text
stringlengths 0
4.99k
|
---|
activation_11 (Activation) (None, 500, 128) 0 conv1d_16[0][0] |
__________________________________________________________________________________________________ |
conv1d_17 (Conv1D) (None, 500, 128) 49280 activation_11[0][0] |
__________________________________________________________________________________________________ |
conv1d_14 (Conv1D) (None, 500, 128) 16512 max_pooling1d_3[0][0] |
__________________________________________________________________________________________________ |
add_4 (Add) (None, 500, 128) 0 conv1d_17[0][0] |
conv1d_14[0][0] |
__________________________________________________________________________________________________ |
activation_12 (Activation) (None, 500, 128) 0 add_4[0][0] |
__________________________________________________________________________________________________ |
max_pooling1d_4 (MaxPooling1D) (None, 250, 128) 0 activation_12[0][0] |
__________________________________________________________________________________________________ |
average_pooling1d (AveragePooli (None, 83, 128) 0 max_pooling1d_4[0][0] |
__________________________________________________________________________________________________ |
flatten (Flatten) (None, 10624) 0 average_pooling1d[0][0] |
__________________________________________________________________________________________________ |
dense (Dense) (None, 256) 2720000 flatten[0][0] |
__________________________________________________________________________________________________ |
dense_1 (Dense) (None, 128) 32896 dense[0][0] |
__________________________________________________________________________________________________ |
output (Dense) (None, 5) 645 dense_1[0][0] |
================================================================================================== |
Total params: 3,088,597 |
Trainable params: 3,088,597 |
Non-trainable params: 0 |
__________________________________________________________________________________________________ |
Training |
history = model.fit( |
train_ds, |
epochs=EPOCHS, |
validation_data=valid_ds, |
callbacks=[earlystopping_cb, mdlcheckpoint_cb], |
) |
Epoch 1/100 |
53/53 [==============================] - 62s 1s/step - loss: 1.0107 - accuracy: 0.6929 - val_loss: 0.3367 - val_accuracy: 0.8640 |
Epoch 2/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.2863 - accuracy: 0.8926 - val_loss: 0.2814 - val_accuracy: 0.8813 |
Epoch 3/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.2293 - accuracy: 0.9104 - val_loss: 0.2054 - val_accuracy: 0.9160 |
Epoch 4/100 |
53/53 [==============================] - 63s 1s/step - loss: 0.1750 - accuracy: 0.9320 - val_loss: 0.1668 - val_accuracy: 0.9320 |
Epoch 5/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.2044 - accuracy: 0.9206 - val_loss: 0.1658 - val_accuracy: 0.9347 |
Epoch 6/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.1407 - accuracy: 0.9415 - val_loss: 0.0888 - val_accuracy: 0.9720 |
Epoch 7/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.1047 - accuracy: 0.9600 - val_loss: 0.1113 - val_accuracy: 0.9587 |
Epoch 8/100 |
53/53 [==============================] - 60s 1s/step - loss: 0.1077 - accuracy: 0.9573 - val_loss: 0.0819 - val_accuracy: 0.9693 |
Epoch 9/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0998 - accuracy: 0.9640 - val_loss: 0.1586 - val_accuracy: 0.9427 |
Epoch 10/100 |
53/53 [==============================] - 63s 1s/step - loss: 0.1004 - accuracy: 0.9621 - val_loss: 0.1504 - val_accuracy: 0.9333 |
Epoch 11/100 |
53/53 [==============================] - 60s 1s/step - loss: 0.0902 - accuracy: 0.9695 - val_loss: 0.1016 - val_accuracy: 0.9600 |
Epoch 12/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0773 - accuracy: 0.9714 - val_loss: 0.0647 - val_accuracy: 0.9800 |
Epoch 13/100 |
53/53 [==============================] - 63s 1s/step - loss: 0.0797 - accuracy: 0.9699 - val_loss: 0.0485 - val_accuracy: 0.9853 |
Epoch 14/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0750 - accuracy: 0.9727 - val_loss: 0.0601 - val_accuracy: 0.9787 |
Epoch 15/100 |
53/53 [==============================] - 62s 1s/step - loss: 0.0629 - accuracy: 0.9766 - val_loss: 0.0476 - val_accuracy: 0.9787 |
Epoch 16/100 |
53/53 [==============================] - 63s 1s/step - loss: 0.0564 - accuracy: 0.9793 - val_loss: 0.0565 - val_accuracy: 0.9813 |
Epoch 17/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0545 - accuracy: 0.9809 - val_loss: 0.0325 - val_accuracy: 0.9893 |
Epoch 18/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0415 - accuracy: 0.9859 - val_loss: 0.0776 - val_accuracy: 0.9693 |
Epoch 19/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0537 - accuracy: 0.9810 - val_loss: 0.0647 - val_accuracy: 0.9853 |
Epoch 20/100 |
53/53 [==============================] - 62s 1s/step - loss: 0.0556 - accuracy: 0.9802 - val_loss: 0.0500 - val_accuracy: 0.9880 |
Epoch 21/100 |
53/53 [==============================] - 63s 1s/step - loss: 0.0486 - accuracy: 0.9828 - val_loss: 0.0470 - val_accuracy: 0.9827 |
Epoch 22/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0479 - accuracy: 0.9825 - val_loss: 0.0918 - val_accuracy: 0.9693 |
Epoch 23/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0446 - accuracy: 0.9834 - val_loss: 0.0429 - val_accuracy: 0.9867 |
Epoch 24/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0309 - accuracy: 0.9889 - val_loss: 0.0473 - val_accuracy: 0.9867 |
Epoch 25/100 |
53/53 [==============================] - 63s 1s/step - loss: 0.0341 - accuracy: 0.9895 - val_loss: 0.0244 - val_accuracy: 0.9907 |
Epoch 26/100 |
53/53 [==============================] - 60s 1s/step - loss: 0.0357 - accuracy: 0.9874 - val_loss: 0.0289 - val_accuracy: 0.9893 |
Epoch 27/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0331 - accuracy: 0.9893 - val_loss: 0.0246 - val_accuracy: 0.9920 |
Epoch 28/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0339 - accuracy: 0.9879 - val_loss: 0.0646 - val_accuracy: 0.9787 |
Epoch 29/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0250 - accuracy: 0.9910 - val_loss: 0.0146 - val_accuracy: 0.9947 |
Epoch 30/100 |
53/53 [==============================] - 63s 1s/step - loss: 0.0343 - accuracy: 0.9883 - val_loss: 0.0318 - val_accuracy: 0.9893 |
Epoch 31/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0312 - accuracy: 0.9893 - val_loss: 0.0270 - val_accuracy: 0.9880 |
Epoch 32/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0201 - accuracy: 0.9917 - val_loss: 0.0264 - val_accuracy: 0.9893 |
Epoch 33/100 |
53/53 [==============================] - 61s 1s/step - loss: 0.0371 - accuracy: 0.9876 - val_loss: 0.0722 - val_accuracy: 0.9773 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.