text
stringlengths 0
4.99k
|
---|
lr_schedule = keras.optimizers.schedules.ExponentialDecay( |
initial_learning_rate, decay_steps=100000, decay_rate=0.96, staircase=True |
) |
model.compile( |
loss=\"binary_crossentropy\", |
optimizer=keras.optimizers.Adam(learning_rate=lr_schedule), |
metrics=[\"acc\"], |
) |
# Define callbacks. |
checkpoint_cb = keras.callbacks.ModelCheckpoint( |
\"3d_image_classification.h5\", save_best_only=True |
) |
early_stopping_cb = keras.callbacks.EarlyStopping(monitor=\"val_acc\", patience=15) |
# Train the model, doing validation at the end of each epoch |
epochs = 100 |
model.fit( |
train_dataset, |
validation_data=validation_dataset, |
epochs=epochs, |
shuffle=True, |
verbose=2, |
callbacks=[checkpoint_cb, early_stopping_cb], |
) |
Epoch 1/100 |
70/70 - 12s - loss: 0.7031 - acc: 0.5286 - val_loss: 1.1421 - val_acc: 0.5000 |
Epoch 2/100 |
70/70 - 12s - loss: 0.6769 - acc: 0.5929 - val_loss: 1.3491 - val_acc: 0.5000 |
Epoch 3/100 |
70/70 - 12s - loss: 0.6543 - acc: 0.6286 - val_loss: 1.5108 - val_acc: 0.5000 |
Epoch 4/100 |
70/70 - 12s - loss: 0.6236 - acc: 0.6714 - val_loss: 2.5255 - val_acc: 0.5000 |
Epoch 5/100 |
70/70 - 12s - loss: 0.6628 - acc: 0.6000 - val_loss: 1.8446 - val_acc: 0.5000 |
Epoch 6/100 |
70/70 - 12s - loss: 0.6621 - acc: 0.6071 - val_loss: 1.9661 - val_acc: 0.5000 |
Epoch 7/100 |
70/70 - 12s - loss: 0.6346 - acc: 0.6571 - val_loss: 2.8997 - val_acc: 0.5000 |
Epoch 8/100 |
70/70 - 12s - loss: 0.6501 - acc: 0.6071 - val_loss: 1.6101 - val_acc: 0.5000 |
Epoch 9/100 |
70/70 - 12s - loss: 0.6065 - acc: 0.6571 - val_loss: 0.8688 - val_acc: 0.6167 |
Epoch 10/100 |
70/70 - 12s - loss: 0.5970 - acc: 0.6714 - val_loss: 0.8802 - val_acc: 0.5167 |
Epoch 11/100 |
70/70 - 12s - loss: 0.5910 - acc: 0.7143 - val_loss: 0.7282 - val_acc: 0.6333 |
Epoch 12/100 |
70/70 - 12s - loss: 0.6147 - acc: 0.6500 - val_loss: 0.5828 - val_acc: 0.7500 |
Epoch 13/100 |
70/70 - 12s - loss: 0.5641 - acc: 0.7214 - val_loss: 0.7080 - val_acc: 0.6667 |
Epoch 14/100 |
70/70 - 12s - loss: 0.5664 - acc: 0.6857 - val_loss: 0.5641 - val_acc: 0.7000 |
Epoch 15/100 |
70/70 - 12s - loss: 0.5924 - acc: 0.6929 - val_loss: 0.7595 - val_acc: 0.6000 |
Epoch 16/100 |
70/70 - 12s - loss: 0.5389 - acc: 0.7071 - val_loss: 0.5719 - val_acc: 0.7833 |
Epoch 17/100 |
70/70 - 12s - loss: 0.5493 - acc: 0.6714 - val_loss: 0.5234 - val_acc: 0.7500 |
Epoch 18/100 |
70/70 - 12s - loss: 0.5050 - acc: 0.7786 - val_loss: 0.7359 - val_acc: 0.6000 |
Epoch 19/100 |
70/70 - 12s - loss: 0.5152 - acc: 0.7286 - val_loss: 0.6469 - val_acc: 0.6500 |
Epoch 20/100 |
70/70 - 12s - loss: 0.5015 - acc: 0.7786 - val_loss: 0.5651 - val_acc: 0.7333 |
Epoch 21/100 |
70/70 - 12s - loss: 0.4975 - acc: 0.7786 - val_loss: 0.8707 - val_acc: 0.5500 |
Epoch 22/100 |
70/70 - 12s - loss: 0.4470 - acc: 0.7714 - val_loss: 0.5577 - val_acc: 0.7500 |
Epoch 23/100 |
70/70 - 12s - loss: 0.5489 - acc: 0.7071 - val_loss: 0.9929 - val_acc: 0.6500 |
Epoch 24/100 |
70/70 - 12s - loss: 0.5045 - acc: 0.7357 - val_loss: 0.5891 - val_acc: 0.7333 |
Epoch 25/100 |
70/70 - 12s - loss: 0.5598 - acc: 0.7500 - val_loss: 0.5703 - val_acc: 0.7667 |
Epoch 26/100 |
70/70 - 12s - loss: 0.4822 - acc: 0.7429 - val_loss: 0.5631 - val_acc: 0.7333 |
Epoch 27/100 |
70/70 - 12s - loss: 0.5572 - acc: 0.7000 - val_loss: 0.6255 - val_acc: 0.6500 |
Epoch 28/100 |
70/70 - 12s - loss: 0.4694 - acc: 0.7643 - val_loss: 0.7007 - val_acc: 0.6833 |
Epoch 29/100 |
70/70 - 12s - loss: 0.4870 - acc: 0.7571 - val_loss: 1.7148 - val_acc: 0.5667 |
Epoch 30/100 |
70/70 - 12s - loss: 0.4794 - acc: 0.7500 - val_loss: 0.5744 - val_acc: 0.7333 |
Epoch 31/100 |
70/70 - 12s - loss: 0.4632 - acc: 0.7857 - val_loss: 0.7787 - val_acc: 0.5833 |
<tensorflow.python.keras.callbacks.History at 0x7fea600ecef0> |
It is important to note that the number of samples is very small (only 200) and we don't specify a random seed. As such, you can expect significant variance in the results. The full dataset which consists of over 1000 CT scans can be found here. Using the full dataset, an accuracy of 83% was achieved. A variability of 6-7% in the classification performance is observed in both cases. |
Visualizing model performance |
Here the model accuracy and loss for the training and the validation sets are plotted. Since the validation set is class-balanced, accuracy provides an unbiased representation of the model's performance. |
fig, ax = plt.subplots(1, 2, figsize=(20, 3)) |
ax = ax.ravel() |
for i, metric in enumerate([\"acc\", \"loss\"]): |
ax[i].plot(model.history.history[metric]) |
ax[i].plot(model.history.history[\"val_\" + metric]) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.