text
stringlengths
0
4.99k
resnet = ResNet()
dataset = ...
resnet.fit(dataset, epochs=10)
resnet.save(filepath)
Putting it all together: an end-to-end example
Here's what you've learned so far:
A Layer encapsulate a state (created in __init__() or build()) and some computation (defined in call()).
Layers can be recursively nested to create new, bigger computation blocks.
Layers can create and track losses (typically regularization losses) as well as metrics, via add_loss() and add_metric()
The outer container, the thing you want to train, is a Model. A Model is just like a Layer, but with added training and serialization utilities.
Let's put all of these things together into an end-to-end example: we're going to implement a Variational AutoEncoder (VAE). We'll train it on MNIST digits.
Our VAE will be a subclass of Model, built as a nested composition of layers that subclass Layer. It will feature a regularization loss (KL divergence).
from tensorflow.keras import layers
class Sampling(layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
class Encoder(layers.Layer):
"""Maps MNIST digits to a triplet (z_mean, z_log_var, z)."""
def __init__(self, latent_dim=32, intermediate_dim=64, name="encoder", **kwargs):
super(Encoder, self).__init__(name=name, **kwargs)
self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
self.dense_mean = layers.Dense(latent_dim)
self.dense_log_var = layers.Dense(latent_dim)
self.sampling = Sampling()
def call(self, inputs):
x = self.dense_proj(inputs)
z_mean = self.dense_mean(x)
z_log_var = self.dense_log_var(x)
z = self.sampling((z_mean, z_log_var))
return z_mean, z_log_var, z
class Decoder(layers.Layer):
"""Converts z, the encoded digit vector, back into a readable digit."""
def __init__(self, original_dim, intermediate_dim=64, name="decoder", **kwargs):
super(Decoder, self).__init__(name=name, **kwargs)
self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
self.dense_output = layers.Dense(original_dim, activation="sigmoid")
def call(self, inputs):
x = self.dense_proj(inputs)
return self.dense_output(x)
class VariationalAutoEncoder(keras.Model):
"""Combines the encoder and decoder into an end-to-end model for training."""
def __init__(
self,
original_dim,
intermediate_dim=64,
latent_dim=32,
name="autoencoder",
**kwargs
):
super(VariationalAutoEncoder, self).__init__(name=name, **kwargs)
self.original_dim = original_dim
self.encoder = Encoder(latent_dim=latent_dim, intermediate_dim=intermediate_dim)
self.decoder = Decoder(original_dim, intermediate_dim=intermediate_dim)
def call(self, inputs):
z_mean, z_log_var, z = self.encoder(inputs)
reconstructed = self.decoder(z)
# Add KL divergence regularization loss.
kl_loss = -0.5 * tf.reduce_mean(
z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1
)
self.add_loss(kl_loss)
return reconstructed
Let's write a simple training loop on MNIST:
original_dim = 784
vae = VariationalAutoEncoder(original_dim, 64, 32)
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
mse_loss_fn = tf.keras.losses.MeanSquaredError()
loss_metric = tf.keras.metrics.Mean()
(x_train, _), _ = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype("float32") / 255
train_dataset = tf.data.Dataset.from_tensor_slices(x_train)
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64)