text
stringlengths
0
4.99k
activation_11 (Activation) (None, 500, 128) 0 conv1d_16[0][0]
__________________________________________________________________________________________________
conv1d_17 (Conv1D) (None, 500, 128) 49280 activation_11[0][0]
__________________________________________________________________________________________________
conv1d_14 (Conv1D) (None, 500, 128) 16512 max_pooling1d_3[0][0]
__________________________________________________________________________________________________
add_4 (Add) (None, 500, 128) 0 conv1d_17[0][0]
conv1d_14[0][0]
__________________________________________________________________________________________________
activation_12 (Activation) (None, 500, 128) 0 add_4[0][0]
__________________________________________________________________________________________________
max_pooling1d_4 (MaxPooling1D) (None, 250, 128) 0 activation_12[0][0]
__________________________________________________________________________________________________
average_pooling1d (AveragePooli (None, 83, 128) 0 max_pooling1d_4[0][0]
__________________________________________________________________________________________________
flatten (Flatten) (None, 10624) 0 average_pooling1d[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, 256) 2720000 flatten[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 128) 32896 dense[0][0]
__________________________________________________________________________________________________
output (Dense) (None, 5) 645 dense_1[0][0]
==================================================================================================
Total params: 3,088,597
Trainable params: 3,088,597
Non-trainable params: 0
__________________________________________________________________________________________________
Training
history = model.fit(
train_ds,
epochs=EPOCHS,
validation_data=valid_ds,
callbacks=[earlystopping_cb, mdlcheckpoint_cb],
)
Epoch 1/100
53/53 [==============================] - 62s 1s/step - loss: 1.0107 - accuracy: 0.6929 - val_loss: 0.3367 - val_accuracy: 0.8640
Epoch 2/100
53/53 [==============================] - 61s 1s/step - loss: 0.2863 - accuracy: 0.8926 - val_loss: 0.2814 - val_accuracy: 0.8813
Epoch 3/100
53/53 [==============================] - 61s 1s/step - loss: 0.2293 - accuracy: 0.9104 - val_loss: 0.2054 - val_accuracy: 0.9160
Epoch 4/100
53/53 [==============================] - 63s 1s/step - loss: 0.1750 - accuracy: 0.9320 - val_loss: 0.1668 - val_accuracy: 0.9320
Epoch 5/100
53/53 [==============================] - 61s 1s/step - loss: 0.2044 - accuracy: 0.9206 - val_loss: 0.1658 - val_accuracy: 0.9347
Epoch 6/100
53/53 [==============================] - 61s 1s/step - loss: 0.1407 - accuracy: 0.9415 - val_loss: 0.0888 - val_accuracy: 0.9720
Epoch 7/100
53/53 [==============================] - 61s 1s/step - loss: 0.1047 - accuracy: 0.9600 - val_loss: 0.1113 - val_accuracy: 0.9587
Epoch 8/100
53/53 [==============================] - 60s 1s/step - loss: 0.1077 - accuracy: 0.9573 - val_loss: 0.0819 - val_accuracy: 0.9693
Epoch 9/100
53/53 [==============================] - 61s 1s/step - loss: 0.0998 - accuracy: 0.9640 - val_loss: 0.1586 - val_accuracy: 0.9427
Epoch 10/100
53/53 [==============================] - 63s 1s/step - loss: 0.1004 - accuracy: 0.9621 - val_loss: 0.1504 - val_accuracy: 0.9333
Epoch 11/100
53/53 [==============================] - 60s 1s/step - loss: 0.0902 - accuracy: 0.9695 - val_loss: 0.1016 - val_accuracy: 0.9600
Epoch 12/100
53/53 [==============================] - 61s 1s/step - loss: 0.0773 - accuracy: 0.9714 - val_loss: 0.0647 - val_accuracy: 0.9800
Epoch 13/100
53/53 [==============================] - 63s 1s/step - loss: 0.0797 - accuracy: 0.9699 - val_loss: 0.0485 - val_accuracy: 0.9853
Epoch 14/100
53/53 [==============================] - 61s 1s/step - loss: 0.0750 - accuracy: 0.9727 - val_loss: 0.0601 - val_accuracy: 0.9787
Epoch 15/100
53/53 [==============================] - 62s 1s/step - loss: 0.0629 - accuracy: 0.9766 - val_loss: 0.0476 - val_accuracy: 0.9787
Epoch 16/100
53/53 [==============================] - 63s 1s/step - loss: 0.0564 - accuracy: 0.9793 - val_loss: 0.0565 - val_accuracy: 0.9813
Epoch 17/100
53/53 [==============================] - 61s 1s/step - loss: 0.0545 - accuracy: 0.9809 - val_loss: 0.0325 - val_accuracy: 0.9893
Epoch 18/100
53/53 [==============================] - 61s 1s/step - loss: 0.0415 - accuracy: 0.9859 - val_loss: 0.0776 - val_accuracy: 0.9693
Epoch 19/100
53/53 [==============================] - 61s 1s/step - loss: 0.0537 - accuracy: 0.9810 - val_loss: 0.0647 - val_accuracy: 0.9853
Epoch 20/100
53/53 [==============================] - 62s 1s/step - loss: 0.0556 - accuracy: 0.9802 - val_loss: 0.0500 - val_accuracy: 0.9880
Epoch 21/100
53/53 [==============================] - 63s 1s/step - loss: 0.0486 - accuracy: 0.9828 - val_loss: 0.0470 - val_accuracy: 0.9827
Epoch 22/100
53/53 [==============================] - 61s 1s/step - loss: 0.0479 - accuracy: 0.9825 - val_loss: 0.0918 - val_accuracy: 0.9693
Epoch 23/100
53/53 [==============================] - 61s 1s/step - loss: 0.0446 - accuracy: 0.9834 - val_loss: 0.0429 - val_accuracy: 0.9867
Epoch 24/100
53/53 [==============================] - 61s 1s/step - loss: 0.0309 - accuracy: 0.9889 - val_loss: 0.0473 - val_accuracy: 0.9867
Epoch 25/100
53/53 [==============================] - 63s 1s/step - loss: 0.0341 - accuracy: 0.9895 - val_loss: 0.0244 - val_accuracy: 0.9907
Epoch 26/100
53/53 [==============================] - 60s 1s/step - loss: 0.0357 - accuracy: 0.9874 - val_loss: 0.0289 - val_accuracy: 0.9893
Epoch 27/100
53/53 [==============================] - 61s 1s/step - loss: 0.0331 - accuracy: 0.9893 - val_loss: 0.0246 - val_accuracy: 0.9920
Epoch 28/100
53/53 [==============================] - 61s 1s/step - loss: 0.0339 - accuracy: 0.9879 - val_loss: 0.0646 - val_accuracy: 0.9787
Epoch 29/100
53/53 [==============================] - 61s 1s/step - loss: 0.0250 - accuracy: 0.9910 - val_loss: 0.0146 - val_accuracy: 0.9947
Epoch 30/100
53/53 [==============================] - 63s 1s/step - loss: 0.0343 - accuracy: 0.9883 - val_loss: 0.0318 - val_accuracy: 0.9893
Epoch 31/100
53/53 [==============================] - 61s 1s/step - loss: 0.0312 - accuracy: 0.9893 - val_loss: 0.0270 - val_accuracy: 0.9880
Epoch 32/100
53/53 [==============================] - 61s 1s/step - loss: 0.0201 - accuracy: 0.9917 - val_loss: 0.0264 - val_accuracy: 0.9893
Epoch 33/100
53/53 [==============================] - 61s 1s/step - loss: 0.0371 - accuracy: 0.9876 - val_loss: 0.0722 - val_accuracy: 0.9773