text
stringlengths 0
4.99k
|
---|
columns_data, |
figsize=(fig_width, fig_height), |
gridspec_kw={\"height_ratios\": heights}, |
) |
for i in range(rows_data): |
for j in range(columns_data): |
axarr[i, j].imshow(data[i][j], cmap=\"gray\") |
axarr[i, j].axis(\"off\") |
plt.subplots_adjust(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1) |
plt.show() |
# Visualize montage of slices. |
# 4 rows and 10 columns for 100 slices of the CT scan. |
plot_slices(4, 10, 128, 128, image[:, :, :40]) |
png |
Define a 3D convolutional neural network |
To make the model easier to understand, we structure it into blocks. The architecture of the 3D CNN used in this example is based on this paper. |
def get_model(width=128, height=128, depth=64): |
\"\"\"Build a 3D convolutional neural network model.\"\"\" |
inputs = keras.Input((width, height, depth, 1)) |
x = layers.Conv3D(filters=64, kernel_size=3, activation=\"relu\")(inputs) |
x = layers.MaxPool3D(pool_size=2)(x) |
x = layers.BatchNormalization()(x) |
x = layers.Conv3D(filters=64, kernel_size=3, activation=\"relu\")(x) |
x = layers.MaxPool3D(pool_size=2)(x) |
x = layers.BatchNormalization()(x) |
x = layers.Conv3D(filters=128, kernel_size=3, activation=\"relu\")(x) |
x = layers.MaxPool3D(pool_size=2)(x) |
x = layers.BatchNormalization()(x) |
x = layers.Conv3D(filters=256, kernel_size=3, activation=\"relu\")(x) |
x = layers.MaxPool3D(pool_size=2)(x) |
x = layers.BatchNormalization()(x) |
x = layers.GlobalAveragePooling3D()(x) |
x = layers.Dense(units=512, activation=\"relu\")(x) |
x = layers.Dropout(0.3)(x) |
outputs = layers.Dense(units=1, activation=\"sigmoid\")(x) |
# Define the model. |
model = keras.Model(inputs, outputs, name=\"3dcnn\") |
return model |
# Build model. |
model = get_model(width=128, height=128, depth=64) |
model.summary() |
Model: \"3dcnn\" |
_________________________________________________________________ |
Layer (type) Output Shape Param # |
================================================================= |
input_1 (InputLayer) [(None, 128, 128, 64, 1)] 0 |
_________________________________________________________________ |
conv3d (Conv3D) (None, 126, 126, 62, 64) 1792 |
_________________________________________________________________ |
max_pooling3d (MaxPooling3D) (None, 63, 63, 31, 64) 0 |
_________________________________________________________________ |
batch_normalization (BatchNo (None, 63, 63, 31, 64) 256 |
_________________________________________________________________ |
conv3d_1 (Conv3D) (None, 61, 61, 29, 64) 110656 |
_________________________________________________________________ |
max_pooling3d_1 (MaxPooling3 (None, 30, 30, 14, 64) 0 |
_________________________________________________________________ |
batch_normalization_1 (Batch (None, 30, 30, 14, 64) 256 |
_________________________________________________________________ |
conv3d_2 (Conv3D) (None, 28, 28, 12, 128) 221312 |
_________________________________________________________________ |
max_pooling3d_2 (MaxPooling3 (None, 14, 14, 6, 128) 0 |
_________________________________________________________________ |
batch_normalization_2 (Batch (None, 14, 14, 6, 128) 512 |
_________________________________________________________________ |
conv3d_3 (Conv3D) (None, 12, 12, 4, 256) 884992 |
_________________________________________________________________ |
max_pooling3d_3 (MaxPooling3 (None, 6, 6, 2, 256) 0 |
_________________________________________________________________ |
batch_normalization_3 (Batch (None, 6, 6, 2, 256) 1024 |
_________________________________________________________________ |
global_average_pooling3d (Gl (None, 256) 0 |
_________________________________________________________________ |
dense (Dense) (None, 512) 131584 |
_________________________________________________________________ |
dropout (Dropout) (None, 512) 0 |
_________________________________________________________________ |
dense_1 (Dense) (None, 1) 513 |
================================================================= |
Total params: 1,352,897 |
Trainable params: 1,351,873 |
Non-trainable params: 1,024 |
_________________________________________________________________ |
Train model |
# Compile model. |
initial_learning_rate = 0.0001 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.