4.91961986e-02 4.37584072e-01 -9.78295691e-03 2.92633078e-03 4.72483516e-01 -9.17218551e-02 1.11203097e-01 -2.74830490e-01 -1.11652970e-01 6.22489870e-01 2.37499669e-01 8.03090408e-02 -1.83339760e-01 5.47262013e-01 -1.81881562e-01 7.82122433e-01 2.49010295e-01 -4.22212601e-01 7.81694114e-01 5.97580671e-01 -7.30729997e-01 -7.70917594e-01 -7.97412992e-01 -4.04151708e-01 9.10299480e-01 3.94560903e-01 -7.64838338e-01 -8.19411933e-01 -6.74144268e-01 1.89139768e-01 1.86407611e-01 -1.11274028e+00 7.55729452e-02 -6.82283878e-01 -7.04960465e-01 3.04363906e-01 4.97614473e-01 5.96895099e-01 -7.13678658e-01 -7.72557735e-01 -9.45877563e-03 1.44484550e-01 -6.88610792e-01 -9.70324934e-01 -2.04315022e-01 -6.89467549e-01 -1.07494903e+00 -9.05055583e-01 -9.49345887e-01 1.02902615e+00 4.38021153e-01 6.79901004e-01 7.78858587e-02 -4.65115219e-01 2.75273114e-01 -3.60054038e-02 -1.56661436e-01 3.26534152e-01 -1.51117727e-01 7.24796280e-02 4.56397921e-01 7.58570135e-01 -4.66757357e-01 -9.78209555e-01 6.50069892e-01 -3.60293180e-01 1.02700163e-02 5.74620962e-01 7.33044386e-01 9.72993612e-01 9.85523760e-02 4.69020456e-02 -5.91178656e-01 2.19280049e-01 -3.82942766e-01 -8.56835365e-01 2.70692080e-01 -7.06705511e-01 -8.67502950e-03 4.86526936e-01 -3.86600077e-01 -7.51637995e-01 3.85148555e-01 1.48275599e-01 -6.25922441e-01 -1.14743643e-01 9.60535556e-02 -2.38441722e-03 -3.28182846e-01 2.08109692e-01 3.33025992e-01 2.58549601e-01 -4.86471444e-01 5.63101053e-01 4.44256604e-01 3.95782650e-01 -3.02471310e-01 7.88494289e-01 5.48368990e-01 2.43385002e-01 -8.12339365e-01 -2.35897601e-01 -4.45092469e-01 -9.70409393e-01 -1.83395162e-01 9.61343169e-01 -7.72573411e-01 -1.00110960e+00 2.41620392e-01 -1.01637626e+00 -4.28773463e-02 2.19618112e-01 2.96687245e-01 -4.50847715e-01 1.77349448e-01 -2.94945806e-01 -6.99977577e-01 -3.63251686e-01 -1.11240804e+00 1.50611520e+00 6.94493055e-01 -1.31550327e-01 -7.58604228e-01 1.44334093e-01 -3.63577485e-01 2.99402952e-01 3.16880107e-01 9.38801944e-01 9.92208421e-02 -6.08856857e-01 -3.43119800e-01 -6.47373796e-01 -3.77398998e-01 2.79550314e-01 5.54263359e-03 -8.52239728e-01 -1.83623672e-01 -3.15596819e-01 4.61737663e-02 4.55407619e-01 5.30778348e-01 1.22701740e+00 -3.07861894e-01 -5.79964399e-01 8.27514291e-01 1.21080840e+00 1.92233130e-01 4.79002327e-01 8.73356089e-02 8.25453579e-01 5.66264927e-01 7.54097939e-01 5.04632473e-01 5.86941361e-01 9.97772992e-01 1.85493186e-01 -3.43228877e-01 -8.62463489e-02 -7.09558308e-01 -7.33904094e-02 6.65680408e-01 -2.73465198e-02 4.89007145e-01 -8.28500450e-01 3.80103588e-01 -1.82211697e+00 -6.25797629e-01 1.01339594e-01 2.09746766e+00 7.56294191e-01 -3.15238535e-01 2.07245037e-01 -8.84747356e-02 7.39665568e-01 2.36959934e-01 -6.10007048e-01 -5.87140210e-02 3.10113937e-01 1.52245238e-01 2.79041469e-01 3.96961272e-01 -1.10459971e+00 1.01252627e+00 6.40880632e+00 7.76594818e-01 -1.41207242e+00 -7.41714090e-02 7.54405737e-01 -1.40587553e-01 1.23927176e-01 -3.42278033e-01 -1.00879395e+00 7.78191686e-01 5.08844912e-01 9.43314135e-02 1.36348277e-01 9.98728335e-01 6.38008714e-02 -1.16846167e-01 -8.31678867e-01 1.54610920e+00 1.54809862e-01 -1.07847202e+00 -8.61160681e-02 3.98279652e-02 5.54492772e-01 -2.79096425e-01 3.92735809e-01 7.12214634e-02 -7.61995986e-02 -1.11731887e+00 5.37579417e-01 6.35170877e-01 1.21593034e+00 -8.76194000e-01 3.57265443e-01 -3.77532071e-03 -1.55319548e+00 1.69594526e-01 -7.22225904e-01 3.23771954e-01 -7.08427429e-02 1.56249240e-01 -9.02537346e-01 7.47348219e-02 8.35750103e-01 7.92587996e-01 -8.49917948e-01 1.10814416e+00 -1.65695384e-01 1.37852520e-01 -4.62731898e-01 -2.56103665e-01 2.74694532e-01 -2.62406200e-01 -4.42221686e-02 1.17077029e+00 5.02447367e-01 2.14840487e-01 9.24386308e-02 8.35864723e-01 1.89629048e-01 3.75207037e-01 -4.72240329e-01 5.00308990e-01 7.15752184e-01 1.30733383e+00 -7.58266091e-01 -4.08555381e-03 -4.41150129e-01 8.26576710e-01 4.71864700e-01 4.77861404e-01 -8.60843003e-01 -6.96694553e-01 7.82978892e-01 1.46988705e-01 3.18726271e-01 -4.30935830e-01 -5.22850454e-01 -7.53391385e-01 7.80533552e-02 -2.06157073e-01 2.75727898e-01 -6.54243588e-01 -8.03949296e-01 7.56452501e-01 -1.76188514e-01 -1.30047870e+00 -9.53271762e-02 -4.60297704e-01 -5.30498326e-01 1.03547430e+00 -1.59380746e+00 -1.05847168e+00 -5.59654772e-01 7.69048750e-01 1.99033886e-01 -4.45129685e-02 9.52590823e-01 1.91271886e-01 -7.41019368e-01 9.51197267e-01 -9.48127359e-02 3.46204698e-01 7.27068484e-01 -1.11228848e+00 5.52683711e-01 4.64692354e-01 3.66445631e-01 7.16258466e-01 1.99724630e-01 -4.93179977e-01 -1.52541637e+00 -1.16435754e+00 9.17357504e-01 -3.73246193e-01 3.23959261e-01 -4.97648567e-01 -1.04570019e+00 4.01648313e-01 -3.50802064e-01 3.86826038e-01 6.78638875e-01 1.69168338e-01 -5.66956341e-01 -4.11438346e-01 -1.22837281e+00 6.21918380e-01 8.21003199e-01 -5.27189016e-01 -2.93538067e-02 1.23719834e-01 1.94067493e-01 -4.44335103e-01 -8.70095551e-01 1.82223111e-01 7.62969732e-01 -9.09989655e-01 8.31134617e-01 -1.03556871e-01 -1.75467134e-02 -6.53731406e-01 1.16639368e-01 -1.20029330e+00 -5.79895854e-01 -7.06751764e-01 -1.37267038e-01 1.26081204e+00 2.26612315e-01 -4.35239553e-01 1.04433668e+00 9.96693313e-01 2.72955328e-01 -9.80510652e-01 -1.32865334e+00 -4.07771587e-01 -2.64873207e-01 -2.38736033e-01 8.85079384e-01 7.05653906e-01 2.55768538e-01 1.08562343e-01 -3.00032347e-01 2.88977563e-01 7.34432995e-01 2.15288997e-01 8.11833799e-01 -1.00488079e+00 5.58528781e-01 -8.16182137e-01 -9.50529337e-01 -1.28139234e+00 1.75803131e-03 -5.21977186e-01 2.38822728e-01 -1.08480191e+00 3.37978713e-02 -9.46967125e-01 -3.75705898e-01 7.97141790e-01 -2.54828602e-01 8.01469743e-01 3.12220454e-02 4.00983453e-01 -7.00750470e-01 7.74937272e-01 1.00571620e+00 6.80665672e-03 -4.67036635e-01 -3.09210807e-01 -5.31580389e-01 5.99123240e-01 4.64503437e-01 -4.82898623e-01 -1.49511039e-01 -4.72705543e-01 -1.26568213e-01 -1.27771258e-01 1.53662086e-01 -8.77105594e-01 7.73136258e-01 -5.93196601e-02 9.47082639e-01 -8.96188259e-01 5.29336393e-01 -8.09414864e-01 -8.60944018e-02 5.24399690e-02 -4.74381968e-02 1.36841953e-01 2.75339216e-01 5.86944699e-01 -2.87542045e-01 4.16841358e-01 9.98468816e-01 3.42455715e-01 -5.79612613e-01 6.86764479e-01 9.53802019e-02 -4.49791551e-01 1.15713489e+00 -3.11206669e-01 6.05235957e-02 -2.30304405e-01 -4.84908998e-01 2.34126836e-01 4.35337692e-01 4.62990671e-01 8.83983314e-01 -1.86001611e+00 -4.57890779e-01 8.18705678e-01 6.52017891e-02 1.00294426e-01 2.98557222e-01 9.22578037e-01 -4.77524817e-01 5.70640981e-01 -2.88955748e-01 -9.12444055e-01 -1.23303461e+00 6.65199578e-01 1.08720377e-01 2.98737794e-01 -7.82522857e-01 9.07452643e-01 3.85163546e-01 -1.26071289e-01 4.07006741e-01 -2.80550063e-01 -3.20911527e-01 4.75865789e-02 1.05002010e+00 3.01585913e-01 -8.64989087e-02 -9.57515061e-01 -5.84293246e-01 1.50280225e+00 -1.33016899e-01 1.23153202e-01 1.19498777e+00 -2.62542516e-01 -9.43169817e-02 2.20517635e-01 1.48201180e+00 -1.56980455e-01 -1.66205192e+00 -2.52567440e-01 7.80584738e-02 -9.07853246e-01 1.11701339e-01 -2.63936907e-01 -1.28910911e+00 1.09719455e+00 7.99056530e-01 1.01317083e-02 1.33992183e+00 -1.35996595e-01 6.12554252e-01 -2.60288179e-01 4.31190461e-01 -8.63220215e-01 -1.84557244e-01 1.03663415e-01 7.79091835e-01 -1.18900108e+00 6.22318424e-02 -4.72874314e-01 -4.98514235e-01 1.21800745e+00 6.10684216e-01 -6.52009770e-02 9.49680448e-01 -1.25487056e-02 1.84296459e-01 -2.42641464e-01 -3.16896528e-01 -1.47398263e-02 5.48178494e-01 6.91608012e-01 2.91852534e-01 -5.20016141e-02 8.09662603e-03 2.89276332e-01 -7.91925192e-02 -2.39568889e-01 -2.37193510e-01 6.52371585e-01 -3.16006899e-01 -7.94838130e-01 -5.42028725e-01 8.14119056e-02 -4.86564487e-02 8.70139599e-02 -1.48558080e-01 6.58620119e-01 2.79814862e-02 7.04555333e-01 4.25152421e-01 -4.39131230e-01 2.84834564e-01 2.77257636e-02 3.47555518e-01 -3.37805331e-01 8.47517326e-02 2.94223756e-01 -7.53200948e-01 -9.06903684e-01 -5.99825904e-02 -5.45863211e-01 -1.26153636e+00 -1.86005399e-01 -1.05769947e-01 2.13678479e-01 9.85386014e-01 4.86230165e-01 7.82085598e-01 -7.03872517e-02 9.06116068e-01 -1.11530399e+00 -7.78622255e-02 -9.19160247e-01 -5.91944695e-01 1.98900849e-01 4.57187980e-01 -1.00017500e+00 -3.70653123e-02 -1.83856457e-01]
[13.506365776062012, 0.38331639766693115]
755c2bbb-b8a7-4328-862d-80742262e01c
ur-channel-robust-synthetic-speech-detection
2107.12018
null
https://arxiv.org/abs/2107.12018v2
https://arxiv.org/pdf/2107.12018v2.pdf
UR Channel-Robust Synthetic Speech Detection System for ASVspoof 2021
In this paper, we present UR-AIR system submission to the logical access (LA) and the speech deepfake (DF) tracks of the ASVspoof 2021 Challenge. The LA and DF tasks focus on synthetic speech detection (SSD), i.e. detecting text-to-speech and voice conversion as spoofing attacks. Different from previous ASVspoof challenges, the LA task this year presents codec and transmission channel variability, while the new task DF presents general audio compression. Built upon our previous research work on improving the robustness of the SSD systems to channel effects, we propose a channel-robust synthetic speech detection system for the challenge. To mitigate the channel variability issue, we use an acoustic simulator to apply transmission codec, compression codec, and convolutional impulse responses to augmenting the original datasets. For the neural network backbone, we propose to use Emphasized Channel Attention, Propagation and Aggregation Time Delay Neural Networks (ECAPA-TDNN) as our primary model. We also incorporate one-class learning with channel-robust training strategies to further learn a channel-invariant speech representation. Our submission achieved EER 20.33% in the DF task; EER 5.46% and min-tDCF 0.3094 in the LA task.
['Zhiyao Duan', 'Ge Zhu', 'You Zhang', 'Xinhui Chen']
2021-07-26
null
null
null
null
['synthetic-speech-detection']
['audio']
[ 1.34471014e-01 -1.52493753e-02 -1.75963029e-01 -2.64629517e-02 -1.17068434e+00 -4.67887998e-01 4.44847375e-01 -1.02367416e-01 -2.59938270e-01 2.81032473e-01 4.32915092e-01 -1.11047435e+00 3.21068704e-01 -1.82009861e-01 -7.31048346e-01 -3.88772368e-01 -2.68728107e-01 -2.13285595e-01 2.19670057e-01 -1.02965541e-01 -1.79626375e-01 4.82438087e-01 -1.21206331e+00 5.61226130e-01 4.94200200e-01 1.36698294e+00 3.32305789e-01 1.38229156e+00 1.17541872e-01 7.00017214e-01 -1.13499081e+00 -1.78206757e-01 2.31004819e-01 -2.39288971e-01 -4.69899058e-01 -2.84477949e-01 2.48589680e-01 -6.63783967e-01 -1.11276007e+00 7.82342911e-01 1.18595147e+00 2.54569063e-03 3.97623509e-01 -1.33769047e+00 -2.31467232e-01 8.21611404e-01 -7.97417238e-02 3.91135067e-01 2.59954423e-01 3.63649338e-01 7.83183515e-01 -9.82253313e-01 9.60738584e-02 1.60191882e+00 7.21389651e-01 7.46259630e-01 -8.78463149e-01 -1.12056553e+00 -9.60984752e-02 3.01449537e-01 -1.27066147e+00 -1.24146688e+00 3.34605277e-01 -2.16155604e-01 1.29738069e+00 2.10223079e-01 9.56850573e-02 1.59651649e+00 -1.97856426e-01 1.09808195e+00 6.22616112e-01 -4.16589230e-01 2.40301728e-01 8.61789286e-02 -8.77110735e-02 1.05466090e-01 -3.46444398e-01 7.61180282e-01 -5.45554042e-01 -4.94428501e-02 1.50685221e-01 -5.78695178e-01 -4.92914408e-01 5.06598711e-01 -9.54549491e-01 4.52050090e-01 3.03315353e-02 -8.76917019e-02 -1.44018203e-01 5.07865787e-01 6.69207454e-01 6.81793094e-01 1.93286061e-01 5.73998615e-02 -5.24608314e-01 -3.55362713e-01 -1.17921388e+00 2.20616102e-01 8.30772221e-01 1.09009075e+00 4.68997769e-02 8.81863475e-01 -5.23387253e-01 9.51511741e-01 5.59035659e-01 1.11755812e+00 2.58516937e-01 -7.69612491e-01 9.12794888e-01 -8.39778781e-01 -1.51844233e-01 -5.54657340e-01 -3.30090791e-01 -7.66717136e-01 -6.45218074e-01 -3.97691689e-03 7.36044496e-02 -3.58910322e-01 -1.01878893e+00 1.56020963e+00 -2.34632701e-01 4.23944503e-01 4.73450720e-01 5.53256929e-01 6.26466334e-01 9.86792445e-01 -2.36131072e-01 -1.33472443e-01 1.02469528e+00 -1.08858061e+00 -1.09225845e+00 -1.44105062e-01 6.84440553e-01 -9.89746928e-01 7.74091721e-01 6.85710251e-01 -1.05184376e+00 -7.00270832e-01 -1.38573253e+00 4.22051370e-01 -2.01089934e-01 1.29583538e-01 -7.56592024e-03 1.26249182e+00 -1.12653768e+00 3.11255693e-01 -6.09350204e-01 1.32737616e-02 2.00884983e-01 1.01450771e-01 1.30487546e-01 5.38122803e-02 -1.67516530e+00 4.25454766e-01 1.44511268e-01 -1.77245185e-01 -1.50619543e+00 -7.92182207e-01 -7.03254938e-01 1.24932684e-01 2.39940330e-01 2.52372660e-02 1.63058221e+00 -3.96147698e-01 -1.69453037e+00 2.39835531e-01 -3.13978270e-02 -1.05578446e+00 4.12980437e-01 -2.62183219e-01 -1.41534400e+00 2.56727129e-01 -3.26007187e-01 5.29249132e-01 1.24189854e+00 -1.12086892e+00 -6.94059670e-01 2.89260447e-01 -3.29036176e-01 -1.38104707e-01 -3.25853616e-01 2.71296322e-01 -6.34540021e-01 -1.11595595e+00 -2.15894625e-01 -9.45846736e-01 1.78539440e-01 -3.32891196e-01 -7.57688165e-01 1.91925019e-01 1.35736012e+00 -1.23540401e+00 1.65258682e+00 -2.69799924e+00 -4.71190751e-01 1.98356017e-01 -1.08177967e-01 9.54470932e-01 -2.69502997e-01 4.30744708e-01 -1.03269540e-01 2.89958298e-01 2.13189702e-02 -6.27667725e-01 1.42595053e-01 -1.38213828e-01 -8.08052301e-01 3.20310980e-01 -6.54455647e-02 3.80543351e-01 -4.28468555e-01 9.82080624e-02 1.83516547e-01 6.03018522e-01 -6.77046716e-01 4.07518357e-01 -4.96994667e-02 1.15508690e-01 9.21081826e-02 5.40154994e-01 9.27286565e-01 4.47977006e-01 -3.09970200e-01 -2.70146817e-01 -2.03083474e-02 8.45140874e-01 -1.01302540e+00 1.41873801e+00 -9.36178684e-01 1.04949558e+00 6.77022696e-01 -5.91998875e-01 8.00489366e-01 7.82227874e-01 3.96884903e-02 -1.07704234e+00 5.95759116e-02 5.40375471e-01 8.18294510e-02 -3.51204097e-01 4.78117377e-01 3.00888985e-01 1.39268652e-01 3.51023644e-01 1.89132273e-01 -2.22518563e-01 -3.15788507e-01 4.65620309e-01 1.19659042e+00 -5.47959387e-01 -3.58119607e-01 3.45496461e-02 4.73114848e-01 -8.93349826e-01 1.93742424e-01 9.61519599e-01 -3.36478591e-01 5.58709145e-01 2.83656538e-01 3.41634184e-01 -1.04918003e+00 -1.36052334e+00 -1.78399518e-01 8.67343307e-01 -1.51810020e-01 -5.80242693e-01 -8.77381325e-01 -3.78008991e-01 4.44996357e-02 9.91534889e-01 1.02517806e-01 -3.24190646e-01 -4.15071934e-01 -1.59358039e-01 1.61845684e+00 3.78598213e-01 5.72964370e-01 -6.25843942e-01 1.01114646e-01 5.52412093e-01 -2.29610592e-01 -1.73864567e+00 -7.25915909e-01 4.03869539e-01 6.31427392e-02 -3.12184215e-01 -8.46745968e-01 -3.89834642e-01 -3.03289384e-01 3.98332328e-01 3.84792089e-01 -1.12673476e-01 -9.47792679e-02 3.63799214e-01 -6.04268014e-01 -5.66275597e-01 -1.07641912e+00 -1.25698388e-01 5.01226783e-01 3.76519300e-02 -7.01459274e-02 -2.66047388e-01 -3.31614882e-01 3.84797364e-01 -7.55253732e-01 -4.20641363e-01 2.46054098e-01 8.33968878e-01 5.07862829e-02 1.84517667e-01 8.55563343e-01 -1.93486691e-01 8.36203694e-01 -4.60367262e-01 -4.29801166e-01 -3.84237804e-02 -6.02838814e-01 -1.82402998e-01 5.95397830e-01 -3.06248933e-01 -8.91204357e-01 -3.02601039e-01 -9.71599102e-01 -6.27329230e-01 3.74634191e-02 2.56180137e-01 -4.58366215e-01 -3.03003639e-02 6.31313264e-01 2.81630486e-01 -2.10765805e-02 -4.23468888e-01 2.44684592e-01 1.62614882e+00 7.95746446e-01 -2.26411581e-01 9.82907534e-01 1.94629788e-01 -5.30204713e-01 -1.30686593e+00 -1.85395613e-01 -4.42545086e-01 -3.52084339e-02 -7.54181519e-02 7.51211643e-01 -1.38346481e+00 -4.44895804e-01 8.77451122e-01 -1.39027214e+00 -6.70464873e-01 1.10379919e-01 7.12672114e-01 -4.86151308e-01 5.98740876e-01 -7.98170507e-01 -1.03275967e+00 -4.40423161e-01 -1.31878710e+00 1.03052211e+00 -4.92034823e-01 -1.48307569e-02 -5.62658191e-01 -2.29738906e-01 2.31028467e-01 9.43866909e-01 -3.35368574e-01 6.12850249e-01 -7.69319713e-01 -2.64021814e-01 -1.98014483e-01 -1.24533772e-01 1.03004241e+00 -1.45945355e-01 -1.45030797e-01 -1.60808933e+00 -6.56816900e-01 -8.29259455e-02 -1.52511567e-01 1.06898332e+00 4.28361923e-01 1.22999787e+00 -3.67500126e-01 -2.79462844e-01 9.21576977e-01 7.32309639e-01 6.31501198e-01 8.31340253e-01 -1.52618468e-01 5.11948586e-01 2.44130597e-01 3.69554311e-01 6.44262135e-01 -8.72995297e-04 9.83039200e-01 2.26900950e-01 -2.10164174e-01 -8.43080997e-01 -3.12926501e-01 1.04719532e+00 9.40171003e-01 6.71884716e-01 -9.71639574e-01 -8.33234727e-01 3.72935474e-01 -1.00415373e+00 -9.62145805e-01 -4.36003990e-02 2.17233467e+00 5.77395260e-01 4.83789057e-01 1.86032299e-02 6.67523444e-01 7.53299296e-01 3.66745859e-01 -3.11356187e-01 -7.41738498e-01 -4.41301435e-01 2.32099831e-01 9.20228124e-01 8.09929430e-01 -1.06369412e+00 8.41604710e-01 5.81914473e+00 1.44953549e+00 -1.43592930e+00 3.19773763e-01 4.53435630e-01 -7.08076730e-02 -2.12232038e-01 -4.54045385e-01 -8.25417280e-01 5.26799202e-01 1.78494072e+00 8.95168483e-02 7.97857344e-01 4.62215632e-01 5.03162920e-01 4.63461667e-01 -9.10118282e-01 1.07220161e+00 -7.67455325e-02 -1.12142670e+00 -1.69732332e-01 1.01406693e-01 2.04613522e-01 4.88315701e-01 5.05155563e-01 4.96954232e-01 4.72661555e-02 -1.16852498e+00 1.12885213e+00 -3.66460495e-02 1.42923748e+00 -7.20733047e-01 5.16431034e-01 3.54363248e-02 -1.38152182e+00 -4.26598907e-01 9.44994390e-02 4.08793509e-01 3.72525811e-01 5.11521995e-01 -1.11894310e+00 2.85682201e-01 6.16622686e-01 2.74956286e-01 -1.23493388e-01 9.21167433e-01 -2.02302292e-01 1.15391850e+00 -3.85249972e-01 1.81488946e-01 1.64572805e-01 9.11952734e-01 8.98737848e-01 1.81455541e+00 4.74457324e-01 -3.79100204e-01 3.04625952e-03 3.38765949e-01 -2.15671271e-01 -3.24782103e-01 -4.59159285e-01 -1.70626715e-01 1.08131254e+00 5.67237258e-01 1.19401757e-02 -1.32406712e-01 -2.83310264e-01 9.51114535e-01 -4.79340464e-01 7.09906161e-01 -9.86850441e-01 -7.74809778e-01 9.03458476e-01 1.15755368e-02 5.08024812e-01 -3.70326877e-01 8.18383172e-02 -7.71054566e-01 -1.64451480e-01 -1.13331485e+00 -6.95543215e-02 -5.38048863e-01 -7.73798943e-01 6.00164652e-01 -3.38274837e-01 -1.21728575e+00 -1.83317021e-01 -5.11440635e-01 -5.73525906e-01 9.84776199e-01 -1.75490379e+00 -7.74251640e-01 1.65051892e-01 7.08770990e-01 7.40350723e-01 -6.53394997e-01 7.46075332e-01 9.45281267e-01 -4.64023918e-01 1.47554815e+00 3.44083786e-01 1.18471839e-01 7.02018917e-01 -8.76171231e-01 1.12527287e+00 1.07254899e+00 -2.62670547e-01 2.63121665e-01 7.98960030e-01 -4.89354759e-01 -1.47476685e+00 -1.38359916e+00 7.10252166e-01 1.56882524e-01 6.67386889e-01 -7.53495574e-01 -6.95465565e-01 2.37270117e-01 3.26214552e-01 9.92553309e-03 4.71468449e-01 -4.37266648e-01 -7.11090207e-01 -8.45163912e-02 -9.35634792e-01 4.12048727e-01 6.78407133e-01 -1.15924835e+00 6.64483905e-02 1.76877514e-01 1.45369637e+00 -3.52978438e-01 -4.63906020e-01 1.32531032e-01 3.80451679e-01 -6.14241242e-01 1.13127482e+00 -3.21954995e-01 -1.78606391e-01 -2.79849589e-01 -7.11808205e-01 -1.48120821e+00 2.19125301e-01 -1.31281149e+00 -3.68021816e-01 1.36269963e+00 7.99367726e-01 -3.75884116e-01 5.10646224e-01 -1.79643691e-01 -6.90435350e-01 -8.55289772e-02 -1.23036170e+00 -1.34116924e+00 1.14975505e-01 -1.18145323e+00 5.61650634e-01 4.83767599e-01 -1.16018444e-01 -3.01455967e-02 -8.48006845e-01 6.63735807e-01 5.14846563e-01 -9.48147297e-01 7.35813916e-01 -5.23957014e-01 -7.34825492e-01 -3.04281622e-01 -5.88864237e-02 -1.51993549e+00 5.91524988e-02 -9.30901885e-01 1.90187097e-01 -9.61389840e-01 -8.11697602e-01 -3.05029720e-01 -3.52820247e-01 4.35236469e-02 2.81791031e-01 -3.09932917e-01 4.63342994e-01 -1.66323945e-01 -3.11979592e-01 5.48774064e-01 7.00171292e-01 -4.42781925e-01 -9.15482864e-02 4.61346716e-01 -2.89049178e-01 2.83691049e-01 8.52698982e-01 -4.37430352e-01 -4.20933932e-01 -4.66283888e-01 -3.04752350e-01 5.32395005e-01 3.24485660e-01 -1.35090637e+00 3.29248220e-01 4.78505880e-01 -2.86162972e-01 -6.97948873e-01 5.93927026e-01 -7.11355448e-01 -1.68747723e-01 7.63088167e-01 -6.57024562e-01 -4.82825905e-01 4.68276262e-01 6.67717695e-01 -1.94364831e-01 1.97359160e-01 8.59109402e-01 5.40111899e-01 -4.35079724e-01 2.32948393e-01 -8.98293972e-01 6.51590228e-02 4.62130517e-01 1.70421481e-01 -5.42006612e-01 -8.63614619e-01 -6.41921699e-01 1.25467330e-01 -2.39103913e-01 6.71700120e-01 8.99416745e-01 -1.08834183e+00 -9.12596345e-01 3.45905274e-01 5.85341640e-03 -6.75728321e-01 4.31306571e-01 5.92100024e-01 -4.04744297e-01 7.84185350e-01 2.16055334e-01 -4.28292543e-01 -1.06133425e+00 4.31386083e-01 5.14841735e-01 2.52034187e-01 -4.02116627e-01 1.00692594e+00 -9.90052670e-02 -2.63010949e-01 1.13997006e+00 -3.09694707e-01 1.74725339e-01 -3.06196809e-01 8.87250245e-01 5.94469488e-01 4.27004039e-01 -5.56422174e-01 -2.86878437e-01 -1.40797779e-01 -4.88550682e-03 -4.73945618e-01 6.82848036e-01 -3.09825808e-01 6.60344183e-01 -3.92935500e-02 1.77383626e+00 3.44075084e-01 -1.08548021e+00 -3.61436307e-01 -2.34494954e-01 -1.24700651e-01 5.53310096e-01 -9.54787731e-01 -1.07826948e+00 1.43452609e+00 1.04606640e+00 3.16671640e-01 1.00649953e+00 -2.22301543e-01 1.42030776e+00 2.04921961e-01 7.38672987e-02 -1.15026295e+00 -1.00755785e-02 8.55540574e-01 8.67739439e-01 -7.91156232e-01 -5.23207188e-01 -2.43445382e-01 -4.35221046e-01 1.13727701e+00 1.48887604e-01 6.06405497e-01 8.85249436e-01 9.49262261e-01 1.85829341e-01 3.05936486e-01 -8.06257248e-01 9.84415784e-03 -1.20873213e-01 8.93888175e-01 1.30205005e-01 2.53245980e-01 2.86168456e-01 5.99916637e-01 -3.70638520e-01 -4.67804044e-01 6.00237191e-01 5.09735346e-01 -5.36612391e-01 -9.99538004e-01 -4.62148100e-01 2.88089067e-01 -6.69960380e-01 -5.85886359e-01 -2.10727066e-01 1.16647221e-01 -2.43351743e-01 1.54615474e+00 -3.70353200e-02 -1.13440168e+00 3.98905247e-01 -1.83469445e-01 -3.36392909e-01 -1.48177326e-01 -5.02325833e-01 2.77444899e-01 5.59429944e-01 -5.45774579e-01 2.02966899e-01 -6.18564427e-01 -1.34028769e+00 -5.50745368e-01 -4.79504913e-01 8.15088674e-02 1.11736917e+00 7.87495911e-01 3.65699321e-01 1.03296268e+00 1.02040315e+00 -5.92738092e-01 -8.41123521e-01 -8.43162894e-01 -7.35986412e-01 -1.10189624e-01 1.06956172e+00 -2.50571221e-01 -6.35207891e-01 -2.55165607e-01]
[14.7681303024292, 6.0637969970703125]
78663235-6759-45ca-ac60-a181baeccb57
transforming-musical-signals-through-a-genre
1706.09553
null
http://arxiv.org/abs/1706.09553v1
http://arxiv.org/pdf/1706.09553v1.pdf
Transforming Musical Signals through a Genre Classifying Convolutional Neural Network
Convolutional neural networks (CNNs) have been successfully applied on both discriminative and generative modeling for music-related tasks. For a particular task, the trained CNN contains information representing the decision making or the abstracting process. One can hope to manipulate existing music based on this 'informed' network and create music with new features corresponding to the knowledge obtained by the network. In this paper, we propose a method to utilize the stored information from a CNN trained on musical genre classification task. The network was composed of three convolutional layers, and was trained to classify five-second song clips into five different genres. After training, randomly selected clips were modified by maximizing the sum of outputs from the network layers. In addition to the potential of such CNNs to produce interesting audio transformation, more information about the network and the original music could be obtained from the analysis of the generated features since these features indicate how the network 'understands' the music.
['G. Ren', 'S. Geng', 'M. Ogihara']
2017-06-29
null
null
null
null
['genre-classification']
['computer-vision']
[ 5.39851069e-01 3.10338348e-01 7.09720477e-02 -2.59014100e-01 -2.59159803e-01 -6.60958588e-01 4.06254917e-01 -1.72255903e-01 -2.18542278e-01 4.72754747e-01 3.71316969e-01 4.48550105e-01 -1.96339726e-01 -1.08251667e+00 -6.85699642e-01 -7.82385290e-01 4.90903743e-02 3.12746406e-01 -2.40688309e-01 -2.57696450e-01 3.48110169e-01 4.08959448e-01 -1.89751923e+00 8.72261643e-01 4.61103886e-01 1.20485497e+00 2.87342697e-01 7.23492265e-01 -6.88225925e-02 7.94007182e-01 -8.96247327e-01 -2.90850133e-01 2.02164218e-01 -6.73954368e-01 -7.81083047e-01 -2.11469173e-01 -6.30751029e-02 1.27075672e-01 -2.99900323e-01 1.07626653e+00 4.71446812e-01 2.55553097e-01 4.03085411e-01 -9.59006906e-01 -5.58223605e-01 1.48947775e+00 2.96633035e-01 -8.46627355e-02 3.59210908e-01 2.61968672e-01 1.18489242e+00 -6.40456319e-01 7.58958340e-01 9.87068117e-01 5.77022076e-01 5.90141237e-01 -1.27767444e+00 -9.04668987e-01 -1.16758943e-01 2.62841195e-01 -1.28971982e+00 -5.41223288e-01 1.30687380e+00 -5.77197254e-01 5.19315660e-01 4.83935803e-01 1.26067579e+00 1.37317109e+00 -2.29679197e-02 7.95083344e-01 7.15044320e-01 -3.85131478e-01 1.65263996e-01 3.64174664e-01 -3.31587315e-01 2.98635483e-01 -2.29791105e-01 3.18514258e-01 -1.04905844e+00 2.54955500e-01 5.66595495e-01 -3.91440183e-01 -3.68878961e-01 -1.30795650e-02 -1.39220834e+00 6.47419095e-01 7.24425733e-01 8.21463466e-01 -5.46242952e-01 1.71335816e-01 2.33696446e-01 4.25187618e-01 3.95781755e-01 1.39974535e+00 -4.15852368e-01 -1.94617048e-01 -1.20372581e+00 2.44803861e-01 8.24338078e-01 4.72453177e-01 7.60121524e-01 5.93192816e-01 -3.94478321e-01 5.95201552e-01 8.56209025e-02 -2.50650253e-02 7.24397361e-01 -9.74720120e-01 1.44693241e-01 5.57137311e-01 -3.53584558e-01 -1.00892091e+00 -2.41800889e-01 -1.01772130e+00 -9.75769341e-01 1.82300702e-01 1.88262701e-01 -6.84753060e-02 -7.14775145e-01 1.78932750e+00 -2.12250933e-01 2.45455712e-01 1.23859584e-01 8.18961978e-01 9.94049013e-01 5.52040815e-01 -3.50008041e-01 4.83354926e-02 8.44806910e-01 -7.06054688e-01 -7.15296090e-01 -5.91203161e-02 2.56282151e-01 -7.72062004e-01 8.45211446e-01 6.30494714e-01 -9.96511400e-01 -1.09987843e+00 -1.23027849e+00 2.57544875e-01 -3.45209032e-01 3.07743102e-01 6.60651684e-01 2.64692158e-01 -1.08190966e+00 1.25961578e+00 -2.10422620e-01 -5.66988699e-02 6.53131545e-01 5.43745637e-01 -4.08514328e-02 4.99827802e-01 -1.19221735e+00 4.71110255e-01 7.35673070e-01 3.55987281e-01 -1.11639369e+00 -6.46933258e-01 -5.04832625e-01 5.03824890e-01 7.61990324e-02 -7.51355827e-01 1.14090908e+00 -1.64733148e+00 -1.94908500e+00 6.22621179e-01 2.78195262e-01 -3.91632169e-01 2.48184949e-01 6.86397403e-02 -3.52982104e-01 -1.58008307e-01 2.04606671e-02 7.89173663e-01 9.53389823e-01 -1.08559299e+00 -4.51546401e-01 -2.63669521e-01 5.86352088e-02 4.15403359e-02 -3.95145208e-01 -2.02108145e-01 -8.50951672e-02 -1.18946326e+00 1.29855946e-01 -1.07433438e+00 -4.32326086e-02 -3.27403992e-01 -8.03479612e-01 -7.82999385e-04 4.16086197e-01 -4.60005194e-01 1.13992906e+00 -2.56375051e+00 5.41094124e-01 4.67108786e-01 2.88320463e-02 1.40844613e-01 -3.22701067e-01 3.66658568e-01 -2.26785555e-01 1.72667697e-01 7.19414046e-03 -1.04425520e-01 7.28727356e-02 -1.22792430e-01 -5.39792359e-01 -1.40125975e-01 1.89855546e-01 8.86428177e-01 -6.40096426e-01 8.03694651e-02 -9.19424519e-02 3.62938523e-01 -6.37058556e-01 4.28505599e-01 -4.53317553e-01 9.50422525e-01 -1.75782010e-01 3.09377968e-01 1.96921498e-01 2.64745265e-01 2.83070594e-01 -4.51013058e-01 2.22997572e-02 5.91699183e-01 -1.05028462e+00 2.05946469e+00 -3.96462202e-01 9.92107809e-01 -3.67030889e-01 -1.11228693e+00 1.16436195e+00 4.09361750e-01 5.27453959e-01 -5.47142982e-01 5.01318872e-01 2.25319304e-02 3.69740248e-01 -4.67629015e-01 3.28929156e-01 -2.92246222e-01 -1.45418718e-01 5.69414496e-01 4.24890548e-01 -7.90899172e-02 -2.29002126e-02 -3.52782160e-01 8.15745354e-01 1.85444161e-01 6.13545720e-03 9.51489434e-02 2.68282324e-01 -1.57070890e-01 4.67446089e-01 8.82241607e-01 4.24573958e-01 4.59058702e-01 4.04757977e-01 -7.28730202e-01 -8.37341845e-01 -8.64132583e-01 2.06691116e-01 1.30694520e+00 -2.78416276e-01 -3.43926072e-01 -5.07300973e-01 -2.66169041e-01 -2.36128181e-01 8.01668227e-01 -8.25800598e-01 -8.02331209e-01 -4.02120143e-01 -3.75912338e-01 8.64203691e-01 3.78289044e-01 5.82791805e-01 -1.73271799e+00 -4.42920089e-01 5.83589375e-01 -2.29289383e-01 -5.93561828e-01 -1.52154222e-01 3.89535338e-01 -8.70317757e-01 -8.35486650e-01 -3.95144820e-01 -7.92996824e-01 1.88610405e-01 -2.65356034e-01 9.33201551e-01 -1.80251211e-01 -1.59915507e-01 -5.83224669e-02 -4.52836603e-01 -7.50175595e-01 -6.89417899e-01 5.22969484e-01 1.92960612e-02 5.17201602e-01 -4.88792844e-02 -1.04831302e+00 -3.26429605e-01 -2.84322798e-01 -9.84717727e-01 3.64763051e-01 7.69431651e-01 5.84882855e-01 3.86848569e-01 3.40833545e-01 7.48547733e-01 -7.61494458e-01 8.19373071e-01 -1.23895124e-01 6.42099325e-03 -9.35611650e-02 -4.03660536e-01 3.57827634e-01 5.79675794e-01 -8.16437840e-01 -9.23096240e-01 1.72484711e-01 -1.52689517e-01 -5.54378986e-01 -2.11562425e-01 7.27819800e-01 -3.09863418e-01 2.17812151e-01 6.62795126e-01 2.49474868e-01 -2.55723447e-01 -7.36388683e-01 3.10251653e-01 5.47376692e-01 6.91885710e-01 -4.81802404e-01 7.45984435e-01 7.88877308e-02 -1.43741742e-01 -3.31098437e-01 -1.13898420e+00 1.40730083e-01 -7.63086200e-01 -5.69658995e-01 9.94109631e-01 -4.76765543e-01 -7.79729962e-01 5.80942154e-01 -1.11207747e+00 -2.25026488e-01 -8.92833412e-01 6.55686080e-01 -6.63796484e-01 -4.30742443e-01 -2.95150906e-01 -6.85553491e-01 -3.22953582e-01 -9.52138424e-01 7.58862674e-01 3.70548546e-01 -5.34450173e-01 -7.32010126e-01 1.55785859e-01 7.82715529e-02 4.19058651e-01 1.60156935e-01 1.25406468e+00 -8.89556587e-01 -5.94138384e-01 -3.43384773e-01 2.90282786e-01 5.44668198e-01 1.61480144e-01 -5.43411262e-02 -1.55549550e+00 -1.01942286e-01 -2.88244858e-02 -9.86253023e-02 1.00152123e+00 2.83367425e-01 1.54521799e+00 -6.27438366e-01 1.06080040e-01 7.96147406e-01 9.82390285e-01 3.98042291e-01 6.79141760e-01 3.98085147e-01 5.66353023e-01 4.54819053e-01 1.61929950e-01 3.73988956e-01 -2.10250854e-01 7.95485079e-01 5.54136395e-01 4.62941453e-02 -2.53358454e-01 -4.31809574e-01 5.79152286e-01 9.39995587e-01 -4.57810163e-01 2.65347417e-02 -4.17652160e-01 2.15905249e-01 -1.72302210e+00 -1.31565642e+00 3.61590594e-01 2.06009936e+00 1.02446222e+00 2.38271564e-01 -1.38289794e-01 6.40638471e-01 6.34457111e-01 1.26632735e-01 -6.23457074e-01 -5.22747517e-01 -2.27771983e-01 8.67157519e-01 -3.13552260e-01 -6.07486255e-03 -1.03182948e+00 9.76441503e-01 6.05112886e+00 5.90341091e-01 -1.42133701e+00 -3.16217870e-01 1.82839006e-01 -2.93937713e-01 -2.85082549e-01 2.24193968e-02 -1.57190278e-01 2.28964671e-01 7.82806575e-01 -3.14622641e-01 9.71036851e-01 5.60592711e-01 1.24188580e-01 2.09428489e-01 -1.31910717e+00 8.20808709e-01 -7.41335936e-03 -1.62468994e+00 5.88877261e-01 9.24393162e-02 7.65141547e-01 -4.12105739e-01 4.15735006e-01 3.77732575e-01 -5.56894857e-03 -1.06025505e+00 1.08188152e+00 1.14576662e+00 6.62534535e-01 -7.83134043e-01 8.16279352e-01 3.81569117e-01 -1.03744161e+00 -3.20317417e-01 -1.37674138e-01 -3.19250196e-01 -3.36091489e-01 5.67885160e-01 -1.15419114e+00 4.47553605e-01 6.97031558e-01 9.53505754e-01 -7.42892861e-01 9.68480051e-01 -2.42504358e-01 7.63652682e-01 2.93382052e-02 1.37725789e-02 -6.85404763e-02 -5.64062111e-02 7.62391508e-01 9.92554188e-01 5.62215388e-01 -3.88562858e-01 -1.51089177e-01 1.29458535e+00 -3.86426985e-01 1.66185707e-01 -5.98561704e-01 -4.55576569e-01 1.98053852e-01 1.25447500e+00 -5.76520741e-01 -3.99327725e-01 4.50492024e-01 7.99063087e-01 4.70901765e-02 2.95146197e-01 -5.79288006e-01 -4.91148800e-01 4.82891232e-01 5.51588982e-02 3.24788809e-01 1.29840061e-01 -3.86306912e-01 -1.14397693e+00 -2.49873713e-01 -9.14065063e-01 -4.55743484e-02 -1.21854794e+00 -1.03253269e+00 9.03508365e-01 -4.62956011e-01 -1.30647755e+00 -3.48738283e-01 -3.86838883e-01 -7.10172772e-01 7.10150421e-01 -8.04702044e-01 -1.16047466e+00 -2.64084220e-01 3.96490186e-01 5.29410422e-01 -6.81497812e-01 1.14624023e+00 1.75020695e-01 -3.09026718e-01 5.04646182e-01 -2.03583091e-01 3.25165719e-01 5.61417937e-01 -1.05884552e+00 -6.76490217e-02 3.15120757e-01 8.57457221e-01 3.13737363e-01 6.13303423e-01 -2.03750044e-01 -9.27182615e-01 -1.21860731e+00 7.60766149e-01 -1.70439836e-02 4.00998145e-01 -2.97533602e-01 -8.36881876e-01 5.22778153e-01 1.64934680e-01 -6.21230245e-01 9.49242175e-01 2.48610809e-01 -2.61133909e-01 -3.70073438e-01 -6.40073121e-01 3.82487476e-01 1.08507895e+00 -5.90968728e-01 -6.69209540e-01 -4.77375165e-02 4.63837802e-01 -2.58772522e-01 -7.81973124e-01 4.02094454e-01 8.70192766e-01 -8.86744320e-01 7.27069676e-01 -1.00850415e+00 6.16611481e-01 -1.65999353e-01 -1.56774789e-01 -1.67695546e+00 -4.39719349e-01 -3.04214478e-01 1.39858082e-01 1.28909993e+00 5.58354914e-01 -1.76580042e-01 5.50882518e-01 -1.21367890e-02 -2.96972871e-01 -4.49703932e-01 -8.87811899e-01 -4.06638563e-01 -2.51884878e-01 -7.83545911e-01 9.75874782e-01 1.09385061e+00 -1.16983443e-01 5.25977492e-01 -3.66716564e-01 -4.58422974e-02 3.69621404e-02 3.87479663e-01 8.51195335e-01 -1.68234336e+00 -5.41989267e-01 -7.27883935e-01 -5.63644528e-01 -5.21363914e-01 4.29638803e-01 -1.49728990e+00 1.11664720e-02 -1.26879239e+00 1.28466204e-01 -2.86802053e-01 -5.91939628e-01 7.50025034e-01 2.42903933e-01 4.75198567e-01 5.28759480e-01 2.36549214e-01 -2.82043993e-01 5.74027836e-01 1.34909868e+00 -5.37726045e-01 -5.51571429e-01 5.33818543e-01 -7.90022612e-01 6.44136727e-01 1.09455562e+00 -6.16616726e-01 -2.36482814e-01 -3.39738458e-01 7.22070515e-01 -4.92872708e-02 5.53484142e-01 -1.42833292e+00 2.69659683e-02 5.25741242e-02 6.84673309e-01 -2.78714001e-01 4.83231008e-01 -5.92964292e-01 7.06418633e-01 3.44767123e-01 -9.82379138e-01 -4.72783893e-01 1.59275725e-01 3.42429519e-01 -5.57847857e-01 -3.19139659e-01 5.94825685e-01 -1.54031575e-01 -4.15641248e-01 1.05288038e-02 -5.55958509e-01 -4.27677363e-01 5.14382958e-01 -1.29072264e-01 1.57377347e-01 -6.71495378e-01 -1.56970847e+00 -5.97043693e-01 -1.17209880e-02 7.61091590e-01 5.18342614e-01 -1.69104004e+00 -5.48024833e-01 4.98236775e-01 -4.60555963e-03 -1.73785463e-01 1.71398580e-01 4.33110386e-01 -2.16503497e-02 1.86713085e-01 -5.07636607e-01 -4.43611473e-01 -1.03878272e+00 4.67579097e-01 4.92463499e-01 -1.39024273e-01 -4.27338630e-01 6.71304047e-01 -4.80196858e-03 -3.76799256e-01 1.85791865e-01 -4.94667977e-01 -5.37209988e-01 3.68196189e-01 1.72860608e-01 9.44656208e-02 3.29501405e-02 -4.83963847e-01 1.57523245e-01 3.43914449e-01 3.03928345e-01 -2.84396768e-01 1.78530777e+00 3.81730169e-01 -1.96649417e-01 7.72109926e-01 1.05844915e+00 -4.57343236e-02 -7.90909767e-01 -1.35503545e-01 -4.00566384e-02 -2.24588424e-01 -2.90369000e-02 -9.56834018e-01 -1.42728400e+00 9.62725699e-01 5.05636632e-01 3.70560259e-01 1.36731315e+00 9.03435275e-02 4.20441270e-01 4.40985471e-01 1.75078198e-01 -1.05234957e+00 2.87888169e-01 4.42276090e-01 1.17974544e+00 -6.53024077e-01 -3.57455850e-01 1.56126693e-01 -4.22579974e-01 1.48557651e+00 3.90078187e-01 -1.93715334e-01 6.41556501e-01 -2.34644543e-02 3.24139781e-02 -1.38173968e-01 -6.59343958e-01 -2.50733525e-01 7.17012107e-01 5.43682337e-01 3.13609958e-01 1.74596831e-01 2.82705009e-01 1.31524754e+00 -1.02878881e+00 2.39947602e-01 4.65963602e-01 3.26914698e-01 -4.00024414e-01 -1.05318391e+00 -8.05671960e-02 5.74182570e-01 -1.27027303e-01 -2.87954751e-02 -7.86220074e-01 4.44272548e-01 7.59362459e-01 6.67932510e-01 1.35326684e-01 -9.01936114e-01 3.46295714e-01 3.13084126e-01 4.89936143e-01 -8.91315937e-01 -8.69378924e-01 1.02242403e-01 3.73945497e-02 -4.44307268e-01 -6.48061454e-01 -5.14531851e-01 -8.80571127e-01 -2.27989461e-02 -2.60431111e-01 2.03524500e-01 7.09457636e-01 9.73228395e-01 2.67234772e-01 1.24372423e+00 8.64876866e-01 -1.16128027e+00 -2.02970430e-01 -1.23894823e+00 -8.02865505e-01 3.79294902e-01 -2.77722999e-02 -3.91634285e-01 -2.69033939e-01 3.93372178e-01]
[15.921854972839355, 5.36971378326416]
460c29de-0e93-4021-9ade-6dbe9b272aaa
cross-lingual-evidence-improves-monolingual
null
null
https://aclanthology.org/2021.acl-srw.32
https://aclanthology.org/2021.acl-srw.32.pdf
Cross-lingual Evidence Improves Monolingual Fake News Detection
Misleading information spreads on the Internet at an incredible speed, which can lead to irreparable consequences in some cases. Therefore, it is becoming essential to develop fake news detection technologies. While substantial work has been done in this direction, one of the limitations of the current approaches is that these models are focused only on one language and do not use multilingual information. In this work, we propose a new technique based on cross-lingual evidence (CE) that can be used for fake news detection and improve existing approaches. The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed, firstly, by manual experiment based on a set of known true and fake news. Besides, we compared our fake news classification system based on the proposed feature with several strong baselines on two multi-domain datasets of general-topic news and one newly fake COVID-19 news dataset showing that combining cross-lingual evidence with strong baselines such as RoBERTa yields significant improvements in fake news detection.
['Alexander Panchenko', 'Daryna Dementieva']
2021-08-01
null
null
null
acl-2021-5
['news-classification']
['natural-language-processing']
[-3.89270365e-01 3.07939685e-04 -4.95084137e-01 -1.51538640e-01 -9.78847742e-01 -6.71608090e-01 1.40256643e+00 2.99828976e-01 -2.39112213e-01 9.69387174e-01 2.82273501e-01 -3.14339310e-01 3.46986383e-01 -7.25727499e-01 -8.53362203e-01 -3.28133404e-01 3.71794373e-01 4.10146385e-01 6.58519387e-01 -6.98303699e-01 6.64709866e-01 3.24116737e-01 -1.20590603e+00 7.39953756e-01 9.79270160e-01 5.88868618e-01 -3.42101425e-01 -5.13368612e-03 -1.42267765e-02 8.09200585e-01 -1.11394739e+00 -1.03919792e+00 6.57529011e-02 -5.03336370e-01 -7.71934807e-01 -5.33816889e-02 5.60001493e-01 -3.04877788e-01 -1.71501830e-01 1.27724659e+00 2.02368706e-01 -5.61544359e-01 6.78917766e-01 -1.27292967e+00 -5.98961353e-01 7.66227841e-01 -5.18946052e-01 4.52234149e-01 3.40394974e-01 -2.94118047e-01 8.51917982e-01 -7.40003526e-01 1.07495391e+00 1.31324816e+00 7.46657491e-01 5.82589135e-02 -7.81107843e-01 -7.36772180e-01 -1.79041848e-01 3.25028688e-01 -9.22861040e-01 -2.31764197e-01 7.64992774e-01 -5.04824221e-01 6.15476310e-01 1.43011510e-01 4.59573388e-01 1.76556826e+00 4.23990875e-01 9.79810953e-01 1.77521431e+00 -6.57906294e-01 -1.02963552e-01 9.19721842e-01 1.99802130e-01 5.96784711e-01 6.99255466e-01 2.21628889e-01 -5.76686621e-01 -4.94429231e-01 3.04155082e-01 -5.31851232e-01 -3.57780337e-01 -5.76135255e-02 -1.22890258e+00 1.26963496e+00 3.46003294e-01 9.06242311e-01 -1.53466254e-01 -1.30977407e-01 7.41295516e-01 7.14222014e-01 1.25362384e+00 7.91909039e-01 -3.00449640e-01 -1.42605647e-01 -1.06913376e+00 3.89469296e-01 8.69779229e-01 6.00975811e-01 2.64789581e-01 -2.24379882e-01 2.20408693e-01 7.52050400e-01 1.90427572e-01 5.08162975e-01 7.40563989e-01 -2.02362895e-01 7.20175564e-01 4.04791296e-01 6.03436768e-01 -1.76839733e+00 -1.70963600e-01 -5.93247652e-01 -2.81488955e-01 -1.71767056e-01 4.84766513e-01 1.17624827e-01 -4.39064920e-01 1.13985455e+00 3.04392576e-01 9.10272747e-02 -8.11444819e-02 1.01205075e+00 5.95990896e-01 5.79301417e-01 -4.46300566e-01 -1.07978836e-01 1.41009450e+00 -9.55611050e-01 -9.86264348e-01 -1.52502194e-01 9.95072424e-01 -1.17887163e+00 8.38317037e-01 4.67153490e-01 -3.89009863e-01 5.18237101e-03 -1.19066322e+00 9.02078971e-02 -9.76401627e-01 2.48271525e-01 5.77673435e-01 1.02803171e+00 -5.13497233e-01 4.09299523e-01 -4.77615714e-01 -4.31950033e-01 1.55202731e-01 -3.05693090e-01 -4.75679129e-01 -1.40937582e-01 -1.73340523e+00 1.44885957e+00 5.39817750e-01 -2.80868351e-01 -6.22597873e-01 -6.64558783e-02 -3.64207089e-01 -4.14822549e-01 4.51476157e-01 -6.13869503e-02 9.85078156e-01 -1.14478016e+00 -1.33546352e+00 9.78572547e-01 1.87084615e-01 -6.12707913e-01 1.16867590e+00 -3.02324414e-01 -8.75050068e-01 1.59053922e-01 5.17826855e-01 -5.48340417e-02 1.16854393e+00 -1.44278038e+00 -5.39236784e-01 -2.89435476e-01 -7.32537657e-02 -2.12430313e-01 -3.30491304e-01 4.16469604e-01 -6.25356808e-02 -1.01634955e+00 1.43202335e-01 -1.01952648e+00 4.72994655e-01 -4.49774683e-01 -6.26189172e-01 -1.18857987e-01 1.20731640e+00 -9.78411019e-01 9.96537805e-01 -1.88085997e+00 -2.61909515e-01 5.22691868e-02 7.48557076e-02 4.94589031e-01 1.99867502e-01 6.57525957e-01 1.75791427e-01 2.26413608e-01 3.30679268e-02 -1.60481766e-01 -1.11929089e-01 -7.39145949e-02 -6.91887677e-01 9.31029856e-01 5.63851781e-02 7.03230977e-01 -1.14116573e+00 -3.85189265e-01 -8.53183940e-02 2.56849527e-01 -2.59851962e-01 -2.65170991e-01 -8.26834738e-02 3.00458580e-01 -4.14864510e-01 6.74082875e-01 6.62985086e-01 -1.37224540e-01 1.43825576e-01 -7.17001930e-02 -2.24665284e-01 8.90876472e-01 -6.68702781e-01 9.15012240e-01 -2.34407455e-01 9.06285167e-01 -4.06753749e-01 -1.00706697e+00 7.73151815e-01 4.27219570e-01 -6.71101287e-02 -5.40920556e-01 5.13803303e-01 8.20004225e-01 -2.12882116e-01 -3.71310383e-01 7.15458572e-01 -1.58873498e-01 -2.15241328e-01 6.39207959e-01 -1.04777038e-01 -1.88376799e-01 6.46407716e-03 3.48657399e-01 7.52482831e-01 3.28295976e-02 3.76270235e-01 -2.34945372e-01 4.57755089e-01 4.72445101e-01 1.74182042e-01 7.87926972e-01 -2.90786952e-01 2.07738981e-01 5.88313222e-01 -3.36285084e-01 -1.05808198e+00 -3.95651549e-01 -3.59305710e-01 7.39291430e-01 3.43836993e-01 -2.95972735e-01 -5.87535143e-01 -1.23172998e+00 1.35442421e-01 1.00372934e+00 -6.04891896e-01 -7.15337843e-02 -3.85776520e-01 -1.02598071e+00 9.90881741e-01 -2.08399519e-01 7.71218538e-01 -6.02936268e-01 -3.22946906e-01 2.76229978e-01 -7.06765652e-01 -1.35854828e+00 -6.35799766e-02 -2.94201881e-01 -6.01542532e-01 -1.07648361e+00 -5.12206912e-01 -4.28860217e-01 2.96804935e-01 6.95911467e-01 8.63364518e-01 2.24184349e-01 1.22362264e-01 -2.06625953e-01 -8.11455905e-01 -4.08569753e-01 -1.13056707e+00 -2.44872253e-02 5.01489602e-02 5.82104065e-02 4.40580040e-01 8.75346586e-02 8.64544362e-02 5.93553305e-01 -8.30655575e-01 -1.11444332e-01 4.71764505e-01 9.99153435e-01 -9.06820968e-02 1.17322259e-01 8.63220513e-01 -1.24131525e+00 8.23900163e-01 -8.14790666e-01 -7.05944598e-01 1.20174021e-01 -5.87226212e-01 -1.47933781e-01 4.70238566e-01 -3.90080124e-01 -1.09598649e+00 -6.76091671e-01 3.94477621e-02 5.69386967e-02 2.87940595e-02 7.29467034e-01 2.47466013e-01 -2.01842383e-01 9.45587456e-01 9.58508030e-02 -2.20260039e-01 -4.13070261e-01 3.43873471e-01 1.08738720e+00 -1.87713038e-02 -3.10573786e-01 8.40428770e-01 6.10522866e-01 -4.41757321e-01 -7.97401965e-01 -1.09499764e+00 -5.13293922e-01 -4.27847236e-01 -8.46654996e-02 3.42345208e-01 -9.07108843e-01 -2.15820521e-02 8.74720454e-01 -1.49055576e+00 2.82719731e-01 6.08810008e-01 6.90133154e-01 -7.93272555e-02 7.84832895e-01 -8.73305738e-01 -5.91945887e-01 1.51631370e-01 -1.02999473e+00 8.84208143e-01 -6.42522037e-01 -1.12680636e-01 -9.99270856e-01 1.13812871e-01 8.80989611e-01 4.65659887e-01 4.01995152e-01 5.87779880e-01 -1.02359939e+00 -3.39159280e-01 -7.70359397e-01 -3.93523037e-01 4.28106189e-01 1.33079886e-01 -2.28597857e-02 -8.34924221e-01 -3.11391264e-01 2.46555269e-01 -6.45360947e-01 7.71497667e-01 -2.32833683e-01 3.44425708e-01 -5.25467753e-01 -4.74889755e-01 -1.82079673e-01 1.22317219e+00 -2.69285947e-01 5.29139936e-01 7.64061451e-01 3.76778334e-01 6.87142670e-01 9.38596308e-01 2.11081252e-01 3.29345316e-01 1.11509860e+00 3.46369535e-01 2.08863899e-01 -4.99511212e-02 -2.80614525e-01 5.39055228e-01 8.92791867e-01 1.55758415e-03 -5.06283641e-01 -7.76455343e-01 6.91829026e-01 -1.73412430e+00 -1.19732285e+00 -6.24268711e-01 1.98795652e+00 6.11869097e-01 3.43540400e-01 2.44817942e-01 2.31035203e-01 9.52607572e-01 2.22704962e-01 2.26167679e-01 -3.62585574e-01 -4.87729102e-01 -4.93664980e-01 7.76419759e-01 4.26765233e-01 -1.34357989e+00 1.31171584e+00 6.04017591e+00 9.43435371e-01 -1.52619851e+00 5.94436288e-01 2.52966642e-01 4.46738124e-01 -2.40096033e-01 -1.09420635e-01 -6.84064627e-01 7.94904232e-01 7.33843088e-01 1.39396653e-01 1.83308162e-02 8.70183527e-01 2.48478323e-01 -1.54060587e-01 -4.20108050e-01 6.28720164e-01 5.59595704e-01 -1.39125931e+00 -7.12542087e-02 1.50453225e-01 8.10118616e-01 2.90697575e-01 1.98489912e-02 1.61090463e-01 2.67778397e-01 -5.12749970e-01 1.00560868e+00 -1.88541278e-01 3.14846754e-01 -6.16376936e-01 1.33185172e+00 6.44151032e-01 -1.26675367e-01 2.89402217e-01 -3.18476319e-01 2.95419469e-02 1.98369667e-01 9.00408208e-01 -1.25933635e+00 6.69443369e-01 4.95877296e-01 8.75550866e-01 -6.37073934e-01 7.81612515e-01 -6.24463558e-01 8.16404760e-01 -2.40549833e-01 -2.76263803e-01 4.96103704e-01 1.01004550e-02 7.82568812e-01 1.40532482e+00 2.64786780e-01 -4.18773711e-01 -1.46950418e-02 6.92116797e-01 -1.38402283e-01 4.42642212e-01 -8.96639228e-01 -3.91256541e-01 4.50652450e-01 8.47587466e-01 -8.53029191e-01 -5.94807386e-01 -5.12300909e-01 1.14065361e+00 2.68902153e-01 -1.88207164e-01 -1.04519165e+00 -2.18841523e-01 -4.22303379e-02 2.19646633e-01 1.17793411e-01 -1.34035975e-01 -9.07845125e-02 -1.65213990e+00 2.92959381e-02 -1.27007294e+00 2.22164333e-01 -5.03138483e-01 -1.59017181e+00 7.65736878e-01 -5.79718547e-03 -1.45276892e+00 -1.08210422e-01 -5.06943882e-01 -9.43205282e-02 4.79686528e-01 -1.70914698e+00 -1.38546348e+00 -1.52922878e-02 3.37727398e-01 2.90506482e-01 -2.34327421e-01 5.25077283e-01 3.90869915e-01 -2.64847696e-01 5.16050696e-01 3.00538331e-01 1.88836411e-01 1.21024621e+00 -8.21857035e-01 4.00644690e-01 9.77986932e-01 3.14056605e-01 4.81516391e-01 1.19810593e+00 -1.02872324e+00 -7.67256021e-01 -7.71981001e-01 1.40443563e+00 -8.04221809e-01 1.25311387e+00 -3.60692471e-01 -9.62144375e-01 6.82407439e-01 1.51102170e-01 -1.66707098e-01 3.75605911e-01 -2.46679578e-02 -1.00394058e+00 5.87611854e-01 -1.46325910e+00 2.45898753e-01 5.47101378e-01 -5.86888194e-01 -9.88785625e-01 9.20137763e-01 4.63135272e-01 -3.06486934e-01 -4.96974260e-01 -2.44669318e-02 4.46540892e-01 -1.13206816e+00 5.73056757e-01 -6.30227923e-01 5.87092161e-01 -2.38101408e-01 3.92262302e-02 -1.60778892e+00 5.48410341e-02 -1.41855970e-01 3.22840244e-01 9.36487198e-01 4.70640123e-01 -1.11284745e+00 4.18249518e-01 -2.96797991e-01 -8.52045119e-02 -8.83414671e-02 -1.00880027e+00 -1.20947134e+00 1.64604872e-01 -2.79283136e-01 1.88895047e-01 1.76797628e+00 2.36485228e-01 2.60596991e-01 -9.36872542e-01 3.34123880e-01 4.19791907e-01 1.84461594e-01 8.89983416e-01 -1.13027978e+00 -2.26601571e-01 -2.09045380e-01 -5.75946391e-01 -8.60749185e-01 2.03862801e-01 -6.79628313e-01 -1.86816409e-01 -9.35880721e-01 1.32087126e-01 -4.24480438e-01 1.79531217e-01 2.24107876e-01 1.92598738e-02 5.47696054e-01 -3.82820927e-02 6.05837345e-01 -2.50365227e-01 3.97498280e-01 1.15129495e+00 -9.58114564e-02 2.09503204e-01 -4.52417880e-02 -3.23551714e-01 8.49339783e-01 6.51444197e-01 -1.01446092e+00 4.26895544e-02 -2.42874458e-01 3.73138219e-01 -5.28164767e-02 4.61857200e-01 -5.83767414e-01 -1.43317372e-01 -6.95631653e-02 -2.49518007e-01 -3.81499678e-01 3.01653326e-01 -6.03630483e-01 -2.58342922e-01 6.52668118e-01 -9.86356586e-02 1.22697866e-02 -8.05342570e-02 8.65512908e-01 -5.44692338e-01 -2.62524933e-01 8.76657248e-01 -1.33497968e-01 -2.75662154e-01 -4.50087667e-01 -5.88489890e-01 2.83291824e-02 9.81449544e-01 8.57800096e-02 -9.63031888e-01 -6.00217104e-01 -1.13033906e-01 -5.77143431e-01 6.77277148e-01 6.93087995e-01 1.74699500e-01 -1.09872365e+00 -9.74215746e-01 -2.25880831e-01 5.27221382e-01 -1.16066957e+00 -3.39254022e-01 1.02310598e+00 -7.15736628e-01 6.73773289e-01 -2.66822875e-01 -2.64678836e-01 -1.24385965e+00 6.24108732e-01 5.31741679e-02 -2.96412796e-01 -3.65286797e-01 5.31874180e-01 -4.85052437e-01 -4.35421139e-01 -3.73651683e-01 -7.15456307e-02 -2.33893007e-01 2.14695990e-01 4.63188022e-01 3.84344816e-01 3.15188378e-01 -1.26530397e+00 -3.48662972e-01 3.80444825e-02 -3.01261276e-01 -2.05926865e-01 1.15114748e+00 -1.20058827e-01 -4.52034146e-01 4.76303041e-01 1.06912327e+00 7.85617292e-01 -2.77199209e-01 -2.88150609e-01 3.81825984e-01 -9.84862149e-01 2.53311753e-01 -1.10092938e+00 -6.74515903e-01 5.09387076e-01 2.18953982e-01 6.76040590e-01 2.04930753e-01 7.26303682e-02 7.96535492e-01 2.81005740e-01 9.47731912e-01 -1.03317869e+00 2.35926494e-01 3.68296772e-01 9.41147149e-01 -1.72137666e+00 1.03209466e-01 -8.73301625e-01 -6.34792328e-01 1.02010381e+00 1.83535710e-01 -1.83293149e-01 4.43432838e-01 -2.71115035e-01 3.49168241e-01 -5.40570974e-01 -3.00797254e-01 2.25682124e-01 2.90548056e-01 1.12183295e-01 5.65477908e-01 2.24534124e-01 -1.12058318e+00 1.24711566e-01 -2.26908132e-01 -1.49959773e-01 1.06593394e+00 9.07929718e-01 -4.31103468e-01 -1.20984960e+00 -5.78137517e-01 2.78434962e-01 -8.41445565e-01 -4.72725853e-02 -8.26543391e-01 1.15625095e+00 8.59787911e-02 1.12642539e+00 -6.32304847e-01 -3.03707868e-01 -9.46311802e-02 -1.44849211e-01 2.90018231e-01 -5.47254264e-01 -7.04084754e-01 -8.39529410e-02 6.19758189e-01 -3.55252147e-01 -7.23925412e-01 -5.89300215e-01 -4.28650171e-01 -4.29158241e-01 -1.09640896e+00 2.64177203e-01 9.80880857e-01 1.26354849e+00 3.07649553e-01 -1.45006984e-01 4.54512358e-01 -3.35477650e-01 -7.07043409e-01 -1.17918491e+00 -4.75489199e-01 6.43680632e-01 2.21638203e-01 -1.04664910e+00 -8.31001818e-01 -3.21388096e-01]
[8.160930633544922, 10.259340286254883]
b0304d18-559c-46a6-b7c3-015493cec72f
vulcan-solving-the-steiner-tree-problem-with
2111.10810
null
https://arxiv.org/abs/2111.10810v1
https://arxiv.org/pdf/2111.10810v1.pdf
Vulcan: Solving the Steiner Tree Problem with Graph Neural Networks and Deep Reinforcement Learning
Steiner Tree Problem (STP) in graphs aims to find a tree of minimum weight in the graph that connects a given set of vertices. It is a classic NP-hard combinatorial optimization problem and has many real-world applications (e.g., VLSI chip design, transportation network planning and wireless sensor networks). Many exact and approximate algorithms have been developed for STP, but they suffer from high computational complexity and weak worst-case solution guarantees, respectively. Heuristic algorithms are also developed. However, each of them requires application domain knowledge to design and is only suitable for specific scenarios. Motivated by the recently reported observation that instances of the same NP-hard combinatorial problem may maintain the same or similar combinatorial structure but mainly differ in their data, we investigate the feasibility and benefits of applying machine learning techniques to solving STP. To this end, we design a novel model Vulcan based on novel graph neural networks and deep reinforcement learning. The core of Vulcan is a novel, compact graph embedding that transforms highdimensional graph structure data (i.e., path-changed information) into a low-dimensional vector representation. Given an STP instance, Vulcan uses this embedding to encode its pathrelated information and sends the encoded graph to a deep reinforcement learning component based on a double deep Q network (DDQN) to find solutions. In addition to STP, Vulcan can also find solutions to a wide range of NP-hard problems (e.g., SAT, MVC and X3C) by reducing them to STP. We implement a prototype of Vulcan and demonstrate its efficacy and efficiency with extensive experiments using real-world and synthetic datasets.
['Qinqing Zhan', 'Qiao Xiang', 'Zong Yan', 'Haizhou Du']
2021-11-21
null
null
null
null
['steiner-tree-problem']
['graphs']
[ 9.48594734e-02 3.96589100e-01 -4.85051960e-01 -3.08435082e-01 -3.11023444e-01 -5.73959112e-01 -1.64355770e-01 2.06504613e-01 -1.00500159e-01 7.74588823e-01 -4.34153855e-01 -5.78307152e-01 -6.91485643e-01 -1.44083977e+00 -1.11138058e+00 -6.22538507e-01 -4.76273715e-01 8.24754477e-01 1.64547592e-01 -3.35736483e-01 1.16279446e-01 6.11957610e-01 -1.21020901e+00 -1.73978567e-01 8.29725325e-01 1.17521822e+00 2.64434576e-01 3.71083647e-01 -3.80948484e-01 3.21402162e-01 -4.40000623e-01 -4.39605206e-01 4.22849983e-01 -4.86566462e-02 -8.94052267e-01 3.95682454e-03 1.66241638e-02 5.29884771e-02 -6.86589897e-01 1.05302203e+00 2.90322065e-01 -7.37879351e-02 3.90958846e-01 -1.97925389e+00 -7.63300955e-01 8.23198020e-01 -6.70295417e-01 -9.95979533e-02 3.04261833e-01 1.03299916e-01 1.10076284e+00 -2.91901737e-01 4.75290447e-01 1.31051540e+00 5.51629364e-01 4.55620229e-01 -1.12945378e+00 -5.55458605e-01 1.56872809e-01 5.26682675e-01 -1.26176119e+00 2.12492153e-01 9.55344260e-01 1.87597200e-01 1.07237208e+00 1.84693635e-01 8.48515809e-01 8.71096909e-01 4.87047881e-01 7.30919063e-01 7.45113492e-01 -6.47037327e-02 5.77543378e-01 -2.84865767e-01 -4.34482545e-02 8.32616150e-01 4.52477694e-01 3.07836264e-01 1.96603183e-02 4.32810299e-02 4.53250498e-01 -6.86520785e-02 -8.43959674e-02 -7.36263573e-01 -6.76241219e-01 1.12576032e+00 1.08424628e+00 7.74244964e-02 -1.49481907e-01 5.56713760e-01 2.94689089e-01 4.91771340e-01 -2.97448993e-01 5.98341763e-01 -5.33337891e-01 2.09793344e-01 -3.95466417e-01 2.94591397e-01 1.09557676e+00 1.10073304e+00 1.06326795e+00 1.18328184e-01 7.16780573e-02 5.03781259e-01 2.58262306e-01 6.07184827e-01 2.98784729e-02 -8.41860056e-01 7.48152435e-01 8.60057414e-01 -2.65882969e-01 -1.57790458e+00 -9.24138367e-01 -4.65044618e-01 -9.81323421e-01 6.66652620e-02 -4.18037288e-02 -1.22752160e-01 -8.69212151e-01 1.77835560e+00 5.69611490e-01 3.64322603e-01 2.43318692e-01 9.80383635e-01 7.39745736e-01 1.03637612e+00 -3.44983071e-01 -1.85741618e-01 9.52644169e-01 -1.02601302e+00 -4.83508110e-01 -3.78374666e-01 6.96703315e-01 -4.27704751e-02 6.29870415e-01 2.92749286e-01 -9.86835122e-01 -1.20426677e-01 -1.28166592e+00 8.74305591e-02 -5.94543040e-01 -4.40195501e-01 7.33094037e-01 6.53614342e-01 -1.10599434e+00 7.33062744e-01 -7.36052632e-01 -3.23396266e-01 4.19015676e-01 7.68360913e-01 -3.15736711e-01 -6.27556682e-01 -1.11244130e+00 5.91600478e-01 6.04893744e-01 3.17733079e-01 -6.93026781e-01 -3.98136973e-01 -1.16806865e+00 2.73909360e-01 1.06302869e+00 -6.38592422e-01 1.03434265e+00 -6.20611191e-01 -1.50017023e+00 2.14826658e-01 2.02701375e-01 -5.97557664e-01 -6.01923950e-02 4.00669903e-01 -5.30746758e-01 1.82148755e-01 -2.84798555e-02 5.52659333e-01 6.04862571e-01 -1.05766261e+00 -5.57738423e-01 -4.45062667e-01 3.99469793e-01 -9.69573036e-02 -3.03389192e-01 -4.59932059e-01 -5.88571787e-01 -1.73382312e-01 1.02439180e-01 -9.54446971e-01 -5.31530380e-01 1.72566146e-01 -5.82384586e-01 -4.37242627e-01 8.47575486e-01 -2.35897169e-01 1.03636849e+00 -1.69015181e+00 4.89126742e-01 6.27433956e-01 4.31771934e-01 1.55091152e-01 -7.11234093e-01 7.64548838e-01 1.96027890e-01 2.63396829e-01 -4.34379339e-01 1.78034708e-01 2.44766548e-01 8.75997782e-01 1.31005049e-01 3.84959728e-01 4.81359690e-01 1.22524166e+00 -1.13427448e+00 -3.73704463e-01 1.65027931e-01 7.49627948e-02 -5.89402974e-01 -1.53221548e-01 -6.34192765e-01 -2.03495964e-01 -5.74432611e-01 7.07147896e-01 1.10843956e+00 -3.82171303e-01 5.10533392e-01 -5.98290563e-02 1.26208529e-01 -1.81126371e-01 -1.24760056e+00 1.62216341e+00 -4.37789470e-01 4.36895549e-01 8.20752606e-02 -1.73751473e+00 9.66421604e-01 -2.90920913e-01 6.31344855e-01 -1.29127443e+00 2.55479544e-01 1.35560766e-01 4.31819959e-03 -5.65346360e-01 3.56746227e-01 2.02294692e-01 -4.01257485e-01 2.57794201e-01 -9.11217853e-02 -2.20385697e-02 3.94985169e-01 6.42222986e-02 1.62907469e+00 -3.22570652e-01 -2.78541278e-02 2.32291073e-02 3.17160666e-01 1.61265552e-01 8.43382955e-01 5.59475124e-01 4.65076454e-02 1.55902147e-01 9.31674838e-01 -6.56582832e-01 -6.20162129e-01 -1.09778178e+00 1.97485521e-01 5.51881492e-01 6.22583270e-01 -2.81474024e-01 -4.61673468e-01 -7.49691308e-01 3.59758854e-01 6.22846842e-01 -5.18077374e-01 -5.46432436e-01 -5.56098402e-01 -4.77827996e-01 2.49742702e-01 4.79368031e-01 2.92557657e-01 -9.71964598e-01 -4.92582589e-01 5.32372177e-01 1.16277210e-01 -1.34977043e+00 -2.46240452e-01 3.97682041e-01 -7.18635380e-01 -1.32647681e+00 -1.81048378e-01 -1.14254928e+00 5.96673608e-01 4.04370487e-01 1.11585093e+00 7.69670755e-02 -3.60192865e-01 2.16897100e-01 -4.72357422e-01 -4.57795076e-02 -2.03574210e-01 3.53544503e-01 -7.45503455e-02 -2.60405868e-01 8.13984051e-02 -4.51611131e-01 -3.37866157e-01 5.71791947e-01 -9.92596805e-01 -2.31149510e-01 8.14339042e-01 6.94257557e-01 8.69331598e-01 8.03510368e-01 6.61359847e-01 -6.74759686e-01 6.35406017e-01 -8.13320696e-01 -1.17634845e+00 3.17998946e-01 -6.84813559e-01 4.74795789e-01 9.60279346e-01 -1.65904373e-01 -1.91133082e-01 6.72878623e-02 -1.35397501e-02 -7.01148570e-01 2.69135892e-01 9.66831386e-01 -4.05076295e-01 -3.24723601e-01 1.89004719e-01 7.09597766e-02 1.40665714e-02 7.39251748e-02 2.42416918e-01 1.53396085e-01 3.61017138e-01 -5.30928254e-01 1.08791733e+00 1.19986773e-01 5.53860307e-01 -5.25099874e-01 -6.75071299e-01 -1.37394875e-01 -1.13242015e-01 2.45432109e-02 6.81590080e-01 -3.30442965e-01 -1.24522972e+00 7.61001408e-02 -1.05660021e+00 -3.18837792e-01 -1.02565162e-01 1.25813812e-01 -6.53228045e-01 3.53163868e-01 -1.93967372e-01 -5.68856239e-01 -1.82358563e-01 -1.12964010e+00 8.84813428e-01 3.52601498e-01 4.26104397e-01 -9.07765925e-01 8.09466019e-02 4.37501855e-02 2.32006758e-01 6.72226548e-01 1.33159947e+00 -2.87546575e-01 -8.10802221e-01 -1.08556777e-01 -4.63475168e-01 -3.00577395e-02 9.13044736e-02 -1.14195757e-01 -3.05900693e-01 -4.94818300e-01 -5.36382020e-01 -3.93959194e-01 6.19098425e-01 4.23869818e-01 1.50591373e+00 -5.42988360e-01 -5.30105233e-01 8.18058550e-01 1.92158961e+00 2.72764474e-01 5.66874981e-01 3.17091316e-01 5.81450582e-01 4.90263313e-01 5.72373092e-01 3.15334916e-01 6.64079368e-01 5.38259149e-01 1.24322581e+00 9.32364613e-02 2.58996338e-01 -3.30702275e-01 1.75172821e-01 6.87435627e-01 4.83890563e-01 -7.85911679e-01 -8.08062017e-01 4.35440421e-01 -1.99090338e+00 -7.09921658e-01 1.47087991e-01 1.92098749e+00 3.39755863e-01 3.54369700e-01 3.77434725e-03 3.35124493e-01 7.17595577e-01 7.10721985e-02 -1.01047707e+00 -1.00671053e+00 -1.13365591e-01 4.04446512e-01 7.07776666e-01 2.02306330e-01 -8.18765223e-01 9.75068867e-01 5.13819313e+00 6.56695366e-01 -1.20946419e+00 -4.64670777e-01 2.66853631e-01 3.78919691e-02 -3.82256299e-01 -1.82023108e-01 -3.39421988e-01 3.35740328e-01 9.43501532e-01 -3.54525238e-01 9.83759582e-01 8.16880286e-01 -7.50790387e-02 1.95474997e-01 -1.23110819e+00 1.08548689e+00 -1.29767060e-01 -1.62889326e+00 -1.17928691e-01 1.93609044e-01 6.80298567e-01 1.17442302e-01 3.45414430e-02 6.13275349e-01 4.39430028e-01 -1.23721647e+00 2.69278765e-01 5.27637601e-02 6.74397647e-01 -1.18962431e+00 7.31060088e-01 2.74871349e-01 -1.36501944e+00 -6.20012820e-01 -6.87224269e-01 1.50367379e-01 7.56039172e-02 5.38129747e-01 -8.92007053e-01 1.00505030e+00 6.93378091e-01 8.06546986e-01 -1.28079355e-01 1.24129570e+00 -1.84079081e-01 2.14773074e-01 -5.86271465e-01 -4.54586983e-01 6.06137216e-01 -2.52054483e-01 4.21702296e-01 5.37518799e-01 4.19818550e-01 1.45633230e-02 3.89863610e-01 9.61975396e-01 -3.97748828e-01 -1.21619135e-01 -7.72193730e-01 -2.71878302e-01 6.08437717e-01 1.32759166e+00 -7.68116057e-01 3.51010233e-01 -2.98554271e-01 7.62794495e-01 6.53722227e-01 2.79353499e-01 -1.00819361e+00 -5.97219586e-01 6.82631195e-01 -8.04675892e-02 6.38719857e-01 -2.50798702e-01 -7.74212256e-02 -6.76896751e-01 3.25656146e-01 -7.98355401e-01 4.70167756e-01 -5.10240614e-01 -1.22563386e+00 5.30662000e-01 -2.38865256e-01 -1.02837312e+00 -7.85421729e-02 -8.24343979e-01 -7.91581333e-01 2.84569681e-01 -1.95017624e+00 -7.52325296e-01 -3.94514859e-01 6.20768011e-01 2.29710549e-01 2.51987297e-02 6.38987005e-01 1.72343343e-01 -9.86482084e-01 7.39711761e-01 1.48233652e-01 -3.95714417e-02 4.32721302e-02 -1.28098381e+00 4.40060347e-01 4.92709070e-01 -8.48402455e-02 -6.04969896e-02 4.86426473e-01 -4.49688643e-01 -2.58814263e+00 -1.45651054e+00 3.68877888e-01 1.33677423e-01 8.09358239e-01 -3.52095157e-01 -5.24779856e-01 3.75437498e-01 -5.99955320e-02 3.01780879e-01 1.88187346e-01 -7.75660127e-02 -1.17147066e-01 -4.50479209e-01 -1.41068840e+00 4.76144761e-01 1.33824396e+00 1.35459881e-02 -9.83759612e-02 4.89959896e-01 1.21252334e+00 -4.56532687e-01 -8.28165472e-01 4.21355665e-01 2.72237211e-01 -6.00214601e-01 9.01337385e-01 -7.32470572e-01 6.01490796e-01 -2.41569430e-01 -3.04340899e-01 -1.52506757e+00 -4.83398795e-01 -6.08014584e-01 -5.16408145e-01 8.49550724e-01 3.90098244e-01 -6.54765069e-01 1.16450584e+00 1.93820983e-01 -2.79552490e-01 -1.27735877e+00 -1.20116043e+00 -1.15554333e+00 5.63306399e-02 -5.11444926e-01 1.10172331e+00 6.61234260e-01 -2.76871264e-01 3.42516631e-01 -1.47145241e-01 6.91458941e-01 7.50775099e-01 5.88392735e-01 6.50070071e-01 -1.32126701e+00 -2.33587876e-01 -4.29445177e-01 -7.44826794e-01 -8.00271213e-01 4.75211799e-01 -1.14069283e+00 -9.31117535e-02 -2.05232239e+00 -3.53591204e-01 -7.96702921e-01 -3.18819493e-01 6.01568639e-01 4.23758298e-01 -2.49923483e-01 1.90381408e-02 -5.00291705e-01 -7.35747039e-01 8.70317161e-01 1.39220452e+00 -7.53746152e-01 -2.57025421e-01 1.02301881e-01 -7.60611594e-01 2.14731097e-01 9.71566379e-01 -5.80985963e-01 -6.83124721e-01 -7.93474615e-01 6.85283363e-01 4.90150958e-01 2.15383783e-01 -1.09917736e+00 2.73099422e-01 -4.73582655e-01 1.00490898e-02 -7.10728288e-01 2.53258049e-01 -1.28254402e+00 -6.08255900e-02 8.38371456e-01 3.24511267e-02 3.53474647e-01 2.68050253e-01 8.71238291e-01 -5.04038259e-02 -1.04739226e-01 5.35350204e-01 2.55313635e-01 -9.31199431e-01 8.10059488e-01 -1.25220478e-01 1.33481264e-01 1.42163932e+00 -3.31513464e-01 -5.20839453e-01 -2.71885872e-01 -3.80618781e-01 1.04529667e+00 1.81228012e-01 4.66211349e-01 1.01361322e+00 -1.37581205e+00 -5.35053372e-01 5.60259931e-02 2.64179736e-01 3.44971210e-01 1.39975518e-01 5.40679753e-01 -5.38501978e-01 3.65181237e-01 -3.37669998e-01 -4.95092094e-01 -6.71419322e-01 1.06110966e+00 2.77451485e-01 -4.70302194e-01 -5.42105556e-01 4.62189615e-01 -2.03025252e-01 -7.90480316e-01 3.13063264e-01 -6.59774661e-01 -5.75146191e-02 -3.68823498e-01 1.52639717e-01 3.96359861e-01 6.34503663e-02 -1.07669368e-01 -5.47990143e-01 6.77898526e-01 9.21394825e-02 5.32990873e-01 1.55403221e+00 1.28177449e-01 -1.26894176e-01 -2.86610276e-01 1.45500219e+00 -6.45787060e-01 -9.23056126e-01 -3.05982709e-01 8.21791217e-02 -1.59319818e-01 4.99382906e-04 -5.48970938e-01 -1.75498009e+00 6.68163240e-01 4.09557521e-01 3.53755832e-01 1.26064670e+00 1.24929771e-01 1.15718460e+00 1.02002800e+00 6.93117023e-01 -1.24570584e+00 9.93920416e-02 6.53562307e-01 8.14887822e-01 -1.04066122e+00 -1.18627422e-01 -5.43938875e-01 -1.65613458e-01 1.34406936e+00 7.90734351e-01 -2.39774942e-01 5.86169243e-01 3.24448824e-01 -5.29036880e-01 -2.82717437e-01 -8.80212784e-01 -1.29115194e-01 -1.91870466e-01 8.59311879e-01 -6.36766136e-01 2.32337475e-01 -1.47532970e-01 5.06347179e-01 -3.73887002e-01 -6.78394213e-02 6.06375158e-01 9.07265842e-01 -3.90622109e-01 -1.11873770e+00 -7.77328536e-02 5.50538421e-01 1.89879939e-01 3.77049118e-01 -2.77315348e-01 7.51930237e-01 5.53071592e-03 1.01636982e+00 7.07494095e-02 -6.57780707e-01 2.51100659e-01 -6.87320530e-01 4.89631951e-01 -3.66071254e-01 -6.89313561e-02 -6.39792979e-01 5.00043370e-02 -9.10595834e-01 -3.33610107e-03 -1.86531499e-01 -1.54636502e+00 -4.60129142e-01 -1.37950927e-01 1.25212327e-01 8.46610069e-01 7.80362904e-01 4.68094200e-01 7.01591611e-01 1.01455045e+00 -3.97369981e-01 -5.11153519e-01 -1.44348308e-01 -5.43255746e-01 -1.32549539e-01 2.73811191e-01 -7.18422711e-01 -4.19887826e-02 -8.50057423e-01]
[5.248708724975586, 2.8035025596618652]
2b534832-51d4-46df-adbb-cf4b959c081a
change-point-detection-in-wind-turbine-scada
null
null
https://wes.copernicus.org/articles/5/1375/2020/
https://wes.copernicus.org/articles/5/1375/2020/wes-5-1375-2020.pdf
Change-point detection in wind turbine SCADA data for robust condition monitoring with normal behaviour models
Analysis of data from wind turbine supervisory control and data acquisition (SCADA) systems has attracted considerable research interest in recent years. Its predominant application is to monitor turbine condition without the need for additional sensing equipment. Most approaches apply semi-supervised anomaly detection methods, also called normal behaviour models, that require clean training data sets to establish healthy component baseline models. In practice, however, the presence of change points induced by malfunctions or maintenance actions poses a major challenge. Even though this problem is well described in literature, this contribution is the first to systematically evaluate and address the issue. A total of 600 signals from 33 turbines are analysed over an operational period of more than 2 years. During this time one-third of the signals were affected by change points, which highlights the necessity of an automated detection method. Kernel-based change-point detection methods have shown promising results in similar settings. We, therefore, introduce an appropriate SCADA data preprocessing procedure to ensure their feasibility and conduct comprehensive comparisons across several hyperparameter choices. The results show that the combination of Laplace kernels with a newly introduced bandwidth and regularisation-penalty selection heuristic robustly outperforms existing methods. More than 90 % of the signals were classified correctly regarding the presence or absence of change points, resulting in an F1 score of 0.86. For an automated change-point-free sequence selection, the most severe 60 % of all change points (CPs) could be automatically removed with a precision of more than 0.96 and therefore without any significant loss of training data. These results indicate that the algorithm can be a meaningful step towards automated SCADA data preprocessing, which is key for data-driven methods to reach their full potential. The algorithm is open source and its implementation in Python is publicly available.
['Simon Letzgus']
2020-10-27
null
null
null
wind-energy-science-2020-10
['supervised-anomaly-detection', 'semi-supervised-anomaly-detection']
['computer-vision', 'computer-vision']
[ 1.55060142e-01 -4.24147516e-01 2.14485854e-01 5.07311635e-02 -4.31604236e-01 -8.74018788e-01 5.78898311e-01 7.32745647e-01 -2.71423846e-01 6.01941049e-01 -5.29978931e-01 -4.03964877e-01 -4.90989655e-01 -6.07046545e-01 -1.21451803e-01 -9.91362691e-01 -4.87902373e-01 1.68012604e-02 4.34028208e-01 -1.95888668e-01 2.32330576e-01 8.05070281e-01 -1.89092505e+00 -3.37096959e-01 9.22778904e-01 9.84777868e-01 -1.23119857e-02 5.06573617e-01 2.70989001e-01 9.02094692e-02 -1.07021761e+00 2.88229465e-01 2.84371316e-01 -3.38668436e-01 -3.31369698e-01 1.85859110e-02 -1.66966617e-01 -1.21421739e-01 4.65061992e-01 9.78184581e-01 7.45361686e-01 2.30493248e-01 5.19093335e-01 -1.12504268e+00 3.99047852e-01 1.92276329e-01 -3.31063986e-01 5.24067938e-01 3.35055947e-01 3.47291976e-01 7.50060439e-01 -7.65063107e-01 5.98744974e-02 3.83518875e-01 7.32406616e-01 -1.30439326e-01 -1.57631564e+00 -3.45174283e-01 -1.91090167e-01 5.61722033e-02 -1.37068570e+00 -1.96324617e-01 9.95184064e-01 -7.24669099e-01 1.00911856e+00 3.76936913e-01 7.72562087e-01 7.40311861e-01 1.35582060e-01 8.35722163e-02 1.05508196e+00 -5.21506965e-01 6.31707668e-01 1.35318622e-01 1.50672108e-01 1.00652918e-01 6.99924946e-01 1.63438663e-01 -1.73339814e-01 -3.40449393e-01 4.63282883e-01 -2.10341975e-01 -4.05696630e-01 -3.57467741e-01 -9.99669373e-01 7.34620512e-01 -1.58328444e-01 7.31245935e-01 -5.51823914e-01 -4.98853773e-01 7.74253905e-01 3.84789884e-01 3.95844966e-01 6.46293104e-01 -5.18908918e-01 -4.29028392e-01 -1.05080128e+00 4.69395816e-02 6.47283196e-01 4.35969204e-01 2.40530238e-01 8.25216115e-01 2.25495890e-01 7.58570969e-01 -6.19360283e-02 6.47087336e-01 7.16009378e-01 -4.07831579e-01 7.72537291e-02 6.36697173e-01 1.97788775e-01 -1.06177449e+00 -4.02027249e-01 -6.53827071e-01 -8.65416467e-01 5.38783729e-01 4.25298750e-01 -3.23125631e-01 -5.34469843e-01 1.18350506e+00 4.06887174e-01 -5.28251752e-02 -3.15870009e-02 6.94832385e-01 2.15943530e-02 5.60856581e-01 -1.97912231e-01 -6.45598292e-01 1.24193871e+00 2.79191304e-02 -9.40770209e-01 2.18281820e-01 4.29681718e-01 -7.50883102e-01 1.02054191e+00 8.67358029e-01 -6.57269120e-01 -5.36827743e-01 -1.45055354e+00 1.02750134e+00 -5.37503779e-01 2.31351107e-01 3.33608776e-01 1.02125287e+00 -5.89894295e-01 8.01031590e-01 -1.10722184e+00 -3.97181481e-01 -2.87714601e-02 1.84598237e-01 -3.19365859e-01 6.88796818e-01 -1.16988683e+00 9.51278627e-01 4.59905326e-01 4.61791128e-01 -6.97555482e-01 -6.08991981e-01 -7.33499408e-01 -4.12640208e-03 3.95438284e-01 7.73500651e-02 9.97745156e-01 -5.97715974e-01 -1.53201902e+00 3.74396890e-01 1.39803886e-01 -7.73027301e-01 4.16756868e-01 -2.70575494e-01 -8.51041317e-01 2.21235603e-01 -1.37664422e-01 -4.68392164e-01 1.26814330e+00 -8.54321301e-01 -6.59470975e-01 -1.04525745e-01 -4.70352083e-01 -3.33803684e-01 -2.61881769e-01 6.07573353e-02 4.35675830e-01 -8.09622526e-01 -6.95429891e-02 -6.93628728e-01 -4.64408360e-02 -5.32300353e-01 -2.31198967e-01 -5.53744799e-03 8.17233443e-01 -7.04338133e-01 1.64102018e+00 -2.15680909e+00 -2.30026811e-01 5.43377876e-01 -2.30576470e-01 7.14497209e-01 4.51760948e-01 8.25611889e-01 -4.64816511e-01 -1.02664106e-01 -6.61502659e-01 2.73220420e-01 -4.31057252e-02 -2.66822912e-02 -5.26712000e-01 7.89094508e-01 4.64703590e-01 1.23186715e-01 -7.65079498e-01 3.81062567e-01 8.92752945e-01 2.65280634e-01 -3.28239277e-02 2.00786054e-01 1.62139073e-01 3.85259092e-01 -1.54779136e-01 5.44355810e-01 4.94528979e-01 4.56062704e-01 -2.86736667e-01 -9.29180533e-02 -3.91991466e-01 -2.13219672e-02 -1.56377041e+00 9.95940745e-01 -4.21514899e-01 5.89121401e-01 1.77491397e-01 -1.27221847e+00 1.18734539e+00 5.63169658e-01 8.09199810e-01 -2.86061496e-01 -5.88714182e-02 3.71056944e-01 1.18669502e-01 -5.74266791e-01 2.37110898e-01 -8.87133703e-02 4.74911854e-02 1.76929504e-01 -8.47735405e-02 -3.71467024e-01 3.35201025e-01 -2.23112166e-01 1.10297716e+00 -5.84954442e-03 5.93845844e-01 -4.40150857e-01 8.13625157e-01 1.16843797e-01 5.67249477e-01 3.72521192e-01 -2.93008596e-01 2.98584729e-01 4.44909483e-01 -3.24482769e-01 -6.45988166e-01 -9.61113214e-01 -4.29508090e-01 3.36120993e-01 -2.26043418e-01 -3.62851381e-01 -6.35951698e-01 -3.21790576e-01 4.36540656e-02 1.09307480e+00 -1.84706002e-01 -3.62479001e-01 -3.44244033e-01 -9.87224281e-01 5.18521845e-01 2.74942160e-01 2.76882917e-01 -1.00265801e+00 -1.08542717e+00 5.48510730e-01 1.79214716e-01 -7.97121882e-01 1.74555317e-01 7.06838906e-01 -1.06013358e+00 -1.24976039e+00 -4.43812311e-01 -8.40663463e-02 6.26048267e-01 -3.18592377e-02 6.73069596e-01 -1.73439622e-01 -5.87794304e-01 3.69656742e-01 -5.17722011e-01 -5.02000511e-01 -5.82601011e-01 -1.73158467e-01 3.63041669e-01 3.68964896e-02 3.27408582e-01 -5.71149468e-01 -3.04328054e-01 4.55532908e-01 -8.44337761e-01 -9.20502424e-01 3.85514259e-01 8.13330352e-01 4.39349502e-01 7.54777312e-01 1.04661775e+00 -5.16868591e-01 8.28842103e-01 -4.52016622e-01 -1.13888812e+00 -1.87353656e-01 -9.40410197e-01 -2.52627134e-01 1.08038568e+00 -2.53913313e-01 -7.86037445e-01 3.33597898e-01 -4.83377948e-02 -3.50327522e-01 -8.12475324e-01 6.71296120e-01 -1.67009607e-01 1.77150816e-01 7.28857338e-01 8.83175284e-02 3.01117927e-01 -5.61378717e-01 -8.32203552e-02 6.69519603e-01 4.93869334e-01 -2.10633442e-01 1.05491114e+00 3.36136729e-01 -9.87750292e-03 -1.50180817e+00 -1.17482826e-01 -8.93157542e-01 -6.90500915e-01 -3.20317030e-01 4.84418452e-01 -8.21845531e-01 -4.51970190e-01 6.81889355e-01 -6.57549202e-01 -2.45361820e-01 -5.76099694e-01 5.85893631e-01 -2.05105931e-01 5.54698944e-01 -1.03247106e-01 -1.19697869e+00 -3.58146399e-01 -1.00637579e+00 7.40790308e-01 -5.43739945e-02 -4.64206666e-01 -1.00701714e+00 -2.22750083e-02 -1.40935495e-01 5.97114265e-01 6.77119911e-01 5.72283268e-01 -9.48008418e-01 5.16477153e-02 -7.55497277e-01 6.28578484e-01 8.49836290e-01 7.38198936e-01 4.31045651e-01 -1.11239362e+00 -6.46639168e-01 4.15547848e-01 3.55922580e-01 3.02473366e-01 2.52509713e-01 6.97671652e-01 -1.59336347e-03 -2.52920389e-02 -2.11661104e-02 1.30133224e+00 3.53175670e-01 3.81940126e-01 3.72209966e-01 8.17394704e-02 5.06158113e-01 9.45422173e-01 7.93238938e-01 -5.64879954e-01 7.46221244e-01 6.50351405e-01 -8.44444782e-02 3.61858815e-01 2.36729428e-01 6.49716318e-01 6.69909954e-01 -1.40032887e-01 1.27815068e-01 -6.95990205e-01 7.48448253e-01 -1.31720042e+00 -1.15654528e+00 -6.42553926e-01 2.79574728e+00 4.17386919e-01 3.99328977e-01 3.24036509e-01 1.07054842e+00 7.27081656e-01 -9.93892457e-03 -3.61349285e-01 -5.78327417e-01 -4.63230126e-02 3.70961338e-01 4.44978803e-01 2.47423768e-01 -1.33132517e+00 1.56618953e-01 5.54682112e+00 7.96810329e-01 -1.19952166e+00 -3.23527783e-01 5.84817342e-02 1.22875601e-01 2.24016652e-01 -4.87212986e-02 -5.74993014e-01 7.22950578e-01 1.30715740e+00 -1.85217589e-01 2.25058123e-01 8.17993224e-01 9.91218507e-01 -4.55106705e-01 -6.24235690e-01 7.11811423e-01 -1.81658402e-01 -5.45384526e-01 -4.71964568e-01 1.26395136e-01 3.65044534e-01 -2.57036120e-01 -3.82599920e-01 5.34806773e-03 -2.70763278e-01 -6.21010065e-01 6.95559204e-01 3.61514449e-01 4.93814677e-01 -7.82577097e-01 1.05946946e+00 2.87109166e-01 -1.29258513e+00 -2.15873003e-01 -1.46581307e-01 -2.46593028e-01 4.17696804e-01 1.34769106e+00 -7.94965684e-01 9.57061052e-01 7.04526246e-01 5.95478356e-01 -4.38596696e-01 1.25689757e+00 -3.06593329e-01 1.33690023e+00 -7.33538151e-01 8.78510848e-02 -8.09791908e-02 -2.91303039e-01 9.32822526e-01 1.00932848e+00 5.45532286e-01 -4.31659907e-01 -1.31367475e-01 6.01714909e-01 8.43807161e-01 1.45452783e-01 -6.76293671e-01 -1.08873278e-01 7.19527721e-01 1.31151986e+00 -9.08607543e-01 8.30420479e-02 -4.01003957e-01 5.64029872e-01 -4.37665164e-01 2.19582289e-01 -7.15565324e-01 -7.85878479e-01 5.92052341e-01 1.36035204e-01 4.21000510e-01 -2.20252022e-01 -2.65374273e-01 -7.34651446e-01 4.39499021e-01 -8.58489275e-01 4.73070562e-01 -2.41926610e-01 -1.26379740e+00 3.65235150e-01 1.98712885e-01 -1.85266817e+00 -6.05968058e-01 -5.76751351e-01 -9.83143151e-01 8.31138849e-01 -1.12323606e+00 -4.24477279e-01 -2.51730561e-01 2.29404315e-01 4.21775848e-01 -1.70038432e-01 9.72979188e-01 1.91791967e-01 -6.81468904e-01 1.00351041e-02 3.38100016e-01 -1.26746252e-01 4.04742062e-01 -1.47117138e+00 1.99551247e-02 1.40020180e+00 -2.10193126e-03 5.37046731e-01 1.00998807e+00 -5.82806766e-01 -1.13985038e+00 -8.23685467e-01 5.30782223e-01 -1.86560079e-01 9.94065523e-01 -1.79273203e-01 -1.19968474e+00 1.09023549e-01 2.28034288e-01 1.86650548e-02 5.67453086e-01 -3.64076138e-01 3.05296659e-01 -3.23688298e-01 -1.06331635e+00 1.43841550e-01 1.92237034e-01 -2.53777146e-01 -7.94999480e-01 -2.66232751e-02 -8.27915519e-02 -1.08344793e-01 -1.15678883e+00 6.88298225e-01 1.27227664e-01 -1.09857571e+00 8.13769400e-01 -3.49905677e-02 -3.07232201e-01 -8.81685674e-01 3.33880633e-01 -1.55596161e+00 1.12418786e-01 -9.13427413e-01 -3.99167240e-02 1.45261347e+00 2.68624455e-01 -1.04480553e+00 1.44945353e-01 2.31040940e-01 -2.74019659e-01 -4.38149452e-01 -1.13231623e+00 -1.12969148e+00 -2.38650605e-01 -5.89107990e-01 4.32736933e-01 1.00585055e+00 3.69884640e-01 -6.78071054e-03 -1.25531117e-02 6.34500206e-01 3.16925526e-01 1.69330724e-02 6.87970400e-01 -1.38749385e+00 -5.97428195e-02 -5.58666050e-01 -5.45347154e-01 -1.29009306e-01 -2.57680506e-01 -4.20801699e-01 1.56193987e-01 -1.15404570e+00 -7.35661805e-01 -3.06466758e-01 -3.22524905e-01 4.95120794e-01 -2.12612018e-01 -8.70248601e-02 -3.82107407e-01 6.18013404e-02 3.05461019e-01 4.99008656e-01 3.37903589e-01 1.44394776e-02 -4.75387931e-01 5.83314598e-01 -5.74386008e-02 6.40279830e-01 1.16921306e+00 -2.51087070e-01 -5.72524786e-01 3.23419780e-01 -1.35959014e-02 -2.47779638e-01 4.62803990e-01 -1.36547279e+00 5.84039465e-03 1.13895103e-01 1.11754932e-01 -5.97279429e-01 -1.47386819e-01 -1.33843541e+00 5.28616011e-01 6.31219149e-01 1.05014794e-01 2.00680450e-01 4.85166728e-01 6.77745819e-01 -5.20613790e-01 -5.22825837e-01 5.95410705e-01 3.80732298e-01 -7.06570923e-01 -3.38274479e-01 -1.00293112e+00 -2.46378973e-01 1.41440809e+00 -3.45649689e-01 1.81454569e-02 -2.06080586e-01 -7.63248742e-01 -5.15674762e-02 3.46249282e-01 3.04038107e-01 2.92290926e-01 -8.15479696e-01 -5.08524001e-01 6.03724360e-01 1.84501261e-01 -4.62597795e-03 2.20382512e-01 1.10726321e+00 -4.66911346e-01 3.77682775e-01 -1.30483769e-02 -7.79837251e-01 -1.16208053e+00 3.60276401e-01 5.25019288e-01 5.01776449e-02 -6.85470819e-01 1.16803922e-01 -7.15967596e-01 2.45433766e-02 1.89766809e-02 -5.92851222e-01 -3.57812166e-01 3.95706594e-01 3.94115478e-01 6.94120765e-01 8.14307153e-01 -5.91560245e-01 -4.14068997e-01 4.09828305e-01 3.99284840e-01 1.43516243e-01 1.16431212e+00 3.91536579e-02 1.43882949e-02 7.40408540e-01 5.33875346e-01 3.35368216e-01 -1.19573426e+00 4.09829527e-01 2.85627812e-01 -4.16377097e-01 8.13038796e-02 -7.31690586e-01 -9.74447966e-01 7.16512740e-01 7.27032602e-01 8.78800213e-01 1.27033103e+00 -5.18237948e-01 1.08165525e-01 1.18028745e-01 4.47858483e-01 -1.09066534e+00 -3.23672324e-01 2.46944234e-01 7.99837768e-01 -9.11123931e-01 5.96240647e-02 -3.28960359e-01 -4.75466460e-01 1.20327759e+00 1.52034178e-01 -1.00284837e-01 6.96224451e-01 4.42535579e-01 1.20531008e-01 -1.00749969e-01 -4.45460051e-01 -3.51532668e-01 7.51100015e-03 7.89395094e-01 2.86423534e-01 1.63134187e-01 -5.39432466e-01 6.65972948e-01 -4.93092500e-02 -2.56974399e-01 5.55266857e-01 1.17156148e+00 -4.14086848e-01 -9.72592533e-01 -6.13700032e-01 5.29406786e-01 -3.89329523e-01 2.50904799e-01 -2.87457108e-02 9.35081363e-01 -1.76891312e-01 1.28718424e+00 -6.86023757e-02 -2.26584196e-01 7.83697724e-01 4.55767006e-01 -2.01530114e-01 -3.46454203e-01 -7.01737821e-01 2.23168328e-01 8.71769562e-02 -4.65930790e-01 -4.98313934e-01 -1.02480602e+00 -1.14479280e+00 3.18958312e-02 -8.37639391e-01 4.57864791e-01 7.70599008e-01 8.00370038e-01 1.95115820e-01 6.56893194e-01 8.68008196e-01 -6.66404009e-01 -8.24172199e-01 -1.11142588e+00 -8.97498846e-01 2.67205000e-01 3.01672220e-01 -9.23273444e-01 -1.10656667e+00 3.33730966e-01]
[6.609753608703613, 2.4783434867858887]
a4b8ebcf-441e-426a-b473-185e4a2c5d6e
real-time-pose-and-shape-reconstruction-of
2106.08059
null
https://arxiv.org/abs/2106.08059v1
https://arxiv.org/pdf/2106.08059v1.pdf
Real-time Pose and Shape Reconstruction of Two Interacting Hands With a Single Depth Camera
We present a novel method for real-time pose and shape reconstruction of two strongly interacting hands. Our approach is the first two-hand tracking solution that combines an extensive list of favorable properties, namely it is marker-less, uses a single consumer-level depth camera, runs in real time, handles inter- and intra-hand collisions, and automatically adjusts to the user's hand shape. In order to achieve this, we embed a recent parametric hand pose and shape model and a dense correspondence predictor based on a deep neural network into a suitable energy minimization framework. For training the correspondence prediction network, we synthesize a two-hand dataset based on physical simulations that includes both hand pose and shape annotations while at the same time avoiding inter-hand penetrations. To achieve real-time rates, we phrase the model fitting in terms of a nonlinear least-squares problem so that the energy can be optimized based on a highly efficient GPU-based Gauss-Newton optimizer. We show state-of-the-art results in scenes that exceed the complexity level demonstrated by previous work, including tight two-hand grasps, significant inter-hand occlusions, and gesture interaction.
['Christian Theobalt', 'Dan Casas', 'Miguel A. Otaduy', 'Mickeal Verschoor', 'Oleksandr Sotnychenko', 'Florian Bernard', 'Micah Davis', 'Franziska Mueller']
2021-06-15
null
null
null
null
['physical-simulations']
['miscellaneous']
[ 3.77302691e-02 -2.21828863e-01 1.00301959e-01 -6.16404265e-02 -6.98154569e-01 -5.43701410e-01 3.65421288e-02 -1.69761032e-01 -5.48399210e-01 3.33882719e-01 -2.65345424e-01 -1.15628920e-01 -1.74033225e-01 -2.93339670e-01 -7.75068223e-01 -4.31042254e-01 -7.32859671e-02 1.21413267e+00 4.31252599e-01 -2.24446714e-01 2.77307123e-01 1.04143584e+00 -1.45486188e+00 -1.20438099e-01 5.26508689e-01 9.68189240e-01 4.44911391e-01 9.08079445e-01 3.77874702e-01 1.55031383e-01 -2.07358927e-01 -3.22375268e-01 6.67640090e-01 1.34195477e-01 -6.01435006e-01 7.40710199e-02 5.32990813e-01 -7.95057654e-01 -4.41985220e-01 5.76893091e-01 9.94746029e-01 2.43150771e-01 4.14643049e-01 -8.68399203e-01 1.39774773e-02 -3.00825946e-02 -6.94809914e-01 -5.94812214e-01 6.67417765e-01 4.90149587e-01 5.64299285e-01 -7.95557320e-01 9.42539752e-01 1.32006657e+00 9.50020730e-01 6.04203284e-01 -1.31601346e+00 -3.66818726e-01 1.07640050e-01 -2.80663371e-01 -1.50544798e+00 -2.08969310e-01 7.14751422e-01 -4.40425545e-01 1.17242730e+00 4.81136203e-01 9.99146581e-01 1.08527851e+00 3.09421599e-01 7.14139402e-01 6.46315455e-01 -7.78525829e-01 1.07981168e-01 -2.95792669e-01 -9.95604917e-02 8.63082111e-01 3.85846421e-02 1.30733475e-01 -4.24404562e-01 -4.31019276e-01 1.32264614e+00 1.03240833e-01 -4.99514043e-01 -9.87472832e-01 -1.27939141e+00 2.40537301e-01 3.53934705e-01 4.49531637e-02 -6.07012391e-01 3.09160829e-01 2.02874362e-01 -3.00743908e-01 6.54211491e-02 1.20342024e-01 -6.53948545e-01 -2.91794956e-01 -8.19642127e-01 6.42170846e-01 1.16819847e+00 1.14655054e+00 2.75882095e-01 -3.99173588e-01 -1.49416998e-01 3.57298166e-01 4.92103249e-01 5.50860286e-01 -1.83533609e-01 -1.04599988e+00 6.53779030e-01 4.16186035e-01 5.30234873e-01 -8.28849375e-01 -5.97537041e-01 -1.39388874e-01 -6.54590905e-01 8.24802160e-01 5.78350961e-01 -5.97083494e-02 -9.00101304e-01 1.46126902e+00 6.20440125e-01 -3.14157277e-01 -4.41262394e-01 1.24024928e+00 2.89135456e-01 1.34014547e-01 -1.61506087e-01 -1.62810892e-01 1.42072332e+00 -9.30412233e-01 -6.69637382e-01 -1.49332315e-01 1.21013306e-01 -8.30139160e-01 1.25062346e+00 7.66121209e-01 -1.40611541e+00 -4.80841488e-01 -8.71344030e-01 -4.14564312e-01 -3.38911675e-02 3.28343898e-01 5.92229486e-01 5.05514383e-01 -9.22252476e-01 9.95691478e-01 -1.30974197e+00 -2.43853480e-01 -1.73209433e-03 9.63290453e-01 -2.95246303e-01 2.66951650e-01 -4.42338139e-01 9.97292042e-01 3.05751055e-01 4.37163830e-01 -4.21315074e-01 -6.24745727e-01 -5.98940730e-01 -1.06349714e-01 5.97955465e-01 -8.88325274e-01 1.22023308e+00 -3.57118189e-01 -2.09657168e+00 9.19997811e-01 -1.93520233e-01 3.02008271e-01 1.11564851e+00 -6.04079902e-01 4.11175698e-01 -2.46967450e-02 -3.52403820e-01 5.19030750e-01 7.55279660e-01 -1.36932874e+00 -1.87398568e-01 -7.79630840e-01 -7.81261399e-02 3.06299269e-01 -6.93069026e-02 6.42753243e-02 -1.04128969e+00 -6.30130231e-01 2.07056999e-01 -1.21135163e+00 -2.29612932e-01 5.16101599e-01 -5.86273313e-01 -5.90448491e-02 8.12323570e-01 -1.10074759e+00 9.03979719e-01 -1.88865829e+00 7.00303137e-01 4.55267787e-01 1.41993105e-01 3.06708753e-01 7.23948479e-02 3.56398702e-01 2.43536845e-01 -5.92367351e-01 -1.80303276e-01 -8.63012075e-01 1.56920135e-01 1.80681184e-01 -1.73036270e-02 5.41374862e-01 -1.89134225e-01 8.80741239e-01 -6.62871361e-01 -4.24855947e-01 3.24240059e-01 8.79510224e-01 -7.00588167e-01 7.00424910e-01 -3.57004344e-01 7.08044946e-01 -4.01558995e-01 7.68539250e-01 6.56449139e-01 -4.65052621e-03 4.91207719e-01 -6.00918412e-01 -2.29038373e-01 1.67966150e-02 -1.73033094e+00 2.22363329e+00 -3.67841244e-01 8.75543356e-02 7.13432074e-01 -2.41682023e-01 6.03635371e-01 3.72509420e-01 5.23959994e-01 -1.88375235e-01 4.17753518e-01 5.38453937e-01 -2.75619388e-01 -4.32435960e-01 3.51667315e-01 1.76394701e-01 4.18745339e-01 4.61229801e-01 -1.71565592e-01 -3.56697321e-01 -2.86363691e-01 -2.22123966e-01 7.36101508e-01 7.97547698e-01 9.53436494e-02 -2.44885415e-01 5.76412752e-02 -1.18288882e-01 1.61113694e-01 4.69727337e-01 2.94495404e-01 8.34938288e-01 6.49429187e-02 -4.96298611e-01 -1.24224007e+00 -8.42071831e-01 8.58179331e-02 9.87075865e-01 1.55919924e-01 -1.34170473e-01 -9.04309809e-01 -2.14192897e-01 2.27566525e-01 1.19117737e-01 -3.15951258e-01 4.26905841e-01 -1.08744180e+00 -2.99435258e-01 1.08333625e-01 9.40910518e-01 1.34386808e-01 -1.05798006e+00 -1.09823060e+00 4.00790572e-01 1.53663635e-01 -9.86875117e-01 -6.75496399e-01 3.87987584e-01 -7.88570523e-01 -1.21248960e+00 -1.05337727e+00 -8.24034512e-01 7.19681442e-01 -2.47057244e-01 9.73146379e-01 1.69863492e-01 -6.52769864e-01 5.38085938e-01 -2.46848818e-02 1.58369020e-02 1.19901029e-02 3.44692357e-02 2.52996892e-01 -3.88011217e-01 -2.58090913e-01 -6.82358444e-01 -7.60055482e-01 3.44463885e-01 -3.99498463e-01 2.59389151e-02 3.15500319e-01 6.31226897e-01 6.79995358e-01 -4.62803245e-01 -4.67131793e-01 -9.61289629e-02 4.40310091e-01 4.51299340e-01 -7.51433730e-01 3.66953969e-01 -1.60694897e-01 -9.97855738e-02 2.12458715e-01 -8.61545980e-01 -1.01864851e+00 9.14612591e-01 -3.71432006e-01 -6.38062418e-01 2.04730574e-02 -1.13325737e-01 -3.27260822e-01 -6.18557334e-01 4.67813551e-01 3.13456752e-03 1.01645865e-01 -7.84001291e-01 3.84789646e-01 6.42669678e-01 7.73493528e-01 -9.58807945e-01 5.58657646e-01 4.63039815e-01 1.08578213e-01 -6.41624987e-01 -2.01168343e-01 -3.51681024e-01 -1.36855912e+00 -1.22400656e-01 7.20828414e-01 -4.99675304e-01 -1.70302200e+00 8.07766318e-01 -1.74159384e+00 -7.48256922e-01 -1.71898887e-01 4.85377699e-01 -8.61970842e-01 5.37544727e-01 -7.59825706e-01 -1.26018310e+00 -6.60967827e-01 -1.36989903e+00 1.56285501e+00 -5.63714914e-02 -3.36834460e-01 -6.77201390e-01 5.65821528e-02 -8.19778517e-02 1.89123198e-01 4.69452739e-01 4.39729959e-01 1.95849291e-03 -7.28114069e-01 -5.18893898e-01 -6.23345338e-02 -9.71096680e-02 4.66305055e-02 4.73094583e-02 -7.16399431e-01 -7.23663151e-01 -1.23440586e-02 -1.91981643e-01 2.98920035e-01 4.29280847e-01 1.14699090e+00 -1.49679750e-01 -6.09849870e-01 7.74246752e-01 1.34612501e+00 8.26126784e-02 4.01596844e-01 2.00989291e-01 1.14191973e+00 5.45734525e-01 4.54119712e-01 5.77522397e-01 2.80085832e-01 1.32859600e+00 5.88398278e-01 -6.41735196e-02 -1.44214798e-02 9.85436700e-03 -9.32575464e-02 5.08736610e-01 -7.54324198e-01 -6.99062124e-02 -8.68350267e-01 1.82186335e-01 -1.94628835e+00 -3.39951098e-01 -2.64097333e-01 2.46669388e+00 8.86710882e-01 -8.24178308e-02 5.40221930e-01 3.68280374e-02 4.02208418e-01 -3.50946993e-01 -6.01149440e-01 -2.95065492e-02 3.80654484e-01 4.76321906e-01 4.88045037e-01 8.66305590e-01 -8.78716588e-01 9.46929812e-01 6.09272146e+00 4.65743452e-01 -1.01702273e+00 1.17843315e-01 -6.83503598e-02 -2.69593298e-01 1.93218499e-01 -2.93286294e-01 -7.85442650e-01 9.81727764e-02 6.23419210e-02 5.98933458e-01 8.09426248e-01 8.02657127e-01 5.35067134e-02 2.23412998e-02 -1.32642460e+00 1.07789361e+00 -4.79840077e-02 -8.97529542e-01 -2.78861552e-01 2.56139696e-01 2.46399418e-01 -2.32825652e-01 -3.02534312e-01 -2.55783617e-01 -3.87668088e-02 -7.89465666e-01 1.00500214e+00 6.19225562e-01 9.36055124e-01 -4.46941137e-01 3.70366096e-01 6.49047554e-01 -1.33927774e+00 1.95121735e-01 -3.18288468e-02 -1.55234680e-01 5.68461001e-01 2.95183599e-01 -3.32756579e-01 3.63315403e-01 6.21099055e-01 -2.71653123e-02 6.62765726e-02 9.44329619e-01 2.68843956e-02 -2.73432821e-01 -7.78895020e-01 6.10750467e-02 -1.55256599e-01 -1.06325582e-01 7.08405077e-01 1.25026655e+00 9.75703895e-02 5.12600482e-01 5.78896642e-01 8.48775506e-01 2.55301535e-01 -5.97020574e-02 -2.11771727e-01 3.41150612e-01 2.22924769e-01 1.05119717e+00 -7.83134222e-01 -1.14181176e-01 2.05932394e-01 1.55714965e+00 3.93604368e-01 1.22568205e-01 -5.77163219e-01 -4.29845631e-01 5.00907063e-01 2.76688963e-01 2.64696151e-01 -8.32279325e-01 -4.48350936e-01 -1.20638728e+00 7.55543768e-01 -6.94730997e-01 -1.02747448e-01 -6.56463861e-01 -1.02990234e+00 6.50477886e-01 -1.51091173e-01 -7.96700120e-01 -4.20103014e-01 -1.01565754e+00 -2.98562616e-01 1.13494754e+00 -1.05833161e+00 -1.42779362e+00 -6.26787484e-01 7.28186488e-01 3.70286077e-01 3.18385392e-01 1.23286140e+00 2.51706004e-01 -2.45045021e-01 5.15017331e-01 -3.13343406e-01 7.85905216e-03 4.79825705e-01 -1.19884598e+00 5.24188697e-01 3.90454590e-01 -2.78094977e-01 7.63755322e-01 5.88611603e-01 -8.97033036e-01 -2.06652260e+00 -2.90275037e-01 6.48141205e-01 -6.69492245e-01 3.44554603e-01 -6.56856120e-01 -9.17107463e-01 8.54633749e-01 -2.05278963e-01 8.33035484e-02 5.15773259e-02 7.85279870e-02 1.02716638e-02 1.94022804e-01 -1.31726718e+00 5.26730120e-01 1.48121297e+00 -3.96467954e-01 -5.00105977e-01 5.63439488e-01 1.30243376e-01 -1.43233514e+00 -7.83194900e-01 3.70316654e-01 1.24240959e+00 -7.86784351e-01 1.23967838e+00 -5.40257990e-01 -7.60752484e-02 -1.99579328e-01 -3.47069241e-02 -8.13076377e-01 -3.53999346e-01 -1.06446731e+00 -5.33761263e-01 7.79601038e-01 -3.64717573e-01 -2.70617366e-01 1.01422548e+00 1.05452967e+00 1.34697095e-01 -9.39882696e-01 -1.08710730e+00 -8.46936882e-01 -2.66628891e-01 -4.25513536e-01 3.65826428e-01 4.66566354e-01 7.33546391e-02 -1.78853229e-01 -5.28526068e-01 3.84375662e-01 1.00310743e+00 4.04543504e-02 9.83992219e-01 -1.33373654e+00 -5.89633226e-01 -3.55386078e-01 -1.92443103e-01 -1.45626736e+00 1.58822134e-01 -3.69757563e-01 4.43273216e-01 -1.37719381e+00 1.57645166e-01 -5.59374034e-01 4.47200805e-01 6.97788298e-01 -7.97667205e-02 2.71866173e-01 3.89772177e-01 2.35244915e-01 -1.19521998e-01 2.54363328e-01 1.23064339e+00 1.92049742e-01 -6.35734200e-01 1.66340426e-01 1.83471933e-01 8.73655021e-01 2.80093282e-01 -1.88208565e-01 2.55267799e-01 -5.92005432e-01 -5.12013137e-02 3.78955424e-01 7.04232931e-01 -8.17342103e-01 4.06678528e-01 -1.78204149e-01 3.83445919e-01 -6.11103237e-01 6.90829396e-01 -1.18628907e+00 3.33509803e-01 7.63967633e-01 -1.07596621e-01 1.11669078e-01 2.97565550e-01 1.41600043e-01 4.38940644e-01 -1.01782367e-01 6.82445168e-01 -1.53310075e-01 -2.05973282e-01 4.71644670e-01 1.32229224e-01 -4.36990291e-01 8.91598284e-01 -3.74346346e-01 2.88488835e-01 -4.09517884e-02 -9.93941784e-01 4.66031916e-02 6.50605917e-01 3.42630237e-01 4.94238883e-01 -1.22672188e+00 -5.29318333e-01 2.52850831e-01 -3.75198007e-01 4.08755571e-01 3.95813622e-02 8.59239519e-01 -9.06646609e-01 3.16324621e-01 -1.59758374e-01 -7.29234993e-01 -1.50012565e+00 4.97774214e-01 4.70585495e-01 -2.51762211e-01 -9.41119492e-01 8.37552488e-01 -2.32670754e-01 -5.88244319e-01 6.51381195e-01 -3.13432574e-01 5.19950211e-01 -5.00221670e-01 4.42609370e-01 7.44040549e-01 2.77265221e-01 -4.20718879e-01 -4.84857708e-01 1.12367761e+00 3.47546190e-01 -1.99178249e-01 1.37711656e+00 1.94765657e-01 -1.72230527e-01 6.02879673e-02 1.01143610e+00 1.92863375e-01 -1.80439198e+00 1.20273218e-01 -3.79953980e-01 -7.35838830e-01 -1.33248612e-01 -9.91972089e-01 -9.94723141e-01 8.68702173e-01 7.60152519e-01 -2.57063478e-01 7.43587732e-01 -4.66701016e-02 9.45585012e-01 5.33152580e-01 7.68657625e-01 -1.00066876e+00 3.36386301e-02 5.50370932e-01 1.32216179e+00 -8.46428990e-01 8.95937160e-02 -8.32100451e-01 -1.90130442e-01 1.35170984e+00 4.94022489e-01 -2.86860794e-01 5.80795109e-01 7.97241211e-01 -1.38179660e-02 -2.12073222e-01 1.53735265e-01 2.92060338e-02 6.19559586e-01 5.98847747e-01 1.92320690e-01 1.13829203e-01 -1.11253105e-01 3.25387120e-01 -1.29458517e-01 3.61544162e-01 -2.72648305e-01 1.32197189e+00 -6.14307821e-02 -1.27970552e+00 -5.23393154e-01 -4.09607366e-02 -1.17326744e-01 2.15321124e-01 -1.80199608e-01 7.40423560e-01 3.34280804e-02 2.58432001e-01 -8.24936479e-02 -2.82858640e-01 9.08543169e-01 -4.66580950e-02 1.24828315e+00 -4.85000432e-01 -8.86139452e-01 2.74198711e-01 -2.40790322e-01 -9.77895558e-01 -6.91065490e-02 -5.01733303e-01 -1.28757930e+00 -3.76875043e-01 -5.21000862e-01 -4.16645497e-01 8.70546997e-01 1.09151113e+00 3.94411176e-01 3.13725471e-01 1.80642318e-03 -2.33154821e+00 -8.86905730e-01 -8.35748911e-01 -6.28808737e-01 2.59169877e-01 2.75613427e-01 -8.99879098e-01 7.01660737e-02 -1.47683963e-01]
[6.603609561920166, -0.9152875542640686]
8624e8ae-a9dd-4d8a-9747-695b2e948157
fast-distributed-submodular-cover-public
null
null
http://papers.nips.cc/paper/6540-fast-distributed-submodular-cover-public-private-data-summarization
http://papers.nips.cc/paper/6540-fast-distributed-submodular-cover-public-private-data-summarization.pdf
Fast Distributed Submodular Cover: Public-Private Data Summarization
In this paper, we introduce the public-private framework of data summarization motivated by privacy concerns in personalized recommender systems and online social services. Such systems have usually access to massive data generated by a large pool of users. A major fraction of the data is public and is visible to (and can be used for) all users. However, each user can also contribute some private data that should not be shared with other users to ensure her privacy. The goal is to provide a succinct summary of massive dataset, ideally as small as possible, from which customized summaries can be built for each user, i.e. it can contain elements from the public data (for diversity) and users' private data (for personalization). To formalize the above challenge, we assume that the scoring function according to which a user evaluates the utility of her summary satisfies submodularity, a widely used notion in data summarization applications. Thus, we model the data summarization targeted to each user as an instance of a submodular cover problem. However, when the data is massive it is infeasible to use the centralized greedy algorithm to find a customized summary even for a single user. Moreover, for a large pool of users, it is too time consuming to find such summaries separately. Instead, we develop a fast distributed algorithm for submodular cover, FASTCOVER, that provides a succinct summary in one shot and for all users. We show that the solution provided by FASTCOVER is competitive with that of the centralized algorithm with the number of rounds that is exponentially smaller than state of the art results. Moreover, we have implemented FASTCOVER with Spark to demonstrate its practical performance on a number of concrete applications, including personalized location recommendation, personalized movie recommendation, and dominating set on tens of millions of data points and varying number of users.
['Morteza Zadimoghaddam', 'Baharan Mirzasoleiman', 'Amin Karbasi']
2016-12-01
null
null
null
neurips-2016-12
['movie-recommendation', 'data-summarization']
['miscellaneous', 'miscellaneous']
[ 1.40181277e-02 4.74259943e-01 -2.97781199e-01 -2.89250761e-01 -1.02526677e+00 -9.14409220e-01 -1.08381189e-01 6.83871269e-01 -1.27833456e-01 9.81584370e-01 5.45471787e-01 2.00412422e-01 -2.48011321e-01 -9.04267192e-01 -7.79627621e-01 -7.07734466e-01 -3.00750379e-02 6.22034371e-01 6.01535738e-02 -2.23855913e-01 -5.79067841e-02 1.17306359e-01 -1.48057771e+00 2.24297747e-01 8.66792083e-01 8.86610210e-01 2.86978632e-01 4.10812408e-01 2.51266599e-01 7.95746595e-02 -5.80321670e-01 -5.59259355e-01 6.77753508e-01 -1.59814164e-01 -6.28219128e-01 3.66349518e-01 3.09330165e-01 -7.67962337e-01 -3.74236554e-01 1.14222014e+00 6.25919282e-01 2.57509530e-01 1.89985156e-01 -1.39271581e+00 -4.84126806e-01 1.06610835e+00 -6.89225078e-01 -1.43564612e-01 5.33665657e-01 -3.22450995e-01 1.45130873e+00 -3.65542620e-01 8.53928924e-01 7.83568084e-01 2.96391159e-01 4.18393016e-01 -1.23196995e+00 -3.99868667e-01 3.55064481e-01 -3.60829979e-01 -1.16457462e+00 -3.86516333e-01 2.94046402e-01 4.54649255e-02 3.22794288e-01 1.21814334e+00 7.12143302e-01 4.50762868e-01 -3.10114205e-01 9.91597891e-01 4.03729320e-01 2.01337084e-01 5.76406002e-01 4.56011474e-01 6.54484391e-01 2.76685625e-01 1.06873393e+00 -5.86104572e-01 -6.49313986e-01 -1.01414764e+00 -1.08037733e-01 5.61626434e-01 -6.20120168e-01 -5.76012671e-01 -8.57514203e-01 7.81604946e-01 2.07358021e-02 -2.16596380e-01 -5.43874979e-01 9.77752134e-02 2.73142368e-01 4.43116575e-01 5.26169002e-01 2.53038734e-01 -4.23164696e-01 3.40468585e-01 -9.24375296e-01 7.63191223e-01 1.25129783e+00 1.30770636e+00 9.15993869e-01 -7.13416696e-01 -4.30776983e-01 4.88460630e-01 -5.22579849e-02 5.35948575e-01 1.25563815e-01 -9.41230774e-01 7.04979420e-01 6.98518157e-01 5.43568552e-01 -1.28092110e+00 -1.36339933e-01 -3.81305039e-01 -1.01327050e+00 -4.91512209e-01 2.58694202e-01 -4.66582954e-01 -2.15357374e-02 1.75190055e+00 6.83077216e-01 -2.17635244e-01 1.28810063e-01 9.58065510e-01 8.25625062e-01 8.79126370e-01 -7.67335951e-01 -7.62638748e-01 1.48560202e+00 -6.77908361e-01 -6.04666114e-01 3.54581177e-02 6.17805123e-01 -1.76638186e-01 5.92027307e-01 5.30373812e-01 -1.25522983e+00 2.58934796e-01 -9.34669733e-01 -2.20511183e-01 4.73107509e-02 -7.90370107e-02 5.72268188e-01 8.15775514e-01 -8.99436951e-01 5.45864344e-01 -5.45385718e-01 -4.94688481e-01 6.15677893e-01 4.72290218e-01 -4.34297383e-01 -3.08639139e-01 -7.75850296e-01 3.73367369e-02 1.71258077e-01 -4.20155138e-01 -6.93305314e-01 -7.56995082e-01 -5.08436382e-01 4.45504636e-01 7.27018178e-01 -1.05550992e+00 1.11734140e+00 -3.79048139e-01 -8.33174646e-01 5.18355012e-01 -2.97155827e-01 -5.14025211e-01 6.43605411e-01 -1.60572641e-02 2.42184430e-01 4.19632681e-02 1.06838278e-01 -8.84984359e-02 4.52678680e-01 -1.33763540e+00 -1.04438281e+00 -8.54987204e-01 3.27897102e-01 3.04174095e-01 -8.03847909e-01 -9.34752896e-02 -5.97429454e-01 -3.24875355e-01 -3.18564661e-02 -8.69143605e-01 -5.72754264e-01 -2.79864609e-01 -6.82983875e-01 -1.73601165e-01 7.02685177e-01 -6.79903388e-01 1.55691922e+00 -2.17400551e+00 1.19842716e-01 3.92758131e-01 6.93981647e-01 -1.70825999e-02 -2.38145590e-02 8.68818343e-01 5.36832154e-01 2.35710353e-01 -3.01874012e-01 -8.36646676e-01 1.84347779e-01 2.32886851e-01 -5.65536559e-01 6.74103796e-01 -9.26213205e-01 7.60020316e-01 -8.13132405e-01 1.75039977e-01 -5.21353364e-01 -1.93963781e-01 -8.89156699e-01 5.40620238e-02 -3.95979226e-01 -8.66091326e-02 -6.74049437e-01 3.46612066e-01 1.07978106e+00 -3.47497344e-01 4.37459618e-01 2.24644229e-01 1.49060234e-01 1.21066302e-01 -1.59544969e+00 1.56529868e+00 -1.26145989e-01 1.60363838e-02 4.75066394e-01 -6.27401054e-01 6.25475287e-01 3.12175781e-01 6.46098912e-01 1.55288965e-01 -2.38247048e-02 2.50154346e-01 -7.25768209e-01 -1.33475617e-01 9.90763128e-01 2.65677959e-01 -4.61452156e-01 1.27941883e+00 -4.70590919e-01 4.51785535e-01 1.33566484e-01 7.61867523e-01 1.25386333e+00 -8.48662972e-01 4.34303373e-01 -4.94765192e-02 1.74255535e-01 -2.20124424e-03 7.83649445e-01 9.75726843e-01 4.06099409e-01 6.59945309e-01 8.74533117e-01 -2.68118650e-01 -7.75834978e-01 -5.03427684e-01 1.88339978e-01 1.13666868e+00 5.34176230e-01 -9.46934223e-01 -8.83696377e-01 -7.20962763e-01 3.86043459e-01 5.56679368e-01 -4.10013109e-01 9.59223062e-02 2.33109458e-03 -7.32860565e-01 -1.56375021e-01 1.10787228e-02 1.48635134e-01 -5.49110472e-01 -6.05117321e-01 2.09632859e-01 -4.55755800e-01 -8.48810673e-01 -1.09531176e+00 -3.98795009e-01 -7.23914444e-01 -9.74080801e-01 -5.79963326e-01 -3.01258653e-01 9.22664404e-01 1.09710836e+00 5.86495578e-01 1.02351205e-02 2.30110940e-02 5.41675389e-01 -3.26992422e-01 -4.09467131e-01 -2.75610443e-02 1.89855829e-01 1.09906800e-01 4.03419584e-01 -1.85331330e-02 -6.54341221e-01 -7.43720651e-01 2.04963148e-01 -1.20563686e+00 -1.76703244e-01 -4.94104661e-02 2.73875654e-01 7.59224117e-01 2.83369541e-01 8.17235589e-01 -1.36555135e+00 9.33376133e-01 -9.27122176e-01 -5.79957724e-01 3.34827542e-01 -4.44751322e-01 -3.16766351e-01 7.17450261e-01 -8.03930312e-02 -6.39689386e-01 1.15676753e-01 2.98786134e-01 7.57898688e-02 3.87778997e-01 5.78105927e-01 -4.64762896e-01 3.43534917e-01 4.42323178e-01 1.35263681e-01 1.43378720e-01 -5.89964688e-01 5.81305623e-01 1.06252444e+00 3.69500279e-01 -2.59229481e-01 5.67059875e-01 7.20863700e-01 -8.84792730e-02 -7.37884104e-01 -8.89739513e-01 -7.01444626e-01 6.08983748e-02 2.49543473e-01 1.95475996e-01 -1.10541284e+00 -1.05684102e+00 1.22450434e-01 -9.55468893e-01 3.13683480e-01 -6.57314062e-01 -1.53902145e-02 -3.47882807e-01 7.64902353e-01 2.91023776e-02 -8.86771798e-01 -8.72713149e-01 -9.07464802e-01 8.43737483e-01 9.53354612e-02 -1.62180007e-01 -4.70419496e-01 -4.98999320e-02 5.59736729e-01 2.71530241e-01 4.99635518e-01 5.22199452e-01 -1.08289552e+00 -9.80292797e-01 -7.33841538e-01 1.10128529e-01 1.62270486e-01 9.33721513e-02 -4.64028478e-01 -6.88501775e-01 -7.30467916e-01 4.94083203e-02 -5.90639673e-02 7.80180037e-01 2.60655701e-01 1.42267907e+00 -1.18750608e+00 -4.00934845e-01 4.60818678e-01 1.23547530e+00 -4.69170153e-01 2.84811050e-01 -1.40464395e-01 5.81113398e-01 5.52846730e-01 7.55697846e-01 1.30246890e+00 9.40431237e-01 5.44528782e-01 4.95158166e-01 3.60562146e-01 6.46049142e-01 -3.09688151e-01 3.94698858e-01 3.43637824e-01 2.06219077e-01 -6.76013708e-01 -8.82148519e-02 7.17838466e-01 -2.45368600e+00 -9.96738255e-01 -2.18501255e-01 2.83382916e+00 6.42212510e-01 -5.37577093e-01 6.60136402e-01 4.61143404e-02 6.64002538e-01 1.43822640e-01 -6.74929142e-01 -3.23333919e-01 -1.54961064e-01 -4.16358709e-01 8.69628906e-01 1.74243391e-01 -6.97267354e-01 2.92926222e-01 4.84908772e+00 6.44239664e-01 -5.52129924e-01 2.58996934e-01 6.37749195e-01 -7.72620499e-01 -1.07461345e+00 7.31534809e-02 -8.90428603e-01 5.89714706e-01 7.88065851e-01 -1.05751681e+00 6.13976061e-01 9.86790836e-01 1.53717294e-01 -2.42686018e-01 -1.21328437e+00 9.49510813e-01 2.78790202e-02 -1.56152546e+00 -6.63494691e-02 6.13546371e-01 1.18169439e+00 1.13624390e-02 -2.06523798e-02 -1.87083244e-01 3.61833870e-01 -4.94067490e-01 4.39303368e-01 1.89851716e-01 5.77860117e-01 -1.03632426e+00 4.69360441e-01 1.01863384e+00 -8.16546381e-01 -4.39607084e-01 -8.05186570e-01 2.38173813e-01 3.09441388e-01 9.48936284e-01 -4.68469590e-01 8.40337098e-01 6.04288995e-01 4.12326306e-01 -4.92612086e-02 1.04545009e+00 3.29845250e-01 3.23154449e-01 -7.74358153e-01 -7.93315098e-02 -1.13299392e-01 -3.53584677e-01 8.36739063e-01 7.01985061e-01 6.47625685e-01 4.57732022e-01 3.37907344e-01 2.68950850e-01 -6.69779241e-01 5.52958846e-01 -7.25345433e-01 1.19125985e-01 6.86558247e-01 1.42590261e+00 -1.43034473e-01 -3.09110761e-01 -2.53625721e-01 8.37781012e-01 2.97586411e-01 1.75940156e-01 -4.59672540e-01 -1.85272485e-01 9.83352304e-01 4.74071681e-01 3.91784251e-01 1.75352722e-01 -3.28533769e-01 -1.24755764e+00 4.94532168e-01 -8.75416160e-01 9.22760189e-01 -1.48662105e-01 -1.06217837e+00 2.52355009e-01 -4.26031649e-02 -9.43450272e-01 1.01696059e-01 3.05265874e-01 -6.29545093e-01 7.28612542e-01 -1.14432073e+00 -7.56484151e-01 -4.81510609e-01 6.21687591e-01 -8.10669884e-02 -6.15837798e-02 6.63167357e-01 1.05518423e-01 -5.22664845e-01 8.14169109e-01 6.05699182e-01 -6.99563742e-01 4.94281739e-01 -1.07710302e+00 3.13817769e-01 8.25529695e-01 -1.15339711e-01 5.51684856e-01 7.17816710e-01 -6.21800900e-01 -1.93441725e+00 -1.29708636e+00 1.11466873e+00 -3.31525087e-01 8.53897408e-02 -4.69010383e-01 -8.24844837e-01 7.57341623e-01 -1.71401948e-01 1.34999737e-01 9.82861459e-01 1.84350163e-02 2.33798102e-02 -5.74775875e-01 -1.65878689e+00 5.06126761e-01 1.21588659e+00 2.10671239e-02 -1.34323508e-01 7.01278865e-01 8.41647625e-01 -3.13652277e-01 -7.69960344e-01 -5.17395027e-02 4.16765213e-01 -8.71330917e-01 5.52579522e-01 -5.73368430e-01 3.52573618e-02 -3.42641532e-01 -3.70950043e-01 -1.17183125e+00 -2.22844869e-01 -1.53466618e+00 -6.22080266e-01 1.42958963e+00 2.65767395e-01 -9.28806365e-01 9.04960990e-01 1.20753789e+00 2.99452722e-01 -7.48803258e-01 -7.79737413e-01 -4.34193432e-01 -5.42213678e-01 -2.25925930e-02 1.19444907e+00 5.11491418e-01 2.89675951e-01 1.81233689e-01 -6.73212707e-01 4.97415215e-01 7.88266540e-01 7.02458084e-01 1.35737050e+00 -1.32875812e+00 -3.64218742e-01 1.68017909e-01 5.53096570e-02 -1.26767623e+00 -2.27715746e-01 -1.23016596e+00 -3.92943889e-01 -1.93703926e+00 7.02288508e-01 -5.75862229e-01 -1.25693623e-02 4.19811755e-01 -1.66854918e-01 -1.05357379e-01 2.34847024e-01 1.88940525e-01 -9.65582788e-01 4.64327931e-01 1.06841314e+00 1.24993011e-01 -5.37572801e-01 6.56199813e-01 -1.76988888e+00 2.69755185e-01 6.63859367e-01 -6.82717860e-01 -5.21526694e-01 -1.57928512e-01 6.24147654e-01 4.69542921e-01 1.03482474e-02 -3.39780629e-01 4.16356415e-01 -2.40853310e-01 -3.65544856e-01 -9.24453378e-01 6.02448620e-02 -9.38581824e-01 5.07950306e-01 1.75433367e-01 -3.07962447e-01 -3.82110715e-01 -3.62499446e-01 1.07019770e+00 1.54973730e-01 -2.02465802e-01 3.32327306e-01 -1.31415457e-01 1.05109714e-01 9.41512465e-01 9.21421275e-02 5.96945286e-02 1.38835084e+00 -1.62828162e-01 -4.49695826e-01 -8.47709835e-01 -4.46135819e-01 9.09363568e-01 7.32877314e-01 -4.38122358e-03 4.65270162e-01 -1.18300784e+00 -9.27858770e-01 -1.48203224e-01 3.25381726e-01 4.12108719e-01 5.64243734e-01 7.62318790e-01 2.55333981e-03 2.42015556e-01 2.30785951e-01 -8.00561681e-02 -1.52323103e+00 7.81466782e-01 -3.19882691e-01 -2.32646242e-01 -8.22655082e-01 6.81122422e-01 3.85262936e-01 -1.50075778e-01 4.23034996e-01 -2.07754031e-01 6.49428815e-02 4.22136873e-01 9.78222787e-01 7.33896434e-01 3.52483876e-02 -2.82295138e-01 -1.45092830e-01 -1.18048482e-01 -2.22907439e-01 1.19701833e-01 1.75213420e+00 -5.80660522e-01 -4.79901344e-01 -4.62499298e-02 1.22817731e+00 6.42657876e-01 -9.49761093e-01 -5.19741058e-01 -5.70949733e-01 -7.37717032e-01 -2.78312027e-01 -3.04455727e-01 -1.26809919e+00 1.21891342e-01 -1.78370595e-01 7.37029850e-01 1.23379028e+00 9.97190475e-02 1.34321022e+00 4.48649198e-01 7.61000454e-01 -8.60668659e-01 -5.00786304e-01 -1.48570046e-01 9.45975184e-01 -9.11644757e-01 3.17875564e-01 -4.53214228e-01 -8.51690233e-01 6.78405702e-01 6.68825582e-02 7.58646950e-02 6.42490864e-01 -4.02017869e-02 -5.94057322e-01 -1.06770307e-01 -1.10448658e+00 1.99139848e-01 1.25450015e-01 2.60104626e-01 -3.78660977e-01 4.19347435e-01 -6.31045640e-01 1.42814028e+00 -3.35723221e-01 -7.78460354e-02 9.99791443e-01 8.00078332e-01 -7.68692255e-01 -1.15777111e+00 -2.78290629e-01 9.44583893e-01 -7.08079159e-01 2.90902436e-01 -3.48203629e-01 -1.19107105e-01 -2.08850980e-01 1.15210950e+00 -1.99395776e-01 -2.90557146e-01 3.23850870e-01 -4.26121265e-01 -3.69046666e-02 -9.49108362e-01 -7.59001672e-01 -1.88649744e-01 9.44726542e-02 -4.28094953e-01 2.42852584e-01 -8.87261868e-01 -1.13111746e+00 -7.41473973e-01 -2.26418763e-01 3.44981223e-01 5.59518695e-01 5.02979875e-01 7.27619112e-01 -1.48803428e-01 1.28306484e+00 -3.24828327e-01 -9.28441107e-01 -3.55430096e-01 -1.05001783e+00 2.08138853e-01 3.96967053e-01 9.55688879e-02 -3.25656116e-01 -2.68496364e-01]
[6.567826271057129, 4.987446308135986]
170ee4c6-2cdb-4254-8027-fb42dfbd5c25
vrebert-a-simple-and-flexible-transformer-for
2206.09111
null
https://arxiv.org/abs/2206.09111v1
https://arxiv.org/pdf/2206.09111v1.pdf
VReBERT: A Simple and Flexible Transformer for Visual Relationship Detection
Visual Relationship Detection (VRD) impels a computer vision model to 'see' beyond an individual object instance and 'understand' how different objects in a scene are related. The traditional way of VRD is first to detect objects in an image and then separately predict the relationship between the detected object instances. Such a disjoint approach is prone to predict redundant relationship tags (i.e., predicate) between the same object pair with similar semantic meaning, or incorrect ones that have a similar meaning to the ground truth but are semantically incorrect. To remedy this, we propose to jointly train a VRD model with visual object features and semantic relationship features. To this end, we propose VReBERT, a BERT-like transformer model for Visual Relationship Detection with a multi-stage training strategy to jointly process visual and semantic features. We show that our simple BERT-like model is able to outperform the state-of-the-art VRD models in predicate prediction. Furthermore, we show that by using the pre-trained VReBERT model, our model pushes the state-of-the-art zero-shot predicate prediction by a significant margin (+8.49 R@50 and +8.99 R@100).
['Moshiur Farazi', 'Yu Cui']
2022-06-18
null
null
null
null
['visual-relationship-detection']
['computer-vision']
[ 2.49854401e-01 3.37565154e-01 8.71488079e-02 -3.90404165e-01 -5.05414307e-01 -4.65440184e-01 7.12537348e-01 6.41974032e-01 -8.28424096e-02 1.09286450e-01 -1.38630107e-01 -2.28218630e-01 -9.45275947e-02 -8.65719318e-01 -9.58171725e-01 -2.35229775e-01 7.07935691e-02 7.71775961e-01 9.55610037e-01 -1.89405277e-01 1.54565930e-01 5.26724458e-01 -1.98047245e+00 6.79687142e-01 3.68436098e-01 1.15082812e+00 6.31446183e-01 5.21088243e-01 -1.06599681e-01 1.14635527e+00 -4.46989298e-01 -6.18252277e-01 -2.65253764e-02 -2.16334641e-01 -8.64559472e-01 1.68855369e-01 6.71962857e-01 -3.49993929e-02 -2.96427399e-01 9.24495101e-01 1.87391620e-02 2.28122965e-01 6.78541481e-01 -1.52539229e+00 -6.93455160e-01 2.69581348e-01 -6.89557016e-01 2.93110311e-01 6.21262372e-01 -1.35504484e-01 1.35415649e+00 -1.07245266e+00 8.23494375e-01 1.37998605e+00 5.06495595e-01 3.17097902e-01 -1.36793065e+00 -3.63458455e-01 3.44245672e-01 4.78607208e-01 -1.44915724e+00 -1.98766813e-01 7.11989760e-01 -6.05857909e-01 1.30404902e+00 3.57193917e-01 7.62765348e-01 7.69778609e-01 -4.21930104e-02 8.00685227e-01 7.85923481e-01 -3.58400822e-01 6.67665675e-02 4.17591691e-01 2.94622093e-01 8.19439054e-01 1.66298553e-01 -1.31667592e-02 -5.69749236e-01 2.06382886e-01 5.03948510e-01 -2.01772079e-02 -1.31578103e-01 -7.91480482e-01 -1.12050080e+00 5.76239526e-01 7.20023870e-01 2.90142536e-01 -2.35088855e-01 2.10794777e-01 2.29067236e-01 1.73900932e-01 3.44299674e-01 4.63150263e-01 -4.51537400e-01 2.49584883e-01 -6.51232779e-01 3.22940439e-01 5.74882269e-01 1.03593135e+00 7.90085018e-01 -4.65180010e-01 -4.42520469e-01 6.60514355e-01 5.03570676e-01 1.49306387e-01 1.87416247e-03 -7.80674696e-01 3.20713758e-01 7.51947761e-01 1.13427140e-01 -1.31085169e+00 -2.64750838e-01 -3.27518284e-01 -5.56162596e-01 3.75601351e-01 2.57757694e-01 7.20848203e-01 -1.00663984e+00 1.54850054e+00 3.74999017e-01 3.52428466e-01 1.11659884e-01 9.47516084e-01 1.33207345e+00 5.91290534e-01 2.18051583e-01 -1.67717189e-02 1.62881804e+00 -1.02910519e+00 -3.44209105e-01 -6.23688340e-01 6.27791822e-01 -7.08334088e-01 1.15004945e+00 1.58376604e-01 -9.52384293e-01 -7.30141342e-01 -9.63322043e-01 -2.35274911e-01 -5.04292488e-01 -2.41691060e-02 7.69399405e-01 2.55816728e-01 -9.72464621e-01 6.27362847e-01 -6.75655246e-01 -5.17212689e-01 6.74829185e-01 1.03291802e-01 -5.43208301e-01 -2.21249133e-01 -8.59272420e-01 1.22475719e+00 6.95076168e-01 -1.53222457e-01 -1.08306134e+00 -7.97192037e-01 -9.66394126e-01 1.65806830e-01 6.30805671e-01 -7.19399333e-01 1.07063532e+00 -7.69877017e-01 -7.65729010e-01 1.42051494e+00 -4.25139725e-01 -4.66085613e-01 4.49800432e-01 -1.74796268e-01 -4.15646017e-01 1.48818240e-01 2.78771430e-01 7.77006924e-01 7.21318722e-01 -1.85018480e+00 -9.82276618e-01 -2.33006671e-01 3.08712095e-01 2.78944641e-01 2.17603385e-01 1.67916775e-01 -7.62514174e-01 -3.12076837e-01 4.50767159e-01 -6.63381517e-01 3.67506640e-03 3.53827715e-01 -4.21690822e-01 -5.45344532e-01 9.10990238e-01 -3.69449109e-01 7.20989108e-01 -2.19609451e+00 1.56068625e-02 8.12881887e-02 5.77745676e-01 2.14591429e-01 -2.10847080e-01 1.66974083e-01 -1.46898493e-01 5.18820575e-03 6.29847497e-02 -5.78029275e-01 -5.41297384e-02 4.36960340e-01 -3.19200069e-01 3.08437794e-01 3.20559293e-01 8.50787520e-01 -1.20361662e+00 -5.97285271e-01 4.78693187e-01 3.73310328e-01 -3.46470475e-01 4.36046392e-01 -4.40361947e-01 3.61662060e-01 -2.21774563e-01 5.87379932e-01 6.42862439e-01 -5.55190206e-01 1.86936975e-01 -4.85158443e-01 9.37623158e-02 2.57778317e-01 -1.11963797e+00 1.49963284e+00 -2.26572946e-01 8.34562838e-01 -5.51189482e-01 -1.10352588e+00 1.15235209e+00 5.32914139e-02 3.28556001e-01 -8.07757139e-01 -2.16020960e-02 7.86900222e-02 -2.00067431e-01 -4.92389798e-01 5.77446282e-01 -1.95752919e-01 1.97194740e-02 5.93848005e-02 1.57079026e-01 -1.70558825e-01 -1.53704444e-02 3.25354099e-01 1.04889917e+00 3.44180286e-01 4.32097524e-01 1.87665492e-01 4.63097066e-01 1.48655832e-01 3.98214847e-01 8.88368428e-01 -1.57453060e-01 5.56422532e-01 6.14381254e-01 -4.10821527e-01 -9.43988085e-01 -1.27074468e+00 1.24647401e-01 1.03622150e+00 9.18753445e-01 -5.40936887e-01 -4.73310240e-02 -8.91517758e-01 1.30386800e-01 1.06371462e+00 -6.96927845e-01 -2.79182047e-01 -3.22013825e-01 -8.01132992e-02 1.44491717e-01 6.15409911e-01 2.89889038e-01 -9.84108925e-01 -9.03517187e-01 -1.01333298e-01 -1.10210583e-01 -1.45312083e+00 2.18281448e-01 2.88781673e-01 -4.59644228e-01 -1.09073949e+00 -6.63752183e-02 -9.70406115e-01 5.46314299e-01 6.00774705e-01 1.61296237e+00 2.25810677e-01 -9.81780589e-02 2.43023053e-01 -5.56890130e-01 -3.70100468e-01 -4.90579098e-01 -4.39307690e-01 -2.24349022e-01 -7.87356272e-02 3.18756372e-01 -3.84349614e-01 -3.83064240e-01 3.28576058e-01 -5.43903172e-01 4.78632599e-01 4.68011022e-01 6.44373417e-01 8.97703707e-01 2.28346512e-01 4.51796092e-02 -7.38166988e-01 -6.42396435e-02 -4.13515389e-01 -4.65707302e-01 5.66019714e-01 -4.44367677e-01 6.86696768e-02 3.32790911e-01 -3.72102410e-01 -9.77365911e-01 1.99260116e-01 1.03284657e-01 -9.63538706e-01 -2.55265057e-01 1.86298504e-01 -2.47462079e-01 7.30902329e-02 4.55194622e-01 1.40507892e-01 -3.63884479e-01 -4.92098391e-01 5.73217213e-01 1.84059441e-01 7.75647342e-01 -1.24842115e-01 9.31220829e-01 6.52712405e-01 2.28542134e-01 -4.84721303e-01 -1.29678249e+00 -7.78348625e-01 -7.89871931e-01 -3.55899543e-01 9.94062960e-01 -9.45634961e-01 -7.37431049e-01 4.24933210e-02 -1.48498762e+00 -1.67610317e-01 -3.75656933e-01 3.52500528e-01 -6.44077182e-01 1.60519540e-01 -1.49956211e-01 -7.36190259e-01 4.55770530e-02 -8.08715105e-01 1.31817114e+00 1.02131978e-01 -2.30421022e-01 -7.16799438e-01 -2.54982531e-01 3.25968236e-01 -1.74669906e-01 2.74837255e-01 1.03842282e+00 -8.48185122e-01 -7.79452980e-01 1.83890213e-03 -6.94464386e-01 9.36753899e-02 1.15770241e-02 -1.00400917e-01 -9.99534726e-01 -4.79612164e-02 -1.78458109e-01 -2.03519106e-01 9.69445765e-01 1.37732804e-01 1.02658582e+00 3.79227065e-02 -8.68999183e-01 3.61811340e-01 1.66671991e+00 2.36194909e-01 6.26868546e-01 2.25011736e-01 1.02824831e+00 7.29677975e-01 1.13869274e+00 3.45623523e-01 5.01485705e-01 9.04120028e-01 8.70664656e-01 -1.49332583e-01 -4.06211942e-01 -5.27094901e-01 -6.95458353e-02 1.26268953e-01 -5.52855022e-02 -4.98100162e-01 -9.81470287e-01 6.14200175e-01 -2.07431269e+00 -9.83395100e-01 -5.37439942e-01 2.10651779e+00 4.05332446e-01 4.16918963e-01 -6.89333081e-02 1.32207483e-01 7.92998731e-01 3.17674950e-02 -2.78478593e-01 -2.43206397e-01 -9.30571184e-02 -8.44458491e-03 2.02382892e-01 2.54846364e-01 -1.15206587e+00 1.34813833e+00 5.62953711e+00 6.90043867e-01 -6.56463981e-01 8.82484540e-02 4.07192439e-01 3.32583308e-01 -3.41006607e-01 3.22755814e-01 -7.88844883e-01 5.36344536e-02 3.61657381e-01 -7.08110118e-03 1.28092036e-01 9.06552792e-01 -8.13243836e-02 -3.47369999e-01 -1.52004182e+00 1.12124145e+00 3.89040262e-01 -1.33523524e+00 2.19188586e-01 -1.44245163e-01 3.08700740e-01 -3.11872214e-01 -9.42768976e-02 3.41527581e-01 2.29725629e-01 -1.07295811e+00 1.05511522e+00 6.22595131e-01 5.00982404e-01 -4.75644350e-01 6.01605415e-01 3.07304740e-01 -1.55597019e+00 1.87024996e-02 -5.14285743e-01 -1.31709203e-01 8.93690512e-02 3.75094891e-01 -1.14310074e+00 6.40870094e-01 9.66914296e-01 9.61822033e-01 -7.49751925e-01 1.10548592e+00 -3.57393920e-01 1.02745660e-01 -9.18242335e-02 5.36116026e-02 8.90470401e-04 1.93363965e-01 7.22435653e-01 8.56697977e-01 2.26086959e-01 -3.86409946e-02 1.72481209e-01 9.73846972e-01 1.41726479e-01 -1.87218502e-01 -6.94524765e-01 2.62144417e-01 4.00412619e-01 1.11848807e+00 -8.80400300e-01 -5.17756879e-01 -6.16481543e-01 1.24256372e+00 5.15783727e-01 6.94856942e-02 -1.12652886e+00 4.77872342e-02 6.38826191e-01 1.90972880e-01 7.93282270e-01 5.90361096e-02 -1.17534392e-01 -9.42097604e-01 -1.97062660e-02 -2.51920730e-01 4.35305685e-01 -1.38421047e+00 -1.32842064e+00 4.97310132e-01 -7.08733499e-02 -1.45569658e+00 6.88761920e-02 -6.51690602e-01 -3.04844230e-01 5.68677366e-01 -1.60717213e+00 -1.44490647e+00 -5.95489681e-01 6.04207098e-01 4.96764779e-01 1.45258725e-01 7.91161597e-01 4.67630960e-02 -4.31982279e-02 2.57348567e-01 -4.36840177e-01 3.30500305e-02 3.91527146e-01 -1.29795814e+00 3.50687772e-01 7.24520504e-01 5.46741903e-01 1.41637519e-01 1.05215192e+00 -6.65646613e-01 -1.14714766e+00 -1.21681845e+00 1.24563313e+00 -6.70804739e-01 5.91565728e-01 -3.40142548e-01 -1.01277745e+00 8.47072124e-01 -2.33092830e-01 4.05693114e-01 3.80330443e-01 1.40024051e-01 -7.02615142e-01 -1.09718613e-01 -1.03626132e+00 6.30004704e-01 1.53782856e+00 -5.32073975e-01 -1.05667758e+00 3.60601187e-01 9.93545473e-01 -4.07382578e-01 -7.02876687e-01 5.40024281e-01 5.09056687e-01 -1.21951556e+00 1.34385490e+00 -5.65523267e-01 5.26315570e-01 -5.58258295e-01 -4.37463969e-01 -9.36170697e-01 -5.00243545e-01 -3.88162676e-03 -3.63332570e-01 1.24398708e+00 2.79730678e-01 -1.51265368e-01 6.62560105e-01 3.15664381e-01 -2.34350145e-01 -5.43860137e-01 -8.70750487e-01 -9.62090135e-01 -5.95652223e-01 -7.00069606e-01 3.54912251e-01 9.03504550e-01 -2.33728647e-01 7.39943564e-01 -1.88856930e-01 5.50941706e-01 5.17684042e-01 5.09616494e-01 7.91745961e-01 -1.55691552e+00 -4.02640700e-01 -4.02256399e-01 -9.83746409e-01 -1.04181814e+00 1.96152791e-01 -9.65749323e-01 1.53240710e-01 -2.05776739e+00 4.74013239e-01 -5.56047022e-01 -4.25347686e-01 7.58638024e-01 -1.53675735e-01 3.39599967e-01 4.60137129e-01 2.32769102e-01 -9.42787290e-01 3.03751171e-01 1.19232965e+00 -2.50626385e-01 -2.15398610e-01 -1.46433771e-01 -5.31502426e-01 7.27919877e-01 4.66541588e-01 -6.09772205e-01 -5.51155150e-01 -2.45728657e-01 2.54770756e-01 1.09162085e-01 1.03394854e+00 -9.12011802e-01 7.01302961e-02 -4.25456800e-02 4.16291803e-01 -8.16770613e-01 6.05319619e-01 -1.04729295e+00 2.58331597e-01 4.33467418e-01 -2.22809821e-01 -2.61895180e-01 1.85523629e-01 7.75521934e-01 -1.69814378e-01 -1.17247753e-01 6.58293307e-01 -2.16493621e-01 -1.28995323e+00 7.85445422e-02 -1.10373653e-01 -2.30888247e-01 1.32264555e+00 -5.07757366e-01 -4.19983953e-01 -1.43745437e-01 -7.70248115e-01 1.89957038e-01 3.85057420e-01 6.06700361e-01 9.59395170e-01 -1.15879393e+00 -4.56237853e-01 -1.52935041e-02 6.53313577e-01 1.02020845e-01 2.95568615e-01 6.63960636e-01 -1.40287742e-01 2.22565815e-01 -8.74746516e-02 -9.15803254e-01 -1.69466174e+00 9.40014482e-01 3.29566061e-01 -1.84355378e-01 -9.28296745e-01 1.10352564e+00 5.08928895e-01 -1.49590179e-01 7.87699670e-02 -3.76409441e-01 -4.41384107e-01 1.23127058e-01 1.95415914e-01 -2.64527667e-02 4.70399037e-02 -9.20457125e-01 -7.58511424e-01 6.27731860e-01 9.52826962e-02 8.31437185e-02 1.27001429e+00 -4.07976620e-02 -3.19930427e-02 6.81897521e-01 1.11833012e+00 -1.59696832e-01 -1.20690310e+00 -3.35190803e-01 6.24598712e-02 -7.97312260e-01 -7.21853925e-04 -8.58419776e-01 -8.69452953e-01 6.57532990e-01 4.90012527e-01 3.24406803e-01 1.06642067e+00 8.44432950e-01 2.85333544e-01 1.75583452e-01 3.90640736e-01 -6.03531778e-01 4.81874019e-01 3.17040205e-01 7.74526417e-01 -1.38604581e+00 4.42127213e-02 -1.08981156e+00 -9.47852671e-01 8.02908599e-01 7.30123639e-01 -6.05327375e-02 4.92801458e-01 -9.12345499e-02 -3.32871318e-01 -5.63494325e-01 -8.44433248e-01 -6.52020514e-01 5.91496944e-01 8.39958966e-01 1.06049351e-01 1.80415418e-02 2.45700888e-02 4.34733897e-01 -7.24889943e-03 -1.16545536e-01 2.34029129e-01 8.02568555e-01 -4.63552386e-01 -7.54725337e-01 -1.20012321e-01 3.57341409e-01 -1.79535467e-02 -2.42341354e-01 -3.76297295e-01 8.84248435e-01 3.52312148e-01 9.88635838e-01 5.43533444e-01 -6.06594086e-01 4.84372944e-01 -1.67746186e-01 6.52728796e-01 -7.27171361e-01 -2.73196727e-01 -1.30116403e-01 3.16070139e-01 -6.20988667e-01 -6.40761673e-01 -5.32172382e-01 -1.48298585e+00 -7.47350138e-03 -2.34536320e-01 -3.04997087e-01 3.30668271e-01 1.02819991e+00 2.72675186e-01 6.94959104e-01 4.75059062e-01 -6.34653091e-01 1.05586536e-01 -4.71132636e-01 -5.88466287e-01 7.13628292e-01 2.29671836e-01 -1.06384099e+00 -1.98314711e-01 6.42249808e-02]
[10.275918006896973, 1.6510984897613525]
d2303093-74b6-45d6-a0dc-bbf06aff9304
a-role-for-prior-knowledge-in-statistical
2012.00538
null
https://arxiv.org/abs/2012.00538v1
https://arxiv.org/pdf/2012.00538v1.pdf
A Role for Prior Knowledge in Statistical Classification of the Transition from MCI to Alzheimer's Disease
The transition from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is of great interest to clinical researchers. This phenomenon also serves as a valuable data source for quantitative methodological researchers developing new approaches for classification. However, the growth of machine learning (ML) approaches for classification may falsely lead many clinical researchers to underestimate the value of logistic regression (LR), yielding equivalent or superior classification accuracy over other ML methods. Further, in applications with many features that could be used for classifying the transition, clinical researchers are often unaware of the relative value of different selection procedures. In the present study, we sought to investigate the use of automated and theoretically-guided feature selection techniques, and as well as the L-1 norm when applying different classification techniques for predicting conversion from MCI to AD in a highly characterized and studied sample from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We propose an alternative pre-selection technique that utilizes an efficient feature selection based on clinical knowledge of brain regions involved in AD. The present findings demonstrate how similar performance can be achieved using user-guided pre-selection versus algorithmic feature selection techniques. Finally, we compare the performance of a support vector machine (SVM) with that of logistic regression on multi-modal data from ADNI. The present findings show that although SVM and other ML techniques are capable of relatively accurate classification, similar or higher accuracy can often be achieved by LR, mitigating SVM's necessity or value for many clinical researchers.
['Andrew R. Bender', 'Tapabrate Maiti', 'Zihuan Liu']
2020-11-28
null
null
null
null
['clinical-knowledge']
['miscellaneous']
[ 2.09509760e-01 -2.79762685e-01 -3.78873646e-01 -7.30389893e-01 -8.09672058e-01 -1.55199811e-01 4.75405276e-01 4.62862968e-01 -8.86267960e-01 1.05516422e+00 1.23626597e-01 -5.19941628e-01 -3.31126273e-01 -6.74294114e-01 -1.14835575e-01 -5.33596873e-01 -2.56708801e-01 7.19628990e-01 2.10941121e-01 1.51405320e-01 2.53051221e-01 5.48959374e-01 -1.54770184e+00 3.59752387e-01 1.05270970e+00 1.00826991e+00 3.35663766e-01 2.10090414e-01 -1.66258328e-02 2.11276293e-01 -3.76239330e-01 -2.35878989e-01 9.89294723e-02 -4.02631938e-01 -5.75826168e-01 -1.17012501e-01 5.70642412e-01 -3.86819273e-01 1.22648329e-01 7.88792610e-01 6.54575229e-01 5.55848069e-02 9.71819580e-01 -1.04373145e+00 -3.93718064e-01 2.80727625e-01 -1.33894444e-01 6.27955675e-01 2.05883011e-01 1.39448762e-01 8.98035467e-01 -8.36714566e-01 5.81345022e-01 1.03797925e+00 8.34684312e-01 3.45153183e-01 -1.41682374e+00 -6.40722573e-01 6.03385977e-02 7.07367837e-01 -1.06336486e+00 -4.52326715e-01 4.31450814e-01 -8.65951657e-01 7.12100923e-01 4.20088798e-01 1.07095909e+00 8.13162565e-01 4.62411314e-01 3.05059224e-01 1.56805074e+00 -3.12972397e-01 4.78715718e-01 4.87967104e-01 7.52242684e-01 5.74346662e-01 4.49485123e-01 1.25393867e-01 2.86839642e-02 -7.65420675e-01 5.46623588e-01 1.01029901e-02 -1.92893624e-01 -1.60085902e-01 -1.18280518e+00 1.23064184e+00 2.76251346e-01 3.63477081e-01 -4.12296742e-01 -5.39121747e-01 6.09153271e-01 4.59149241e-01 3.75981927e-01 3.09789360e-01 -5.19905031e-01 2.69190013e-01 -1.32957935e+00 3.17221820e-01 5.16279697e-01 1.19967774e-01 1.57140389e-01 -6.62887394e-02 -2.94151716e-04 1.06030619e+00 4.52053696e-01 2.98898846e-01 1.06423569e+00 -8.35144579e-01 1.39857203e-01 8.76389146e-01 -2.23973915e-01 -6.77710354e-01 -8.09783399e-01 -5.31285226e-01 -7.96624362e-01 7.14908779e-01 5.42111516e-01 3.16291079e-02 -6.92688286e-01 1.44454074e+00 1.28360223e-02 -6.00785911e-01 -2.81293482e-01 9.83672678e-01 4.48438287e-01 -5.74392788e-02 5.00465512e-01 -5.43918967e-01 1.52035487e+00 -3.96486402e-01 -3.36171657e-01 -2.70859420e-01 8.00682962e-01 -2.82236636e-01 1.27155089e+00 4.94626552e-01 -7.09040821e-01 -3.90948921e-01 -9.91854787e-01 9.45962593e-02 -4.18951631e-01 3.03396195e-01 7.70118713e-01 8.93794537e-01 -8.83211672e-01 6.06606722e-01 -1.02026629e+00 -5.75273335e-01 7.77854860e-01 5.31870067e-01 -5.46969295e-01 -7.62480125e-02 -9.32927370e-01 1.43389046e+00 1.69390455e-01 -3.63694504e-02 -1.61216706e-01 -7.72971749e-01 -5.43799460e-01 -9.04559493e-02 -1.45132363e-01 -7.19798326e-01 7.85999656e-01 -1.06684494e+00 -8.47697675e-01 8.66462052e-01 -3.06565076e-01 -5.19172728e-01 5.63105106e-01 -3.57298069e-02 -4.24489975e-01 2.98439592e-01 3.91814381e-01 4.40232337e-01 4.51784313e-01 -7.72798657e-01 -4.93793458e-01 -1.01249623e+00 -4.99361038e-01 -4.85486016e-02 -8.06271732e-02 2.42407322e-01 8.43495131e-01 -5.30910075e-01 3.36833149e-01 -8.41245174e-01 -4.60517019e-01 5.27267158e-01 -3.71685531e-03 -1.55659825e-01 5.53145468e-01 -8.80026817e-01 1.01543176e+00 -1.85987020e+00 -2.38197118e-01 2.68903226e-01 5.15024304e-01 2.12649226e-01 3.14985216e-01 -1.71984762e-01 -2.30770141e-01 2.52317876e-01 -5.35077512e-01 1.82413116e-01 -3.12004149e-01 -1.21385001e-01 1.73563227e-01 6.90623343e-01 3.73794496e-01 7.41627991e-01 -6.10375285e-01 -6.03861928e-01 2.99364090e-01 5.47430694e-01 -6.03588462e-01 -3.17922235e-01 4.22792435e-01 2.60322124e-01 -4.57428336e-01 6.10105813e-01 3.76608729e-01 -2.18500897e-01 2.96279341e-01 -2.62980431e-01 -1.66465223e-01 9.87923667e-02 -7.18513966e-01 7.05835760e-01 -7.08678141e-02 7.83723056e-01 -3.23710948e-01 -1.26249373e+00 9.70326662e-01 2.34720424e-01 4.83563840e-01 -6.86300635e-01 1.99051991e-01 5.21208704e-01 5.50407946e-01 -2.32866064e-01 -4.08226669e-01 -4.85059798e-01 3.64501506e-01 2.74464279e-01 -1.22714460e-01 4.03927356e-01 4.81270952e-03 -3.12835038e-01 9.94379222e-01 -3.80591720e-01 7.81685293e-01 -5.37830293e-01 5.79819977e-01 2.41383389e-01 4.23359722e-01 6.83826089e-01 -6.02624655e-01 5.27039349e-01 3.93744230e-01 -4.59413171e-01 -8.20844412e-01 -1.17069101e+00 -8.38333368e-01 6.54924512e-01 -5.93745887e-01 -2.62910817e-02 -3.50598633e-01 -6.60898209e-01 1.86137110e-01 8.66788626e-01 -5.63215196e-01 -4.40412074e-01 -5.31038880e-01 -1.31780982e+00 2.54315257e-01 5.67723393e-01 3.53588939e-01 -7.48757124e-01 -8.36004972e-01 2.62255073e-01 7.47406781e-02 -6.27760231e-01 3.26781832e-02 3.40457529e-01 -1.43671775e+00 -1.40209711e+00 -9.43612516e-01 -7.27848411e-01 7.41339743e-01 1.67368710e-01 7.21367717e-01 -1.74460951e-02 -4.12685633e-01 3.53222430e-01 -2.72449106e-01 -2.39356071e-01 -4.40254360e-01 6.55037016e-02 2.28590742e-01 -1.87244669e-01 5.57701111e-01 -6.55136704e-01 -7.83695281e-01 3.64393592e-01 -4.59745675e-01 -4.31102216e-01 7.73802578e-01 7.11532950e-01 5.56300938e-01 -1.08193606e-01 1.08763671e+00 -6.52094066e-01 6.02131307e-01 -6.32634223e-01 -9.58981663e-02 1.35138422e-01 -1.18851244e+00 -6.27994612e-02 4.10618305e-01 -6.32748961e-01 -7.90514469e-01 -4.49573994e-03 -8.72176364e-02 2.59000778e-01 -2.58207083e-01 5.43578506e-01 -4.04418595e-02 -2.73110628e-01 8.93244386e-01 1.41624257e-01 5.25701225e-01 -5.85737169e-01 -1.55813312e-02 8.24620545e-01 3.77820916e-02 -2.08562136e-01 3.03130567e-01 4.24987733e-01 1.02261761e-02 -9.22205865e-01 -5.36887228e-01 -2.74078548e-01 -8.26419711e-01 -8.50697681e-02 8.31605613e-01 -5.98759770e-01 -3.61819357e-01 1.86636642e-01 -4.79629606e-01 -1.85896724e-01 -1.52511179e-01 9.49110925e-01 -5.26612639e-01 3.37892830e-01 -9.92383137e-02 -6.09833360e-01 -5.36656618e-01 -1.39954758e+00 5.09172022e-01 2.59472220e-03 -6.95787251e-01 -1.01648319e+00 -6.69815689e-02 4.60722744e-01 6.23542428e-01 1.91434935e-01 1.41690862e+00 -1.14112163e+00 5.81289195e-02 -4.73413914e-01 -5.03887296e-01 2.61445493e-01 2.94811159e-01 -2.97954291e-01 -5.28995395e-01 -1.82745039e-01 2.63253182e-01 -1.06977761e-01 8.22921634e-01 5.91763437e-01 6.56370580e-01 -1.50184676e-01 -3.10998350e-01 -3.96636352e-02 1.26258337e+00 4.60133791e-01 6.09958112e-01 8.61555398e-01 1.43744335e-01 5.19024014e-01 3.67802411e-01 1.00487791e-01 4.04895842e-01 8.21062148e-01 -1.04594171e-01 8.33973438e-02 -2.24039376e-01 5.67366719e-01 4.06361639e-01 2.30293781e-01 -2.61397868e-01 6.47642195e-01 -9.29313481e-01 9.09238234e-02 -1.43904877e+00 -9.52955604e-01 -4.04364765e-01 2.46187901e+00 8.85644257e-01 3.29786152e-01 5.34569144e-01 4.52524841e-01 6.49480700e-01 -3.29614460e-01 -4.24419165e-01 -3.53959858e-01 -2.36331075e-01 3.22219402e-01 3.40163141e-01 1.84675515e-01 -9.33988869e-01 2.35197872e-01 6.96883011e+00 3.43160063e-01 -1.38946664e+00 2.57081449e-01 7.31478512e-01 -1.27056345e-01 2.40908682e-01 -1.40939519e-01 -6.97691858e-01 4.76606131e-01 1.17301106e+00 -3.23188275e-01 1.36650741e-01 9.34931993e-01 6.71972215e-01 -4.49139446e-01 -1.02226424e+00 6.53412163e-01 1.06477318e-02 -1.03751326e+00 1.05420053e-01 9.33157876e-02 2.10106168e-02 -6.49356144e-03 -1.34083629e-01 2.05754951e-01 -4.85120833e-01 -8.32680047e-01 5.73235571e-01 6.17272496e-01 7.93762624e-01 -2.03127220e-01 8.85232627e-01 -1.42613679e-01 -8.11208785e-01 -2.72948146e-01 -2.09530696e-01 -1.60129711e-01 1.49809584e-01 7.57427871e-01 -1.03298223e+00 -7.79941976e-02 5.20466924e-01 3.54706496e-01 -9.02243614e-01 1.39161098e+00 3.22682798e-01 7.80689180e-01 -2.25974172e-01 -6.68163598e-03 -1.11806551e-02 -2.44571179e-01 5.23674905e-01 1.08160400e+00 3.10616076e-01 -3.85338180e-02 -3.90418507e-02 8.05700600e-01 6.67276323e-01 6.16284668e-01 -2.75829226e-01 -1.13606697e-03 6.45116940e-02 9.49773073e-01 -1.04353368e+00 -3.26057017e-01 -8.04480374e-01 6.88175142e-01 3.89282405e-02 5.94859533e-02 -3.84573787e-01 -1.30786285e-01 3.51189762e-01 7.17598438e-01 -2.70338561e-02 -3.71592283e-01 -7.89764106e-01 -9.07176614e-01 1.43973619e-01 -7.77364731e-01 5.55764139e-01 -4.64872271e-01 -1.31655657e+00 5.32404661e-01 1.25510707e-01 -1.09679580e+00 1.97444148e-02 -6.59562647e-01 -4.48039263e-01 7.70938933e-01 -1.15261412e+00 -8.13591242e-01 -4.83589321e-02 3.47078323e-01 3.78945202e-01 -4.22177196e-01 8.40428829e-01 3.94721121e-01 -4.12063301e-01 4.01817411e-01 1.34137243e-01 -2.61902306e-02 8.10736358e-01 -1.09995139e+00 -3.32880735e-01 2.06801265e-01 -3.96465480e-01 7.01893866e-01 4.33250427e-01 -9.81275856e-01 -7.13070333e-01 -1.03894627e+00 1.00077093e+00 -2.54994303e-01 5.79682648e-01 1.97713166e-01 -9.32092428e-01 5.29211342e-01 -5.82628191e-01 -3.56427908e-01 9.72311735e-01 9.17888507e-02 -1.48094073e-01 -1.03461288e-01 -1.57274711e+00 6.17617130e-01 6.71192229e-01 -2.36719936e-01 -9.46415126e-01 2.99298584e-01 1.10754177e-01 4.26130623e-01 -1.13859510e+00 3.51843238e-01 1.04602265e+00 -9.53987300e-01 1.20212317e+00 -7.90987492e-01 1.99646637e-01 4.36234847e-02 -2.74991125e-01 -1.06930840e+00 -4.13209260e-01 3.85413706e-01 2.79575169e-01 7.66444087e-01 5.35108626e-01 -9.25926685e-01 6.40513659e-01 1.08540595e+00 -1.93825108e-03 -8.45024645e-01 -1.26125276e+00 -8.43797088e-01 3.38927329e-01 -3.08775485e-01 -6.43441230e-02 8.44486475e-01 -8.12126324e-03 1.57172650e-01 2.73760021e-01 -1.58343181e-01 7.11668670e-01 -1.97334141e-01 7.53926998e-03 -1.95208335e+00 1.22069187e-01 -7.89643407e-01 -9.80645120e-01 2.53673732e-01 3.94589901e-02 -1.27945495e+00 -5.66904724e-01 -1.55312622e+00 4.54216361e-01 -5.94069600e-01 -3.61739844e-01 4.92225915e-01 -1.09684467e-01 1.76779449e-01 1.39055371e-01 4.26981777e-01 1.70217380e-01 2.88853586e-01 8.45152676e-01 -1.22986861e-01 -7.19449162e-01 3.56963128e-01 -9.25283730e-01 6.79304421e-01 9.32157397e-01 -5.70932627e-01 -3.75393659e-01 3.34392518e-01 -1.72324657e-01 -2.76394069e-01 8.86171877e-01 -1.12261736e+00 -2.23016515e-01 -3.61802541e-02 8.66010189e-01 -1.47012413e-01 1.26126021e-01 -7.34723568e-01 2.01330647e-01 7.64487863e-01 -2.56157130e-01 -1.09932922e-01 7.15749338e-02 1.47770971e-01 1.65298045e-01 -3.78733963e-01 9.93529677e-01 -3.37100178e-01 -3.87396544e-01 3.35653052e-02 -7.86061585e-01 -1.45046368e-01 7.98071504e-01 -5.42677343e-01 -1.39073730e-01 -2.09427066e-02 -1.34247005e+00 -2.26854011e-01 1.71581730e-01 1.58600986e-01 6.34967327e-01 -1.21725214e+00 -6.87931836e-01 -1.80195197e-02 2.06472222e-02 -8.43380094e-01 1.40784010e-02 1.47913206e+00 -3.68842095e-01 4.71415162e-01 -5.81199884e-01 -3.58673900e-01 -1.31749225e+00 2.23950997e-01 3.41520369e-01 3.01101860e-02 -1.03295863e+00 1.39669120e-01 -1.33618623e-01 -2.51866337e-02 -3.98205919e-03 -2.12427780e-01 -2.94513524e-01 5.92427194e-01 7.83049166e-01 8.00562203e-01 2.94178277e-01 -4.81339872e-01 -5.81580460e-01 2.15184048e-01 -3.30848426e-01 -1.90971583e-01 1.42869544e+00 -4.47542109e-02 -8.18733871e-02 6.37132823e-01 1.06092942e+00 -3.82379711e-01 -4.85018134e-01 1.49472639e-01 2.43327096e-01 -1.69319123e-01 3.60718191e-01 -9.80070055e-01 -8.58865321e-01 6.61332428e-01 1.44118321e+00 -1.83484759e-02 8.16958308e-01 1.19695276e-01 4.48833376e-01 4.52711076e-01 4.93072867e-01 -8.80937815e-01 -4.97669756e-01 -2.40218937e-01 9.78560686e-01 -1.38103151e+00 2.53185898e-01 -2.92265564e-01 -6.30980909e-01 1.37641525e+00 2.33055681e-01 -2.89093167e-01 9.43363070e-01 -9.03280377e-02 6.47529587e-02 -4.49589081e-02 -2.96691298e-01 -2.05384016e-01 2.55312949e-01 9.46511686e-01 4.95696813e-01 1.96797550e-01 -1.20355570e+00 1.11526096e+00 -2.85102755e-01 3.47240120e-01 4.44630355e-01 8.44036937e-01 -7.88450778e-01 -1.12175798e+00 -3.90501231e-01 1.45949829e+00 -3.10238779e-01 -1.03118420e-01 -3.61483335e-01 9.56555486e-01 1.55411698e-02 5.91235995e-01 -3.43291573e-02 -8.01276565e-02 2.27324545e-01 6.20297670e-01 4.45541382e-01 -5.66117585e-01 -4.43601787e-01 -1.02151640e-01 2.66517639e-01 -3.63466382e-01 -4.08873796e-01 -1.29322457e+00 -1.16219687e+00 2.08386049e-01 -2.07485974e-01 -6.90612271e-02 5.42904496e-01 1.19585097e+00 2.18815744e-01 1.85277045e-01 2.33797014e-01 -6.56876504e-01 -5.68199098e-01 -8.60934973e-01 -6.82915390e-01 3.00673097e-02 1.15680084e-01 -1.13002408e+00 -5.83524585e-01 2.19571739e-02]
[14.167820930480957, -1.7490606307983398]
eb75dbe9-81a1-4b2d-9fc4-03c43eaed73b
a-novel-structured-argumentation-framework
2306.15500
null
https://arxiv.org/abs/2306.15500v1
https://arxiv.org/pdf/2306.15500v1.pdf
A novel structured argumentation framework for improved explainability of classification tasks
This paper presents a novel framework for structured argumentation, named extend argumentative decision graph ($xADG$). It is an extension of argumentative decision graphs built upon Dung's abstract argumentation graphs. The $xADG$ framework allows for arguments to use boolean logic operators and multiple premises (supports) within their internal structure, resulting in more concise argumentation graphs that may be easier for users to understand. The study presents a methodology for construction of $xADGs$ and evaluates their size and predictive capacity for classification tasks of varying magnitudes. Resulting $xADGs$ achieved strong (balanced) accuracy, which was accomplished through an input decision tree, while also reducing the average number of supports needed to reach a conclusion. The results further indicated that it is possible to construct plausibly understandable $xADGs$ that outperform other techniques for building $ADGs$ in terms of predictive capacity and overall size. In summary, the study suggests that $xADG$ represents a promising framework to developing more concise argumentative models that can be used for classification tasks and knowledge discovery, acquisition, and refinement.
['Luca Longo', 'Lucas Rizzo']
2023-06-27
null
null
null
null
['abstract-argumentation', 'abstract-argumentation']
['natural-language-processing', 'reasoning']
[-9.99796763e-02 1.44010544e+00 -5.98814487e-01 -4.65098053e-01 -2.68439621e-01 -6.63591623e-01 7.29949296e-01 1.03319263e+00 3.43884267e-02 1.16288245e+00 -3.46814990e-02 -1.40474260e+00 -8.42392623e-01 -1.31086659e+00 -6.06729567e-01 -9.83750075e-02 -3.09856594e-01 4.24887151e-01 1.34893715e-01 -5.77829838e-01 5.91061413e-01 2.41036803e-01 -1.72430992e+00 6.92041099e-01 9.62759912e-01 1.12679744e+00 -3.84138703e-01 1.72713101e-01 -3.83360505e-01 1.18492639e+00 -7.92814016e-01 -1.08453810e+00 -1.34448931e-01 -7.12868497e-02 -1.35271609e+00 -5.21417260e-01 -1.31976128e-01 -5.42290546e-02 6.28701031e-01 7.21881926e-01 1.24701718e-02 -2.74020344e-01 7.94984639e-01 -1.62936413e+00 -4.29719388e-01 1.50919151e+00 -2.35980839e-01 1.11424914e-02 9.23835993e-01 -4.65661556e-01 1.42792678e+00 -6.60020888e-01 5.83943069e-01 1.64879191e+00 6.55255735e-01 3.44064832e-01 -8.39874327e-01 -6.52933419e-01 6.86852515e-01 4.58398938e-01 -5.78866780e-01 6.07435443e-02 9.68081236e-01 -4.26441014e-01 1.21193552e+00 6.41723216e-01 1.19311094e+00 7.44480908e-01 4.55049425e-02 8.29904318e-01 1.30460155e+00 -1.17792153e+00 5.00143349e-01 1.30398721e-01 8.93958688e-01 9.31525409e-01 1.08402610e+00 -2.09368303e-01 -4.95529473e-01 -5.81039250e-01 2.44525582e-01 -7.10065484e-01 1.76546797e-02 -2.92852283e-01 -7.39558756e-01 1.31197393e+00 2.87422121e-01 1.57394618e-01 -3.13891143e-01 -1.88046351e-01 6.51638150e-01 3.16315413e-01 3.57532859e-01 5.68316698e-01 -4.07980740e-01 5.11395410e-02 -3.24960679e-01 5.54031432e-01 1.10698855e+00 6.11281037e-01 1.29870057e-01 2.78829248e-03 5.26802503e-02 2.77388066e-01 8.29007268e-01 6.40584230e-01 -2.11938187e-01 -9.29289818e-01 5.82512140e-01 1.47625160e+00 3.56550753e-01 -1.06087708e+00 -2.20082715e-01 -4.83425677e-01 -2.97355980e-01 6.57961607e-01 5.25571227e-01 -1.38346732e-01 -4.91207868e-01 1.53604364e+00 2.76509851e-01 -7.86372721e-01 4.33199495e-01 2.71071255e-01 1.09982836e+00 3.97953361e-01 4.05102819e-01 -1.73077404e-01 1.39846408e+00 -5.45277536e-01 -7.50631571e-01 -7.47335628e-02 9.55608964e-01 -2.67268240e-01 1.14308274e+00 8.01233470e-01 -1.35539997e+00 -1.65843815e-01 -1.57440865e+00 2.34759405e-01 -6.08433127e-01 -1.67973742e-01 1.19648969e+00 9.70951498e-01 -6.87522531e-01 4.78416681e-01 -3.35798234e-01 2.46533632e-01 3.23038250e-01 4.18761998e-01 -3.60772423e-02 1.23194732e-01 -1.65944767e+00 1.28026867e+00 7.30361164e-01 1.09129854e-01 -2.38461658e-01 -1.34232879e-01 -1.01497924e+00 6.07636943e-02 4.52038556e-01 -6.29831493e-01 9.72162068e-01 -5.82190275e-01 -1.05011666e+00 8.09138298e-01 2.61768669e-01 -8.52688372e-01 5.87508321e-01 -9.51340497e-02 -4.09956992e-01 2.49373421e-01 2.28440151e-01 2.12190613e-01 4.16468799e-01 -1.12768304e+00 -6.56681478e-01 -3.72078836e-01 7.98205435e-01 6.91190138e-02 1.06327958e-01 -6.88904375e-02 6.47353947e-01 -4.67877060e-01 1.23855509e-01 -4.90902394e-01 -1.29108401e-02 -1.87631786e-01 -3.92235398e-01 -9.76311505e-01 6.43646657e-01 -4.90492374e-01 1.67573142e+00 -1.50115120e+00 -8.34222287e-02 8.19417357e-01 4.34399307e-01 6.79432690e-01 5.46323538e-01 6.79642737e-01 -2.53803402e-01 6.58043563e-01 -3.19434777e-02 7.19608188e-01 3.22053850e-01 3.88750553e-01 -5.44288576e-01 -2.24055409e-01 1.71857789e-01 7.57257462e-01 -9.45047438e-01 -6.15705013e-01 2.79991180e-01 -1.73749566e-01 -3.07432979e-01 -2.23588064e-01 -5.12496293e-01 -4.30676132e-01 -8.52855980e-01 7.21946001e-01 3.77456665e-01 -1.58608720e-01 6.62060499e-01 -3.48778330e-02 2.79967394e-02 5.62414110e-01 -1.37692571e+00 9.22222257e-01 -2.06086367e-01 3.83148968e-01 -7.72593468e-02 -1.44129837e+00 1.43280578e+00 2.66975194e-01 -1.18060045e-01 -5.08143961e-01 3.93140316e-01 6.41640902e-01 -4.21637157e-03 -2.16034144e-01 6.15941510e-02 -9.96570364e-02 -2.04178542e-01 7.83461332e-01 -3.93853694e-01 -3.55059296e-01 5.55837095e-01 3.91613185e-01 6.64711833e-01 1.50535956e-01 7.49567211e-01 -6.71392202e-01 8.92802000e-01 3.93676370e-01 2.28262216e-01 7.76138306e-01 2.00482652e-01 -6.43661857e-01 9.28929150e-01 -8.93442214e-01 -6.82698905e-01 -1.04434240e+00 -1.96040481e-01 5.90033948e-01 8.94913152e-02 -8.07422936e-01 -8.95920694e-01 -1.00994539e+00 8.05351958e-02 1.17141819e+00 -7.84097791e-01 1.29589811e-01 -3.72073263e-01 -4.91346806e-01 7.79812455e-01 5.69693744e-01 7.54837096e-01 -9.90340829e-01 -9.83102858e-01 2.50549614e-01 -4.29631412e-01 -3.90961170e-01 9.59344029e-01 3.40175271e-01 -1.02346027e+00 -1.88133216e+00 9.01970491e-02 -4.25790697e-01 6.11242294e-01 -1.99915677e-01 1.19903898e+00 4.24987286e-01 9.84537974e-02 1.76739857e-01 -7.52234995e-01 -1.33142495e+00 -7.06520617e-01 -2.97169745e-01 -3.74502420e-01 -8.75163138e-01 4.00758922e-01 -2.35246733e-01 -4.47754592e-01 2.44472310e-01 -7.04942763e-01 6.43763915e-02 2.18678415e-01 8.63169074e-01 3.07970405e-01 3.67712602e-02 9.85940456e-01 -1.07226312e+00 1.40490079e+00 -3.45202088e-01 -3.01662177e-01 7.21156716e-01 -1.26195168e+00 2.89610386e-01 3.61720979e-01 1.82598025e-01 -1.06608689e+00 -9.71929550e-01 -1.65661931e-01 5.21698892e-01 3.14112633e-01 1.01715803e+00 1.69360861e-01 7.95385391e-02 1.14197946e+00 -6.76880777e-01 1.70644775e-01 6.40340000e-02 2.87076801e-01 6.42224073e-01 -8.35427493e-02 -1.26626706e+00 1.46585867e-01 1.88025370e-01 3.59296679e-01 -4.41446900e-01 -9.85001683e-01 2.95200646e-01 -3.44027728e-01 -4.28932577e-01 3.30299407e-01 -5.18419683e-01 -8.85859311e-01 8.44122283e-03 -8.88399422e-01 -2.31267642e-02 -6.19066596e-01 3.36431652e-01 -4.03494924e-01 3.64708900e-01 -2.03242913e-01 -1.08851504e+00 -6.61162138e-01 -7.19645679e-01 4.74665731e-01 -1.22004762e-01 -9.65144217e-01 -1.19455051e+00 -4.31897491e-01 6.33800030e-01 -6.51617274e-02 7.85852551e-01 1.71796823e+00 -8.63786101e-01 1.74506724e-01 -2.26391643e-01 -7.08594099e-02 4.35890853e-01 -1.96295977e-01 3.51148874e-01 -5.73543489e-01 -9.61332992e-02 -9.96735319e-02 -4.62327838e-01 2.38782018e-01 3.56189221e-01 7.30234981e-01 -6.34467900e-01 -4.30668861e-01 -3.54799449e-01 8.87522519e-01 6.09901607e-01 6.67436540e-01 1.01832652e+00 -3.22041541e-01 9.88864422e-01 1.19510591e+00 3.11724871e-01 3.06715220e-01 1.79228052e-01 5.86744726e-01 -1.83756580e-04 1.72366709e-01 -1.74258769e-01 -9.89905521e-02 1.62036747e-01 -7.06378400e-01 -1.77339256e-01 -1.07916558e+00 3.41727138e-01 -1.96096265e+00 -1.11739802e+00 -4.47913140e-01 1.85480177e+00 4.57339227e-01 7.11540163e-01 1.20730996e-01 1.20346463e+00 6.13273799e-01 -3.71933579e-02 -1.92678005e-01 -1.34711707e+00 -2.27997646e-01 7.63957620e-01 -2.01200128e-01 6.92706108e-01 -5.87125659e-01 4.71988171e-01 6.94385767e+00 5.54987609e-01 -6.05126321e-01 -4.33791637e-01 5.82886040e-01 3.71572584e-01 -8.28946054e-01 2.98825949e-01 -6.84652567e-01 5.47289886e-02 7.45567977e-01 -4.83583361e-01 -3.67263824e-01 9.30246115e-01 -8.25662762e-02 -1.90285638e-01 -8.70602667e-01 4.16859448e-01 -4.61033076e-01 -1.77778554e+00 6.39033318e-01 -1.06391393e-01 2.34600455e-01 -7.02970743e-01 -4.05726880e-01 1.46640047e-01 7.42969334e-01 -8.70387077e-01 1.03513181e+00 9.74268541e-02 4.06419903e-01 -8.59950185e-01 1.11082172e+00 2.95357734e-01 -8.57140779e-01 -4.87652540e-01 8.93549621e-02 -7.21017182e-01 -8.42855722e-02 4.72344428e-01 -1.05494440e+00 1.05064690e+00 7.75036573e-01 4.07640010e-01 -4.62021083e-01 2.52211213e-01 -8.35546494e-01 6.10690951e-01 -2.68249601e-01 -5.94912887e-01 3.48080546e-01 -2.20776573e-01 3.17342371e-01 1.07113111e+00 3.44162613e-01 4.16999727e-01 -1.73718557e-01 5.13983369e-01 4.76531923e-01 2.81235009e-01 -6.86113715e-01 3.42102237e-02 6.93536758e-01 5.48595607e-01 -7.66013443e-01 -4.57084566e-01 -3.65621299e-02 -2.44728744e-01 2.51864046e-01 -4.21749391e-02 -7.18259692e-01 -4.22716767e-01 -2.18806397e-02 3.35548311e-01 -1.30355790e-01 2.06714377e-01 -4.85048383e-01 -8.61982882e-01 2.36582428e-01 -9.54656482e-01 1.05238938e+00 -9.90876615e-01 -9.24754560e-01 7.42243171e-01 7.71511614e-01 -9.87282455e-01 -6.27879441e-01 -8.64345968e-01 -4.61817503e-01 7.95615554e-01 -1.18628430e+00 -1.44487035e+00 -7.27767944e-02 6.23744965e-01 1.13050677e-01 2.94436645e-02 1.24328315e+00 -4.86847878e-01 -1.70190915e-01 3.33107442e-01 -5.59949815e-01 -1.45252690e-01 -2.98434589e-02 -1.24437928e+00 -1.40855998e-01 4.83594030e-01 -2.18482971e-01 8.52999151e-01 8.27871442e-01 -7.32551634e-01 -8.59742761e-01 -3.24543297e-01 9.06181157e-01 -2.29463071e-01 6.36344194e-01 1.48438931e-01 -6.18342400e-01 5.83882272e-01 2.39921302e-01 -5.02946973e-01 9.30820286e-01 4.57765520e-01 -4.56500411e-01 4.16263985e-03 -1.56305695e+00 5.64163506e-01 1.01440048e+00 -7.38167763e-02 -1.51848245e+00 -3.74883786e-02 2.54871249e-01 -1.41250312e-01 -9.60169613e-01 6.95240200e-01 7.31872737e-01 -1.17284787e+00 9.12817717e-01 -7.96683729e-01 3.71493340e-01 -1.16994955e-01 -4.03406285e-02 -1.00441408e+00 -3.29347923e-02 -4.82266694e-01 -2.92868316e-01 9.08309460e-01 9.71015155e-01 -9.85428333e-01 6.44031465e-01 8.71139646e-01 -1.32428035e-01 -1.02710688e+00 -8.04989398e-01 -5.13082623e-01 1.82328805e-01 -5.36698461e-01 8.67793083e-01 1.09467196e+00 7.74656296e-01 4.78217453e-01 3.24223608e-01 -2.90224671e-01 7.18350112e-01 4.75745976e-01 4.61353898e-01 -1.84325027e+00 5.91538772e-02 -5.03266454e-01 -2.84654021e-01 -2.50630289e-01 1.54837191e-01 -9.73654270e-01 -9.22338963e-01 -2.10603881e+00 -4.46180075e-01 -7.92847216e-01 -1.14483133e-01 8.86630237e-01 1.16067886e-01 -3.51287663e-01 -5.79152256e-02 -5.00870571e-02 -1.04480227e-02 -1.57828648e-02 1.27834415e+00 -2.21040443e-01 -1.10898055e-01 5.84391039e-03 -1.18516195e+00 1.21482790e+00 8.99830282e-01 -1.08769849e-01 -8.78012478e-01 4.80425097e-02 9.40726817e-01 9.12960693e-02 2.66353369e-01 -4.28786516e-01 -2.30154365e-01 -3.39818239e-01 1.57995880e-01 -5.69516003e-01 -1.09320069e-02 -6.27116680e-01 3.05171639e-01 8.75146210e-01 -3.36820811e-01 2.03711644e-01 2.77476817e-01 2.94774115e-01 -4.44878072e-01 -6.66241288e-01 2.31594115e-01 1.57789588e-02 -5.72347820e-01 -6.83384895e-01 -1.77154645e-01 -1.50972039e-01 1.48921061e+00 -7.07567036e-01 -8.60638618e-01 -1.29546851e-01 -9.94696259e-01 2.74344504e-01 -3.94961536e-02 7.88129941e-02 7.14115083e-01 -8.77049208e-01 -5.41101694e-01 -2.08755150e-01 -1.34743063e-03 1.36060059e-01 -2.71423787e-01 3.06609958e-01 -1.01746070e+00 5.34006476e-01 -4.77062076e-01 -1.55226275e-01 -1.50833750e+00 4.28709269e-01 5.08387759e-02 -6.59402668e-01 -5.73405385e-01 5.59617460e-01 -5.02055287e-01 -9.01728943e-02 1.88871056e-01 -6.75703108e-01 -7.57886291e-01 4.34044868e-01 3.52612972e-01 7.08240688e-01 9.78399217e-02 -9.35547799e-02 -3.74948680e-01 2.91208625e-01 1.02402493e-02 -5.21092862e-02 1.39712071e+00 1.52084440e-01 -2.75672942e-01 1.27705187e-01 -8.93860832e-02 1.89566404e-01 -5.00054419e-01 1.64253101e-01 2.08756149e-01 -1.44699454e-01 -2.88242757e-01 -1.31052637e+00 -3.81565839e-01 6.97710633e-01 2.52805501e-02 9.76202846e-01 9.40703571e-01 1.04495481e-01 1.40979709e-02 6.71455145e-01 6.62072778e-01 -1.13354421e+00 -3.00997734e-01 1.22082666e-01 1.17463696e+00 -7.68543601e-01 4.95074183e-01 -1.07387280e+00 -5.37452817e-01 1.52016950e+00 2.61875451e-01 3.35664004e-02 6.90604329e-01 1.24447659e-01 -4.99456935e-02 -7.93392897e-01 -6.44292772e-01 3.16655934e-01 1.28515378e-01 6.69734240e-01 4.52617347e-01 4.33019996e-01 -1.20581222e+00 9.72499013e-01 -5.58914483e-01 -4.04154584e-02 4.54281002e-01 1.40890622e+00 -5.77471375e-01 -1.56486177e+00 -4.83242482e-01 5.28200269e-01 -4.77226406e-01 8.92716125e-02 -8.24781656e-01 1.36316967e+00 1.44292805e-02 1.49349225e+00 -4.93676990e-01 -1.21482804e-01 6.08733594e-01 1.61104351e-01 6.48543835e-01 -4.28078771e-01 -7.18753874e-01 -6.40545785e-01 1.23157024e+00 -9.76019800e-02 -8.67635846e-01 -3.67606103e-01 -1.43094504e+00 -4.50831383e-01 -5.55074215e-01 1.12927997e+00 5.74380040e-01 1.03925192e+00 1.79483399e-01 3.60962808e-01 1.55087739e-01 -3.26737612e-02 -4.56475079e-01 -7.83151925e-01 -4.63605732e-01 2.01661617e-01 -3.77183616e-01 -1.13644266e+00 -3.30641270e-01 -2.46953145e-01]
[8.91783618927002, 7.027563095092773]
49d3df84-cf4f-42e9-9692-18e3e7b22a6c
learning-to-draw-emergent-communication
2106.02067
null
https://arxiv.org/abs/2106.02067v2
https://arxiv.org/pdf/2106.02067v2.pdf
Learning to Draw: Emergent Communication through Sketching
Evidence that visual communication preceded written language and provided a basis for it goes back to prehistory, in forms such as cave and rock paintings depicting traces of our distant ancestors. Emergent communication research has sought to explore how agents can learn to communicate in order to collaboratively solve tasks. Existing research has focused on language, with a learned communication channel transmitting sequences of discrete tokens between the agents. In this work, we explore a visual communication channel between agents that are allowed to draw with simple strokes. Our agents are parameterised by deep neural networks, and the drawing procedure is differentiable, allowing for end-to-end training. In the framework of a referential communication game, we demonstrate that agents can not only successfully learn to communicate by drawing, but with appropriate inductive biases, can do so in a fashion that humans can interpret. We hope to encourage future research to consider visual communication as a more flexible and directly interpretable alternative of training collaborative agents.
['Jonathon Hare', 'Daniela Mihai']
2021-06-03
null
http://proceedings.neurips.cc/paper/2021/hash/39d0a8908fbe6c18039ea8227f827023-Abstract.html
http://proceedings.neurips.cc/paper/2021/file/39d0a8908fbe6c18039ea8227f827023-Paper.pdf
neurips-2021-12
['prehistory']
['miscellaneous']
[ 7.94983283e-02 4.84117061e-01 2.66882420e-01 -2.39040300e-01 1.49145290e-01 -9.79720354e-01 1.44442260e+00 2.81045921e-02 -5.94171762e-01 8.14695835e-01 4.91923541e-01 -6.76590443e-01 2.10095927e-01 -9.06964898e-01 -7.15809822e-01 -4.98673975e-01 -5.59214473e-01 7.12076604e-01 -3.91939908e-01 -3.24172199e-01 4.09955502e-01 3.59328479e-01 -1.12459731e+00 3.16539943e-01 5.75236261e-01 9.48514789e-02 1.27394095e-01 1.22752905e+00 -2.68094242e-01 1.36167157e+00 -1.11686933e+00 -4.94800895e-01 3.89321260e-02 -8.68339837e-01 -9.52772558e-01 8.00878480e-02 -5.11745624e-02 -5.26110709e-01 -1.67341754e-01 4.17645454e-01 2.51802683e-01 1.00603856e-01 9.23840225e-01 -1.17069340e+00 -1.45405650e+00 1.08991075e+00 -1.78269759e-01 -1.24628313e-01 4.72731739e-01 5.83396137e-01 9.90942657e-01 -4.05021071e-01 9.40100133e-01 1.48178625e+00 4.54411626e-01 9.56310391e-01 -1.33726537e+00 -6.74251735e-01 2.85101473e-01 -1.94604188e-01 -9.41579461e-01 -1.79660007e-01 7.66909719e-01 -6.75305486e-01 1.06340694e+00 1.75696075e-01 1.38639367e+00 1.39216578e+00 4.82407063e-02 8.19802225e-01 1.21382439e+00 -4.40556467e-01 2.16091827e-01 -1.00745603e-01 -4.67830926e-01 9.24830079e-01 -1.11525521e-01 5.87371707e-01 -7.05623388e-01 -3.09641719e-01 1.27815306e+00 -1.88532248e-01 8.09873547e-03 -3.98741513e-02 -1.28376591e+00 1.00946879e+00 9.42576110e-01 3.92304540e-01 -1.94115475e-01 9.17414069e-01 1.32356718e-01 7.94657946e-01 2.73050517e-01 9.42988753e-01 1.57173321e-01 -2.32398272e-01 -2.52465099e-01 7.19520375e-02 1.17935824e+00 6.57370925e-01 5.23085773e-01 1.63684443e-01 4.99059260e-02 3.16259503e-01 6.32047594e-01 3.36384118e-01 1.43400595e-01 -1.33614719e+00 -1.92216076e-02 3.34715784e-01 1.46396890e-01 -8.17234159e-01 -2.57610679e-01 -1.71978429e-01 -6.38892353e-01 7.70466328e-01 5.11505127e-01 -6.60309494e-01 -6.02261424e-01 1.75073111e+00 -4.54397267e-03 1.27340883e-01 5.69242179e-01 9.12841022e-01 6.48662746e-01 8.49691570e-01 1.72360912e-01 1.96889654e-01 1.02225661e+00 -9.01361585e-01 -1.38457999e-01 -1.79693744e-01 7.48228550e-01 -4.38441068e-01 1.05551982e+00 1.20639369e-01 -1.19557202e+00 -1.39866501e-01 -8.49065363e-01 -1.14522032e-01 -7.00372756e-02 -4.14497048e-01 1.25300336e+00 4.44498688e-01 -1.45715177e+00 4.64110345e-01 -9.17079628e-01 -4.65844035e-01 6.47900164e-01 1.44843712e-01 -4.66897339e-02 7.27940381e-01 -8.87788117e-01 9.00597215e-01 1.00480735e-01 1.06254630e-01 -1.31416523e+00 -3.82589459e-01 -5.36981404e-01 -1.45026043e-01 -1.02138221e-02 -1.19251359e+00 1.51596165e+00 -1.82532990e+00 -2.01017165e+00 9.65117455e-01 2.25251943e-01 -5.82089365e-01 7.63171256e-01 -3.23403403e-02 2.26151466e-01 2.04978466e-01 -2.10554495e-01 9.80170667e-01 6.09710217e-01 -1.90875399e+00 -2.91968614e-01 4.25551720e-02 5.22550523e-01 4.48797107e-01 -8.37200209e-02 -3.09294723e-02 1.70257449e-01 -5.59438884e-01 -5.94711721e-01 -9.47555125e-01 -1.74146146e-01 5.26719511e-01 -2.58051753e-01 -3.25782895e-01 5.81243932e-01 -2.74519295e-01 4.45472926e-01 -1.96210408e+00 4.69734222e-01 3.09263527e-01 6.66496634e-01 -1.51394859e-01 -2.31473118e-01 9.93434429e-01 6.44516349e-01 4.53205079e-01 -1.96131527e-01 -4.58813667e-01 3.21795642e-01 4.65803355e-01 -4.14604455e-01 3.73661667e-01 -2.44441479e-02 1.28227735e+00 -1.09669995e+00 -1.76219046e-01 -1.36779130e-01 7.14297175e-01 -5.93241036e-01 5.18446743e-01 -5.15470684e-01 9.59235132e-01 -4.88766491e-01 -7.52266869e-02 -1.00076430e-01 -4.84976053e-01 4.20101255e-01 7.96988070e-01 -3.69465888e-01 9.26632285e-02 -3.87199283e-01 1.57556927e+00 -6.96493566e-01 1.33295357e+00 4.20485973e-01 -5.84762514e-01 8.91619086e-01 3.47057551e-01 -2.06983134e-01 -5.13572812e-01 2.56701380e-01 4.46256809e-02 3.99044931e-01 -5.17526865e-01 3.47788751e-01 -3.62370610e-01 -2.11183615e-02 1.20146048e+00 -5.43352246e-01 -5.23794055e-01 -2.80267477e-01 5.13068020e-01 8.43189955e-01 1.24453492e-01 -5.02505377e-02 -3.35595869e-02 5.29248789e-02 2.37279609e-02 -2.97115237e-01 1.11750841e+00 2.48216674e-01 1.26153618e-01 4.79036212e-01 -6.35555923e-01 -1.31567669e+00 -1.32171869e+00 4.20003146e-01 1.18878818e+00 2.41502389e-01 -1.58680245e-01 -5.57553530e-01 -6.96918294e-02 8.13694000e-02 1.01566803e+00 -9.03236330e-01 -1.29033580e-01 -6.66386664e-01 -7.16916248e-02 8.55074227e-01 5.17037570e-01 5.37368298e-01 -1.58665586e+00 -1.28634596e+00 2.43038282e-01 5.59226513e-01 -3.54765505e-01 -2.75413573e-01 7.10257590e-02 -6.07189298e-01 -7.36680806e-01 -8.78317237e-01 -1.11744165e+00 9.34604287e-01 -1.51528433e-01 1.16353631e+00 9.99429643e-01 4.25954238e-02 1.01468647e+00 -1.43699944e-01 -5.49695611e-01 -9.33475494e-01 -2.24631112e-02 -5.11743188e-01 -2.16898009e-01 -8.26383829e-02 -8.06335211e-01 -6.09036088e-01 -5.18290401e-02 -8.32780898e-01 5.66596866e-01 4.25205022e-01 7.53350317e-01 -4.67908829e-01 -6.74669206e-01 3.43762189e-01 -9.63899910e-01 1.30569732e+00 -4.85563695e-01 -4.00084645e-01 2.13968247e-01 -1.16108708e-01 9.96016935e-02 7.57650256e-01 -6.14025176e-01 -1.10153246e+00 -3.18180650e-01 3.45854282e-01 2.50410557e-01 -2.25539327e-01 5.29852033e-01 7.46248960e-01 -1.73557416e-01 7.82524645e-01 3.29453558e-01 1.69639170e-01 6.03219345e-02 7.97806799e-01 6.29003167e-01 4.42500055e-01 -1.02729642e+00 8.95045280e-01 6.18958175e-01 -2.48390749e-01 -9.69878376e-01 -4.63014133e-02 5.85241437e-01 -4.33183968e-01 -3.85514855e-01 9.18134749e-01 -6.23532414e-01 -1.36750317e+00 3.60904843e-01 -1.35847723e+00 -1.26414812e+00 -2.09468231e-01 2.98016846e-01 -6.02904260e-01 -2.22651009e-03 -8.68756890e-01 -1.03230298e+00 1.84297729e-02 -7.77297556e-01 6.20338082e-01 4.85369951e-01 -7.69249856e-01 -1.53483808e+00 1.90033883e-01 -6.91347942e-02 8.95748556e-01 2.14413300e-01 9.71521735e-01 -5.40701270e-01 -8.93330932e-01 5.36849082e-01 7.62258545e-02 -4.48127985e-01 4.39145677e-02 3.28565657e-01 -6.62969708e-01 -2.86700338e-01 -5.94590247e-01 -6.84796929e-01 6.52182341e-01 -2.20219120e-02 6.33274078e-01 -4.90795314e-01 -3.11140656e-01 5.40001273e-01 9.02160466e-01 5.64108491e-01 3.74516398e-01 4.44501400e-01 4.66803312e-01 6.07269526e-01 -6.80469871e-01 3.03660691e-01 8.79023552e-01 8.17081854e-02 1.40558347e-01 -3.23150665e-01 9.97897610e-03 -4.62234735e-01 2.52507120e-01 6.48501217e-01 -5.23361087e-01 -4.88359481e-01 -1.06652677e+00 3.39614391e-01 -1.77763247e+00 -1.08225989e+00 4.02147233e-01 1.60337114e+00 1.01902342e+00 -3.27130221e-02 1.50136381e-01 -5.96865416e-01 4.18751091e-01 1.33419439e-01 -6.26460493e-01 -8.95954847e-01 -6.42044395e-02 1.13539621e-01 1.61350276e-02 8.89551163e-01 -5.41497409e-01 1.01429760e+00 7.01551390e+00 -2.37655997e-01 -1.18191600e+00 -1.35931104e-01 5.92386484e-01 -8.56911689e-02 -8.97397399e-01 1.80752054e-01 7.72880465e-02 1.79407343e-01 7.23496854e-01 -2.92315155e-01 1.01970649e+00 4.90258262e-02 1.21953107e-01 -1.11699991e-01 -1.37510121e+00 7.00429320e-01 3.14648543e-03 -1.69143128e+00 1.60169825e-01 -2.54691811e-03 7.57220745e-01 -2.01333433e-01 2.96075463e-01 1.44648790e-01 1.29124272e+00 -1.55473602e+00 9.96464252e-01 6.64238274e-01 3.36808175e-01 -4.14215535e-01 1.89066175e-02 4.13720131e-01 -9.04782474e-01 -1.48226857e-01 1.18329659e-01 -8.28272581e-01 2.03968108e-01 -5.47633410e-01 -1.05758536e+00 -1.18153520e-01 1.69648126e-01 6.43948495e-01 -2.79760867e-01 7.52449453e-01 -5.76860189e-01 6.30282283e-01 -2.48153374e-01 -9.19041455e-01 5.28996229e-01 -2.78428525e-01 5.01372516e-01 1.07355130e+00 3.12135890e-02 4.56664056e-01 1.95825666e-01 1.27315354e+00 -1.83133319e-01 -2.01518297e-01 -8.90280664e-01 -5.28163016e-01 5.70760131e-01 6.60489559e-01 -9.40725207e-01 -4.55671787e-01 -2.53191054e-01 1.24551737e+00 6.18147790e-01 7.56956339e-01 -5.09033322e-01 -1.93187177e-01 3.25228900e-01 -1.56010389e-01 8.91949534e-02 -8.51606309e-01 -2.08460361e-01 -9.07944441e-01 -5.32157719e-01 -6.53227627e-01 -1.79329902e-01 -1.04887366e+00 -1.44302952e+00 5.39861977e-01 -1.81463525e-01 -3.75179142e-01 -4.22879189e-01 -2.41142675e-01 -1.07249320e+00 5.53778231e-01 -9.02503610e-01 -1.33547878e+00 -1.28021061e-01 4.28310245e-01 2.62184203e-01 -3.48620802e-01 9.06821311e-01 -5.03841341e-01 4.09775265e-02 3.47239435e-01 -4.44686078e-02 5.34734845e-01 1.15300432e-01 -1.29345500e+00 5.51491320e-01 2.53168255e-01 5.33446252e-01 8.69144797e-01 7.37947285e-01 -5.34560859e-01 -1.46061254e+00 -3.85298014e-01 4.46677715e-01 -4.35564429e-01 8.58933985e-01 -5.36631823e-01 -6.93873346e-01 1.13151932e+00 1.11840641e+00 -6.26814544e-01 7.34202385e-01 4.92888205e-02 -3.67913127e-01 4.94468242e-01 -8.05357695e-01 1.19528496e+00 1.29563093e+00 -8.36025894e-01 -7.93438137e-01 2.05074877e-01 5.73939681e-01 -2.42639393e-01 -3.33251238e-01 -6.51921511e-01 7.46884048e-01 -7.42414892e-01 7.38918662e-01 -7.01318920e-01 5.46852767e-01 -2.22526148e-01 2.82561988e-01 -1.80895078e+00 -9.03019384e-02 -1.15821314e+00 4.25727338e-01 9.19616401e-01 6.35167181e-01 -1.15248895e+00 5.69569826e-01 6.81487978e-01 -4.13266905e-02 -2.16101572e-01 -6.17424428e-01 -3.73449743e-01 4.97043997e-01 1.11303300e-01 5.16033530e-01 9.93253708e-01 1.48472488e-01 5.01122892e-01 -2.25818649e-01 -5.36034163e-03 4.09582734e-01 1.87388599e-01 1.05536067e+00 -1.20033121e+00 -6.30675972e-01 -8.88863266e-01 -6.92489892e-02 -1.31150198e+00 4.12738293e-01 -1.11398470e+00 4.80765253e-02 -1.65608811e+00 1.12412998e-03 -5.10483682e-01 4.83090639e-01 3.41839015e-01 3.70276272e-01 8.27084109e-02 6.47682846e-01 3.33939224e-01 -3.87391955e-01 6.18830681e-01 1.68989575e+00 -3.83302212e-01 -3.34955931e-01 -4.53836620e-01 -8.93472791e-01 6.44966245e-01 7.45279670e-01 -2.04379782e-01 -5.61445832e-01 -1.09700954e+00 6.16837561e-01 4.14476506e-02 8.34235966e-01 -5.58464348e-01 6.94517910e-01 -3.58626962e-01 6.20053530e-01 3.24729860e-01 2.50326931e-01 -6.86177969e-01 4.62130219e-01 7.30207860e-01 -1.00090289e+00 3.10952306e-01 -3.11813802e-02 4.64948982e-01 1.53470665e-01 3.76073923e-03 3.50140929e-01 -5.15585780e-01 -4.75446165e-01 -2.85272628e-01 -1.12439692e+00 7.01725930e-02 1.21433032e+00 -3.17471445e-01 -6.18378460e-01 -9.83772337e-01 -8.12790632e-01 4.98455256e-01 8.63087237e-01 1.22173920e-01 5.92457354e-01 -1.00272322e+00 -8.71500909e-01 1.14554591e-01 -2.52761215e-01 2.23228689e-02 -4.16953534e-01 1.37077555e-01 -1.07824790e+00 -1.17273360e-01 -3.52789611e-01 -4.46779788e-01 -9.76865947e-01 9.99385342e-02 5.63274860e-01 4.86157864e-01 -9.56915438e-01 1.14012861e+00 3.12080503e-01 -2.60386497e-01 2.35288456e-01 -1.65172383e-01 -5.54596111e-02 -1.38991445e-01 4.28495973e-01 -1.75207645e-01 -1.07871437e+00 -3.70719701e-01 -1.07295558e-01 4.79880095e-01 9.25349891e-02 -6.04341984e-01 1.50942183e+00 -1.02600560e-01 -1.39140308e-01 6.04786873e-01 9.06108022e-01 1.37319453e-02 -1.60042703e+00 3.40252183e-02 -2.49272168e-01 -2.96785414e-01 -4.16581452e-01 -8.76047134e-01 -7.78499126e-01 8.36173117e-01 4.11476269e-02 6.96366727e-01 5.06557345e-01 4.47444469e-01 3.65067214e-01 7.13839412e-01 3.57578665e-01 -6.74840569e-01 5.95126510e-01 5.50607502e-01 1.15813100e+00 -8.81066382e-01 -2.48375371e-01 2.91281074e-01 -8.13376367e-01 1.43446434e+00 3.03934455e-01 -5.47298074e-01 3.96102697e-01 5.27921379e-01 2.86882311e-01 -4.74166781e-01 -1.12673330e+00 1.09940335e-01 -2.51042336e-01 9.73707438e-01 5.97718775e-01 2.66984969e-01 5.66051267e-02 -1.26850501e-01 -6.73734665e-01 -1.97025403e-01 7.81300068e-01 1.06860650e+00 -4.68341082e-01 -9.06845391e-01 -2.00655818e-01 4.68696132e-02 9.32797045e-02 -5.81572950e-02 -1.12233245e+00 8.00472021e-01 -1.95803344e-01 7.97856331e-01 7.04279184e-01 -5.60419448e-02 -1.50454313e-01 -1.94666624e-01 6.80860460e-01 -4.55595434e-01 -1.05363417e+00 -4.07893062e-01 1.44097701e-01 2.77942196e-02 -6.72122300e-01 -5.56816161e-01 -1.67659688e+00 -6.46710873e-01 2.03133941e-01 3.24470401e-01 2.91030496e-01 7.38062739e-01 2.16658801e-01 4.85151947e-01 3.93918037e-01 -1.16983712e+00 -1.38322726e-01 -6.37197375e-01 -1.73022181e-01 2.91660249e-01 6.21656477e-01 -3.59681368e-01 -4.62539911e-01 1.48752689e-01]
[4.408349990844727, 1.5164806842803955]
82b4a68e-c5fb-4fba-bb50-f25675233ed8
vn-transformer-rotation-equivariant-attention
2206.04176
null
https://arxiv.org/abs/2206.04176v3
https://arxiv.org/pdf/2206.04176v3.pdf
VN-Transformer: Rotation-Equivariant Attention for Vector Neurons
Rotation equivariance is a desirable property in many practical applications such as motion forecasting and 3D perception, where it can offer benefits like sample efficiency, better generalization, and robustness to input perturbations. Vector Neurons (VN) is a recently developed framework offering a simple yet effective approach for deriving rotation-equivariant analogs of standard machine learning operations by extending one-dimensional scalar neurons to three-dimensional "vector neurons." We introduce a novel "VN-Transformer" architecture to address several shortcomings of the current VN models. Our contributions are: $(i)$ we derive a rotation-equivariant attention mechanism which eliminates the need for the heavy feature preprocessing required by the original Vector Neurons models; $(ii)$ we extend the VN framework to support non-spatial attributes, expanding the applicability of these models to real-world datasets; $(iii)$ we derive a rotation-equivariant mechanism for multi-scale reduction of point-cloud resolution, greatly speeding up inference and training; $(iv)$ we show that small tradeoffs in equivariance ($\epsilon$-approximate equivariance) can be used to obtain large improvements in numerical stability and training robustness on accelerated hardware, and we bound the propagation of equivariance violations in our models. Finally, we apply our VN-Transformer to 3D shape classification and motion forecasting with compelling results.
['Ben Sapp', 'Nigamaa Nayakanti', 'Rami Al-Rfou', 'Carlton Downey', 'Serge Assaad']
2022-06-08
null
null
null
null
['3d-shape-retrieval']
['computer-vision']
[ 5.94295897e-02 -2.14899123e-01 -1.30363926e-01 -3.20678294e-01 -7.30336368e-01 -5.86389244e-01 5.43824971e-01 -4.37892199e-01 -3.56467426e-01 3.79821002e-01 -2.98752449e-03 -6.93423569e-01 -1.69307634e-01 -6.58188522e-01 -1.12779593e+00 -6.37265980e-01 -1.77882388e-01 1.41256049e-01 -2.63890829e-02 -4.69362199e-01 4.94220734e-01 1.20298767e+00 -1.63894176e+00 -2.61235852e-02 3.96249115e-01 1.18179977e+00 -6.10438362e-02 6.85290515e-01 2.22475454e-01 2.29612783e-01 -1.60914019e-01 1.08649552e-01 6.75586045e-01 3.83419901e-01 -7.04541385e-01 -7.47734308e-02 7.71639228e-01 -2.29844525e-01 -4.82326776e-01 9.37996805e-01 4.62955266e-01 5.73686898e-01 8.15253675e-01 -1.10139334e+00 -8.17452669e-01 2.39564568e-01 -5.57795584e-01 2.61665225e-01 -2.80311257e-01 1.48612291e-01 9.51545715e-01 -1.16636252e+00 6.99557960e-01 1.48419559e+00 9.52319324e-01 6.12533987e-01 -1.20221806e+00 -5.70535183e-01 3.70568901e-01 6.03205264e-02 -1.55236506e+00 -4.78415728e-01 8.86934996e-01 -2.83016801e-01 1.57400644e+00 4.14349228e-01 3.67396712e-01 8.15117836e-01 2.77585417e-01 5.81802428e-01 4.46703106e-01 -2.26013660e-01 2.99227834e-01 -2.10167453e-01 -1.94591489e-02 7.17805386e-01 4.92261313e-02 1.31990895e-01 -2.72356093e-01 -2.16070145e-01 1.31083703e+00 -1.19014017e-01 -1.79508835e-01 -7.05203235e-01 -1.27401745e+00 8.98212969e-01 7.31816113e-01 -8.86563212e-02 -1.93061426e-01 6.40732586e-01 4.06849682e-01 1.82368368e-01 4.83302474e-01 5.46866477e-01 -6.55564010e-01 -4.26453277e-02 -4.06146139e-01 6.24184310e-01 3.14232856e-01 1.14471197e+00 7.20282435e-01 8.66650343e-01 4.92340624e-01 8.47631633e-01 1.34056643e-01 9.98613000e-01 4.49036837e-01 -1.52883339e+00 4.34824318e-01 2.48902813e-01 1.07862420e-01 -1.27191114e+00 -7.48243153e-01 -6.06449544e-01 -1.01307786e+00 4.97803926e-01 2.95499470e-02 7.75865763e-02 -7.81044483e-01 2.04701400e+00 2.47174323e-01 1.88212574e-01 8.41935873e-02 8.29818308e-01 4.69689220e-01 5.37076354e-01 -2.88163543e-01 4.60852198e-02 9.51159120e-01 -5.00231802e-01 -8.74861032e-02 2.24615750e-03 7.22313046e-01 -5.81762791e-01 1.35007370e+00 9.69104469e-02 -1.33844388e+00 -5.80731213e-01 -1.25992870e+00 -3.42629582e-01 -4.82494503e-01 -1.86852038e-01 1.01421869e+00 2.96169937e-01 -1.24587822e+00 7.80493677e-01 -1.07249641e+00 -1.70147747e-01 3.96849126e-01 7.03071654e-01 -3.17081213e-01 1.93880409e-01 -7.84253001e-01 8.17043483e-01 -2.53943682e-01 -4.60858922e-03 -4.06439751e-01 -9.52202916e-01 -1.10297787e+00 2.56044697e-02 8.26957822e-02 -1.06972396e+00 1.20311081e+00 -5.20817518e-01 -1.38349712e+00 4.64491010e-01 -5.31313539e-01 -3.82813603e-01 2.54285127e-01 -1.52013063e-01 -1.68040410e-01 -9.01988614e-03 2.22347882e-02 1.02143073e+00 7.67636180e-01 -1.03365982e+00 -3.46625477e-01 -4.42290843e-01 -7.63990283e-02 4.94223773e-01 -1.83155984e-01 -4.14394259e-01 -5.27861953e-01 -8.63752723e-01 7.13149726e-01 -1.13278615e+00 -5.04492104e-01 3.10436755e-01 -9.55753848e-02 -1.35838524e-01 9.50610876e-01 -1.75062940e-01 6.52192771e-01 -2.26205087e+00 2.34689355e-01 3.09429944e-01 1.92468151e-01 1.96146503e-01 -2.20022053e-01 -1.48833513e-01 -2.37649366e-01 1.83440775e-01 -2.32720241e-01 -2.49365211e-01 3.82524990e-02 2.91814953e-01 -7.89287865e-01 6.54881954e-01 3.88531655e-01 9.61965263e-01 -4.95834887e-01 -4.97511439e-02 4.14932430e-01 6.86222911e-01 -9.67990994e-01 -3.61404479e-01 -1.19749710e-01 1.47401676e-01 -2.29955181e-01 9.26537633e-01 6.01869464e-01 -3.40518028e-01 -3.36995929e-01 -3.58378172e-01 -6.89347312e-02 4.88140993e-03 -1.49092519e+00 1.52310193e+00 -3.62649649e-01 6.54384375e-01 8.39622840e-02 -1.11232054e+00 8.92355025e-01 -8.08948725e-02 6.19665504e-01 -4.82684314e-01 1.57680362e-01 5.50278202e-02 -3.82900387e-01 -1.23684935e-01 7.73076713e-01 -6.31323159e-02 -2.71414280e-01 1.73425704e-01 -2.33021542e-01 -5.73417664e-01 -2.75191873e-01 1.19224787e-02 7.32957244e-01 3.71946096e-01 8.86615515e-02 -4.74720448e-01 2.76992530e-01 -3.16380858e-02 5.93302369e-01 6.53599322e-01 -1.87813818e-01 6.08968556e-01 7.04380199e-02 -7.44222939e-01 -1.29832196e+00 -1.35760176e+00 -3.89411062e-01 9.99690890e-01 5.64358979e-02 1.17692322e-01 -5.20311832e-01 -1.76323533e-01 3.80869091e-01 5.32120287e-01 -5.46705127e-01 -2.81052496e-02 -9.73249912e-01 -6.53913975e-01 7.33193278e-01 1.21741033e+00 4.22454685e-01 -5.29167473e-01 -4.08496112e-01 -4.69927269e-04 -4.71410602e-02 -1.04431021e+00 -4.83047217e-01 7.01161399e-02 -1.23698723e+00 -6.78181529e-01 -5.18876255e-01 -7.29345918e-01 6.92480266e-01 6.59152031e-01 8.47956657e-01 -2.81872094e-01 -8.04986134e-02 5.49079657e-01 2.75334716e-01 -4.78416055e-01 1.30041549e-02 6.07701652e-02 8.43191445e-01 -4.82715815e-01 2.66210377e-01 -8.51091683e-01 -4.36277509e-01 3.98158580e-01 -7.48197734e-01 -2.58347154e-01 4.14810210e-01 7.74179637e-01 9.25557613e-01 -3.46423119e-01 3.99244279e-01 -3.83563846e-01 3.83559942e-01 -1.20883435e-01 -7.73490965e-01 -2.86919475e-01 -7.31436908e-01 3.70008260e-01 7.46212482e-01 -5.59663832e-01 -5.90453327e-01 5.02183810e-02 -3.29799563e-01 -9.22662377e-01 -1.53202163e-02 2.93324322e-01 -1.85212120e-02 -5.60779035e-01 8.90497386e-01 6.00370802e-02 2.29899168e-01 -3.74914616e-01 7.26445258e-01 1.94801137e-01 1.01383364e+00 -6.38030827e-01 9.05334413e-01 8.47865701e-01 6.24020100e-01 -1.16204774e+00 -9.19012055e-02 -2.62182385e-01 -6.37356758e-01 1.54281124e-01 5.98737895e-01 -9.99822259e-01 -1.08470786e+00 2.54472882e-01 -1.08866942e+00 -2.30534941e-01 -3.50179493e-01 5.15594840e-01 -9.51471031e-01 4.38299268e-01 -5.93424559e-01 -5.96428156e-01 -3.40048522e-01 -1.38641357e+00 1.07317173e+00 -4.62200344e-02 -2.10046872e-01 -9.68863368e-01 -1.83336169e-01 -1.86067834e-01 5.10956705e-01 9.50828865e-02 1.18292558e+00 -2.77019978e-01 -6.41390383e-01 -7.80089796e-02 -3.14264417e-01 1.89189360e-01 -3.03281635e-01 -2.61657219e-02 -9.38986957e-01 -4.15446192e-01 -1.78452358e-01 -1.39066456e-02 7.60397732e-01 6.41451359e-01 1.43835795e+00 -2.42561400e-01 -4.11249965e-01 1.30068815e+00 1.27406049e+00 -2.32742727e-02 3.62330705e-01 3.26318592e-01 8.83604884e-01 2.76685119e-01 1.60732299e-01 2.04980552e-01 4.11771715e-01 7.05175996e-01 4.35083479e-01 -2.69788533e-01 3.69623899e-02 -9.36363563e-02 2.94020861e-01 9.77169991e-01 -4.11084861e-01 1.25711828e-01 -6.34360373e-01 4.88859773e-01 -1.78477836e+00 -9.73271072e-01 2.67355055e-01 2.15224600e+00 1.57287434e-01 8.82854462e-02 -1.82180759e-02 8.61577764e-02 3.18396121e-01 2.62009352e-01 -1.00863516e+00 -5.90883434e-01 -3.01745802e-01 3.25376362e-01 8.35794747e-01 8.32360268e-01 -1.19174409e+00 1.05748188e+00 7.42290545e+00 5.60107827e-01 -1.50559950e+00 -2.33372226e-01 2.80905902e-01 -3.35450202e-01 -5.43856800e-01 -3.46138686e-01 -8.59566629e-01 -2.26343811e-01 6.77205145e-01 1.31206021e-01 4.56640303e-01 1.33176482e+00 1.06071785e-01 7.21884906e-01 -1.08688545e+00 1.08925319e+00 1.57214209e-01 -1.84196556e+00 3.60021144e-01 1.56350762e-01 4.08880413e-01 4.13008481e-01 5.08705139e-01 3.19479108e-01 3.46035540e-01 -9.65567231e-01 5.54214358e-01 2.73605019e-01 1.07912004e+00 -8.54811728e-01 2.97422796e-01 7.76737630e-02 -1.35038805e+00 -1.37329295e-01 -7.97341049e-01 -1.02836832e-01 1.96733773e-01 1.05629958e-01 -5.80861628e-01 3.89804393e-01 8.48554730e-01 5.95309913e-01 -1.88228577e-01 4.72957999e-01 3.70187432e-01 1.53111070e-01 -5.49699128e-01 -3.32088545e-02 2.39240512e-01 -1.64380103e-01 8.83333564e-01 1.06802154e+00 4.36493695e-01 2.61924595e-01 -1.96916029e-01 8.60477507e-01 1.09946780e-01 -1.21782728e-01 -9.53338385e-01 3.88594061e-01 5.18785179e-01 7.58655548e-01 -5.08021176e-01 -2.12890014e-01 -2.91328639e-01 7.22979903e-01 3.41732919e-01 6.87279046e-01 -6.45285964e-01 -5.49545467e-01 1.29927516e+00 7.30278566e-02 6.86747968e-01 -7.62910724e-01 -7.22090185e-01 -1.19984150e+00 1.06895328e-01 -5.91163814e-01 5.94065376e-02 -8.66541862e-01 -1.00432444e+00 5.54137826e-01 1.32423207e-01 -1.39867258e+00 -5.78470647e-01 -1.09898114e+00 -2.48584807e-01 8.02090108e-01 -1.27015221e+00 -1.01126826e+00 1.61659941e-02 6.53850496e-01 4.51724499e-01 -2.60102749e-01 8.67177665e-01 1.00957558e-01 -3.18432301e-01 9.48202074e-01 1.30073726e-01 3.88346091e-02 3.33171517e-01 -9.55208361e-01 9.89973426e-01 8.86766136e-01 1.36422709e-01 9.86156344e-01 6.44649744e-01 -3.32004935e-01 -1.82286489e+00 -1.11890566e+00 5.07582724e-01 -7.12519050e-01 4.18480843e-01 -2.34052896e-01 -8.70817780e-01 9.92022514e-01 -5.28108001e-01 2.39317819e-01 3.62294197e-01 1.80041701e-01 -6.77390575e-01 -2.25485593e-01 -1.17268419e+00 1.07650554e+00 1.24676704e+00 -5.69865763e-01 -3.75563711e-01 5.14234118e-02 1.09773839e+00 -7.15785861e-01 -9.48930264e-01 8.32262516e-01 7.25405037e-01 -5.47349691e-01 1.63132536e+00 -7.75882721e-01 8.87393504e-02 -3.31522107e-01 -7.41477191e-01 -1.01590121e+00 -6.83221579e-01 -5.77251971e-01 -1.17041700e-01 5.06580114e-01 4.85999942e-01 -8.97538781e-01 7.81100571e-01 6.96865976e-01 -5.83164811e-01 -9.01255965e-01 -1.24373055e+00 -7.21815169e-01 5.91843486e-01 -9.27886188e-01 7.17271745e-01 1.01628292e+00 -1.94169283e-01 2.09658593e-02 -7.66117722e-02 5.57022631e-01 4.06685024e-01 -5.10206148e-02 9.24674869e-01 -9.34730291e-01 -3.86502653e-01 -8.76721799e-01 -6.53556705e-01 -1.66252482e+00 1.10547826e-01 -9.12417412e-01 -5.51488809e-02 -8.66381049e-01 -2.78491825e-01 -5.53534210e-01 -1.53139442e-01 2.91894436e-01 1.51034236e-01 4.60747153e-01 1.43333837e-01 3.36694688e-01 -9.92442891e-02 5.39013267e-01 9.49538767e-01 -5.23404479e-02 -2.21947551e-01 -2.19573993e-02 -7.42066562e-01 1.05634117e+00 4.86620098e-01 2.92161535e-02 -5.14313400e-01 -7.71880567e-01 9.24417228e-02 -4.67607006e-02 4.04525965e-01 -9.28756952e-01 1.24745490e-02 -3.93578708e-01 6.21641636e-01 -5.85119247e-01 6.76288486e-01 -4.63490963e-01 -2.11310148e-01 1.85734451e-01 -1.30467638e-01 6.04863822e-01 5.18368304e-01 5.45794129e-01 2.74661720e-01 3.87099117e-01 8.24732363e-01 -4.21740450e-02 -7.41252601e-01 5.15234172e-01 -3.20262790e-01 -2.70340979e-01 6.12083197e-01 -4.36936051e-01 -3.35023969e-01 -3.45856518e-01 -5.07048368e-01 -1.58334866e-01 6.11568391e-01 3.96054745e-01 7.79129684e-01 -1.48120928e+00 -3.41812611e-01 5.87169230e-01 -7.97288790e-02 3.59590590e-01 1.62371963e-01 4.28542376e-01 -6.73363149e-01 6.52915955e-01 -6.85927495e-02 -1.05992949e+00 -9.56785381e-01 6.45426929e-01 3.49083066e-01 2.90876001e-01 -8.07210207e-01 8.79086554e-01 1.48820326e-01 -7.38253891e-01 2.91115940e-01 -7.41096377e-01 2.68116295e-01 -6.27984941e-01 4.00445282e-01 5.41143239e-01 1.55436128e-01 -8.13434601e-01 -3.75821680e-01 1.15646935e+00 3.31945233e-02 -4.54056710e-01 1.22682846e+00 -6.71264604e-02 2.25917473e-01 3.01497996e-01 1.34636533e+00 -4.81666215e-02 -1.36847734e+00 -2.00390428e-01 -4.78441298e-01 -2.80352890e-01 -4.17834744e-02 -1.00372829e-01 -8.08104157e-01 1.04264784e+00 5.73536694e-01 -2.99897701e-01 8.84955585e-01 -4.34166975e-02 7.36727893e-01 9.61656928e-01 3.33632588e-01 -9.96877611e-01 -2.14159146e-01 7.08137333e-01 9.91741300e-01 -8.93172443e-01 9.27313417e-02 -3.20421487e-01 -3.79462928e-01 9.42389488e-01 5.92567146e-01 -4.19752002e-01 8.08164775e-01 1.56392410e-01 1.47534892e-01 -6.53347224e-02 -5.83129704e-01 2.21561670e-01 4.08425719e-01 7.11784780e-01 6.42806739e-02 -1.92711763e-02 1.60636380e-01 3.92291188e-01 -5.55303454e-01 -4.03501093e-01 2.15291515e-01 7.67230511e-01 -4.75982934e-01 -7.08414435e-01 -3.36646110e-01 1.56191885e-01 -8.01139176e-02 -3.97557653e-02 1.13911197e-01 1.03705156e+00 -1.38046682e-01 5.25308669e-01 4.39421564e-01 -6.48295701e-01 4.04070556e-01 -4.36304621e-02 4.20955449e-01 -1.59456909e-01 -6.68995604e-02 1.96084589e-01 -2.34927043e-01 -8.15031469e-01 -7.21943751e-02 -7.73283601e-01 -1.41644776e+00 -6.33253396e-01 2.42374595e-02 -2.88072854e-01 8.04278851e-01 9.01024520e-01 8.72649074e-01 2.90369481e-01 5.89164734e-01 -1.29822457e+00 -8.33910823e-01 -6.63350761e-01 -2.20781922e-01 3.74810368e-01 4.88418132e-01 -8.56408238e-01 -5.15606165e-01 -1.17774606e-01]
[8.004807472229004, -3.591398000717163]
88cb6766-307e-441d-b9a2-5fd8a8ad2b78
heterogeneous-neuronal-and-synaptic-dynamics
2302.11618
null
https://arxiv.org/abs/2302.11618v1
https://arxiv.org/pdf/2302.11618v1.pdf
Heterogeneous Neuronal and Synaptic Dynamics for Spike-Efficient Unsupervised Learning: Theory and Design Principles
This paper shows that the heterogeneity in neuronal and synaptic dynamics reduces the spiking activity of a Recurrent Spiking Neural Network (RSNN) while improving prediction performance, enabling spike-efficient (unsupervised) learning. We analytically show that the diversity in neurons' integration/relaxation dynamics improves an RSNN's ability to learn more distinct input patterns (higher memory capacity), leading to improved classification and prediction performance. We further prove that heterogeneous Spike-Timing-Dependent-Plasticity (STDP) dynamics of synapses reduce spiking activity but preserve memory capacity. The analytical results motivate Heterogeneous RSNN design using Bayesian optimization to determine heterogeneity in neurons and synapses to improve $\mathcal{E}$, defined as the ratio of spiking activity and memory capacity. The empirical results on time series classification and prediction tasks show that optimized HRSNN increases performance and reduces spiking activity compared to a homogeneous RSNN.
['Saibal Mukhopadhyay', 'Biswadeep Chakraborty']
2023-02-22
null
null
null
null
['time-series-classification']
['time-series']
[ 3.99261981e-01 -2.42988631e-01 -1.67546347e-02 3.12246084e-02 -1.44001961e-01 -4.28751469e-01 1.65623143e-01 -2.76569307e-01 -5.91881752e-01 1.18833518e+00 -1.29507840e-01 9.25444886e-02 -3.69445920e-01 -6.42251790e-01 -7.93502867e-01 -1.41173172e+00 -2.14759871e-01 -2.50930130e-03 6.37909710e-01 6.71408847e-02 6.12342596e-01 7.13817418e-01 -1.84361374e+00 2.55264252e-01 6.30847692e-01 1.17813277e+00 5.24106741e-01 3.85620385e-01 5.25591485e-02 6.47122562e-01 -5.66068232e-01 3.53820801e-01 3.15346420e-01 -4.52441990e-01 1.56846330e-01 -3.87607008e-01 -3.34207833e-01 5.70996940e-01 -5.08745909e-01 7.60291100e-01 6.17755890e-01 -6.80175424e-02 8.93418550e-01 -1.11028206e+00 -3.26477885e-01 8.46865416e-01 -1.49223372e-01 7.03029454e-01 -8.28220785e-01 2.55956650e-01 5.42038202e-01 -5.05333543e-01 3.86754423e-01 5.94123900e-01 9.20398116e-01 6.16795480e-01 -1.87872398e+00 -1.15407741e+00 -9.92881134e-02 -2.85382956e-01 -1.66515839e+00 -3.55759650e-01 3.59740525e-01 -4.58259225e-01 1.37848794e+00 1.78755689e-02 1.04479885e+00 8.21648180e-01 8.06430459e-01 3.59184444e-01 1.25237417e+00 9.75807831e-02 8.19217503e-01 -4.53088313e-01 4.55532193e-01 -6.59765862e-03 6.19489431e-01 2.92210400e-01 -9.15110409e-01 1.47880286e-01 1.28702652e+00 1.54061928e-01 -1.71647221e-01 3.02924830e-02 -9.48561668e-01 2.59003431e-01 1.61578953e-01 2.69335598e-01 -4.09998626e-01 4.91422385e-01 1.28117859e-01 4.18930650e-01 -1.42315760e-01 7.04228163e-01 -4.38141465e-01 -2.11523622e-01 -1.06918561e+00 3.58946025e-01 8.03777516e-01 6.53752506e-01 7.89532423e-01 6.38803780e-01 -2.89544731e-01 9.77302909e-01 4.16473922e-05 1.03092897e+00 6.18587315e-01 -1.36847627e+00 -3.13230269e-02 6.14602625e-01 -2.62897700e-01 -5.56706011e-01 -5.61889589e-01 -7.91379929e-01 -1.06099653e+00 3.47026169e-01 3.09482545e-01 -1.00737356e-01 -8.79589021e-01 1.84365356e+00 -8.64643157e-01 3.30375940e-01 1.40376434e-01 5.59141159e-01 1.45345762e-01 7.35819221e-01 5.88259958e-02 -7.90606081e-01 5.35786211e-01 -1.74411148e-01 -6.13973260e-01 -1.87821731e-01 4.23313648e-01 -1.31847084e-01 5.21939397e-01 2.03093916e-01 -1.21482801e+00 -2.01559648e-01 -9.24436569e-01 6.47048235e-01 -1.46146059e-01 -2.91212380e-01 3.24546069e-01 4.42878455e-01 -1.01323652e+00 9.97545063e-01 -1.08932757e+00 -7.74986148e-02 7.77914822e-01 7.89162457e-01 1.38942957e-01 5.35363138e-01 -7.81053901e-01 6.74010336e-01 2.87982851e-01 -3.70909721e-01 -6.56328499e-01 -8.78519237e-01 -3.57500464e-02 2.33941525e-03 -5.04170299e-01 -5.08428156e-01 8.55776966e-01 -7.60956585e-01 -1.74611461e+00 6.53177083e-01 -3.71234298e-01 -1.03893864e+00 -2.95155048e-01 4.63555783e-01 4.14086273e-03 -1.74653590e-01 -1.75955579e-01 8.09358656e-01 4.15195972e-01 -1.04428089e+00 -3.16964537e-01 -4.94651765e-01 -9.39698458e-01 -2.06367075e-01 -1.00172885e-01 -2.42795378e-01 1.40771732e-01 -8.17028284e-01 5.32444358e-01 -1.10938537e+00 -2.54518539e-01 -2.77178019e-01 -2.96511371e-02 1.04999237e-01 3.86402160e-01 -7.64462054e-02 1.13925946e+00 -2.02774143e+00 2.08726272e-01 5.32552421e-01 1.04564622e-01 8.99743065e-02 -1.51183277e-01 2.87083894e-01 1.35951400e-01 3.46760079e-02 -5.13322055e-01 -3.19554843e-02 -4.53380764e-01 6.45746171e-01 -4.84342307e-01 3.66972655e-01 3.85131240e-01 9.32295978e-01 -4.26617354e-01 4.90925461e-02 -2.71598011e-01 5.26489079e-01 -3.37412000e-01 -2.37289339e-01 -3.24457549e-02 5.55770934e-01 -4.93919477e-02 6.25680983e-01 5.31443775e-01 -3.73528600e-01 -1.50054544e-01 2.34588191e-01 -7.29070425e-01 2.83081800e-01 -9.17361200e-01 9.18833494e-01 -1.21836334e-01 7.79350877e-01 -5.14935017e-01 -1.13262737e+00 1.62245059e+00 -7.38275573e-02 4.93653744e-01 -1.31369364e+00 1.83677286e-01 7.10541725e-01 5.76666772e-01 2.33706132e-01 -2.56716877e-01 9.17128399e-02 1.96992695e-01 6.41623914e-01 8.37624595e-02 8.24932568e-03 3.10388565e-01 -2.44304046e-01 1.35661125e+00 -2.92371780e-01 -3.27523977e-01 -1.02385700e+00 -9.34013203e-02 -2.69550145e-01 9.18371916e-01 9.81846869e-01 -7.78375790e-02 3.16954583e-01 5.17438293e-01 -8.24065581e-02 -1.39132762e+00 -1.65531421e+00 -5.07015586e-01 9.27972078e-01 2.32231140e-01 1.84870228e-01 -5.64326704e-01 8.03270102e-01 1.35746703e-01 4.43148881e-01 -5.57887673e-01 -4.04796153e-01 -5.88363469e-01 -1.14414167e+00 8.36236537e-01 7.56169379e-01 3.90659928e-01 -1.32147324e+00 -9.32502806e-01 3.63102645e-01 2.83467442e-01 -6.29112542e-01 3.63813378e-02 1.21730125e+00 -1.49632645e+00 -3.49503309e-01 -7.31590807e-01 -6.87159717e-01 4.90286827e-01 -1.35068715e-01 5.75918257e-01 -3.94198924e-01 -4.32867974e-01 -1.77932739e-01 -1.42480363e-03 -6.06412172e-01 -1.83716193e-02 2.05737963e-01 3.48696142e-01 -4.98132706e-01 4.45011705e-01 -1.37365520e+00 -4.71780777e-01 4.25110310e-01 -6.77601099e-01 -2.62101069e-02 4.36807185e-01 8.13713253e-01 1.39000773e+00 -2.17669100e-01 9.06488836e-01 -3.48988652e-01 3.96852195e-01 -2.60939538e-01 -7.23678946e-01 -1.05864197e-01 -9.10874128e-01 5.90954483e-01 4.36741561e-01 -7.60196865e-01 -4.54853535e-01 -1.65649820e-02 3.30764800e-01 -1.66649520e-01 2.93922246e-01 1.52809516e-01 5.03922224e-01 -3.83337021e-01 8.51574302e-01 9.05269444e-01 3.52245033e-01 -1.00336321e-01 -5.98478317e-01 6.18656315e-02 3.32777292e-01 -3.72582942e-01 3.54098260e-01 4.02887911e-01 2.45073378e-01 -8.12150955e-01 -1.20328881e-01 -1.74337327e-02 -3.74193102e-01 -1.49389148e-01 3.26269597e-01 -9.22801614e-01 -1.08017123e+00 8.48869860e-01 -9.28262472e-01 -8.56901705e-01 -4.34805095e-01 5.89319408e-01 -1.11731231e+00 -4.92377728e-01 -9.46597815e-01 -1.14205408e+00 -3.06615800e-01 -8.79028320e-01 4.40266699e-01 5.64791620e-01 -1.32572010e-01 -5.28482378e-01 3.05264205e-01 -4.11316574e-01 7.23385572e-01 -4.37233411e-02 8.46379459e-01 -4.37024206e-01 -8.85467470e-01 2.68787891e-01 -2.59321898e-01 1.63057923e-01 -2.95534402e-01 2.37740263e-01 -9.59086657e-01 6.50808811e-02 -1.41699061e-01 -1.97280627e-02 1.32512212e+00 1.02459908e+00 8.92375410e-01 -1.13755316e-01 -5.06385028e-01 7.25887775e-01 1.49869716e+00 4.75520223e-01 1.06862247e+00 2.48303711e-01 1.10723905e-01 5.31296372e-01 -2.62635350e-01 6.35706306e-01 -2.77040154e-01 3.32009017e-01 2.19727337e-01 5.07671773e-01 -6.55904487e-02 9.44801643e-02 6.03461683e-01 1.30698776e+00 -4.37082559e-01 6.96482956e-02 -1.01355660e+00 4.72927272e-01 -1.95267856e+00 -1.21835518e+00 -8.98812115e-02 2.41827464e+00 1.08012915e+00 1.63981289e-01 1.99915409e-01 2.58480638e-01 7.94322789e-01 -4.62608904e-01 -1.11610043e+00 -3.64261895e-01 -1.08652258e+00 5.54040015e-01 1.06740975e+00 2.05935955e-01 -2.22039476e-01 5.93703508e-01 7.34333229e+00 7.50993013e-01 -1.32514107e+00 -2.25402132e-01 5.43090522e-01 -5.17162144e-01 -3.20749432e-01 -3.65768880e-01 -1.16503239e+00 8.45387220e-01 1.44125926e+00 -4.61194128e-01 7.78299153e-01 3.22083503e-01 3.57157052e-01 -8.53811353e-02 -7.57668078e-01 1.15116549e+00 -4.72444266e-01 -2.02594852e+00 -1.59344286e-01 3.00763398e-01 9.25025523e-01 6.49277687e-01 2.30847105e-01 1.79655656e-01 1.73569992e-01 -1.17197013e+00 5.21333218e-01 1.12991476e+00 2.75176644e-01 -8.62573624e-01 5.88016689e-01 3.68265510e-01 -1.11736369e+00 -4.09341842e-01 -5.76319933e-01 -3.23299229e-01 -1.80127546e-01 7.46202886e-01 -2.62293935e-01 -5.23704290e-01 8.86107087e-01 8.05435181e-01 -3.30172569e-01 1.49484396e+00 4.74389344e-01 6.18622243e-01 -6.98940873e-01 -4.97563720e-01 -2.78228581e-01 -1.31211385e-01 5.02872050e-01 1.10039890e+00 4.69865113e-01 2.17457533e-01 -4.40411866e-01 1.36202466e+00 1.54581927e-02 -2.42908478e-01 -5.38166463e-01 -3.21706772e-01 1.05275345e+00 5.45937002e-01 -1.11519957e+00 2.14523092e-01 2.90950119e-01 4.59353447e-01 1.44728497e-01 5.19926965e-01 -3.09921831e-01 -3.73460412e-01 8.53456855e-01 2.61691093e-01 3.10390949e-01 -3.23654920e-01 -1.22314000e+00 -6.74178064e-01 -2.32284546e-01 -1.36030480e-01 -3.34447622e-01 -5.78749120e-01 -1.22704566e+00 3.50314617e-01 -4.24598962e-01 -1.01617479e+00 -7.03875497e-02 -6.62198961e-01 -5.37218034e-01 9.44392204e-01 -1.16611898e+00 -2.33481795e-01 2.21085027e-01 4.91342038e-01 1.82794914e-01 -2.93366045e-01 7.51683772e-01 3.77787240e-02 -6.99954748e-01 5.70065498e-01 7.35642433e-01 -1.36265531e-01 5.00696786e-02 -6.83279574e-01 1.47679880e-01 5.88547170e-01 -2.37067506e-01 7.31356859e-01 6.00453913e-01 -6.77904665e-01 -1.29004443e+00 -1.08932853e+00 6.67755544e-01 -6.62464797e-02 7.20709085e-01 -3.55318755e-01 -1.10412633e+00 5.76791130e-02 -3.48062038e-01 -1.09598882e-01 9.36914265e-01 -2.17052922e-01 -4.51719791e-01 -3.70168328e-01 -9.87118661e-01 9.90725279e-01 1.14286840e+00 -6.95870399e-01 -3.25811177e-01 -4.12970155e-01 4.34934795e-01 4.38059986e-01 -1.03223562e+00 6.63498342e-01 1.04532039e+00 -8.36653292e-01 6.46007299e-01 -7.25675225e-02 8.67866203e-02 -2.49886140e-01 -4.47695911e-01 -9.71666515e-01 -4.31270242e-01 -5.29460132e-01 -1.77549526e-01 6.80725932e-01 7.32720137e-01 -1.04261005e+00 1.01096845e+00 3.46567988e-01 -1.90547228e-01 -7.71934092e-01 -1.08044589e+00 -1.24878633e+00 4.14382845e-01 -8.27036798e-02 -2.18737215e-01 3.02984357e-01 1.02535032e-01 -1.91422239e-01 4.77276027e-01 -3.44573446e-02 7.03477323e-01 -2.35235263e-02 5.86752035e-03 -1.52091217e+00 -1.46487772e-01 -9.31043446e-01 -8.04725587e-01 -6.14383876e-01 2.83809919e-02 -8.23621571e-01 3.39852720e-01 -1.05593979e+00 2.54465312e-01 -5.65340042e-01 -8.76212358e-01 4.17665124e-01 3.33977610e-01 5.37006438e-01 9.53452587e-02 7.02302694e-01 -2.69830585e-01 2.41100132e-01 8.78630638e-01 2.73784429e-01 -4.25104022e-01 9.94660109e-02 -1.49508432e-01 2.89041042e-01 1.02962196e+00 -8.29810560e-01 -3.73944402e-01 -1.45644680e-01 3.94138247e-01 -4.41496745e-02 2.81133950e-01 -1.50509596e+00 5.51406205e-01 -1.33378327e-01 4.88912135e-01 -4.39197898e-01 2.02732518e-01 -1.79529250e-01 3.06943983e-01 9.16488826e-01 -6.46072567e-01 -8.55037645e-02 5.02203166e-01 5.23498952e-01 4.78718653e-02 4.82413769e-02 1.11892080e+00 1.28696680e-01 -2.28438482e-01 2.10080162e-01 -1.24030828e+00 -1.16584031e-02 8.41281891e-01 -8.00156832e-01 -5.18247545e-01 1.10188082e-01 -8.10314775e-01 -1.37214601e-01 4.80518699e-01 -8.44815820e-02 5.40220797e-01 -1.06809652e+00 -4.01097298e-01 3.83818120e-01 -6.21735938e-02 -5.24333239e-01 1.30546138e-01 1.04017937e+00 -3.59339297e-01 4.01942164e-01 -1.01236200e+00 -9.24553931e-01 -6.65047467e-01 -1.65903494e-01 5.62376738e-01 9.72962826e-02 -1.28838882e-01 1.17196989e+00 -1.31219685e-01 8.43005851e-02 3.17623436e-01 -2.55332917e-01 -4.78474918e-04 -1.23711675e-01 4.64951068e-01 5.35068572e-01 -5.55168167e-02 -9.78273377e-02 -2.61887640e-01 7.06461608e-01 4.50757891e-02 -2.17023119e-01 1.31007016e+00 -4.22768556e-02 -2.63792872e-01 1.20600235e+00 8.81386518e-01 -6.52734995e-01 -1.76147318e+00 -8.56252760e-02 2.73378283e-01 1.30088747e-01 -5.01310490e-02 -6.22522414e-01 -9.07065332e-01 9.44908857e-01 9.42517281e-01 1.03931218e-01 9.66769159e-01 -2.63758868e-01 6.59907758e-01 7.91075468e-01 6.80502653e-01 -1.27425599e+00 1.87006339e-01 8.93733978e-01 4.57467943e-01 -5.38522959e-01 -5.23502231e-01 -7.27269128e-02 -4.96016413e-01 1.20842612e+00 4.89402860e-01 -7.57967353e-01 9.12550211e-01 1.11497581e+00 -3.44292998e-01 2.81715959e-01 -1.11559176e+00 -1.89852282e-01 -2.77439386e-01 9.57173944e-01 3.24966639e-01 1.36334434e-01 -1.95772633e-01 8.26888621e-01 -5.05206408e-03 2.54561394e-01 3.88990849e-01 8.09238970e-01 -1.05111158e+00 -8.14647138e-01 9.52400640e-02 8.86025488e-01 -2.52478987e-01 -3.86825472e-01 -1.07670695e-01 2.37445489e-01 -1.43975941e-02 4.84196961e-01 7.46658921e-01 -4.11584496e-01 3.11468225e-02 2.35763416e-01 7.04506159e-01 -5.46636522e-01 -5.78074872e-01 1.29751384e-01 -4.56432819e-01 -3.39825600e-01 -2.63017356e-01 -6.40974104e-01 -1.93339121e+00 -3.61307025e-01 -1.57319725e-01 -1.40353829e-01 7.35986352e-01 9.47653174e-01 6.60826862e-01 5.85585058e-01 5.73164821e-01 -8.20232451e-01 -3.03628623e-01 -3.40912938e-01 -1.03441238e+00 -2.55086303e-01 5.16630858e-02 -6.62657738e-01 -5.52271307e-01 1.04112893e-01]
[8.10244083404541, 2.6119487285614014]
3064b594-489b-403c-93f8-28bc83f14a92
measuring-the-privacy-leakage-via-graph
2302.04373
null
https://arxiv.org/abs/2302.04373v1
https://arxiv.org/pdf/2302.04373v1.pdf
Measuring the Privacy Leakage via Graph Reconstruction Attacks on Simplicial Neural Networks (Student Abstract)
In this paper, we measure the privacy leakage via studying whether graph representations can be inverted to recover the graph used to generate them via graph reconstruction attack (GRA). We propose a GRA that recovers a graph's adjacency matrix from the representations via a graph decoder that minimizes the reconstruction loss between the partial graph and the reconstructed graph. We study three types of representations that are trained on the graph, i.e., representations output from graph convolutional network (GCN), graph attention network (GAT), and our proposed simplicial neural network (SNN) via a higher-order combinatorial Laplacian. Unlike the first two types of representations that only encode pairwise relationships, the third type of representation, i.e., SNN outputs, encodes higher-order interactions (e.g., homological features) between nodes. We find that the SNN outputs reveal the lowest privacy-preserving ability to defend the GRA, followed by those of GATs and GCNs, which indicates the importance of building more private representations with higher-order node information that could defend the potential threats, such as GRAs.
['Victor S. Sheng', 'Keyi Lu', 'Kun Zhang', 'Huixin Zhan']
2023-02-08
null
null
null
null
['graph-reconstruction']
['graphs']
[ 4.84441906e-01 8.82699251e-01 9.10854563e-02 6.07651286e-03 -4.12727058e-01 -1.14662492e+00 4.54676062e-01 1.40960500e-01 1.70891300e-01 6.63810492e-01 2.32642964e-01 -7.70168841e-01 2.57144906e-02 -1.35872602e+00 -1.27366996e+00 -7.53959835e-01 -3.42530191e-01 -2.92488723e-04 -1.44561604e-01 -3.69215548e-01 2.86911905e-01 6.11281753e-01 -1.02984226e+00 1.33539781e-01 8.28036249e-01 6.88459694e-01 -2.99693972e-01 4.56597805e-01 2.20009789e-01 5.87902725e-01 -3.41339141e-01 -8.38801324e-01 6.19990230e-01 -4.28243548e-01 -6.10954583e-01 -3.62418085e-01 2.81303674e-01 -2.75934875e-01 -1.11447322e+00 1.53742456e+00 1.18236318e-01 -1.65529072e-01 7.20432222e-01 -1.56604671e+00 -1.25039935e+00 6.84564054e-01 -5.41567266e-01 -6.63446262e-02 4.35930133e-01 3.49468172e-01 1.16531694e+00 -3.18853766e-01 7.00098991e-01 1.37822151e+00 5.73612869e-01 5.10607958e-01 -1.44705462e+00 -1.01464438e+00 1.02009904e-02 -9.64683518e-02 -1.50828362e+00 -1.21961556e-01 9.23556864e-01 -2.96023607e-01 6.01257682e-01 5.28823376e-01 4.14358884e-01 1.28314614e+00 3.37707728e-01 3.25145543e-01 8.64087462e-01 5.30541390e-02 5.90619743e-02 -6.03741966e-02 2.16504246e-01 1.03757882e+00 1.16480243e+00 1.18972875e-01 2.03212574e-02 -5.05963743e-01 8.20696056e-01 1.56329781e-01 -7.41493285e-01 -6.41118348e-01 -7.20245957e-01 1.05781901e+00 9.64699864e-01 -4.93960530e-02 -1.98882043e-01 2.63464868e-01 3.90812248e-01 3.87082219e-01 7.69712850e-02 6.44938886e-01 -1.03438228e-01 7.28530109e-01 -1.95010856e-01 -2.33011037e-01 1.05610943e+00 9.53849673e-01 1.09752631e+00 2.37908531e-02 -7.82072693e-02 7.87453144e-04 1.82894319e-01 1.78851247e-01 1.03742249e-01 -3.27017695e-01 7.03616142e-01 1.00134742e+00 -4.53024358e-01 -1.67899477e+00 -1.42049268e-01 -3.02615166e-01 -1.37690675e+00 -1.05260290e-01 2.66790062e-01 -3.16971727e-02 -7.21179903e-01 2.09721279e+00 7.11102188e-02 1.28102481e-01 3.91937762e-01 7.84451067e-01 9.25038576e-01 5.40011644e-01 -3.38672757e-01 2.42760897e-01 1.18108106e+00 -5.36125302e-01 -3.47409666e-01 -1.26364633e-01 7.34726369e-01 1.02449052e-01 7.81360388e-01 -9.83161554e-02 -8.09388161e-01 -9.63933617e-02 -1.26493382e+00 -1.19770370e-01 -8.02135825e-01 -2.95497000e-01 7.26989090e-01 7.20211983e-01 -1.26840281e+00 7.16620982e-01 -4.15343583e-01 -3.68921429e-01 5.50232410e-01 4.39383805e-01 -8.91295493e-01 -5.06058969e-02 -1.41483176e+00 3.49375010e-01 5.53371906e-01 7.86236003e-02 -1.21826744e+00 -3.64220977e-01 -1.11143136e+00 5.07603765e-01 3.97896320e-01 -5.08815765e-01 1.31411880e-01 -8.21559668e-01 -1.11396706e+00 9.53345418e-01 2.76767671e-01 -6.68625474e-01 6.13501668e-02 3.59281033e-01 -2.46398821e-01 2.69489855e-01 -7.22749531e-02 4.07936990e-01 8.39782238e-01 -1.23203886e+00 2.00829372e-01 -5.59459567e-01 4.86389637e-01 -1.27863482e-01 -2.54156560e-01 -4.51947659e-01 -1.22694805e-01 -5.03646970e-01 1.93718344e-01 -1.33328915e+00 -2.07308233e-01 1.19361490e-01 -1.20175874e+00 1.34848222e-01 7.87391901e-01 -9.57448065e-01 1.15087783e+00 -2.25734782e+00 3.84895623e-01 6.23098552e-01 7.58056521e-01 2.82958895e-01 -4.17207211e-01 8.03430200e-01 -4.27343398e-01 8.12823355e-01 -4.67418998e-01 2.23659426e-01 -4.88642640e-02 1.19927309e-01 -5.07036269e-01 8.50432754e-01 3.02938432e-01 1.25586927e+00 -6.60107970e-01 2.19692588e-01 -1.78035095e-01 4.62378621e-01 -7.66841829e-01 2.28509933e-01 -2.53162593e-01 5.05406857e-01 -5.58875918e-01 3.84705603e-01 1.18466961e+00 -6.93946183e-01 6.49218798e-01 -2.60752261e-01 4.01815891e-01 4.26201373e-01 -6.81493104e-01 1.29108393e+00 -3.62815447e-02 3.90784144e-01 3.40571702e-01 -1.02435505e+00 1.13293827e+00 -6.01004623e-02 -4.16364893e-02 -4.68828589e-01 -4.36127037e-02 -9.41682085e-02 9.63030159e-02 2.05952488e-02 2.62057722e-01 4.46007609e-01 -4.56050038e-01 6.87877178e-01 -1.81151435e-01 3.70012492e-01 -3.74899298e-01 8.91370595e-01 1.55545676e+00 -3.18518937e-01 3.84681106e-01 -3.48674476e-01 5.96090019e-01 -5.25201797e-01 4.40082908e-01 6.88323557e-01 1.13543831e-02 4.74195033e-01 1.29846621e+00 -4.47467178e-01 -8.68422687e-01 -1.12189305e+00 4.30619985e-01 6.42681897e-01 4.13182110e-01 -6.41380608e-01 -7.26667762e-01 -9.45123315e-01 2.73443818e-01 6.05365396e-01 -7.32370734e-01 -9.12629128e-01 -4.07874495e-01 -5.66303909e-01 9.34008360e-01 -4.51097731e-03 6.18484318e-01 -8.83625269e-01 -5.26925661e-02 -2.96985269e-01 -1.68160677e-01 -7.85563648e-01 -7.01366901e-01 -1.88626572e-02 -5.89968324e-01 -1.50935805e+00 -1.21647254e-01 -6.58333540e-01 1.21145797e+00 4.11808312e-01 8.11576486e-01 4.58384007e-01 8.26799944e-02 3.62271488e-01 -2.82114297e-01 1.35471821e-01 -3.35108429e-01 3.16344053e-01 -2.95970470e-01 2.93566018e-01 -1.87688526e-02 -9.20302153e-01 -4.18493450e-01 5.40678799e-02 -1.24963593e+00 9.08341780e-02 6.85290635e-01 5.86128175e-01 4.14220214e-01 1.20617829e-01 3.26923579e-01 -1.23621774e+00 8.22036386e-01 -7.45120466e-01 -8.24718952e-01 3.26799512e-01 -3.29863131e-01 4.59479362e-01 1.05515432e+00 -2.41273776e-01 -3.31686258e-01 -2.88145356e-02 1.71133250e-01 -5.47291338e-01 1.93656713e-01 3.77491117e-01 -6.89096391e-01 -5.86538315e-01 4.94996339e-01 3.52744877e-01 1.98327675e-01 -3.14837515e-01 4.61033165e-01 1.28787622e-01 4.35354769e-01 -2.93866575e-01 1.12723231e+00 3.98426384e-01 4.80051607e-01 -5.71058095e-01 -4.22643214e-01 2.57772118e-01 -2.85786331e-01 3.59688938e-01 9.05654907e-01 -6.00442588e-01 -1.08947575e+00 2.86578834e-01 -1.26547754e+00 8.80682915e-02 6.22398593e-03 -1.19331837e-01 -2.50069380e-01 8.12724948e-01 -7.02438354e-01 -7.34540880e-01 -5.59432209e-01 -1.18110788e+00 1.07756293e+00 -4.46815602e-02 2.94610947e-01 -8.62102747e-01 -1.37392506e-01 4.54488061e-02 2.28956118e-01 9.08138573e-01 1.42554271e+00 -9.34595525e-01 -1.16377735e+00 -2.96105146e-01 -6.39799654e-01 1.37981445e-01 1.08869605e-01 -3.78435612e-01 -6.78666174e-01 -8.53966296e-01 -1.48823619e-01 -1.98328987e-01 9.81689334e-01 -4.35954854e-02 1.45183122e+00 -1.19932866e+00 -3.22543144e-01 1.27705705e+00 1.51856256e+00 -1.79371592e-02 1.21534288e+00 -1.03603415e-01 1.15820420e+00 3.59793484e-01 -4.55172926e-01 -3.27665992e-02 3.64460588e-01 1.76677078e-01 9.77388501e-01 4.58578616e-02 2.09971920e-01 -9.22210693e-01 5.22736847e-01 6.47320569e-01 1.58237100e-01 -6.09349787e-01 -5.48069298e-01 -2.83709690e-02 -1.66065896e+00 -6.68167889e-01 -1.47165105e-01 2.26873040e+00 2.93665230e-01 -9.14637297e-02 -2.42725819e-01 -2.90190995e-01 1.04640257e+00 5.75624168e-01 -8.02886009e-01 -4.86508518e-01 -2.72069156e-01 2.04320103e-01 9.95402038e-01 4.90605712e-01 -9.16019142e-01 1.00038707e+00 5.46576929e+00 4.44352657e-01 -6.15297019e-01 -2.02026352e-01 6.87031031e-01 4.12786990e-01 -8.72846484e-01 4.02014703e-01 -2.90966868e-01 5.62322199e-01 9.80042994e-01 -2.92818546e-01 1.16700959e+00 5.57408154e-01 -4.79766041e-01 6.20514333e-01 -1.04733634e+00 7.40977526e-01 1.17887869e-01 -1.51333201e+00 6.25748694e-01 7.50100613e-01 3.49672318e-01 -3.33784491e-01 1.83289960e-01 2.88617492e-01 7.93065429e-01 -1.38196826e+00 2.02549100e-01 6.27113938e-01 1.10204089e+00 -1.01354420e+00 3.83580297e-01 3.32544178e-01 -1.24278343e+00 -6.24377988e-02 -6.32560074e-01 2.04836801e-01 -3.58438581e-01 3.31039369e-01 -6.93955123e-01 9.84640002e-01 3.15726459e-01 7.31503606e-01 -7.03626454e-01 3.67248148e-01 -4.91864920e-01 5.51160395e-01 -6.25398159e-02 1.33401185e-01 2.20965236e-01 -8.65958929e-01 8.00574660e-01 6.73902035e-01 2.64577299e-01 2.29357794e-01 1.46298856e-01 1.33769119e+00 -7.18563378e-01 -2.91078955e-01 -1.35510528e+00 -5.67899227e-01 5.04838943e-01 1.21980309e+00 -5.00724971e-01 -1.86535413e-03 -6.83336109e-02 1.22099268e+00 9.28806961e-01 4.72798526e-01 -6.48691595e-01 -4.86113220e-01 8.54729533e-01 1.92532808e-01 2.28740573e-01 -2.13452041e-01 -2.39754710e-02 -1.28015864e+00 -5.20441271e-02 -9.31050062e-01 6.13350034e-01 -7.19071031e-01 -1.48075819e+00 5.47152102e-01 -3.82251322e-01 -9.02918279e-01 1.16322719e-01 -4.92391676e-01 -7.97061741e-01 9.55375314e-01 -1.18579924e+00 -9.25858498e-01 -1.21016182e-01 7.52416193e-01 -5.28511405e-01 -9.67874154e-02 9.18044686e-01 -8.19529872e-03 -7.09521770e-01 9.69867766e-01 -5.20748980e-02 4.82789576e-01 -4.47492227e-02 -9.04842257e-01 8.80311966e-01 8.70701790e-01 2.83970647e-02 9.07538056e-01 1.83416009e-01 -9.52225506e-01 -2.14589405e+00 -1.46451318e+00 4.74250525e-01 -1.63172215e-01 6.20412469e-01 -8.10275495e-01 -1.08703613e+00 1.18474340e+00 -6.70384616e-02 1.06793180e-01 4.72357690e-01 -4.10059273e-01 -9.98558462e-01 7.49072507e-02 -1.64648807e+00 8.36230874e-01 1.52711248e+00 -1.04921103e+00 -4.12627831e-02 4.08712745e-01 1.36160481e+00 -9.66036171e-02 -5.35365701e-01 2.38522470e-01 3.68804783e-01 -8.86970103e-01 1.06165671e+00 -8.76255155e-01 3.08221877e-01 -1.62709951e-01 -3.16244841e-01 -1.19207251e+00 -6.02775037e-01 -9.53660131e-01 -2.21748129e-01 9.59140360e-01 4.64162380e-01 -1.41820633e+00 8.85154188e-01 4.69559759e-01 1.73523769e-01 -3.24495852e-01 -9.69690621e-01 -5.81150591e-01 6.16019145e-02 3.09015632e-01 9.89145279e-01 1.19574976e+00 -3.23595703e-01 4.68291193e-01 -6.18155122e-01 7.75530219e-01 6.98699653e-01 1.79468930e-01 8.44869256e-01 -1.29429042e+00 -4.02909331e-03 -2.24580824e-01 -8.22000682e-01 -8.45476329e-01 4.92160916e-01 -1.75376785e+00 -5.75665951e-01 -1.35623276e+00 2.14633718e-01 -1.91234611e-02 -2.89882213e-01 4.36461210e-01 1.32040784e-01 5.66941909e-02 1.33958027e-01 6.38820231e-02 -3.59427005e-01 6.11722708e-01 1.30920744e+00 -2.69746065e-01 -3.61692645e-02 -2.82318264e-01 -1.52961802e+00 3.72833818e-01 8.81818056e-01 -6.31158292e-01 -4.79153514e-01 -1.54006809e-01 3.07263315e-01 1.83271796e-01 7.04507113e-01 -6.19657516e-01 2.02253759e-01 1.04710355e-01 1.83383659e-01 -3.30853939e-01 1.73217371e-01 -8.35223436e-01 6.62301302e-01 5.69472969e-01 -4.39733595e-01 1.79140046e-01 -7.76220188e-02 1.03424895e+00 1.69625655e-01 1.69155240e-01 7.56381691e-01 -3.90569359e-01 -1.05521306e-01 6.69377685e-01 -1.21901684e-01 3.36061902e-02 9.15826261e-01 -2.14386359e-01 -7.48399436e-01 -7.63669014e-01 -5.46570718e-01 1.84515882e-02 7.46571481e-01 1.94006145e-01 8.71992111e-01 -1.39164364e+00 -6.33135319e-01 6.62908614e-01 1.23989597e-01 -1.55977204e-01 -6.70562759e-02 4.32830304e-01 -5.25008678e-01 2.46458471e-01 -2.48221263e-01 -9.22016278e-02 -9.30849135e-01 1.05908954e+00 3.07476521e-01 -5.73185384e-01 -9.01723742e-01 5.74564457e-01 9.15049076e-01 -7.73134470e-01 6.89908415e-02 -1.00429296e-01 -1.13174915e-01 -4.44540888e-01 1.50611117e-01 2.67910570e-01 -3.60686779e-01 -8.84741664e-01 -3.44206750e-01 2.02712998e-01 -1.13116995e-01 3.87822330e-01 1.04033458e+00 1.95664704e-01 -6.72292352e-01 -3.51626784e-01 1.67212784e+00 7.69086033e-02 -9.58673000e-01 6.10808767e-02 -1.16463266e-01 -5.71433783e-01 -3.15695643e-01 -2.09399953e-01 -1.39831090e+00 7.03957796e-01 6.94512278e-02 5.96025646e-01 1.02186620e+00 6.39752597e-02 7.94072151e-01 4.19700831e-01 5.95385551e-01 -2.14348480e-01 -5.23659550e-02 3.99180561e-01 1.09741533e+00 -6.07754827e-01 -6.78462014e-02 -7.85288513e-01 -4.90824074e-01 8.07718396e-01 5.24088144e-01 -6.02072835e-01 7.32153416e-01 -2.65138477e-01 -8.44756782e-01 -4.13915753e-01 -6.25574708e-01 -5.45270890e-02 3.43334287e-01 9.24111605e-01 -3.07728827e-01 3.84515107e-01 3.05637643e-02 6.95398331e-01 -2.93647587e-01 -7.30257690e-01 7.29964614e-01 4.07976687e-01 -7.07144141e-02 -8.14233541e-01 -1.07381511e-02 7.71909475e-01 -2.41622582e-01 -2.68299639e-01 -1.20513260e+00 5.96014678e-01 -2.10244939e-01 8.10479581e-01 -1.72779545e-01 -9.18894708e-01 2.27606773e-01 -3.71677577e-01 1.64086232e-03 -6.33046865e-01 -5.65934658e-01 -7.25323796e-01 1.74904212e-01 -7.55113482e-01 3.88933480e-01 -9.56769884e-02 -9.74140644e-01 -7.13060021e-01 -1.34759054e-01 1.68408558e-01 1.69789597e-01 1.93783879e-01 7.95446098e-01 2.24391103e-01 8.40255916e-01 -6.70584261e-01 -3.34023505e-01 -4.94294971e-01 -8.81476700e-01 7.19615638e-01 4.74305123e-01 -4.07578200e-01 -8.92894685e-01 -7.07402170e-01]
[6.063649654388428, 7.128176212310791]
f4d5f5d1-a24f-40e5-98aa-0e3e4d1ed577
automatic-player-identification-in-dota-2
2008.12401
null
https://arxiv.org/abs/2008.12401v1
https://arxiv.org/pdf/2008.12401v1.pdf
Automatic Player Identification in Dota 2
Dota 2 is a popular, multiplayer online video game. Like many online games, players are mostly anonymous, being tied only to online accounts which can be readily obtained, sold and shared between multiple people. This makes it difficult to track or ban players who exhibit unwanted behavior online. In this paper, we present a machine learning approach to identify players based a `digital fingerprint' of how they play the game, rather than by account. We use data on mouse movements, in-game statistics and game strategy extracted from match replays and show that for best results, all of these are necessary. We are able to obtain an accuracy of prediction of 95\% for the problem of predicting if two different matches were played by the same player.
['Sizhe Yuen', 'Oliver Don', 'John D. Thomson']
2020-08-27
null
null
null
null
['dota-2']
['playing-games']
[-2.65101314e-01 -8.16549361e-02 -2.60557830e-01 1.17475323e-01 -5.91075957e-01 -1.05320847e+00 3.85562927e-01 2.70024426e-02 -7.71138191e-01 7.17179060e-01 -1.66726291e-01 -5.26334822e-01 -4.01659012e-02 -9.77247238e-01 -2.99851000e-01 -1.25642166e-01 -2.95721740e-01 5.94816685e-01 9.46635842e-01 -1.34222224e-01 4.69772756e-01 2.77678937e-01 -1.37486410e+00 3.36258739e-01 1.42438546e-01 8.80979598e-01 -1.75787866e-01 1.13352203e+00 2.75194086e-02 1.33164012e+00 -6.68971062e-01 -1.23633397e+00 5.33313155e-01 -7.32746840e-01 -6.77359283e-01 -3.90898257e-01 -1.14277162e-01 -5.83424628e-01 -6.00891829e-01 9.21201587e-01 3.22938979e-01 1.91245854e-01 4.26354378e-01 -1.32259488e+00 2.48094827e-01 6.09287798e-01 -6.52717829e-01 4.91737515e-01 9.55110669e-01 -1.12212904e-01 1.12349629e+00 -1.27633587e-01 7.60757744e-01 4.34314460e-01 1.03885829e+00 3.36318046e-01 -1.17595410e+00 -8.38016033e-01 -5.11973202e-01 -3.87389126e-04 -1.39347446e+00 -4.94595766e-01 4.62004364e-01 -6.48664176e-01 4.89722341e-01 4.78571594e-01 9.47105646e-01 7.24174738e-01 1.10788867e-01 6.18852317e-01 9.47522819e-01 -3.14492851e-01 1.45637974e-01 3.06589037e-01 -1.72166765e-01 6.47390306e-01 2.23446012e-01 8.24336186e-02 -7.70928085e-01 -5.66479921e-01 9.32939947e-01 -1.67180628e-01 2.55185306e-01 -4.00208920e-01 -6.04276657e-01 1.00084317e+00 -1.48224100e-01 1.71925634e-01 -3.66831332e-01 -6.90974146e-02 5.29849112e-01 6.80554092e-01 1.88946053e-01 4.53820497e-01 -2.80533582e-01 -1.22830439e+00 -9.71499085e-01 6.21664822e-01 1.21129155e+00 5.17167568e-01 6.56098425e-01 -2.92950064e-01 4.24985170e-01 7.13025451e-01 4.87651564e-02 -7.78555349e-02 6.81431472e-01 -1.05144775e+00 1.81940064e-01 5.21126091e-01 4.18992072e-01 -1.43256497e+00 -3.21528822e-01 1.78682089e-01 -1.86910421e-01 4.20071781e-01 1.19412291e+00 -3.73640656e-01 6.79144412e-02 1.33695221e+00 -7.37834722e-02 4.74340059e-02 -5.25754333e-01 4.62069720e-01 5.01768172e-01 6.93745837e-02 -1.09727874e-01 -3.80494893e-02 1.24383628e+00 -3.20382208e-01 -3.99183273e-01 -1.75946400e-01 7.20998645e-01 -7.51302004e-01 6.08281493e-01 6.27097607e-01 -1.35827148e+00 -1.96403608e-01 -8.28556836e-01 4.10370290e-01 -1.51104361e-01 -3.14701647e-01 9.38018620e-01 1.39432693e+00 -6.56985641e-01 1.10495853e+00 -8.04001868e-01 -3.11012357e-01 4.43045259e-01 5.44395983e-01 -5.55725157e-01 4.30286437e-01 -1.00954986e+00 7.40010381e-01 1.59373775e-01 -6.02363586e-01 -1.60817131e-01 -3.95300716e-01 -4.28956896e-01 -2.53963381e-01 4.83124077e-01 1.05993956e-01 1.46385729e+00 -1.03058422e+00 -1.46725929e+00 1.39145768e+00 2.46298537e-01 -5.18785417e-01 1.01608968e+00 6.82311133e-02 -3.24835986e-01 -2.11150765e-01 2.83232927e-01 -2.28130266e-01 3.07040215e-01 -4.77767348e-01 -9.72631872e-01 -4.22780663e-01 5.06075799e-01 5.93550466e-02 -1.32760629e-01 5.16377926e-01 -5.96259534e-01 -3.01331699e-01 6.13894425e-02 -9.02927518e-01 2.56142989e-02 -2.05343619e-01 -3.46426755e-01 -5.85269406e-02 1.37134582e-01 -8.15225124e-01 1.67902017e+00 -2.03902197e+00 -3.07236135e-01 4.69282240e-01 4.63033408e-01 2.71266311e-01 4.87722039e-01 6.76194429e-01 1.76281065e-01 2.94171154e-01 5.86008191e-01 -8.11166242e-02 2.83080697e-01 -1.61502510e-01 6.88638985e-02 5.92822313e-01 -7.71542311e-01 6.57843292e-01 -6.66721165e-01 -2.38074452e-01 6.76141977e-02 -3.05277377e-01 -6.45855546e-01 3.71248007e-01 3.40221375e-01 3.48624960e-02 -4.63422298e-01 3.27087641e-01 4.72888052e-01 -6.87416364e-03 3.96727204e-01 7.25289702e-01 -7.54087567e-02 6.16348147e-01 -1.44341516e+00 1.16262817e+00 -8.08866546e-02 8.44673812e-01 2.25255698e-01 -5.79576075e-01 7.02273309e-01 2.03127533e-01 6.67759657e-01 -6.29874766e-01 5.40699780e-01 3.28954935e-01 1.32105008e-01 -2.11308554e-01 6.87800825e-01 -1.14683382e-01 -4.26554292e-01 9.85140562e-01 -2.61025399e-01 2.50253558e-01 3.06510776e-01 1.94627360e-01 1.46609008e+00 -1.24191053e-01 7.37282038e-01 4.57897484e-02 2.09642798e-01 8.61630142e-02 3.95937294e-01 1.33813083e+00 -6.16450608e-01 5.05909622e-01 1.00093901e+00 -4.49939251e-01 -1.04458165e+00 -1.17172134e+00 3.88122976e-01 1.45519757e+00 1.89182565e-01 -7.72233546e-01 -7.44395852e-01 -3.24976981e-01 3.70221026e-02 3.12622301e-02 -4.10365313e-01 -5.20471623e-03 -3.45986128e-01 -3.43413115e-01 8.97233784e-01 3.13079298e-01 4.24243599e-01 -7.92102873e-01 -4.14986163e-01 5.33322752e-01 -1.54508546e-01 -9.77517009e-01 -5.48427224e-01 -4.40703295e-02 -4.21089023e-01 -1.47538400e+00 -2.03780264e-01 -4.76504892e-01 -1.79420099e-01 2.47017816e-01 1.18075848e+00 2.97415107e-01 -2.77488917e-01 2.40886360e-01 -3.57572079e-01 -2.92571306e-01 -3.15893829e-01 2.63880461e-01 1.77607045e-01 -3.67359444e-02 8.21917295e-01 -8.67481172e-01 -3.73017699e-01 6.21655822e-01 -4.22174960e-01 -2.34146297e-01 -2.16104258e-02 3.66306633e-01 -1.54562294e-01 2.29416505e-01 2.37659160e-02 -1.29049170e+00 8.71148109e-01 -5.72856784e-01 -5.23932815e-01 -3.46723229e-01 -7.71891326e-02 -6.62685871e-01 5.45836389e-01 -5.46175599e-01 -3.66016716e-01 1.73192188e-01 -3.83924454e-01 -3.91123490e-03 -1.87497154e-01 1.16885886e-01 -9.08726975e-02 -3.54969114e-01 8.67135584e-01 1.83996797e-01 2.18817905e-01 -3.72736573e-01 9.73818917e-03 6.84939265e-01 4.12358731e-01 -2.42201522e-01 6.86367750e-01 3.69023263e-01 -5.10948062e-01 -8.48613739e-01 -1.76107168e-01 -8.02771747e-01 -4.14150834e-01 -5.27547061e-01 5.41315556e-01 -9.22674119e-01 -1.64187038e+00 8.69544208e-01 -6.25384688e-01 -2.14565396e-01 1.46783926e-02 4.81754690e-01 -6.78727031e-01 3.52038801e-01 -9.19107676e-01 -1.18073404e+00 3.38129520e-01 -5.55012167e-01 1.33893847e-01 4.13566530e-01 -9.14094865e-01 -8.91836226e-01 4.13011342e-01 6.04084432e-01 2.92032629e-01 1.68585889e-02 1.95869744e-01 -1.17836177e+00 -3.30147117e-01 -9.84089553e-01 -6.25806227e-02 -2.40282074e-01 6.34303540e-02 -8.81197602e-02 -6.99954510e-01 -1.73674479e-01 -1.29901901e-01 -3.48320574e-01 1.48830101e-01 2.20981672e-01 7.71523833e-01 -3.02055418e-01 -2.88123339e-01 2.74046779e-01 1.17862570e+00 2.99295425e-01 9.16251600e-01 6.53668344e-01 4.66279685e-01 4.24084693e-01 2.25978568e-01 8.58538091e-01 2.58322299e-01 9.12105560e-01 9.73410606e-02 4.30957615e-01 6.17044091e-01 -5.59462965e-01 1.25447273e-01 2.20111161e-01 -5.56394935e-01 -2.05033556e-01 -7.63134778e-01 3.95010769e-01 -1.80723357e+00 -1.37457705e+00 -3.22212726e-01 2.55691719e+00 4.75095570e-01 6.43921912e-01 1.31146073e+00 3.45266283e-01 8.86308074e-01 -3.53899114e-02 -8.15345272e-02 -4.79153663e-01 2.74811745e-01 3.44536304e-01 1.06448066e+00 4.91713166e-01 -9.91452038e-01 7.74215162e-01 6.97050762e+00 9.50915813e-01 -4.55342263e-01 9.74248126e-02 4.91112620e-01 -4.39811707e-01 1.19762070e-01 -1.22955337e-01 -4.48702574e-01 7.39599168e-01 9.41161633e-01 -3.51751626e-01 8.05969596e-01 8.15302014e-01 2.79643416e-01 -5.33083379e-01 -7.17062116e-01 1.17685866e+00 -1.55253813e-01 -1.20845628e+00 -6.79111660e-01 5.59355497e-01 2.79876709e-01 -2.25419298e-01 -1.69047862e-01 2.77969986e-01 8.68089259e-01 -9.42831278e-01 6.84898198e-01 2.77533054e-01 3.63695592e-01 -9.00124252e-01 5.93318582e-01 6.32649422e-01 -1.07401073e+00 -9.35821757e-02 -1.26189396e-01 -7.83822775e-01 -1.14816763e-02 -7.48161450e-02 -3.98154676e-01 1.30207598e-01 7.07307398e-01 3.34390342e-01 -2.80172735e-01 1.43481565e+00 2.00222522e-01 6.68534458e-01 -5.37382901e-01 -3.77801508e-01 8.45071599e-02 -2.71390200e-01 3.45238447e-01 5.46961069e-01 1.60443634e-01 4.07603562e-01 1.07069701e-01 4.85392988e-01 6.77658319e-02 2.36615613e-01 -7.71236062e-01 -3.56096059e-01 3.70274156e-01 1.01660252e+00 -9.16705430e-01 2.18879744e-01 -5.95646620e-01 1.21090066e+00 3.64898384e-01 -2.71912426e-01 -6.70028269e-01 -5.82147539e-01 1.08439064e+00 7.04749048e-01 3.09926450e-01 -2.83562332e-01 -2.02436775e-01 -1.10191381e+00 8.47297534e-03 -8.17541063e-01 4.67402577e-01 -4.01089489e-01 -1.39480019e+00 3.27566147e-01 -5.75898290e-01 -1.17707551e+00 -7.54980445e-01 -7.49806643e-01 -8.07792306e-01 8.79885256e-01 -3.53694290e-01 -4.17932838e-01 1.52010098e-01 5.99944472e-01 -2.33723819e-01 -4.58887160e-01 6.42888606e-01 4.50505555e-01 -2.62405425e-01 8.66497815e-01 3.59231114e-01 6.82398617e-01 4.27912742e-01 -1.11544836e+00 5.89078963e-01 3.82884741e-01 4.01114702e-01 4.10475165e-01 7.64716268e-01 -6.07359707e-01 -1.15429711e+00 -1.96252033e-01 8.81947517e-01 -8.61960530e-01 1.07054234e+00 -5.37145972e-01 -4.74967241e-01 6.07256532e-01 -3.70457262e-01 -2.92236596e-01 1.13033378e+00 5.09089410e-01 -1.46724552e-01 1.43557623e-01 -1.05325949e+00 5.30316055e-01 1.06672788e+00 -1.05057538e+00 -2.19449833e-01 7.35665411e-02 -4.21604246e-01 -3.57768387e-01 -6.58906221e-01 -6.28999174e-01 9.63222682e-01 -1.69085968e+00 8.42100561e-01 -9.63647902e-01 2.89861947e-01 1.38950497e-01 -1.34902662e-02 -8.67247045e-01 -2.25799605e-01 -9.17863965e-01 2.79933184e-01 1.18446457e+00 3.98492426e-01 -4.69800949e-01 1.82622993e+00 1.19324398e+00 6.68675721e-01 -1.92326725e-01 -1.05205798e+00 -8.76992762e-01 7.95121863e-02 -7.39775717e-01 3.94852459e-01 9.00137305e-01 7.24981368e-01 -1.39204049e-02 -7.94026732e-01 -3.41806918e-01 3.95975113e-01 -3.14914435e-01 1.13878632e+00 -1.33779478e+00 -9.13715899e-01 -7.24027812e-01 -1.10918641e+00 -9.76612747e-01 -2.22845793e-01 -4.04944271e-01 -2.24018067e-01 -7.72815585e-01 2.95847267e-01 -4.52365041e-01 1.21421583e-01 2.18170971e-01 1.83666751e-01 7.86677182e-01 1.66222513e-01 3.30927879e-01 -8.40715706e-01 -3.44493628e-01 5.38562894e-01 3.11859876e-01 -3.41509521e-01 8.81491661e-01 -6.73861146e-01 7.87118137e-01 8.57091427e-01 -5.30561447e-01 -2.10773215e-01 1.91067547e-01 6.26441538e-01 4.46760684e-01 1.62703127e-01 -1.06187975e+00 3.69695336e-01 -8.64401534e-02 2.18757778e-01 -8.47568363e-02 4.09651399e-01 -6.47634864e-01 3.41441274e-01 4.11369562e-01 -6.11387640e-02 -3.34378630e-02 1.13909453e-01 6.82048082e-01 3.45732868e-02 -5.13437927e-01 6.03647113e-01 -4.98711199e-01 -4.80403334e-01 2.53165901e-01 -1.09714937e+00 1.87510997e-01 1.18514252e+00 -7.49301553e-01 2.22258255e-01 -1.02234173e+00 -8.24159026e-01 -2.23079219e-01 7.91676879e-01 1.55141279e-01 -9.04077068e-02 -1.11284804e+00 -5.01433671e-01 1.84260130e-01 9.67609510e-03 -1.11283076e+00 2.38321364e-01 3.09296787e-01 -1.00789201e+00 -4.88509014e-02 -4.48599190e-01 -1.87631566e-02 -1.58128083e+00 2.72729903e-01 4.63401228e-01 -2.56376028e-01 -3.06219041e-01 8.03906560e-01 -5.28842628e-01 -4.78909820e-01 9.56658050e-02 6.62026465e-01 -2.24947438e-01 1.91646397e-01 8.19472969e-01 5.48879027e-01 5.38458154e-02 -7.31342793e-01 -3.36594224e-01 -6.30568936e-02 -2.63473779e-01 -3.86142939e-01 1.08827293e+00 -6.09825961e-02 7.41260052e-02 5.59834838e-01 8.75891268e-01 3.81458670e-01 -1.09866452e+00 -1.95293248e-01 -1.24875885e-02 -1.16040111e+00 -4.19706613e-01 -2.91989923e-01 -9.14511561e-01 3.59142661e-01 2.67854124e-01 1.08894348e+00 5.75541258e-01 -2.38625959e-01 7.42820978e-01 4.36102748e-02 8.33384216e-01 -9.86336112e-01 -1.19897954e-01 3.96408886e-01 -2.82879919e-01 -1.17451525e+00 -9.62280110e-02 -3.37957442e-01 -5.81043363e-01 7.60903299e-01 5.45729697e-01 -3.32428217e-01 8.11192274e-01 2.86452353e-01 -9.92428232e-03 -6.38168529e-02 -4.39516276e-01 -4.92757298e-02 -2.35407412e-01 7.40798116e-01 3.19571614e-01 1.76667124e-01 -4.42691892e-01 1.12529266e+00 -5.61653495e-01 -1.67819951e-02 9.51786697e-01 1.02147889e+00 -5.22620857e-01 -1.26669574e+00 -2.41608024e-01 8.17923427e-01 -1.03763282e+00 1.62376672e-01 -8.44919026e-01 8.54005754e-01 -4.60904837e-02 1.08811188e+00 1.74412757e-01 -8.91521811e-01 3.14034551e-01 -8.53205025e-02 3.61235172e-01 -4.75064814e-01 -9.46969569e-01 -3.98666143e-01 4.46543574e-01 -6.06272221e-01 3.22399959e-02 -1.06749189e+00 -4.73788589e-01 -1.55985975e+00 -3.06842923e-01 3.92404050e-01 2.70033866e-01 8.38235617e-01 -2.04182789e-01 -2.11033300e-01 5.67652225e-01 -5.39358556e-01 -2.06497014e-01 -4.66558754e-01 -1.47257829e+00 4.01341885e-01 -2.88359195e-01 -4.44468975e-01 -3.24452013e-01 -2.63254881e-01]
[3.542489767074585, 1.4548343420028687]
d8253507-6d6f-4f2e-b9bc-9b716ec8d0df
towards-modality-agnostic-person-re
null
null
http://openaccess.thecvf.com//content/CVPR2023/html/Chen_Towards_Modality-Agnostic_Person_Re-Identification_With_Descriptive_Query_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Chen_Towards_Modality-Agnostic_Person_Re-Identification_With_Descriptive_Query_CVPR_2023_paper.pdf
Towards Modality-Agnostic Person Re-Identification With Descriptive Query
Person re-identification (ReID) with descriptive query (text or sketch) provides an important supplement for general image-image paradigms, which is usually studied in a single cross-modality matching manner, e.g., text-to-image or sketch-to-photo. However, without a camera-captured photo query, it is uncertain whether the text or sketch is available or not in practical scenarios. This motivates us to study a new and challenging modality-agnostic person re-identification problem. Towards this goal, we propose a unified person re-identification (UNIReID) architecture that can effectively adapt to cross-modality and multi-modality tasks. Specifically, UNIReID incorporates a simple dual-encoder with task-specific modality learning to mine and fuse visual and textual modality information. To deal with the imbalanced training problem of different tasks in UNIReID, we propose a task-aware dynamic training strategy in terms of task difficulty, adaptively adjusting the training focus. Besides, we construct three multi-modal ReID datasets by collecting the corresponding sketches from photos to support this challenging task. The experimental results on three multi-modal ReID datasets show that our UNIReID greatly improves the retrieval accuracy and generalization ability on different tasks and unseen scenarios.
['Ding Jiang', 'Mang Ye', 'Cuiqun Chen']
2023-01-01
null
null
null
cvpr-2023-1
['person-re-identification']
['computer-vision']
[ 1.96551234e-01 -7.15543747e-01 -1.56439498e-01 -4.66703117e-01 -8.38416755e-01 -6.17733955e-01 8.83384824e-01 -1.99169755e-01 -6.46892667e-01 5.29971540e-01 2.63265908e-01 2.71566331e-01 -1.50604725e-01 -4.65112031e-01 -6.06586277e-01 -5.80020130e-01 7.85432577e-01 5.88740587e-01 -1.53145134e-01 -1.17973043e-02 1.87626868e-01 3.80018592e-01 -1.65931082e+00 1.91537321e-01 6.38635516e-01 7.98942924e-01 2.01924443e-01 3.91586334e-01 -1.01704493e-01 1.58799887e-01 -3.94308150e-01 -1.01632810e+00 3.65747869e-01 -1.34655982e-01 -5.77045918e-01 2.81990349e-01 1.05244517e+00 -5.75210214e-01 -7.45862126e-01 9.57543075e-01 9.32427526e-01 2.00647742e-01 6.24939561e-01 -1.47818351e+00 -1.00265360e+00 2.10503995e-01 -8.43001187e-01 3.10216486e-01 4.89964604e-01 7.94509947e-02 5.89824378e-01 -1.10665786e+00 4.34785575e-01 1.49002254e+00 5.77549815e-01 8.67514491e-01 -1.25602078e+00 -9.26663280e-01 3.10716778e-01 3.21888596e-01 -1.85721588e+00 -6.56050026e-01 8.48199666e-01 -2.55054772e-01 3.54795754e-01 1.57280296e-01 1.88888669e-01 1.55057752e+00 -3.52851212e-01 1.06581163e+00 1.07466984e+00 -2.56446362e-01 -3.10658842e-01 3.84039223e-01 5.58836758e-03 3.25566769e-01 3.52186799e-01 1.89983472e-02 -5.95074534e-01 -5.52235171e-04 8.51580799e-01 5.19888997e-01 -1.97855964e-01 -3.38602215e-01 -1.38800287e+00 3.23952973e-01 2.38749236e-01 2.43610904e-01 -3.14071476e-02 -7.67165497e-02 6.86533332e-01 3.44633996e-01 1.15204841e-01 5.99654615e-02 -5.76120317e-02 2.18271703e-01 -8.42255116e-01 3.18031430e-01 3.05302680e-01 1.13350224e+00 7.11716533e-01 -1.30317211e-01 -4.21084106e-01 1.30997610e+00 1.28081337e-01 8.37065697e-01 7.43606091e-01 -4.23643827e-01 6.70093060e-01 6.68145418e-01 1.98997185e-01 -8.72891784e-01 -2.30546296e-01 -3.47509593e-01 -1.18421316e+00 -4.52065021e-01 4.14479464e-01 1.17435902e-01 -8.46454382e-01 1.80489254e+00 3.26475441e-01 2.26801157e-01 2.68233512e-02 1.15732193e+00 9.33233142e-01 3.23404074e-01 4.02447492e-01 1.11231044e-01 1.66948700e+00 -9.29108024e-01 -5.47570467e-01 -4.63396460e-01 1.71267271e-01 -7.19288588e-01 9.63701665e-01 -8.59958120e-03 -7.74997354e-01 -9.42807496e-01 -7.89688945e-01 -2.37865433e-01 -5.73710084e-01 6.87385440e-01 2.55799919e-01 5.76723695e-01 -8.07786047e-01 4.62970994e-02 -1.22096121e-01 -5.71347713e-01 1.79389372e-01 2.85569161e-01 -9.92341578e-01 -5.68388700e-01 -1.13643360e+00 6.75938129e-01 5.26264429e-01 1.88855380e-01 -7.02438295e-01 -5.03130317e-01 -9.65392351e-01 4.46632132e-03 3.62344205e-01 -1.08624315e+00 9.15057182e-01 -9.70124900e-01 -1.13518775e+00 1.24956131e+00 -2.85856247e-01 -2.98541430e-02 7.21820533e-01 -1.69924811e-01 -7.12504625e-01 1.44320250e-01 2.84378052e-01 7.29943395e-01 1.21211481e+00 -1.52283752e+00 -5.44942498e-01 -8.04249167e-01 1.82320978e-02 4.49428499e-01 -6.92423999e-01 3.94181758e-02 -1.00134230e+00 -8.75877619e-01 -1.07901409e-01 -9.56607103e-01 3.98260683e-01 1.21920042e-01 -4.18090343e-01 -5.10194182e-01 6.96082890e-01 -6.57838702e-01 9.65843976e-01 -2.09556317e+00 2.26595864e-01 -5.59596233e-02 7.90832192e-02 2.76607871e-01 -4.32143718e-01 5.36180019e-01 -9.40762907e-02 -4.69276309e-02 2.09235027e-02 -8.15896034e-01 9.96683389e-02 6.44391105e-02 -2.02024117e-01 5.10047495e-01 -2.43125018e-02 1.06494308e+00 -8.06650221e-01 -8.77912819e-01 2.16122478e-01 4.79027122e-01 -1.29594222e-01 4.07842398e-01 3.97466242e-01 5.30770540e-01 -4.54483807e-01 9.11706686e-01 8.84682298e-01 -2.69499987e-01 -2.48998664e-02 -6.44457340e-01 1.11459292e-01 -5.28757572e-01 -1.20340216e+00 1.90670609e+00 -5.68969727e-01 4.23697382e-01 2.31331661e-02 -1.03551590e+00 8.78007233e-01 2.53729343e-01 4.25820202e-01 -9.68830585e-01 -1.04726844e-01 1.30125523e-01 -5.28278470e-01 -5.64101577e-01 7.34479904e-01 -1.62855059e-01 -2.60854691e-01 4.83029217e-01 1.28378451e-01 4.78293598e-01 1.45781457e-01 1.36029750e-01 4.33960438e-01 5.20709902e-03 2.90077422e-02 6.30890951e-02 9.86397445e-01 -4.06271517e-01 4.53348458e-01 7.83057332e-01 -3.00835669e-01 6.40366197e-01 -2.86935955e-01 -3.99618685e-01 -1.09694195e+00 -9.89647388e-01 -2.23258525e-01 1.32118273e+00 6.99923694e-01 -2.17123687e-01 -4.55550373e-01 -6.04305685e-01 2.60372907e-01 1.09926149e-01 -6.47042513e-01 -1.22874796e-01 -4.77065712e-01 -5.48803866e-01 7.26576924e-01 4.89479810e-01 8.44524384e-01 -7.64111578e-01 1.26295894e-01 -1.35424957e-01 -3.69760811e-01 -1.39327431e+00 -1.07702112e+00 -6.61846340e-01 -3.94129544e-01 -9.99187887e-01 -1.47479248e+00 -9.79236603e-01 7.18708515e-01 8.91702712e-01 8.77508879e-01 -8.10717046e-03 -3.34290266e-01 1.09068584e+00 -2.00321823e-01 -8.31369385e-02 1.43954217e-01 7.48873800e-02 4.08861876e-01 7.26273000e-01 5.08538485e-01 -3.56987655e-01 -9.15317297e-01 6.18361354e-01 -1.09352589e+00 1.18912291e-03 7.63592243e-01 1.15665531e+00 5.59542418e-01 -1.41266629e-01 8.06736588e-01 -3.58510017e-01 5.79384387e-01 -4.12551463e-01 -2.39910856e-01 8.49943757e-01 -4.08863783e-01 -8.61844867e-02 4.47828710e-01 -8.30250323e-01 -1.27078307e+00 1.29355982e-01 1.21451110e-01 -8.38133335e-01 -2.24446461e-01 1.76370382e-01 -4.56527889e-01 -1.82937026e-01 2.05040500e-01 7.52675056e-01 -1.65677428e-01 -6.33127809e-01 3.00331593e-01 9.68361020e-01 1.04685450e+00 -7.74522305e-01 1.07188654e+00 5.40180326e-01 -3.51281047e-01 -6.69735670e-01 -5.05237401e-01 -8.87016296e-01 -7.19883204e-01 -3.10070246e-01 7.37460554e-01 -1.35048485e+00 -8.70882869e-01 7.90253878e-01 -1.06989253e+00 1.29773587e-01 1.40369624e-01 2.91722208e-01 -2.79731661e-01 7.62740970e-01 -3.04021180e-01 -8.52039039e-01 -5.66723347e-01 -9.71719146e-01 1.53059459e+00 5.64222038e-01 3.05167377e-01 -7.71402955e-01 -1.13255247e-01 7.38555670e-01 2.85690486e-01 -2.70453364e-01 4.04244125e-01 -6.68513417e-01 -5.17262638e-01 -4.77801323e-01 -8.72544289e-01 2.37010941e-02 1.64869413e-01 -6.92043602e-01 -1.08425379e+00 -6.57140076e-01 -6.03196204e-01 -6.11364305e-01 8.58440280e-01 -2.19027340e-01 1.33396614e+00 -2.54104853e-01 -5.76960087e-01 6.33033633e-01 1.39494288e+00 -2.24390656e-01 4.71027642e-01 2.53044993e-01 9.30681586e-01 6.64231122e-01 4.61052179e-01 4.73490596e-01 9.68654752e-01 1.05197120e+00 -4.13530394e-02 1.22622587e-05 -1.69051960e-01 -6.59113526e-01 1.68323934e-01 3.48901689e-01 1.15815952e-01 -4.01554883e-01 -5.73210001e-01 7.13734984e-01 -1.75771785e+00 -1.17454076e+00 4.31446671e-01 2.25503969e+00 6.81225538e-01 -5.11112034e-01 2.97426462e-01 -9.99403298e-02 1.14201939e+00 6.48853332e-02 -8.26819539e-01 3.60006630e-01 -2.35640466e-01 -4.77850497e-01 4.76355225e-01 -8.56549963e-02 -1.27441955e+00 8.31054211e-01 4.92194080e+00 1.03985679e+00 -1.06020701e+00 1.17427960e-01 3.38935852e-01 1.13908984e-01 -3.10027361e-01 -4.71932471e-01 -1.04258156e+00 7.57533193e-01 4.25518692e-01 -3.75856400e-01 4.55879509e-01 6.53410614e-01 -1.54769450e-01 1.67254835e-01 -1.26024532e+00 1.92484248e+00 6.25510812e-01 -9.61125851e-01 3.84865522e-01 -1.45990357e-01 5.00590086e-01 -3.54970038e-01 1.50231570e-01 4.80742037e-01 -1.52352065e-01 -7.75219440e-01 6.31903827e-01 6.53431356e-01 1.23511076e+00 -4.65371370e-01 5.41548371e-01 2.06914932e-01 -1.46939504e+00 -3.38896364e-01 -3.44770849e-01 4.98411387e-01 2.32973620e-01 -5.18864430e-02 -3.90904486e-01 8.74881744e-01 8.29948425e-01 8.26010942e-01 -8.32201004e-01 1.14671361e+00 3.98128241e-01 -1.77808985e-01 -1.28151864e-01 3.84661078e-01 -2.66407609e-01 -8.09657425e-02 4.69412237e-01 1.27264988e+00 2.74946302e-01 1.47915944e-01 3.11893553e-01 7.24922001e-01 -2.72532165e-01 1.71450227e-02 -5.03531456e-01 1.56093359e-01 7.41834223e-01 1.25196421e+00 -2.30141968e-01 -3.23886871e-01 -4.83188748e-01 1.52605414e+00 1.80734962e-01 5.79459071e-01 -5.40234447e-01 -2.42079064e-01 6.20235622e-01 -7.29629248e-02 1.02118380e-01 -1.18213162e-01 7.92037919e-02 -1.59549189e+00 2.74791986e-01 -6.52288854e-01 7.86334157e-01 -8.24764729e-01 -1.98719740e+00 4.70497817e-01 1.56576633e-01 -1.39503658e+00 -1.27318859e-01 -4.38589454e-01 -3.99951160e-01 9.66198206e-01 -1.78705025e+00 -1.95977926e+00 -7.05805480e-01 1.15333629e+00 6.92851067e-01 -3.82687271e-01 5.20352244e-01 8.14555287e-01 -9.41733599e-01 1.36386991e+00 5.33180907e-02 4.82175469e-01 1.35621405e+00 -8.81216943e-01 2.42688909e-01 8.25274467e-01 -1.40257090e-01 7.99136758e-01 1.81121767e-01 -6.42746806e-01 -1.85981011e+00 -1.16293454e+00 6.87412143e-01 -4.25434470e-01 3.80603313e-01 -3.24905336e-01 -8.75839651e-01 6.01139545e-01 -6.27217293e-02 5.27369864e-02 5.97474217e-01 -7.40810782e-02 -6.96034551e-01 -4.11114514e-01 -1.08586049e+00 4.78523850e-01 1.28622198e+00 -1.01533294e+00 -4.41640615e-01 2.03326762e-01 3.35891962e-01 -3.14526439e-01 -9.07566786e-01 3.71158361e-01 8.63306046e-01 -5.28068304e-01 1.55376649e+00 -5.26995301e-01 -9.71020758e-03 -3.74651492e-01 -1.69377118e-01 -9.85420346e-01 -1.87966436e-01 -2.21494168e-01 8.88984725e-02 1.68450117e+00 -2.82949120e-01 -6.68006539e-01 6.16500020e-01 8.17076206e-01 1.48620039e-01 -1.36492625e-01 -9.32112157e-01 -8.17763031e-01 -1.61482990e-01 2.51974408e-02 7.25773335e-01 1.00410461e+00 -3.64452243e-01 3.22129697e-01 -8.68785262e-01 3.02536666e-01 8.32125783e-01 3.17356408e-01 1.11151099e+00 -1.23365319e+00 -5.57237025e-03 -3.25050950e-01 -4.16599035e-01 -1.23881602e+00 4.23558921e-01 -8.39514375e-01 -2.33897597e-01 -1.31047964e+00 6.87233031e-01 -5.72748303e-01 -2.86769390e-01 4.10287797e-01 -4.29386914e-01 4.83649313e-01 3.47654670e-01 6.56865954e-01 -8.29536915e-01 7.24052548e-01 1.14959371e+00 -6.28500819e-01 6.77957386e-03 -2.41113231e-02 -7.75868893e-01 2.07971066e-01 4.27365005e-01 1.57512585e-03 -3.45247209e-01 -6.48604691e-01 -9.54627469e-02 1.07818693e-01 9.33962345e-01 -9.06327963e-01 5.71923494e-01 -9.06454325e-02 7.47245312e-01 -7.25266993e-01 6.42014265e-01 -9.19082701e-01 1.55394047e-01 -9.01101008e-02 -3.97561967e-01 2.67625153e-01 1.75509483e-01 9.42041516e-01 -2.86251605e-01 -1.21683411e-01 5.49065828e-01 -1.12310186e-01 -1.08219099e+00 7.83137560e-01 2.04995096e-01 -1.08188473e-01 8.53831291e-01 -3.71591985e-01 -4.93886173e-01 -3.28570902e-01 -4.33018595e-01 5.47032893e-01 6.29680753e-01 8.63750100e-01 7.77547479e-01 -1.64150167e+00 -9.11518335e-01 2.43121475e-01 8.09482813e-01 -3.59540850e-01 9.89998639e-01 5.43061376e-01 1.80923149e-01 4.82364297e-01 -4.16840971e-01 -6.34871602e-01 -1.30979276e+00 9.45318460e-01 4.94878203e-01 3.28446440e-02 -5.03125131e-01 5.61338127e-01 4.98606771e-01 -4.47452605e-01 3.21493685e-01 5.57230949e-01 -3.19010675e-01 2.61492521e-01 9.16931391e-01 2.69376814e-01 -1.50230572e-01 -1.08503616e+00 -3.25497150e-01 8.40398312e-01 -2.62741208e-01 -1.84971243e-02 8.74942422e-01 -6.26752138e-01 7.01944977e-02 1.66480124e-01 1.25742579e+00 -2.88029462e-01 -1.14957881e+00 -8.09563994e-01 -1.91725731e-01 -7.24183261e-01 -2.07525283e-01 -7.62215257e-01 -9.81139839e-01 7.68080652e-01 9.84713793e-01 -2.78324604e-01 1.12699962e+00 -3.73939015e-02 1.03755343e+00 4.53864396e-01 3.74063134e-01 -1.10437429e+00 2.49927253e-01 7.78088346e-02 9.75760281e-01 -1.73506606e+00 -1.43060107e-02 -8.19721520e-02 -7.05925703e-01 9.47692990e-01 9.01017964e-01 3.45851421e-01 3.31272542e-01 -4.27779138e-01 -9.59995240e-02 9.82077122e-02 -2.31449604e-01 -4.09045041e-01 6.04107976e-01 7.06917167e-01 -1.84207186e-02 -5.06696552e-02 -4.83810864e-02 6.38272703e-01 2.90129453e-01 1.52550973e-02 -6.96407072e-03 6.06482387e-01 7.82545730e-02 -1.24003029e+00 -6.41090274e-01 3.62973124e-01 -1.23617478e-01 8.32926333e-02 -3.62496555e-01 6.37638032e-01 1.11315459e-01 8.41861188e-01 9.37954187e-02 -4.38572168e-01 2.44117558e-01 5.75802587e-02 5.27828634e-01 -2.32329562e-01 -3.71765196e-01 -2.73048460e-01 -2.40437418e-01 -8.86998251e-02 -6.65294230e-01 -6.26473546e-01 -4.74465370e-01 -3.76662374e-01 -2.13441089e-01 -1.27570018e-01 5.36653042e-01 8.69960904e-01 4.98876691e-01 2.20624506e-02 6.70283258e-01 -1.10853529e+00 -5.30124247e-01 -8.74003470e-01 -4.58393246e-01 8.01353395e-01 4.39163089e-01 -9.33659077e-01 4.55987900e-02 1.11974820e-01]
[14.657798767089844, 0.9324417114257812]
bec8551f-18bc-4bf5-b41a-92a2384cf4e3
i-vector-text-independent-speaker
null
null
https://aclanthology.org/O13-1016
https://aclanthology.org/O13-1016.pdf
結合I-Vector 及深層神經網路之語者驗證系統 (Text-independent Speaker Verification using a Hybrid I-Vector/DNN Approach) [In Chinese]
null
['Wen-Tsung Chang', 'Chia-Wei Liao', 'Kai-Hsuan Chan', 'Shao-Hua Cheng', 'Yun-Fan Chang', 'Yu Tsao']
2013-10-01
i-vector-text-independent-speaker-1
https://aclanthology.org/O13-1016
https://aclanthology.org/O13-1016.pdf
roclingijclclp-2013-10
['text-independent-speaker-verification']
['speech']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.244976997375488, 3.671905755996704]
ce8a7e69-52e1-47c0-97d3-6cd7d05d0cd8
towards-unsupervised-speech-to-text
1811.01307
null
http://arxiv.org/abs/1811.01307v1
http://arxiv.org/pdf/1811.01307v1.pdf
Towards Unsupervised Speech-to-Text Translation
We present a framework for building speech-to-text translation (ST) systems using only monolingual speech and text corpora, in other words, speech utterances from a source language and independent text from a target language. As opposed to traditional cascaded systems and end-to-end architectures, our system does not require any labeled data (i.e., transcribed source audio or parallel source and target text corpora) during training, making it especially applicable to language pairs with very few or even zero bilingual resources. The framework initializes the ST system with a cross-modal bilingual dictionary inferred from the monolingual corpora, that maps every source speech segment corresponding to a spoken word to its target text translation. For unseen source speech utterances, the system first performs word-by-word translation on each speech segment in the utterance. The translation is improved by leveraging a language model and a sequence denoising autoencoder to provide prior knowledge about the target language. Experimental results show that our unsupervised system achieves comparable BLEU scores to supervised end-to-end models despite the lack of supervision. We also provide an ablation analysis to examine the utility of each component in our system.
['Wei-Hung Weng', 'Yu-An Chung', 'Schrasing Tong', 'James Glass']
2018-11-04
null
null
null
null
['speech-to-text-translation']
['natural-language-processing']
[ 2.21990570e-01 1.78647354e-01 -3.20237964e-01 -5.94402075e-01 -1.44831026e+00 -7.49270439e-01 6.73482060e-01 -2.74413556e-01 -3.86251211e-01 6.82667494e-01 4.66075063e-01 -7.48028278e-01 7.72595525e-01 -3.30456644e-01 -8.74341905e-01 -4.31811780e-01 3.62328172e-01 8.66895914e-01 -2.27472544e-01 -3.78225178e-01 -3.81616294e-01 -3.95964608e-02 -8.43855739e-01 3.58331352e-01 6.83895409e-01 5.41968703e-01 4.49489504e-01 6.37980759e-01 -1.88968197e-01 6.35576546e-01 -6.29849553e-01 -5.22989333e-01 3.20335180e-01 -9.63976562e-01 -8.82777393e-01 3.25332135e-01 1.86301544e-01 -3.82426053e-01 -3.32912713e-01 9.06293690e-01 6.01471484e-01 -8.57862681e-02 3.57770115e-01 -9.33682680e-01 -8.16171527e-01 1.01248586e+00 -2.79107332e-01 1.17901541e-01 4.36637282e-01 -1.93405841e-02 1.01654232e+00 -1.40949380e+00 6.67289197e-01 1.34816623e+00 3.36313933e-01 5.25124967e-01 -1.32275152e+00 -5.34447610e-01 9.61943045e-02 -8.34227428e-02 -1.21094882e+00 -1.15187025e+00 3.90599072e-01 -2.48407915e-01 1.33088422e+00 -1.87100563e-02 3.58386785e-01 1.48411059e+00 7.65679106e-02 7.68691361e-01 9.28306639e-01 -8.82772803e-01 -2.70216838e-02 4.37428564e-01 -3.43271911e-01 5.27278185e-01 -5.17642438e-01 1.17709503e-01 -8.85309637e-01 8.89488729e-04 3.78076136e-01 -4.80781943e-01 -1.98545054e-01 3.46186608e-02 -1.64288735e+00 6.97601020e-01 -9.85751748e-02 3.92531663e-01 -3.31033260e-01 -3.31780136e-01 4.52065349e-01 8.70144844e-01 6.64729297e-01 9.77131128e-02 -5.18808484e-01 -1.34094015e-01 -1.14229715e+00 -4.25123364e-01 8.73743713e-01 1.20752525e+00 8.09008598e-01 3.65661293e-01 1.29603148e-01 1.01186931e+00 3.46675366e-01 9.82952416e-01 7.04631507e-01 -6.20307088e-01 8.74175131e-01 -5.16038062e-03 -6.09101616e-02 -2.08062291e-01 1.25098526e-01 -3.47077817e-01 -4.61259931e-01 -3.46414804e-01 8.11647549e-02 -5.17160833e-01 -7.89081395e-01 1.84380555e+00 2.17315644e-01 -8.66500437e-02 7.25886047e-01 8.38026166e-01 6.18492901e-01 1.05712020e+00 -2.63259619e-01 -5.20763516e-01 1.09129930e+00 -1.46935034e+00 -8.01268518e-01 -5.52653849e-01 5.50363958e-01 -1.33596683e+00 1.18266881e+00 2.30084639e-02 -1.27948809e+00 -5.82084656e-01 -8.43389988e-01 -1.36937529e-01 -5.29040061e-02 3.52113694e-01 -6.47662804e-02 3.57945889e-01 -1.27272630e+00 4.82094586e-02 -9.71134245e-01 -5.71241975e-01 -3.41778696e-01 1.76378459e-01 -3.39809388e-01 2.25832500e-02 -1.43972492e+00 1.05368090e+00 3.19505453e-01 -8.85065645e-02 -1.26650381e+00 -2.55548656e-01 -9.42173243e-01 -1.24571249e-01 3.14999446e-02 -6.20616317e-01 1.86276722e+00 -1.64755380e+00 -1.96216130e+00 7.83659995e-01 -6.98419631e-01 -5.27123153e-01 2.79738337e-01 -8.08697939e-02 -6.47033095e-01 2.77655095e-01 3.67278606e-01 6.35831952e-01 1.00905526e+00 -9.70954239e-01 -6.97267592e-01 -6.95206970e-02 -2.66527414e-01 6.23587310e-01 -4.18309480e-01 5.35136461e-01 -5.72200596e-01 -6.32913709e-01 2.58090310e-02 -1.01554894e+00 5.26750460e-02 -5.01965165e-01 -4.11908418e-01 6.24644384e-02 7.11700380e-01 -9.92448211e-01 9.77976978e-01 -2.18570018e+00 3.30582976e-01 -8.14306810e-02 -4.06758368e-01 3.71864513e-02 -4.12489206e-01 8.81668091e-01 -3.98391262e-02 -1.23377621e-01 -1.81097999e-01 -6.61259592e-01 -1.22919813e-01 2.10443616e-01 -5.92001319e-01 3.10642660e-01 2.71782637e-01 7.05455720e-01 -9.57398355e-01 -4.24350888e-01 4.08999324e-02 4.67111886e-01 -2.26429895e-01 4.10434604e-01 -2.20232919e-01 9.44551349e-01 -1.59398332e-01 3.91242296e-01 4.70304936e-02 -3.36219408e-02 2.90131241e-01 1.47667527e-01 -1.12738363e-01 1.10889292e+00 -5.00798166e-01 2.01060295e+00 -9.38286901e-01 7.32936919e-01 1.59638703e-01 -8.26176524e-01 9.88830686e-01 1.04508698e+00 2.34936312e-01 -7.49273479e-01 -2.47783829e-02 6.15193248e-01 -1.33176353e-02 -3.54443818e-01 2.17001781e-01 -4.35184330e-01 -1.19651683e-01 7.97016442e-01 5.02434313e-01 -1.23962350e-01 1.66665211e-01 2.37339377e-01 6.94657564e-01 4.50331569e-02 1.43208623e-01 2.41675749e-02 4.45457965e-01 1.68273121e-01 4.18198347e-01 2.83983707e-01 1.23175621e-01 4.75581914e-01 -7.39587545e-02 -1.03007250e-01 -1.32995307e+00 -1.08728492e+00 8.32256675e-02 1.37770677e+00 -1.84390977e-01 -3.10625494e-01 -9.17772472e-01 -5.08279979e-01 -5.76311290e-01 8.61260951e-01 1.39175938e-03 -1.21992519e-02 -6.69831395e-01 -3.48755717e-01 8.67667913e-01 3.26064944e-01 2.80911505e-01 -9.60263073e-01 1.87199473e-01 4.75336105e-01 -8.63076448e-01 -1.51781714e+00 -9.34001863e-01 2.29810908e-01 -7.81623840e-01 -4.45017368e-01 -7.13437319e-01 -1.39258564e+00 6.23479605e-01 2.29752555e-01 1.17757165e+00 -4.96611565e-01 5.89069784e-01 1.48482352e-01 -3.96876007e-01 -2.29392692e-01 -1.26453102e+00 2.77148545e-01 4.68378663e-01 1.94680229e-01 5.32539189e-01 -4.27156538e-01 -1.20792367e-01 4.43861246e-01 -5.36549747e-01 2.95511693e-01 7.21415818e-01 9.13911223e-01 5.41095555e-01 -3.80631149e-01 6.02008522e-01 -3.34964484e-01 6.32431269e-01 -4.05291229e-01 -4.42874998e-01 2.73903608e-01 -3.48830700e-01 -1.20597333e-02 8.75891268e-01 -5.50357401e-01 -1.06483507e+00 1.32615358e-01 -3.15615118e-01 -4.70048100e-01 -1.55073330e-01 7.24004507e-01 -2.76503146e-01 4.64934886e-01 7.13127851e-01 5.95160007e-01 5.25925793e-02 -4.88855153e-01 5.08237302e-01 1.34400594e+00 7.26387322e-01 -4.12830889e-01 8.36531699e-01 8.99285451e-02 -8.27590227e-01 -8.52299690e-01 -7.22403288e-01 -4.17700499e-01 -8.68268430e-01 -2.55053658e-02 8.24100196e-01 -1.37895286e+00 -6.02695644e-02 2.16685995e-01 -1.39591277e+00 -3.85214120e-01 -1.21457130e-01 8.97613585e-01 -6.31203532e-01 4.77635264e-02 -9.53555763e-01 -6.06612146e-01 -4.66997653e-01 -1.34887683e+00 1.15874588e+00 -3.18313807e-01 -2.71585792e-01 -1.07337058e+00 1.55945435e-01 5.58278859e-01 2.78418392e-01 -5.04517853e-01 8.40908349e-01 -9.91162539e-01 -2.60931462e-01 -1.18674971e-01 2.85677254e-01 6.97835982e-01 3.79099190e-01 -2.48863190e-01 -9.79524136e-01 -5.93183339e-01 2.62370378e-01 -5.36992908e-01 3.38642001e-01 4.48187999e-02 1.35088563e-01 -6.27931774e-01 -4.94458079e-02 3.73857766e-01 9.68460619e-01 2.67617285e-01 1.60698622e-01 6.55108169e-02 5.78059852e-01 6.16330206e-01 4.04832989e-01 -1.32198870e-01 4.37754601e-01 6.20482862e-01 -2.17708290e-01 -3.58679205e-01 -2.76404262e-01 -5.36809683e-01 1.19854856e+00 1.92204547e+00 5.75458586e-01 -3.24196368e-01 -9.47094142e-01 7.97392011e-01 -1.52775371e+00 -7.58509219e-01 1.82912201e-01 2.22714496e+00 1.21392739e+00 -5.87827116e-02 1.21766753e-01 -1.93366349e-01 9.21017945e-01 -2.16607563e-02 -4.70561475e-01 -4.38263327e-01 -1.48959562e-01 9.87115800e-02 3.29254538e-01 9.80481684e-01 -6.84610009e-01 1.44524944e+00 6.50184107e+00 6.60333216e-01 -1.48629737e+00 6.43093705e-01 4.39484477e-01 -2.00373784e-01 -3.11697483e-01 2.91267067e-01 -7.31687784e-01 2.24663332e-01 1.59677637e+00 -3.06956738e-01 8.60976756e-01 4.85850960e-01 4.90994394e-01 4.41082209e-01 -1.43119633e+00 6.76975727e-01 1.79128632e-01 -9.21363115e-01 1.10217400e-01 -2.07423419e-01 7.30408967e-01 6.50664270e-01 -5.61950803e-02 2.76400536e-01 5.52216887e-01 -8.49322379e-01 1.07081342e+00 -1.88128456e-01 1.20093882e+00 -6.11820936e-01 5.12033045e-01 6.97527289e-01 -9.80781734e-01 3.10148090e-01 -1.16632730e-01 4.10221964e-02 3.48031700e-01 2.91734934e-01 -1.35051143e+00 5.79742014e-01 2.72140920e-01 6.31921947e-01 -1.61072109e-02 2.20061228e-01 -6.19622529e-01 1.12316537e+00 -2.73937911e-01 1.69478938e-01 3.82819206e-01 -1.62571669e-01 6.52567565e-01 1.42875171e+00 5.12336910e-01 -2.62406528e-01 5.12342513e-01 4.85358596e-01 -2.95506746e-01 4.91283357e-01 -8.35638940e-01 -2.97383457e-01 6.76894724e-01 8.52887213e-01 -3.70025635e-01 -6.02522492e-01 -8.46861005e-01 1.34646010e+00 1.41984999e-01 7.91008890e-01 -4.01768327e-01 -1.86884478e-01 3.81120175e-01 -1.94467157e-01 1.98160693e-01 -3.87945294e-01 -6.28288910e-02 -1.46392691e+00 1.84586450e-01 -1.48105621e+00 -9.34637636e-02 -6.58939660e-01 -1.21976876e+00 1.10615540e+00 -3.62978667e-01 -1.38465023e+00 -8.70942652e-01 -6.58271462e-02 -1.87945291e-01 1.33877206e+00 -1.37503111e+00 -1.26717937e+00 4.77184653e-01 8.22952509e-01 9.94203091e-01 -5.68898499e-01 1.13958430e+00 2.70070523e-01 -3.97133768e-01 6.25193834e-01 2.40192667e-01 4.93564814e-01 1.07708001e+00 -8.75125408e-01 9.68157828e-01 1.08800375e+00 6.29895031e-01 7.09217250e-01 7.17779756e-01 -6.15797520e-01 -1.38587594e+00 -1.10209835e+00 1.49061882e+00 -4.67639267e-01 9.21385050e-01 -7.22215533e-01 -6.56896770e-01 1.09291136e+00 8.62794340e-01 -2.96698213e-01 8.40278447e-01 3.94068062e-02 -3.87078315e-01 -4.51907739e-02 -5.60669899e-01 6.96364462e-01 8.10966253e-01 -1.17917466e+00 -7.52888262e-01 4.73419070e-01 1.06324446e+00 -5.33562601e-01 -6.24436617e-01 4.90963943e-02 3.55517268e-01 -4.78219718e-01 5.54424047e-01 -5.51225603e-01 3.20948809e-01 -3.70246559e-01 -4.40841019e-01 -1.63530636e+00 3.56255956e-02 -8.26398671e-01 2.14252144e-01 1.20831907e+00 9.72052217e-01 -5.01325369e-01 1.27228528e-01 4.97195199e-02 -4.43202972e-01 -2.94889808e-01 -1.02436972e+00 -8.48965108e-01 2.64240324e-01 -4.19266194e-01 5.52633405e-01 1.01248527e+00 2.38846600e-01 1.12674522e+00 -5.07460296e-01 4.74314451e-01 2.42310986e-01 2.47198656e-01 8.29256773e-01 -6.35452151e-01 -4.71854955e-01 -1.24222666e-01 1.36819899e-01 -1.38972569e+00 5.17862082e-01 -1.25058866e+00 4.72237229e-01 -1.35482979e+00 -2.22247094e-02 -9.15961191e-02 2.40544267e-02 6.83957815e-01 -1.54342083e-02 2.39964515e-01 3.38753802e-03 5.28805971e-01 -2.43298903e-01 6.61252856e-01 1.03170931e+00 -2.64733523e-01 -2.91054666e-01 -7.27694556e-02 -4.78841245e-01 5.40875375e-01 6.98178947e-01 -6.61486387e-01 -5.22246122e-01 -1.04401243e+00 -1.19868882e-01 5.62685609e-01 -7.75679946e-02 -5.68020344e-01 2.17336848e-01 -2.60208938e-02 -1.53867593e-02 -3.39549929e-01 2.09158495e-01 -7.09243655e-01 -6.15725480e-02 1.50291950e-01 -4.89257127e-01 1.69730231e-01 2.07355723e-01 1.49075016e-01 -6.13897860e-01 -2.19981037e-02 6.60472572e-01 -5.68524236e-03 -2.50557870e-01 1.11048803e-01 -6.85962796e-01 -8.17444175e-02 5.72060049e-01 9.70890373e-02 -1.16762789e-02 -8.08447063e-01 -8.32226694e-01 1.02311045e-01 5.31130373e-01 7.70103455e-01 3.88832748e-01 -1.44705558e+00 -1.10127401e+00 4.77323115e-01 1.34737626e-01 -2.79010832e-01 -3.65459174e-01 7.46748924e-01 -1.21824928e-01 6.01249933e-01 7.20483363e-02 -7.08402574e-01 -1.12265372e+00 4.70642447e-01 2.84369767e-01 6.85112737e-03 -4.09062415e-01 7.32656181e-01 1.67715400e-01 -7.45198250e-01 2.71331251e-01 -1.29694834e-01 4.09794867e-01 -2.20608771e-01 4.47771221e-01 -2.02065781e-01 3.82573843e-01 -1.16423476e+00 -2.08917409e-01 1.60192370e-01 -1.66710123e-01 -1.08563554e+00 1.08089924e+00 -6.31725311e-01 -3.84520441e-02 9.28474545e-01 1.21946919e+00 3.34381312e-01 -9.22314942e-01 -6.94570124e-01 -2.09597647e-02 -5.03407978e-02 3.04183383e-02 -8.68623853e-01 -7.95942843e-01 1.00678504e+00 1.83809578e-01 -1.79263845e-01 1.11050725e+00 8.73266608e-02 1.14938653e+00 6.37430549e-01 5.76995015e-01 -1.07541442e+00 -6.60810396e-02 8.55175495e-01 8.23952973e-01 -1.27726436e+00 -6.66821420e-01 -4.52099591e-02 -8.21696281e-01 9.65539992e-01 1.32810712e-01 3.75802159e-01 4.00069535e-01 4.33777928e-01 9.37223673e-01 3.15277606e-01 -9.73193288e-01 -1.43394306e-01 2.38592982e-01 3.71602356e-01 7.83102632e-01 2.72640120e-02 -6.57385681e-03 1.75144553e-01 -6.75418675e-01 -2.02242643e-01 2.02684179e-01 7.93685913e-01 -3.15341860e-01 -1.55600834e+00 -4.48799610e-01 -1.12635538e-01 -6.61350071e-01 -6.62543714e-01 -6.24272227e-01 2.51470923e-01 -2.76199639e-01 1.46448147e+00 -1.48365116e-02 -4.53380078e-01 1.68544501e-01 5.72919548e-01 1.51603654e-01 -9.54904854e-01 -6.25723481e-01 6.74319029e-01 1.85524926e-01 -3.08214664e-01 -4.21000004e-01 -6.76679194e-01 -1.29905844e+00 -2.41333008e-01 -3.77458423e-01 4.31240201e-01 8.38824689e-01 1.14046669e+00 2.79313356e-01 2.10655794e-01 9.91813660e-01 -6.52634084e-01 -4.48026150e-01 -1.27714062e+00 -1.52846932e-01 5.07506058e-02 6.87655568e-01 1.11786976e-01 -1.23732664e-01 6.08406365e-01]
[14.500219345092773, 7.162752628326416]
1d22315e-178a-4f8c-a1d8-c3ae6cff9279
gexse-generative-explanatory-sensor-system-an
2306.15857
null
https://arxiv.org/abs/2306.15857v1
https://arxiv.org/pdf/2306.15857v1.pdf
GeXSe (Generative Explanatory Sensor System): An Interpretable Deep Generative Model for Human Activity Recognition in Smart Spaces
We introduce GeXSe (Generative Explanatory Sensor System), a novel framework designed to extract interpretable sensor-based and vision domain features from non-invasive smart space sensors. We combine these to provide a comprehensive explanation of sensor-activation patterns in activity recognition tasks. This system leverages advanced machine learning architectures, including transformer blocks, Fast Fourier Convolution (FFC), and diffusion models, to provide a more detailed understanding of sensor-based human activity data. A standout feature of GeXSe is our unique Multi-Layer Perceptron (MLP) with linear, ReLU, and normalization layers, specially devised for optimal performance on small datasets. It also yields meaningful activation maps to explain sensor-based activation patterns. The standard approach is based on a CNN model, which our MLP model outperforms.GeXSe offers two types of explanations: sensor-based activation maps and visual domain explanations using short videos. These methods offer a comprehensive interpretation of the output from non-interpretable sensor data, thereby augmenting the interpretability of our model. Utilizing the Frechet Inception Distance (FID) for evaluation, it outperforms established methods, improving baseline performance by about 6\%. GeXSe also achieves a high F1 score of up to 0.85, demonstrating precision, recall, and noise resistance, marking significant progress in reliable and explainable smart space sensing systems.
['Jorge Ortiz', 'Murtadha Aldeer', 'Viswa Vijeth Ramesh', 'Nandana Pai', 'Yuan Sun']
2023-06-28
null
null
null
null
['activity-recognition', 'human-activity-recognition', 'human-activity-recognition']
['computer-vision', 'computer-vision', 'time-series']
[ 6.81063473e-01 4.41477388e-01 -3.34913164e-01 -3.68285030e-01 -4.99430060e-01 -5.79586983e-01 6.00579679e-01 -9.64904670e-03 4.63317223e-02 5.16874611e-01 6.48489475e-01 -3.14351231e-01 -3.36470306e-01 -3.58318746e-01 -7.68375397e-01 -6.56211257e-01 -2.52481848e-01 -1.91964403e-01 -3.11314732e-01 7.04722404e-02 1.62079513e-01 6.15576148e-01 -1.60208833e+00 6.09822094e-01 5.38220823e-01 1.54772592e+00 -1.02401055e-01 9.26064670e-01 1.76503599e-01 8.70446682e-01 -6.52100384e-01 1.57118097e-01 -7.30222417e-03 -1.61998495e-01 -4.03183401e-01 -1.14809699e-01 3.30479354e-01 -4.00242656e-01 -3.99581403e-01 3.03680032e-01 2.39381641e-01 -1.88565016e-01 6.44030213e-01 -1.68475628e+00 -1.02189469e+00 3.93253833e-01 -7.79565722e-02 3.01371664e-01 7.00965047e-01 5.88508904e-01 1.01066566e+00 -7.70093918e-01 1.58386037e-01 1.04855275e+00 7.51536191e-01 6.61250055e-01 -1.28284323e+00 -5.04573226e-01 1.14728734e-01 1.51776731e-01 -1.11236048e+00 -2.27711990e-01 7.42378652e-01 -4.44578528e-01 1.53413570e+00 6.82242393e-01 1.00258815e+00 1.69355869e+00 2.72002548e-01 9.50832009e-01 1.01202857e+00 -5.18814996e-02 4.93711025e-01 -1.57129720e-01 3.61202210e-02 5.51679492e-01 2.53226846e-01 1.52747065e-01 -9.15566504e-01 7.24595040e-02 9.35526907e-01 5.99498987e-01 -4.24208552e-01 -9.19069350e-02 -1.55893433e+00 4.38107044e-01 8.12537491e-01 6.42807782e-02 -6.67346299e-01 6.91379905e-01 -3.51009928e-02 -4.50920276e-02 1.51191711e-01 7.60819733e-01 -6.63272798e-01 -4.27192181e-01 -2.91920662e-01 -9.41851512e-02 5.96985400e-01 7.51748145e-01 4.19849366e-01 3.64722937e-01 -3.97928357e-01 2.24205047e-01 3.59631628e-01 7.58483231e-01 4.37160313e-01 -1.12711644e+00 3.34242344e-01 1.06692290e+00 1.43194512e-01 -8.34482431e-01 -5.90581119e-01 -4.79084253e-01 -7.33959675e-01 2.81444728e-01 -2.19091401e-03 -1.02376349e-01 -9.15739477e-01 1.52943218e+00 -2.45605960e-01 2.53136396e-01 1.62514493e-01 8.95442367e-01 7.99081326e-01 5.40592134e-01 3.22227776e-01 2.96987861e-01 1.24752629e+00 -6.65287495e-01 -5.42705774e-01 -5.91554940e-01 2.70755678e-01 1.67180687e-01 1.36405873e+00 4.47922528e-01 -6.31896675e-01 -5.68216980e-01 -1.40960586e+00 9.78717506e-02 -6.33010745e-01 2.88634002e-01 9.52085972e-01 5.00320077e-01 -1.07078779e+00 6.73675060e-01 -1.12763107e+00 -4.36803758e-01 6.60920441e-01 6.13265753e-01 -4.02103215e-01 2.05616236e-01 -6.53814077e-01 5.76676011e-01 2.57894248e-01 -1.71627387e-01 -6.58321142e-01 -8.26096356e-01 -9.93009508e-01 1.71590298e-01 1.36230156e-01 -8.03434372e-01 9.52733338e-01 -6.81275547e-01 -1.32175314e+00 3.93804997e-01 -1.03715889e-01 -6.54401839e-01 1.82147071e-01 -3.98107111e-01 -5.93585253e-01 2.31778145e-01 -1.47932500e-01 9.99975860e-01 8.25491369e-01 -9.17289436e-01 -3.39094311e-01 -3.63339156e-01 6.11623600e-02 1.23467401e-01 -4.73954111e-01 -5.97123623e-01 -2.81442851e-01 -5.99648654e-01 1.52405858e-01 -8.69240165e-01 -6.12229146e-02 3.30050737e-01 -5.13093174e-01 -4.56713364e-02 1.00650072e+00 -7.32126355e-01 9.38101232e-01 -2.26593947e+00 -8.44794214e-02 4.96447347e-02 6.87478542e-01 -3.99783105e-02 -1.05689093e-01 1.77819312e-01 -3.23870599e-01 -1.04534132e-02 -2.92753220e-01 -3.33490789e-01 2.25588188e-01 4.55918908e-01 -3.51503998e-01 1.72324851e-01 6.00358248e-01 1.55210185e+00 -9.07408476e-01 1.55695349e-01 7.93104947e-01 8.39208305e-01 -3.82486969e-01 1.76714972e-01 -2.79408038e-01 5.94215214e-01 -3.28237981e-01 1.02351534e+00 -6.79403245e-02 -6.44487679e-01 -1.10537909e-01 -3.45439225e-01 9.32504013e-02 1.90209836e-01 -8.11970890e-01 1.75630486e+00 -2.25590363e-01 9.04771328e-01 -4.01951253e-01 -7.47579753e-01 9.23789918e-01 7.64793456e-02 8.04014325e-01 -8.26295376e-01 5.63678294e-02 -1.03199415e-01 -5.25724947e-01 -7.65206993e-01 1.62624910e-01 2.30886742e-01 -1.27335533e-01 3.32861125e-01 -9.23779830e-02 2.96899199e-01 -5.10231376e-01 1.50811508e-01 1.69530761e+00 2.89235830e-01 3.57479602e-01 -1.51396431e-02 -2.24147737e-02 -1.47684008e-01 1.80424571e-01 7.91018128e-01 -5.17838821e-02 6.76461995e-01 2.52424896e-01 -6.95244431e-01 -8.10041487e-01 -1.39169180e+00 1.81244746e-01 8.95679951e-01 1.73773408e-01 -5.60161471e-01 -6.56062067e-01 -5.88414788e-01 3.63984853e-01 7.77139127e-01 -8.63824069e-01 -2.26552382e-01 -4.48511392e-02 -5.56591213e-01 5.36236703e-01 1.32136524e+00 5.53342402e-01 -1.08518898e+00 -1.19819343e+00 8.91336799e-02 -2.10946664e-01 -1.30961597e+00 6.65876120e-02 5.62871277e-01 -9.10550058e-01 -1.28648901e+00 -3.17750990e-01 8.54224339e-02 6.57573879e-01 8.81450921e-02 9.28842545e-01 -1.29605666e-01 -4.48442519e-01 9.86873269e-01 -1.29399925e-01 -6.35097146e-01 1.23098772e-02 -2.42647097e-01 3.22226614e-01 5.83590493e-02 6.21797860e-01 -5.70437551e-01 -8.95325184e-01 2.62190223e-01 -8.33963871e-01 2.30532035e-01 8.48368227e-01 3.75426918e-01 6.97472095e-01 -3.79749775e-01 3.23000252e-01 -8.58505517e-02 6.25961602e-01 -5.12219846e-01 -1.98183298e-01 5.44562191e-02 -9.03781593e-01 3.30409139e-01 5.18939137e-01 -5.45140505e-01 -5.54092765e-01 3.32608610e-01 5.45909919e-04 -5.77706635e-01 -4.86472905e-01 2.06226110e-01 -1.45310715e-01 -1.12794027e-01 9.75546420e-01 2.62181163e-01 8.77696350e-02 -4.31574255e-01 4.43668008e-01 6.62402868e-01 1.01573849e+00 1.74424183e-02 5.86358190e-01 6.40037656e-01 -9.02011916e-02 -7.27458179e-01 -5.75882316e-01 -2.96971768e-01 -4.16361421e-01 -2.96964765e-01 9.40385997e-01 -8.25461626e-01 -1.15472746e+00 1.27415523e-01 -9.65979517e-01 -3.49489063e-01 -6.20488584e-01 5.09994984e-01 -6.09210968e-01 -8.47830847e-02 -2.96285689e-01 -1.02073538e+00 -3.08565497e-01 -7.86819994e-01 1.51721120e+00 1.61329508e-01 -9.06100035e-01 -1.01069093e+00 -3.92716378e-01 3.81564528e-01 5.71301043e-01 9.54417169e-01 4.99844998e-01 -7.46149719e-01 -8.86737883e-01 -3.08092117e-01 -1.93879545e-01 3.09309483e-01 1.33326352e-01 -4.86914665e-01 -1.35992777e+00 4.83501563e-03 -1.68154582e-01 -8.30646232e-02 7.12270796e-01 5.70014358e-01 1.46909976e+00 -6.16960347e-01 -5.51390409e-01 7.02297509e-01 1.22335398e+00 1.85856402e-01 7.30215251e-01 2.24050343e-01 7.98898876e-01 1.65720433e-01 1.35245904e-01 4.97029811e-01 3.89797717e-01 5.16382277e-01 8.48105431e-01 -4.27588969e-01 -5.88392094e-02 -5.04528582e-01 4.92106259e-01 2.23384947e-01 -1.23200260e-01 -1.31642416e-01 -7.32952893e-01 3.63124818e-01 -1.96614718e+00 -8.30557466e-01 -1.04265518e-01 1.79568768e+00 2.06726068e-03 9.98892933e-02 -5.70790470e-03 5.43946981e-01 1.92969456e-01 1.46317184e-01 -1.21440160e+00 -2.70807952e-01 -3.16278160e-01 1.71636999e-01 6.15043819e-01 1.69623062e-01 -9.91286039e-01 3.51859331e-01 7.43238688e+00 6.85096607e-02 -1.13760209e+00 -1.37419432e-01 4.72967356e-01 -3.98885727e-01 -4.31806564e-01 -4.23092663e-01 -3.60054672e-01 5.75813770e-01 1.10543334e+00 2.93140233e-01 7.50161171e-01 9.82898831e-01 1.89677581e-01 2.31919084e-02 -1.46292162e+00 1.52247119e+00 2.13104069e-01 -1.63731813e+00 -1.79091945e-01 2.88666278e-01 2.73187459e-01 2.81548172e-01 2.15928435e-01 -3.09091471e-02 7.63514861e-02 -1.45039535e+00 6.58560634e-01 7.44552553e-01 9.78798509e-01 -2.62347609e-01 4.04566854e-01 1.55613407e-01 -1.23248374e+00 -6.66553855e-01 2.21742317e-01 -4.26766366e-01 -9.60675627e-02 2.95735270e-01 -8.91276002e-01 1.18288435e-01 8.89105201e-01 1.07914722e+00 -6.10202909e-01 5.70694387e-01 -3.93936813e-01 5.20015001e-01 -4.82727587e-01 -2.13632956e-01 1.01431809e-01 2.62703776e-01 4.29283738e-01 1.12356126e+00 3.85497600e-01 2.51696140e-01 -3.20567638e-01 1.24620330e+00 2.56679237e-01 -6.98570132e-01 -8.89252365e-01 -1.64960250e-01 3.74732643e-01 1.19551432e+00 -5.10099232e-01 -3.69269818e-01 -2.10366696e-01 1.18411076e+00 -1.99920475e-01 5.68896830e-01 -9.53317642e-01 -1.67240754e-01 9.28390384e-01 2.32068092e-01 9.39960182e-02 -3.01833302e-01 -8.06797862e-01 -9.79266047e-01 1.55425072e-01 -6.31539285e-01 3.66463035e-01 -1.39780736e+00 -1.02687943e+00 4.14422274e-01 5.94018064e-02 -1.17179668e+00 -4.64602739e-01 -9.57328320e-01 -4.26121444e-01 6.41860306e-01 -1.24788332e+00 -1.25966883e+00 -9.74664688e-01 5.68448424e-01 5.52881598e-01 -2.27526352e-01 9.79911506e-01 -7.32658133e-02 -3.25434595e-01 1.98853254e-01 -2.73819298e-01 -1.08558849e-01 7.40941688e-02 -1.43695438e+00 8.09824646e-01 5.81235051e-01 2.88429976e-01 6.32088184e-01 5.29829383e-01 -4.93850917e-01 -1.86967659e+00 -1.12377322e+00 4.57125634e-01 -1.26121140e+00 5.22983491e-01 -3.41823310e-01 -5.97980499e-01 9.38602388e-01 -1.04575895e-01 8.58937427e-02 9.02041435e-01 -3.21952924e-02 -2.98372269e-01 -2.39741698e-01 -1.05074632e+00 5.18503487e-01 1.35669732e+00 -7.58932531e-01 -6.53720915e-01 1.17203444e-01 6.80654526e-01 -2.72307009e-01 -8.41070294e-01 4.84065980e-01 9.06767726e-01 -9.60352063e-01 1.26974273e+00 -5.13733804e-01 4.97835070e-01 -3.97513479e-01 -3.63924801e-01 -1.14743745e+00 -4.40624535e-01 -6.22230053e-01 -7.58089840e-01 5.71791530e-01 4.36545461e-01 -8.20148349e-01 8.98935378e-01 1.09424949e+00 -2.96649903e-01 -7.81372309e-01 -6.64876461e-01 -6.97369695e-01 -9.28643405e-01 -9.70602572e-01 9.22112107e-01 7.62200415e-01 1.87069386e-01 2.06653178e-01 -1.23457871e-01 2.43838638e-01 5.58484554e-01 -2.64990538e-01 6.84009790e-01 -1.31684852e+00 -3.72024477e-01 -2.63572901e-01 -7.05425143e-01 -1.21580708e+00 -2.10324213e-01 -5.27960539e-01 -2.66373694e-01 -1.75593483e+00 -1.06478475e-01 -1.22440450e-01 -6.27701342e-01 1.02490926e+00 1.48165047e-01 6.23423636e-01 3.21406350e-02 2.91748971e-01 -6.34984314e-01 4.56992745e-01 7.93556035e-01 -3.57781112e-01 -3.51717681e-01 -2.74213493e-01 -1.03155649e+00 7.31759131e-01 8.88572812e-01 -4.07467969e-02 -5.74010611e-01 -4.85338718e-01 6.73820218e-03 -8.77261162e-02 1.04597700e+00 -1.49615407e+00 1.69166297e-01 -7.86002055e-02 1.01359415e+00 -4.35772806e-01 7.71192908e-01 -9.39747572e-01 4.83868599e-01 5.70325553e-01 -3.28926623e-01 1.52238056e-01 4.02763069e-01 8.07442904e-01 2.11530462e-01 7.13482738e-01 4.03930694e-02 4.48069051e-02 -1.03646505e+00 1.58427790e-01 -2.24794462e-01 -5.96308410e-01 8.89702380e-01 -8.46587718e-01 -4.62247163e-01 -4.36880589e-01 -8.46126318e-01 -7.70947710e-02 2.63996452e-01 8.06426346e-01 9.14327919e-01 -1.48883474e+00 -1.28549665e-01 5.81260860e-01 5.37429452e-01 -2.18751863e-01 1.41671323e-03 6.96136534e-01 -1.73840970e-01 5.60463309e-01 -3.45502496e-01 -9.97003138e-01 -9.35304940e-01 3.09201598e-01 3.28248978e-01 3.64942163e-01 -9.90412295e-01 5.77490866e-01 9.95528847e-02 -8.55212137e-02 3.73613894e-01 -9.62021232e-01 -6.31109551e-02 -4.92008448e-01 6.58788860e-01 2.81050205e-01 -1.53146625e-01 -1.95546448e-01 -6.32103205e-01 4.59666491e-01 7.34115601e-01 -1.34524003e-01 1.33085775e+00 4.72884113e-03 6.08287871e-01 5.80254674e-01 8.63486886e-01 -4.02609289e-01 -1.95664787e+00 1.78617924e-01 -1.04504995e-01 -1.75238520e-01 2.02831309e-02 -1.43587542e+00 -6.66647971e-01 8.34536910e-01 8.47682476e-01 3.27325284e-01 1.28905308e+00 1.80565536e-01 6.75205052e-01 4.13946867e-01 1.51101917e-01 -8.64459813e-01 3.96242142e-01 1.60014965e-02 1.04593050e+00 -1.20450115e+00 -1.07086562e-01 -1.89798608e-01 -6.73206806e-01 9.27895188e-01 5.01456797e-01 1.82529390e-01 2.14942694e-01 4.88326490e-01 -2.24568788e-02 -5.51986158e-01 -5.39774954e-01 3.61292344e-03 5.39244831e-01 1.01841807e+00 -3.10189500e-02 2.23588124e-01 5.90831101e-01 8.39740038e-01 -1.83594659e-01 1.61413431e-01 -6.57752752e-02 8.16608667e-01 -2.93214917e-01 -3.97787839e-01 -4.06272441e-01 5.61580062e-01 1.17151096e-01 5.16147390e-02 -7.42996335e-01 6.38715446e-01 5.51624596e-02 1.06717622e+00 2.94094652e-01 -8.75726044e-01 4.28003788e-01 1.19899802e-01 2.75106847e-01 -1.76689625e-01 -4.38120514e-01 -4.10512954e-01 -3.74507271e-02 -1.17418468e+00 -2.83192664e-01 -2.19542459e-01 -1.42740536e+00 -2.17515722e-01 3.09609324e-01 -3.84271413e-01 1.11145091e+00 1.19179678e+00 9.19140160e-01 8.82545829e-01 2.72563219e-01 -9.57753778e-01 -1.01958789e-01 -7.44224429e-01 -3.21454227e-01 4.92438495e-01 6.56804562e-01 -5.89313507e-01 -2.95530021e-01 2.83528656e-01]
[7.9894700050354, 0.6596238613128662]
9dde3202-a1b8-475c-9b55-d3f039f080fb
attention-based-3d-object-reconstruction-from
2008.04738
null
https://arxiv.org/abs/2008.04738v1
https://arxiv.org/pdf/2008.04738v1.pdf
Attention-based 3D Object Reconstruction from a Single Image
Recently, learning-based approaches for 3D reconstruction from 2D images have gained popularity due to its modern applications, e.g., 3D printers, autonomous robots, self-driving cars, virtual reality, and augmented reality. The computer vision community has applied a great effort in developing functions to reconstruct the full 3D geometry of objects and scenes. However, to extract image features, they rely on convolutional neural networks, which are ineffective in capturing long-range dependencies. In this paper, we propose to substantially improve Occupancy Networks, a state-of-the-art method for 3D object reconstruction. For such we apply the concept of self-attention within the network's encoder in order to leverage complementary input features rather than those based on local regions, helping the encoder to extract global information. With our approach, we were capable of improving the original work in 5.05% of mesh IoU, 0.83% of Normal Consistency, and more than 10X the Chamfer-L1 distance. We also perform a qualitative study that shows that our approach was able to generate much more consistent meshes, confirming its increased generalization power over the current state-of-the-art.
['Nathan Gavenski', 'Rodrigo Barros', 'Felipe Tasoniero', 'Eduardo Pooch', 'Andrey Salvi']
2020-08-11
null
null
null
null
['3d-object-reconstruction', '3d-object-reconstruction-from-a-single-image']
['computer-vision', 'computer-vision']
[-3.48979654e-03 3.32009643e-01 6.47862628e-02 -2.44402662e-01 -6.05135381e-01 -2.87687510e-01 5.79729855e-01 -7.02723414e-02 -1.28451303e-01 4.95543480e-01 6.19875118e-02 -3.94191081e-03 -1.64155304e-01 -1.01169157e+00 -1.19231498e+00 -2.27916703e-01 -7.43002370e-02 7.16489971e-01 3.60417396e-01 -3.66809428e-01 2.48088449e-01 1.02281821e+00 -1.94949245e+00 2.34566242e-01 5.60293078e-01 1.21940780e+00 3.36466461e-01 3.37793052e-01 -9.22066495e-02 5.44656634e-01 -1.62922949e-01 -9.99296531e-02 2.09610835e-01 -2.71467585e-02 -6.69685543e-01 2.22600270e-02 6.48657203e-01 -4.34943348e-01 -5.50514281e-01 7.65276849e-01 3.75783920e-01 -9.07933116e-02 6.29832029e-01 -9.52609420e-01 -7.93225169e-01 2.18557671e-01 -4.95986313e-01 -1.01829872e-01 4.93358880e-01 1.50968745e-01 8.22844684e-01 -1.03320575e+00 9.55092311e-01 1.21774352e+00 9.55580175e-01 4.86103028e-01 -1.23500776e+00 -5.68381667e-01 -1.74917027e-01 1.32079601e-01 -1.44836557e+00 -4.18202549e-01 1.07766032e+00 -4.06852603e-01 1.16614294e+00 1.24707416e-01 8.79730999e-01 9.51501191e-01 4.83917654e-01 6.70797348e-01 1.13782215e+00 -3.24918747e-01 8.44328329e-02 1.29995137e-01 -4.17246640e-01 8.34556520e-01 2.42033154e-02 2.72154331e-01 -4.41632032e-01 1.76297039e-01 1.35101068e+00 1.48615427e-03 6.78817183e-02 -7.03026533e-01 -1.10740757e+00 7.80109227e-01 8.64925802e-01 3.12208205e-01 -4.82109338e-01 4.44313526e-01 6.53881356e-02 -3.74977998e-02 7.71999896e-01 5.46891034e-01 -3.17640781e-01 -5.17803021e-02 -6.48887217e-01 3.65150243e-01 6.18999779e-01 9.56669927e-01 8.22793067e-01 -2.18552854e-02 2.82893270e-01 7.79303193e-01 3.01848233e-01 5.42999268e-01 -5.24076028e-03 -1.24536002e+00 1.15626849e-01 6.68972194e-01 1.02405781e-02 -1.09222305e+00 -6.50671542e-01 -4.22896773e-01 -9.82892931e-01 5.98890007e-01 9.36955400e-03 3.32469493e-01 -1.02357566e+00 1.48867047e+00 3.19469124e-01 1.73376679e-01 -3.83932739e-01 9.64921594e-01 6.48130298e-01 3.99706751e-01 -3.28845352e-01 3.17512184e-01 8.96431625e-01 -6.19069338e-01 -3.61374289e-01 -8.45973343e-02 3.81137788e-01 -6.55406237e-01 9.13639128e-01 3.87258470e-01 -1.34332919e+00 -7.48637021e-01 -1.15367782e+00 -7.96831697e-02 -3.51690799e-01 -4.09518987e-01 6.41691983e-01 2.46717781e-01 -1.17170691e+00 1.00718391e+00 -8.04521143e-01 -3.64409447e-01 8.44017684e-01 3.38370770e-01 -6.30883276e-01 -2.33031839e-01 -8.73336077e-01 1.19561541e+00 7.91336372e-02 -2.48438418e-01 -8.07650089e-01 -8.70518863e-01 -8.61404717e-01 -3.58413272e-02 1.64245486e-01 -7.55086660e-01 9.61208284e-01 -5.82551897e-01 -1.52229714e+00 9.43260670e-01 1.33693889e-01 -4.37440842e-01 5.02228439e-01 -1.19769029e-01 -2.20864192e-01 1.04032949e-01 1.59628123e-01 1.03947973e+00 5.52086473e-01 -1.61467457e+00 -3.99534196e-01 -5.51842988e-01 1.31973773e-01 9.62850302e-02 1.86459757e-02 -6.15363359e-01 -4.93126333e-01 -3.47698301e-01 4.08943027e-01 -1.02338481e+00 -2.21837074e-01 4.79670197e-01 -1.54904783e-01 -1.44025430e-01 9.10658062e-01 -4.61360991e-01 5.17096460e-01 -2.05262136e+00 1.53422549e-01 3.52739930e-01 3.37150842e-01 -6.39714226e-02 -6.57285154e-02 2.26305068e-01 2.15069965e-01 7.23536462e-02 -3.01593423e-01 -5.06599009e-01 8.26134067e-03 3.27874213e-01 -3.14833261e-02 6.24995947e-01 4.59601313e-01 1.11186969e+00 -7.90895522e-01 -2.60930777e-01 7.67600596e-01 8.98182511e-01 -6.87292278e-01 -9.41229910e-02 -2.01021135e-01 5.36295414e-01 -1.30811855e-01 5.39784610e-01 6.99756324e-01 -3.00743133e-01 -2.32540369e-02 -1.94519326e-01 -8.88305604e-02 1.33851036e-01 -9.93377864e-01 2.23350310e+00 -7.43723929e-01 7.38740444e-01 1.73936784e-02 -8.76790285e-01 1.00669277e+00 6.48503751e-02 8.47586691e-01 -1.23301351e+00 7.86467418e-02 2.26865157e-01 -1.84547201e-01 -2.75722325e-01 4.63282764e-01 -6.44137114e-02 7.59506747e-02 1.96853086e-01 -5.13500161e-02 -5.91195047e-01 -3.52399349e-01 -1.38201982e-01 1.06594157e+00 4.42361116e-01 1.50583573e-02 -3.69260818e-01 2.01069713e-01 3.18351388e-02 1.44719454e-02 5.08409858e-01 1.07144788e-01 9.18855786e-01 1.18010625e-01 -6.09091163e-01 -1.43172848e+00 -1.16952598e+00 -4.50184971e-01 4.57262546e-01 4.14648801e-01 -1.56136036e-01 -5.65919876e-01 -3.97429228e-01 3.76288652e-01 6.55260146e-01 -7.67677784e-01 -2.60165960e-01 -6.84772253e-01 -7.66376778e-02 4.21284288e-01 7.06202745e-01 5.05505264e-01 -9.94607806e-01 -8.19798946e-01 3.65173221e-01 2.90148944e-01 -1.03888702e+00 -4.86785975e-05 1.42246142e-01 -9.95966434e-01 -9.39683974e-01 -5.19788802e-01 -5.81644714e-01 6.31373405e-01 2.53973097e-01 1.28155363e+00 5.30838184e-02 -3.60820115e-01 3.79251927e-01 -1.56472385e-01 -2.61432260e-01 -4.27622914e-01 2.77234018e-02 5.91486692e-02 -4.61505920e-01 -1.24382870e-02 -9.03509200e-01 -5.51454544e-01 3.68516386e-01 -7.88255751e-01 2.37983152e-01 6.96928322e-01 7.89088607e-01 7.41624594e-01 -6.29913136e-02 3.32802176e-01 -7.84610927e-01 2.24161819e-01 -5.43939769e-01 -3.90951425e-01 -2.79065609e-01 -5.79475164e-01 1.79020673e-01 5.02341449e-01 -3.14760536e-01 -6.80576026e-01 1.79231450e-01 -4.33448434e-01 -7.99648583e-01 -2.49183178e-01 2.44229913e-01 -2.69994233e-02 -2.62595266e-01 6.92185700e-01 6.25340939e-02 2.50099301e-01 -4.66161311e-01 3.85976404e-01 4.88697380e-01 4.70206946e-01 -4.48428422e-01 5.99191248e-01 6.63851142e-01 2.67644763e-01 -7.72577286e-01 -5.85487247e-01 -1.56462550e-01 -7.44583249e-01 -3.01867366e-01 8.04584146e-01 -7.98534155e-01 -8.39233220e-01 3.40662926e-01 -1.22642815e+00 -3.88708979e-01 -4.60127592e-01 2.12208018e-01 -8.23565185e-01 -9.73303467e-02 -4.47184980e-01 -6.42887175e-01 -1.00027353e-01 -1.24567127e+00 1.40009534e+00 7.32418383e-03 -2.03252167e-01 -8.74912202e-01 -4.09028307e-02 2.87683934e-01 6.15982950e-01 5.48141420e-01 9.44320679e-01 -1.33392081e-01 -7.38310993e-01 -1.22251533e-01 -3.18104506e-01 2.62831062e-01 1.64151222e-01 -2.58729368e-01 -1.05535436e+00 -8.89052525e-02 -2.42442727e-01 -2.36495554e-01 5.68668842e-01 3.45330387e-01 1.39553750e+00 1.88018922e-02 -3.47764760e-01 5.28165758e-01 1.40779769e+00 -2.56590117e-02 8.24020386e-01 1.22158863e-01 8.52143824e-01 4.29804981e-01 3.24046195e-01 3.62743467e-01 4.80130911e-01 8.04864228e-01 8.39929640e-01 -1.83243111e-01 -4.78793979e-01 -4.60372120e-01 -1.96861267e-01 7.51206458e-01 -2.33550385e-01 6.06113151e-02 -1.04519570e+00 4.14818436e-01 -1.69971383e+00 -6.92075551e-01 -1.34609910e-02 2.08063126e+00 5.63548267e-01 4.16835457e-01 -2.69883543e-01 1.24798276e-01 3.99938583e-01 -6.45010546e-03 -7.14191675e-01 -3.88235092e-01 5.01604117e-02 4.83249038e-01 6.10188901e-01 3.91135812e-01 -9.08022642e-01 8.59744549e-01 6.37058735e+00 5.41102171e-01 -1.23283756e+00 4.81467275e-03 5.16732872e-01 7.04300702e-02 -5.33249676e-01 -2.52027929e-01 -3.95621270e-01 3.48842531e-01 7.07555234e-01 2.75527358e-01 5.40316880e-01 9.22807872e-01 -5.78314438e-02 -1.37940854e-01 -1.25953877e+00 1.18567824e+00 2.40652949e-01 -1.75159478e+00 1.56397684e-04 4.08449560e-01 9.34074521e-01 1.72327459e-01 -3.90638821e-02 1.58797652e-01 1.90689206e-01 -1.33003664e+00 1.02283728e+00 8.32863271e-01 1.02148616e+00 -8.97775352e-01 6.30394876e-01 4.57258105e-01 -1.02156234e+00 2.16774270e-01 -3.87848407e-01 -2.29153290e-01 1.25084043e-01 7.29279816e-01 -9.26798403e-01 5.18118680e-01 8.43134224e-01 8.24841678e-01 -2.83083647e-01 8.43690455e-01 2.10082248e-01 7.56036639e-02 -5.17136335e-01 3.85840447e-03 1.27736539e-01 6.50512725e-02 4.62081373e-01 6.93063259e-01 2.48115122e-01 -3.81581225e-02 1.96992218e-01 9.83402193e-01 -3.44830483e-01 -1.08742997e-01 -9.98508275e-01 2.90079594e-01 3.95448089e-01 8.76434624e-01 -7.26869404e-01 -3.01656932e-01 -2.56871939e-01 9.17167783e-01 5.09007335e-01 -3.88552062e-02 -9.21651602e-01 -2.53632039e-01 6.94640636e-01 5.78400135e-01 4.78081107e-01 -5.69684744e-01 -7.04899788e-01 -5.94033301e-01 6.45309240e-02 -5.35452962e-01 -4.73961294e-01 -9.68907475e-01 -1.19671023e+00 5.32582700e-01 -7.25828484e-02 -1.23512721e+00 -1.74960479e-01 -6.48130417e-01 -1.97473302e-01 7.25582182e-01 -1.28958106e+00 -1.15198374e+00 -4.58786666e-01 3.64091486e-01 4.88835126e-01 5.70561402e-02 8.27639878e-01 4.44808453e-01 7.99256638e-02 2.11526603e-01 1.77257136e-02 -1.21827818e-01 4.22251582e-01 -9.77202117e-01 5.20149827e-01 3.40708226e-01 2.46210352e-01 3.04192781e-01 4.44360226e-01 -6.20650053e-01 -1.80463398e+00 -8.94188225e-01 3.94710332e-01 -6.06712639e-01 3.29524308e-01 -4.74614769e-01 -7.14727998e-01 4.54979777e-01 -1.32531881e-01 3.96347910e-01 5.57158589e-02 -1.33129982e-02 -3.80805641e-01 -7.05158934e-02 -1.38739419e+00 4.54864919e-01 1.51729977e+00 -5.66642821e-01 -3.92598897e-01 4.17478196e-02 6.64063454e-01 -7.78398693e-01 -1.09024417e+00 5.77218592e-01 7.68636942e-01 -1.21615696e+00 1.15429926e+00 -3.32146406e-01 8.13788950e-01 -1.17379874e-01 -4.69077021e-01 -1.23654318e+00 -5.98595619e-01 2.23433115e-02 -2.45406538e-01 8.29392910e-01 1.42870337e-01 -4.65946138e-01 9.00057256e-01 4.05154079e-01 -5.84799469e-01 -1.08061290e+00 -1.15878010e+00 -4.77324814e-01 9.81926844e-02 -7.43791342e-01 7.21443415e-01 7.93083429e-01 -4.43362057e-01 2.68970877e-01 -2.01144248e-01 4.10346501e-02 5.65166056e-01 1.75472554e-02 7.53019810e-01 -1.53192222e+00 -6.59382641e-02 -5.32798886e-01 -7.66463220e-01 -1.08843768e+00 1.85677648e-01 -1.00323904e+00 1.49462879e-01 -1.82917714e+00 -9.46974754e-02 -8.20902884e-01 -1.86359793e-01 3.75917971e-01 3.70908499e-01 6.23080969e-01 5.88841587e-02 9.34730992e-02 -3.51307333e-01 6.10654175e-01 1.48844779e+00 -2.71509945e-01 -1.05928779e-01 -3.47270578e-01 -5.65342605e-01 6.43004715e-01 7.05729365e-01 -3.26075375e-01 -2.98052639e-01 -7.16506660e-01 3.83454636e-02 -1.85164467e-01 6.65204346e-01 -1.26965714e+00 1.21387571e-01 1.37258902e-01 9.04876590e-01 -6.70770705e-01 6.78662062e-01 -1.12027645e+00 4.21663940e-01 4.64433432e-01 -4.68369238e-02 -8.02873299e-02 3.66439193e-01 3.97056758e-01 1.26115859e-01 2.00357065e-01 7.43518889e-01 -2.87719905e-01 -7.50540614e-01 4.20503914e-01 1.04517443e-02 -1.42760307e-01 8.90629232e-01 -4.23130304e-01 2.67719547e-03 -1.84911698e-01 -4.38608021e-01 -1.10206552e-01 8.73023152e-01 5.84575057e-01 8.81134689e-01 -1.57859921e+00 -6.17756069e-01 4.74988967e-01 6.62394091e-02 4.02845860e-01 3.49854529e-01 6.12269521e-01 -7.08919823e-01 3.86762887e-01 -5.05459726e-01 -1.09079075e+00 -6.91958189e-01 3.98964971e-01 2.70290285e-01 5.43240272e-02 -1.03063881e+00 6.13460720e-01 -5.87547198e-02 -6.20005906e-01 1.54076219e-01 -4.39456820e-01 1.76228225e-01 -2.96713561e-01 1.00222021e-01 3.75239789e-01 3.21790814e-01 -5.44498980e-01 -4.60832477e-01 8.43495965e-01 1.78632766e-01 -4.69503626e-02 1.49864745e+00 1.13297440e-01 4.38507386e-02 4.68808115e-01 1.37863457e+00 -6.29584715e-02 -1.49430072e+00 -9.21489298e-03 -2.87961155e-01 -6.15359068e-01 3.22919130e-01 -5.94980836e-01 -1.10001850e+00 7.72432029e-01 7.50242233e-01 2.64315456e-01 7.11261392e-01 3.68670553e-01 8.48737717e-01 2.89761066e-01 8.56498957e-01 -8.37624490e-01 -1.01661449e-02 6.05975389e-01 1.03523278e+00 -1.31119287e+00 2.14643832e-02 -1.86441153e-01 -2.50559837e-01 1.01780510e+00 4.74360675e-01 -5.45104921e-01 8.30498636e-01 3.96747470e-01 -2.38358766e-01 -3.88592243e-01 -4.82489884e-01 -2.51418129e-02 3.34294379e-01 7.58156359e-01 3.17930430e-01 1.24377929e-01 3.49456102e-01 1.46577373e-01 -3.42404604e-01 -8.09969455e-02 1.49985343e-01 9.65353012e-01 -3.97084087e-01 -7.36540437e-01 -1.71672836e-01 6.11087978e-01 5.18244095e-02 1.84568495e-01 -1.70533031e-01 9.68713164e-01 2.31509268e-01 4.84443247e-01 5.56357265e-01 -6.75318301e-01 6.95161402e-01 -1.75349206e-01 8.72630477e-01 -4.92507309e-01 -1.63220257e-01 -2.20532268e-01 -2.92798616e-02 -9.35744822e-01 -4.01459873e-01 -5.10012388e-01 -1.28245318e+00 -4.03999925e-01 -7.74257705e-02 -4.11363274e-01 1.09986126e+00 7.76638865e-01 6.37873530e-01 7.40313947e-01 7.45601058e-01 -1.44823837e+00 -1.95831090e-01 -7.79861510e-01 -4.22257990e-01 4.89475638e-01 1.75101966e-01 -1.04731667e+00 -6.16541505e-02 -1.93153203e-01]
[8.420536041259766, -3.4987101554870605]
eb739eac-56b0-43b9-96ea-6b0f4f647287
integrating-geometric-control-into-text-to
2306.04607
null
https://arxiv.org/abs/2306.04607v4
https://arxiv.org/pdf/2306.04607v4.pdf
Integrating Geometric Control into Text-to-Image Diffusion Models for High-Quality Detection Data Generation via Text Prompt
Diffusion models have attracted significant attention due to their remarkable ability to create content and generate data for tasks such as image classification. However, the usage of diffusion models to generate high-quality object detection data remains an underexplored area, where not only the image-level perceptual quality but also geometric conditions such as bounding boxes and camera views are essential. Previous studies have utilized either copy-paste synthesis or layout-to-image (L2I) generation with specifically designed modules to encode semantic layouts. In this paper, we propose GeoDiffusion, a simple framework that can flexibly translate various geometric conditions into text prompts and empower the pre-trained text-to-image (T2I) diffusion models for high-quality detection data generation. Unlike previous L2I methods, our GeoDiffusion is able to encode not only bounding boxes but also extra geometric conditions such as camera views in self-driving scenes. Extensive experiments demonstrate GeoDiffusion outperforms previous L2I methods while maintaining 4x training time faster. To the best of our knowledge, this is the first work to adopt diffusion models for layout-to-image generation with geometric conditions and demonstrate that L2I-generated images can be beneficial for improving the performance of object detectors.
['Dit-yan Yeung', 'Zhenguo Li', 'Lanqing Hong', 'Zhe Chen', 'Enze Xie', 'Kai Chen']
2023-06-07
null
null
null
null
['layout-to-image-generation']
['computer-vision']
[ 3.41363043e-01 -6.87683672e-02 2.05913365e-01 -3.19305539e-01 -4.87422705e-01 -7.05839336e-01 9.41196620e-01 -5.37680686e-02 -4.44986783e-02 3.22425157e-01 -5.92542067e-02 -4.81631070e-01 1.70388073e-01 -1.08883679e+00 -8.71630251e-01 -4.61767703e-01 2.75438726e-01 3.59490603e-01 7.10757554e-01 -2.30816349e-01 5.64809561e-01 7.06114650e-01 -1.82605004e+00 5.29048800e-01 9.29223120e-01 8.38610232e-01 6.62980855e-01 9.22758460e-01 -2.87189811e-01 5.86644769e-01 -9.54245627e-01 -2.29725346e-01 3.94314021e-01 -4.45675343e-01 -2.75802672e-01 2.60730773e-01 9.05843258e-01 -7.45625734e-01 -2.17949897e-01 8.79611433e-01 6.84816658e-01 -1.67048737e-01 7.91608989e-01 -1.37496817e+00 -1.16873848e+00 4.30311710e-01 -7.36755729e-01 1.18823968e-01 3.27531993e-01 6.47386909e-01 6.55996084e-01 -1.01454973e+00 8.33269536e-01 1.43582952e+00 2.09515840e-01 6.38761222e-01 -1.15265262e+00 -6.74847662e-01 5.83691038e-02 1.16754547e-01 -1.13951242e+00 -2.32050881e-01 8.71310651e-01 -5.86812973e-01 9.52207148e-01 1.10780045e-01 5.22579491e-01 1.35769308e+00 1.17552593e-01 9.97578740e-01 9.84746695e-01 -5.55632651e-01 3.63371998e-01 2.03320652e-01 -3.85956943e-01 7.52627671e-01 3.50618541e-01 1.75451413e-01 -6.36626840e-01 3.48856151e-01 1.12118483e+00 -2.28936657e-01 1.31353736e-01 -3.55127186e-01 -1.29020298e+00 6.82013571e-01 6.04059458e-01 7.46585056e-02 -2.19357282e-01 3.17005545e-01 1.79594144e-01 1.12771496e-01 4.45248842e-01 6.76988363e-01 1.05273053e-01 1.34793550e-01 -9.10027206e-01 4.57613945e-01 5.39209068e-01 1.36761034e+00 6.37568712e-01 2.95625836e-01 -6.04899764e-01 7.95084953e-01 1.16397463e-01 9.44351614e-01 2.91123658e-01 -8.89724493e-01 6.50254369e-01 6.81796849e-01 2.01979369e-01 -1.05062425e+00 -1.67816922e-01 -2.39693254e-01 -7.96533763e-01 4.97634768e-01 2.90833503e-01 -1.39651030e-01 -9.78422582e-01 1.27700531e+00 2.99573243e-01 -3.09914708e-01 -1.07009917e-01 1.04332745e+00 7.03852355e-01 7.31555223e-01 -9.81093049e-02 3.81982207e-01 1.22537398e+00 -1.21993661e+00 -5.29300630e-01 -5.26853323e-01 5.91833353e-01 -1.08512044e+00 1.11154592e+00 4.28942084e-01 -1.20748734e+00 -8.63017321e-01 -1.05603039e+00 -2.40169421e-01 -3.18602324e-01 4.99416500e-01 3.99995863e-01 7.74240613e-01 -1.32655168e+00 1.15566343e-01 -2.85555124e-01 -4.40646321e-01 4.54682827e-01 -5.23521863e-02 -4.49215397e-02 -3.29665154e-01 -9.36368883e-01 5.95406771e-01 2.76377559e-01 -2.78360695e-01 -9.70409691e-01 -6.85032070e-01 -7.42325187e-01 -1.50173455e-01 5.01232266e-01 -7.84146607e-01 1.18421650e+00 -6.65227771e-01 -1.29093897e+00 6.36235595e-01 2.66593825e-02 -3.62282664e-01 7.11679578e-01 -4.13500443e-02 -2.13150796e-03 2.90323108e-01 2.94684261e-01 1.44915819e+00 1.19082594e+00 -1.25810909e+00 -6.81684792e-01 -1.91014007e-01 1.22959048e-01 1.51908845e-01 -5.15419781e-01 -1.04103789e-01 -6.95405900e-01 -8.32237303e-01 -1.42398357e-01 -7.51066506e-01 -1.63011506e-01 5.94973624e-01 -4.73891854e-01 -2.03219518e-01 1.31900418e+00 -3.52487296e-01 1.07301247e+00 -2.04103160e+00 -9.00843740e-02 -1.01271987e-01 1.36277616e-01 4.72429007e-01 -4.52399522e-01 4.55792844e-01 3.31443310e-01 2.76243895e-01 -1.30252941e-02 -5.34443259e-01 -9.45308134e-02 1.65388230e-02 -3.84769410e-01 -6.62929714e-02 6.67793155e-01 1.16351557e+00 -9.37261820e-01 -5.70281386e-01 6.47735536e-01 4.18320388e-01 -7.28648901e-01 2.40745798e-01 -6.12946570e-01 1.65091470e-01 -3.63437533e-01 5.01056612e-01 8.58181655e-01 -1.50521263e-01 -1.59671694e-01 -3.79352659e-01 -2.30550364e-01 -1.30498409e-01 -1.11579525e+00 1.62387264e+00 -3.99868995e-01 8.83085966e-01 -5.20212092e-02 -4.56865937e-01 1.26785886e+00 -2.29345709e-01 2.49000892e-01 -1.16180325e+00 -3.70967574e-02 2.18288019e-01 -1.61685303e-01 -4.62889791e-01 9.80178595e-01 2.49510348e-01 -3.48716713e-02 5.01029611e-01 -2.80557096e-01 -6.76784098e-01 4.98119950e-01 5.28453469e-01 8.99670601e-01 1.91667393e-01 -1.07708186e-01 -3.04684453e-02 1.87619939e-01 7.47244433e-02 -3.24599892e-02 1.01250625e+00 5.66940084e-02 1.09789920e+00 4.03445363e-01 -1.51759744e-01 -1.61275089e+00 -1.00494945e+00 9.93813351e-02 7.40246713e-01 3.99544179e-01 -2.79966086e-01 -1.00079381e+00 -6.31649196e-01 -8.03445876e-02 9.24677730e-01 -4.62117195e-01 3.78441624e-02 -3.97471607e-01 -3.62264514e-01 6.62284911e-01 7.47647345e-01 7.19075441e-01 -1.12383664e+00 -7.44721174e-01 2.43952587e-01 -5.01796603e-02 -1.16466653e+00 -8.06799352e-01 -1.01866163e-01 -8.03096414e-01 -8.52060080e-01 -9.59745049e-01 -7.54849792e-01 9.92096782e-01 8.20559740e-01 9.03854012e-01 3.75489742e-02 -7.75484502e-01 1.70987889e-01 -5.87182224e-01 -4.71381217e-01 -6.83039665e-01 -1.77199244e-02 -3.84718210e-01 -1.08058967e-01 -1.02177337e-01 -1.66477397e-01 -9.71699238e-01 6.46916151e-01 -1.39607882e+00 6.74643874e-01 8.53725791e-01 6.02753282e-01 4.67049241e-01 8.98617879e-02 3.49800378e-01 -8.17629397e-01 7.01751530e-01 -1.37034521e-01 -7.08457649e-01 1.02733232e-01 -5.84567010e-01 1.65033445e-01 5.88849723e-01 -5.16945124e-01 -1.28511715e+00 9.50184613e-02 -4.95893694e-02 -4.42707092e-01 -2.20897019e-01 -1.25580937e-01 -1.79313377e-01 1.42670691e-01 9.38589215e-01 3.37102801e-01 -1.13840014e-01 -2.77687818e-01 8.22355986e-01 6.72835588e-01 3.73185962e-01 -6.62272215e-01 7.97940612e-01 5.63450098e-01 -1.23253427e-01 -8.43258262e-01 -5.14617324e-01 -3.47756535e-01 -6.09341502e-01 -3.18475991e-01 9.34205294e-01 -6.23554170e-01 -2.47350439e-01 7.82774389e-01 -1.46047378e+00 -6.04361951e-01 -2.00561121e-01 -9.76779610e-02 -4.52890545e-01 3.83148074e-01 -4.63720500e-01 -7.78160214e-01 -3.39121699e-01 -1.35053706e+00 1.54942429e+00 1.43004358e-01 -4.04162295e-02 -7.45229959e-01 -4.86656308e-01 3.06316227e-01 6.33186519e-01 -7.39529496e-03 7.38781989e-01 1.86371297e-01 -1.04537857e+00 -1.82600375e-02 -6.95224881e-01 3.07317317e-01 5.20095900e-02 1.52193278e-01 -8.15693974e-01 -6.92806914e-02 -3.89538586e-01 -2.98968136e-01 7.91696966e-01 2.78178245e-01 1.18932271e+00 -2.53031015e-01 -4.22574461e-01 4.13838983e-01 1.27879930e+00 3.83264273e-01 9.01094377e-01 3.66273731e-01 8.33356857e-01 6.09220326e-01 6.98877990e-01 5.17867208e-01 3.72613281e-01 8.67634177e-01 3.68802518e-01 -5.56831062e-01 -8.68101001e-01 -6.06209040e-01 3.00300777e-01 2.09919497e-01 4.64913160e-01 -7.22405493e-01 -8.15063059e-01 5.51878035e-01 -1.58468580e+00 -1.11300516e+00 -5.21792948e-01 1.90416825e+00 6.76784039e-01 2.48598486e-01 3.31971981e-02 1.54065052e-02 6.54726923e-01 2.07494348e-01 -6.95914567e-01 -3.69019210e-01 -2.88461894e-01 -9.14399624e-02 5.38388669e-01 4.30826664e-01 -8.50752831e-01 1.14658010e+00 5.84548521e+00 1.04584420e+00 -1.16463971e+00 3.40027250e-02 7.99199462e-01 -1.24003507e-01 -4.84300405e-01 -5.67405373e-02 -1.11130607e+00 4.39915776e-01 3.10865968e-01 1.59380004e-01 2.61291385e-01 9.74464476e-01 4.14836466e-01 -3.12969476e-01 -8.88858736e-01 1.02890217e+00 3.01669359e-01 -1.41877341e+00 4.30942237e-01 1.64193660e-01 1.11460030e+00 -2.78978944e-01 3.40464354e-01 5.31659164e-02 3.03264707e-01 -7.39317894e-01 1.20925832e+00 3.28949094e-01 1.13880444e+00 -3.59897614e-01 2.00512305e-01 4.11371052e-01 -1.12635672e+00 -1.23113483e-01 -3.78496468e-01 2.41308793e-01 3.65431786e-01 7.78746963e-01 -1.22093356e+00 1.98928982e-01 6.26819670e-01 5.76208591e-01 -9.09592271e-01 9.76725996e-01 -3.12078416e-01 3.80522370e-01 -2.35272348e-01 -3.17126662e-01 2.66808420e-01 6.67008534e-02 3.54469031e-01 1.26981533e+00 6.65738106e-01 -3.04807127e-01 2.19027549e-02 1.30207443e+00 4.50492464e-02 -4.05967161e-02 -8.35696399e-01 -1.24863371e-01 5.35878778e-01 1.12690723e+00 -8.96931946e-01 -5.16487062e-01 -1.59053907e-01 1.38369238e+00 2.03471199e-01 3.56418937e-01 -8.44321430e-01 -4.84884411e-01 3.09167951e-01 5.91414452e-01 5.34303904e-01 -5.09264052e-01 -4.79316473e-01 -8.81288171e-01 1.09737828e-01 -7.57680655e-01 -9.99034569e-02 -1.24799669e+00 -1.10380173e+00 5.64965487e-01 7.02632740e-02 -1.19127107e+00 -1.37925059e-01 -7.34851539e-01 -5.22353530e-01 7.68864095e-01 -1.46955216e+00 -1.33227265e+00 -6.48313344e-01 2.98920482e-01 1.03878200e+00 1.45352185e-02 2.78244257e-01 1.77340612e-01 -3.64567369e-01 5.08450866e-01 1.08606182e-02 -4.50648516e-02 7.80542016e-01 -1.23263919e+00 9.04210508e-01 9.61213112e-01 6.56129122e-02 4.45298672e-01 5.30113995e-01 -9.11083281e-01 -1.44252646e+00 -1.30471992e+00 5.11441946e-01 -4.41198736e-01 2.86889374e-01 -5.67721188e-01 -6.53257310e-01 -1.28509812e-02 1.79838195e-01 -3.66775870e-01 -8.82194564e-03 -5.04338920e-01 -3.62762630e-01 -2.68326849e-01 -8.79472911e-01 9.18695867e-01 1.36968219e+00 -3.14648420e-01 1.04798973e-01 3.05827141e-01 6.45660222e-01 -5.05882859e-01 -4.12378967e-01 1.10773936e-01 2.80141175e-01 -1.26987267e+00 1.14479721e+00 1.41326740e-01 6.71760142e-01 -5.52225292e-01 7.97704756e-02 -1.19969690e+00 -1.86186209e-01 -4.85160291e-01 1.27729028e-01 1.33172512e+00 4.47744936e-01 -2.30005205e-01 6.95200682e-01 4.63764012e-01 -1.99964643e-01 -4.19559330e-01 -4.07269776e-01 -8.15521836e-01 -7.58737400e-02 -6.00789964e-01 6.76228404e-01 4.07828063e-01 -4.76255059e-01 2.86940426e-01 -4.13996637e-01 2.03956501e-03 6.00611091e-01 4.02000956e-02 1.22313070e+00 -7.30628550e-01 -2.80910015e-01 -8.06438148e-01 -2.66437083e-01 -1.61094975e+00 -4.38934922e-01 -7.32340872e-01 1.91420287e-01 -1.94441640e+00 4.75249290e-05 -8.06854963e-01 4.52350944e-01 2.13150218e-01 -2.79482514e-01 3.55147421e-01 3.28851253e-01 1.86573938e-01 -5.34661651e-01 5.08275092e-01 1.67355800e+00 -3.72915834e-01 -2.13693887e-01 -4.36230898e-01 -8.25723171e-01 2.01949522e-01 7.57845461e-01 -2.79727727e-01 -7.53638685e-01 -8.30640018e-01 1.16360106e-01 -8.58360007e-02 4.50893670e-01 -1.14683843e+00 2.75272667e-01 -3.05404961e-01 5.72488368e-01 -7.61816084e-01 2.80420542e-01 -3.69578123e-01 -1.70357227e-02 3.50121945e-01 -2.64922053e-01 -4.78208177e-02 2.77572691e-01 6.08933985e-01 -2.25066692e-02 -2.47033224e-01 5.76949596e-01 -1.03094988e-01 -1.03788197e+00 2.09857762e-01 -4.59287584e-01 -5.13334163e-02 1.27593207e+00 -5.43619394e-01 -6.22557580e-01 -4.47000742e-01 3.69495228e-02 4.80412208e-02 7.79093981e-01 7.80712783e-01 9.91662979e-01 -1.26931298e+00 -7.04577148e-01 4.54513550e-01 2.90250540e-01 2.03381956e-01 4.56236243e-01 4.20558423e-01 -7.31959581e-01 4.94813502e-01 -1.43944085e-01 -8.60452294e-01 -1.16548741e+00 7.76287496e-01 -5.70488535e-02 -5.22170309e-03 -6.37627244e-01 8.14677715e-01 6.11671746e-01 -2.83246171e-02 8.50496963e-02 -3.31251621e-01 3.26102197e-01 -9.52940732e-02 6.76327288e-01 1.49582386e-01 -8.81528482e-02 -2.56469488e-01 -5.63869532e-03 5.17730832e-01 -2.60703325e-01 -2.49291286e-01 8.92475724e-01 -9.72555578e-02 3.93822759e-01 -1.65944323e-01 9.53668952e-01 -4.81195673e-02 -1.64682233e+00 -1.12835646e-01 -2.89375901e-01 -7.35739350e-01 5.05494475e-02 -8.52837503e-01 -1.02487206e+00 1.21865201e+00 4.59557056e-01 3.74720581e-02 1.05232942e+00 -5.75830182e-03 8.27834487e-01 1.69004947e-01 5.03029406e-01 -1.13629317e+00 1.00118458e+00 2.23278984e-01 1.20466435e+00 -1.04988492e+00 -2.62707233e-01 -5.08237660e-01 -8.72282922e-01 1.12996113e+00 1.09402931e+00 1.28371760e-01 9.52047706e-02 5.30898094e-01 1.82726711e-01 -1.05281882e-01 -7.03206062e-01 -3.13058436e-01 3.46764475e-01 9.64788198e-01 2.97293216e-01 -7.79223517e-02 -1.72758028e-02 -5.65887392e-02 -1.02990173e-01 -1.02195606e-01 5.23445249e-01 8.37754250e-01 -5.35132587e-01 -1.29832745e+00 -5.98962009e-01 4.22180712e-01 2.60730654e-01 -9.29149687e-02 -6.11762226e-01 5.33202052e-01 1.99593633e-01 1.01357818e+00 1.32997319e-01 -3.63532245e-01 3.57907712e-01 -3.42585236e-01 4.27199453e-01 -6.85510337e-01 -2.48485804e-01 5.09120449e-02 -9.57226157e-02 -3.70500743e-01 -2.03221012e-02 -3.63839746e-01 -1.11010635e+00 -2.34632850e-01 -3.50664377e-01 -4.85337466e-01 1.01821482e+00 4.38530952e-01 6.81258738e-01 6.42270327e-01 4.44468737e-01 -1.01715279e+00 -2.70554841e-01 -9.46121693e-01 -3.34598899e-01 6.46607816e-01 -4.08196375e-02 -6.48014247e-01 -1.12149091e-02 2.91648805e-01]
[11.360339164733887, -0.20658333599567413]
3319d64a-3937-452b-b5bc-7441c2c9dec0
inesc-id-a-regression-model-for-large-scale
null
null
https://aclanthology.org/S15-2102
https://aclanthology.org/S15-2102.pdf
INESC-ID: A Regression Model for Large Scale Twitter Sentiment Lexicon Induction
null
['Wang Ling', 'Ramon Astudillo', 'Silvio Amir', 'Isabel Trancoso', 'Mario J. Silva', 'Bruno Martins']
2015-06-01
null
null
null
semeval-2015-6
['twitter-sentiment-analysis']
['natural-language-processing']
[-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01 -8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01 -2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00 -3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01 -9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01 7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01 7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00 -1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01 3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01 9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01 5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00 -5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01 1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00 7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01 -1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02 -1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01 1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00 1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01 3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01 8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01 9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01 -9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01 -1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01 -2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01 -8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00 1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01 8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00 -6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01 -6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01 3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01 4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02 4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01 1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01 9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01 -1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01 -7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00 -1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02 1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01 -1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01 -1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01 -4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01 -1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01 6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01 -1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00 -7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01 -1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01 3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01 -1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01 1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01 3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00 -2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01 2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01 -1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01 4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01 2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00 1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01 -3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00 7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01 3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01 -2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01 7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01 -2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01 6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00 7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00 -3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01 -6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00 3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01 1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01 -5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01 -5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01 -2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01 -1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01 5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01 -2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01 -4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01 5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01 -6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00 1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01 8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02 -6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01 -1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01 1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01 8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03 3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01 8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01 -1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01 6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01 -9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01 -1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00 -5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02 -5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01 1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01 -4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01 1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01 6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01 5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01 1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01 1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01 1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01 1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00 -8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01 -1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01 6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01 4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00 -1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00 -7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00 2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01 -4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02 1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01 3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01 9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01 7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01 6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01 1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01 -1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00 3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01 9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01 -4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01 4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00 2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01 5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01 2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01 -2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01 -6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01 -1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01 -5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01 -1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00 -6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01 -1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01 1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02 1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01 5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01 -4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01 -1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01 6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01 7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01 1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01 1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01 8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01 8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00 -4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01 -5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02 5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01 -2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00 -3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01 6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01 5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00 3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01 -8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00 -8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01 3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01 -3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05 -1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01 8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02 6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01 5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00 1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01 2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02 -1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01 -4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02 9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01 -8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02 7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01 -3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01 -1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01 -1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01 -2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01 1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03 6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01 -4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01 9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01 8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01 1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01 -1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01 8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01 5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01 9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01 -4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01 1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01 -9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00 5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01 -7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00 -6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01 -5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01 -5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01 4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01 -9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00 -8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00 -5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01 -2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00 -3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02 2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01]
[-7.206246852874756, 3.7183029651641846]
e6274458-14b3-4f15-85fb-f363ed0f9b0d
dynamic-epistemic-logic-with-asp-updates
1905.10621
null
https://arxiv.org/abs/1905.10621v1
https://arxiv.org/pdf/1905.10621v1.pdf
Dynamic Epistemic Logic with ASP Updates: Application to Conditional Planning
Dynamic Epistemic Logic (DEL) is a family of multimodal logics that has proved to be very successful for epistemic reasoning in planning tasks. In this logic, the agent's knowledge is captured by modal epistemic operators whereas the system evolution is described in terms of (some subset of) dynamic logic modalities in which actions are usually represented as semantic objects called event models. In this paper, we study a variant of DEL, that wecall DEL[ASP], where actions are syntactically described by using an Answer Set Programming (ASP) representation instead of event models. This representation directly inherits high level expressive features like indirect effects, qualifications, state constraints, defaults, or recursive fluents that are common in ASP descriptions of action domains. Besides, we illustrate how this approach can be applied for obtaining conditional plans in single-agent, partially observable domains where knowledge acquisition may be represented as indirect effects of actions.
['Luis Fariñas del Cerro', 'Jorge Fandinno', 'Pedro Cabalar']
2019-05-25
null
null
null
null
['epistemic-reasoning']
['miscellaneous']
[ 1.56951427e-01 1.04471004e+00 -9.63051394e-02 -3.87846470e-01 -1.59118980e-01 -8.45011115e-01 1.28036761e+00 2.53306895e-01 -2.24576861e-01 1.13788497e+00 3.30308914e-01 -2.85696179e-01 -4.60627079e-01 -1.25757074e+00 -6.94401264e-01 -5.37562072e-01 -2.63029873e-01 5.98653972e-01 8.47391248e-01 -5.11263728e-01 -2.13217244e-01 4.22949374e-01 -1.55874622e+00 3.63417566e-01 4.32390720e-01 5.28865099e-01 -2.37222061e-01 3.19301784e-01 -3.72818738e-01 1.69432163e+00 -3.59108061e-01 -5.59263647e-01 -2.59498984e-01 -4.45201308e-01 -1.58603287e+00 1.25374570e-01 -5.89825690e-01 -1.49171606e-01 6.27569854e-02 1.20021331e+00 -2.35079035e-01 4.98540215e-02 5.03474474e-01 -1.53833973e+00 -2.08322808e-01 1.11470938e+00 2.12820455e-01 -4.52473074e-01 1.21105063e+00 2.00923547e-01 1.00031567e+00 -1.76249996e-01 8.75349700e-01 1.59956467e+00 1.66353136e-01 6.16200447e-01 -1.45560443e+00 4.80301231e-01 1.71948150e-01 4.63289022e-01 -9.67063129e-01 -2.40500376e-01 5.72948813e-01 -5.02115965e-01 8.84740770e-01 4.24516678e-01 7.03014195e-01 8.34882915e-01 7.32764974e-02 9.70547557e-01 1.09302890e+00 -8.82572055e-01 7.22479820e-01 3.74347657e-01 6.05790854e-01 4.94843155e-01 1.45625189e-01 1.69879273e-01 -4.40362066e-01 -4.52992588e-01 5.19450366e-01 -4.56496954e-01 -3.33703727e-01 -5.93850791e-01 -1.20101726e+00 9.27265286e-01 -2.15898231e-01 3.40885729e-01 -4.93843824e-01 2.80830562e-01 5.60016394e-01 3.29446346e-01 -2.68920243e-01 2.00631335e-01 -4.43540722e-01 -1.69094086e-01 1.29378736e-01 4.91107553e-01 1.21565652e+00 8.20360005e-01 5.70130408e-01 1.22350408e-02 -3.79964188e-02 -4.35166396e-02 7.43359327e-01 3.78734082e-01 1.15464859e-01 -1.30643237e+00 -2.26321816e-01 9.30936158e-01 8.63798380e-01 -3.21375728e-01 -3.53069693e-01 3.89672190e-01 1.34089589e-01 4.61347848e-01 5.82544804e-01 -7.75758922e-02 -3.38249862e-01 2.06491518e+00 5.34361959e-01 1.09829053e-01 9.15695608e-01 4.48842287e-01 6.72004402e-01 5.63701808e-01 4.26473141e-01 -5.52479327e-01 1.54515469e+00 -4.41100627e-01 -9.75182354e-01 1.41144708e-01 6.10986233e-01 7.76741877e-02 8.99730325e-01 5.05052567e-01 -1.38803542e+00 2.87726104e-01 -7.60971010e-01 2.54152834e-01 -3.74731511e-01 -4.88447249e-01 8.63014400e-01 7.79004872e-01 -1.06239974e+00 1.10744685e-01 -1.08176827e+00 -3.60245347e-01 -1.44329995e-01 3.29912096e-01 -3.76077443e-01 2.28046268e-01 -1.62620807e+00 1.09387445e+00 9.49339092e-01 -1.50449827e-01 -1.33051240e+00 1.30121671e-02 -1.12442136e+00 1.47670552e-01 1.01591814e+00 -4.10955966e-01 1.63587022e+00 -1.12093985e+00 -2.04811049e+00 7.70762563e-01 2.30080530e-01 -7.56895065e-01 4.22400802e-01 1.39925465e-01 -6.46182477e-01 2.67611414e-01 -3.34981740e-01 1.19867146e-01 4.44725960e-01 -1.19411945e+00 -4.68369693e-01 -4.27634984e-01 1.39155209e+00 1.14247523e-01 3.32419783e-01 5.17159104e-01 -1.96613837e-02 3.64682227e-01 -4.90279030e-03 -9.15661752e-01 -2.06600234e-01 -4.33884203e-01 -4.16726857e-01 -3.05063099e-01 3.04055333e-01 2.17855480e-02 9.98401344e-01 -1.96939242e+00 5.72670817e-01 3.82222146e-01 -1.81039825e-01 -7.24148899e-02 2.27554783e-01 8.53785694e-01 -1.08502042e-02 -3.11334953e-02 -2.82959938e-01 3.83398682e-01 8.62253129e-01 6.47225440e-01 -3.86318445e-01 2.67416060e-01 4.17174250e-02 6.68768823e-01 -8.09749424e-01 -5.11838078e-01 3.46045375e-01 2.75583059e-01 -3.12614471e-01 -1.08767815e-01 -1.14280057e+00 3.19059283e-01 -9.31773126e-01 5.00298440e-01 3.46863091e-01 -2.62197778e-02 9.09062207e-01 3.78251791e-01 -2.96858072e-01 2.70844400e-01 -1.67633295e+00 1.42148626e+00 -3.44353139e-01 -1.76791772e-01 1.54645622e-01 -6.37810051e-01 4.63213950e-01 9.50999916e-01 1.03080586e-01 -2.93012392e-02 1.41285270e-01 -4.07015719e-02 -1.03531949e-01 -6.87191129e-01 2.19530955e-01 -4.52292234e-01 -4.56825644e-01 5.85974336e-01 -1.69350982e-01 -2.04474375e-01 4.29031819e-01 2.01657161e-01 1.02378249e+00 5.94272137e-01 8.42546880e-01 -2.92254001e-01 1.09109819e+00 3.54689628e-01 6.00892782e-01 5.93663216e-01 9.19499323e-02 -3.26387256e-01 1.27113593e+00 -3.68702620e-01 -3.87826234e-01 -1.18461490e+00 -3.24978262e-01 8.57546210e-01 3.00610989e-01 -5.42130351e-01 -8.38356197e-01 -5.43395221e-01 -4.52301323e-01 1.22458255e+00 -3.98034096e-01 -2.66267419e-01 -4.26488072e-01 -4.88556772e-01 7.66602397e-01 4.09058958e-01 3.08154613e-01 -1.44543862e+00 -1.32279873e+00 3.25040460e-01 -1.04610577e-01 -8.07282269e-01 6.55676961e-01 2.18497187e-01 -6.83290839e-01 -1.24997020e+00 2.61816680e-01 -7.57173076e-02 1.97276235e-01 -7.04010010e-01 1.15071940e+00 -9.53679532e-02 4.55372661e-01 8.58242333e-01 -5.58553636e-01 -7.13266850e-01 -6.27036452e-01 -6.25922084e-01 -6.22502975e-02 1.58166707e-01 4.14547652e-01 -3.65752965e-01 3.27684879e-01 1.20101757e-02 -1.48687947e+00 -4.16664667e-02 -5.70469536e-02 5.99613786e-01 4.04105306e-01 3.98901254e-01 1.72711238e-01 -1.17869329e+00 5.42385101e-01 -3.02855372e-01 -1.00752234e+00 6.66308939e-01 -1.25771940e-01 3.68259907e-01 3.57359052e-01 -2.12128431e-01 -1.68535614e+00 5.23755588e-02 1.70337468e-01 4.81806695e-01 -6.15991831e-01 1.13747966e+00 -9.77004826e-01 2.12732673e-01 4.82544690e-01 1.23705529e-01 -1.10571921e-01 -1.06480122e-01 1.77873015e-01 2.58952647e-01 2.60622591e-01 -1.33189023e+00 4.09493715e-01 6.75655007e-01 5.25356412e-01 -4.82502759e-01 -5.32170534e-01 2.91960150e-01 -4.16810304e-01 -3.39226842e-01 9.58464265e-01 -6.43746853e-01 -1.30526185e+00 4.33840603e-01 -9.89202380e-01 -5.41009903e-01 -9.08571482e-01 5.63242137e-01 -1.13341916e+00 2.70598769e-01 -5.89613795e-01 -1.33727348e+00 4.73394871e-01 -1.35697222e+00 6.26860678e-01 1.06376342e-01 -2.70526350e-01 -1.19027746e+00 1.22858725e-01 -4.99748997e-02 4.35872264e-02 4.76958424e-01 1.19254303e+00 -8.04157674e-01 -5.85384607e-01 -1.56082377e-01 4.33066040e-01 1.25701716e-02 -3.19363922e-01 1.23664126e-01 -7.82465100e-01 2.40799949e-01 -2.46437006e-02 -2.77451277e-01 -3.75486054e-02 2.46982977e-01 2.85444260e-01 -2.67603934e-01 -1.90096661e-01 -3.15482855e-01 1.69964898e+00 5.27290881e-01 1.18920028e+00 5.06933808e-01 -2.78383374e-01 7.16760039e-01 6.92316294e-01 5.51688790e-01 5.06133676e-01 9.34557617e-01 6.93365693e-01 5.56959867e-01 4.22823876e-01 2.60850824e-02 6.22399509e-01 -2.65999019e-01 -7.25118518e-01 -4.89429720e-02 -9.67285812e-01 2.81763941e-01 -2.17362642e+00 -1.55111063e+00 -4.90602642e-01 2.20598459e+00 1.07465363e+00 1.71054095e-01 3.04783374e-01 1.41357422e-01 7.01231003e-01 3.66807394e-02 -1.72980726e-02 -4.49116528e-01 -2.38995120e-01 -7.17507005e-02 3.15587856e-02 1.17018974e+00 -7.84025073e-01 8.62408817e-01 6.04548502e+00 2.42706448e-01 -3.84807497e-01 4.29332763e-01 -3.95816654e-01 3.12765956e-01 -6.09782636e-01 6.02570891e-01 -4.72128600e-01 2.26800516e-01 1.09355569e+00 -2.51761258e-01 4.47911739e-01 7.30521262e-01 6.10815771e-02 -6.23502135e-01 -1.29410660e+00 1.09011538e-01 -3.44240874e-01 -1.11685860e+00 -1.49223894e-01 -5.44658601e-02 3.74406576e-01 -5.74974239e-01 -4.04365242e-01 1.26632228e-01 8.03488314e-01 -6.96404457e-01 1.28141439e+00 8.85360956e-01 2.46759236e-01 -6.47929668e-01 8.66950393e-01 3.99053276e-01 -8.35765302e-01 -2.84300447e-01 -3.00184241e-03 -1.84965417e-01 7.49643028e-01 2.54393876e-01 -2.45359778e-01 8.42244625e-01 2.87898451e-01 8.38818774e-02 1.40445560e-01 7.61506975e-01 -7.84419179e-01 4.68448818e-01 -4.60765481e-01 -3.54383290e-02 2.82197356e-01 -5.08757114e-01 7.29781508e-01 8.45416605e-01 -4.87730689e-02 2.77645260e-01 7.38621503e-02 8.64043772e-01 6.84565306e-01 -2.40190849e-01 -6.00327432e-01 1.07590377e-01 1.41048580e-01 5.11541963e-01 -5.66884875e-01 -4.66987312e-01 -5.70735931e-01 3.10510427e-01 -3.07383925e-01 3.67205352e-01 -1.05884373e+00 -5.34618348e-02 2.70452142e-01 -1.47696221e-02 -4.39704247e-02 1.74677506e-01 4.26110893e-01 -1.24389052e+00 -1.67278141e-01 -7.38607585e-01 5.79415500e-01 -1.01856673e+00 -7.65889823e-01 5.73696852e-01 8.95618618e-01 -8.63086998e-01 -5.57054460e-01 -6.06146574e-01 -3.94537240e-01 5.01734436e-01 -1.21534979e+00 -1.37335193e+00 1.02474369e-01 9.94097114e-01 -4.01559286e-03 1.89478010e-01 1.28691256e+00 -3.31801742e-01 -3.05492967e-01 -3.56105715e-01 -5.01872540e-01 -4.18317378e-01 6.81588352e-02 -1.44503021e+00 -6.55967414e-01 7.76766419e-01 -2.59801030e-01 4.92346376e-01 1.22804284e+00 -5.22155702e-01 -1.49710405e+00 -5.57178199e-01 1.05548716e+00 -4.02382344e-01 9.31245923e-01 1.69928342e-01 -8.18486929e-01 1.52890718e+00 4.34505522e-01 -2.19607368e-01 3.91108274e-01 1.63451791e-01 -2.46409386e-01 8.62076208e-02 -1.43274140e+00 5.35267413e-01 8.29046845e-01 -4.77262229e-01 -1.11488640e+00 3.53362709e-01 5.97133338e-01 -3.55584890e-01 -9.22212601e-01 1.93845659e-01 2.77345419e-01 -1.11075437e+00 8.34315896e-01 -9.63185966e-01 -9.81726646e-02 -8.37060750e-01 -4.26064700e-01 -8.73536468e-01 3.66428420e-02 -5.68981647e-01 -3.09490681e-01 1.11282516e+00 4.48011309e-01 -8.77878129e-01 2.52720803e-01 1.24861598e+00 -1.39397964e-01 8.27491283e-02 -9.57043767e-01 -7.02217162e-01 -2.06175715e-01 -5.82316935e-01 1.04392099e+00 7.71912277e-01 9.78089690e-01 1.94853812e-01 -1.01790302e-01 3.24599624e-01 3.12622070e-01 1.66906551e-01 3.05349886e-01 -1.58003938e+00 -7.18676269e-01 -1.01122186e-01 -6.02814198e-01 -1.98191389e-01 6.65003598e-01 -6.11563325e-01 -3.93399373e-02 -1.51901591e+00 -3.61375250e-02 -2.06642479e-01 1.14363924e-01 8.38728786e-01 6.66827083e-01 -3.24962407e-01 9.98813100e-03 -7.72024840e-02 -7.61610508e-01 2.72797883e-01 9.43359554e-01 -4.94174613e-03 -1.90944552e-01 2.02996254e-01 -2.58486688e-01 1.16556489e+00 5.41346967e-01 -2.11594209e-01 -6.56622648e-01 -3.84800509e-02 9.88857567e-01 8.98187578e-01 5.87586105e-01 -7.04786777e-01 1.91013739e-01 -1.02112222e+00 -7.29956448e-01 3.12953368e-02 4.67751592e-01 -1.19403481e+00 1.11193228e+00 4.52120125e-01 -5.33296943e-01 -2.81328261e-01 -1.32677555e-02 3.93248796e-01 -4.93355840e-01 -9.30641234e-01 4.72809255e-01 -3.76405060e-01 -9.55752850e-01 -4.11267191e-01 -9.10187840e-01 -3.07642788e-01 1.55436552e+00 -1.05400711e-01 -2.69909769e-01 -3.56459826e-01 -1.56639993e+00 -1.15487583e-01 6.08270049e-01 -4.99887556e-01 3.59522343e-01 -9.84872222e-01 -2.71680027e-01 -4.13880140e-01 2.14896992e-01 -5.85355721e-02 3.38785589e-01 1.19582117e+00 -5.54247320e-01 4.02393609e-01 -2.61775881e-01 -5.63880019e-02 -1.01408756e+00 7.98030019e-01 5.20813763e-01 -1.91761330e-01 -5.38150847e-01 4.62060571e-01 4.46157828e-02 -4.44002032e-01 1.10943288e-01 -9.22201946e-02 -5.12563646e-01 -9.17784721e-02 6.22484982e-01 1.97978079e-01 -2.89976954e-01 -7.23421216e-01 -6.78162634e-01 1.56371593e-01 4.82488453e-01 -6.32599473e-01 1.23982477e+00 -2.08673358e-01 -6.96447492e-01 6.76611543e-01 1.63100213e-02 2.24546418e-01 -9.84637797e-01 -1.27235368e-01 2.35157445e-01 4.08916771e-02 -3.23594898e-01 -1.04765439e+00 -4.61267859e-01 3.44647557e-01 9.86816436e-02 8.70406687e-01 1.10966861e+00 5.99493325e-01 -1.11088008e-01 4.60265666e-01 1.05726588e+00 -9.81290042e-01 -4.45346743e-01 5.31419992e-01 9.35605228e-01 -5.93597472e-01 -2.08990276e-01 -7.40126550e-01 -9.25411344e-01 1.21113729e+00 2.62693197e-01 2.45785996e-01 3.83203655e-01 7.74142087e-01 -2.41315797e-01 -5.16517937e-01 -9.48277235e-01 -4.79447216e-01 -5.29037297e-01 6.05511785e-01 -5.06379940e-02 5.29623568e-01 -6.25136435e-01 8.39992523e-01 2.56106019e-01 3.07358503e-01 1.24525356e+00 1.36229432e+00 -3.29259515e-01 -1.39465094e+00 -6.37061656e-01 -2.33409479e-01 -5.03355920e-01 1.64371639e-01 -3.51164103e-01 1.10309517e+00 9.58790109e-02 1.06957126e+00 -1.10002592e-01 5.03228493e-02 4.77729827e-01 4.08719927e-01 8.57370317e-01 -7.94526339e-01 -4.14288789e-01 -2.56864578e-01 6.79432213e-01 -5.68145514e-01 -1.08199012e+00 -9.78617072e-01 -1.74040747e+00 -7.78986216e-02 -2.54422545e-01 5.13539493e-01 3.39373231e-01 1.25801456e+00 -4.10733163e-01 3.84736687e-01 -3.94689292e-02 -1.37088478e-01 -6.45673156e-01 -7.32938647e-01 -1.02169681e+00 1.53431660e-02 8.38037406e-04 -7.94423938e-01 -3.07518154e-01 4.20652241e-01]
[8.60581111907959, 6.654294013977051]
95c5282a-fa52-4c42-a8db-1d5073a808f8
adversarial-defense-via-neural-oscillation
2211.02223
null
https://arxiv.org/abs/2211.02223v1
https://arxiv.org/pdf/2211.02223v1.pdf
Adversarial Defense via Neural Oscillation inspired Gradient Masking
Spiking neural networks (SNNs) attract great attention due to their low power consumption, low latency, and biological plausibility. As they are widely deployed in neuromorphic devices for low-power brain-inspired computing, security issues become increasingly important. However, compared to deep neural networks (DNNs), SNNs currently lack specifically designed defense methods against adversarial attacks. Inspired by neural membrane potential oscillation, we propose a novel neural model that incorporates the bio-inspired oscillation mechanism to enhance the security of SNNs. Our experiments show that SNNs with neural oscillation neurons have better resistance to adversarial attacks than ordinary SNNs with LIF neurons on kinds of architectures and datasets. Furthermore, we propose a defense method that changes model's gradients by replacing the form of oscillation, which hides the original training gradients and confuses the attacker into using gradients of 'fake' neurons to generate invalid adversarial samples. Our experiments suggest that the proposed defense method can effectively resist both single-step and iterative attacks with comparable defense effectiveness and much less computational costs than adversarial training methods on DNNs. To the best of our knowledge, this is the first work that establishes adversarial defense through masking surrogate gradients on SNNs.
['Yilei Zhang', 'Chunming Jiang']
2022-11-04
null
null
null
null
['adversarial-defense']
['adversarial']
[ 3.18029553e-01 -1.58263847e-01 3.88776183e-01 -1.43801883e-01 4.83898409e-02 -8.04263294e-01 4.49855059e-01 -5.10407865e-01 -6.90986335e-01 9.18637395e-01 -2.72889167e-01 -2.97444940e-01 2.95114219e-01 -7.56454527e-01 -8.82613301e-01 -9.07080173e-01 1.49732279e-02 -2.09145606e-01 6.55271411e-01 -3.55948657e-01 5.44497192e-01 8.43512595e-01 -1.10005927e+00 3.47092003e-02 8.22017372e-01 9.43095922e-01 -2.71608949e-01 3.91896278e-01 8.06640461e-02 4.50832844e-01 -1.01030898e+00 -2.80251920e-01 4.27190214e-01 -4.00390387e-01 -1.42694026e-01 -8.48076582e-01 2.09975630e-01 -2.71208972e-01 -8.22372854e-01 1.59547853e+00 6.32984281e-01 -2.77197450e-01 3.62888128e-01 -1.49593568e+00 -8.82106543e-01 7.14698553e-01 -2.83252388e-01 5.32689035e-01 -2.16566756e-01 6.61921561e-01 1.19023077e-01 -2.47095287e-01 2.73625493e-01 1.11432350e+00 5.75886607e-01 1.45511544e+00 -1.28435433e+00 -1.41297567e+00 7.02713802e-02 -6.71534315e-02 -1.10242772e+00 -4.32028890e-01 8.73764694e-01 4.43024002e-02 8.65961075e-01 1.24344215e-01 6.44936442e-01 1.69148350e+00 7.85114467e-01 3.39629263e-01 1.13488734e+00 1.98001847e-01 6.83721542e-01 -2.05841601e-01 2.03430116e-01 3.28305125e-01 7.03460813e-01 2.19573423e-01 -4.16582376e-01 -4.66073722e-01 8.66294146e-01 -3.09940847e-03 -4.98034686e-01 1.09860606e-01 -8.16340625e-01 4.23968136e-01 7.67746389e-01 4.13334191e-01 1.41670322e-02 8.71409416e-01 4.89217222e-01 5.98984808e-02 -2.67535210e-01 5.88262260e-01 -2.04731300e-01 6.62241429e-02 -3.53384465e-01 1.72645658e-01 7.08976805e-01 4.53487039e-01 2.76437014e-01 8.25159192e-01 2.97310114e-01 3.55014712e-01 1.82759717e-01 7.78818429e-01 8.25202048e-01 -7.51279891e-01 5.84653728e-02 4.12127644e-01 -2.37646624e-01 -9.10792112e-01 -2.88391411e-01 -1.91914335e-01 -1.08065927e+00 5.83706498e-01 2.76651114e-01 -1.89733535e-01 -9.38377559e-01 2.11885262e+00 -2.06978485e-01 6.33718550e-01 2.93785781e-01 8.77312720e-01 6.28146231e-01 5.07091463e-01 7.19474182e-02 1.23260655e-01 1.09738874e+00 -3.29438448e-01 -6.18883252e-01 -4.14283216e-01 2.75755022e-03 5.05567854e-03 9.27654505e-01 2.95224845e-01 -7.88475871e-01 -1.47001714e-01 -1.61416602e+00 3.31744909e-01 -5.11863589e-01 -5.30765593e-01 7.31895506e-01 1.26170731e+00 -9.14418519e-01 6.11551702e-01 -1.07495487e+00 -6.52646869e-02 9.75905836e-01 7.99612343e-01 -1.70003518e-01 5.81504703e-01 -1.26584351e+00 6.61406517e-01 6.97148666e-02 1.65815085e-01 -1.13544524e+00 -5.14474630e-01 -4.47392553e-01 -6.88690171e-02 -3.48929167e-01 -3.75123024e-01 7.50768244e-01 -9.37880635e-01 -1.63778615e+00 5.84283054e-01 1.77779034e-01 -8.68095160e-01 2.68770486e-01 2.16438785e-01 -5.50148666e-01 1.56187803e-01 -3.63806963e-01 7.43276536e-01 8.15190017e-01 -1.06981599e+00 2.19621152e-01 -5.56421995e-01 -1.13731682e-01 -5.60610175e-01 -8.35764349e-01 -3.31144524e-03 4.02659088e-01 -7.84913957e-01 2.30412006e-01 -8.06335807e-01 -2.52735019e-01 4.18554872e-01 -4.24516380e-01 1.84667349e-01 1.16398001e+00 -2.14890633e-02 8.12172532e-01 -2.40409827e+00 -1.99490786e-01 2.57862717e-01 4.04361367e-01 7.51942456e-01 -2.06031516e-01 -1.86333448e-01 3.29869650e-02 3.92038137e-01 -4.97498065e-01 2.72616357e-01 -1.20755970e-01 3.57364267e-01 -7.85913408e-01 6.04028046e-01 2.42416844e-01 1.15081716e+00 -7.54668713e-01 2.12822586e-01 -2.97621757e-01 5.12999296e-01 -5.07193446e-01 -1.82723567e-01 -8.21078941e-02 4.32361722e-01 -4.63493437e-01 5.90628028e-01 9.21454549e-01 1.40565366e-01 2.77581736e-02 1.40879257e-02 1.93492457e-01 1.55990228e-01 -5.80979347e-01 1.15339077e+00 1.86123811e-02 8.37473154e-01 1.46342041e-02 -9.79883909e-01 1.23106432e+00 1.30527299e-02 -1.06098481e-01 -6.90208316e-01 5.33665776e-01 6.74342930e-01 5.26344776e-01 -1.11096583e-01 -2.67781377e-01 -1.12746485e-01 -1.36515900e-01 4.18086588e-01 -4.11048420e-02 -1.61305368e-01 -6.34906769e-01 9.54239517e-02 1.65996075e+00 -2.06751451e-01 -3.03760380e-01 -5.53813338e-01 5.23020744e-01 -4.84637469e-01 7.46191382e-01 7.15883791e-01 -5.80825627e-01 8.63740817e-02 4.98798192e-01 -5.33900261e-01 -8.05176556e-01 -1.39338005e+00 -2.65868008e-01 3.28731388e-01 4.81082588e-01 2.05742732e-01 -1.11477911e+00 -4.24207300e-01 5.95656335e-02 4.24259216e-01 -5.75667799e-01 -7.97332942e-01 -8.04765701e-01 -7.94082880e-01 1.75012779e+00 5.57524621e-01 9.54975843e-01 -1.37695408e+00 -8.85879338e-01 1.61373526e-01 3.30485553e-01 -9.44888651e-01 -2.36121476e-01 5.22617459e-01 -1.08126724e+00 -8.72920573e-01 -3.49955648e-01 -8.15650165e-01 8.52869749e-01 -1.32754609e-01 3.76439005e-01 1.71986356e-01 -4.51043010e-01 -3.06052685e-01 1.43618509e-01 -5.31250358e-01 -2.42849380e-01 -3.03250074e-01 5.87076366e-01 -2.19174862e-01 4.86203313e-01 -1.20781255e+00 -5.67523062e-01 2.37588450e-01 -1.12327039e+00 -5.05782425e-01 3.21512014e-01 8.04057896e-01 4.20037329e-01 -2.66908761e-02 8.42882216e-01 -6.58566833e-01 7.69313037e-01 -2.63923407e-01 -6.71685040e-01 -1.48151472e-01 -3.87974143e-01 3.53172839e-01 1.27892947e+00 -1.13407576e+00 -5.26193798e-01 -1.78019553e-01 -1.32076502e-01 -5.04063606e-01 -1.19775906e-02 -2.59115666e-01 -4.06929910e-01 -8.24901819e-01 1.04636896e+00 3.71644348e-01 -1.16513588e-01 -2.12655798e-01 -2.10504696e-01 3.57487082e-01 8.87514353e-01 -4.97566104e-01 8.99012148e-01 7.44077623e-01 1.38415962e-01 -4.88909096e-01 3.23320217e-02 6.51338875e-01 1.29323274e-01 -6.73629418e-02 6.30740166e-01 -3.38754922e-01 -1.10147679e+00 1.15797925e+00 -1.30858564e+00 -2.93022722e-01 9.73182991e-02 1.42431334e-01 -2.47332066e-01 3.27672243e-01 -9.54891741e-01 -7.90269136e-01 -6.04088485e-01 -1.08023083e+00 2.67063767e-01 5.83024621e-01 1.25571802e-01 -4.50938404e-01 -1.05528580e-02 -2.68804282e-01 7.65741408e-01 3.73150826e-01 9.70004261e-01 -7.35038042e-01 -5.94883204e-01 -1.66014224e-01 -8.75462890e-02 2.68172681e-01 1.51606342e-02 -3.59838107e-03 -1.19255221e+00 -2.82271951e-01 5.58575571e-01 -4.52646434e-01 8.79727662e-01 2.10028544e-01 1.34623682e+00 -5.26527703e-01 -3.68341386e-01 9.05515969e-01 1.45834458e+00 5.26259422e-01 1.11434424e+00 4.39625651e-01 5.04275799e-01 2.22130537e-01 -4.03845847e-01 8.31034556e-02 -3.09348673e-01 1.72855929e-01 8.41135979e-01 3.32255334e-01 3.03453475e-01 -8.42483118e-02 6.21949553e-01 5.63687921e-01 1.96060345e-01 -2.20097825e-01 -8.24264348e-01 1.94591135e-01 -1.62944102e+00 -9.36427951e-01 -6.95660850e-03 2.03158307e+00 7.54545629e-01 5.93124926e-01 -1.90580994e-01 1.91666797e-01 8.95391345e-01 -5.49562871e-02 -1.36681652e+00 -6.28737867e-01 -5.72049379e-01 5.88008463e-01 6.50828183e-01 6.39174506e-02 -7.04385698e-01 9.16083336e-01 6.28200102e+00 5.96198499e-01 -1.42208147e+00 4.79143187e-02 6.25235856e-01 -1.97476000e-01 -5.08062959e-01 -2.51354218e-01 -6.28291547e-01 7.78905630e-01 9.17305470e-01 -6.60426021e-02 8.12300205e-01 6.16729796e-01 -2.13290244e-01 2.96577245e-01 -8.43222916e-01 9.09361422e-01 -1.84816539e-01 -1.39906454e+00 1.17547095e-01 9.48506221e-02 4.83645022e-01 4.82955761e-02 2.79025555e-01 4.16880399e-02 2.45236263e-01 -1.16787827e+00 6.09926462e-01 4.77417171e-01 4.83268023e-01 -9.66119707e-01 6.83145225e-01 2.47757420e-01 -8.35450113e-01 -2.58844078e-01 -6.92482233e-01 -1.61096275e-01 -2.40435600e-01 3.40178668e-01 9.82416123e-02 -3.19234848e-01 8.49625230e-01 1.64026484e-01 -4.70431864e-01 7.02490628e-01 -1.66984096e-01 5.54317594e-01 -5.25875628e-01 -6.15100741e-01 1.17321759e-01 2.69582327e-02 5.53510904e-01 7.37233818e-01 1.16667286e-01 2.91161478e-01 -5.68811417e-01 1.42965209e+00 -4.27325249e-01 -4.91134346e-01 -9.62233067e-01 -2.65631348e-01 9.48435783e-01 1.01584947e+00 -8.62700105e-01 -2.24310216e-02 1.44070476e-01 9.68905151e-01 2.18543604e-01 3.15243304e-01 -1.04553235e+00 -8.94063413e-01 1.07815838e+00 -1.04452409e-01 -5.22192754e-03 -2.57047951e-01 -7.97639787e-01 -1.00300622e+00 1.25844300e-01 -8.40633690e-01 -2.15663761e-01 -5.64576626e-01 -1.33738613e+00 9.38869298e-01 -6.48602605e-01 -1.00442111e+00 1.25043094e-01 -8.02297413e-01 -9.52931643e-01 5.76306999e-01 -9.89665449e-01 -5.69232702e-01 -7.81233162e-02 8.12240183e-01 -5.54817840e-02 -3.67456347e-01 8.49058926e-01 -3.28451773e-04 -6.73648417e-01 9.47792411e-01 4.36182879e-02 4.44372892e-01 3.91792923e-01 -6.77407920e-01 8.86294365e-01 1.16186213e+00 -1.57715142e-01 1.01573384e+00 5.40988982e-01 -6.14424586e-01 -1.50731969e+00 -9.04853165e-01 2.86595494e-01 -1.23069294e-01 8.65624130e-01 -8.05004716e-01 -1.18525076e+00 2.73741812e-01 2.34473241e-03 2.52814591e-01 5.16840100e-01 -8.62676978e-01 -7.52852976e-01 -2.95698315e-01 -1.68678653e+00 1.10445154e+00 1.20353532e+00 -6.60150945e-01 -4.31746811e-01 -1.21463448e-01 7.52760530e-01 3.65863321e-03 -3.24704587e-01 4.74971950e-01 5.81227601e-01 -8.22912216e-01 8.18467379e-01 -5.04341722e-01 8.50455910e-02 -4.53276157e-01 -1.33219928e-01 -9.51701283e-01 -2.79603060e-02 -8.99613976e-01 -1.19347490e-01 9.88443792e-01 1.85345709e-01 -1.26561677e+00 8.81771088e-01 6.58232987e-01 5.67129105e-02 -5.58544457e-01 -1.32596159e+00 -1.07176661e+00 2.95364261e-01 -1.20381534e-01 5.77621579e-01 6.62966907e-01 7.09314942e-02 -2.44899496e-01 -1.01286128e-01 3.43018144e-01 7.40869403e-01 -4.82540846e-01 4.05274689e-01 -9.89191532e-01 -6.05509318e-02 -7.48749852e-01 -1.11197948e+00 -6.16733313e-01 3.79601866e-01 -7.50299692e-01 2.60709316e-01 -6.86305106e-01 -1.02100357e-01 -2.90271401e-01 -6.31694794e-01 7.21398413e-01 -1.87257957e-02 6.27124131e-01 -6.68666437e-02 1.23959377e-01 -1.44461691e-01 4.08465564e-01 8.02592754e-01 -1.46804392e-01 4.66942601e-02 -2.89992183e-01 -6.81620359e-01 7.71061838e-01 1.25917721e+00 -8.83626997e-01 -3.57190698e-01 -4.38167512e-01 -5.42807691e-02 -4.66339231e-01 6.28331184e-01 -1.38910460e+00 4.58196670e-01 -8.08106139e-02 4.30205464e-01 2.22067952e-01 1.53196350e-01 -6.48545623e-01 2.17679948e-01 1.22974181e+00 -1.33125752e-01 6.04042597e-03 6.03900671e-01 5.98693252e-01 2.67499477e-01 -2.63047248e-01 1.11955118e+00 1.95513163e-02 -2.48422712e-01 2.75717407e-01 -9.77422118e-01 -3.72229591e-02 9.51680422e-01 -4.41453010e-01 -8.47583830e-01 2.23465590e-03 -3.50052088e-01 -1.06064469e-01 5.67094445e-01 3.00030559e-01 8.79742444e-01 -1.27881229e+00 -2.17851624e-01 6.15535021e-01 -2.78889537e-01 -3.45266849e-01 3.99753191e-02 3.29339921e-01 -5.86387157e-01 1.47676244e-01 -8.89415622e-01 -2.78483123e-01 -8.63715708e-01 5.64817548e-01 5.94573915e-01 3.13349932e-01 -4.66715246e-01 1.02009904e+00 2.36304805e-01 -2.33369201e-01 2.96032131e-01 -1.32916883e-01 1.82672307e-01 -7.57172227e-01 6.02621377e-01 2.48362809e-01 -1.54084846e-01 -9.25044194e-02 -7.48400033e-01 2.31324762e-01 -4.08467390e-02 -1.72320098e-01 1.19617641e+00 5.06053269e-01 -4.55911934e-01 1.27708182e-01 8.93427908e-01 -8.85130093e-02 -1.28532267e+00 2.77725816e-01 -4.39521112e-02 -2.36178219e-01 -1.80866450e-01 -7.22737253e-01 -1.29696095e+00 1.07588112e+00 8.10908735e-01 -2.33909823e-02 1.25608432e+00 -5.28317869e-01 1.08581662e+00 6.91675186e-01 7.97214568e-01 -6.81557417e-01 3.26214224e-01 4.37814325e-01 6.46953464e-01 -5.54285526e-01 -4.86779869e-01 2.31686421e-02 -1.49249390e-01 1.11219287e+00 1.23101687e+00 -8.74805689e-01 5.73514938e-01 8.63703191e-01 1.41641140e-01 1.04610771e-01 -6.11217022e-01 5.81905246e-01 -3.77511293e-01 9.34496880e-01 -3.08962911e-01 -1.22762613e-01 -3.51689994e-01 9.79739666e-01 -3.92473936e-02 -1.08400568e-01 4.73143011e-01 8.94748271e-01 -5.60017288e-01 -1.09394479e+00 -2.65893489e-01 3.77260476e-01 -5.87489605e-01 -2.28872329e-01 -6.61472797e-01 3.78309578e-01 4.09737378e-02 5.82060456e-01 -1.73189621e-02 -7.85845399e-01 1.35366291e-01 -8.45225900e-02 5.30284464e-01 -1.54042050e-01 -9.72778082e-01 -3.69101763e-01 -5.39631367e-01 -5.98169565e-01 1.43551201e-01 -1.00270361e-01 -1.72572589e+00 -6.20591104e-01 -2.30680197e-01 -5.01559377e-02 8.47525537e-01 6.95464969e-01 5.10128260e-01 4.48139936e-01 7.11684644e-01 -9.00991619e-01 -6.90425813e-01 -5.93980432e-01 -5.10505557e-01 1.15149595e-01 2.66572803e-01 -4.77176875e-01 -7.27255940e-01 -3.79889905e-01]
[5.572777271270752, 7.819549083709717]
a625af99-35b3-43bc-81b1-cf6b25a5d758
hifi-gan-high-fidelity-denoising-and
2006.05694
null
https://arxiv.org/abs/2006.05694v2
https://arxiv.org/pdf/2006.05694v2.pdf
HiFi-GAN: High-Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks
Real-world audio recordings are often degraded by factors such as noise, reverberation, and equalization distortion. This paper introduces HiFi-GAN, a deep learning method to transform recorded speech to sound as though it had been recorded in a studio. We use an end-to-end feed-forward WaveNet architecture, trained with multi-scale adversarial discriminators in both the time domain and the time-frequency domain. It relies on the deep feature matching losses of the discriminators to improve the perceptual quality of enhanced speech. The proposed model generalizes well to new speakers, new speech content, and new environments. It significantly outperforms state-of-the-art baseline methods in both objective and subjective experiments.
['Adam Finkelstein', 'Zeyu Jin', 'Jiaqi Su']
2020-06-10
null
null
null
null
['speech-dereverberation']
['speech']
[ 2.60852277e-01 -5.61143272e-03 5.27500093e-01 -2.53231466e-01 -1.19444799e+00 -6.75006211e-01 1.93829224e-01 -5.02851903e-01 -2.36359268e-01 6.04173601e-01 6.51978493e-01 -5.96038103e-02 3.04938525e-01 -5.66114843e-01 -8.53573024e-01 -5.02559841e-01 -9.27827358e-02 -2.55924642e-01 -1.95525512e-01 -3.39443952e-01 -4.18160528e-01 2.64462888e-01 -1.05534887e+00 4.06557739e-01 7.06234038e-01 8.67668808e-01 -1.58182070e-01 1.18004060e+00 6.78916276e-01 5.68826139e-01 -1.21024203e+00 -5.19667745e-01 3.12177569e-01 -6.55378759e-01 -3.68070245e-01 -1.41716167e-01 4.78325307e-01 -5.61367631e-01 -1.08335900e+00 1.03551698e+00 1.11983228e+00 4.26541209e-01 4.78018612e-01 -8.66844475e-01 -1.05015481e+00 5.89558840e-01 -3.93895656e-02 2.20439598e-01 4.70856547e-01 2.32927710e-01 7.10258663e-01 -1.04695082e+00 7.66530260e-02 1.19000423e+00 8.60467911e-01 5.64868867e-01 -1.15178168e+00 -8.95875156e-01 -1.54209927e-01 2.76278496e-01 -1.07139897e+00 -7.21829236e-01 9.67072368e-01 -2.06800789e-01 9.65837657e-01 3.34659755e-01 5.05873799e-01 1.63044763e+00 2.54990339e-01 5.82401872e-01 8.33211720e-01 -2.99111992e-01 2.22304568e-01 -1.38926417e-01 -7.57329941e-01 2.37142965e-02 -6.18037224e-01 7.99327612e-01 -7.13678956e-01 -7.54301548e-02 5.88732183e-01 -4.52535033e-01 -7.79756129e-01 3.65263939e-01 -1.08777273e+00 5.80745995e-01 5.11834502e-01 2.76472747e-01 -2.62454838e-01 3.24619502e-01 5.36526799e-01 6.85116351e-01 6.80287898e-01 6.99487269e-01 -4.23481941e-01 -3.09511065e-01 -9.47149634e-01 1.72979683e-01 4.80308861e-01 6.75108254e-01 5.23361517e-03 9.70060349e-01 -1.14513360e-01 9.05175626e-01 1.25244677e-01 6.51746392e-01 8.75831008e-01 -9.49182928e-01 5.36719620e-01 -6.10729456e-01 3.43093649e-03 -6.86222970e-01 -1.83640122e-01 -1.09730995e+00 -9.69653189e-01 3.61159891e-01 -9.82955694e-02 -5.58462143e-01 -9.93981123e-01 1.95676827e+00 1.25340998e-01 7.23877192e-01 4.05519813e-01 9.38002467e-01 8.75178635e-01 1.08858442e+00 -3.93624544e-01 -1.35145724e-01 5.61859250e-01 -1.27411866e+00 -1.07029843e+00 -3.48340929e-01 -2.63234377e-01 -1.11691833e+00 1.18991232e+00 5.38948238e-01 -1.36114395e+00 -1.04395986e+00 -1.19723976e+00 -7.87074715e-02 -1.75970569e-01 -5.42651415e-02 -1.55655727e-01 6.63512886e-01 -1.16026354e+00 6.10457063e-01 -4.97012407e-01 3.21838975e-01 4.38863821e-02 3.43855121e-03 -1.74147546e-01 1.91606760e-01 -1.65590453e+00 4.64209318e-01 -7.68447248e-03 2.02113509e-01 -1.24186647e+00 -9.07700658e-01 -8.28684092e-01 1.95641875e-01 -8.65428597e-02 -8.26592624e-01 1.66298032e+00 -1.04379213e+00 -2.08193660e+00 2.18158424e-01 1.46226645e-01 -4.99873638e-01 6.05417430e-01 -5.86718976e-01 -1.10937142e+00 6.85187876e-02 -2.11496830e-01 5.54736741e-02 1.38304269e+00 -1.06137502e+00 -2.67499536e-01 9.13898088e-03 -1.70670703e-01 3.40387255e-01 -2.44986102e-01 -1.80217788e-01 5.42261079e-02 -1.53640842e+00 -5.79428338e-02 -6.70428813e-01 1.00730397e-02 -1.47706881e-01 -3.31542015e-01 4.40989047e-01 9.18452322e-01 -1.28922486e+00 9.24458981e-01 -2.77074528e+00 2.90104061e-01 -1.36851996e-01 -5.96307740e-02 4.97223318e-01 -2.39287600e-01 5.74982882e-01 -1.61731124e-01 -1.54541746e-01 9.23561864e-03 -4.73406643e-01 1.12685584e-01 -8.65532309e-02 -8.09620976e-01 3.81076545e-01 -7.78427115e-03 4.78291541e-01 -8.41238379e-01 3.24481845e-01 2.41687253e-01 9.09098387e-01 -6.81347787e-01 5.81879914e-01 1.24567673e-01 8.02400708e-01 3.02406400e-01 1.15089074e-01 6.19629979e-01 5.66001058e-01 -4.09089565e-01 -2.46385962e-01 2.03474417e-01 6.94194198e-01 -8.70930195e-01 1.80750477e+00 -8.91686320e-01 9.88139927e-01 2.96019822e-01 -8.09850633e-01 7.23074377e-01 8.73378456e-01 8.24037101e-03 -6.25875175e-01 4.72335964e-02 4.27010536e-01 5.26507897e-03 -3.64410073e-01 3.10923904e-01 -5.21994889e-01 4.71945247e-03 4.58084606e-02 4.12237048e-01 -5.29518723e-01 -5.74421227e-01 -1.02101192e-01 1.08565223e+00 -3.16739053e-01 -7.18006715e-02 2.13086531e-01 2.68958718e-01 -1.09641171e+00 4.49541211e-01 5.95594525e-01 -1.43949986e-01 8.80735517e-01 -9.79756489e-02 -3.67232487e-02 -1.00973439e+00 -1.57570410e+00 7.28966072e-02 1.22769892e+00 -1.79263160e-01 -3.25160148e-03 -7.37195671e-01 -1.87258869e-01 -2.02147156e-01 9.11959291e-01 -4.05528486e-01 -8.44610810e-01 -4.48808163e-01 1.88091341e-02 1.03566921e+00 6.40999496e-01 6.45137608e-01 -9.31180060e-01 -5.99771589e-02 6.68100595e-01 -3.45064461e-01 -1.16150391e+00 -9.88335490e-01 1.80692360e-01 -3.71051282e-01 -2.96304375e-01 -1.00959253e+00 -9.54868495e-01 9.51081887e-02 -1.06827475e-01 8.16108346e-01 -5.72537720e-01 -3.53480950e-02 3.13738614e-01 -3.77970338e-01 -4.69377279e-01 -7.97036052e-01 -2.26277187e-01 3.89509916e-01 2.77795166e-01 -4.77699071e-01 -1.08793247e+00 -6.73880458e-01 2.18876198e-01 -7.99424589e-01 -3.55027944e-01 3.70684177e-01 1.04233122e+00 4.12433267e-01 5.24151087e-01 9.15024042e-01 -2.17849404e-01 7.66795993e-01 -1.05392560e-01 -1.56062469e-01 -1.51207179e-01 -6.83260038e-02 -2.88734376e-01 1.07995462e+00 -7.58336306e-01 -1.12396133e+00 -5.21824777e-01 -7.30958521e-01 -4.68673646e-01 -1.00898724e-02 3.48871976e-01 -4.68205869e-01 2.30816919e-02 8.85998249e-01 2.37356156e-01 -3.84604245e-01 -5.13743997e-01 4.27152514e-01 1.01063347e+00 1.25778055e+00 -1.51478365e-01 1.10788989e+00 -6.44221855e-03 -3.92224878e-01 -8.30562830e-01 -6.79499805e-01 -1.23273835e-01 -9.71653834e-02 -1.49437428e-01 5.83223283e-01 -1.12815285e+00 -2.20586851e-01 1.03604233e+00 -1.23723507e+00 -6.46097362e-01 -5.00341415e-01 7.94254839e-01 -6.40771210e-01 6.02566972e-02 -9.17707860e-01 -5.88384092e-01 -5.42598069e-01 -9.12726641e-01 8.43819559e-01 1.26654848e-01 7.31917471e-02 -8.04233074e-01 2.35665232e-01 2.20538303e-01 7.99229324e-01 2.65417337e-01 5.46835780e-01 -3.05485785e-01 -1.38932452e-01 -2.71460563e-01 5.19267738e-01 1.10902953e+00 3.12501758e-01 -1.08327329e-01 -1.45467317e+00 -6.28902376e-01 3.14624310e-01 -3.30680966e-01 7.94188678e-01 2.92359531e-01 1.14816153e+00 -8.54009628e-01 2.78375834e-01 9.93318319e-01 9.24530029e-01 5.32217205e-01 7.80919552e-01 -1.61103457e-02 3.99846345e-01 1.20859109e-01 1.40011668e-01 3.00088584e-01 -1.07293025e-01 7.04375982e-01 3.57675999e-01 -4.80029732e-01 -5.67228317e-01 -4.43698823e-01 6.37637973e-01 1.15088403e+00 2.89719880e-01 -6.03733718e-01 -4.63538229e-01 5.36417425e-01 -1.13001633e+00 -1.05989373e+00 5.80568790e-01 1.84724784e+00 9.84591782e-01 2.22469300e-01 -3.41885686e-02 6.12552702e-01 5.87606549e-01 2.25419968e-01 -7.80018330e-01 -6.32900059e-01 -1.14512771e-01 5.69300592e-01 7.04709888e-02 7.41271555e-01 -9.56336439e-01 4.93888527e-01 6.56549263e+00 5.95843136e-01 -1.62174737e+00 2.39065662e-01 4.14557099e-01 -2.94248909e-01 -2.53718674e-01 -6.95938349e-01 1.01061970e-01 2.53276855e-01 1.05273271e+00 -3.65257740e-01 9.30844843e-01 6.87169313e-01 1.55389994e-01 6.61107898e-01 -1.08388782e+00 8.81007910e-01 1.17977507e-01 -9.11143899e-01 -2.44789019e-01 -2.41083801e-01 7.11872935e-01 5.68926819e-02 9.48621571e-01 5.61917841e-01 9.67433378e-02 -1.15058684e+00 1.14144611e+00 3.24049056e-01 1.26459992e+00 -7.87817419e-01 6.95093274e-01 1.78616673e-01 -1.10076952e+00 -5.24242185e-02 5.20016998e-02 -8.80247056e-02 1.73732996e-01 4.49873000e-01 -1.03688967e+00 3.71798277e-01 7.31248319e-01 3.89768571e-01 1.46753723e-02 8.97734106e-01 -4.11617219e-01 1.23381591e+00 -7.43520707e-02 5.55638433e-01 1.10812485e-01 3.88857633e-01 8.25068414e-01 1.27291238e+00 5.58242261e-01 5.55444881e-02 -1.92643404e-01 5.47216773e-01 -3.75001192e-01 -2.56751180e-01 -4.54334319e-01 -2.33437903e-02 5.61898053e-01 6.46122873e-01 2.99686730e-01 -3.02492697e-02 -2.80981928e-01 1.40237284e+00 -1.84070423e-01 9.80821192e-01 -1.01491916e+00 -1.00038326e+00 8.74525905e-01 5.15256682e-03 4.23317879e-01 -1.21870197e-01 6.98037446e-02 -9.61987555e-01 1.84988201e-01 -1.06902826e+00 -9.69198942e-02 -1.04815698e+00 -1.36120927e+00 1.05688012e+00 -4.84981209e-01 -1.22027409e+00 -4.46905047e-01 -3.44828397e-01 -8.17388892e-01 1.07673800e+00 -1.40700889e+00 -8.47914577e-01 -4.72208560e-02 8.13087702e-01 5.27412057e-01 -3.90302420e-01 9.96927738e-01 6.05622709e-01 -1.12346075e-01 1.20711184e+00 5.50626338e-01 3.60169977e-01 8.02803218e-01 -1.10876167e+00 8.88073623e-01 9.69417214e-01 2.68944949e-01 1.75116032e-01 1.05283403e+00 -8.25671665e-03 -6.88947260e-01 -1.45574248e+00 5.20136297e-01 1.20792300e-01 5.12246966e-01 -6.54522061e-01 -9.66904759e-01 6.14936590e-01 4.82573628e-01 2.22529054e-01 9.18867052e-01 -2.89795995e-01 -5.41179478e-01 -4.40565765e-01 -1.21423805e+00 3.78032118e-01 8.98694098e-01 -1.13823462e+00 -5.94627261e-01 1.00978449e-01 1.30431271e+00 -8.34071457e-01 -8.58411431e-01 3.16708565e-01 4.97983426e-01 -8.15132678e-01 1.10511684e+00 -5.88969171e-01 3.09797585e-01 -8.57841522e-02 -4.90432322e-01 -2.21138263e+00 -3.98431242e-01 -1.23310089e+00 -2.60640621e-01 1.22572815e+00 3.95073622e-01 -6.91296816e-01 -3.68017070e-02 -7.49919862e-02 -7.58936405e-01 -5.88822961e-01 -1.32330513e+00 -1.09837317e+00 2.54695207e-01 -3.76700193e-01 8.01665425e-01 6.64327264e-01 -8.95355344e-02 4.10173535e-01 -6.34599090e-01 6.43922389e-01 4.56137210e-01 -2.96553850e-01 5.87535858e-01 -6.08557999e-01 -8.58957171e-01 -1.87544480e-01 -6.18804038e-01 -1.06661892e+00 1.91235915e-01 -4.57137108e-01 2.01443151e-01 -1.36514390e+00 -6.06878817e-01 1.32664844e-01 -3.98753434e-01 6.41706586e-02 -2.49600977e-01 4.02094662e-01 2.36546531e-01 -2.13732287e-01 1.90088190e-02 1.06840897e+00 1.30627179e+00 -4.51315016e-01 -2.91788548e-01 3.40690762e-01 -4.73819256e-01 6.74696207e-01 9.14866507e-01 -3.67387474e-01 -4.66790974e-01 -7.11476684e-01 -2.82638595e-02 3.84541065e-01 3.20032030e-01 -1.44229710e+00 -6.18261173e-02 1.47389665e-01 3.30325037e-01 -1.95660472e-01 7.58907259e-01 -7.59213388e-01 1.87983990e-01 2.97123134e-01 -7.01686203e-01 -2.51903206e-01 4.99231219e-01 7.29807854e-01 -6.84761763e-01 3.16300631e-01 1.05736279e+00 1.46250680e-01 -6.11684024e-02 1.46481007e-01 -4.80094582e-01 3.06919366e-01 5.59330642e-01 1.57321885e-01 -2.44338438e-01 -1.06498337e+00 -9.91420984e-01 -4.83476669e-01 -9.97311249e-02 4.55683559e-01 7.42476344e-01 -1.52460074e+00 -1.06757569e+00 4.72175956e-01 -2.91601330e-01 -1.97344527e-01 4.57573146e-01 2.26831332e-01 -2.27431417e-01 5.51978648e-02 1.62870064e-02 -1.75378487e-01 -9.76946890e-01 4.56264615e-01 8.24622869e-01 -1.40806222e-02 -5.99778056e-01 1.25645196e+00 3.42223555e-01 -4.27869767e-01 6.24792695e-01 -4.85945195e-01 3.04244101e-01 -5.33948720e-01 6.53339326e-01 3.53028446e-01 2.31493279e-01 -5.48514664e-01 -6.28523231e-02 2.72586286e-01 2.60071963e-01 -6.21816039e-01 1.15467024e+00 -1.54130176e-01 4.60870922e-01 5.77550411e-01 1.52337420e+00 3.85732740e-01 -1.21874726e+00 -3.63474637e-01 -9.50596333e-01 -5.52769244e-01 2.64885843e-01 -1.21640956e+00 -1.11866379e+00 1.05946910e+00 8.21911216e-01 1.65777832e-01 1.58929050e+00 -2.45055109e-01 1.27487540e+00 1.01139493e-01 1.02129012e-01 -9.38295424e-01 7.57824481e-01 4.74097580e-01 1.45059013e+00 -7.56879568e-01 -4.99298096e-01 -9.34164878e-03 -4.81409311e-01 9.81244743e-01 2.88453281e-01 -1.67666320e-02 7.96038270e-01 4.44781631e-01 4.31900829e-01 5.46919167e-01 -5.37058175e-01 3.01160008e-01 4.43756998e-01 9.94241178e-01 2.86035627e-01 1.94678277e-01 5.03234148e-01 8.14879596e-01 -8.87072861e-01 -2.72576332e-01 4.40862328e-01 3.80312294e-01 -2.22380653e-01 -5.62330365e-01 -5.73647082e-01 1.18660601e-02 -6.34287417e-01 -1.94282606e-01 -2.50630677e-01 2.03909889e-01 1.43006280e-01 1.36053801e+00 -1.62192360e-01 -7.03563929e-01 7.90763199e-01 -5.77659011e-02 3.22887689e-01 -3.51949036e-01 -5.92377722e-01 3.50368321e-01 -1.08547062e-01 -2.13623807e-01 -9.60669369e-02 -4.23509300e-01 -9.96454835e-01 -1.47078514e-01 -3.64201337e-01 5.27266935e-02 5.42020023e-01 5.17610371e-01 2.59698570e-01 1.27732432e+00 1.13454235e+00 -8.93923819e-01 -1.09924912e+00 -1.32804692e+00 -7.46239126e-01 3.85570765e-01 1.20219481e+00 -2.34743118e-01 -7.20859826e-01 3.10441017e-01]
[15.228394508361816, 6.006433963775635]
b00945be-a473-4030-97df-304b4856ec43
the-larger-they-are-the-harder-they-fail
2305.15507
null
https://arxiv.org/abs/2305.15507v1
https://arxiv.org/pdf/2305.15507v1.pdf
The Larger They Are, the Harder They Fail: Language Models do not Recognize Identifier Swaps in Python
Large Language Models (LLMs) have successfully been applied to code generation tasks, raising the question of how well these models understand programming. Typical programming languages have invariances and equivariances in their semantics that human programmers intuitively understand and exploit, such as the (near) invariance to the renaming of identifiers. We show that LLMs not only fail to properly generate correct Python code when default function names are swapped, but some of them even become more confident in their incorrect predictions as the model size increases, an instance of the recently discovered phenomenon of Inverse Scaling, which runs contrary to the commonly observed trend of increasing prediction quality with increasing model size. Our findings indicate that, despite their astonishing typical-case performance, LLMs still lack a deep, abstract understanding of the content they manipulate, making them unsuitable for tasks that statistically deviate from their training data, and that mere scaling is not enough to achieve such capability.
['Shay B. Cohen', 'Ioannis Konstas', 'Fazl Barez', 'Antonio Valerio Miceli-Barone']
2023-05-24
null
null
null
null
['code-generation']
['computer-code']
[ 1.72537252e-01 3.53530467e-01 -1.04176290e-01 -5.61605096e-01 -3.49916108e-02 -7.30127633e-01 7.39736438e-01 3.50953043e-01 -2.12693483e-01 3.92312884e-01 2.23034799e-01 -8.52137804e-01 2.41420016e-01 -9.77068126e-01 -1.08641791e+00 3.17507237e-02 -7.85625875e-02 1.81517169e-01 2.02590540e-01 -3.87791425e-01 5.61863899e-01 -1.64074823e-02 -1.73345852e+00 4.30317491e-01 1.19797635e+00 3.38995345e-02 9.06484500e-02 7.18158960e-01 -4.48020369e-01 9.84312356e-01 -2.66074240e-01 -5.40424764e-01 2.17305049e-02 -2.18239158e-01 -8.53275239e-01 -4.25752282e-01 4.77793485e-01 -2.22792789e-01 6.78388625e-02 1.20909357e+00 -1.69617787e-01 -3.78562123e-01 3.89875859e-01 -1.38718235e+00 -9.80371833e-01 1.02163732e+00 -3.81449878e-01 -5.02883866e-02 4.80293930e-01 4.37225819e-01 1.19479668e+00 -5.03963530e-01 5.69811165e-01 1.23078620e+00 9.61059570e-01 8.01874995e-01 -1.47148895e+00 -3.94094676e-01 8.75045918e-03 -4.65845704e-01 -1.07843316e+00 -2.94682890e-01 4.25990345e-03 -8.64232659e-01 1.11852002e+00 4.94878888e-01 4.07193929e-01 9.19935524e-01 2.41194054e-01 4.03696090e-01 1.13006938e+00 -5.56048334e-01 3.31578106e-02 6.05463326e-01 2.44146183e-01 7.43340611e-01 9.01152074e-01 1.18595054e-02 -3.16447318e-01 -5.58777809e-01 5.62295318e-01 -1.82515293e-01 -9.74054337e-02 -4.96760905e-01 -1.26324272e+00 6.19670451e-01 2.62961060e-01 4.95147943e-01 1.46938607e-01 2.90756017e-01 5.23750722e-01 5.12350142e-01 -1.50335301e-02 1.01016653e+00 -9.27984178e-01 -3.64483029e-01 -6.34378076e-01 5.97726941e-01 9.15721953e-01 1.28603911e+00 6.56391799e-01 1.62829489e-01 2.72087485e-01 4.55545902e-01 2.87160188e-01 2.29775041e-01 9.44361746e-01 -8.81249964e-01 5.07495403e-01 9.34718251e-01 2.78881371e-01 -8.39782119e-01 -2.84436107e-01 -4.84713137e-01 -2.85815626e-01 3.01679760e-01 6.52394950e-01 1.76501483e-01 -3.65426242e-01 2.07930875e+00 -3.00410807e-01 -3.31269473e-01 8.63818265e-03 2.66313672e-01 1.95538014e-01 3.10284466e-01 5.01731157e-01 1.77201211e-01 1.11135411e+00 -4.62193191e-01 8.24560300e-02 -8.11700702e-01 1.25894308e+00 -5.61853051e-01 1.66633773e+00 1.64329737e-01 -1.06881344e+00 -5.08584261e-01 -1.07616329e+00 -4.86831255e-02 -3.09426844e-01 -3.90707374e-01 1.27122462e+00 1.11859691e+00 -1.02328658e+00 8.72690380e-01 -8.37973952e-01 -4.23901349e-01 2.55858600e-01 1.49063125e-01 -4.45720434e-01 3.09545528e-02 -8.15432012e-01 9.44934785e-01 5.55209398e-01 -2.29996458e-01 -4.65887427e-01 -9.95309412e-01 -9.21547532e-01 1.94799989e-01 -5.26777543e-02 -5.67047536e-01 1.54193568e+00 -1.31091654e+00 -8.94741118e-01 1.13745189e+00 -2.15171486e-01 -4.23404127e-01 5.29723823e-01 -1.19292624e-01 -1.49275646e-01 -8.49883735e-01 1.27422228e-01 3.48656505e-01 6.14504158e-01 -1.15761340e+00 -3.12056124e-01 -2.73466527e-01 4.03560489e-01 -2.24664792e-01 -3.80485624e-01 2.37960160e-01 4.86538351e-01 -4.73070234e-01 1.46179378e-01 -8.06296170e-01 -1.98257565e-01 -4.45959419e-02 -2.76314467e-01 -1.94827750e-01 1.93160400e-01 -5.84362328e-01 1.48016393e+00 -2.13164401e+00 -6.45477101e-02 1.97387293e-01 4.53643262e-01 1.88691244e-01 -1.56653568e-01 5.51395118e-01 -3.28444004e-01 6.87343657e-01 -3.67370516e-01 1.89914420e-01 4.94973779e-01 1.00594632e-01 -6.26380682e-01 2.57827729e-01 2.73390263e-01 9.98524606e-01 -1.00227225e+00 -1.31199390e-01 -1.02763563e-01 -1.59247920e-01 -1.15528858e+00 9.86151621e-02 -5.96315503e-01 8.29387233e-02 -3.33334208e-01 2.63027549e-01 5.15186667e-01 -5.33837855e-01 4.91237491e-01 5.20159364e-01 -2.18776926e-01 7.49913156e-01 -1.08776796e+00 1.13247013e+00 -5.16604066e-01 6.07662797e-01 -2.68250197e-01 -7.14473963e-01 6.88501477e-01 7.10536446e-03 -1.77227795e-01 -4.92551833e-01 -4.45715308e-01 5.98841548e-01 5.87402642e-01 -6.36827409e-01 5.49466550e-01 -3.25624257e-01 -2.52200067e-01 8.58646631e-01 -3.26964915e-01 -2.18240216e-01 1.58847287e-01 2.99160540e-01 1.10175598e+00 3.50798309e-01 3.02759141e-01 -4.84645814e-01 5.05253553e-01 1.23591563e-02 5.16947627e-01 1.21448874e+00 4.28943038e-01 3.43590111e-01 9.79521096e-01 -6.31326497e-01 -1.51780641e+00 -8.50594223e-01 -9.94535238e-02 1.33728755e+00 -4.21938479e-01 -8.20509493e-01 -1.02184975e+00 -5.05610943e-01 1.50006771e-01 1.22419548e+00 -4.94779050e-01 -4.15739655e-01 -7.18486845e-01 -8.85777414e-01 7.88460433e-01 5.40787220e-01 4.66041677e-02 -9.03650999e-01 -8.78636479e-01 1.78413972e-01 7.50956014e-02 -8.15370858e-01 -7.95596391e-02 -8.28517154e-02 -1.08767092e+00 -1.00835776e+00 -6.40677065e-02 -4.70176458e-01 9.44133520e-01 -9.51332971e-02 1.47446311e+00 8.39291036e-01 -7.67631829e-02 2.69330919e-01 -7.68893212e-02 -4.60318476e-01 -1.31886578e+00 1.46448746e-01 -7.07227811e-02 -7.50051141e-01 5.51259696e-01 -8.29177678e-01 -1.36705518e-01 7.31881186e-02 -1.01637709e+00 1.69219092e-01 4.84716326e-01 6.79966927e-01 -4.45412934e-01 -2.49215677e-01 3.81933659e-01 -1.24484789e+00 6.91415012e-01 -5.25784850e-01 -6.70502484e-01 3.10833007e-01 -8.33168864e-01 4.61533487e-01 9.12826777e-01 -2.83012360e-01 -8.30041170e-01 -4.56642181e-01 8.62644240e-02 5.50187111e-01 -1.65465087e-01 4.53488857e-01 8.88786688e-02 -1.68627560e-01 1.01282144e+00 3.06165367e-01 2.41918154e-02 -4.48055714e-01 2.40945294e-01 4.96654660e-01 2.95739025e-01 -1.16174734e+00 1.07634091e+00 3.89558971e-02 -2.91010678e-01 -6.56407237e-01 -5.22173405e-01 2.49282762e-01 -4.09940392e-01 5.68698287e-01 3.62397581e-01 -6.38115883e-01 -7.12496996e-01 4.79018271e-01 -1.23736715e+00 -4.85870063e-01 -1.71571225e-01 9.87903550e-02 -6.53326631e-01 6.23843968e-01 -6.22184336e-01 -5.54811060e-01 4.75220159e-02 -1.23782349e+00 6.63640916e-01 -2.48950440e-02 -7.99579859e-01 -9.89295900e-01 -1.42038148e-02 7.77912512e-02 8.59591067e-01 -4.36063893e-02 2.03377342e+00 -8.66036117e-01 -6.14961267e-01 -2.47498900e-01 -1.79392695e-01 3.97374988e-01 -1.05315015e-01 3.11386555e-01 -7.43063152e-01 -1.28910810e-01 -1.40319884e-01 -9.22236145e-02 1.74888566e-01 -2.47254521e-01 1.19260395e+00 -5.21501839e-01 -1.56380028e-01 4.27850187e-01 1.48315787e+00 -1.95338354e-01 6.15992546e-01 5.58961928e-01 4.95441765e-01 4.99256700e-01 -9.03530121e-02 2.21108422e-01 5.14228702e-01 5.58607876e-01 1.80481359e-01 3.09207767e-01 2.21085086e-01 -6.71794713e-01 5.25392234e-01 4.67219323e-01 -2.70563290e-02 3.63433748e-01 -1.32234991e+00 3.39064807e-01 -1.64365530e+00 -8.58507931e-01 -4.87870961e-01 2.66022611e+00 1.21370077e+00 4.66359645e-01 -1.33215459e-02 -1.45739704e-01 4.04805690e-01 7.24526271e-02 -3.42323422e-01 -8.31017137e-01 2.37091735e-01 2.74447471e-01 4.08810645e-01 4.90124732e-01 -5.76965392e-01 8.75688851e-01 7.21125364e+00 2.45891079e-01 -9.79382038e-01 8.11767802e-02 3.29497516e-01 5.38633764e-01 -8.88557196e-01 5.00462770e-01 -4.77156281e-01 5.52668214e-01 1.19164097e+00 -5.35516024e-01 6.29859865e-01 1.06786108e+00 -6.65776506e-02 -1.36608845e-02 -1.61499929e+00 3.33707511e-01 -3.25732052e-01 -1.19440925e+00 9.78454798e-02 -4.97885421e-02 4.99316484e-01 -2.01318637e-02 -1.32387847e-01 6.63137496e-01 5.62856615e-01 -1.44231880e+00 1.00970423e+00 3.35175484e-01 4.37017739e-01 -1.94183171e-01 4.26716298e-01 6.97498500e-01 -4.74048615e-01 -2.72176534e-01 -4.36913103e-01 -6.48784697e-01 -3.01112592e-01 1.50581509e-01 -7.65486538e-01 -1.73662171e-01 3.61615032e-01 2.33816549e-01 -1.18940389e+00 8.82220626e-01 -2.99554020e-01 5.27240455e-01 -9.39020887e-02 -3.73360030e-02 -7.43828341e-02 1.52507558e-01 2.87056565e-01 1.25397801e+00 3.02005112e-01 -3.67808431e-01 -3.51583183e-01 1.34901690e+00 9.74165425e-02 -1.05323792e-01 -7.09998012e-01 -4.61844236e-01 3.88082206e-01 7.62457013e-01 -3.65343124e-01 -4.58052129e-01 -7.46305645e-01 4.10272390e-01 3.20581287e-01 2.44275838e-01 -6.39997602e-01 -1.64568886e-01 7.81137645e-01 4.34472919e-01 -3.29350755e-02 -3.91040564e-01 -5.93588710e-01 -1.42335391e+00 3.56373638e-01 -1.31837249e+00 -1.39897931e-02 -9.26770389e-01 -1.09371984e+00 2.74816990e-01 4.81811389e-02 -8.00099492e-01 -3.80827606e-01 -8.00039649e-01 -6.18032455e-01 8.51477504e-01 -1.15670478e+00 -8.70518625e-01 1.63744707e-02 -1.38562158e-01 1.66795760e-01 2.60076318e-02 1.02996695e+00 2.01047752e-02 -2.19317861e-02 6.73712492e-01 -1.23254418e-01 8.36066827e-02 3.99713278e-01 -1.35158432e+00 1.04602861e+00 8.38919103e-01 6.03709929e-02 1.58864868e+00 1.15000212e+00 -4.23400789e-01 -1.55204606e+00 -7.54301190e-01 1.11493444e+00 -9.69244063e-01 1.00204420e+00 -4.83523786e-01 -1.24224710e+00 1.18742704e+00 -1.39428794e-01 -1.89879909e-01 4.84789342e-01 2.40094289e-01 -1.14038908e+00 2.07678407e-01 -8.75674903e-01 7.46283293e-01 1.15857685e+00 -6.81745589e-01 -7.53750026e-01 4.79926169e-01 7.24927604e-01 -3.19371581e-01 -6.80876315e-01 2.30808750e-01 6.31956100e-01 -1.20790267e+00 7.61035681e-01 -1.32355511e+00 8.88789892e-01 -1.99595064e-01 -2.18836606e-01 -9.66615856e-01 -2.49798492e-01 -6.49152935e-01 2.07675368e-01 1.13858068e+00 6.36386633e-01 -9.20182168e-01 5.37316203e-01 1.19595504e+00 3.64875025e-03 -3.04214031e-01 -3.81315082e-01 -7.12952971e-01 5.27284205e-01 -5.92814803e-01 9.13133204e-01 1.25628066e+00 4.17454451e-01 -2.83895526e-02 1.12132221e-01 7.90410489e-02 4.25234526e-01 9.84891355e-02 9.33665514e-01 -1.36632240e+00 -6.51761055e-01 -6.51794434e-01 -5.28164327e-01 -7.91375160e-01 3.03836852e-01 -1.22265422e+00 -1.31194025e-01 -1.08650327e+00 5.36665559e-01 -8.30565751e-01 2.09752098e-01 4.88772690e-01 -1.80260226e-01 -2.64615655e-01 1.53191283e-01 5.04433736e-02 -2.63810515e-01 -4.26528305e-02 5.80551744e-01 2.47537851e-01 7.28101656e-02 6.24807626e-02 -1.32195890e+00 1.01813674e+00 7.10764647e-01 -5.95955551e-01 -2.62340933e-01 -6.93915129e-01 1.16081858e+00 -3.29768270e-01 6.37935579e-01 -9.28585291e-01 -1.71541899e-01 -5.07325590e-01 7.46629909e-02 5.56112647e-01 -4.29466009e-01 -6.76730871e-01 2.54794538e-01 7.22497225e-01 -7.34889269e-01 4.04352486e-01 3.92955780e-01 1.48189500e-01 2.53508955e-01 -7.74000585e-01 5.23914576e-01 -5.31024575e-01 -8.40666890e-01 -1.96397200e-01 -5.33362389e-01 1.93089828e-01 7.22381294e-01 -2.20845893e-01 -6.59581661e-01 -8.82662609e-02 -2.76772469e-01 -8.31042156e-02 1.19248807e+00 7.14337111e-01 5.08873612e-02 -8.92174244e-01 -5.11107326e-01 4.50099647e-01 3.73216599e-01 -2.65571386e-01 -1.02842838e-01 5.98587751e-01 -6.16042495e-01 3.21355820e-01 -8.99729952e-02 -3.50208372e-01 -9.63747203e-01 4.45291221e-01 3.68396014e-01 -1.95247829e-02 -5.69758892e-01 6.76748872e-01 4.65271026e-01 -1.00659883e+00 -3.17843825e-01 -6.32535875e-01 3.61521780e-01 -7.26985753e-01 5.65114915e-01 -9.19908136e-02 -2.31977343e-03 -8.52847993e-02 -2.27223322e-01 2.32489735e-01 -1.78385749e-01 3.31108689e-01 1.46946812e+00 3.70874852e-01 -7.54928112e-01 4.27242160e-01 6.56799018e-01 3.37402761e-01 -8.11403453e-01 -7.55854547e-02 4.34572816e-01 -6.38635457e-01 -7.30447650e-01 -6.92462206e-01 -1.91971153e-01 1.01136208e+00 -1.11601381e-02 5.82459509e-01 3.60611051e-01 -4.80856895e-02 3.70354354e-01 5.55284560e-01 7.37366021e-01 -7.40888417e-01 -2.60791063e-01 6.24269366e-01 7.29870915e-01 -9.65744674e-01 -6.67901384e-03 -2.33049244e-01 -3.74251753e-01 1.14721668e+00 8.82206857e-01 3.34651433e-02 8.08530524e-02 4.23364967e-01 -4.29007113e-01 1.41367167e-01 -9.69213068e-01 4.34578508e-01 -3.34140688e-01 8.06365967e-01 9.03408289e-01 1.12586856e-01 -3.75333488e-01 5.82936704e-01 -6.12231612e-01 1.15027025e-01 1.00532949e+00 9.20522094e-01 -5.11964083e-01 -1.41024923e+00 -2.79651791e-01 5.25473416e-01 -4.83071595e-01 -3.99514616e-01 -1.32142022e-01 9.44196343e-01 4.47964855e-02 4.29809898e-01 8.85555819e-02 -2.12811127e-01 2.07061708e-01 4.84059751e-01 6.47738159e-01 -1.05952764e+00 -6.31906450e-01 -9.27549958e-01 8.29530656e-02 -4.77208853e-01 2.06816286e-01 -5.95254958e-01 -1.19729900e+00 -6.80288613e-01 -1.99500658e-02 1.00994274e-01 5.89354932e-01 9.31284308e-01 3.74790847e-01 1.33726746e-01 1.38571084e-01 -2.70420671e-01 -1.12460184e+00 -7.48804510e-01 -2.70139337e-01 6.36125863e-01 3.41398031e-01 -1.95627376e-01 -4.30880815e-01 5.90622462e-02]
[7.938297271728516, 7.668320655822754]
aaa23feb-1514-4af6-aad9-ed6bd871aa51
on-the-generalization-of-learned-structured
2304.13001
null
https://arxiv.org/abs/2304.13001v1
https://arxiv.org/pdf/2304.13001v1.pdf
On the Generalization of Learned Structured Representations
Despite tremendous progress over the past decade, deep learning methods generally fall short of human-level systematic generalization. It has been argued that explicitly capturing the underlying structure of data should allow connectionist systems to generalize in a more predictable and systematic manner. Indeed, evidence in humans suggests that interpreting the world in terms of symbol-like compositional entities may be crucial for intelligent behavior and high-level reasoning. Another common limitation of deep learning systems is that they require large amounts of training data, which can be expensive to obtain. In representation learning, large datasets are leveraged to learn generic data representations that may be useful for efficient learning of arbitrary downstream tasks. This thesis is about structured representation learning. We study methods that learn, with little or no supervision, representations of unstructured data that capture its hidden structure. In the first part of the thesis, we focus on representations that disentangle the explanatory factors of variation of the data. We scale up disentangled representation learning to a novel robotic dataset, and perform a systematic large-scale study on the role of pretrained representations for out-of-distribution generalization in downstream robotic tasks. The second part of this thesis focuses on object-centric representations, which capture the compositional structure of the input in terms of symbol-like entities, such as objects in visual scenes. Object-centric learning methods learn to form meaningful entities from unstructured input, enabling symbolic information processing on a connectionist substrate. In this study, we train a selection of methods on several common datasets, and investigate their usefulness for downstream tasks and their ability to generalize out of distribution.
['Andrea Dittadi']
2023-04-25
null
null
null
null
['systematic-generalization']
['reasoning']
[ 4.35638517e-01 5.05285621e-01 -3.42138439e-01 -6.67269170e-01 -1.14601061e-01 -6.56260669e-01 8.46017182e-01 2.81902552e-01 -1.19615726e-01 6.32813931e-01 3.73353928e-01 -3.22821856e-01 -4.73697573e-01 -9.34184670e-01 -9.73631740e-01 -4.25327212e-01 -1.51979299e-02 6.73350394e-01 -1.06981486e-01 -5.24842322e-01 1.79271519e-01 8.24913263e-01 -1.59963202e+00 6.94152594e-01 5.40516138e-01 6.94976628e-01 3.42079461e-01 3.15131843e-01 -2.68974602e-02 9.55580950e-01 -6.07095182e-01 -1.45312369e-01 2.78130293e-01 -4.48266298e-01 -1.01324761e+00 -1.00946836e-01 4.27394956e-01 -1.67968109e-01 -4.11470324e-01 6.30957365e-01 2.27324273e-02 3.43384683e-01 1.03505695e+00 -1.26181948e+00 -1.14756536e+00 9.80800509e-01 -4.41117510e-02 2.53866941e-01 2.19660833e-01 2.91020095e-01 1.33435035e+00 -6.65994287e-01 1.01098073e+00 1.45925689e+00 5.76180220e-01 8.20532739e-01 -1.76496935e+00 -4.86488849e-01 4.10793960e-01 1.69418398e-02 -1.06693280e+00 -4.06087279e-01 7.55089283e-01 -5.60808361e-01 1.24318993e+00 -9.23646465e-02 6.38707101e-01 1.38065660e+00 1.27174988e-01 8.67428184e-01 8.76976192e-01 -3.53644788e-01 1.45029336e-01 5.49597591e-02 2.41353199e-01 7.10972905e-01 7.86342859e-01 3.30050170e-01 -5.67139685e-01 1.49237752e-01 9.41952884e-01 1.71426237e-01 -4.29418907e-02 -7.42010534e-01 -1.28679597e+00 8.54890704e-01 1.01379299e+00 4.86385763e-01 -2.44741812e-01 4.55938548e-01 3.97960693e-01 3.96003842e-01 -5.78213446e-02 1.23738635e+00 -7.36319125e-01 1.44958630e-01 -4.64031339e-01 3.53187114e-01 6.67037010e-01 1.11316180e+00 8.80249202e-01 2.13792950e-01 6.52046502e-02 4.31354105e-01 1.05490439e-01 1.26511455e-01 8.26518774e-01 -1.03300917e+00 5.34893572e-01 8.96956682e-01 -2.92753130e-01 -9.03362036e-01 -4.75764364e-01 -4.72468227e-01 -6.24333799e-01 2.47957572e-01 4.34563100e-01 -3.96675356e-02 -9.14386928e-01 2.13827014e+00 -1.47046059e-01 -3.92288774e-01 3.75252813e-01 7.52066672e-01 6.08597875e-01 3.92035842e-01 2.52655774e-01 2.53520101e-01 1.03186476e+00 -6.51273787e-01 -9.62881222e-02 -4.05267984e-01 1.05236256e+00 -6.24766108e-03 1.12192225e+00 3.48153710e-01 -9.62812185e-01 -7.06035852e-01 -1.14397991e+00 -6.33905590e-01 -7.75811493e-01 2.43869387e-02 1.19449210e+00 2.91105628e-01 -7.30151713e-01 9.64766741e-01 -8.27419639e-01 -5.88018775e-01 7.82658160e-01 5.46503901e-01 -6.06103897e-01 5.75165451e-02 -9.60817754e-01 1.15834069e+00 7.01027632e-01 -7.71376714e-02 -1.10343838e+00 -8.60367239e-01 -1.07154131e+00 2.06705555e-01 2.50951648e-01 -1.07535160e+00 1.18494833e+00 -1.09296894e+00 -1.14395380e+00 9.57111537e-01 4.61027659e-02 -5.87494195e-01 6.46189088e-04 -1.64200976e-01 -2.45130546e-02 -4.28033844e-02 5.83696738e-02 7.09793508e-01 7.77880132e-01 -1.36795688e+00 -1.58141509e-01 -6.63189232e-01 4.91195053e-01 7.55226985e-02 -9.93227586e-03 -4.66937989e-01 4.29879695e-01 -6.88087702e-01 3.45140100e-01 -9.88532782e-01 -1.37627214e-01 4.76968549e-02 -2.42784321e-01 -3.80869091e-01 6.10505283e-01 -2.02493936e-01 6.41778946e-01 -2.20118117e+00 6.17881238e-01 7.99791235e-03 3.23532403e-01 -3.17297503e-02 -1.89420193e-01 5.35946012e-01 -3.14012915e-01 2.97335625e-01 -1.37774974e-01 -1.17750019e-01 1.97629392e-01 5.86758435e-01 -8.78115177e-01 2.63397753e-01 5.31677723e-01 1.19533050e+00 -1.04409409e+00 -6.68211579e-02 -2.02675909e-02 6.12986200e-02 -6.88105822e-01 1.17322415e-01 -5.35854101e-01 3.89746696e-01 -4.78515923e-01 4.27774459e-01 -2.26204246e-02 -2.20813140e-01 2.86407620e-01 -1.09451614e-01 3.40826392e-01 6.95510268e-01 -7.25560844e-01 2.06185699e+00 -7.22091615e-01 9.04947877e-01 -2.89171934e-01 -1.50820613e+00 9.09334838e-01 1.28758043e-01 9.75618064e-02 -4.85922128e-01 1.24676600e-01 1.78694606e-01 5.12492716e-01 -5.13559937e-01 5.04001319e-01 -4.93055373e-01 -3.64711046e-01 6.48720741e-01 3.37757409e-01 -6.20295286e-01 8.09801891e-02 3.84607702e-01 1.06496239e+00 4.36686158e-01 4.69875693e-01 -2.23481894e-01 8.99843052e-02 1.78939238e-01 2.82808959e-01 7.29239345e-01 2.08286628e-01 3.69548082e-01 6.39391720e-01 -7.16265142e-01 -9.25293803e-01 -1.32741177e+00 -1.61965534e-01 1.28309000e+00 6.85634091e-02 -3.39625210e-01 -2.47824565e-01 -4.63025808e-01 3.00463825e-01 1.02856696e+00 -9.38995242e-01 -7.04382837e-01 -4.84125972e-01 -3.02365929e-01 7.21250653e-01 9.21275914e-01 1.55993715e-01 -1.33441722e+00 -9.65654433e-01 -1.23843588e-02 3.47485691e-01 -8.74263763e-01 3.48479629e-01 5.77778816e-01 -1.36477196e+00 -1.02957904e+00 -1.67972311e-01 -6.30736828e-01 8.03446233e-01 2.08290622e-01 1.24947798e+00 4.78731794e-03 -4.04641956e-01 4.72201705e-01 -2.18302548e-01 -5.38440883e-01 -3.20978910e-01 2.86427587e-01 9.32324454e-02 -3.78386259e-01 4.00535971e-01 -8.81510496e-01 -8.62155929e-02 8.36144313e-02 -1.01425815e+00 -1.66764911e-02 7.71927238e-01 1.03265977e+00 3.16763610e-01 -2.90519774e-01 6.52258039e-01 -1.09597218e+00 8.63105595e-01 -7.78453410e-01 -1.35784030e-01 2.01856196e-01 -4.34701562e-01 6.77860916e-01 6.81342185e-01 -6.09508455e-01 -1.07598364e+00 2.74575390e-02 5.96636951e-01 -3.66358995e-01 -3.26351732e-01 6.67790473e-01 -1.75242141e-01 4.26499367e-01 1.18207300e+00 8.99682567e-02 -4.17004935e-02 -3.40872437e-01 8.10732067e-01 2.82459497e-01 4.15658683e-01 -1.22449386e+00 6.69796526e-01 4.69251961e-01 3.43300045e-01 -8.11197579e-01 -9.82805610e-01 -1.45738134e-02 -9.47356105e-01 4.47636664e-01 6.63770437e-01 -8.32723320e-01 -5.27540565e-01 -1.17977776e-01 -1.20933163e+00 -6.02396548e-01 -8.13263595e-01 4.44135517e-01 -9.33163345e-01 -2.59810627e-01 -4.09673005e-01 -3.61978799e-01 2.03189120e-01 -8.91737819e-01 9.31377351e-01 3.48668322e-02 -8.27293098e-01 -1.06334162e+00 -5.76231740e-02 9.15957019e-02 1.50314882e-01 3.53102118e-01 1.42182493e+00 -1.02513039e+00 -7.41885960e-01 -7.63901025e-02 -1.77825063e-01 1.75186738e-01 1.92332894e-01 -3.12707275e-01 -9.66183662e-01 -7.88663607e-03 -1.89616695e-01 -7.10107267e-01 9.31667149e-01 -5.57861663e-03 1.34401774e+00 -1.93297371e-01 -4.69215900e-01 7.36423671e-01 1.11756289e+00 -1.10578232e-01 4.76913780e-01 2.12019295e-01 5.50039649e-01 9.61726069e-01 1.98931605e-01 4.51018959e-02 2.20729977e-01 4.17579681e-01 2.96945930e-01 4.46871489e-01 -2.56970167e-01 -6.43008232e-01 1.89838439e-01 1.85592726e-01 -3.11702818e-01 9.02549177e-02 -8.55170846e-01 7.03963637e-01 -1.71396816e+00 -1.12558448e+00 1.28063425e-01 1.77538180e+00 9.14891362e-01 1.37069076e-01 -8.31659138e-02 3.89932133e-02 3.01401526e-01 -1.58748205e-03 -8.61630499e-01 -6.95963442e-01 2.00634338e-02 4.10367399e-01 5.24657369e-02 1.51111603e-01 -6.89163029e-01 1.12829924e+00 6.38074064e+00 2.16334879e-01 -1.08095372e+00 -2.25681037e-01 1.95898443e-01 -1.23251744e-01 -5.20775378e-01 1.26579210e-01 -5.74357569e-01 -3.81625704e-02 9.51200306e-01 -2.34471783e-01 5.28294563e-01 1.09826124e+00 -1.71596766e-01 1.19750068e-01 -2.13164139e+00 8.50859344e-01 3.23978439e-02 -1.48941398e+00 4.34270889e-01 1.84141994e-01 8.07631552e-01 -1.25328794e-01 1.65188476e-01 6.00650311e-01 6.11669660e-01 -1.50002062e+00 7.83536315e-01 5.67230105e-01 5.36247611e-01 -2.56974041e-01 3.07262152e-01 3.82058382e-01 -7.53831804e-01 -3.65746707e-01 -5.37539840e-01 -5.55564761e-01 -2.37418488e-01 5.57183884e-02 -8.70519340e-01 2.55179763e-01 3.39948297e-01 9.99928415e-01 -5.78716099e-01 3.83834273e-01 -7.43483543e-01 1.94658518e-01 -1.05919242e-01 -1.25497967e-01 1.04185604e-01 1.71031699e-01 3.39251071e-01 1.02016497e+00 3.48516256e-02 2.31177092e-01 -8.08636099e-02 1.38233542e+00 -3.27479452e-01 -4.49542016e-01 -1.27476943e+00 -4.00156707e-01 3.61981690e-01 8.23405981e-01 -4.77270335e-01 -2.96150655e-01 -5.94200194e-02 7.23886371e-01 7.09303260e-01 5.26508689e-01 -4.37547415e-01 -3.44879150e-01 7.59662271e-01 3.09691764e-02 3.33475947e-01 -5.34034848e-01 -7.73495734e-01 -1.19705796e+00 -3.05948406e-02 -8.43683004e-01 2.04195216e-01 -9.94891226e-01 -1.29179454e+00 2.92603493e-01 4.30913270e-01 -9.06417787e-01 -7.02637792e-01 -1.05521870e+00 -5.06585062e-01 7.99217820e-01 -1.03494632e+00 -1.35491335e+00 -2.02267662e-01 6.85318828e-01 6.08178794e-01 -4.03533548e-01 1.01445961e+00 -4.62366372e-01 -2.23636761e-01 4.54759657e-01 -2.16881856e-01 2.53648549e-01 3.15102696e-01 -1.12229991e+00 3.00638884e-01 4.38948572e-01 6.22901857e-01 1.53575957e+00 5.41290641e-01 -4.65214372e-01 -1.52517653e+00 -8.56493711e-01 6.95126534e-01 -9.64318812e-01 7.57295907e-01 -4.71061110e-01 -8.60244989e-01 1.22833586e+00 -1.80917591e-01 1.70051977e-01 8.01099658e-01 6.12827897e-01 -1.03782022e+00 -2.36240234e-02 -1.01575375e+00 6.83697045e-01 1.48380291e+00 -9.79427695e-01 -1.37858188e+00 1.27544835e-01 8.58864427e-01 -1.34286538e-01 -7.50572979e-01 2.49141559e-01 7.86940932e-01 -6.47035241e-01 9.59533572e-01 -1.57044411e+00 8.49508345e-01 -1.57717094e-01 -3.90645772e-01 -1.47391689e+00 -4.26470429e-01 -3.81006360e-01 -3.05509359e-01 8.77123535e-01 6.45579576e-01 -6.17352009e-01 5.78040242e-01 8.07313561e-01 -2.57734209e-01 -7.54019380e-01 -4.81108040e-01 -9.62736785e-01 4.77726042e-01 -4.75217015e-01 6.07958972e-01 9.79299486e-01 2.54674464e-01 7.26818085e-01 3.62061799e-01 3.27361077e-02 2.32060596e-01 4.41574901e-01 9.13751960e-01 -1.42796338e+00 -3.97915661e-01 -4.83234614e-01 -7.64235497e-01 -9.84187901e-01 5.65019667e-01 -1.35156000e+00 -9.70769525e-02 -1.62295461e+00 1.18720345e-03 -4.47727799e-01 -1.86533749e-01 6.36578023e-01 3.53555679e-01 -2.02253282e-01 4.23497260e-01 3.65387976e-01 -2.21789986e-01 5.67229390e-01 1.13212967e+00 -4.08392459e-01 -1.70786753e-01 -2.15302095e-01 -1.07822204e+00 9.14445519e-01 8.34068000e-01 -4.43790257e-01 -8.43837321e-01 -8.79935145e-01 4.08263862e-01 -3.99137139e-01 7.06308663e-01 -7.96225309e-01 -9.30548820e-04 -3.94750744e-01 5.82956612e-01 5.69072515e-02 5.21604836e-01 -8.92656744e-01 -2.29499653e-01 3.69342536e-01 -9.04277444e-01 -6.47787973e-02 2.92533457e-01 6.99302733e-01 -7.25323930e-02 -3.06664914e-01 3.83194983e-01 -5.22648036e-01 -8.52443755e-01 -3.73614132e-02 -1.92745894e-01 2.11994991e-01 9.51253951e-01 -3.84113789e-01 -4.22008216e-01 -1.77805677e-01 -8.70784163e-01 -1.62365720e-01 5.27904153e-01 6.01952076e-01 5.16111493e-01 -1.11588573e+00 -3.39287788e-01 1.43053994e-01 3.54068220e-01 2.13913590e-01 -2.00708896e-01 3.34894985e-01 -3.48233253e-01 5.46197176e-01 -5.23577392e-01 -4.42334563e-01 -5.80926597e-01 7.87229717e-01 3.32909465e-01 5.18246703e-02 -6.19066477e-01 9.63332415e-01 5.40684223e-01 -5.58770359e-01 -1.17361695e-01 -9.74625230e-01 6.40341565e-02 -1.01933852e-02 1.85270071e-01 6.53145537e-02 -2.35770896e-01 -5.16258776e-01 -1.75162584e-01 3.99117261e-01 -8.36205408e-02 -9.89774391e-02 1.57532811e+00 2.37849817e-01 -1.27553314e-01 7.81613529e-01 1.15147567e+00 -2.42537826e-01 -1.13395762e+00 -1.16773225e-01 2.89156258e-01 -3.06544602e-01 -3.89734358e-01 -6.56828582e-01 -6.22974157e-01 1.25839341e+00 -7.68170059e-02 1.24618433e-01 7.39397109e-01 4.45264846e-01 3.22061032e-01 1.08629322e+00 6.12937152e-01 -7.97797740e-01 3.59349012e-01 5.64083576e-01 1.25252867e+00 -1.16605031e+00 2.66575724e-01 -1.21611916e-01 -6.13959312e-01 1.35180783e+00 6.88148439e-01 -5.49338818e-01 4.60470706e-01 -1.25943899e-01 -5.03594637e-01 -4.16387588e-01 -9.05976117e-01 -1.50153205e-01 3.20627540e-01 9.23199952e-01 4.47382152e-01 9.48630795e-02 1.38697818e-01 7.63987005e-01 -5.60143530e-01 -1.79555863e-01 5.87604225e-01 9.30315673e-01 -2.88620055e-01 -9.43465948e-01 2.10981276e-02 3.89503419e-01 -4.83507365e-02 4.91722533e-03 -7.45029569e-01 1.06574249e+00 3.60454321e-01 7.16807306e-01 2.43094265e-02 -2.84848660e-01 3.66611689e-01 3.06698412e-01 8.51857364e-01 -1.29083538e+00 -4.17815506e-01 -8.78769994e-01 1.06261633e-01 -6.05268896e-01 -4.09596890e-01 -7.55315781e-01 -1.58558333e+00 -2.25753849e-03 1.05222672e-01 -2.18474284e-01 5.74820757e-01 1.18965340e+00 4.96988028e-01 5.99004567e-01 1.06970258e-02 -9.02221978e-01 -7.92105854e-01 -9.06805038e-01 -4.48761523e-01 7.92723835e-01 4.45394158e-01 -9.09190118e-01 -2.38176972e-01 3.20207953e-01]
[9.552433967590332, 6.9841837882995605]
fcca35b7-bd05-40f4-a11d-8631ce075fb7
instructed-diffuser-with-temporal-condition
2306.04875
null
https://arxiv.org/abs/2306.04875v1
https://arxiv.org/pdf/2306.04875v1.pdf
Instructed Diffuser with Temporal Condition Guidance for Offline Reinforcement Learning
Recent works have shown the potential of diffusion models in computer vision and natural language processing. Apart from the classical supervised learning fields, diffusion models have also shown strong competitiveness in reinforcement learning (RL) by formulating decision-making as sequential generation. However, incorporating temporal information of sequential data and utilizing it to guide diffusion models to perform better generation is still an open challenge. In this paper, we take one step forward to investigate controllable generation with temporal conditions that are refined from temporal information. We observe the importance of temporal conditions in sequential generation in sufficient explorative scenarios and provide a comprehensive discussion and comparison of different temporal conditions. Based on the observations, we propose an effective temporally-conditional diffusion model coined Temporally-Composable Diffuser (TCD), which extracts temporal information from interaction sequences and explicitly guides generation with temporal conditions. Specifically, we separate the sequences into three parts according to time expansion and identify historical, immediate, and prospective conditions accordingly. Each condition preserves non-overlapping temporal information of sequences, enabling more controllable generation when we jointly use them to guide the diffuser. Finally, we conduct extensive experiments and analysis to reveal the favorable applicability of TCD in offline RL tasks, where our method reaches or matches the best performance compared with prior SOTA baselines.
['DaCheng Tao', 'Yi Chang', 'Lichao Sun', 'Li Shen', 'Hechang Chen', 'Siyuan Guo', 'Sili Huang', 'Yanchao Sun', 'Jifeng Hu']
2023-06-08
null
null
null
null
['offline-rl']
['playing-games']
[ 2.96665609e-01 -1.85214072e-01 -5.44772267e-01 -1.49778232e-01 -3.95086437e-01 -7.10003793e-01 1.26986766e+00 -1.37481689e-01 -6.20300889e-01 7.54141629e-01 6.11464143e-01 -3.43013078e-01 -1.98069483e-01 -7.38921642e-01 -3.90730292e-01 -8.81230950e-01 -1.88853025e-01 2.72971243e-01 7.65212923e-02 -4.69438642e-01 1.72553927e-01 3.18741858e-01 -1.46407425e+00 3.87822807e-01 1.03648841e+00 7.34996438e-01 5.29566467e-01 5.96755326e-01 9.02012736e-02 1.13468659e+00 -6.63482249e-01 5.33870459e-02 2.63719171e-01 -8.17304432e-01 -6.57430112e-01 7.42974691e-03 -2.54490912e-01 -5.77203691e-01 -2.72761166e-01 5.38429856e-01 6.85717404e-01 5.29243231e-01 7.12673664e-01 -1.03847146e+00 -9.75922585e-01 1.01732814e+00 -5.84515214e-01 3.45401913e-01 6.16148114e-01 7.16465175e-01 9.50962842e-01 -4.56864417e-01 1.11165464e+00 1.32906294e+00 1.89913347e-01 8.46345007e-01 -1.03752828e+00 -5.61505318e-01 8.03416133e-01 3.70985359e-01 -8.07369769e-01 -3.29869926e-01 1.03357852e+00 -4.45932686e-01 9.40388680e-01 -2.41016615e-02 8.86210322e-01 1.86233604e+00 2.13464573e-01 1.33026040e+00 1.36484218e+00 -3.65426093e-01 5.84016562e-01 -3.44690770e-01 -1.82652533e-01 5.22267401e-01 -4.67258900e-01 7.80272961e-01 -8.94931376e-01 2.55747229e-01 7.95415878e-01 -1.15991302e-01 -2.73270309e-01 -1.32948970e-02 -1.64265740e+00 7.73904324e-01 3.57874513e-01 3.41957062e-01 -7.00961351e-01 -7.62747321e-03 1.62427112e-01 1.60046116e-01 5.17766237e-01 3.73447090e-01 -2.13975102e-01 -4.33640510e-01 -9.21802759e-01 4.21235383e-01 3.45669895e-01 8.88687313e-01 5.09211719e-01 3.04590642e-01 -9.39987302e-01 5.99253297e-01 9.43444446e-02 4.77410197e-01 6.63138151e-01 -9.68769431e-01 5.74354589e-01 3.72048587e-01 1.82739556e-01 -8.90489817e-01 -3.89251411e-01 -4.43680286e-01 -9.12097275e-01 3.88119146e-02 2.97173887e-01 -3.96770000e-01 -8.75588655e-01 2.00448871e+00 4.20192897e-01 2.83592075e-01 6.98481277e-02 1.00061047e+00 3.74975681e-01 7.10781693e-01 1.99317232e-01 -5.58161497e-01 8.65340173e-01 -1.06604171e+00 -8.74663591e-01 -7.99400359e-02 4.82822597e-01 -3.88710052e-01 1.10983646e+00 5.53016424e-01 -9.27382886e-01 -7.33231008e-01 -8.50742817e-01 1.90310270e-01 -1.74468130e-01 1.54769748e-01 8.77296567e-01 1.87141612e-01 -1.11466265e+00 8.33800197e-01 -8.78496468e-01 -1.95652515e-01 1.59923419e-01 2.70418860e-02 5.29752746e-02 6.65226728e-02 -1.53132188e+00 6.47686958e-01 3.35653007e-01 1.63125426e-01 -1.41582072e+00 -5.66424847e-01 -7.46935964e-01 -3.76873970e-01 5.33918381e-01 -7.28501320e-01 1.45239472e+00 -7.37467408e-01 -1.91469145e+00 1.12667069e-01 -1.53994933e-01 -6.96377575e-01 7.69995511e-01 -2.57801712e-01 -2.94359177e-01 1.37247801e-01 -3.72665864e-03 9.05816615e-01 9.47531521e-01 -1.16061985e+00 -7.86813378e-01 -1.56601951e-01 3.44032437e-01 4.98511583e-01 -3.92296791e-01 -2.70592630e-01 -4.74347621e-01 -9.25364673e-01 -4.23417330e-01 -9.94592965e-01 -4.87528205e-01 -3.47424686e-01 -2.73111850e-01 -4.93771940e-01 5.15691340e-01 -5.12494087e-01 1.65719903e+00 -1.92512918e+00 6.34331286e-01 -1.56613961e-01 2.27025241e-01 5.93549088e-02 -3.27206522e-01 6.90547943e-01 2.96989352e-01 -3.22265439e-02 -1.62296280e-01 -4.99775052e-01 8.44179690e-02 2.14015618e-01 -5.30858397e-01 1.16990462e-01 1.24750018e-01 1.10766625e+00 -1.28946126e+00 -3.63580704e-01 3.01723301e-01 4.00400698e-01 -4.26548094e-01 1.63861215e-01 -7.14266121e-01 9.66948628e-01 -6.82461858e-01 5.48524857e-01 2.41713315e-01 -1.53927401e-01 1.45690501e-01 1.90854166e-02 -2.86557287e-01 2.40539163e-01 -9.00317848e-01 1.91925430e+00 -4.21393961e-01 4.59374905e-01 -2.34883413e-01 -6.47740066e-01 7.97827899e-01 2.53707975e-01 6.17777765e-01 -1.20614076e+00 -6.43247664e-02 -2.14272812e-01 -2.39847619e-02 -5.35770476e-01 7.84909844e-01 1.67823844e-02 -7.68692270e-02 7.90768623e-01 -4.98345643e-02 6.35626912e-02 4.86435950e-01 4.72995877e-01 1.13238156e+00 8.56912851e-01 3.31376642e-01 7.20605627e-02 2.34249607e-01 -5.46011738e-02 5.66326439e-01 8.50232780e-01 -4.07216698e-01 3.18166822e-01 3.29349786e-01 -2.73400664e-01 -6.59628630e-01 -9.88958299e-01 4.89850134e-01 1.19974947e+00 2.65707374e-01 -5.40903807e-01 -5.22964418e-01 -9.72072065e-01 -3.03119212e-01 9.00277495e-01 -8.44726086e-01 -2.34397233e-01 -6.92238569e-01 -6.73599839e-01 4.35070843e-01 6.98609948e-01 5.82030177e-01 -1.61153221e+00 -8.16158831e-01 2.89379835e-01 -3.69068176e-01 -8.42343271e-01 -5.78394353e-01 8.62177014e-02 -7.20326006e-01 -6.44079447e-01 -9.39537227e-01 -3.73950630e-01 2.62962729e-01 2.90362835e-01 9.80104804e-01 -3.06336462e-01 6.40450045e-02 5.06305695e-01 -6.56608701e-01 -1.55345812e-01 -3.29638094e-01 8.30054283e-02 1.19833753e-01 5.92775233e-02 1.11458879e-02 -5.55729210e-01 -8.39197338e-01 2.94942975e-01 -9.34473932e-01 3.64024252e-01 7.30628371e-01 6.48443639e-01 4.91857260e-01 -7.06879795e-03 7.50443578e-01 -7.88839459e-01 1.07866728e+00 -6.87263846e-01 -2.72593558e-01 2.60994941e-01 -8.28525901e-01 3.40700358e-01 6.67696476e-01 -8.61389935e-01 -1.60387194e+00 1.72279193e-03 1.23603098e-01 -4.89048690e-01 -2.56674051e-01 6.87579691e-01 1.44692093e-01 5.47413468e-01 7.72026241e-01 5.43026388e-01 -3.38180333e-01 -1.83561340e-01 7.90566862e-01 2.88746446e-01 2.56357551e-01 -8.98509324e-01 4.77707803e-01 5.87556541e-01 -3.20549637e-01 -5.85100293e-01 -6.72290146e-01 -1.96182549e-01 -5.78862011e-01 -6.06310070e-01 7.95248032e-01 -7.31647372e-01 -6.33906305e-01 5.74564397e-01 -1.05242753e+00 -8.95279586e-01 -4.32391375e-01 4.38599586e-01 -7.48418987e-01 3.40122759e-01 -7.72353470e-01 -9.87529218e-01 -1.04132839e-01 -1.04795253e+00 1.01159990e+00 2.98220009e-01 -3.37824821e-01 -1.18806207e+00 3.27269912e-01 1.33727923e-01 3.70884657e-01 2.83917606e-01 6.22437119e-01 -2.81385750e-01 -6.58407927e-01 3.15165043e-01 3.11674505e-01 -2.58638281e-02 2.68582255e-01 -6.56559914e-02 -7.42200255e-01 -3.67272571e-02 -9.61147249e-02 -2.72234261e-01 1.13428795e+00 4.82947975e-01 8.41064334e-01 -3.57717425e-01 -3.46242815e-01 2.35290051e-01 9.36961770e-01 5.20668328e-01 4.60285038e-01 3.17641795e-01 4.92074877e-01 8.25073957e-01 9.92944300e-01 8.43380034e-01 5.57531297e-01 5.98754585e-01 2.37047225e-01 -2.13309973e-02 -3.05967242e-01 -5.93388081e-01 7.23077595e-01 7.42212474e-01 -3.65477830e-01 -5.92564881e-01 -6.64843142e-01 6.27755046e-01 -2.11981225e+00 -1.26278138e+00 2.47448429e-01 1.99062252e+00 1.12696254e+00 9.53951627e-02 2.81155378e-01 -2.53869742e-02 4.26817507e-01 5.51329315e-01 -7.45721996e-01 -3.53453197e-02 -3.16042453e-01 -1.73762848e-04 -2.95290910e-02 4.89954740e-01 -8.28961253e-01 1.23940420e+00 6.34504032e+00 1.10524487e+00 -1.15012264e+00 -6.73638135e-02 6.16079748e-01 -3.32875907e-01 -6.30039036e-01 -4.27663326e-02 -7.23821342e-01 4.95185077e-01 6.78631663e-01 -6.87338412e-02 8.28385234e-01 3.88558984e-01 7.79541135e-01 -2.72571623e-01 -1.19584942e+00 7.00681984e-01 -1.35847494e-01 -1.24548614e+00 2.70664930e-01 1.00548618e-01 1.03063965e+00 -2.39191920e-01 4.20113921e-01 4.79013681e-01 8.11981916e-01 -8.58258486e-01 1.02377987e+00 6.65468216e-01 3.46743494e-01 -5.21093667e-01 1.00382224e-01 6.85193777e-01 -1.26032853e+00 -2.42721051e-01 1.07932031e-01 -2.33441278e-01 3.81713927e-01 4.47373152e-01 -8.24522853e-01 7.79402912e-01 4.23504770e-01 1.24381435e+00 -3.74397606e-01 5.73140740e-01 -5.55306911e-01 8.08949947e-01 6.51768735e-03 -1.33125141e-01 3.93442214e-01 -4.84297335e-01 4.84807909e-01 1.04395568e+00 3.72800618e-01 2.41263777e-01 1.86939582e-01 9.95347142e-01 2.31743217e-01 -7.13986233e-02 -6.98702216e-01 -2.88971990e-01 4.17985201e-01 1.08997047e+00 -8.25859725e-01 -3.76187652e-01 -5.54365776e-02 1.12486863e+00 4.60242182e-01 7.43646443e-01 -9.87706721e-01 2.26915792e-01 3.30859095e-01 -2.41685748e-01 3.89448732e-01 -5.69553852e-01 -2.06633434e-01 -1.07208216e+00 -6.19456060e-02 -8.87215912e-01 4.10525978e-01 -6.58104241e-01 -1.17893231e+00 6.49094522e-01 2.08973706e-01 -1.32363093e+00 -7.09755301e-01 -8.54590163e-02 -5.16862512e-01 6.13386452e-01 -1.44146883e+00 -1.11862338e+00 -3.03881392e-02 8.58544052e-01 9.98838067e-01 -5.18862857e-03 4.67650235e-01 -5.09314314e-02 -5.70172310e-01 2.44678542e-01 -2.41092220e-01 -2.96685934e-01 7.53929436e-01 -1.20919275e+00 2.73984164e-01 9.40346360e-01 2.91082710e-01 7.21416593e-01 6.35148108e-01 -1.01683080e+00 -1.25088835e+00 -9.33241665e-01 8.05236816e-01 -4.07668889e-01 5.89499235e-01 -1.98644519e-01 -4.90985096e-01 5.33371866e-01 5.85622370e-01 -4.70980912e-01 3.32244843e-01 3.14035304e-02 -1.92363888e-01 6.50897846e-02 -6.61055148e-01 1.06249475e+00 1.49146450e+00 -2.92438179e-01 -3.27333540e-01 1.70146748e-01 9.28855956e-01 -3.89303654e-01 -4.96340096e-01 3.00301969e-01 3.83283287e-01 -1.01335812e+00 8.21135163e-01 -3.39892715e-01 6.34167433e-01 -2.55843937e-01 1.06746450e-01 -1.61226392e+00 -3.39773774e-01 -1.11366832e+00 -4.54484850e-01 1.26826668e+00 4.26566929e-01 -3.43782157e-01 5.75914383e-01 2.40880847e-01 -9.30942371e-02 -7.91541755e-01 -5.06735206e-01 -8.53396297e-01 -3.20692696e-02 -6.12016857e-01 5.05442262e-01 8.08148265e-01 1.00659460e-01 3.68047893e-01 -7.79669464e-01 -1.95376277e-01 3.34387124e-01 3.34924608e-01 5.46928823e-01 -8.01837683e-01 -5.33039808e-01 -6.50877833e-01 5.03121555e-01 -1.62071002e+00 1.80026323e-01 -6.66740894e-01 3.00783426e-01 -1.71007574e+00 -5.72165027e-02 -5.02292335e-01 -3.86477053e-01 4.67456669e-01 -3.21081191e-01 -1.93079829e-01 3.08940232e-01 3.20654452e-01 -8.49816620e-01 1.12479997e+00 1.72672927e+00 -2.80243099e-01 -5.96587896e-01 1.33045595e-02 -6.06840074e-01 4.09121603e-01 7.42740810e-01 -7.78972059e-02 -9.41835642e-01 -5.21626711e-01 1.92089498e-01 3.33393157e-01 2.35597882e-02 -8.23190510e-01 3.99980992e-01 -6.46629632e-01 1.01404577e-01 -5.59702873e-01 2.75764376e-01 -4.54518497e-01 -2.39775125e-02 2.82221973e-01 -8.71588707e-01 4.03285846e-02 9.08517018e-02 9.51305270e-01 2.16227747e-03 2.10909799e-01 1.30779788e-01 -9.00435913e-03 -1.08103406e+00 5.13711274e-01 -6.57957196e-01 -4.28133383e-02 1.20319152e+00 -1.19328626e-01 -2.53771573e-01 -6.78023160e-01 -6.93116724e-01 2.87458509e-01 1.04128689e-01 6.71219230e-01 7.25794792e-01 -1.34401512e+00 -6.17745280e-01 4.18318436e-02 6.59030750e-02 -1.73882589e-01 5.06831586e-01 9.22675431e-01 9.89357382e-02 4.31683451e-01 -1.54066131e-01 -5.59891343e-01 -8.96699429e-01 8.82320821e-01 -9.07841995e-02 -6.44806802e-01 -6.30241513e-01 7.32892454e-01 3.78438860e-01 -8.29251707e-02 2.53239214e-01 -5.54243803e-01 -5.05541086e-01 2.11857274e-01 4.63849574e-01 3.55758965e-01 -3.27741504e-01 -3.24503511e-01 -4.23318744e-02 3.04268330e-01 -1.33651003e-01 -6.48650408e-01 1.13176680e+00 -2.64742762e-01 3.70972604e-01 5.26310384e-01 4.79226321e-01 3.41102341e-03 -1.90347302e+00 -3.78419220e-01 -6.03114963e-02 -1.03912704e-01 -1.41232252e-01 -1.16987395e+00 -1.05896139e+00 7.56100237e-01 2.55548418e-01 1.18733197e-01 1.35944974e+00 -4.65994924e-02 7.77573884e-01 1.00589767e-01 5.36523163e-01 -1.17803931e+00 5.14374077e-01 6.39571369e-01 9.48974073e-01 -9.77532923e-01 -2.37255290e-01 1.62110254e-02 -1.17553544e+00 8.02961767e-01 6.54984295e-01 6.03379942e-02 3.53747964e-01 1.83424443e-01 -2.78824121e-02 7.99793825e-02 -1.18603480e+00 -3.97771358e-01 3.30982059e-01 8.59086096e-01 2.81254560e-01 1.19073518e-01 -4.48908329e-01 6.68069780e-01 -1.28126219e-01 1.41623363e-01 1.87923491e-01 9.02276695e-01 -1.27171695e-01 -1.22363734e+00 -2.28740890e-02 6.24933466e-03 9.22735631e-02 -1.35596111e-01 -4.85352486e-01 6.11055613e-01 1.67660251e-01 1.16694856e+00 -2.66165942e-01 -6.28913343e-01 1.40266130e-02 -2.07500041e-01 5.17740011e-01 -3.73984933e-01 -7.35999107e-01 2.51994073e-01 1.98518764e-02 -7.97920346e-01 -6.14739478e-01 -8.10631573e-01 -1.33205581e+00 -1.58673584e-01 1.49595328e-02 -8.34587142e-02 3.90169382e-01 1.14874697e+00 4.47970927e-01 7.86723733e-01 5.88251889e-01 -9.49417889e-01 -5.60460269e-01 -1.04119956e+00 -3.05704534e-01 3.67082357e-01 4.32113260e-01 -7.86499560e-01 -1.51692912e-01 2.51046747e-01]
[4.170811653137207, 1.787376046180725]
ccc243c7-1301-4f15-984e-0029907eb0ac
ensemble-creation-via-anchored-regularization
2210.06829
null
https://arxiv.org/abs/2210.06829v1
https://arxiv.org/pdf/2210.06829v1.pdf
Ensemble Creation via Anchored Regularization for Unsupervised Aspect Extraction
Aspect Based Sentiment Analysis is the most granular form of sentiment analysis that can be performed on the documents / sentences. Besides delivering the most insights at a finer grain, it also poses equally daunting challenges. One of them being the shortage of labelled data. To bring in value right out of the box for the text data being generated at a very fast pace in today's world, unsupervised aspect-based sentiment analysis allows us to generate insights without investing time or money in generating labels. From topic modelling approaches to recent deep learning-based aspect extraction models, this domain has seen a lot of development. One of the models that we improve upon is ABAE that reconstructs the sentences as a linear combination of aspect terms present in it, In this research we explore how we can use information from another unsupervised model to regularize ABAE, leading to better performance. We contrast it with baseline rule based ensemble and show that the ensemble methods work better than the individual models and the regularization based ensemble performs better than the rule-based one.
['Manu Joseph', 'Pulah Dhandekar']
2022-10-13
null
null
null
null
['aspect-extraction', 'aspect-based-sentiment-analysis']
['natural-language-processing', 'natural-language-processing']
[ 1.23205952e-01 4.67061102e-01 -1.13166131e-01 -5.70358753e-01 -6.59387648e-01 -5.10946333e-01 8.11670899e-01 4.31570590e-01 -2.60427713e-01 6.59338295e-01 6.08105302e-01 -3.39410275e-01 -2.89710648e-02 -1.03243625e+00 -3.77996951e-01 -7.10463762e-01 4.10472542e-01 7.31546938e-01 2.46255682e-03 -6.19979143e-01 3.47078830e-01 1.06073819e-01 -1.72797036e+00 4.80972648e-01 6.23399734e-01 9.60327566e-01 -1.48168907e-01 4.55931604e-01 -8.23064148e-01 8.86160135e-01 -5.20411670e-01 -6.01681352e-01 1.18020378e-01 -3.65447402e-01 -6.97118759e-01 2.52521038e-01 -7.24767372e-02 1.82936043e-01 3.01457703e-01 7.56035089e-01 2.53033519e-01 1.21025473e-01 7.93166041e-01 -1.03340042e+00 -3.14436078e-01 6.21303260e-01 -6.45070493e-01 -2.71767825e-01 3.17498952e-01 -3.62057745e-01 1.09230530e+00 -8.11122894e-01 7.56495118e-01 1.04645526e+00 6.54358149e-01 2.60347635e-01 -9.63893473e-01 -1.64561018e-01 4.14433360e-01 6.15739822e-03 -6.83526278e-01 -1.86761275e-01 8.54884386e-01 -3.63083690e-01 1.22233462e+00 2.86481977e-01 7.26722419e-01 1.02332449e+00 2.14814439e-01 8.21684480e-01 1.31871164e+00 -6.20229363e-01 3.51895988e-01 6.11928344e-01 2.93201417e-01 4.80658382e-01 3.41601253e-01 -2.86192954e-01 -6.37167335e-01 -2.53980830e-02 8.86758938e-02 1.33110434e-01 1.19004257e-01 -7.47914016e-02 -8.38132501e-01 1.17995310e+00 -5.23881875e-02 4.97367531e-01 -5.34326375e-01 -2.10068569e-01 4.86460090e-01 2.35115498e-01 1.09653687e+00 6.23348296e-01 -8.23409379e-01 -3.15802544e-01 -1.20512891e+00 3.06313515e-01 1.09111381e+00 5.97393990e-01 7.10414648e-01 1.07747912e-01 -1.55533001e-01 7.36008286e-01 4.11114216e-01 4.11880940e-01 4.60826576e-01 -5.55212080e-01 4.19495165e-01 1.18381798e+00 -4.98529747e-02 -9.42997098e-01 -4.46088761e-01 -5.18469214e-01 -6.75363600e-01 3.60920131e-01 2.33188421e-01 -4.19929355e-01 -1.19505334e+00 1.23690116e+00 2.93095946e-01 -3.06681752e-01 -1.86480414e-02 5.05797684e-01 7.16204703e-01 9.23291564e-01 8.96164328e-02 -2.08738968e-01 1.63597190e+00 -1.01798093e+00 -8.34339142e-01 -3.64842921e-01 4.80612218e-01 -9.58783865e-01 8.01008642e-01 7.70327508e-01 -6.09815419e-01 -1.16012655e-01 -1.11796975e+00 9.11689252e-02 -9.18054879e-01 -3.58359404e-02 1.05724537e+00 7.43915141e-01 -1.10143709e+00 4.77369457e-01 -8.15306723e-01 -2.77727306e-01 4.03059691e-01 2.99467057e-01 -4.95688438e-01 7.43473470e-02 -9.43462074e-01 9.20569777e-01 1.96530640e-01 -2.39419807e-02 -1.86697662e-01 -4.83857036e-01 -9.01388168e-01 4.48000710e-03 6.74729884e-01 -7.28459895e-01 1.03492045e+00 -9.95852470e-01 -1.32508230e+00 6.13138914e-01 -5.11087298e-01 -4.35813844e-01 1.65503532e-01 -2.57185578e-01 -2.02964380e-01 -1.44345164e-01 1.04064599e-01 3.92377347e-01 9.64494407e-01 -1.31031692e+00 -6.53076291e-01 -5.76386869e-01 9.36672390e-02 1.23323113e-01 -4.59362328e-01 2.54460990e-01 -1.73556909e-01 -6.26709938e-01 -1.62181929e-01 -1.00190210e+00 -5.97649634e-01 -5.44524729e-01 -4.62225914e-01 -3.47988069e-01 9.88054991e-01 -6.06075168e-01 1.17715979e+00 -1.55298531e+00 6.99881017e-02 4.92809378e-02 1.74586460e-01 3.07906359e-01 7.88928568e-02 7.02133298e-01 -2.83731315e-02 3.04135382e-01 -4.72668439e-01 -7.31163025e-01 1.33460304e-02 2.23228917e-01 -5.18049240e-01 -5.16128279e-02 4.10901666e-01 7.78871238e-01 -6.31739736e-01 -3.11264485e-01 5.14077023e-02 8.24900568e-01 -5.26599884e-01 1.46614844e-02 -4.43768322e-01 3.53772104e-01 -6.54642403e-01 4.55068529e-01 4.61311370e-01 -1.35674819e-01 -7.04584038e-03 2.62544826e-02 -7.76851699e-02 4.61038947e-01 -1.12597466e+00 1.54194903e+00 -8.53206515e-01 7.54540026e-01 -2.07369730e-01 -1.29962468e+00 9.89893794e-01 5.87524772e-01 5.24922490e-01 -3.66539657e-01 2.22227976e-01 -1.81914065e-02 -2.41548166e-01 -3.26410890e-01 8.60686541e-01 -7.03195691e-01 -3.05413544e-01 9.42289591e-01 2.21294329e-01 -4.18923974e-01 4.61692363e-01 3.14769000e-01 8.17591906e-01 3.24252397e-01 5.37579954e-01 -2.01666608e-01 6.00105166e-01 2.25363821e-01 4.62078542e-01 3.97358477e-01 2.58135796e-01 7.32382774e-01 7.75479257e-01 -7.15000510e-01 -1.09760487e+00 -4.39351976e-01 -7.96387941e-02 9.65383828e-01 -5.30410826e-01 -7.27458060e-01 -6.93749726e-01 -8.02882791e-01 -3.08225095e-01 8.62382472e-01 -8.13255310e-01 1.29527032e-01 -3.08360070e-01 -1.16573012e+00 -2.31700111e-02 3.56372714e-01 3.68748367e-01 -1.20671821e+00 -3.78330022e-01 1.83417097e-01 -1.73135921e-01 -1.00328493e+00 1.39505953e-01 4.23052281e-01 -9.59344447e-01 -6.40820742e-01 -4.15790528e-01 -3.82431179e-01 5.98051786e-01 -7.73784593e-02 1.42101526e+00 -1.81469232e-01 -4.46820892e-02 2.45439455e-01 -8.64642799e-01 -1.16405821e+00 -4.49786335e-01 3.03407371e-01 -2.07096279e-01 1.65724978e-01 8.74568880e-01 -6.54572248e-01 -4.36475635e-01 -1.98240653e-01 -1.22839749e+00 -4.54056263e-02 5.12594104e-01 5.28808475e-01 5.45350730e-01 3.96478593e-01 4.94701922e-01 -1.58035958e+00 8.18952024e-01 -5.28691232e-01 -2.03143656e-01 -1.28447771e-01 -1.13714087e+00 2.69689739e-01 6.13520503e-01 8.70023295e-02 -1.22851276e+00 -6.98048547e-02 -4.38213497e-01 3.81553650e-01 -4.09772575e-01 7.86645293e-01 7.04120286e-03 5.60910463e-01 4.74160135e-01 5.96823879e-02 -1.06196202e-01 -5.19745171e-01 4.08561885e-01 7.01409578e-01 -2.17704147e-01 -2.51217693e-01 5.64967036e-01 7.53723025e-01 -7.29127675e-02 -8.82399142e-01 -1.28148890e+00 -4.84656662e-01 -4.91606593e-01 -2.17445776e-01 8.86108696e-01 -7.17636704e-01 -9.62294415e-02 2.83706367e-01 -1.12732685e+00 2.27043852e-01 -6.31980062e-01 1.60307407e-01 -2.31491059e-01 9.07991454e-02 -3.39534134e-01 -9.97197986e-01 -4.77282882e-01 -1.07102585e+00 1.25242305e+00 2.51430511e-01 -4.01789010e-01 -1.14958322e+00 4.01584178e-01 6.00642264e-01 7.16677964e-01 2.86630929e-01 8.73110890e-01 -1.02231777e+00 -3.71417791e-01 -6.34377122e-01 1.41380861e-01 4.99562770e-01 2.51136780e-01 -4.55010682e-02 -1.25455725e+00 1.53993279e-01 6.02432609e-01 7.79025704e-02 9.84073341e-01 3.69213045e-01 7.55610704e-01 -2.97032297e-01 -4.92200404e-02 1.22110516e-01 1.56702662e+00 1.19643159e-01 6.76711142e-01 6.38191521e-01 6.13914192e-01 9.87243235e-01 5.54041743e-01 3.51508081e-01 5.71297705e-01 4.98409480e-01 2.57207513e-01 -1.10098033e-03 2.19618175e-02 -8.55534822e-02 3.19148540e-01 1.15325427e+00 -4.21367645e-01 -1.77178919e-01 -8.48361075e-01 6.35175586e-01 -1.92077434e+00 -9.37034249e-01 -2.54285544e-01 1.91103935e+00 5.97325146e-01 3.10098797e-01 9.90360305e-02 5.46332300e-01 2.85667717e-01 4.67477173e-01 -9.81112793e-02 -1.02707040e+00 -9.14707705e-02 4.16846216e-01 -2.99559832e-02 4.26809013e-01 -1.18733263e+00 8.22862744e-01 5.68344688e+00 7.21154749e-01 -1.05620968e+00 1.37906685e-01 9.19288754e-01 1.88826807e-02 -6.41337097e-01 2.60835379e-01 -9.58186686e-01 3.12637657e-01 1.16808581e+00 1.13984272e-01 5.92458807e-02 9.53062713e-01 3.57847959e-01 -3.98499936e-01 -8.11791658e-01 4.32901412e-01 4.65968251e-01 -1.19450724e+00 2.81497329e-01 2.65101939e-01 9.13770735e-01 -8.39802325e-02 -1.03011496e-01 3.58180970e-01 3.30448806e-01 -9.35668886e-01 4.59384501e-01 6.16859674e-01 1.09560251e-01 -8.08118939e-01 1.29288554e+00 4.13808614e-01 -9.25501227e-01 1.06259547e-01 -2.60067910e-01 -3.82257909e-01 3.92811328e-01 1.17617416e+00 -7.00090349e-01 6.29296243e-01 5.19487917e-01 6.34549499e-01 -5.29531240e-01 6.87992811e-01 -4.45058882e-01 7.18814611e-01 -1.31189212e-01 -2.23892465e-01 2.37751618e-01 -6.09525263e-01 7.82138526e-01 1.22044015e+00 2.87190288e-01 -1.81696117e-01 -1.39313042e-01 4.40690637e-01 1.65356964e-01 3.59526038e-01 -9.70131516e-01 -1.63273722e-01 -1.92405298e-01 1.70140469e+00 -1.11849165e+00 -5.09077728e-01 -5.03010750e-01 6.81745768e-01 2.14709744e-01 1.24562025e-01 -3.13261330e-01 -2.57890224e-01 3.62443656e-01 1.14166074e-01 5.28115511e-01 -9.98598039e-02 -6.58064604e-01 -1.22692573e+00 1.63937464e-01 -1.07174361e+00 1.75577000e-01 -6.24652445e-01 -1.28200710e+00 1.03552639e+00 -1.53522983e-01 -1.14707351e+00 -6.12125814e-01 -7.03383207e-01 -7.34913588e-01 6.75126314e-01 -1.44688725e+00 -1.15586865e+00 8.11362788e-02 1.26655012e-01 7.89958358e-01 -3.02893460e-01 1.09998870e+00 1.03441678e-01 -2.27637216e-01 3.71929184e-02 -2.44455442e-01 -9.99141857e-02 4.92728084e-01 -1.48953509e+00 4.29228634e-01 7.97386050e-01 5.41575313e-01 6.38786674e-01 1.01131701e+00 -5.08650541e-01 -1.13431275e+00 -8.74849200e-01 1.45535028e+00 -8.72012973e-01 7.33119369e-01 -4.10298169e-01 -8.16797256e-01 5.30014396e-01 5.22594213e-01 -4.79552060e-01 1.05446863e+00 4.82448310e-01 -3.98362458e-01 -1.92775622e-01 -7.48235762e-01 4.03588444e-01 3.56243938e-01 -4.18165416e-01 -8.93330932e-01 3.36825326e-02 7.10250795e-01 -4.22017183e-03 -5.61436594e-01 3.14383805e-01 4.44697112e-01 -1.18080831e+00 5.31658292e-01 -6.76147580e-01 9.59320784e-01 -2.36523554e-01 -9.05881450e-02 -1.63964701e+00 1.82859674e-01 -2.75089622e-01 6.05278052e-02 1.58824337e+00 1.04509127e+00 -6.84734225e-01 9.89687264e-01 8.12575102e-01 1.62764993e-02 -9.70221639e-01 -5.89666367e-01 -2.68190205e-01 1.67375401e-01 -7.82527030e-01 6.36202753e-01 6.96903348e-01 6.48783296e-02 8.34231734e-01 -2.70368606e-01 -4.10463661e-01 3.76285434e-01 4.15556848e-01 7.00779259e-01 -1.35613310e+00 -2.86525875e-01 -3.90591681e-01 -2.87873060e-01 -4.31700915e-01 -2.46862546e-02 -8.15781534e-01 -6.96831271e-02 -2.04877830e+00 3.67177188e-01 -3.24193478e-01 -1.26203716e-01 4.81216639e-01 -3.83408993e-01 3.34061414e-01 2.17809349e-01 -1.91623107e-01 -5.87214231e-01 4.48128074e-01 1.04364419e+00 -2.02363864e-01 -2.65402704e-01 2.31002107e-01 -1.32444501e+00 9.44434762e-01 8.61887574e-01 -7.51839697e-01 -3.81464452e-01 -2.13456124e-01 1.00039816e+00 -2.30292797e-01 -2.91353315e-01 -7.20541000e-01 1.85105950e-01 2.70732611e-01 2.35289022e-01 -5.87262273e-01 3.40866715e-01 -9.17432070e-01 -7.45003000e-02 -5.04986048e-02 -1.29227087e-01 3.32667679e-02 1.50718868e-01 5.54908991e-01 -6.71763301e-01 -3.84621680e-01 2.17290223e-01 -2.97331542e-01 -3.38126630e-01 1.74099699e-01 -6.65270567e-01 -2.30029784e-02 6.04531348e-01 -4.34747562e-02 -1.55945003e-01 -6.81946695e-01 -6.82191849e-01 -6.70952350e-02 1.86338440e-01 5.25402427e-01 2.91461766e-01 -9.74085271e-01 -6.47717118e-01 7.78859779e-02 3.72352079e-02 1.33135706e-01 1.86672509e-01 7.21397638e-01 -2.01891899e-01 6.95386171e-01 1.67505279e-01 -2.94767886e-01 -1.00631714e+00 3.88200223e-01 -2.58605093e-01 -9.25310016e-01 -4.72665340e-01 6.18780732e-01 -7.87020624e-02 -6.99388087e-01 -1.36296511e-01 -3.26537229e-02 -9.50528204e-01 5.94734848e-01 5.09367347e-01 2.82630026e-01 4.30713207e-01 -6.71476364e-01 -1.79081440e-01 6.84331238e-01 -2.20337152e-01 -3.34619582e-01 1.94360185e+00 -7.82770198e-03 -3.92644823e-01 6.89840257e-01 8.91749680e-01 2.77758658e-01 -8.93900037e-01 1.36623472e-01 2.12971374e-01 -1.11470826e-01 3.16644162e-01 -8.44183922e-01 -9.87796843e-01 9.01346266e-01 1.61375597e-01 7.72799432e-01 1.10471880e+00 5.34252375e-02 6.26688361e-01 2.21176893e-01 2.41432741e-01 -1.30249727e+00 -1.80895865e-01 5.16504347e-01 6.79693341e-01 -1.58551908e+00 3.80146146e-01 -2.54502952e-01 -8.92556846e-01 9.83148456e-01 1.90313552e-02 -3.56869638e-01 1.00504029e+00 4.46881026e-01 2.78646946e-01 -5.09988368e-01 -8.72106254e-01 -2.91641355e-01 3.14181447e-01 5.65003157e-01 7.55680501e-01 9.38404277e-02 -6.47838891e-01 8.61361742e-01 -5.69954395e-01 -1.76387280e-01 6.46506608e-01 8.57387304e-01 -4.12766457e-01 -1.65284145e+00 -2.51280248e-01 9.01595116e-01 -1.00021362e+00 -2.94038117e-01 -5.16369045e-01 6.64992988e-01 -3.02590709e-02 1.27447176e+00 -1.56189829e-01 -2.36465380e-01 3.41344029e-01 5.03126800e-01 -2.20286380e-02 -8.77421260e-01 -6.27174079e-01 1.14550024e-01 4.68025029e-01 -4.09985870e-01 -8.14317048e-01 -6.92198992e-01 -1.05026793e+00 -5.98220862e-02 -3.50345343e-01 4.42224562e-01 1.31129396e+00 1.41014099e+00 3.42724442e-01 6.31611526e-01 6.31172180e-01 -8.14687014e-01 -6.13006726e-02 -1.13383508e+00 -5.95686972e-01 1.96115360e-01 2.03419507e-01 -4.34670150e-01 -4.77277249e-01 1.10575162e-01]
[11.304464340209961, 6.808529376983643]
6be3de31-c4ce-4394-b1e1-574ad799d5d2
execution-based-code-generation-using-deep
2301.13816
null
https://arxiv.org/abs/2301.13816v2
https://arxiv.org/pdf/2301.13816v2.pdf
Execution-based Code Generation using Deep Reinforcement Learning
The utilization of programming language (PL) models, pretrained on large-scale code corpora, as a means of automating software engineering processes has demonstrated considerable potential in streamlining various code generation tasks such as code completion, code translation, and program synthesis. However, current approaches mainly rely on supervised fine-tuning objectives borrowed from text generation, neglecting specific sequence-level features of code, including but not limited to compilability as well as syntactic and functional correctness. To address this limitation, we propose PPOCoder, a new framework for code generation that combines pretrained PL models with Proximal Policy Optimization (PPO) deep reinforcement learning and employs execution feedback as the external source of knowledge into the model optimization. PPOCoder is transferable across different code generation tasks and PLs. Extensive experiments on three code generation tasks demonstrate the effectiveness of our proposed approach compared to SOTA methods, improving the success rate of compilation and functional correctness over different PLs. Our code can be found at https://github.com/reddy-lab-code-research/PPOCoder .
['Chandan K. Reddy', 'Sindhu Tipirneni', 'Aneesh Jain', 'Parshin Shojaee']
2023-01-31
null
null
null
null
['code-translation', 'program-synthesis']
['computer-code', 'computer-code']
[-4.28055972e-02 1.19777493e-01 -4.50325489e-01 -1.54089585e-01 -9.43931341e-01 -5.97270131e-01 4.28529352e-01 1.35144740e-01 1.27122894e-01 5.05922318e-01 8.67284164e-02 -6.62267148e-01 1.89754486e-01 -8.47485423e-01 -9.26007569e-01 -1.41405150e-01 1.03653058e-01 1.06800802e-01 -2.10817173e-01 -2.39381343e-01 5.32064974e-01 1.19349629e-01 -1.33999705e+00 3.63253415e-01 1.33839226e+00 4.38875496e-01 3.94269705e-01 6.93178833e-01 -2.94295877e-01 9.47018981e-01 -4.36148196e-01 -3.75403970e-01 1.37257591e-01 -3.00873280e-01 -7.55926669e-01 -1.69453293e-01 -6.28772229e-02 -1.02388881e-01 -6.69944063e-02 1.16570437e+00 3.10183555e-01 -1.92303896e-01 2.25770384e-01 -1.30230176e+00 -1.01778686e+00 1.10713565e+00 -5.06025851e-01 -2.44579718e-01 3.86299640e-01 5.60598135e-01 1.16246593e+00 -8.26533318e-01 4.57223773e-01 1.07799304e+00 5.41090012e-01 7.69650161e-01 -1.39035308e+00 -6.18755281e-01 1.02971487e-01 -1.78451687e-01 -1.13742626e+00 -2.74372309e-01 9.39706087e-01 -8.15728724e-01 1.22639930e+00 -6.84523657e-02 4.64176089e-01 1.17523575e+00 3.17800254e-01 1.01287460e+00 8.85836065e-01 -5.66323161e-01 1.79943547e-01 2.51441568e-01 -2.25210134e-02 1.00404418e+00 1.92731038e-01 2.62770236e-01 -2.85779536e-01 -3.31718445e-01 4.90523458e-01 -1.78767398e-01 -2.06763536e-01 -4.77288336e-01 -1.29853129e+00 7.42130220e-01 3.66176486e-01 2.33003736e-01 -8.20867196e-02 6.09195888e-01 5.62838137e-01 2.25204259e-01 2.05817774e-01 9.61018145e-01 -6.77851796e-01 -5.18285275e-01 -8.16842198e-01 3.86064947e-01 8.05436969e-01 1.39642394e+00 9.93839204e-01 5.03971696e-01 -3.83466482e-01 8.48016262e-01 3.41456562e-01 5.27476132e-01 7.63176799e-01 -8.21242094e-01 8.01772892e-01 8.87874067e-01 4.86099347e-03 -7.42799163e-01 -2.07299620e-01 -4.83042449e-01 -3.14702898e-01 1.09841987e-01 -1.20102204e-01 -5.02096832e-01 -5.51013708e-01 1.79677093e+00 1.75861493e-02 -2.41185635e-01 1.12723507e-01 5.42110562e-01 4.57308829e-01 7.72257686e-01 -7.30154142e-02 1.10578768e-01 1.01286328e+00 -1.40569043e+00 -1.44750059e-01 -4.61947411e-01 9.06349242e-01 -6.60530210e-01 1.47126484e+00 2.91479021e-01 -1.02131188e+00 -6.05736375e-01 -9.99149144e-01 5.14905229e-02 -6.63127825e-02 6.96250319e-01 7.73118913e-01 5.38407743e-01 -1.02705312e+00 5.50230920e-01 -1.09958506e+00 -7.33317211e-02 4.25684303e-01 3.23079854e-01 6.66101351e-02 1.52057365e-01 -7.50646412e-01 4.81634170e-01 5.89596987e-01 -1.18258737e-01 -1.20292199e+00 -8.78766000e-01 -8.25248778e-01 3.47390264e-01 5.27481318e-01 -7.89382100e-01 1.53644633e+00 -1.10809565e+00 -1.92155683e+00 3.87713909e-01 3.99003737e-02 -3.48676980e-01 4.04031396e-01 -4.18106139e-01 -8.70985985e-02 -3.32940698e-01 7.49224350e-02 5.25291920e-01 7.95317829e-01 -1.14604068e+00 -3.58342797e-01 2.45688856e-01 2.85766661e-01 -1.75655797e-01 -3.74109775e-01 -5.99981099e-02 -2.60767102e-01 -5.98605752e-01 -5.90224922e-01 -9.51280296e-01 -2.34457195e-01 -3.80040348e-01 -3.68622303e-01 -2.87549198e-01 3.80185902e-01 -7.23912001e-01 1.37996650e+00 -2.17683268e+00 3.41222018e-01 3.37790400e-02 6.01186119e-02 1.91596583e-01 -4.41156387e-01 6.43570542e-01 -1.01857139e-02 3.58849645e-01 -4.04992253e-01 5.12061305e-02 4.36959863e-01 -1.08066507e-01 -3.93327087e-01 -1.22266877e-02 6.22606397e-01 1.16354990e+00 -1.14132690e+00 -2.48763964e-01 -3.00251059e-02 -2.23286208e-02 -1.07882488e+00 4.11418349e-01 -8.55300307e-01 3.98732454e-01 -6.17956400e-01 5.93544483e-01 2.43118256e-01 -3.57186705e-01 1.38841808e-01 4.35780317e-01 -1.42714992e-01 4.33930546e-01 -7.01417625e-01 1.96244323e+00 -1.06263447e+00 3.83564025e-01 -2.79791772e-01 -8.10457110e-01 1.09920812e+00 2.02780053e-01 2.20750138e-01 -5.51128864e-01 -6.26033992e-02 3.69601488e-01 1.91411361e-01 -6.03253245e-01 4.82973963e-01 3.02288979e-01 -2.88576633e-01 6.38755679e-01 1.05003476e-01 -3.81232142e-01 6.02641523e-01 1.19025715e-01 1.18255913e+00 7.87866652e-01 3.78988266e-01 -3.07158381e-01 6.52518451e-01 1.51029319e-01 6.26944900e-01 5.56707442e-01 1.53704762e-01 3.06473196e-01 9.73590136e-01 9.53323487e-03 -1.18248093e+00 -6.92993939e-01 1.75790370e-01 1.10460234e+00 -2.59077519e-01 -8.26010287e-01 -9.55367446e-01 -7.67456174e-01 -9.38369930e-02 9.38840032e-01 -3.73847932e-01 -4.01709288e-01 -6.78991258e-01 -6.22099936e-01 6.68764532e-01 4.93373960e-01 1.41321361e-01 -1.27617598e+00 -4.86882895e-01 2.73456872e-01 -4.63720486e-02 -8.19048464e-01 -6.82377279e-01 5.77668846e-02 -8.45045209e-01 -9.13743377e-01 -4.53528345e-01 -7.39949524e-01 8.13699007e-01 -1.29672706e-01 1.28648710e+00 3.71806711e-01 -2.46971101e-01 2.28151828e-01 -3.80316734e-01 -1.19125262e-01 -1.12269270e+00 4.33117837e-01 -3.41101348e-01 -2.99196333e-01 -3.91511209e-02 -5.71120322e-01 -3.13197345e-01 -1.55668997e-03 -8.27612460e-01 3.35561842e-01 8.78861964e-01 1.07343519e+00 2.15813950e-01 -3.21466714e-01 6.15243793e-01 -1.19210994e+00 9.06270862e-01 -5.89003086e-01 -1.09081388e+00 3.44800740e-01 -9.19788420e-01 4.74008471e-01 1.01229799e+00 -3.06651682e-01 -1.19292939e+00 3.87542248e-02 -2.73565650e-01 -2.46413767e-01 -7.75509840e-03 6.93915486e-01 -4.00361456e-02 1.11870572e-01 9.02657092e-01 4.56413060e-01 -1.87929273e-01 -2.10706860e-01 4.14505720e-01 4.71012414e-01 1.87212810e-01 -1.23929608e+00 9.25690651e-01 -1.65983468e-01 -3.54614824e-01 -1.86925694e-01 -3.48596603e-01 -2.50852127e-02 -4.02421743e-01 2.16796979e-01 4.33866650e-01 -9.13469732e-01 -5.10041296e-01 2.45541170e-01 -1.16626775e+00 -7.60712087e-01 -2.02850685e-01 1.70387685e-01 -7.94116676e-01 3.15258741e-01 -6.90312028e-01 -4.93625551e-01 -4.77692336e-01 -1.49979508e+00 9.99773920e-01 1.46841675e-01 -2.46728688e-01 -8.73170078e-01 2.51011431e-01 1.81992963e-01 5.34996152e-01 9.18743759e-02 1.43488705e+00 -3.19343477e-01 -8.42806697e-01 -8.52043182e-02 -6.91849738e-02 5.33699214e-01 1.15511395e-01 4.77378666e-01 -6.33961201e-01 -3.83000791e-01 -3.28062713e-01 -5.32228053e-01 4.34172481e-01 -3.18808705e-02 1.16571295e+00 -4.64472890e-01 -1.25260055e-01 6.07676089e-01 1.48917913e+00 -1.04733808e-02 3.03977251e-01 2.64700800e-01 7.25051522e-01 3.01065207e-01 5.09721220e-01 6.43185079e-01 4.24096853e-01 5.50088227e-01 4.05021966e-01 1.81390241e-01 -1.68460950e-01 -5.44328213e-01 9.18151498e-01 1.02630508e+00 2.42249101e-01 3.71265151e-02 -1.24293244e+00 6.73642397e-01 -1.78362155e+00 -6.62877619e-01 -1.17192874e-02 1.97477841e+00 1.17614281e+00 9.56049412e-02 -1.73026463e-03 -3.05494696e-01 5.33438623e-01 -7.84545168e-02 -5.54516494e-01 -5.48955798e-01 4.39038932e-01 2.59674162e-01 2.14122921e-01 4.45161998e-01 -6.98685288e-01 1.14327240e+00 4.92156315e+00 8.15952480e-01 -1.36742663e+00 1.79555476e-01 2.56708503e-01 2.05795646e-01 -5.89315891e-01 3.94765645e-01 -6.68928027e-01 4.14438426e-01 1.01780808e+00 -6.07651353e-01 8.32061052e-01 1.36496818e+00 3.03960741e-01 1.92477018e-01 -1.40293288e+00 5.12686968e-01 -2.21571147e-01 -1.25236464e+00 -4.84855622e-02 -2.08568007e-01 1.18784022e+00 3.34939361e-02 4.43147589e-03 8.07203174e-01 6.02382123e-01 -8.18845987e-01 9.40317273e-01 3.08928072e-01 6.07007325e-01 -6.64152920e-01 5.20288646e-01 4.54298586e-01 -1.04541218e+00 -2.34566078e-01 -2.40349263e-01 -1.45070199e-02 -2.50969172e-01 4.72629219e-01 -1.17654455e+00 6.06389463e-01 2.65579641e-01 8.09179783e-01 -7.59188950e-01 8.40726197e-01 -6.61970317e-01 6.73138916e-01 1.94912970e-01 -1.68733105e-01 1.17551982e-01 4.19144854e-02 3.11408132e-01 1.30548537e+00 4.77197975e-01 -5.93699753e-01 3.09096664e-01 1.67474437e+00 -2.68908769e-01 2.64913321e-01 -4.39507931e-01 -5.96457064e-01 4.38158572e-01 1.26562583e+00 -4.47089076e-01 -2.01885894e-01 -5.32856941e-01 5.65155566e-01 5.00628054e-01 3.62995058e-01 -9.61063325e-01 -6.28991306e-01 4.02441829e-01 -1.61371425e-01 3.12986106e-01 -4.46701288e-01 -4.56633359e-01 -1.33474541e+00 2.87710190e-01 -1.28788161e+00 -1.53625488e-01 -5.82821250e-01 -8.05585921e-01 6.90196037e-01 -9.35275927e-02 -1.22376919e+00 -5.31789124e-01 -4.74149525e-01 -6.92496479e-01 9.28370535e-01 -1.53344727e+00 -1.13218260e+00 -1.58329085e-01 2.93811802e-02 7.22509503e-01 -4.17065382e-01 6.28686965e-01 1.78815395e-01 -7.02498198e-01 7.10052550e-01 5.18709756e-02 1.13462903e-01 5.03488779e-01 -1.36323214e+00 7.70238519e-01 1.11682642e+00 -6.84329644e-02 8.55818391e-01 4.93056953e-01 -5.29913247e-01 -1.65058994e+00 -1.27059042e+00 5.11076748e-01 -3.43569875e-01 9.57032740e-01 -5.16312420e-01 -8.14891160e-01 5.87009609e-01 1.58566251e-01 -1.66736841e-01 4.06209975e-01 6.17750362e-02 -3.89122665e-01 -6.94937930e-02 -6.68371856e-01 6.49547398e-01 7.35324621e-01 -5.19998014e-01 -2.62521058e-01 3.80050093e-01 9.54288542e-01 -5.91676712e-01 -9.82043862e-01 2.06359982e-01 3.24936360e-01 -6.47855163e-01 5.79957545e-01 -4.75776672e-01 1.09970009e+00 -4.08091694e-01 5.60622998e-02 -1.30146897e+00 -1.78792685e-01 -7.47431159e-01 -1.50930345e-01 1.48837161e+00 7.32649505e-01 -4.43849564e-01 6.20449007e-01 4.54222381e-01 -4.86560464e-01 -8.29047203e-01 -1.96549416e-01 -7.68553197e-01 3.81485373e-01 -4.73154634e-01 8.21180642e-01 7.52494335e-01 2.45474488e-01 3.22396606e-01 -3.03682178e-01 1.15252286e-01 1.80055544e-01 4.15306747e-01 1.10339606e+00 -7.12757230e-01 -1.01942861e+00 -7.04980314e-01 1.81474328e-01 -1.02024066e+00 5.47623813e-01 -1.41183126e+00 2.52193779e-01 -1.21739948e+00 1.43969372e-01 -4.91378367e-01 1.82568263e-02 7.68879414e-01 -2.93391168e-01 -4.44603473e-01 2.81261146e-01 2.42226198e-01 -3.74702364e-01 7.94216633e-01 1.19275784e+00 -2.60732472e-01 -3.19433898e-01 4.46012691e-02 -8.62202704e-01 4.32901502e-01 9.36413407e-01 -6.67652965e-01 -4.96250033e-01 -7.21171260e-01 5.86613297e-01 4.60870385e-01 6.04505874e-02 -1.00263679e+00 -2.83162259e-02 -3.81221443e-01 -2.66615272e-01 1.47443816e-01 -2.90113091e-01 -5.04310071e-01 8.66796002e-02 8.04337978e-01 -5.88661075e-01 2.80578673e-01 4.42266971e-01 3.83326113e-01 -2.15940103e-01 -5.76762795e-01 6.51323974e-01 -2.70158798e-01 -7.22076416e-01 7.03203678e-02 -2.88086891e-01 1.86108336e-01 8.94343674e-01 3.06995988e-01 -5.57147741e-01 1.25383466e-01 -2.86481112e-01 3.48298371e-01 6.34129047e-01 7.08935201e-01 4.12547261e-01 -1.08677042e+00 -7.63157547e-01 2.55106360e-01 4.49964017e-01 -1.06926672e-01 -5.96491247e-02 7.55804837e-01 -7.14934528e-01 5.87812304e-01 -2.87408382e-01 -4.27358598e-01 -8.56661141e-01 7.09088504e-01 2.18186066e-01 -5.79844296e-01 -4.44777638e-01 5.67275703e-01 2.86046952e-01 -8.84130299e-01 -1.01910830e-01 -6.13188446e-01 3.23972404e-01 -6.90506995e-01 8.20482001e-02 1.45634264e-01 9.72926319e-02 8.04930329e-02 -1.78496793e-01 2.87493616e-01 -1.53013572e-01 1.97121248e-01 1.31089926e+00 2.51537591e-01 -3.62236053e-01 3.97067666e-01 9.50178385e-01 1.08245246e-01 -1.30501163e+00 -1.60032451e-01 3.75146091e-01 -2.92419732e-01 -2.19528273e-01 -9.43589032e-01 -9.60256398e-01 9.41643119e-01 1.51101023e-01 -1.69494495e-01 8.79666686e-01 -2.83769816e-01 5.80569565e-01 6.01933181e-01 6.52175426e-01 -8.06650281e-01 3.48108977e-01 5.31279266e-01 1.07585144e+00 -1.12751663e+00 -3.20917338e-01 -1.73693880e-01 -6.60235882e-01 1.26475573e+00 9.76329565e-01 -2.45466098e-01 1.85414806e-01 4.45944041e-01 -2.87608743e-01 2.30600446e-01 -1.17219675e+00 1.45873219e-01 1.06186688e-01 3.89819503e-01 8.74260306e-01 7.18906894e-02 -3.14122200e-01 5.86374164e-01 -2.45819017e-01 2.32988998e-01 8.38449538e-01 1.05262840e+00 -1.86342880e-01 -1.68521500e+00 -1.35403320e-01 4.09721404e-01 -3.24790865e-01 -4.13296252e-01 -1.28175855e-01 5.28886914e-01 -8.71321484e-02 5.69321454e-01 -4.88268822e-01 -3.30311447e-01 1.26930580e-01 8.40710551e-02 4.43452179e-01 -1.13341820e+00 -8.21409881e-01 -1.89441800e-01 2.13239379e-02 -4.72363770e-01 3.28495950e-02 -5.48224390e-01 -1.26542532e+00 -1.32329077e-01 -2.43523121e-01 3.08814824e-01 5.97615242e-01 6.74266279e-01 7.26192713e-01 8.85247946e-01 5.85669100e-01 -6.20062351e-01 -7.89883018e-01 -7.74842203e-01 -1.44281670e-01 2.38371402e-01 3.03053290e-01 -2.97607452e-01 1.08816981e-01 3.27347606e-01]
[7.7967000007629395, 7.767953395843506]
24e6e5c9-127e-4b1b-a734-928694b58199
land-cover-segmentation-with-sparse
2306.16252
null
https://arxiv.org/abs/2306.16252v1
https://arxiv.org/pdf/2306.16252v1.pdf
Land Cover Segmentation with Sparse Annotations from Sentinel-2 Imagery
Land cover (LC) segmentation plays a critical role in various applications, including environmental analysis and natural disaster management. However, generating accurate LC maps is a complex and time-consuming task that requires the expertise of multiple annotators and regular updates to account for environmental changes. In this work, we introduce SPADA, a framework for fuel map delineation that addresses the challenges associated with LC segmentation using sparse annotations and domain adaptation techniques for semantic segmentation. Performance evaluations using reliable ground truths, such as LUCAS and Urban Atlas, demonstrate the technique's effectiveness. SPADA outperforms state-of-the-art semantic segmentation approaches as well as third-party products, achieving a mean Intersection over Union (IoU) score of 42.86 and an F1 score of 67.93 on Urban Atlas and LUCAS, respectively.
['Fabrizio Dominici', 'Claudio Rossi', 'Luca Barco', 'Edoardo Arnaudo', 'Marco Galatola']
2023-06-28
null
null
null
null
['management']
['miscellaneous']
[ 1.51551872e-01 3.41651104e-02 -3.28656495e-01 -3.80039662e-01 -1.01432693e+00 -8.46023023e-01 4.53603834e-01 5.25006115e-01 -4.36255336e-01 7.57383168e-01 -3.16954106e-02 -3.05899411e-01 2.48090878e-01 -1.18148565e+00 -6.86432600e-01 -5.43938816e-01 7.23585337e-02 6.92863703e-01 6.96379662e-01 -1.93271130e-01 -1.09637223e-01 4.01531607e-01 -1.29996443e+00 -2.25848570e-01 1.36592937e+00 1.03698480e+00 3.91007543e-01 3.17440301e-01 -6.38131917e-01 9.22478456e-03 -5.18063962e-01 -2.77396381e-01 3.68000984e-01 -1.10516123e-01 -8.18298221e-01 -8.62555206e-02 2.73198783e-01 -1.61829516e-01 1.87874794e-01 1.32029986e+00 2.81923920e-01 2.36925259e-01 5.91517746e-01 -1.24528146e+00 1.00661434e-01 5.57605982e-01 -7.45890021e-01 1.03513291e-02 -5.34103326e-02 -2.53470391e-02 8.51972461e-01 -5.12292266e-01 5.41096926e-01 1.05661714e+00 9.92377818e-01 2.01726612e-02 -1.23756778e+00 -8.73220742e-01 3.41046035e-01 -1.42830804e-01 -1.77216685e+00 -3.78666461e-01 3.18078041e-01 -6.01762176e-01 9.12582219e-01 1.94262251e-01 6.88921273e-01 2.92040229e-01 -1.63304165e-01 7.38350689e-01 9.84122515e-01 -1.88567117e-01 5.29708564e-01 -1.32151425e-01 -3.83534618e-02 5.69870830e-01 6.78812206e-01 -2.80440509e-01 -1.42156452e-01 -6.64344132e-02 6.21259034e-01 -3.34261358e-01 1.15019530e-01 -2.37611800e-01 -1.00563729e+00 7.35352874e-01 5.78889430e-01 6.89849630e-02 -5.08662343e-01 3.76980722e-01 3.68229151e-01 -3.97429496e-01 8.30628157e-01 2.79525697e-01 -3.96386266e-01 8.44544731e-03 -1.35078096e+00 3.88739884e-01 4.31031853e-01 1.25099289e+00 8.68948102e-01 -3.81854214e-02 7.18705878e-02 6.49265707e-01 3.64581406e-01 1.02001655e+00 -1.71737999e-01 -1.08420300e+00 5.66625655e-01 6.71626449e-01 4.14214492e-01 -1.01177573e+00 -5.05417049e-01 -5.58478177e-01 -6.50402725e-01 -6.76906854e-02 3.40467095e-01 -6.19708188e-02 -1.25028980e+00 1.47831547e+00 5.13540626e-01 4.18060124e-02 1.01322263e-01 6.60357594e-01 7.98204482e-01 7.57690191e-01 8.54738474e-01 1.69127315e-01 1.25658619e+00 -8.53219509e-01 -6.22569978e-01 -5.59956789e-01 4.43369627e-01 -3.89444530e-01 8.49180400e-01 -1.12286560e-01 -5.99360585e-01 -3.90940160e-01 -9.70891714e-01 7.96111822e-02 -7.27271616e-01 5.35246767e-02 5.75075805e-01 5.69146335e-01 -6.49795532e-01 3.29421252e-01 -1.04236889e+00 -6.68751597e-01 8.20452154e-01 1.36182293e-01 -6.92930296e-02 1.13657508e-02 -1.13629735e+00 7.03013659e-01 6.91789687e-01 -7.82537609e-02 -7.41739750e-01 -7.99504519e-01 -1.07818234e+00 -4.29616272e-02 5.51738322e-01 -3.72103989e-01 1.21587300e+00 -6.30592227e-01 -8.34348202e-01 9.69024658e-01 -2.03300521e-01 -6.17292285e-01 6.52272940e-01 -3.20129663e-01 -4.92568910e-01 1.17933944e-01 8.73647213e-01 1.06765342e+00 1.43677548e-01 -1.27108371e+00 -1.04907310e+00 -2.59374201e-01 -7.76159465e-02 3.72193813e-01 1.04012482e-01 -1.65517449e-01 -4.82069522e-01 -5.87563157e-01 3.27706099e-01 -8.09958518e-01 -5.26636720e-01 3.96771505e-02 -2.25322694e-01 -3.32279019e-02 7.15325475e-01 -1.10852695e+00 1.36242163e+00 -2.12589145e+00 -4.08822387e-01 5.39928079e-01 -1.88063547e-01 1.72799781e-01 2.04730138e-01 -9.53800827e-02 5.50649464e-01 4.87448573e-01 -9.14678335e-01 8.01096577e-03 1.08304851e-01 2.63041794e-01 1.02703907e-02 2.98295557e-01 2.03478616e-02 8.80056679e-01 -1.24104989e+00 -6.14305317e-01 3.57503474e-01 1.46458477e-01 -1.02555580e-01 -1.37597561e-01 -6.65654063e-01 4.83495086e-01 -5.09832561e-01 9.91042972e-01 7.02036381e-01 8.41131881e-02 8.70679393e-02 -1.37392908e-01 -3.67619753e-01 2.81958841e-02 -1.17837477e+00 1.90115857e+00 -2.21710339e-01 4.88164186e-01 2.27393270e-01 -5.65325499e-01 8.86899889e-01 9.61189643e-02 6.83532834e-01 -8.70042264e-01 6.95823357e-02 5.43098509e-01 -5.12707889e-01 -1.15313813e-01 6.88434601e-01 -3.16322893e-02 -3.97316754e-01 1.65125325e-01 -3.44977677e-01 -5.33704460e-01 3.48021448e-01 -9.62897018e-03 6.73858941e-01 3.85262161e-01 3.44451338e-01 -7.18912363e-01 2.84057617e-01 9.00587678e-01 7.13371217e-01 3.51219267e-01 -4.25874650e-01 4.81312007e-01 2.16577590e-01 -3.83513480e-01 -1.05310833e+00 -9.45152402e-01 -2.03779757e-01 9.20135856e-01 3.79403919e-01 -2.02783599e-01 -1.21991837e+00 -6.17249668e-01 2.32767761e-01 1.01905990e+00 -2.06392020e-01 2.92834044e-01 -3.97481650e-01 -8.60765040e-01 7.32084870e-01 7.62386680e-01 1.28160834e+00 -7.32656300e-01 -8.93229187e-01 3.98302764e-01 -5.83028674e-01 -1.43029451e+00 -2.53048152e-01 1.12311728e-02 -6.39430404e-01 -1.12774789e+00 -6.91610098e-01 -5.03760576e-01 7.21497178e-01 4.04381484e-01 1.07191277e+00 -2.97068626e-01 -1.05812445e-01 8.58958289e-02 -2.04253361e-01 -4.90427464e-01 -2.74405748e-01 5.93930721e-01 -3.71261835e-01 -5.28207779e-01 2.91117430e-01 -1.23202860e-01 -5.46007872e-01 6.27830088e-01 -9.91356313e-01 4.40598190e-01 2.82763094e-01 1.53388232e-01 1.17482913e+00 4.54452604e-01 6.27189040e-01 -9.20150638e-01 1.47743568e-01 -5.48026323e-01 -1.00609934e+00 2.96589524e-01 -6.00063145e-01 -2.42374852e-01 -3.54462713e-02 2.97209412e-01 -1.21491921e+00 6.59822524e-01 -8.10520500e-02 1.65521950e-01 -3.93997610e-01 6.42565370e-01 -4.77497727e-01 1.03769913e-01 6.31960213e-01 -1.19719051e-01 -3.67785752e-01 -4.66402173e-01 4.30477947e-01 6.86788440e-01 1.04722869e+00 -6.32820368e-01 7.75181115e-01 5.39641619e-01 -6.77353814e-02 -7.90929973e-01 -8.72856200e-01 -8.70269775e-01 -8.92374218e-01 -3.39320779e-01 9.10761714e-01 -1.33377802e+00 3.67841631e-01 5.79144120e-01 -9.98170078e-01 -7.09451437e-01 -2.27022901e-01 -1.81977786e-02 -2.53465950e-01 7.69682676e-02 2.14429721e-01 -4.90026295e-01 -5.29108882e-01 -1.01182687e+00 1.12986851e+00 4.14831460e-01 -2.90954947e-01 -8.03002536e-01 -2.55766302e-01 4.80917901e-01 4.60486501e-01 9.06082451e-01 6.29841566e-01 -2.69153535e-01 -4.98969853e-01 -1.75742567e-01 -5.68502367e-01 1.70565724e-01 3.72825325e-01 -2.07740664e-01 -8.77182484e-01 -1.87607221e-02 -8.11081886e-01 2.35090777e-01 7.11885870e-01 5.05070329e-01 9.40907955e-01 -3.54199521e-02 -6.24758184e-01 3.34006906e-01 1.45224190e+00 2.71445394e-01 5.28896928e-01 5.55205345e-01 6.66291416e-01 6.64822638e-01 1.06058347e+00 2.55681485e-01 7.23143160e-01 5.25726199e-01 5.94004750e-01 -3.63306224e-01 -2.52778828e-01 -4.35364962e-01 -8.94360244e-02 1.42678991e-01 5.74292839e-02 -2.61726022e-01 -1.58343172e+00 9.93252814e-01 -2.09511757e+00 -5.82349181e-01 -5.15758038e-01 2.10750008e+00 7.57995307e-01 8.52882862e-02 1.87946856e-01 1.17021045e-02 7.74523258e-01 1.84021235e-01 -6.77255392e-01 3.05982847e-02 -2.41672218e-01 1.67927459e-01 1.33013523e+00 4.56782997e-01 -1.55673945e+00 1.49330556e+00 6.10934353e+00 8.61870408e-01 -7.18502462e-01 4.03014958e-01 7.25118816e-01 4.25651073e-01 -2.50764251e-01 -4.64949943e-02 -7.67141342e-01 3.48758399e-01 7.65276015e-01 -5.91257736e-02 3.08192134e-01 9.13333595e-01 3.90107065e-01 -6.37617469e-01 -3.00922453e-01 6.24749064e-01 -3.19859535e-01 -1.19965971e+00 -3.08133811e-01 -4.21253480e-02 1.26146090e+00 2.53528953e-01 -4.16257858e-01 1.48960575e-02 8.07818413e-01 -9.69864547e-01 1.00334287e+00 1.81024835e-01 1.06043947e+00 -7.94016898e-01 8.62486601e-01 1.82874411e-01 -1.88074768e+00 3.33663762e-01 -1.44811720e-01 3.31258833e-01 2.96103835e-01 6.78037763e-01 -5.93529224e-01 6.67238057e-01 8.77431989e-01 6.05960548e-01 -4.65008169e-01 1.14145267e+00 -4.61108208e-01 6.34499192e-01 -7.51300871e-01 5.98313689e-01 5.49536347e-01 -1.00993812e-01 2.90520370e-01 1.42920434e+00 3.14818025e-01 2.08093330e-01 5.36243498e-01 7.75569499e-01 -3.66855636e-02 1.58202857e-01 -4.71734792e-01 -5.44204703e-03 6.02153778e-01 1.11294889e+00 -1.34775853e+00 -3.82950753e-01 -5.01550958e-02 7.88422942e-01 -3.88010561e-01 2.71661967e-01 -1.06198847e+00 -3.59433413e-01 7.24280775e-01 3.84758502e-01 1.27492771e-01 -5.46252072e-01 -7.17332482e-01 -4.89677489e-01 -1.88230947e-01 -3.25024605e-01 3.86992484e-01 -6.16761863e-01 -5.82673073e-01 2.48971403e-01 4.30583179e-01 -1.03480840e+00 8.53310302e-02 -1.68928474e-01 -3.60338509e-01 6.97857738e-01 -1.93125057e+00 -1.41179347e+00 -8.96976709e-01 3.79806682e-02 7.29906976e-01 2.33518794e-01 6.42790496e-01 3.57884258e-01 -5.68010092e-01 1.28140867e-01 1.49454311e-01 1.02302218e-02 2.73262322e-01 -1.19499683e+00 7.68614888e-01 9.77653563e-01 -3.00707817e-01 -1.69690132e-01 5.13012528e-01 -1.01159966e+00 -6.67714000e-01 -1.91418350e+00 7.65363455e-01 1.35214612e-01 5.20641446e-01 -9.32327472e-03 -6.81478560e-01 5.11350632e-01 -2.17801318e-01 -1.40794113e-01 4.19876009e-01 -4.19561684e-01 -6.04778063e-03 -2.08577588e-01 -1.56898606e+00 3.51011097e-01 1.22803092e+00 -2.89223999e-01 4.45115045e-02 3.30097228e-01 6.32662416e-01 -6.08360827e-01 -8.36261749e-01 5.77338040e-01 5.06365478e-01 -5.32379508e-01 9.85604048e-01 7.66642690e-02 1.09055169e-01 -7.61866033e-01 -4.51440066e-01 -1.07721364e+00 -1.77734032e-01 -5.27693667e-02 4.35723424e-01 1.48055840e+00 4.20938194e-01 -4.80722219e-01 7.00450182e-01 8.28062475e-01 -4.28541332e-01 -1.58150524e-01 -9.12942588e-01 -8.57667863e-01 -7.20610842e-02 -6.10820234e-01 1.07216406e+00 8.74329627e-01 -5.48834801e-01 -1.86593741e-01 2.89382815e-01 7.00710535e-01 6.33138418e-01 -4.78836708e-02 7.21981466e-01 -1.38320863e+00 5.94902813e-01 -5.20558000e-01 -1.80079162e-01 -5.34967303e-01 2.42954895e-01 -8.34854782e-01 3.85130852e-01 -2.07372117e+00 -4.92526256e-02 -9.03390288e-01 -4.38640118e-02 9.53925669e-01 3.75300087e-02 3.72982383e-01 -1.78044274e-01 3.02858800e-01 -6.36712253e-01 4.83967543e-01 6.52368903e-01 -5.19972384e-01 -3.68035287e-01 -2.45770663e-01 -5.74411213e-01 8.89043808e-01 1.26783693e+00 -6.13748550e-01 -2.27793440e-01 -5.57628691e-01 9.31462571e-02 -5.11297107e-01 3.91097188e-01 -1.23834479e+00 -8.83307979e-02 -5.95122397e-01 5.70359565e-02 -9.05115485e-01 -1.61134332e-01 -9.94241059e-01 7.59077728e-01 4.99695092e-01 2.14022592e-01 -1.54321179e-01 6.71000183e-01 4.71708775e-01 -1.19702183e-01 -1.56872898e-01 7.30662525e-01 -2.51620799e-01 -1.21510959e+00 2.21579701e-01 -2.82221943e-01 -5.93804978e-02 1.17126727e+00 -2.12813497e-01 -2.62366384e-01 1.75275709e-02 -3.72910976e-01 8.48863244e-01 7.44182527e-01 2.26368874e-01 5.92168011e-02 -1.21253657e+00 -6.45386696e-01 -9.44480896e-02 2.69074142e-01 8.82003248e-01 -9.45014879e-03 4.70136434e-01 -1.07424486e+00 4.12349343e-01 -1.65919010e-02 -6.67695403e-01 -1.08852673e+00 -2.52194852e-01 3.68410319e-01 -3.36201787e-01 -5.47314823e-01 4.02781159e-01 -1.81658771e-02 -5.20326376e-01 9.34922621e-02 -5.28968692e-01 -8.71704072e-02 1.84069872e-01 1.33667797e-01 6.53718710e-01 1.36699423e-01 -9.68958557e-01 -4.73893136e-01 6.51342571e-01 6.70119941e-01 -1.26617610e-01 1.27967620e+00 -2.42484868e-01 2.99130008e-02 1.32492393e-01 4.26435441e-01 -4.18709308e-01 -1.30545437e+00 -2.82592952e-01 4.15862560e-01 -4.14958328e-01 4.66185242e-01 -1.19400191e+00 -1.13725805e+00 6.27117991e-01 7.06086457e-01 -6.62371144e-02 9.41713274e-01 9.04682726e-02 1.08243155e+00 1.97165936e-01 6.30536139e-01 -1.49999583e+00 -6.77138209e-01 2.10636646e-01 8.14474940e-01 -1.38856053e+00 1.85188234e-01 -8.63164902e-01 -5.15814900e-01 6.19714558e-01 4.02068079e-01 3.10063392e-01 5.44769466e-01 5.14721163e-02 -3.71205024e-02 -2.39656389e-01 3.07021886e-01 -6.55232489e-01 2.70880967e-01 6.85279608e-01 2.62676384e-02 6.72151029e-01 -4.53670323e-02 5.72042644e-01 -5.53976884e-03 -7.43782967e-02 -9.86017883e-02 1.04298353e+00 -9.55856502e-01 -8.03287208e-01 -5.97328067e-01 3.59270930e-01 -1.02285214e-01 -2.89927684e-02 -2.41480187e-01 7.52543509e-01 3.44514757e-01 8.98500741e-01 1.07895590e-01 3.25638875e-02 3.53757530e-01 4.78132032e-02 -5.28347306e-02 -6.00820363e-01 -3.10677707e-01 2.21527055e-01 4.05663282e-01 -4.01178449e-01 -6.83979869e-01 -8.65114510e-01 -1.81160855e+00 -3.29866052e-01 -9.55538303e-02 -1.36863114e-02 1.07635367e+00 8.37860644e-01 3.00559193e-01 4.97098893e-01 2.15983808e-01 -8.27143610e-01 1.70289859e-01 -7.14952767e-01 -5.04931271e-01 2.32350305e-01 -8.39991793e-02 -7.93174326e-01 2.20754862e-01 2.28502169e-01]
[9.152070999145508, -1.5616509914398193]
9aca0d4c-912a-4932-8c37-d1042ee8258e
emergent-communication-under-competition
2101.10276
null
https://arxiv.org/abs/2101.10276v1
https://arxiv.org/pdf/2101.10276v1.pdf
Emergent Communication under Competition
The literature in modern machine learning has only negative results for learning to communicate between competitive agents using standard RL. We introduce a modified sender-receiver game to study the spectrum of partially-competitive scenarios and show communication can indeed emerge in a competitive setting. We empirically demonstrate three key takeaways for future research. First, we show that communication is proportional to cooperation, and it can occur for partially competitive scenarios using standard learning algorithms. Second, we highlight the difference between communication and manipulation and extend previous metrics of communication to the competitive case. Third, we investigate the negotiation game where previous work failed to learn communication between independent agents (Cao et al., 2018). We show that, in this setting, both agents must benefit from communication for it to emerge; and, with a slight modification to the game, we demonstrate successful communication between competitive agents. We hope this work overturns misconceptions and inspires more research in competitive emergent communication.
['Aaron Courville', 'Angeliki Lazaridou', 'Travis LaCroix', 'Michael Noukhovitch']
2021-01-25
null
null
null
null
['misconceptions']
['miscellaneous']
[ 1.96138814e-01 6.35856152e-01 1.46167070e-01 1.63347483e-01 -5.59619486e-01 -9.48303998e-01 8.08584452e-01 1.75209761e-01 -6.75895393e-01 1.24034703e+00 -1.03285313e-02 -1.93812251e-01 -3.92915338e-01 -5.91294110e-01 -8.28698814e-01 -9.75798368e-01 -9.13079441e-01 4.01383251e-01 -2.10226968e-01 -6.99307501e-01 7.38469884e-03 1.14500068e-01 -1.24338782e+00 -1.17604584e-01 6.24809206e-01 3.63004833e-01 2.25505177e-02 1.08964288e+00 3.79451513e-01 1.03901470e+00 -9.42646742e-01 -2.45139495e-01 7.11102784e-01 -9.47116554e-01 -9.04422462e-01 1.87653098e-02 -3.93003136e-01 -5.88312335e-02 9.39783547e-03 7.29230165e-01 5.77399433e-01 -1.15414441e-01 5.70620179e-01 -1.90504360e+00 -5.47442853e-01 1.48658085e+00 -5.57589114e-01 5.18219955e-02 2.85063833e-01 9.95222554e-02 1.20990133e+00 -1.21089593e-02 6.18189871e-01 1.15943968e+00 4.94016200e-01 7.84575760e-01 -1.12951660e+00 -1.03402293e+00 3.22634965e-01 -1.54754058e-01 -9.02442694e-01 -1.77702025e-01 4.93195772e-01 -2.90655851e-01 8.71315181e-01 2.57565707e-01 1.28257442e+00 1.27351725e+00 2.01005772e-01 8.86786759e-01 1.59519339e+00 -5.45176446e-01 2.75458664e-01 -2.52852559e-01 -3.72225076e-01 5.18136263e-01 4.30891037e-01 4.99922395e-01 -7.22225964e-01 -1.85865059e-01 6.65112913e-01 -5.38398325e-01 -2.81540275e-01 -4.29721445e-01 -1.21449387e+00 1.02301705e+00 2.89154321e-01 4.57782507e-01 -3.84550124e-01 3.64643544e-01 1.65668070e-01 1.25097120e+00 2.27409884e-01 1.00381601e+00 -4.77849394e-01 -5.39537191e-01 -1.44811675e-01 1.90627649e-01 1.39673865e+00 7.48827159e-01 5.48149645e-01 -1.15520895e-01 6.36026680e-01 2.81587243e-01 -6.56133518e-02 2.92048663e-01 1.22778647e-01 -1.53603232e+00 -5.18296510e-02 2.69858927e-01 3.20676774e-01 -6.71092510e-01 -9.12365198e-01 -7.32822120e-01 -6.79798841e-01 3.10740799e-01 4.63689357e-01 -9.24082577e-01 3.23708892e-01 2.18306231e+00 5.29520512e-02 1.62135974e-01 6.72377050e-01 6.85640812e-01 3.27501148e-01 4.58661228e-01 -4.45545167e-01 -7.58019447e-01 5.96100271e-01 -9.76037204e-01 -2.09091142e-01 -8.62977281e-02 1.02292204e+00 -4.59433675e-01 7.69190133e-01 5.43481290e-01 -1.23574293e+00 2.30624914e-01 -1.10763228e+00 7.71027386e-01 4.71387692e-02 -8.58102620e-01 1.13952887e+00 5.20554721e-01 -1.46145618e+00 3.42785984e-01 -8.50949585e-01 -8.70331585e-01 1.07723176e-01 5.21558285e-01 -1.65080130e-01 3.87592793e-01 -1.01839781e+00 8.29999626e-01 -3.22661959e-02 -1.95473418e-01 -9.74166214e-01 -2.88951367e-01 -4.57094818e-01 -6.65248409e-02 8.60405266e-01 -9.08953965e-01 1.38931048e+00 -1.63701022e+00 -1.79771101e+00 7.19918430e-01 4.55362707e-01 -6.38832271e-01 5.95151067e-01 7.43472427e-02 4.28305715e-01 -8.27593878e-02 -4.15669754e-02 7.11461008e-01 2.36736774e-01 -1.70392382e+00 -9.13938820e-01 -1.15516938e-01 8.18251789e-01 6.49469435e-01 -3.44545931e-01 -1.15526594e-01 4.61750984e-01 -1.24387987e-01 -4.44885284e-01 -1.31726825e+00 -3.60742956e-01 -4.66774255e-01 -6.93793073e-02 -2.91073561e-01 2.22230390e-01 4.77572769e-01 3.54837865e-01 -1.79858911e+00 5.91879904e-01 7.28685856e-02 5.87931931e-01 -4.34418291e-01 -5.70401371e-01 1.02177739e+00 3.09157878e-01 3.57717365e-01 -1.31936476e-01 -2.77108997e-01 2.88118333e-01 3.29998761e-01 4.89148088e-02 6.86512768e-01 -1.79723457e-01 1.15832388e+00 -9.62499917e-01 -1.40877739e-01 -3.83556604e-01 1.39394984e-01 -7.04703808e-01 1.39823750e-01 1.41424537e-01 6.17498219e-01 -3.03098649e-01 1.90387145e-01 3.00477505e-01 -2.06475809e-01 5.44994056e-01 8.00587177e-01 -2.55368918e-01 1.22906320e-01 -1.05075610e+00 1.28441858e+00 -4.14158672e-01 8.05157185e-01 9.14684296e-01 -1.24455988e+00 3.55369896e-01 2.74688601e-01 6.29043341e-01 -4.37323540e-01 3.56550306e-01 3.15535456e-01 7.41032362e-01 -7.52232671e-02 3.62138413e-02 -3.24727297e-01 -3.52917880e-01 1.30296421e+00 -1.82026505e-01 -4.66209203e-01 -4.86363359e-02 4.60243583e-01 1.28307879e+00 -5.52718341e-02 2.25514010e-01 -5.21048307e-01 8.59355927e-02 4.20163833e-02 4.05534714e-01 1.39868069e+00 -5.13134181e-01 -1.22076742e-01 8.73689115e-01 -1.28433526e-01 -7.80370951e-01 -8.52447271e-01 3.11953574e-01 1.38099384e+00 4.93571281e-01 -4.45579886e-01 -7.54412174e-01 -4.19017434e-01 -3.80896479e-02 3.21387500e-01 -9.83036220e-01 -1.57879531e-01 -6.61503375e-01 -9.17074502e-01 6.32588089e-01 2.49126002e-01 2.35379115e-01 -1.19300365e+00 -1.10273683e+00 1.31524608e-01 3.85666490e-02 -7.86725521e-01 -2.49039724e-01 5.76352119e-01 -3.67668152e-01 -1.23028934e+00 -4.16154146e-01 -9.57575381e-01 2.54308909e-01 4.09314036e-01 9.52121556e-01 6.53458655e-01 9.67765525e-02 1.13903761e+00 -5.26983976e-01 -5.81298292e-01 -7.54385650e-01 3.51609915e-01 3.00352633e-01 -4.96514469e-01 3.45316455e-02 -7.99666643e-01 -5.94772577e-01 1.81374907e-01 -6.10550642e-01 3.58695030e-01 4.66326565e-01 8.46817315e-01 -4.00161892e-01 -3.36944615e-03 9.11673009e-01 -5.07195055e-01 1.21118855e+00 -4.81388330e-01 -5.28223693e-01 2.65855286e-02 -4.08631772e-01 -1.12168789e-01 7.90931046e-01 -5.06409228e-01 -5.87050140e-01 -1.88232854e-01 5.13249815e-01 6.14884019e-01 8.50399807e-02 4.47568685e-01 3.96857977e-01 -3.83988649e-01 6.15737140e-01 1.93397865e-01 4.24404979e-01 2.67995447e-01 3.83714050e-01 7.23136723e-01 -1.89137742e-01 -9.74152803e-01 9.42616165e-01 4.84503984e-01 -3.31003219e-02 -7.35382318e-01 -3.94313663e-01 2.03034893e-01 -4.11710382e-01 -3.62048000e-01 3.45119953e-01 -8.83774102e-01 -1.55750656e+00 3.93184096e-01 -9.82155144e-01 -1.01445949e+00 -3.92134160e-01 6.10497057e-01 -9.67548072e-01 1.94218040e-01 -9.19109643e-01 -1.22557390e+00 1.79872718e-02 -1.03852713e+00 6.95484102e-01 4.47258592e-01 -8.86747614e-02 -1.00763714e+00 2.77658463e-01 1.36291683e-01 8.10477555e-01 4.37082946e-02 5.02819538e-01 -7.12847531e-01 -5.69482863e-01 3.85980129e-01 3.81485015e-01 -2.79788285e-01 1.77299365e-01 4.15391698e-02 -5.29543638e-01 -6.91274643e-01 -4.79962192e-02 -1.02360237e+00 6.37743652e-01 3.99411589e-01 1.81072548e-01 -3.47106427e-01 -2.17211351e-01 1.28847584e-01 8.60529244e-01 3.61627728e-01 -3.99326682e-02 6.15023553e-01 1.17297016e-01 1.04097033e+00 3.02947879e-01 5.60823262e-01 8.94785464e-01 3.54222864e-01 4.38852549e-01 -8.50428268e-02 4.72371906e-01 1.73330307e-01 4.54203874e-01 1.04381144e+00 -2.52651244e-01 -2.20112875e-01 -5.82528949e-01 2.87056893e-01 -2.12674785e+00 -9.23248470e-01 3.13915014e-01 1.96989393e+00 1.01076496e+00 2.85178810e-01 5.37720144e-01 -1.79689839e-01 5.51134646e-01 -2.45920703e-01 -4.08611387e-01 -6.55715406e-01 -4.99991447e-01 9.05489326e-02 3.46306771e-01 9.50068057e-01 -6.38119936e-01 1.12125266e+00 6.79824686e+00 3.55533600e-01 -1.01539743e+00 3.22280496e-01 4.39535230e-01 -5.98541021e-01 -2.46719345e-01 1.27020523e-01 -8.56370926e-02 -1.53217167e-01 6.73773527e-01 -6.21755660e-01 1.04398215e+00 2.79231429e-01 2.16492996e-01 -2.93436080e-01 -1.25226581e+00 6.02369010e-01 1.07651949e-03 -9.93987381e-01 -6.05739295e-01 4.19687361e-01 8.38209450e-01 1.32235631e-01 -2.07646370e-01 5.66102207e-01 1.19534838e+00 -1.25630677e+00 5.60036838e-01 -5.11707515e-02 -6.97552487e-02 -8.98374379e-01 6.82911336e-01 7.31683552e-01 -9.77808297e-01 -4.09715503e-01 -1.08326852e-01 -9.67180967e-01 -8.03577807e-03 -2.28149578e-01 -5.30873060e-01 3.70668501e-01 3.97235751e-01 5.50599992e-01 -2.01267913e-01 7.74238646e-01 3.08366437e-02 5.93041837e-01 -4.71893638e-01 -4.86717016e-01 4.56274271e-01 -3.60905170e-01 5.76607287e-01 8.17296207e-01 -9.15973783e-02 2.45799780e-01 4.06444043e-01 6.26627624e-01 -1.90369889e-01 2.09441185e-01 -6.99801445e-01 -2.47598708e-01 4.98584777e-01 1.32608306e+00 -8.59804809e-01 -3.10575906e-02 -2.62366086e-01 9.07893002e-01 6.44953966e-01 3.17798167e-01 -6.09404862e-01 -2.98760738e-02 5.38259447e-01 -4.46085364e-01 -1.33538768e-02 -3.54942411e-01 -1.20443881e-01 -1.13209713e+00 -2.14570716e-01 -1.09250486e+00 1.70912966e-01 -3.39785010e-01 -1.32851255e+00 3.93460989e-01 -1.17152192e-01 -6.56904221e-01 -2.79258758e-01 -1.33506745e-01 -5.53625941e-01 9.77778807e-02 -1.22303975e+00 -1.02534151e+00 2.19697636e-02 3.47109348e-01 4.21711117e-01 -7.70708844e-02 7.83302128e-01 -4.13940340e-01 -5.65971553e-01 4.98079330e-01 6.57129288e-03 -1.75854802e-01 4.73405033e-01 -1.33839118e+00 6.27973676e-02 3.84837151e-01 2.73251563e-01 5.14056921e-01 7.78546393e-01 -2.57087976e-01 -1.79067743e+00 -3.61128300e-01 3.84176016e-01 -3.39033574e-01 8.95191371e-01 -7.74034798e-01 -2.12011263e-01 8.33081663e-01 9.56547916e-01 -5.21770000e-01 7.71406710e-01 3.52693647e-01 -1.45588800e-01 1.15089118e-01 -7.94418573e-01 1.02950287e+00 1.39271033e+00 -3.85112911e-02 -3.43596071e-01 2.30425954e-01 8.58187497e-01 -7.85316154e-02 -6.55283332e-01 1.96515277e-01 8.10594261e-01 -1.05298960e+00 3.96107554e-01 -5.45144081e-01 1.60039276e-01 1.50730833e-01 -1.94448903e-01 -1.84020936e+00 1.43889710e-01 -1.30994689e+00 3.63691002e-01 7.73283541e-01 7.13173926e-01 -1.19288456e+00 5.85890710e-01 2.77559966e-01 1.97290257e-01 -7.70527303e-01 -1.04956305e+00 -9.24313247e-01 1.02365398e+00 -1.47465289e-01 2.30654836e-01 1.14344943e+00 7.49906540e-01 5.33319592e-01 -3.69252533e-01 -6.67941794e-02 6.13569677e-01 1.69748306e-01 1.02170312e+00 -1.21758854e+00 -7.44216144e-01 -9.05795574e-01 -3.70105729e-02 -1.02552319e+00 4.73008603e-01 -6.46931648e-01 1.28314570e-01 -1.35179985e+00 5.88033974e-01 -6.84978426e-01 -4.74188328e-02 2.34520435e-01 1.24084868e-01 2.78806180e-01 6.23825490e-01 3.10378909e-01 -1.05534875e+00 5.03634870e-01 1.27103603e+00 4.97480333e-02 -3.16578478e-01 -1.06922090e-01 -1.23256540e+00 4.84918118e-01 1.04487753e+00 -4.32223886e-01 -3.73855680e-01 1.96187552e-02 6.75486147e-01 1.19877122e-01 4.72131185e-02 -5.26023686e-01 4.13731009e-01 -5.97513974e-01 -2.69672692e-01 5.10411680e-01 1.20850600e-01 -5.88087261e-01 -7.26938471e-02 1.02591395e+00 -8.49376440e-01 1.07939959e-01 -9.93349329e-02 5.58993101e-01 4.50914860e-01 -1.28183654e-02 5.87938607e-01 -2.41010010e-01 2.24161804e-01 -2.28278711e-01 -1.03915334e+00 4.38916892e-01 1.34674990e+00 -5.36832213e-03 -4.52814102e-01 -1.24426651e+00 -4.92403597e-01 6.68504059e-01 8.10728073e-01 1.07574023e-01 6.20769747e-02 -7.63823688e-01 -1.05341005e+00 -2.19382539e-01 -1.42782345e-01 -3.24944556e-01 -3.10801983e-01 1.08609617e+00 -2.68839985e-01 5.69245070e-02 -1.95727289e-01 -3.90035957e-01 -1.22711003e+00 2.49095142e-01 6.66714430e-01 4.77690659e-02 -5.61745822e-01 7.82851696e-01 3.36468607e-01 -6.01694167e-01 4.74838585e-01 -1.02002166e-01 -2.72471439e-02 2.56236736e-02 1.28115416e-01 9.09681711e-03 -5.71020663e-01 -4.11206394e-01 -3.55296493e-01 3.97557497e-01 2.08672299e-03 -6.53927684e-01 1.48943198e+00 -3.76494884e-01 -9.45336446e-02 4.94385839e-01 8.61011684e-01 3.42922598e-01 -1.30644798e+00 -3.71944197e-02 -9.67726111e-02 1.68379366e-01 -4.36883241e-01 -7.26204693e-01 -9.68284309e-01 3.74619722e-01 8.84786248e-02 9.98811066e-01 1.03045714e+00 4.03566360e-01 2.98727900e-01 7.37510026e-01 8.27048957e-01 -1.02146578e+00 2.52843052e-01 5.26850104e-01 8.42802763e-01 -1.23026311e+00 -2.54239827e-01 -6.84530959e-02 -6.37717187e-01 9.03006017e-01 6.43213928e-01 -1.56360641e-01 4.52173710e-01 8.32514286e-01 1.33721784e-01 -2.73249477e-01 -1.43851268e+00 -4.02146190e-01 -6.93818092e-01 7.20369637e-01 4.32251781e-01 3.30597520e-01 -6.98151886e-01 4.12974030e-01 -8.21820915e-01 -3.63209575e-01 1.32654560e+00 1.19933224e+00 -5.43785393e-01 -1.25459707e+00 -1.33174792e-01 1.58324376e-01 -3.34203988e-01 -5.52168489e-02 -1.28133667e+00 1.06734622e+00 -1.92500830e-01 1.41375792e+00 1.26991645e-01 -2.52832085e-01 -1.05124831e-01 -3.20438594e-01 9.01663601e-01 -4.27740484e-01 -9.45870936e-01 1.44274071e-01 5.83786070e-02 -2.95176178e-01 -8.86286318e-01 -6.64528072e-01 -1.22390330e+00 -5.37623465e-01 -4.61917549e-01 5.59044182e-01 3.48787695e-01 1.00111425e+00 2.47896120e-01 2.26284385e-01 8.10054123e-01 -7.56583393e-01 -4.71224397e-01 -8.65483522e-01 -5.74810565e-01 -6.24404214e-02 6.23550832e-01 -5.55372834e-01 -1.03204215e+00 -4.96659487e-01]
[3.8875296115875244, 2.0451467037200928]
8616f380-25ff-449c-b7cb-ec3c156e1bdf
lijunyi-at-semeval-2019-task-9-an-attention
null
null
https://aclanthology.org/S19-2212
https://aclanthology.org/S19-2212.pdf
Lijunyi at SemEval-2019 Task 9: An attention-based LSTM and ensemble of different models for suggestion mining from online reviews and forums
In this paper, we describe a suggestion mining system that participated in SemEval 2019 Task 9, SubTask A - Suggestion Mining from Online Reviews and Forums. Given some suggestions from online reviews and forums that can be classified into suggestion and non-suggestion classes. In this task, we combine the attention mechanism with the LSTM model, which is the final system we submitted. The final submission achieves 14th place in Task 9, SubTask A with the accuracy of 0.6776. After the challenge, we train a series of neural network models such as convolutional neural network(CNN), TextCNN, long short-term memory(LSTM) and C-LSTM. Finally, we make an ensemble on the predictions of these models and get a better result.
['Junyi Li']
2019-06-01
null
null
null
semeval-2019-6
['suggestion-mining']
['natural-language-processing']
[-1.45868555e-01 4.69374269e-01 -2.09418640e-01 -6.72801375e-01 -3.51777226e-01 -2.11186963e-03 8.48279297e-01 4.52508852e-02 -6.14324331e-01 6.51721954e-01 3.40441823e-01 -1.01545715e+00 1.71953410e-01 -5.54933310e-01 -6.42564595e-01 -1.54572308e-01 1.16495397e-02 3.31296653e-01 1.68719366e-01 -4.12616521e-01 7.40984440e-01 -3.03443968e-01 -1.43258965e+00 9.96416926e-01 6.05489910e-01 1.22692668e+00 -5.36157796e-03 5.86437047e-01 -4.92874324e-01 5.37454903e-01 -4.70981658e-01 -4.43044901e-01 9.02739614e-02 -1.13210253e-01 -1.00496280e+00 -1.50714323e-01 4.41451967e-01 -3.04240972e-01 9.94270388e-03 8.32028210e-01 2.04977855e-01 6.70972466e-01 7.40618050e-01 -5.80303192e-01 -9.67072845e-01 1.37711859e+00 -5.56055963e-01 2.22290799e-01 1.59520850e-01 -3.57718855e-01 9.36882854e-01 -1.72796094e+00 2.56662071e-01 1.18697870e+00 5.59043050e-01 6.81510866e-01 -6.50654256e-01 -5.62252045e-01 6.59282625e-01 2.78248191e-01 -8.70114625e-01 -3.53508890e-01 4.66227561e-01 -9.72292274e-02 1.70581663e+00 1.76135078e-02 2.57698327e-01 1.10180700e+00 4.67784613e-01 8.87740493e-01 8.92975986e-01 -5.45509160e-01 3.91306840e-02 4.65390235e-01 5.57121158e-01 4.84839022e-01 -2.00370640e-01 -1.66867435e-01 -5.90672076e-01 -3.03224742e-01 1.54248983e-01 3.31956297e-01 1.24002032e-01 7.94659317e-01 -7.94131994e-01 1.01215827e+00 5.74013114e-01 3.06303084e-01 -3.81520063e-01 -1.52127966e-01 6.15604758e-01 7.39748120e-01 1.21330369e+00 5.40478528e-01 -1.00557351e+00 3.11874449e-01 -7.23121643e-01 1.86564893e-01 1.10666919e+00 6.85428381e-01 8.59193385e-01 1.00519415e-02 -2.56230235e-01 1.44101882e+00 5.66480100e-01 -2.25467682e-01 1.24807441e+00 -4.69989836e-01 5.42481482e-01 4.58376348e-01 1.93287339e-02 -7.50115275e-01 -5.45090497e-01 -4.57676679e-01 -9.93227005e-01 -1.63903266e-01 -4.24712270e-01 -6.81913376e-01 -8.82669568e-01 1.09246969e+00 -8.98799747e-02 1.56610146e-01 -1.67560667e-01 6.08395576e-01 1.36632752e+00 7.36143112e-01 6.20452203e-02 -3.12820256e-01 9.79038000e-01 -1.97198033e+00 -6.28641665e-01 -2.46165827e-01 9.93349075e-01 -8.41853440e-01 9.31678891e-01 7.35081851e-01 -8.87089491e-01 -1.03960919e+00 -1.09288871e+00 -1.24915473e-01 -8.67727816e-01 4.93395209e-01 6.04133844e-01 2.38311458e-02 -1.51847053e+00 6.69174969e-01 -3.69928718e-01 -5.49835801e-01 -8.72519054e-03 6.69584692e-01 -1.10541895e-01 3.66185457e-01 -1.18842423e+00 7.99034357e-01 2.15585053e-01 3.10142606e-01 -3.94136518e-01 -2.77862549e-01 -6.72641039e-01 1.36250302e-01 3.93746883e-01 -3.89841646e-01 1.76858687e+00 -1.27259755e+00 -1.82954395e+00 6.41771495e-01 -1.29876778e-01 -9.08288062e-01 -1.13227377e-02 -5.63092887e-01 -7.80235291e-01 -6.84981227e-01 -3.57893674e-04 9.63781297e-01 6.85526967e-01 -8.52335513e-01 -1.00846922e+00 -2.45746359e-01 4.89191711e-02 1.40847668e-01 -4.45761174e-01 3.42541695e-01 -3.25261801e-01 -4.51899260e-01 -1.59853473e-01 -8.85058105e-01 -6.59173310e-01 -8.20375502e-01 -9.59254503e-01 -1.18528223e+00 6.10740900e-01 -5.30092061e-01 1.07186615e+00 -1.94897497e+00 -6.77675903e-01 -4.59679700e-02 1.33545697e-01 4.43518877e-01 -4.78769630e-01 4.16015923e-01 1.07572593e-01 5.23305833e-01 2.58682311e-01 -1.04601645e+00 -6.12527952e-02 -1.62611499e-01 -7.52499104e-01 -1.57647170e-02 1.16179556e-01 1.04297543e+00 -5.56579828e-01 -1.07825816e-01 -1.85625367e-02 1.51197184e-02 -1.86142206e-01 5.06327271e-01 -5.52985013e-01 -1.95437167e-02 -3.88939053e-01 2.24717513e-01 4.42155957e-01 -1.97913527e-01 -1.19246736e-01 2.90040135e-01 -1.93044037e-01 1.06055415e+00 -4.15109754e-01 1.60784948e+00 -4.84969914e-01 6.04971588e-01 -1.55471310e-01 -9.14265692e-01 1.46672392e+00 2.47212186e-01 1.49181947e-01 -8.49490702e-01 5.07241525e-02 3.20019782e-01 1.85569689e-01 -3.73058915e-01 1.00480473e+00 2.45520502e-01 1.69677764e-01 1.01563108e+00 2.17329279e-01 3.79822314e-01 2.67873928e-02 2.92551398e-01 9.71826375e-01 -4.93759587e-02 1.52798757e-01 -2.30831623e-01 6.83414400e-01 -3.13933223e-01 1.44778758e-01 1.12555504e+00 1.34256110e-01 6.22607529e-01 1.39467955e-01 -9.41584408e-01 -7.57743120e-01 -4.10990655e-01 2.27660000e-01 1.58885312e+00 -4.27442372e-01 -8.23998094e-01 -2.53461719e-01 -1.25556958e+00 -5.27894162e-02 7.32427537e-01 -9.93553996e-01 -1.44068629e-01 -5.39034069e-01 -4.32171971e-01 1.97031870e-01 4.64184880e-01 3.96463215e-01 -1.63455033e+00 -6.16950616e-02 3.56886297e-01 3.76408637e-01 -8.87955844e-01 -5.03560245e-01 5.51480711e-01 -1.14970815e+00 -8.39843571e-01 -4.83257115e-01 -9.10274744e-01 4.19146955e-01 3.78659725e-01 1.24851799e+00 4.35744494e-01 4.21619236e-01 -7.49763921e-02 -6.06498659e-01 -7.42321610e-01 7.87382275e-02 4.08180058e-01 2.53594100e-01 -2.02047959e-01 8.44612479e-01 -3.85605574e-01 -5.37472248e-01 2.12051675e-01 -3.86764675e-01 6.89731259e-03 5.97112417e-01 9.70555961e-01 4.86441851e-01 -5.33004284e-01 1.09171784e+00 -1.59551585e+00 1.39156914e+00 -7.15921462e-01 6.90932758e-03 1.45194411e-01 -1.22430253e+00 -2.21253246e-01 9.50972080e-01 -2.52408564e-01 -1.17420900e+00 -2.82026857e-01 -4.10651416e-01 -5.40505350e-02 -3.56075376e-01 1.03551292e+00 4.71118897e-01 2.92497873e-01 7.66835570e-01 1.98834106e-01 -3.26182574e-01 -8.80588889e-01 5.17863572e-01 1.04121530e+00 4.38515127e-01 -1.43420491e-02 -1.94579363e-02 -1.05228750e-02 -8.16911697e-01 -4.03902322e-01 -1.32308769e+00 -5.73076546e-01 -5.66332698e-01 8.67015049e-02 2.43012801e-01 -6.43328726e-01 -3.89051020e-01 2.52614617e-01 -1.35284042e+00 -3.69280428e-01 -2.84314547e-02 4.35023755e-01 -9.25178900e-02 1.53285265e-01 -9.68089879e-01 -8.26820731e-01 -1.28022540e+00 -6.62985325e-01 5.16653240e-01 4.21541095e-01 -1.64302126e-01 -1.12779284e+00 1.60616189e-01 1.53686598e-01 8.25397193e-01 -6.59687996e-01 6.07840776e-01 -1.71902525e+00 1.38621092e-01 -1.95075452e-01 -2.62797564e-01 5.77409744e-01 -3.59825306e-02 2.75371689e-02 -1.06441748e+00 1.65891238e-02 1.39853016e-01 -6.80505335e-01 1.77680540e+00 4.51689631e-01 1.75615358e+00 -7.56362140e-01 -3.82179111e-01 2.57029086e-01 8.51746738e-01 1.07105777e-01 3.45836222e-01 4.24851894e-01 4.71769810e-01 7.87717700e-01 8.34685147e-01 2.77443558e-01 5.78645289e-01 3.65830541e-01 4.00708318e-01 3.27610038e-02 2.90846348e-01 -2.94186622e-01 7.10658967e-01 1.32561767e+00 2.20619157e-01 -4.48358804e-01 -4.91014004e-01 3.90874624e-01 -2.18770647e+00 -4.79212224e-01 -2.50376672e-01 1.80264902e+00 6.19850874e-01 4.56276447e-01 1.08261734e-01 -2.34659567e-01 5.27780831e-01 1.23710752e-01 -6.26310527e-01 -1.51702571e+00 4.34427559e-02 1.40738428e-01 1.92417830e-01 4.52765763e-01 -1.23046982e+00 1.05129421e+00 6.60551357e+00 8.09303701e-01 -1.30586982e+00 2.96335250e-01 1.28814805e+00 1.90991119e-01 -4.65558589e-01 -2.14164644e-01 -1.03209221e+00 4.04882580e-01 1.64870679e+00 -4.55244333e-02 -9.39728618e-02 9.85108197e-01 2.78709233e-01 -2.03451738e-01 -1.07980609e+00 4.54233646e-01 4.84596580e-01 -1.49446642e+00 2.37135470e-01 -1.29484326e-01 8.83378804e-01 8.46535265e-01 1.13632463e-01 1.00148606e+00 4.11115289e-01 -1.48354864e+00 7.67156109e-02 5.07350802e-01 3.60425711e-01 -5.71557105e-01 1.35291803e+00 7.09814906e-01 -6.50360942e-01 -1.08800590e-01 -9.89525259e-01 -5.60117900e-01 -2.74131075e-02 7.46741652e-01 -1.22484541e+00 4.02633816e-01 6.80327654e-01 1.33082497e+00 -5.21233201e-01 1.21007371e+00 -4.64974403e-01 9.80606258e-01 6.44370914e-03 -5.28175771e-01 5.71821809e-01 -3.33268821e-01 4.26541902e-02 1.47054851e+00 1.79625854e-01 -9.90521014e-02 4.64810103e-01 7.42283762e-01 -4.75811362e-01 4.11228627e-01 -3.28728527e-01 1.76755637e-01 1.98738918e-01 1.75360548e+00 -3.92056555e-01 -5.46582282e-01 -6.07110143e-01 5.47970951e-01 7.72425830e-01 4.75391746e-01 -2.06813365e-01 -1.71191543e-01 -9.43993479e-02 -1.89806297e-01 7.43548721e-02 2.52519488e-01 -5.56085408e-01 -9.58259702e-01 -1.95379555e-01 -6.43135607e-01 3.49563211e-01 -6.05015278e-01 -1.60779345e+00 1.09558165e+00 -4.10995632e-01 -8.59679401e-01 -4.10954744e-01 -7.61552393e-01 -1.43744087e+00 9.20270562e-01 -1.57493460e+00 -1.17160153e+00 1.77654073e-01 2.69219398e-01 1.13918197e+00 -5.96605837e-01 9.38496590e-01 1.93347245e-01 -5.50119460e-01 6.62397861e-01 1.15204886e-01 -2.43539900e-01 1.05883467e+00 -1.49272144e+00 9.49195325e-01 2.14889765e-01 3.19560558e-01 7.68635869e-01 2.55617827e-01 -5.13100684e-01 -5.73002338e-01 -1.40409517e+00 1.42757118e+00 -1.71165615e-01 6.80097401e-01 -3.05403799e-01 -9.44021940e-01 7.87427545e-01 6.64048016e-01 -2.31197327e-01 7.94596136e-01 6.88355982e-01 -1.21143103e-01 8.45898017e-02 -5.06843626e-01 3.63599092e-01 5.28837681e-01 -4.95418191e-01 -6.39001310e-01 5.82148135e-01 1.25827575e+00 -5.48521131e-02 -5.82745671e-01 3.97242725e-01 4.16894287e-01 -8.19614947e-01 5.17514527e-01 -8.29197288e-01 8.34032059e-01 2.93884575e-01 3.15909505e-01 -1.41645825e+00 -2.48239830e-01 -4.64327544e-01 -3.80455554e-01 1.03679681e+00 1.17123580e+00 -4.69641358e-01 8.55408728e-01 4.97989774e-01 -6.82759285e-01 -1.49702799e+00 -6.16876721e-01 -2.73693025e-01 3.47591221e-01 -6.29896939e-01 3.96145910e-01 7.13276029e-01 3.87773842e-01 8.52704048e-01 -6.52045310e-01 -1.01470232e+00 -1.88353524e-01 1.09109603e-01 7.81364322e-01 -1.10093570e+00 -1.16111569e-01 -5.33111989e-01 5.63541532e-01 -1.57683158e+00 4.67010826e-01 -8.04213047e-01 2.99908966e-01 -1.70151758e+00 2.17045069e-01 -2.40807742e-01 -9.86578166e-01 8.03339958e-01 -1.81484729e-01 6.18992858e-02 -2.17618048e-01 2.39980519e-01 -1.21241009e+00 9.60035264e-01 9.50889707e-01 -3.15359890e-01 -3.39722097e-01 6.61988795e-01 -9.49422240e-01 8.29734683e-01 1.03369808e+00 -4.54435915e-01 -1.64151922e-01 -4.68821794e-01 3.66506487e-01 -3.42049986e-01 -1.80190533e-01 -3.28304321e-01 6.23465359e-01 1.88034669e-01 2.85464555e-01 -1.20467043e+00 2.39195213e-01 -1.26424491e-01 -9.67241645e-01 2.51183122e-01 -1.01661241e+00 2.28934348e-01 1.18932925e-01 6.28453255e-01 -3.75693411e-01 -1.77729562e-01 -4.44993749e-02 -3.13950270e-01 -4.78245646e-01 4.72902387e-01 -7.72691548e-01 -6.24465466e-01 4.20270935e-02 1.35221094e-01 -6.76339209e-01 -5.77074707e-01 -6.23880208e-01 5.57591438e-01 -1.49363950e-01 9.04905975e-01 9.80450928e-01 -1.01876998e+00 -8.58765483e-01 -8.84963647e-02 1.25876188e-01 -8.43004286e-02 3.89775857e-02 8.63571465e-01 2.81593233e-01 9.53754425e-01 1.74254879e-01 -1.19322360e-01 -8.53337348e-01 4.03284311e-01 2.76448131e-01 -4.50231433e-01 -5.72380662e-01 1.33198249e+00 -7.94981699e-03 -1.06192279e+00 3.98724675e-01 -3.25456440e-01 -1.14180899e+00 -2.94393063e-01 7.83425629e-01 2.25414038e-01 3.24523389e-01 -1.27874941e-01 -1.53493658e-01 1.52142700e-02 -8.31630349e-01 -3.39182205e-02 1.43769634e+00 -1.68001741e-01 -4.92596656e-01 6.14587605e-01 1.02511346e+00 -2.49722451e-01 -7.51947820e-01 -4.58346456e-01 5.01477897e-01 1.06992014e-01 -2.95408946e-02 -9.91897285e-01 -8.75300884e-01 9.21960652e-01 1.64177641e-01 5.06118655e-01 5.73514402e-01 -6.23638071e-02 9.56603527e-01 1.08036911e+00 -1.23642065e-01 -1.52357864e+00 1.58971488e-01 1.23424947e+00 1.09275770e+00 -1.69171596e+00 -1.20560832e-01 9.63592604e-02 -5.09810150e-01 1.38788509e+00 1.37036896e+00 -5.31439066e-01 1.17544496e+00 -1.85825959e-01 5.20255752e-02 -3.77828121e-01 -1.67953467e+00 1.99953422e-01 7.74704337e-01 2.55958617e-01 1.05970168e+00 1.23229422e-01 -8.12456429e-01 1.49380076e+00 -2.79973298e-01 -8.53188559e-02 6.82405472e-01 2.82126784e-01 -8.16594481e-01 -1.16786861e+00 4.34868276e-01 1.14912641e+00 -6.35651767e-01 -4.89969105e-01 -9.33304191e-01 3.61438170e-02 1.07387684e-01 1.50636363e+00 6.73801126e-03 -8.99141669e-01 -1.91285178e-01 -1.33111492e-01 -5.87124109e-01 -1.31543684e+00 -1.37352502e+00 8.43506679e-02 6.30710602e-01 -4.29481417e-01 -3.19866300e-01 -1.57799721e-01 -1.09170532e+00 -9.68668163e-02 -9.28129017e-01 6.79037154e-01 8.08424294e-01 1.43366504e+00 5.88554204e-01 3.92957956e-01 6.58980966e-01 -5.95397890e-01 -7.01275289e-01 -1.89880300e+00 -5.10676682e-01 4.45058476e-03 1.04272135e-01 -9.29169059e-02 -2.36118153e-01 -3.37641239e-01]
[10.92123031616211, 7.499916076660156]
a3425567-069d-45dc-bb6f-b46abba9c0cd
document-level-relation-extraction-with-5
2212.10171
null
https://arxiv.org/abs/2212.10171v1
https://arxiv.org/pdf/2212.10171v1.pdf
Document-level Relation Extraction with Relation Correlations
Document-level relation extraction faces two overlooked challenges: long-tail problem and multi-label problem. Previous work focuses mainly on obtaining better contextual representations for entity pairs, hardly address the above challenges. In this paper, we analyze the co-occurrence correlation of relations, and introduce it into DocRE task for the first time. We argue that the correlations can not only transfer knowledge between data-rich relations and data-scarce ones to assist in the training of tailed relations, but also reflect semantic distance guiding the classifier to identify semantically close relations for multi-label entity pairs. Specifically, we use relation embedding as a medium, and propose two co-occurrence prediction sub-tasks from both coarse- and fine-grained perspectives to capture relation correlations. Finally, the learned correlation-aware embeddings are used to guide the extraction of relational facts. Substantial experiments on two popular DocRE datasets are conducted, and our method achieves superior results compared to baselines. Insightful analysis also demonstrates the potential of relation correlations to address the above challenges.
['Xiang Wan', 'Lu Liu', 'Benyou Wang', 'Tao Peng', 'Ridong Han']
2022-12-20
null
null
null
null
['document-level-relation-extraction']
['natural-language-processing']
[-0.24839471 0.22286598 -0.78734386 -0.51585287 -0.6375822 -0.5728418 0.67292666 0.6109512 -0.26286173 0.7651231 0.8293629 -0.16457714 -0.5450312 -0.9014157 -0.24467212 -0.41214782 -0.2679314 0.69430006 0.10359047 -0.49688938 -0.02161562 0.5159665 -1.1268258 0.3961969 0.80218124 1.0388381 -0.17931321 0.14227012 -0.18686742 1.0208379 -0.20629641 -0.8800027 -0.13999496 -0.03843091 -1.2822506 -0.19638106 0.07022149 0.11301325 -0.49412733 0.88005614 0.329997 0.18994226 0.9892153 -1.0987536 -1.1497786 0.9977828 -0.5324735 0.42166382 0.3567135 -0.7503087 2.0415635 -1.1172316 0.80531514 1.2102069 0.66353697 0.18680087 -0.9284796 -0.65442586 0.20468882 0.55862105 -1.5723727 -0.22305128 0.7612396 -0.44789696 1.2861931 0.11073159 0.42128175 0.9465141 -0.10134801 0.52962494 0.81708914 -0.4921829 -0.42091244 0.14539386 0.5192455 0.5385183 0.5063039 -0.06451892 -0.4761634 -0.06278231 0.48037946 0.01497365 -0.32007128 -0.10864385 -1.1557013 0.6919099 0.8386921 0.69358855 -0.30872777 -0.11378677 0.4261561 0.02408924 0.8275493 0.8604686 -0.8431537 0.04641418 -0.27043986 0.09855991 0.6840638 1.2244893 0.8772236 -0.8425513 -0.3229583 1.1376678 0.23027031 -0.20102297 0.30193818 -0.4226609 0.82572365 0.8976832 -0.15810291 -1.4369833 -0.5185474 -0.582082 -0.74933094 -0.7812484 -0.10965781 -0.04632744 -0.29042268 1.4576796 0.475876 0.35358348 0.26005337 0.6120288 1.1748351 0.3376361 0.17929707 -0.19074693 1.6525813 -1.2682456 -1.0692304 -0.21482493 1.1555301 -0.6708363 0.7794554 -0.30658644 -0.6850379 -0.33220717 -0.9987586 -0.52816814 -0.82182246 0.3283888 1.2234563 0.09675932 -0.4407937 0.5860322 -0.311063 -0.37253094 0.5660967 0.11687656 -0.5180945 -0.20978339 -1.7475548 1.2845128 0.59387374 0.0905485 -0.04082531 -0.6112405 -0.98952144 0.32284924 0.69332576 -0.45138338 0.530476 -0.08325274 -0.82792383 0.99736226 -0.26049227 -0.17738584 -0.26109844 -0.57271063 -0.82507426 -0.00781344 0.30984387 0.26476857 -0.15448259 -1.3685703 -0.7408952 -0.2455225 0.18969363 0.39052054 -0.75133836 0.13919784 -0.45628804 -0.5845385 0.29254195 -0.60924983 0.06432319 -0.55224425 -0.5661233 -0.82484686 0.46927974 -0.27010635 1.6260458 -1.9080447 0.08941626 0.01664806 0.43029645 0.15173343 -0.17463538 0.7630762 -0.3802061 0.3632866 0.0727317 -0.27329248 -0.14947301 0.3301043 -0.44561964 0.04783738 0.5927505 1.3506175 -1.1838902 -0.7200813 -0.31710932 0.2879172 -0.3116411 0.41707534 0.06274246 0.14021142 -0.5790506 0.6109687 0.31180418 -0.44047973 0.55692047 -0.77994496 0.35953707 0.8497625 -0.6851384 1.3845234 -0.73047537 0.37822297 -0.6050391 -1.0494386 1.1007367 0.37202013 0.5876052 -0.46352556 0.1290258 0.13777393 0.07129831 -0.7963819 0.797753 -0.07575254 -0.01123083 0.2670284 0.21441627 0.10771664 0.2222134 0.4812868 1.0283872 0.22196467 0.6830064 -0.21057415 0.4338362 -0.15080148 0.67193854 0.00872921 0.04560437 0.19090384 0.69973844 -0.2762534 -0.533725 -0.8950954 -0.30316818 1.1278104 0.5438599 -0.9794486 0.12348784 -1.3335246 0.07668925 0.5848309 -0.8398486 -0.19577216 -0.60737205 -0.87953156 0.3453762 0.80857015 0.2674546 -0.7520666 0.35992357 0.27560738 -0.44225752 -1.6663228 -0.23000775 0.34916738 -0.6492153 -1.2687284 -0.02786324 -1.0584537 0.5125678 0.34149706 1.5918863 0.2607332 0.06925526 -0.094752 -0.75430083 0.04439618 0.30334923 0.4500755 -0.13834667 -0.22859877 1.0242137 -0.7833087 -0.3199367 0.29405499 -0.42742983 -0.23028198 0.52932477 1.0840517 0.5531321 0.35119292 0.87826985 -1.4961281 0.8608614 -0.7872746 0.01366283 0.6793308 -0.8343522 0.05284237 0.4768007 -0.20254153 -1.0931013 -0.48668563 0.01542938 0.09146556 0.09809785 0.81532085 -0.40367332 0.39205906 0.51480794 -0.38229465 -0.8667177 -0.41610783 0.8877135 0.7098583 0.37853798 -1.0682915 0.59179693 0.289164 0.10982919 -0.1544861 -1.7192239 -0.8867713 -0.90624535 0.36346546 0.8384112 -1.08621 -0.32174015 -0.33909792 -1.2291896 0.232694 -0.32312936 0.4727792 -0.02130212 0.04230414 -0.78903717 -0.39235625 -0.04286997 -0.67489105 1.0387424 0.09048453 -0.25138652 -1.3532227 0.3423959 0.5386236 -0.05372382 0.06824435 1.2262166 -1.0549207 -0.5335468 -0.24727239 -0.8278106 0.03358166 0.57577586 -0.16217068 -0.8547679 0.25073498 -0.50049055 -0.5589467 0.9820193 -0.2015454 0.96173465 -0.12608346 -0.7878186 0.42129847 1.1938924 -0.08844243 0.54526114 0.17760871 1.2142494 0.97284067 1.1725205 0.10985978 1.1587104 0.7628695 0.05353094 -0.01153714 -0.225357 -0.41306818 -0.24425894 1.3064916 -0.28000003 -0.30608627 -0.8701103 0.81176794 -1.9315054 -0.8013469 -0.33340138 1.3807114 1.216085 -0.00624743 -0.1456144 0.01636696 0.6459993 0.32098192 0.18963958 -0.14857326 -0.14536402 0.2555148 0.1209143 0.44188696 -1.3668447 1.4505991 5.0153894 0.9045996 -0.49171603 0.26585147 0.43112272 0.46089047 -0.54676545 0.30077884 -1.0178311 -0.05251388 0.5464928 -0.10232042 -0.06921533 0.6952728 -0.4804454 0.20649473 -1.4511789 0.91007644 0.09819693 -1.2855756 -0.17630675 0.10141622 0.95098597 -0.30877212 -0.15279958 0.49910244 0.607371 -1.1520137 0.07678434 0.31038648 0.7191236 -0.8107195 1.1593653 -0.18628612 -1.752056 0.11180978 -0.5113535 -0.10859438 0.1357998 1.017412 -0.7651892 1.1138502 0.37057036 1.3531538 -0.5963439 0.5011717 -0.75282407 0.3892217 0.14748532 -0.07531317 0.0929298 -0.15997656 -0.01661003 1.4058007 0.07048154 0.45013365 0.21606714 0.63276947 -0.4693851 0.36112228 -0.51632744 -0.2098658 0.9002254 1.5256119 -0.51340425 -0.26535466 -0.55473745 0.7742942 1.189321 0.31269997 -0.53905624 -0.47756356 0.82375246 -0.3295626 0.18096265 -0.26820913 -0.48930424 -1.4046252 -0.00524622 -0.34894225 0.6381938 -0.34163648 -1.8026687 0.770942 -0.08660443 -0.9160224 -0.01834544 -0.4832476 -0.3853851 0.73265606 -1.9314387 -1.5266759 -0.10738239 0.17361115 0.11741979 -0.11139049 1.0870026 0.59803426 -0.7110741 0.6957421 -0.1625499 0.52906543 0.82115376 -1.3755696 0.1808359 0.581193 0.65528846 0.81437725 0.17143649 -0.71228004 -0.6810862 -1.1880549 1.7160784 -0.7882251 1.0091048 -0.38664702 -0.9268143 0.9050868 0.09418642 0.45711523 1.1108162 1.2475026 -0.9433976 -0.12055498 -0.7533473 0.5218995 1.4029775 -0.8446141 -0.9510705 0.33197325 0.92912364 -0.15261921 -1.3448498 0.61903703 0.27819303 -0.7144133 1.1024334 -0.96391857 0.9138355 -0.00864229 -0.39720944 -1.4410665 -0.5111612 -0.04106813 -0.5076784 1.9376366 0.7279164 -0.5590191 0.45538837 0.1932307 -0.02253794 -1.3547311 -0.46476224 -0.7547575 0.26348108 -0.20094179 0.9071259 1.5457158 0.4182503 0.9231396 -0.18293142 0.43764496 0.14335582 0.47311354 0.41190946 -1.212639 -0.23307838 -0.27144927 -0.45292372 -1.1852168 0.60347944 -1.1763885 -0.1292688 -1.6423454 0.43646476 -1.0997615 -0.6510681 0.39277664 -0.8334514 0.07082502 -0.13360152 0.15285727 -0.70773125 0.799616 1.258234 -0.00528895 0.16150829 -0.32528108 -1.0319004 0.5476046 0.47113356 -0.64855343 -0.63116044 -0.35152033 0.6185454 -0.19898885 0.03568099 -0.5301346 0.16835025 -0.28966644 0.08666824 -0.40233004 0.30193117 -1.0263108 -0.36497992 -0.3819011 -0.69955516 -0.09921185 -0.45963383 0.63736975 -0.5230367 -0.19332263 0.23817627 0.18560982 -0.61149377 0.47664246 0.4711787 0.6139863 0.8714435 0.4699566 -0.6894047 -0.14573632 -0.74057376 0.4545625 -0.04582951 0.6382637 0.4084444 -1.7550213 -0.64960253 -0.28108543 0.62675536 0.12223025 -0.06441469 0.65836686 -0.03209096 0.3916232 0.3944584 -0.07819375 -1.1954485 0.6648639 0.03617742 -0.89287686 -0.4182176 1.2463188 0.1699806 -0.43999928 -0.04561495 -0.24973835 -0.6850371 0.5121294 0.3325119 0.07505985 0.07302292 -0.7719689 -0.55329114 0.7509826 -0.38271257 0.24511877 1.5120689 -0.34212083 -0.48759633 0.49363056 1.4705966 0.2598662 -0.5750186 -0.7907786 0.705686 -0.6036541 -0.03941057 -0.7771225 -0.9582972 0.9905828 -0.17568177 0.32808092 0.83489996 0.55322653 0.9860948 0.3392043 0.22423683 -0.8531322 0.22989574 0.6831528 0.69508636 -1.2017884 0.347346 -1.1618003 -0.90006596 1.0039248 0.8821332 0.00918607 0.8426056 0.1308435 0.04516063 -0.62495637 -0.8741716 -0.8284499 0.7272163 0.73689914 1.0199239 0.2500217 -0.53986937 0.8572139 -0.24095708 -0.4554915 0.03647092 0.5349878 -0.21647532 -1.4643915 0.38722882 0.57029384 -0.37380308 -0.47477943 -0.49057496 0.53618777 0.5358897 1.0383621 0.011512 -0.60797775 0.19457552 0.03815664 0.34152734 -1.0047362 -0.4944083 -0.33728296 0.7432427 -0.27825648 -0.6287602 -0.34872675 -1.1546277 -0.0138245 -0.76080596 0.28095242 0.08298627 1.1690133 0.4542854 0.8520122 0.6850872 -0.12541538 -0.16369094 -1.0279613 -0.6001762 0.6542109 -0.00986863 -1.0608759 -0.10859852 -0.40073073]
[9.165081977844238, 8.574543952941895]
26e26906-2bb5-41a0-9e71-1a3f53b033d8
encoder-decoder-network-with-guided
2212.05936
null
https://arxiv.org/abs/2212.05936v2
https://arxiv.org/pdf/2212.05936v2.pdf
Encoder-Decoder Network with Guided Transmission Map: Architecture
An insight into the architecture of the Encoder-Decoder Network with Guided Transmission Map (EDN-GTM), a novel and effective single image dehazing scheme, is presented in this paper. The EDN-GTM takes a conventional RGB hazy image in conjunction with the corresponding transmission map estimated by the dark channel prior (DCP) approach as inputs of the network. The EDN-GTM adopts an enhanced structure of U-Net developed for dehazing tasks and the resulting EDN-GDM has shown state-of-the-art performances on benchmark dehazing datasets in terms of PSNR and SSIM metrics. In order to give an in-depth understanding of the well-designed architecture which largely contributes to the success of the EDN-GTM, extensive experiments and analysis from selecting the core structure of the scheme to investigating advanced network designs are presented in this paper.
['Dong-Chul Park', 'Le-Anh Tran']
2022-12-07
null
null
null
null
['image-dehazing']
['computer-vision']
[ 6.11872435e-01 4.80573744e-01 3.48299265e-01 -3.38920504e-02 7.79620954e-04 1.83141798e-01 5.17342508e-01 -6.66569531e-01 -3.14154506e-01 5.80143452e-01 3.01580995e-01 -3.45659792e-01 -1.91826671e-01 -7.98555374e-01 -5.76612532e-01 -1.12339497e+00 -3.14331353e-01 -3.70033771e-01 5.43975890e-01 -4.65889066e-01 2.50079811e-01 1.90023273e-01 -1.45248234e+00 1.42848015e-01 5.73744774e-01 1.38858402e+00 4.29745883e-01 9.45415318e-01 5.83926797e-01 1.22335815e+00 -6.33227289e-01 -6.82069957e-01 5.88816524e-01 -5.24761260e-01 -5.12316644e-01 3.52982283e-02 4.71558392e-01 -1.10615957e+00 -1.02550960e+00 9.57163990e-01 7.04801500e-01 1.20979927e-01 4.44389880e-01 -1.11214674e+00 -6.42212272e-01 3.00478637e-01 -1.51975378e-01 2.09571853e-01 -1.62536606e-01 2.17635110e-01 6.24855638e-01 -6.88794672e-01 4.80769694e-01 1.01381338e+00 5.41075826e-01 4.88227457e-01 -1.03527570e+00 -6.87844753e-01 -3.79527211e-01 6.12978399e-01 -1.48663116e+00 -3.82306933e-01 5.63744009e-01 6.74333647e-02 1.04209888e+00 -3.13342549e-02 5.93584478e-01 7.26306856e-01 5.99965155e-01 5.06020069e-01 9.16696787e-01 -5.47509313e-01 3.70749265e-01 7.75298998e-02 -5.33981383e-01 6.92736685e-01 3.68742704e-01 5.80715775e-01 -8.05729270e-01 5.96853018e-01 9.59866703e-01 -1.32544667e-01 -4.43947136e-01 -1.02595828e-01 -8.41639876e-01 5.54818213e-01 7.36922979e-01 2.21321210e-01 -5.13887048e-01 5.70884109e-01 3.73687036e-02 5.91703415e-01 4.74109620e-01 3.32595378e-01 1.50048777e-01 -3.37611139e-02 -1.37457919e+00 -1.77768216e-01 6.01703286e-01 1.13917589e+00 8.50964904e-01 4.86819655e-01 -1.54591471e-01 4.90629524e-01 3.61231089e-01 2.65961230e-01 5.59342839e-02 -1.50930691e+00 1.31742701e-01 1.23822354e-01 -2.39850000e-01 -9.01828706e-01 1.08095892e-01 -3.06060672e-01 -1.13867974e+00 8.34101975e-01 -2.03343406e-01 -8.41981620e-02 -1.14272738e+00 1.23810565e+00 -2.46228054e-01 2.41569266e-01 2.83330202e-01 8.92239034e-01 7.47242808e-01 1.00653756e+00 -3.57797533e-01 1.72462478e-01 9.83999014e-01 -1.16809249e+00 -8.03298473e-01 6.52282834e-02 2.91384369e-01 -5.98772228e-01 3.81754577e-01 6.52001441e-01 -1.31409681e+00 -5.18650949e-01 -1.53296566e+00 -3.08932602e-01 -3.83878291e-01 2.70055067e-02 2.18099076e-02 7.89127588e-01 -1.71320856e+00 7.26941645e-01 -5.56696296e-01 -3.97177666e-01 3.31548184e-01 5.90741813e-01 -3.03221315e-01 -5.99614680e-01 -1.18958974e+00 9.99390960e-01 7.02053428e-01 3.91980827e-01 -1.50634265e+00 -4.75812078e-01 -6.23348892e-01 2.28299022e-01 2.03927711e-01 -6.95635259e-01 1.01519489e+00 -7.40444839e-01 -1.75630724e+00 5.56932390e-01 2.55528063e-01 -8.29054296e-01 4.14531142e-01 -3.06905620e-02 -3.78006935e-01 8.35197449e-01 -5.92266023e-01 1.09585309e+00 1.09673738e+00 -1.36555779e+00 -6.04407668e-01 5.44748530e-02 1.47000074e-01 1.14771925e-01 -1.83633596e-01 -5.24847209e-02 -4.31709856e-01 -8.26865494e-01 -2.03732774e-01 -4.87264216e-01 -1.89663153e-02 3.90372485e-01 -4.59244698e-01 5.67217469e-01 1.31213295e+00 -9.12082851e-01 1.37934554e+00 -2.30451846e+00 9.14582163e-02 2.13965088e-01 6.51701212e-01 6.83281124e-01 -8.97872671e-02 7.92828739e-01 -4.32621688e-02 -7.54811317e-02 -4.22000468e-01 -5.13662517e-01 -3.25446799e-02 4.27168548e-01 -2.03210309e-01 5.76069117e-01 4.34766449e-02 6.27894163e-01 -5.12142956e-01 -2.40817398e-01 5.63245952e-01 9.85604644e-01 -4.33546811e-01 5.96344173e-01 3.47794965e-02 7.00215548e-02 2.09212512e-01 5.69094360e-01 9.10661459e-01 1.24093238e-02 -2.74207890e-01 -3.14273059e-01 -4.60074961e-01 1.03402294e-01 -7.23673284e-01 1.45180774e+00 -4.03149396e-01 1.29763186e+00 4.86011833e-01 -7.02475667e-01 7.34330058e-01 5.56814432e-01 1.66522756e-01 -9.82407868e-01 3.43372524e-01 3.56977701e-01 -1.69175476e-01 -5.00683010e-01 9.44066405e-01 -8.57173949e-02 6.02361441e-01 2.07648695e-01 4.14992630e-01 5.29201552e-02 6.01802245e-02 3.06107342e-01 1.09292066e+00 -1.09401114e-01 9.41635296e-02 -3.81202191e-01 4.80495632e-01 -3.81577462e-01 1.56728581e-01 7.26634800e-01 -2.07181990e-01 7.23630667e-01 3.21259648e-01 -3.52186024e-01 -1.53620100e+00 -9.90000367e-01 2.45107692e-02 4.41093743e-01 4.10389394e-01 -4.25177574e-01 -9.19807851e-01 -3.57516445e-02 -6.01546884e-01 8.89627874e-01 -4.56540734e-01 -3.69068474e-01 -2.75153935e-01 -6.44103825e-01 7.08068848e-01 1.70077709e-03 1.49517262e+00 -6.78603351e-01 -7.12053895e-01 2.62755722e-01 -1.08691588e-01 -1.31890941e+00 -1.79782882e-01 3.46115679e-01 -6.68706477e-01 -8.59756291e-01 -9.77877557e-01 -7.29188144e-01 4.99287724e-01 5.04684925e-01 8.04243147e-01 2.98746139e-01 -1.43220931e-01 2.25569680e-01 -5.53245485e-01 -3.45079929e-01 -5.52286148e-01 -1.66808322e-01 -4.45130974e-01 9.85516906e-02 1.40657827e-01 -9.87772405e-01 -1.16888463e+00 4.72053409e-01 -1.42348516e+00 2.39203840e-01 8.48807156e-01 5.95917523e-01 2.37850025e-02 6.89182043e-01 -3.60881425e-02 -3.66221219e-01 1.67630017e-01 -4.40663755e-01 -7.40108252e-01 -7.58799538e-02 -1.03034902e+00 -1.71169743e-01 3.18529993e-01 1.06171906e-01 -1.04680717e+00 -5.21865010e-01 -4.27322060e-01 -4.28244472e-01 9.34232101e-02 5.64290583e-02 -1.29867285e-01 -6.70714915e-01 3.56040716e-01 3.39351863e-01 2.67739862e-01 -2.32923195e-01 2.71897167e-01 8.36069584e-01 9.07264292e-01 -3.37463841e-02 8.96385670e-01 7.83658564e-01 2.65176564e-01 -1.09939218e+00 -2.87705839e-01 -3.54590207e-01 -4.06468004e-01 -4.25726056e-01 1.20231795e+00 -1.17922664e+00 -5.21355450e-01 1.05727935e+00 -1.14199269e+00 -6.78565919e-01 -1.37987092e-01 5.68983495e-01 -4.79379326e-01 3.02550077e-01 -7.66582966e-01 -7.67215490e-01 -3.92335981e-01 -1.17683458e+00 9.17997420e-01 1.93847135e-01 5.24640381e-01 -1.17947340e+00 -2.57179648e-01 2.30576351e-01 1.05062056e+00 1.72707096e-01 8.70414555e-01 -8.25418252e-03 -1.43348157e+00 2.63708204e-01 -6.42516911e-01 1.08957505e+00 -2.08858863e-01 -8.51188526e-02 -1.17279768e+00 -4.22461063e-01 1.22659184e-01 1.15705572e-01 1.13097692e+00 4.29576576e-01 9.71254110e-01 -2.61972994e-01 1.79560676e-01 1.20257270e+00 2.09669733e+00 1.96137920e-01 1.61895216e+00 6.53615832e-01 4.62427527e-01 3.35206687e-01 1.08832814e-01 4.70501602e-01 2.30211958e-01 4.63646144e-01 1.24552441e+00 -3.77583474e-01 -6.75914347e-01 2.96825897e-02 5.02650082e-01 7.55435050e-01 -2.45454058e-01 -1.00545979e+00 -3.46924990e-01 3.85511637e-01 -1.32657814e+00 -7.84346700e-01 -1.86060909e-02 1.86813259e+00 2.53860235e-01 -1.29398340e-02 -3.14124972e-01 3.51884663e-01 6.28050447e-01 4.31393504e-01 -5.72039448e-02 -4.94174510e-01 -3.02431315e-01 2.62478054e-01 1.13320422e+00 4.75464940e-01 -6.25654697e-01 6.78519130e-01 6.87607622e+00 9.13338184e-01 -8.96589518e-01 3.15663628e-02 3.86946887e-01 4.24546488e-02 -3.65194790e-02 5.42117190e-03 -6.90086722e-01 5.76991379e-01 1.33251071e+00 1.72789350e-01 8.20788860e-01 2.77765036e-01 3.89404386e-01 -6.03570580e-01 -7.60942698e-01 1.05500233e+00 2.38257051e-01 -1.49140465e+00 1.03563368e-01 4.02168512e-01 6.73759878e-01 1.24949642e-01 2.64010876e-01 -9.61977988e-02 2.59109437e-01 -7.38464177e-01 8.33727777e-01 2.51724750e-01 1.09309995e+00 -6.96372569e-01 1.00239515e+00 -7.85792843e-02 -8.39054108e-01 -1.97218776e-01 -5.78123271e-01 -6.38068840e-02 4.02721316e-01 7.51813471e-01 -5.31078458e-01 7.43849576e-01 1.04688561e+00 7.37137973e-01 -3.89655203e-01 1.13720524e+00 -3.31985652e-01 9.10377681e-01 -2.68651634e-01 5.36612332e-01 5.78260422e-01 -1.56242222e-01 4.71191227e-01 1.17212796e+00 6.62074745e-01 -8.61094892e-03 -6.85996234e-01 9.40981686e-01 -1.93311408e-01 -5.50536633e-01 -5.27661264e-01 1.66763633e-01 1.39094725e-01 9.57847774e-01 -3.41910392e-01 -2.48123288e-01 -3.42506826e-01 1.05178225e+00 -3.16615969e-01 5.87042034e-01 -7.09381163e-01 -6.86115086e-01 7.28145778e-01 1.20676495e-01 6.76536977e-01 -1.98475555e-01 1.31181717e-01 -7.72714794e-01 -2.71166354e-01 -5.89446783e-01 -1.33239962e-02 -1.35216796e+00 -8.26522231e-01 6.21815324e-01 1.13767415e-01 -1.14192247e+00 1.85253516e-01 -7.91247010e-01 -5.66779077e-01 9.73257005e-01 -2.29127240e+00 -8.73845816e-01 -8.93248439e-01 7.15782166e-01 1.34921238e-01 -2.27967098e-01 2.62795061e-01 7.01266229e-01 -5.31038642e-01 4.89120662e-01 5.47474980e-01 -1.61531325e-02 6.11212552e-01 -1.00940955e+00 3.30201119e-01 1.32743371e+00 -4.88987505e-01 1.73651695e-01 8.97488773e-01 -3.62104237e-01 -1.09705853e+00 -1.27703249e+00 4.27798390e-01 1.86526671e-01 3.79263103e-01 -2.04754636e-01 -7.44813323e-01 6.78437054e-01 1.08388615e+00 -2.45418131e-01 3.44060242e-01 -1.12222314e+00 -2.00923607e-01 -2.90235072e-01 -1.20947993e+00 4.27682012e-01 6.99957967e-01 -5.25640726e-01 -1.46255955e-01 5.56879193e-02 8.31545293e-01 -3.50854963e-01 -7.84422576e-01 5.44060096e-02 3.84429753e-01 -1.64112926e+00 7.71315396e-01 3.68536979e-01 6.98608994e-01 -4.53388214e-01 -5.55275321e-01 -1.35212576e+00 -2.64447838e-01 -1.25338328e+00 -1.23286478e-01 8.45334530e-01 -6.02962337e-02 -6.48228288e-01 8.52555454e-01 2.02398509e-01 -5.56619823e-01 -6.31597757e-01 -8.93142521e-01 -8.74631822e-01 -4.13271904e-01 -2.46887162e-01 5.01899660e-01 3.29804689e-01 -6.91440940e-01 -2.03690201e-01 -9.37055528e-01 4.30639595e-01 9.81095672e-01 -8.47904682e-01 5.01580834e-01 -6.88560247e-01 -1.20664254e-01 -1.51575848e-01 -8.81816804e-01 -1.35067463e+00 -4.47810471e-01 -4.42119420e-01 1.38999015e-01 -1.61474228e+00 -2.65234023e-01 9.66260657e-02 -1.63243145e-01 4.87231985e-02 3.28216106e-01 6.76650107e-01 2.92682201e-01 2.06748977e-01 -3.35201174e-01 6.67540729e-01 1.17630601e+00 -7.72424191e-02 1.50959238e-01 -4.02865529e-01 -4.47082609e-01 2.37636074e-01 6.90316737e-01 -4.21535492e-01 -6.72229648e-01 -6.52201176e-01 1.65221244e-01 -1.24976821e-01 5.91651142e-01 -1.44490778e+00 4.20657873e-01 5.08377016e-01 1.11281686e-01 -5.07567346e-01 6.45615935e-01 -1.14547360e+00 3.02234530e-01 5.43756306e-01 -1.14760399e-01 7.79891610e-02 -1.85540214e-01 6.14488423e-01 -6.64282322e-01 -2.37119690e-01 1.05236661e+00 -1.06503330e-01 -1.18127823e+00 1.94733158e-01 -5.26743710e-01 -3.99100810e-01 9.80447292e-01 -9.22602832e-01 -7.62858987e-01 -7.47092843e-01 -4.02845472e-01 1.14871394e-02 6.43612027e-01 -1.47791922e-01 9.27309930e-01 -9.92062390e-01 -6.00413918e-01 4.19724762e-01 -9.41821709e-02 8.19706395e-02 3.04235280e-01 8.66134286e-01 -1.34990823e+00 3.74447942e-01 -4.85403687e-01 -3.25905770e-01 -1.05146718e+00 5.41496634e-01 6.46443546e-01 -1.72477849e-02 -9.08047557e-01 8.19065571e-01 2.38864169e-01 2.69079328e-01 3.68228137e-01 -1.16949297e-01 1.82560772e-01 -5.02462029e-01 6.16022408e-01 7.25164592e-01 1.87212199e-01 -4.62098658e-01 2.70873457e-01 1.38082042e-01 5.98343648e-02 -5.70491403e-02 1.49825978e+00 -7.37929940e-01 -4.35314745e-01 -3.11058372e-01 1.36522806e+00 -5.79793930e-01 -1.69229925e+00 -2.00032011e-01 -4.87648100e-01 -6.52408242e-01 6.74307168e-01 -6.84619308e-01 -1.58868778e+00 1.10056591e+00 7.26725757e-01 6.21443577e-02 1.68261123e+00 -3.83691818e-01 1.11371839e+00 2.79848337e-01 2.76176155e-01 -9.63605225e-01 2.40207508e-01 2.54208982e-01 4.47108150e-01 -6.85918868e-01 5.26709817e-02 -4.51836079e-01 -2.07742155e-01 1.25147641e+00 2.92470366e-01 -1.26939297e-01 6.59729362e-01 2.56070763e-01 -5.04713207e-02 -2.99251974e-01 -7.16732681e-01 1.93536822e-02 -2.16207236e-01 7.88406610e-01 -7.69011527e-02 -5.39219916e-01 3.14324290e-01 -5.85179865e-01 -5.15128858e-02 6.49200603e-02 1.04922390e+00 8.84160817e-01 -6.14235997e-01 -7.42319882e-01 -2.47027814e-01 1.34516999e-01 -3.81645083e-01 -3.20136786e-01 1.16631566e-02 9.74314332e-01 2.23808959e-01 9.66011286e-01 -1.40756266e-02 -6.82849944e-01 1.32326931e-01 -3.87507260e-01 4.81299847e-01 2.59648580e-02 -5.17525017e-01 -9.96754691e-02 5.56990393e-02 -7.17065871e-01 -7.21372664e-01 -3.42549942e-02 -7.03787267e-01 -9.93641257e-01 -1.18366979e-01 -1.52509913e-01 8.47875834e-01 6.69830203e-01 3.87732178e-01 7.38628805e-01 5.83543122e-01 -9.18412924e-01 -5.48842922e-02 -8.56306076e-01 -1.11350262e+00 -1.06991790e-01 8.01412165e-01 -3.17307979e-01 -5.63026249e-01 1.66166872e-01]
[10.936141014099121, -3.0776195526123047]
c0741372-224b-4d5f-9a87-bb7fca68ea06
a-mcts-search-with-theoretical-guarantee
null
null
https://openreview.net/forum?id=SJloA0EYDr
https://openreview.net/pdf?id=SJloA0EYDr
A⋆MCTS: SEARCH WITH THEORETICAL GUARANTEE USING POLICY AND VALUE FUNCTIONS
Combined with policy and value neural networks, Monte Carlos Tree Search (MCTS) is a critical component of the recent success of AI agents in learning to play board games like Chess and Go (Silver et al., 2017). However, the theoretical foundations of MCTS with policy and value networks remains open. Inspired by MCTS, we propose A⋆MCTS, a novel search algorithm that uses both the policy and value predictors to guide search and enjoys theoretical guarantees. Specifically, assuming that value and policy networks give reasonably accurate signals of the values of each state and action, the sample complexity (number of calls to the value network) to estimate the value of the current state, as well as the optimal one-step action to take from the current state, can be bounded. We apply our theoretical framework to different models for the noise distribution of the policy and value network as well as the distribution of rewards, and show that for these general models, the sample complexity is polynomial in D, where D is the depth of the search tree. Empirically, our method outperforms MCTS in these models.
['Lexing Ying', 'Yuandong Tian', 'Xian Wu']
2019-09-25
null
null
null
null
['board-games']
['playing-games']
[-1.70507491e-01 1.20715171e-01 -6.08107269e-01 3.95253971e-02 -5.93666375e-01 -8.52407753e-01 5.15990257e-01 1.53667450e-01 -7.97067940e-01 1.00265896e+00 -9.42566991e-02 -5.02713740e-01 -3.27716529e-01 -9.84624267e-01 -7.37201452e-01 -8.63296330e-01 -3.22256148e-01 7.49525547e-01 4.59876418e-01 -1.01129122e-01 3.33592355e-01 2.94952482e-01 -1.14644790e+00 -2.98849463e-01 5.83631575e-01 1.30573559e+00 5.55781573e-02 1.03629708e+00 2.67960399e-01 1.27793944e+00 -5.78493834e-01 -2.05623001e-01 2.90695161e-01 -5.12220740e-01 -7.39293575e-01 -1.25904903e-01 -3.00741762e-01 -8.06757092e-01 -6.06221437e-01 1.28187966e+00 4.15066153e-01 4.56381410e-01 3.84845436e-01 -1.17795193e+00 -6.35031424e-03 1.07547128e+00 -3.65026921e-01 3.26563150e-01 -1.57153025e-01 5.85155785e-01 1.16270578e+00 2.25888923e-01 5.35668135e-01 1.12839985e+00 2.15380609e-01 7.39086211e-01 -1.11877406e+00 -4.44855958e-01 3.72058570e-01 2.75629014e-01 -6.99715197e-01 -2.39104807e-01 3.53860885e-01 -1.63271576e-01 6.98623538e-01 -1.07342117e-01 1.21092796e+00 8.77115905e-01 9.73315984e-02 1.11972463e+00 1.13412595e+00 -3.80899847e-01 9.74656165e-01 -4.03519630e-01 -3.77156019e-01 5.32208502e-01 7.38039166e-02 6.19104147e-01 -4.26623404e-01 -2.54362345e-01 9.75607574e-01 -1.21114768e-01 3.97578701e-02 -4.59458232e-01 -8.93243790e-01 9.49528992e-01 3.72058809e-01 -8.46698123e-04 -6.60995543e-01 1.07172430e+00 3.20990920e-01 4.61226404e-01 1.22888729e-01 5.60678542e-01 -4.04789537e-01 -7.09282935e-01 -8.73623371e-01 6.02996647e-01 8.57284069e-01 4.14450467e-01 5.19723415e-01 2.28137672e-01 -3.27539206e-01 1.91431373e-01 3.76265906e-02 6.61527872e-01 2.18165815e-01 -1.75440359e+00 5.01820743e-01 1.25889480e-01 7.00227976e-01 -3.10335577e-01 -2.05220550e-01 -5.22962093e-01 -3.97008538e-01 3.71648252e-01 8.42787206e-01 -7.66383410e-01 -7.22886145e-01 2.00186181e+00 4.21939999e-01 3.00846308e-01 9.57427695e-02 6.95993721e-01 -1.14690155e-01 5.73172927e-01 -4.44494307e-01 -2.11013183e-01 8.42697680e-01 -8.25157940e-01 -3.14458460e-01 -5.66121876e-01 7.95071304e-01 4.70322929e-02 6.11954093e-01 2.67467856e-01 -1.57791936e+00 2.14618564e-01 -7.81093895e-01 4.80642676e-01 2.33685598e-01 -3.08887273e-01 6.39583111e-01 3.67000431e-01 -1.04304469e+00 9.08460021e-01 -1.39735341e+00 1.14360742e-01 6.72292531e-01 4.21643943e-01 3.77960950e-01 1.02270041e-02 -1.01934099e+00 9.56304252e-01 5.08987129e-01 -4.21754159e-02 -1.68857849e+00 -2.37181619e-01 -3.92479867e-01 4.29457784e-01 1.24029791e+00 -4.74391401e-01 1.96742177e+00 -7.52479494e-01 -1.80865872e+00 1.89296156e-01 7.16212988e-02 -1.05153096e+00 6.33252978e-01 7.81086311e-02 5.45348048e-01 2.61147469e-01 7.64551386e-02 3.12858731e-01 6.06877625e-01 -5.88214397e-01 -1.10748303e+00 -2.76054919e-01 5.91814280e-01 3.74390632e-01 5.10692708e-02 -2.38889158e-01 -6.95285574e-03 3.76656204e-02 -1.36943445e-01 -8.94344985e-01 -7.71589160e-01 9.70919617e-03 -1.07001431e-01 -4.15003031e-01 1.04818204e-02 -1.58828318e-01 9.02105153e-01 -1.90025103e+00 4.02494147e-02 3.97105128e-01 1.51097700e-01 1.23526379e-02 -7.22990744e-03 5.25029600e-01 6.27363384e-01 2.06916239e-02 2.46613417e-02 5.22515327e-02 4.05679256e-01 5.27255118e-01 -3.05694371e-01 5.68365335e-01 -3.27848017e-01 1.04662538e+00 -1.22229648e+00 -1.05103791e-01 -3.14571671e-02 -2.42606610e-01 -7.56143212e-01 2.10509196e-01 -8.00072134e-01 3.56191784e-01 -9.45937753e-01 1.68844268e-01 1.30261526e-01 -3.81533772e-01 4.68870848e-01 8.04091811e-01 -1.30434662e-01 6.29026651e-01 -1.19576097e+00 1.16743553e+00 -2.71697044e-01 4.54388738e-01 3.89228553e-01 -1.10322475e+00 4.09863532e-01 3.29661131e-01 4.67282981e-01 -6.56442225e-01 4.36830729e-01 3.12050790e-01 1.89273611e-01 -2.28936628e-01 2.21676067e-01 -2.10952848e-01 -1.35555983e-01 7.69276857e-01 -1.55231431e-01 -2.10292861e-01 4.70047623e-01 1.66041300e-01 1.29065645e+00 1.96328327e-01 3.00839126e-01 1.61763996e-01 6.79835379e-02 8.76651108e-02 6.10683143e-01 1.37711787e+00 -2.88908005e-01 -3.77798051e-01 1.26447761e+00 -3.70524049e-01 -1.01262522e+00 -7.82666266e-01 5.31817436e-01 1.12998140e+00 1.23286635e-01 -1.38276979e-01 -7.72704959e-01 -4.94492799e-01 -5.31673916e-02 6.28316283e-01 -8.11097443e-01 -8.02065283e-02 -5.26648462e-01 -3.48092943e-01 2.61343658e-01 4.59214777e-01 5.90962768e-01 -1.17105496e+00 -1.17497194e+00 4.30706978e-01 4.04327810e-02 -7.72569120e-01 -4.45358336e-01 3.99921447e-01 -8.71360898e-01 -1.15732467e+00 -5.20032108e-01 -3.82361859e-01 3.59790057e-01 -1.85675785e-01 9.08454537e-01 1.50474429e-01 4.72117811e-01 4.08744037e-01 1.38714816e-02 -1.61528692e-01 -4.87397611e-01 2.17769980e-01 -2.02928483e-01 -2.71269679e-01 -2.27165833e-01 -6.38426185e-01 -6.93435252e-01 -3.66868339e-02 -6.06876910e-01 -4.97074798e-02 3.72372091e-01 9.40912366e-01 4.33472067e-01 2.38161162e-01 2.48566359e-01 -4.97248054e-01 8.34646344e-01 -4.66286957e-01 -1.45384049e+00 6.37181029e-02 -5.05653143e-01 3.96776229e-01 7.61823833e-01 -5.50872743e-01 -6.85009599e-01 -1.74394593e-01 4.54069562e-02 -3.15512955e-01 2.30695158e-01 4.35183942e-01 3.29980820e-01 6.58181384e-02 4.42686468e-01 4.23535466e-01 1.30203292e-02 -2.61362731e-01 2.97957599e-01 1.33937523e-01 6.30775511e-01 -9.56862390e-01 5.59193671e-01 4.10809785e-01 2.82760620e-01 -8.98884311e-02 -1.08883393e+00 4.81716134e-02 -5.98323531e-02 -3.15586507e-01 4.14363444e-01 -6.91313744e-01 -1.64288139e+00 3.00918877e-01 -8.67493570e-01 -8.19947481e-01 -7.21400678e-01 4.89340574e-01 -1.06272924e+00 6.36980683e-02 -7.19833314e-01 -1.47412682e+00 3.15048322e-02 -1.04524827e+00 3.49474579e-01 4.26357448e-01 3.52104813e-01 -8.89101148e-01 4.87233885e-02 -1.01946004e-01 4.25623715e-01 2.31910974e-01 7.80585408e-01 -4.81944889e-01 -7.89160192e-01 -1.43896982e-01 2.59927601e-01 1.41865686e-01 -3.81168187e-01 -3.57032478e-01 -3.19091588e-01 -3.65590811e-01 2.09181696e-01 -5.51991045e-01 7.23356485e-01 9.02198434e-01 9.53480124e-01 -9.03160334e-01 -1.80818260e-01 4.57343966e-01 1.31307554e+00 4.50194567e-01 2.25813419e-01 7.32400060e-01 7.15394616e-02 2.34650418e-01 6.09198809e-01 8.77076864e-01 3.73077661e-01 4.30965513e-01 9.62564349e-01 5.41550100e-01 5.27691305e-01 -5.47566354e-01 5.29339254e-01 1.73153684e-01 -1.24733053e-01 -1.23369619e-01 -5.52297473e-01 5.66181362e-01 -2.05375528e+00 -1.15717018e+00 5.52097976e-01 2.46463251e+00 1.03922534e+00 5.49832046e-01 5.55703461e-01 -3.83071378e-02 5.14594018e-01 1.92939252e-01 -1.43190622e+00 -5.66220224e-01 1.72508314e-01 2.39678144e-01 1.06441891e+00 5.97778022e-01 -6.20669425e-01 1.06209707e+00 7.02074957e+00 9.42588925e-01 -9.01214719e-01 7.25804940e-02 6.48669183e-01 -6.38413429e-01 -1.10616490e-01 3.27478528e-01 -6.20994210e-01 5.88450909e-01 1.14758909e+00 -4.48357105e-01 1.23309541e+00 1.04371834e+00 2.28324726e-01 -4.15132552e-01 -9.34118271e-01 4.71734226e-01 -6.72942042e-01 -1.48531616e+00 -6.57305777e-01 3.79387826e-01 8.95630538e-01 2.78599679e-01 1.31342988e-02 3.11725527e-01 1.41592717e+00 -8.09776008e-01 1.00455153e+00 1.05334826e-01 3.29580665e-01 -1.12878537e+00 6.51431620e-01 8.79422009e-01 -8.81100357e-01 -6.43013537e-01 -3.43511552e-01 -4.36600804e-01 5.55068329e-02 1.40858769e-01 -7.47200906e-01 -7.55543485e-02 4.09100085e-01 4.92399424e-01 1.54292872e-02 1.05397582e+00 -6.74142480e-01 9.63296950e-01 -7.54352927e-01 -5.82684994e-01 7.56741226e-01 -2.37224504e-01 4.96541739e-01 2.43783042e-01 1.40411928e-01 -6.02478907e-02 3.77700120e-01 8.12127948e-01 -1.52442619e-01 -4.99866098e-01 -1.04393773e-01 -3.47319126e-01 7.96477020e-01 7.81521261e-01 -6.77182198e-01 -4.07811105e-01 1.43479720e-01 3.29785943e-01 5.30619025e-01 3.36787462e-01 -7.35210717e-01 -8.22351035e-03 6.45096123e-01 -1.69527948e-01 6.85966671e-01 -2.57577479e-01 -1.16354525e-01 -9.14037526e-01 -1.92707758e-02 -8.68118644e-01 3.62660825e-01 -4.19566959e-01 -7.43822575e-01 -1.06368382e-02 -1.11616410e-01 -7.96812713e-01 -7.81902909e-01 -2.04728335e-01 -6.20897233e-01 4.88090307e-01 -1.44451916e+00 -4.43490237e-01 4.95419085e-01 3.82543772e-01 1.74519286e-01 4.27476503e-02 3.63777697e-01 -5.45029461e-01 -4.70388174e-01 2.85278469e-01 6.92744493e-01 1.07108802e-01 -1.60551265e-01 -1.24514568e+00 5.16336560e-01 7.97086895e-01 -1.42127052e-01 4.21205461e-02 8.35458934e-01 -3.61073643e-01 -1.53170288e+00 -4.86216307e-01 6.78056106e-02 -6.89201616e-03 1.06979311e+00 -1.09235086e-01 -3.72358650e-01 7.40833819e-01 -8.85666758e-02 -1.68390423e-02 -5.86206727e-02 -1.91215593e-02 3.40166129e-02 1.72685981e-02 -1.11922550e+00 8.23551059e-01 7.74360001e-01 -1.70535192e-01 -2.55360037e-01 2.41697744e-01 5.64510345e-01 -6.67042971e-01 -5.76149404e-01 -2.47112289e-01 5.62173605e-01 -1.12461412e+00 5.60895562e-01 -8.41397524e-01 2.92902648e-01 3.95794250e-02 -4.77543958e-02 -1.44672430e+00 -1.16506279e-01 -1.03962529e+00 -6.39180303e-01 5.01238286e-01 2.22559363e-01 -8.34534228e-01 1.08442628e+00 6.49319768e-01 2.86220670e-01 -1.00149810e+00 -1.49256444e+00 -8.12213182e-01 4.48596925e-01 -3.24384212e-01 7.47901261e-01 2.18690217e-01 -4.76541519e-02 1.70281064e-02 -5.92602789e-01 8.33940357e-02 7.41776109e-01 2.20801428e-01 5.36805093e-01 -9.78638053e-01 -7.72677600e-01 -7.14770555e-01 -1.81729142e-02 -1.46270442e+00 1.90555573e-01 -5.17538071e-01 1.30065218e-01 -1.55967164e+00 2.32999355e-01 -4.23161983e-01 -1.91828951e-01 4.66692060e-01 7.93587714e-02 -4.80269790e-01 5.36024809e-01 1.46761894e-01 -9.33201134e-01 5.33723593e-01 1.44632089e+00 3.69155295e-02 -1.91857785e-01 5.09281874e-01 -5.72659850e-01 7.14441776e-01 9.08877671e-01 -7.36281931e-01 -3.04329604e-01 -3.13118905e-01 6.48755074e-01 7.71780372e-01 1.44649491e-01 -8.50430191e-01 4.54406142e-01 -8.25059175e-01 3.00516468e-02 -4.89992619e-01 3.48643839e-01 -4.80466157e-01 -2.82360047e-01 1.02321804e+00 -9.33729231e-01 -1.08919911e-01 -2.73559690e-01 7.02617407e-01 3.03359807e-01 -5.37101448e-01 8.43522131e-01 -3.84013504e-01 -1.33831501e-01 5.16917109e-01 -7.28056192e-01 5.37427902e-01 8.99929464e-01 -2.52897087e-02 -2.03714341e-01 -9.30796921e-01 -6.31414175e-01 8.42587709e-01 3.89875174e-01 -2.51451731e-01 2.43338481e-01 -1.08948302e+00 -4.26949531e-01 -2.16732398e-01 -6.50604129e-01 2.83624321e-01 6.06102124e-02 6.58729970e-01 -1.50936514e-01 1.72924176e-01 -3.07435952e-02 -1.80516317e-01 -7.25204408e-01 3.96266162e-01 8.18297327e-01 -7.28228509e-01 -4.06148791e-01 4.84209210e-01 -2.02533394e-01 -8.95088762e-02 4.07859623e-01 -3.24002802e-01 1.06373303e-01 -2.83755064e-01 6.98334038e-01 5.11774302e-01 -5.16661942e-01 1.06304809e-01 -3.57600525e-02 6.57591596e-02 4.81719337e-02 -7.13450730e-01 1.44769275e+00 -1.98974647e-02 1.39044046e-01 3.80939424e-01 5.33282936e-01 -3.98783594e-01 -2.00892711e+00 -5.12560725e-01 1.87967747e-01 -3.92799348e-01 2.08968505e-01 -7.83933163e-01 -1.17564237e+00 7.78639853e-01 3.01910847e-01 4.41588670e-01 8.01573217e-01 -2.22220905e-02 6.61893487e-01 6.17525101e-01 6.27253950e-01 -1.31326997e+00 -9.75868255e-02 7.85819948e-01 1.89357340e-01 -6.97286725e-01 -1.55383512e-01 5.23549974e-01 -6.29974067e-01 9.00961518e-01 3.71250451e-01 -3.08074266e-01 1.68300644e-01 2.60685533e-01 -4.52382177e-01 1.34920880e-01 -1.37315905e+00 -4.72956151e-01 -4.21631008e-01 5.16100407e-01 -3.86881053e-01 1.97952375e-01 1.00868139e-02 2.89435565e-01 -3.10906678e-01 2.51891106e-01 7.22500980e-01 1.09973013e+00 -9.52558696e-01 -9.55643594e-01 -2.73318321e-01 5.90317667e-01 -7.40626991e-01 2.71834992e-02 -8.14396963e-02 3.36027682e-01 -3.23780894e-01 9.95253503e-01 1.12315387e-01 1.44686475e-01 -5.79588339e-02 -2.66919136e-01 6.56859696e-01 -3.24526072e-01 -5.50541222e-01 -3.66017483e-02 4.65027951e-02 -7.31598854e-01 -1.74526006e-01 -5.60198367e-01 -1.27438891e+00 -6.09646976e-01 -2.29013592e-01 4.73983586e-01 5.67592621e-01 1.28105795e+00 4.98516485e-02 1.72397718e-01 8.79643202e-01 -6.32992923e-01 -1.43964338e+00 -7.90011823e-01 -7.93865800e-01 -2.32732669e-01 5.17193973e-01 -6.35393560e-01 -5.30516267e-01 -7.18726456e-01]
[4.078307628631592, 2.3173129558563232]
3f4cabd7-3f99-40ba-b8db-ed0fe4c7a403
magnetic-resonance-fingerprinting-1
1909.06395
null
https://arxiv.org/abs/1909.06395v1
https://arxiv.org/pdf/1909.06395v1.pdf
Magnetic Resonance Fingerprinting Reconstruction Using Recurrent Neural Networks
Magnetic Resonance Fingerprinting (MRF) is an imaging technique acquiring unique time signals for different tissues. Although the acquisition is highly accelerated, the reconstruction time remains a problem, as the state-of-the-art template matching compares every signal with a set of possible signals. To overcome this limitation, deep learning based approaches, e.g. Convolutional Neural Networks (CNNs) have been proposed. In this work, we investigate the applicability of Recurrent Neural Networks (RNNs) for this reconstruction problem, as the signals are correlated in time. Compared to previous methods based on CNNs, RNN models yield significantly improved results using in-vivo data.
['Andreas Maier', 'Gregor Körzdörfer', 'Heiko Meyer', 'Franziska Schirrmacher', 'Elisabeth Hoppe', 'Mathias Nittka', 'Florian Thamm', 'Christopher Syben', 'Josef Pfeuffer']
2019-09-13
null
null
null
null
['magnetic-resonance-fingerprinting']
['medical']
[ 4.86556023e-01 -8.23703483e-02 -1.13460243e-01 -3.65026385e-01 -6.66377008e-01 -5.29211946e-02 3.00078779e-01 -1.82538286e-01 -5.19684911e-01 4.80458081e-01 2.70405244e-02 1.39004961e-02 -5.37085056e-01 -5.12247205e-01 -4.63520020e-01 -6.68372929e-01 -3.20521891e-01 2.27922305e-01 2.57407784e-01 -1.49277225e-01 1.23160228e-01 8.48873973e-01 -1.27755094e+00 3.99403572e-01 4.13693547e-01 9.93488312e-01 3.41308057e-01 2.29472414e-01 -1.25194654e-01 8.75267267e-01 -5.21295190e-01 1.73344433e-01 1.09307036e-01 -3.94549549e-01 -7.04723954e-01 -5.20788848e-01 4.15504903e-01 -2.24560603e-01 -8.69008601e-01 1.10868502e+00 7.27061570e-01 1.76669300e-01 2.83654064e-01 -9.20414329e-01 -4.19463903e-01 8.73238385e-01 -1.54970989e-01 5.13405561e-01 2.61685371e-01 -3.30716550e-01 3.04649472e-01 -7.45547593e-01 8.14219415e-01 5.99669039e-01 1.04058719e+00 7.52411366e-01 -1.15550196e+00 -6.48126602e-01 -2.70109028e-01 5.28688788e-01 -1.06451094e+00 -3.38943452e-01 1.00863338e+00 -2.99551636e-01 9.74792004e-01 1.35082811e-01 6.76993787e-01 1.42477572e+00 6.46763563e-01 6.70610130e-01 1.26491690e+00 -3.30109775e-01 -1.15518451e-01 -4.07920271e-01 1.25976413e-01 3.43337268e-01 -2.58247077e-01 4.90810871e-01 -5.69482505e-01 1.45823628e-01 9.88084495e-01 3.92489970e-01 -5.97469926e-01 -1.71893150e-01 -1.62239289e+00 4.88170296e-01 5.88420749e-01 1.08862352e+00 -6.97870672e-01 3.57067019e-01 6.15068793e-01 4.86037076e-01 1.85712278e-01 7.04360187e-01 -2.60575950e-01 3.37747373e-02 -1.47842586e+00 6.15337491e-02 4.79060024e-01 2.98924088e-01 3.78041089e-01 2.96185136e-01 -2.48778209e-01 7.53322721e-01 -1.93994176e-02 2.41594180e-01 1.09909725e+00 -9.13682163e-01 4.23574932e-02 9.76630300e-02 -3.72051895e-01 -1.26743102e+00 -1.04248798e+00 -7.51376927e-01 -1.23068106e+00 1.11743279e-01 5.11455774e-01 1.94588870e-01 -8.79925787e-01 1.72033250e+00 -6.77886084e-02 4.94908452e-01 -4.20937054e-02 1.09500766e+00 8.91633689e-01 3.71470332e-01 -3.26417387e-01 -3.06100309e-01 9.90225554e-01 -7.59403110e-01 -1.14038837e+00 2.00012922e-01 1.59500465e-01 -7.34722078e-01 3.84755999e-01 5.48491955e-01 -8.59641552e-01 -7.17328966e-01 -1.01188529e+00 2.92031050e-01 -4.22761619e-01 -1.16341487e-01 7.12364793e-01 5.09648502e-01 -1.20383835e+00 1.19819772e+00 -1.02903152e+00 -1.79897964e-01 2.22525954e-01 6.63569510e-01 -5.54721177e-01 9.79371518e-02 -1.44173527e+00 1.04218400e+00 2.54782498e-01 6.54026985e-01 -9.31982875e-01 -8.32504392e-01 -6.29872441e-01 -1.46082640e-01 6.26002103e-02 -3.75762194e-01 1.18584657e+00 -9.06692803e-01 -1.78850627e+00 7.79199600e-01 1.45730823e-01 -8.78639638e-01 5.85786223e-01 -1.80737413e-02 -7.36228049e-01 3.72575283e-01 -1.78015575e-01 4.39441293e-01 8.23194742e-01 -8.52540612e-01 1.08376585e-01 -3.01076978e-01 -2.18794003e-01 -5.64681888e-01 1.44054815e-01 1.52864084e-01 9.66334268e-02 -8.76621366e-01 7.91029871e-01 -1.08253026e+00 -4.67749476e-01 -2.46951208e-02 -3.24452072e-01 8.74134675e-02 6.76537633e-01 -7.47269034e-01 9.35725152e-01 -1.90111196e+00 2.89799012e-02 3.43497843e-01 4.75066394e-01 2.76025116e-01 -1.45373181e-01 2.08609268e-01 -6.56771183e-01 -4.08188194e-01 -5.82598634e-02 -4.93277535e-02 -3.78967047e-01 1.47680074e-01 -6.51079640e-02 7.88233817e-01 -1.49486676e-01 8.39890242e-01 -9.60017383e-01 -2.98524320e-01 4.18570668e-01 6.64854586e-01 -2.06813402e-02 3.03909600e-01 1.92540005e-01 8.56260717e-01 -1.86841697e-01 5.58360696e-01 5.55219471e-01 -1.90094545e-01 4.69747007e-01 -7.27822781e-01 -2.09909365e-01 -3.49045685e-03 -8.12344134e-01 2.13062859e+00 -5.53907931e-01 7.96020865e-01 -2.30371922e-01 -1.53558540e+00 1.04728484e+00 7.46218801e-01 1.28357565e+00 -1.17466319e+00 2.68451512e-01 4.80253875e-01 3.33396733e-01 -7.25105226e-01 2.69892365e-01 -1.68956533e-01 4.10588145e-01 5.11699378e-01 2.96810627e-01 5.03332675e-01 -1.49307296e-01 -3.98543715e-01 1.21368527e+00 2.34711871e-01 3.82243879e-02 -2.05106050e-01 4.47490931e-01 -4.19003606e-01 5.88979900e-01 8.28268290e-01 -3.94931406e-01 1.06490600e+00 3.45994607e-02 -8.77799034e-01 -9.63799298e-01 -8.24407160e-01 -3.98198903e-01 4.09862608e-01 -1.86532903e-02 -1.15909362e-02 -6.29299700e-01 -1.70180619e-01 -1.97366685e-01 6.25259876e-02 -9.38750863e-01 -1.35577053e-01 -1.12003160e+00 -6.22207999e-01 5.45647621e-01 5.27049363e-01 4.19849992e-01 -1.34559751e+00 -1.09215462e+00 9.35340226e-01 -2.94296831e-01 -1.17632020e+00 -1.98480725e-01 4.25551355e-01 -1.18906438e+00 -1.04774642e+00 -1.05647147e+00 -5.05676627e-01 2.98723012e-01 2.05547243e-01 9.95243251e-01 -1.33417293e-01 -4.01888847e-01 1.37081861e-01 -3.09802264e-01 -6.42484659e-03 -3.82046133e-01 5.86325489e-02 1.10933192e-01 1.47051275e-01 1.82943642e-02 -9.85435784e-01 -7.41433620e-01 1.81900427e-01 -8.73960674e-01 -6.18447326e-02 6.85308099e-01 1.22681928e+00 8.79044056e-01 -2.51985282e-01 7.05849409e-01 -9.55426097e-01 5.18419087e-01 -2.58120358e-01 -4.61479813e-01 4.72649544e-01 -6.29494250e-01 2.44974673e-01 7.12556601e-01 -7.56594718e-01 -6.17808700e-01 1.47587150e-01 -2.11623743e-01 -8.64815593e-01 -6.87661469e-02 7.94632196e-01 5.36665797e-01 -6.01052999e-01 7.49176025e-01 4.34924752e-01 3.41974705e-01 -4.49029356e-01 -7.90242925e-02 2.76583374e-01 9.13524032e-01 -2.90267020e-01 2.47897610e-01 3.92379731e-01 3.39352131e-01 -4.96851534e-01 -5.59863269e-01 -3.66254121e-01 -8.42736781e-01 -7.45867550e-01 7.27510154e-01 -4.12065595e-01 -7.13119745e-01 4.58731294e-01 -1.32325852e+00 -1.21694535e-01 -1.08099036e-01 1.00695753e+00 -7.83705294e-01 3.97459686e-01 -7.25194931e-01 -5.27995110e-01 -6.15991235e-01 -1.33609569e+00 5.83876014e-01 1.79185331e-01 -1.36136070e-01 -7.91940868e-01 2.35592529e-01 -5.63178919e-02 9.01122928e-01 7.08069444e-01 5.78414798e-01 -6.10065758e-01 -5.28815389e-01 -3.56016487e-01 -1.85782444e-02 3.53846662e-02 6.96744993e-02 -3.05437773e-01 -1.00227201e+00 -2.33141899e-01 3.24757040e-01 1.14081204e-01 7.32310236e-01 8.63282740e-01 1.48533452e+00 1.36041790e-01 -2.53196836e-01 7.31655478e-01 1.38266325e+00 4.16051030e-01 9.30905938e-01 5.57310283e-01 3.90619308e-01 5.31411886e-01 2.06432894e-01 3.06648314e-01 -2.15211257e-01 9.57533956e-01 2.49989673e-01 -2.39499047e-01 -3.38144988e-01 1.23063192e-01 -1.08709291e-01 1.04080272e+00 -3.07435125e-01 2.57955551e-01 -9.18650329e-01 3.13871175e-01 -1.93675196e+00 -1.20370889e+00 -1.22840758e-02 2.16615486e+00 4.85357761e-01 -2.73451861e-02 -1.33493468e-01 4.02437717e-01 7.47543871e-01 1.42941177e-01 -6.06461167e-01 -1.67420432e-02 -2.17553243e-01 6.48477912e-01 5.83599091e-01 2.30434351e-02 -8.83193910e-01 3.54631633e-01 7.12052631e+00 5.27622223e-01 -1.84572101e+00 3.57204884e-01 3.80133867e-01 2.17082784e-01 -8.88416395e-02 -4.31614012e-01 -3.49069887e-04 3.86170059e-01 1.12526751e+00 1.11057729e-01 6.22200727e-01 5.35777271e-01 3.29070300e-01 1.73429221e-01 -9.95743155e-01 1.32769597e+00 4.96770628e-02 -1.56981993e+00 -3.05771768e-01 -2.85252750e-01 3.51339251e-01 4.29735899e-01 9.52643603e-02 -6.60045147e-02 -5.59909105e-01 -1.15618992e+00 6.37920856e-01 9.78419721e-01 8.18297088e-01 -5.42744339e-01 1.00006330e+00 -8.86151046e-02 -9.88519788e-01 1.81221038e-01 -2.75487989e-01 3.81800532e-01 1.46046355e-01 7.79110312e-01 -6.89518571e-01 8.60656917e-01 8.01164925e-01 6.80516422e-01 -3.67126882e-01 1.20479643e+00 1.65513426e-01 3.54415327e-01 -1.54545799e-01 7.43249282e-02 1.36597589e-01 -1.07690096e-02 3.98287773e-01 1.18628049e+00 4.76643622e-01 -1.54657140e-01 -1.31167537e-02 1.03399110e+00 1.40199274e-01 -4.55613844e-02 -6.28789604e-01 3.99479419e-02 1.55039310e-01 1.27984047e+00 -8.88090670e-01 -8.18116292e-02 -3.25060666e-01 8.06569278e-01 1.30689114e-01 2.32990086e-01 -6.51759088e-01 -4.64369237e-01 1.94286436e-01 1.56911612e-01 -1.02213860e-01 -3.53967696e-01 1.12854369e-01 -1.12579465e+00 -1.80675071e-02 -7.95210481e-01 2.32491255e-01 -7.88555145e-01 -1.34340310e+00 1.00597370e+00 -1.98153645e-01 -1.53852928e+00 -4.25740302e-01 -6.61877155e-01 -4.11138475e-01 6.88311696e-01 -1.53740633e+00 -8.48039210e-01 -3.70240629e-01 8.03087533e-01 2.78763533e-01 -2.17866465e-01 9.41567421e-01 7.08630621e-01 -3.36283535e-01 5.21354020e-01 1.18593499e-01 1.96604162e-01 6.37615323e-01 -1.07111084e+00 6.56124065e-03 6.02917671e-01 1.72240824e-01 8.54237497e-01 6.44610763e-01 -2.45542541e-01 -1.59624100e+00 -6.71039641e-01 7.46348083e-01 2.43529275e-01 5.03796816e-01 1.03880344e-02 -1.19948399e+00 3.11093599e-01 2.33623937e-01 5.32017171e-01 6.42497301e-01 -1.00478105e-01 -3.21136832e-01 -3.43143672e-01 -1.17232728e+00 2.46008277e-01 8.50007057e-01 -9.46660161e-01 -5.31144142e-01 2.59563118e-01 4.36823606e-01 -7.90566564e-01 -1.21864188e+00 6.54428899e-01 9.97895181e-01 -1.04503500e+00 1.05031085e+00 -3.10326189e-01 1.98448375e-01 -3.02439004e-01 -1.75671242e-02 -1.22489488e+00 -2.89008290e-01 -5.88060021e-01 3.54731176e-03 4.14922386e-01 1.95722938e-01 -6.05142295e-01 8.71536374e-01 3.61434639e-01 -4.28049117e-01 -7.54158020e-01 -1.29427624e+00 -9.88727450e-01 -1.59986660e-01 -4.42447275e-01 6.43383205e-01 1.21074724e+00 -2.79282220e-02 -1.19253874e-01 -6.88387632e-01 -2.17656270e-02 5.02341211e-01 3.03754658e-01 -2.63976436e-02 -1.16253388e+00 -2.29282320e-01 -5.08240759e-01 -6.13913298e-01 -5.58308244e-01 4.08639133e-01 -1.11784363e+00 1.23872934e-02 -1.13303638e+00 -6.47394136e-02 -4.22413945e-01 -9.39369321e-01 3.02726150e-01 4.36992198e-01 5.88916428e-02 1.32554054e-01 2.43295833e-01 -3.43834609e-01 2.69558877e-01 1.37071192e+00 -3.54896903e-01 1.07498048e-02 8.58408511e-02 9.44635496e-02 1.45786703e-01 8.74184906e-01 -5.88146031e-01 -9.28578377e-02 -3.49281996e-01 -1.02596879e-02 7.45212734e-01 3.37558448e-01 -1.52852499e+00 6.95797861e-01 3.60816151e-01 5.78610778e-01 -8.41079950e-01 1.90358207e-01 -9.75040734e-01 9.56658721e-01 9.74092185e-01 -5.42235255e-01 4.04409409e-01 7.78360292e-03 2.78876364e-01 -7.16365099e-01 -3.57581049e-01 8.04561198e-01 -4.12049025e-01 -3.96728337e-01 5.26216507e-01 -4.42205250e-01 -4.91698772e-01 4.38992560e-01 -3.76713872e-01 6.55087084e-02 -8.42114463e-02 -8.48369300e-01 -5.24514258e-01 -2.51785308e-01 1.85140967e-01 9.67328966e-01 -1.52114427e+00 -3.76268059e-01 6.78015277e-02 -1.05547614e-01 -4.08722967e-01 7.11092234e-01 1.20699632e+00 -4.46250319e-01 5.61323822e-01 -8.88076484e-01 -6.52398586e-01 -7.59980738e-01 6.83468461e-01 9.99226034e-01 -3.64813358e-01 -8.68518889e-01 3.85979563e-01 -2.95096636e-01 -5.54507375e-01 1.52407229e-01 -3.60646367e-01 -4.81444627e-01 -2.05692090e-02 5.03475845e-01 2.32084528e-01 4.28746969e-01 -4.19212610e-01 -3.86392802e-01 7.24552691e-01 -5.73918708e-02 5.72825484e-02 1.56158125e+00 3.10300887e-01 -1.44924968e-01 3.37578833e-01 1.49175918e+00 -6.05538070e-01 -7.72600889e-01 -4.60744351e-01 3.47511590e-01 -2.67050028e-01 3.22262585e-01 -6.63319588e-01 -1.62775719e+00 8.23558271e-01 1.20515871e+00 -1.03162127e-02 1.24852049e+00 -3.83627087e-01 9.49757159e-01 4.49426770e-01 7.14267254e-01 -9.51417744e-01 1.35043725e-01 3.80661875e-01 9.79602873e-01 -1.17444050e+00 -2.39951804e-01 -1.31252274e-01 -1.21572251e-02 1.96272361e+00 2.70863652e-01 -1.59443527e-01 8.02524090e-01 3.07924211e-01 1.47218719e-01 -4.38364118e-01 -3.47671151e-01 2.52545103e-02 1.10208057e-01 6.33900583e-01 6.71272337e-01 7.31500313e-02 -4.01942164e-01 5.51186979e-01 8.15908834e-02 5.29224038e-01 4.46746200e-01 8.73142302e-01 1.02436885e-01 -1.16956580e+00 -2.23894864e-01 4.72521573e-01 -7.68735588e-01 7.21819848e-02 2.62783825e-01 5.70136964e-01 -6.31451607e-02 4.83196676e-01 -2.20976830e-01 -5.93265116e-01 4.73478168e-01 -3.22089970e-01 8.32663238e-01 -1.05246194e-01 -9.72584665e-01 -9.65575408e-03 -1.89364359e-01 -9.99152184e-01 -1.00127268e+00 -7.11255193e-01 -1.24528778e+00 2.03769170e-02 -3.39560151e-01 -1.48734495e-01 8.39656234e-01 7.52649069e-01 1.70034766e-01 8.17443490e-01 7.72780597e-01 -8.55438590e-01 -3.45775515e-01 -9.01429236e-01 -7.30294287e-01 3.47285211e-01 3.00596654e-01 -6.73622847e-01 -3.72137874e-02 -2.27764234e-01]
[13.506223678588867, -2.3914318084716797]