text
stringlengths 0
194
|
---|
# Add timestamp and rank for better log readability |
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) |
log_message = f"[{timestamp}] [Rank {rank}] {s}" |
# Print to console if requested or if it's a specific "PRINT:" message |
if console or s.startswith("PRINT:"): |
actual_s = s[6:] if s.startswith("PRINT:") else s |
print(actual_s) # Print to stdout for master process |
if logfile: |
with open(logfile, "a") as f: |
f.write(log_message + "\n") |
with open(logfile, "a") as f: |
f.write(log_message + "\n") |
print0(f"PRINT: --- Script Start: {time.ctime()} ---", console=True) |
print0(f"PRINT: Parsed CLI args: {exp_args}", console=True) |
print0(f"PRINT: Hyperparameters: {args}", console=True) |
print0(f"PRINT: Using fixed seed: {exp_args.seed}", console=True) |
if master_process: |
print0(f"PRINT: Run directory: {run_dir_path_str}", console=True) |
print0(code) # Log the code |
# ... (other initial logs) |
######################################## |
# Construct model and optimizer # |
######################################## |
print0("PRINT: Constructing model...", console=True) |
model: nn.Module = GPT(vocab_size=args.vocab_size, num_layers=12, num_heads=6, model_dim=768, |
max_seq_len=max(args.train_seq_len, args.val_seq_len)).cuda() |
for m in model.modules(): |
if isinstance(m, nn.Embedding): |
m.bfloat16() |
print0("PRINT: Broadcasting model parameters...", console=True) |
for param in model.parameters(): |
dist.broadcast(param.detach(), 0) |
print0("PRINT: Model constructed and broadcasted.", console=True) |
# --- START MODIFIED PARAMETER COLLECTION AND OPTIMIZER SETUP --- |
if exp_args.model_parameterization == "qkvo": |
print0("PRINT: Collecting parameters for optimizers...", console=True) |
head_params = [model.lm_head.weight] |
embed_params = [model.embed.weight] + [ve.weight for ve in model.value_embeds] |
# Granular collection for attention and MLP parts |
attn_q_params = [] |
attn_k_params = [] |
attn_v_params = [] |
attn_o_params = [] # W_O from c_proj |
mlp_fc_params = [] |
mlp_proj_params = [] |
for block_module in model.blocks: |
if block_module.attn is not None: |
# These attributes (q_w, k_w, v_w) MUST exist in your CausalSelfAttention class |
if hasattr(block_module.attn, 'q_w'): attn_q_params.append(block_module.attn.q_w) |
else: print0(f"PRINT: Warning: q_w not found in attn module of a block.", console=True) |
if hasattr(block_module.attn, 'k_w'): attn_k_params.append(block_module.attn.k_w) |
else: print0(f"PRINT: Warning: k_w not found in attn module of a block.", console=True) |
if hasattr(block_module.attn, 'v_w'): attn_v_params.append(block_module.attn.v_w) |
else: print0(f"PRINT: Warning: v_w not found in attn module of a block.", console=True) |
attn_o_params.append(block_module.attn.c_proj.weight) |
if block_module.mlp is not None: |
mlp_fc_params.append(block_module.mlp.c_fc.weight) |
mlp_proj_params.append(block_module.mlp.c_proj.weight) |
# Combine into logical groups for experiments |
attn_qk_group = attn_q_params + attn_k_params |
attn_vo_group = attn_v_params + attn_o_params |
all_attn_matrices = attn_qk_group + attn_vo_group |
mlp_w1_group = mlp_fc_params |
mlp_w2_group = mlp_proj_params |
all_mlp_matrices = mlp_fc_params + mlp_proj_params |
# Scalar parameters (all others not explicitly grouped as matrices) |
matrix_params_for_scalar_check = set(head_params + embed_params + all_attn_matrices + all_mlp_matrices) |
scalar_params = [p for n, p in model.named_parameters() if p not in matrix_params_for_scalar_check] |
for p_scalar in scalar_params: # Sanity check |
if p_scalar.ndim >=2: |
print0(f"PRINT: Warning - Parameter {p_scalar.shape} ended up in scalar_params but has ndim >= 2. Check grouping.", console=True) |
# Determine parameter distribution based on optimizer_mode |
muon_params_target_list = [] |
adam_matrix_target_list = [] # Matrices that Adam will handle specifically |
adam_matrix_lr = 0.001 # LR for matrices if Adam handles them (can be tuned) |
current_optimizer_mode = exp_args.optimizer_mode |
print0(f"PRINT: Configuring optimizers for EXPERIMENT_MODE = {current_optimizer_mode}", console=True) |
if current_optimizer_mode == 0: # Original behavior: Muon on all "hidden_matrix_params" |
print0(f"PRINT: Mode 0: Muon on ALL Attention (QKVO) and ALL MLP matrices.", console=True) |
muon_params_target_list = all_attn_matrices + all_mlp_matrices |
# Adam handles embeds, head, scalars by default. No extra matrices for Adam here. |
elif current_optimizer_mode == 1: # Muon on QK, Adam on VO and MLP |
print0(f"PRINT: Mode 1: Muon on QK Attn. Adam on VO Attn, MLP (Adam LR: {adam_matrix_lr}).", console=True) |
muon_params_target_list = attn_qk_group |
adam_matrix_target_list = attn_vo_group + all_mlp_matrices |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.