text
stringlengths 0
4.99k
|
---|
print(\"Our class names: {}\".format(class_names,)) |
audio_paths = [] |
labels = [] |
for label, name in enumerate(class_names): |
print(\"Processing speaker {}\".format(name,)) |
dir_path = Path(DATASET_AUDIO_PATH) / name |
speaker_sample_paths = [ |
os.path.join(dir_path, filepath) |
for filepath in os.listdir(dir_path) |
if filepath.endswith(\".wav\") |
] |
audio_paths += speaker_sample_paths |
labels += [label] * len(speaker_sample_paths) |
print( |
\"Found {} files belonging to {} classes.\".format(len(audio_paths), len(class_names)) |
) |
# Shuffle |
rng = np.random.RandomState(SHUFFLE_SEED) |
rng.shuffle(audio_paths) |
rng = np.random.RandomState(SHUFFLE_SEED) |
rng.shuffle(labels) |
# Split into training and validation |
num_val_samples = int(VALID_SPLIT * len(audio_paths)) |
print(\"Using {} files for training.\".format(len(audio_paths) - num_val_samples)) |
train_audio_paths = audio_paths[:-num_val_samples] |
train_labels = labels[:-num_val_samples] |
print(\"Using {} files for validation.\".format(num_val_samples)) |
valid_audio_paths = audio_paths[-num_val_samples:] |
valid_labels = labels[-num_val_samples:] |
# Create 2 datasets, one for training and the other for validation |
train_ds = paths_and_labels_to_dataset(train_audio_paths, train_labels) |
train_ds = train_ds.shuffle(buffer_size=BATCH_SIZE * 8, seed=SHUFFLE_SEED).batch( |
BATCH_SIZE |
) |
valid_ds = paths_and_labels_to_dataset(valid_audio_paths, valid_labels) |
valid_ds = valid_ds.shuffle(buffer_size=32 * 8, seed=SHUFFLE_SEED).batch(32) |
# Add noise to the training set |
train_ds = train_ds.map( |
lambda x, y: (add_noise(x, noises, scale=SCALE), y), |
num_parallel_calls=tf.data.AUTOTUNE, |
) |
# Transform audio wave to the frequency domain using `audio_to_fft` |
train_ds = train_ds.map( |
lambda x, y: (audio_to_fft(x), y), num_parallel_calls=tf.data.AUTOTUNE |
) |
train_ds = train_ds.prefetch(tf.data.AUTOTUNE) |
valid_ds = valid_ds.map( |
lambda x, y: (audio_to_fft(x), y), num_parallel_calls=tf.data.AUTOTUNE |
) |
valid_ds = valid_ds.prefetch(tf.data.AUTOTUNE) |
Our class names: ['Julia_Gillard', 'Jens_Stoltenberg', 'Nelson_Mandela', 'Magaret_Tarcher', 'Benjamin_Netanyau'] |
Processing speaker Julia_Gillard |
Processing speaker Jens_Stoltenberg |
Processing speaker Nelson_Mandela |
Processing speaker Magaret_Tarcher |
Processing speaker Benjamin_Netanyau |
Found 7501 files belonging to 5 classes. |
Using 6751 files for training. |
Using 750 files for validation. |
Model Definition |
def residual_block(x, filters, conv_num=3, activation=\"relu\"): |
# Shortcut |
s = keras.layers.Conv1D(filters, 1, padding=\"same\")(x) |
for i in range(conv_num - 1): |
x = keras.layers.Conv1D(filters, 3, padding=\"same\")(x) |
x = keras.layers.Activation(activation)(x) |
x = keras.layers.Conv1D(filters, 3, padding=\"same\")(x) |
x = keras.layers.Add()([x, s]) |
x = keras.layers.Activation(activation)(x) |
return keras.layers.MaxPool1D(pool_size=2, strides=2)(x) |
def build_model(input_shape, num_classes): |
inputs = keras.layers.Input(shape=input_shape, name=\"input\") |
x = residual_block(inputs, 16, 2) |
x = residual_block(x, 32, 2) |
x = residual_block(x, 64, 3) |
x = residual_block(x, 128, 3) |
x = residual_block(x, 128, 3) |
x = keras.layers.AveragePooling1D(pool_size=3, strides=3)(x) |
x = keras.layers.Flatten()(x) |
x = keras.layers.Dense(256, activation=\"relu\")(x) |
x = keras.layers.Dense(128, activation=\"relu\")(x) |
outputs = keras.layers.Dense(num_classes, activation=\"softmax\", name=\"output\")(x) |
return keras.models.Model(inputs=inputs, outputs=outputs) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.