Dataset Viewer
Auto-converted to Parquet
text
stringlengths
0
194
[2025-06-04 06:10:46] [Rank 0] PRINT: --- Script Start: Wed Jun 4 06:10:46 2025 ---
[2025-06-04 06:10:46] [Rank 0] PRINT: --- Script Start: Wed Jun 4 06:10:46 2025 ---
[2025-06-04 06:10:46] [Rank 0] PRINT: Parsed CLI args: Namespace(unet=False, seed=42, optimizer_mode=0, model_parameterization='qkvo')
[2025-06-04 06:10:46] [Rank 0] PRINT: Parsed CLI args: Namespace(unet=False, seed=42, optimizer_mode=0, model_parameterization='qkvo')
[2025-06-04 06:10:46] [Rank 0] PRINT: Hyperparameters: Hyperparameters()
[2025-06-04 06:10:46] [Rank 0] PRINT: Hyperparameters: Hyperparameters()
[2025-06-04 06:10:46] [Rank 0] PRINT: Using fixed seed: 42
[2025-06-04 06:10:46] [Rank 0] PRINT: Using fixed seed: 42
[2025-06-04 06:10:46] [Rank 0] PRINT: Run directory: logs_qkvo/adam_lr_001/mode_0_param_qkvo_seed_42
[2025-06-04 06:10:46] [Rank 0] PRINT: Run directory: logs_qkvo/adam_lr_001/mode_0_param_qkvo_seed_42
[2025-06-04 06:10:46] [Rank 0] import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import time
import copy
import glob
from dataclasses import dataclass, asdict
from functools import lru_cache
from pathlib import Path
import argparse # Keep argparse for --unet and potentially --optimizer_mode
import json
import random
import numpy as np
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
import torch
torch.empty(1, device="cuda", requires_grad=True).backward() # prevents a bug on some systems
from torch import Tensor, nn
import torch.nn.functional as F
import torch.distributed as dist
# use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import BlockMask, flex_attention
sys.path.append("/home/aiops/zhangfz/MUON_theory/modded-nanogpt") # Already present
from optimizers.MUON import Muon
from utils.float_compute import mm_op, backward as mm_backward_custom, setup_context as mm_setup_context_custom # Renamed
#from kn_util.utils import setup_debugpy
#torch._inductor.config.coordinate_descent_tuning = True
# -----------------------------------------------------------------------------
mm_op.register_autograd(mm_backward_custom, setup_context=mm_setup_context_custom) # Use renamed imports
# -----------------------------------------------------------------------------
# Seeding Function
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
print(f"PRINT: Set seed to {seed}", flush=True) # Print immediately for all ranks
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader (KEEP AS IS)
def _load_data_shard(file: Path):
header = torch.from_file(str(file), False, 256, dtype=torch.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
num_tokens = int(header[2])
with file.open("rb", buffering=0) as f:
tokens = torch.empty(num_tokens, dtype=torch.uint16, pin_memory=True)
f.seek(256 * 4)
nbytes = f.readinto(tokens.numpy())
assert nbytes == 2 * num_tokens, "number of tokens read does not match header"
return tokens
def distributed_data_generator(filename_pattern: str, batch_size: int, rank : int, world_size : int):
files = [Path(file) for file in sorted(glob.glob(filename_pattern))]
assert batch_size % world_size == 0
local_batch_size = batch_size // world_size
file_iter = iter(files) # use itertools.cycle(files) instead if you want to do multi-epoch training
tokens, pos = _load_data_shard(next(file_iter)), 0
while True:
if pos + batch_size + 1 >= len(tokens):
tokens, pos = _load_data_shard(next(file_iter)), 0
buf = tokens[pos + rank * local_batch_size:][:local_batch_size + 1]
inputs = buf[:-1].to(device="cuda", dtype=torch.int32, non_blocking=True) # no sync on host side;
targets = buf[1:].to(device="cuda", dtype=torch.int64, non_blocking=True) # H2D in another stream isn't helpful.
pos += batch_size
yield inputs, targets
# -----------------------------------------------------------------------------
# int main
parser = argparse.ArgumentParser(description="NanoGPT Training Script with Muon")
parser.add_argument("--unet", action="store_true", help="Use U-net architecture")
parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility")
# --- MODIFICATION: Add optimizer_mode as a CLI argument ---
parser.add_argument("--optimizer_mode", type=int, default=0,
help="Defines how Muon is applied. "
"0: Muon(All Hidden Attn+MLP - original); "
"1: Muon(QK Attn)/Adam(VO Attn,MLP); "
"2: Muon(VO Attn)/Adam(QK Attn,MLP); "
"3: Muon(All Attn)/Adam(MLP); "
"4: Muon(MLP)/Adam(All Attn)"
"5: All Adam (No Muon, all applicable matrices to Adam)."
"6: Muon(W_2 MLP)/Adam(attn, W_1 MLP)."
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
102