text
stringlengths
0
4.99k
import numpy as np
inputs = keras.Input(shape=(3,))
outputs = ActivityRegularizationLayer()(inputs)
model = keras.Model(inputs, outputs)
# If there is a loss passed in `compile`, the regularization
# losses get added to it
model.compile(optimizer="adam", loss="mse")
model.fit(np.random.random((2, 3)), np.random.random((2, 3)))
# It's also possible not to pass any loss in `compile`,
# since the model already has a loss to minimize, via the `add_loss`
# call during the forward pass!
model.compile(optimizer="adam")
model.fit(np.random.random((2, 3)), np.random.random((2, 3)))
1/1 [==============================] - 0s 1ms/step - loss: 0.1555
1/1 [==============================] - 0s 927us/step - loss: 0.0336
<tensorflow.python.keras.callbacks.History at 0x145bca6d0>
The add_metric() method
Similarly to add_loss(), layers also have an add_metric() method for tracking the moving average of a quantity during training.
Consider the following layer: a "logistic endpoint" layer. It takes as inputs predictions & targets, it computes a loss which it tracks via add_loss(), and it computes an accuracy scalar, which it tracks via add_metric().
class LogisticEndpoint(keras.layers.Layer):
def __init__(self, name=None):
super(LogisticEndpoint, self).__init__(name=name)
self.loss_fn = keras.losses.BinaryCrossentropy(from_logits=True)
self.accuracy_fn = keras.metrics.BinaryAccuracy()
def call(self, targets, logits, sample_weights=None):
# Compute the training-time loss value and add it
# to the layer using `self.add_loss()`.
loss = self.loss_fn(targets, logits, sample_weights)
self.add_loss(loss)
# Log accuracy as a metric and add it
# to the layer using `self.add_metric()`.
acc = self.accuracy_fn(targets, logits, sample_weights)
self.add_metric(acc, name="accuracy")
# Return the inference-time prediction tensor (for `.predict()`).
return tf.nn.softmax(logits)
Metrics tracked in this way are accessible via layer.metrics:
layer = LogisticEndpoint()
targets = tf.ones((2, 2))
logits = tf.ones((2, 2))
y = layer(targets, logits)
print("layer.metrics:", layer.metrics)
print("current accuracy value:", float(layer.metrics[0].result()))
layer.metrics: [<tensorflow.python.keras.metrics.BinaryAccuracy object at 0x145bccdd0>]
current accuracy value: 1.0
Just like for add_loss(), these metrics are tracked by fit():
inputs = keras.Input(shape=(3,), name="inputs")
targets = keras.Input(shape=(10,), name="targets")
logits = keras.layers.Dense(10)(inputs)
predictions = LogisticEndpoint(name="predictions")(logits, targets)
model = keras.Model(inputs=[inputs, targets], outputs=predictions)
model.compile(optimizer="adam")
data = {
"inputs": np.random.random((3, 3)),
"targets": np.random.random((3, 10)),
}
model.fit(data)
1/1 [==============================] - 0s 999us/step - loss: 1.0366 - binary_accuracy: 0.0000e+00
<tensorflow.python.keras.callbacks.History at 0x1452c7650>
You can optionally enable serialization on your layers
If you need your custom layers to be serializable as part of a Functional model, you can optionally implement a get_config() method:
class Linear(keras.layers.Layer):
def __init__(self, units=32):
super(Linear, self).__init__()
self.units = units
def build(self, input_shape):
self.w = self.add_weight(
shape=(input_shape[-1], self.units),
initializer="random_normal",
trainable=True,
)
self.b = self.add_weight(
shape=(self.units,), initializer="random_normal", trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
def get_config(self):
return {"units": self.units}