id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 59
127
|
---|---|---|
bb2b8267c137-2
|
echo: bool = False
"""Echo the prompt in the completion."""
use_multiplicative_frequency_penalty: bool = False
sequence_penalty: float = 0.0
sequence_penalty_min_length: int = 2
use_multiplicative_sequence_penalty: bool = False
completion_bias_inclusion: Optional[Sequence[str]] = None
completion_bias_inclusion_first_token_only: bool = False
completion_bias_exclusion: Optional[Sequence[str]] = None
completion_bias_exclusion_first_token_only: bool = False
"""Only consider the first token for the completion_bias_exclusion."""
contextual_control_threshold: Optional[float] = None
"""If set to None, attention control parameters only apply to those tokens that have
explicitly been set in the request.
If set to a non-None value, control parameters are also applied to similar tokens.
"""
control_log_additive: Optional[bool] = True
"""True: apply control by adding the log(control_factor) to attention scores.
False: (attention_scores - - attention_scores.min(-1)) * control_factor
"""
repetition_penalties_include_completion: bool = True
"""Flag deciding whether presence penalty or frequency penalty
are updated from the completion."""
raw_completion: bool = False
"""Force the raw completion of the model to be returned."""
aleph_alpha_api_key: Optional[str] = None
"""API key for Aleph Alpha API."""
stop_sequences: Optional[List[str]] = None
"""Stop sequences to use."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/aleph_alpha.html
|
bb2b8267c137-3
|
"""Validate that api key and python package exists in environment."""
aleph_alpha_api_key = get_from_dict_or_env(
values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY"
)
try:
import aleph_alpha_client
values["client"] = aleph_alpha_client.Client(token=aleph_alpha_api_key)
except ImportError:
raise ImportError(
"Could not import aleph_alpha_client python package. "
"Please install it with `pip install aleph_alpha_client`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling the Aleph Alpha API."""
return {
"maximum_tokens": self.maximum_tokens,
"temperature": self.temperature,
"top_k": self.top_k,
"top_p": self.top_p,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"n": self.n,
"repetition_penalties_include_prompt": self.repetition_penalties_include_prompt, # noqa: E501
"use_multiplicative_presence_penalty": self.use_multiplicative_presence_penalty, # noqa: E501
"penalty_bias": self.penalty_bias,
"penalty_exceptions": self.penalty_exceptions,
"penalty_exceptions_include_stop_sequences": self.penalty_exceptions_include_stop_sequences, # noqa: E501
"best_of": self.best_of,
"logit_bias": self.logit_bias,
"log_probs": self.log_probs,
"tokens": self.tokens,
"disable_optimizations": self.disable_optimizations,
"minimum_tokens": self.minimum_tokens,
"echo": self.echo,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/aleph_alpha.html
|
bb2b8267c137-4
|
"minimum_tokens": self.minimum_tokens,
"echo": self.echo,
"use_multiplicative_frequency_penalty": self.use_multiplicative_frequency_penalty, # noqa: E501
"sequence_penalty": self.sequence_penalty,
"sequence_penalty_min_length": self.sequence_penalty_min_length,
"use_multiplicative_sequence_penalty": self.use_multiplicative_sequence_penalty, # noqa: E501
"completion_bias_inclusion": self.completion_bias_inclusion,
"completion_bias_inclusion_first_token_only": self.completion_bias_inclusion_first_token_only, # noqa: E501
"completion_bias_exclusion": self.completion_bias_exclusion,
"completion_bias_exclusion_first_token_only": self.completion_bias_exclusion_first_token_only, # noqa: E501
"contextual_control_threshold": self.contextual_control_threshold,
"control_log_additive": self.control_log_additive,
"repetition_penalties_include_completion": self.repetition_penalties_include_completion, # noqa: E501
"raw_completion": self.raw_completion,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "alpeh_alpha"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Aleph Alpha's completion endpoint.
Args:
prompt: The prompt to pass into the model.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/aleph_alpha.html
|
bb2b8267c137-5
|
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = alpeh_alpha("Tell me a joke.")
"""
from aleph_alpha_client import CompletionRequest, Prompt
params = self._default_params
if self.stop_sequences is not None and stop is not None:
raise ValueError(
"stop sequences found in both the input and default params."
)
elif self.stop_sequences is not None:
params["stop_sequences"] = self.stop_sequences
else:
params["stop_sequences"] = stop
params = {**params, **kwargs}
request = CompletionRequest(prompt=Prompt.from_text(prompt), **params)
response = self.client.complete(model=self.model, request=request)
text = response.completions[0].completion
# If stop tokens are provided, Aleph Alpha's endpoint returns them.
# In order to make this consistent with other endpoints, we strip them.
if stop is not None or self.stop_sequences is not None:
text = enforce_stop_tokens(text, params["stop_sequences"])
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/aleph_alpha.html
|
d3d0f089a85f-0
|
Source code for langchain.llms.cerebriumai
"""Wrapper around CerebriumAI API."""
import logging
from typing import Any, Dict, List, Mapping, Optional
from pydantic import Extra, Field, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class CerebriumAI(LLM):
"""Wrapper around CerebriumAI large language models.
To use, you should have the ``cerebrium`` python package installed, and the
environment variable ``CEREBRIUMAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.llms import CerebriumAI
cerebrium = CerebriumAI(endpoint_url="")
"""
endpoint_url: str = ""
"""model endpoint to use"""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not
explicitly specified."""
cerebriumai_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic config."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/cerebriumai.html
|
d3d0f089a85f-1
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""{field_name} was transfered to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
cerebriumai_api_key = get_from_dict_or_env(
values, "cerebriumai_api_key", "CEREBRIUMAI_API_KEY"
)
values["cerebriumai_api_key"] = cerebriumai_api_key
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"endpoint_url": self.endpoint_url},
**{"model_kwargs": self.model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "cerebriumai"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call to CerebriumAI endpoint."""
try:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/cerebriumai.html
|
d3d0f089a85f-2
|
"""Call to CerebriumAI endpoint."""
try:
from cerebrium import model_api_request
except ImportError:
raise ValueError(
"Could not import cerebrium python package. "
"Please install it with `pip install cerebrium`."
)
params = self.model_kwargs or {}
response = model_api_request(
self.endpoint_url,
{"prompt": prompt, **params, **kwargs},
self.cerebriumai_api_key,
)
text = response["data"]["result"]
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the model parameters
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/cerebriumai.html
|
4e5163eae481-0
|
Source code for langchain.llms.human
from typing import Any, Callable, List, Mapping, Optional
from pydantic import Field
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
def _display_prompt(prompt: str) -> None:
"""Displays the given prompt to the user."""
print(f"\n{prompt}")
def _collect_user_input(
separator: Optional[str] = None, stop: Optional[List[str]] = None
) -> str:
"""Collects and returns user input as a single string."""
separator = separator or "\n"
lines = []
while True:
line = input()
if not line:
break
lines.append(line)
if stop and any(seq in line for seq in stop):
break
# Combine all lines into a single string
multi_line_input = separator.join(lines)
return multi_line_input
[docs]class HumanInputLLM(LLM):
"""
A LLM wrapper which returns user input as the response.
"""
input_func: Callable = Field(default_factory=lambda: _collect_user_input)
prompt_func: Callable[[str], None] = Field(default_factory=lambda: _display_prompt)
separator: str = "\n"
input_kwargs: Mapping[str, Any] = {}
prompt_kwargs: Mapping[str, Any] = {}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""
Returns an empty dictionary as there are no identifying parameters.
"""
return {}
@property
def _llm_type(self) -> str:
"""Returns the type of LLM."""
return "human-input"
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/human.html
|
4e5163eae481-1
|
"""Returns the type of LLM."""
return "human-input"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""
Displays the prompt to the user and returns their input as a response.
Args:
prompt (str): The prompt to be displayed to the user.
stop (Optional[List[str]]): A list of stop strings.
run_manager (Optional[CallbackManagerForLLMRun]): Currently not used.
Returns:
str: The user's input as a response.
"""
self.prompt_func(prompt, **self.prompt_kwargs)
user_input = self.input_func(
separator=self.separator, stop=stop, **self.input_kwargs
)
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the human themselves
user_input = enforce_stop_tokens(user_input, stop)
return user_input
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/human.html
|
74169f2c21e9-0
|
Source code for langchain.llms.google_palm
"""Wrapper arround Google's PaLM Text APIs."""
from __future__ import annotations
import logging
from typing import Any, Callable, Dict, List, Optional
from pydantic import BaseModel, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain.llms import BaseLLM
from langchain.schema import Generation, LLMResult
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
def _create_retry_decorator() -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
try:
import google.api_core.exceptions
except ImportError:
raise ImportError(
"Could not import google-api-core python package. "
"Please install it with `pip install google-api-core`."
)
multiplier = 2
min_seconds = 1
max_seconds = 60
max_retries = 10
return retry(
reraise=True,
stop=stop_after_attempt(max_retries),
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(google.api_core.exceptions.ResourceExhausted)
| retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable)
| retry_if_exception_type(google.api_core.exceptions.GoogleAPIError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/google_palm.html
|
74169f2c21e9-1
|
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def generate_with_retry(llm: GooglePalm, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
def _generate_with_retry(**kwargs: Any) -> Any:
return llm.client.generate_text(**kwargs)
return _generate_with_retry(**kwargs)
def _strip_erroneous_leading_spaces(text: str) -> str:
"""Strip erroneous leading spaces from text.
The PaLM API will sometimes erroneously return a single leading space in all
lines > 1. This function strips that space.
"""
has_leading_space = all(not line or line[0] == " " for line in text.split("\n")[1:])
if has_leading_space:
return text.replace("\n ", "\n")
else:
return text
[docs]class GooglePalm(BaseLLM, BaseModel):
client: Any #: :meta private:
google_api_key: Optional[str]
model_name: str = "models/text-bison-001"
"""Model name to use."""
temperature: float = 0.7
"""Run inference with this temperature. Must by in the closed interval
[0.0, 1.0]."""
top_p: Optional[float] = None
"""Decode using nucleus sampling: consider the smallest set of tokens whose
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
top_k: Optional[int] = None
"""Decode using top-k sampling: consider the set of top_k most probable tokens.
Must be positive."""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/google_palm.html
|
74169f2c21e9-2
|
Must be positive."""
max_output_tokens: Optional[int] = None
"""Maximum number of tokens to include in a candidate. Must be greater than zero.
If unset, will default to 64."""
n: int = 1
"""Number of chat completions to generate for each prompt. Note that the API may
not return the full n completions if duplicates are generated."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate api key, python package exists."""
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
try:
import google.generativeai as genai
genai.configure(api_key=google_api_key)
except ImportError:
raise ImportError(
"Could not import google-generativeai python package. "
"Please install it with `pip install google-generativeai`."
)
values["client"] = genai
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
raise ValueError("temperature must be in the range [0.0, 1.0]")
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
raise ValueError("top_p must be in the range [0.0, 1.0]")
if values["top_k"] is not None and values["top_k"] <= 0:
raise ValueError("top_k must be positive")
if values["max_output_tokens"] is not None and values["max_output_tokens"] <= 0:
raise ValueError("max_output_tokens must be greater than zero")
return values
def _generate(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/google_palm.html
|
74169f2c21e9-3
|
return values
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
generations = []
for prompt in prompts:
completion = generate_with_retry(
self,
model=self.model_name,
prompt=prompt,
stop_sequences=stop,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
max_output_tokens=self.max_output_tokens,
candidate_count=self.n,
**kwargs,
)
prompt_generations = []
for candidate in completion.candidates:
raw_text = candidate["output"]
stripped_text = _strip_erroneous_leading_spaces(raw_text)
prompt_generations.append(Generation(text=stripped_text))
generations.append(prompt_generations)
return LLMResult(generations=generations)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
raise NotImplementedError()
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "google_palm"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/google_palm.html
|
2a98289ee570-0
|
Source code for langchain.llms.huggingface_text_gen_inference
"""Wrapper around Huggingface text generation inference API."""
from functools import partial
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
[docs]class HuggingFaceTextGenInference(LLM):
"""
HuggingFace text generation inference API.
This class is a wrapper around the HuggingFace text generation inference API.
It is used to generate text from a given prompt.
Attributes:
- max_new_tokens: The maximum number of tokens to generate.
- top_k: The number of top-k tokens to consider when generating text.
- top_p: The cumulative probability threshold for generating text.
- typical_p: The typical probability threshold for generating text.
- temperature: The temperature to use when generating text.
- repetition_penalty: The repetition penalty to use when generating text.
- stop_sequences: A list of stop sequences to use when generating text.
- seed: The seed to use when generating text.
- inference_server_url: The URL of the inference server to use.
- timeout: The timeout value in seconds to use while connecting to inference server.
- client: The client object used to communicate with the inference server.
Methods:
- _call: Generates text based on a given prompt and stop sequences.
- _llm_type: Returns the type of LLM.
"""
"""
Example:
.. code-block:: python
# Basic Example (no streaming)
llm = HuggingFaceTextGenInference(
inference_server_url = "http://localhost:8010/",
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_text_gen_inference.html
|
2a98289ee570-1
|
inference_server_url = "http://localhost:8010/",
max_new_tokens = 512,
top_k = 10,
top_p = 0.95,
typical_p = 0.95,
temperature = 0.01,
repetition_penalty = 1.03,
)
print(llm("What is Deep Learning?"))
# Streaming response example
from langchain.callbacks import streaming_stdout
callbacks = [streaming_stdout.StreamingStdOutCallbackHandler()]
llm = HuggingFaceTextGenInference(
inference_server_url = "http://localhost:8010/",
max_new_tokens = 512,
top_k = 10,
top_p = 0.95,
typical_p = 0.95,
temperature = 0.01,
repetition_penalty = 1.03,
callbacks = callbacks,
stream = True
)
print(llm("What is Deep Learning?"))
"""
max_new_tokens: int = 512
top_k: Optional[int] = None
top_p: Optional[float] = 0.95
typical_p: Optional[float] = 0.95
temperature: float = 0.8
repetition_penalty: Optional[float] = None
stop_sequences: List[str] = Field(default_factory=list)
seed: Optional[int] = None
inference_server_url: str = ""
timeout: int = 120
stream: bool = False
client: Any
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_text_gen_inference.html
|
2a98289ee570-2
|
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that python package exists in environment."""
try:
import text_generation
values["client"] = text_generation.Client(
values["inference_server_url"], timeout=values["timeout"]
)
except ImportError:
raise ImportError(
"Could not import text_generation python package. "
"Please install it with `pip install text_generation`."
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "hf_textgen_inference"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
if stop is None:
stop = self.stop_sequences
else:
stop += self.stop_sequences
if not self.stream:
res = self.client.generate(
prompt,
stop_sequences=stop,
max_new_tokens=self.max_new_tokens,
top_k=self.top_k,
top_p=self.top_p,
typical_p=self.typical_p,
temperature=self.temperature,
repetition_penalty=self.repetition_penalty,
seed=self.seed,
**kwargs,
)
# remove stop sequences from the end of the generated text
for stop_seq in stop:
if stop_seq in res.generated_text:
res.generated_text = res.generated_text[
: res.generated_text.index(stop_seq)
]
text = res.generated_text
else:
text_callback = None
if run_manager:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_text_gen_inference.html
|
2a98289ee570-3
|
else:
text_callback = None
if run_manager:
text_callback = partial(
run_manager.on_llm_new_token, verbose=self.verbose
)
params = {
"stop_sequences": stop,
"max_new_tokens": self.max_new_tokens,
"top_k": self.top_k,
"top_p": self.top_p,
"typical_p": self.typical_p,
"temperature": self.temperature,
"repetition_penalty": self.repetition_penalty,
"seed": self.seed,
}
text = ""
for res in self.client.generate_stream(prompt, **params):
token = res.token
is_stop = False
for stop_seq in stop:
if stop_seq in token.text:
is_stop = True
break
if is_stop:
break
if not token.special:
if text_callback:
text_callback(token.text)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_text_gen_inference.html
|
563eb63e1fc6-0
|
Source code for langchain.llms.huggingface_pipeline
"""Wrapper around HuggingFace Pipeline APIs."""
import importlib.util
import logging
from typing import Any, List, Mapping, Optional
from pydantic import Extra
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
DEFAULT_MODEL_ID = "gpt2"
DEFAULT_TASK = "text-generation"
VALID_TASKS = ("text2text-generation", "text-generation", "summarization")
logger = logging.getLogger(__name__)
[docs]class HuggingFacePipeline(LLM):
"""Wrapper around HuggingFace Pipeline API.
To use, you should have the ``transformers`` python package installed.
Only supports `text-generation`, `text2text-generation` and `summarization` for now.
Example using from_model_id:
.. code-block:: python
from langchain.llms import HuggingFacePipeline
hf = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
pipeline_kwargs={"max_new_tokens": 10},
)
Example passing pipeline in directly:
.. code-block:: python
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
hf = HuggingFacePipeline(pipeline=pipe)
"""
pipeline: Any #: :meta private:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_pipeline.html
|
563eb63e1fc6-1
|
"""
pipeline: Any #: :meta private:
model_id: str = DEFAULT_MODEL_ID
"""Model name to use."""
model_kwargs: Optional[dict] = None
"""Key word arguments passed to the model."""
pipeline_kwargs: Optional[dict] = None
"""Key word arguments passed to the pipeline."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] @classmethod
def from_model_id(
cls,
model_id: str,
task: str,
device: int = -1,
model_kwargs: Optional[dict] = None,
pipeline_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> LLM:
"""Construct the pipeline object from model_id and task."""
try:
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
from transformers import pipeline as hf_pipeline
except ImportError:
raise ValueError(
"Could not import transformers python package. "
"Please install it with `pip install transformers`."
)
_model_kwargs = model_kwargs or {}
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
try:
if task == "text-generation":
model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs)
elif task in ("text2text-generation", "summarization"):
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs)
else:
raise ValueError(
f"Got invalid task {task}, "
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_pipeline.html
|
563eb63e1fc6-2
|
else:
raise ValueError(
f"Got invalid task {task}, "
f"currently only {VALID_TASKS} are supported"
)
except ImportError as e:
raise ValueError(
f"Could not load the {task} model due to missing dependencies."
) from e
if importlib.util.find_spec("torch") is not None:
import torch
cuda_device_count = torch.cuda.device_count()
if device < -1 or (device >= cuda_device_count):
raise ValueError(
f"Got device=={device}, "
f"device is required to be within [-1, {cuda_device_count})"
)
if device < 0 and cuda_device_count > 0:
logger.warning(
"Device has %d GPUs available. "
"Provide device={deviceId} to `from_model_id` to use available"
"GPUs for execution. deviceId is -1 (default) for CPU and "
"can be a positive integer associated with CUDA device id.",
cuda_device_count,
)
if "trust_remote_code" in _model_kwargs:
_model_kwargs = {
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
}
_pipeline_kwargs = pipeline_kwargs or {}
pipeline = hf_pipeline(
task=task,
model=model,
tokenizer=tokenizer,
device=device,
model_kwargs=_model_kwargs,
**_pipeline_kwargs,
)
if pipeline.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
return cls(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_pipeline.html
|
563eb63e1fc6-3
|
)
return cls(
pipeline=pipeline,
model_id=model_id,
model_kwargs=_model_kwargs,
pipeline_kwargs=_pipeline_kwargs,
**kwargs,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_id": self.model_id,
"model_kwargs": self.model_kwargs,
"pipeline_kwargs": self.pipeline_kwargs,
}
@property
def _llm_type(self) -> str:
return "huggingface_pipeline"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
response = self.pipeline(prompt)
if self.pipeline.task == "text-generation":
# Text generation return includes the starter text.
text = response[0]["generated_text"][len(prompt) :]
elif self.pipeline.task == "text2text-generation":
text = response[0]["generated_text"]
elif self.pipeline.task == "summarization":
text = response[0]["summary_text"]
else:
raise ValueError(
f"Got invalid task {self.pipeline.task}, "
f"currently only {VALID_TASKS} are supported"
)
if stop is not None:
# This is a bit hacky, but I can't figure out a better way to enforce
# stop tokens when making calls to huggingface_hub.
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_pipeline.html
|
563eb63e1fc6-4
|
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_pipeline.html
|
42208d9a35b2-0
|
Source code for langchain.chains.transform
"""Chain that runs an arbitrary python function."""
from typing import Callable, Dict, List, Optional
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
[docs]class TransformChain(Chain):
"""Chain transform chain output.
Example:
.. code-block:: python
from langchain import TransformChain
transform_chain = TransformChain(input_variables=["text"],
output_variables["entities"], transform=func())
"""
input_variables: List[str]
output_variables: List[str]
transform: Callable[[Dict[str, str]], Dict[str, str]]
@property
def input_keys(self) -> List[str]:
"""Expect input keys.
:meta private:
"""
return self.input_variables
@property
def output_keys(self) -> List[str]:
"""Return output keys.
:meta private:
"""
return self.output_variables
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
return self.transform(inputs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/transform.html
|
34530c35284d-0
|
Source code for langchain.chains.mapreduce
"""Map-reduce chain.
Splits up a document, sends the smaller parts to the LLM with one prompt,
then combines the results with another one.
"""
from __future__ import annotations
from typing import Any, Dict, List, Mapping, Optional
from pydantic import Extra
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun, Callbacks
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
from langchain.text_splitter import TextSplitter
[docs]class MapReduceChain(Chain):
"""Map-reduce chain."""
combine_documents_chain: BaseCombineDocumentsChain
"""Chain to use to combine documents."""
text_splitter: TextSplitter
"""Text splitter to use."""
input_key: str = "input_text" #: :meta private:
output_key: str = "output_text" #: :meta private:
[docs] @classmethod
def from_params(
cls,
llm: BaseLanguageModel,
prompt: BasePromptTemplate,
text_splitter: TextSplitter,
callbacks: Callbacks = None,
combine_chain_kwargs: Optional[Mapping[str, Any]] = None,
reduce_chain_kwargs: Optional[Mapping[str, Any]] = None,
**kwargs: Any,
) -> MapReduceChain:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/mapreduce.html
|
34530c35284d-1
|
**kwargs: Any,
) -> MapReduceChain:
"""Construct a map-reduce chain that uses the chain for map and reduce."""
llm_chain = LLMChain(llm=llm, prompt=prompt, callbacks=callbacks)
reduce_chain = StuffDocumentsChain(
llm_chain=llm_chain,
callbacks=callbacks,
**(reduce_chain_kwargs if reduce_chain_kwargs else {}),
)
combine_documents_chain = MapReduceDocumentsChain(
llm_chain=llm_chain,
combine_document_chain=reduce_chain,
callbacks=callbacks,
**(combine_chain_kwargs if combine_chain_kwargs else {}),
)
return cls(
combine_documents_chain=combine_documents_chain,
text_splitter=text_splitter,
callbacks=callbacks,
**kwargs,
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
# Split the larger text into smaller chunks.
doc_text = inputs.pop(self.input_key)
texts = self.text_splitter.split_text(doc_text)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/mapreduce.html
|
34530c35284d-2
|
texts = self.text_splitter.split_text(doc_text)
docs = [Document(page_content=text) for text in texts]
_inputs: Dict[str, Any] = {
**inputs,
self.combine_documents_chain.input_key: docs,
}
outputs = self.combine_documents_chain.run(
_inputs, callbacks=_run_manager.get_child()
)
return {self.output_key: outputs}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/mapreduce.html
|
61f2067b6b2c-0
|
Source code for langchain.chains.sequential
"""Chain pipeline where the outputs of one step feed directly into next."""
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.input import get_color_mapping
[docs]class SequentialChain(Chain):
"""Chain where the outputs of one chain feed directly into next."""
chains: List[Chain]
input_variables: List[str]
output_variables: List[str] #: :meta private:
return_all: bool = False
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Return expected input keys to the chain.
:meta private:
"""
return self.input_variables
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return self.output_variables
@root_validator(pre=True)
def validate_chains(cls, values: Dict) -> Dict:
"""Validate that the correct inputs exist for all chains."""
chains = values["chains"]
input_variables = values["input_variables"]
memory_keys = list()
if "memory" in values and values["memory"] is not None:
"""Validate that prompt input variables are consistent."""
memory_keys = values["memory"].memory_variables
if set(input_variables).intersection(set(memory_keys)):
overlapping_keys = set(input_variables) & set(memory_keys)
raise ValueError(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sequential.html
|
61f2067b6b2c-1
|
overlapping_keys = set(input_variables) & set(memory_keys)
raise ValueError(
f"The the input key(s) {''.join(overlapping_keys)} are found "
f"in the Memory keys ({memory_keys}) - please use input and "
f"memory keys that don't overlap."
)
known_variables = set(input_variables + memory_keys)
for chain in chains:
missing_vars = set(chain.input_keys).difference(known_variables)
if missing_vars:
raise ValueError(
f"Missing required input keys: {missing_vars}, "
f"only had {known_variables}"
)
overlapping_keys = known_variables.intersection(chain.output_keys)
if overlapping_keys:
raise ValueError(
f"Chain returned keys that already exist: {overlapping_keys}"
)
known_variables |= set(chain.output_keys)
if "output_variables" not in values:
if values.get("return_all", False):
output_keys = known_variables.difference(input_variables)
else:
output_keys = chains[-1].output_keys
values["output_variables"] = output_keys
else:
missing_vars = set(values["output_variables"]).difference(known_variables)
if missing_vars:
raise ValueError(
f"Expected output variables that were not found: {missing_vars}."
)
return values
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
known_values = inputs.copy()
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
for i, chain in enumerate(self.chains):
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sequential.html
|
61f2067b6b2c-2
|
for i, chain in enumerate(self.chains):
callbacks = _run_manager.get_child()
outputs = chain(known_values, return_only_outputs=True, callbacks=callbacks)
known_values.update(outputs)
return {k: known_values[k] for k in self.output_variables}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
known_values = inputs.copy()
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
for i, chain in enumerate(self.chains):
outputs = await chain.acall(
known_values, return_only_outputs=True, callbacks=callbacks
)
known_values.update(outputs)
return {k: known_values[k] for k in self.output_variables}
[docs]class SimpleSequentialChain(Chain):
"""Simple chain where the outputs of one step feed directly into next."""
chains: List[Chain]
strip_outputs: bool = False
input_key: str = "input" #: :meta private:
output_key: str = "output" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
@root_validator()
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sequential.html
|
61f2067b6b2c-3
|
"""
return [self.output_key]
@root_validator()
def validate_chains(cls, values: Dict) -> Dict:
"""Validate that chains are all single input/output."""
for chain in values["chains"]:
if len(chain.input_keys) != 1:
raise ValueError(
"Chains used in SimplePipeline should all have one input, got "
f"{chain} with {len(chain.input_keys)} inputs."
)
if len(chain.output_keys) != 1:
raise ValueError(
"Chains used in SimplePipeline should all have one output, got "
f"{chain} with {len(chain.output_keys)} outputs."
)
return values
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
_input = inputs[self.input_key]
color_mapping = get_color_mapping([str(i) for i in range(len(self.chains))])
for i, chain in enumerate(self.chains):
_input = chain.run(_input, callbacks=_run_manager.get_child(f"step_{i+1}"))
if self.strip_outputs:
_input = _input.strip()
_run_manager.on_text(
_input, color=color_mapping[str(i)], end="\n", verbose=self.verbose
)
return {self.output_key: _input}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sequential.html
|
61f2067b6b2c-4
|
) -> Dict[str, Any]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
_input = inputs[self.input_key]
color_mapping = get_color_mapping([str(i) for i in range(len(self.chains))])
for i, chain in enumerate(self.chains):
_input = await chain.arun(_input, callbacks=callbacks)
if self.strip_outputs:
_input = _input.strip()
await _run_manager.on_text(
_input, color=color_mapping[str(i)], end="\n", verbose=self.verbose
)
return {self.output_key: _input}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/sequential.html
|
03bd5206a62f-0
|
Source code for langchain.chains.llm_requests
"""Chain that hits a URL and then uses an LLM to parse results."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field, root_validator
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains import LLMChain
from langchain.chains.base import Chain
from langchain.requests import TextRequestsWrapper
DEFAULT_HEADERS = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36" # noqa: E501
}
[docs]class LLMRequestsChain(Chain):
"""Chain that hits a URL and then uses an LLM to parse results."""
llm_chain: LLMChain
requests_wrapper: TextRequestsWrapper = Field(
default_factory=TextRequestsWrapper, exclude=True
)
text_length: int = 8000
requests_key: str = "requests_result" #: :meta private:
input_key: str = "url" #: :meta private:
output_key: str = "output" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_requests.html
|
03bd5206a62f-1
|
:meta private:
"""
return [self.output_key]
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
try:
from bs4 import BeautifulSoup # noqa: F401
except ImportError:
raise ValueError(
"Could not import bs4 python package. "
"Please install it with `pip install bs4`."
)
return values
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
from bs4 import BeautifulSoup
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
url = inputs[self.input_key]
res = self.requests_wrapper.get(url)
# extract the text from the html
soup = BeautifulSoup(res, "html.parser")
other_keys[self.requests_key] = soup.get_text()[: self.text_length]
result = self.llm_chain.predict(
callbacks=_run_manager.get_child(), **other_keys
)
return {self.output_key: result}
@property
def _chain_type(self) -> str:
return "llm_requests_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_requests.html
|
d9b7f3a2ee01-0
|
Source code for langchain.chains.llm
"""Chain that just formats a prompt and calls an LLM."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
from pydantic import Extra
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManager,
AsyncCallbackManagerForChainRun,
CallbackManager,
CallbackManagerForChainRun,
Callbacks,
)
from langchain.chains.base import Chain
from langchain.input import get_colored_text
from langchain.load.dump import dumpd
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import LLMResult, PromptValue
[docs]class LLMChain(Chain):
"""Chain to run queries against LLMs.
Example:
.. code-block:: python
from langchain import LLMChain, OpenAI, PromptTemplate
prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(
input_variables=["adjective"], template=prompt_template
)
llm = LLMChain(llm=OpenAI(), prompt=prompt)
"""
@property
def lc_serializable(self) -> bool:
return True
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: BaseLanguageModel
output_key: str = "text" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm.html
|
d9b7f3a2ee01-1
|
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
response = self.generate([inputs], run_manager=run_manager)
return self.create_outputs(response)[0]
[docs] def generate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
return self.llm.generate_prompt(
prompts, stop, callbacks=run_manager.get_child() if run_manager else None
)
[docs] async def agenerate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager)
return await self.llm.agenerate_prompt(
prompts, stop, callbacks=run_manager.get_child() if run_manager else None
)
[docs] def prep_prompts(
self,
input_list: List[Dict[str, Any]],
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm.html
|
d9b7f3a2ee01-2
|
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager:
run_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
[docs] async def aprep_prompts(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm.html
|
d9b7f3a2ee01-3
|
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager:
await run_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
[docs] def apply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
callback_manager = CallbackManager.configure(
callbacks, self.callbacks, self.verbose
)
run_manager = callback_manager.on_chain_start(
dumpd(self),
{"input_list": input_list},
)
try:
response = self.generate(input_list, run_manager=run_manager)
except (KeyboardInterrupt, Exception) as e:
run_manager.on_chain_error(e)
raise e
outputs = self.create_outputs(response)
run_manager.on_chain_end({"outputs": outputs})
return outputs
[docs] async def aapply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
callback_manager = AsyncCallbackManager.configure(
callbacks, self.callbacks, self.verbose
)
run_manager = await callback_manager.on_chain_start(
dumpd(self),
{"input_list": input_list},
)
try:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm.html
|
d9b7f3a2ee01-4
|
{"input_list": input_list},
)
try:
response = await self.agenerate(input_list, run_manager=run_manager)
except (KeyboardInterrupt, Exception) as e:
await run_manager.on_chain_error(e)
raise e
outputs = self.create_outputs(response)
await run_manager.on_chain_end({"outputs": outputs})
return outputs
[docs] def create_outputs(self, response: LLMResult) -> List[Dict[str, str]]:
"""Create outputs from response."""
return [
# Get the text of the top generated string.
{self.output_key: generation[0].text}
for generation in response.generations
]
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
response = await self.agenerate([inputs], run_manager=run_manager)
return self.create_outputs(response)[0]
[docs] def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
Args:
callbacks: Callbacks to pass to LLMChain
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return self(kwargs, callbacks=callbacks)[self.output_key]
[docs] async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
Args:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm.html
|
d9b7f3a2ee01-5
|
"""Format prompt with kwargs and pass to LLM.
Args:
callbacks: Callbacks to pass to LLMChain
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return (await self.acall(kwargs, callbacks=callbacks))[self.output_key]
[docs] def predict_and_parse(
self, callbacks: Callbacks = None, **kwargs: Any
) -> Union[str, List[str], Dict[str, Any]]:
"""Call predict and then parse the results."""
result = self.predict(callbacks=callbacks, **kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
[docs] async def apredict_and_parse(
self, callbacks: Callbacks = None, **kwargs: Any
) -> Union[str, List[str], Dict[str, str]]:
"""Call apredict and then parse the results."""
result = await self.apredict(callbacks=callbacks, **kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
[docs] def apply_and_parse(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
result = self.apply(input_list, callbacks=callbacks)
return self._parse_result(result)
def _parse_result(
self, result: List[Dict[str, str]]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm.html
|
d9b7f3a2ee01-6
|
def _parse_result(
self, result: List[Dict[str, str]]
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
if self.prompt.output_parser is not None:
return [
self.prompt.output_parser.parse(res[self.output_key]) for res in result
]
else:
return result
[docs] async def aapply_and_parse(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
result = await self.aapply(input_list, callbacks=callbacks)
return self._parse_result(result)
@property
def _chain_type(self) -> str:
return "llm_chain"
[docs] @classmethod
def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain:
"""Create LLMChain from LLM and template."""
prompt_template = PromptTemplate.from_template(template)
return cls(llm=llm, prompt=prompt_template)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm.html
|
0782652d9687-0
|
Source code for langchain.chains.moderation
"""Pass input through a moderation endpoint."""
from typing import Any, Dict, List, Optional
from pydantic import root_validator
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.utils import get_from_dict_or_env
[docs]class OpenAIModerationChain(Chain):
"""Pass input through a moderation endpoint.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.chains import OpenAIModerationChain
moderation = OpenAIModerationChain()
"""
client: Any #: :meta private:
model_name: Optional[str] = None
"""Moderation model name to use."""
error: bool = False
"""Whether or not to error if bad content was found."""
input_key: str = "input" #: :meta private:
output_key: str = "output" #: :meta private:
openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
openai_organization = get_from_dict_or_env(
values,
"openai_organization",
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/moderation.html
|
0782652d9687-1
|
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import openai
openai.api_key = openai_api_key
if openai_organization:
openai.organization = openai_organization
values["client"] = openai.Moderation
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def _moderate(self, text: str, results: dict) -> str:
if results["flagged"]:
error_str = "Text was found that violates OpenAI's content policy."
if self.error:
raise ValueError(error_str)
else:
return error_str
return text
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
text = inputs[self.input_key]
results = self.client.create(text)
output = self._moderate(text, results["results"][0])
return {self.output_key: output}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/moderation.html
|
88d3b7cf2280-0
|
Source code for langchain.chains.openai_functions
import json
from functools import partial
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.chains.sequential import SimpleSequentialChain
from langchain.chains.transform import TransformChain
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.chat import ChatPromptTemplate
EXTRACTION_NAME = "information_extraction"
EXTRACTION_KWARGS = {"function_call": {"name": "information_extraction"}}
def _resolve_schema_references(schema: Any, definitions: Dict[str, Any]) -> Any:
"""
Resolves the $ref keys in a JSON schema object using the provided definitions.
"""
if isinstance(schema, list):
for i, item in enumerate(schema):
schema[i] = _resolve_schema_references(item, definitions)
elif isinstance(schema, dict):
if "$ref" in schema:
ref_key = schema.pop("$ref").split("/")[-1]
ref = definitions.get(ref_key, {})
schema.update(ref)
else:
for key, value in schema.items():
schema[key] = _resolve_schema_references(value, definitions)
return schema
def _get_function_arguments(inputs: dict) -> str:
message = inputs["input"]
try:
func_call = message.additional_kwargs["function_call"]
except ValueError as exc:
raise ValueError(f"Could not parse function call: {exc}")
return func_call["arguments"]
def _parse_tag(inputs: dict) -> dict:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/openai_functions.html
|
88d3b7cf2280-1
|
return func_call["arguments"]
def _parse_tag(inputs: dict) -> dict:
args = _get_function_arguments(inputs)
return {"output": json.loads(args)}
def _parse_tag_pydantic(inputs: dict, pydantic_schema: Any) -> dict:
args = _get_function_arguments(inputs)
args = pydantic_schema.parse_raw(args)
return {"output": args}
def _parse_entities(inputs: dict) -> dict:
args = _get_function_arguments(inputs)
return {"output": json.loads(args)["info"]}
def _parse_entities_pydantic(inputs: dict, pydantic_schema: Any) -> dict:
args = _get_function_arguments(inputs)
pydantic_args = pydantic_schema.parse_raw(args)
return {"output": pydantic_args.info}
class OpenAIFunctionsChain(Chain):
prompt: BasePromptTemplate
llm: BaseLanguageModel
functions: List[Dict]
kwargs: Dict = Field(default_factory=dict)
@property
def input_keys(self) -> List[str]:
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
return ["output"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_inputs = {k: v for k, v in inputs.items() if k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**_inputs)
messages = prompt.to_messages()
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/openai_functions.html
|
88d3b7cf2280-2
|
callbacks = _run_manager.get_child()
predicted_message = self.llm.predict_messages(
messages, functions=self.functions, callbacks=callbacks, **self.kwargs
)
return {"output": predicted_message}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_inputs = {k: v for k, v in inputs.items() if k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**_inputs)
messages = prompt.to_messages()
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
predicted_message = await self.llm.apredict_messages(
messages, functions=self.functions, callbacks=callbacks, **self.kwargs
)
return {"output": predicted_message}
def _convert_schema(schema: dict) -> dict:
props = {k: {"title": k, **v} for k, v in schema["properties"].items()}
return {
"type": "object",
"properties": props,
"required": schema.get("required", []),
}
def _get_extraction_functions(entity_schema: dict) -> List[dict]:
return [
{
"name": EXTRACTION_NAME,
"description": "Extracts the relevant information from the passage.",
"parameters": {
"type": "object",
"properties": {
"info": {"type": "array", "items": _convert_schema(entity_schema)}
},
"required": ["info"],
},
}
]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/openai_functions.html
|
88d3b7cf2280-3
|
},
"required": ["info"],
},
}
]
def _get_tagging_functions(schema: dict) -> List[dict]:
return [
{
"name": EXTRACTION_NAME,
"description": "Extracts the relevant information from the passage.",
"parameters": _convert_schema(schema),
}
]
_EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned\
in the following passage together with their properties.
Passage:
{input}
"""
[docs]def create_extraction_chain(schema: dict, llm: BaseLanguageModel) -> Chain:
functions = _get_extraction_functions(schema)
prompt = ChatPromptTemplate.from_template(_EXTRACTION_TEMPLATE)
chain = OpenAIFunctionsChain(
llm=llm, prompt=prompt, functions=functions, kwargs=EXTRACTION_KWARGS
)
parsing_chain = TransformChain(
transform=_parse_entities,
input_variables=["input"],
output_variables=["output"],
)
return SimpleSequentialChain(chains=[chain, parsing_chain])
[docs]def create_extraction_chain_pydantic(
pydantic_schema: Any, llm: BaseLanguageModel
) -> Chain:
class PydanticSchema(BaseModel):
info: List[pydantic_schema] # type: ignore
openai_schema = PydanticSchema.schema()
openai_schema = _resolve_schema_references(
openai_schema, openai_schema["definitions"]
)
functions = _get_extraction_functions(openai_schema)
prompt = ChatPromptTemplate.from_template(_EXTRACTION_TEMPLATE)
chain = OpenAIFunctionsChain(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/openai_functions.html
|
88d3b7cf2280-4
|
chain = OpenAIFunctionsChain(
llm=llm, prompt=prompt, functions=functions, kwargs=EXTRACTION_KWARGS
)
pydantic_parsing_chain = TransformChain(
transform=partial(_parse_entities_pydantic, pydantic_schema=PydanticSchema),
input_variables=["input"],
output_variables=["output"],
)
return SimpleSequentialChain(chains=[chain, pydantic_parsing_chain])
_TAGGING_TEMPLATE = """Extract the desired information from the following passage.
Passage:
{input}
"""
[docs]def create_tagging_chain(schema: dict, llm: BaseLanguageModel) -> Chain:
functions = _get_tagging_functions(schema)
prompt = ChatPromptTemplate.from_template(_TAGGING_TEMPLATE)
chain = OpenAIFunctionsChain(
llm=llm, prompt=prompt, functions=functions, kwargs=EXTRACTION_KWARGS
)
parsing_chain = TransformChain(
transform=_parse_tag, input_variables=["input"], output_variables=["output"]
)
return SimpleSequentialChain(chains=[chain, parsing_chain])
[docs]def create_tagging_chain_pydantic(
pydantic_schema: Any, llm: BaseLanguageModel
) -> Chain:
openai_schema = pydantic_schema.schema()
functions = _get_tagging_functions(openai_schema)
prompt = ChatPromptTemplate.from_template(_TAGGING_TEMPLATE)
chain = OpenAIFunctionsChain(
llm=llm, prompt=prompt, functions=functions, kwargs=EXTRACTION_KWARGS
)
pydantic_parsing_chain = TransformChain(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/openai_functions.html
|
88d3b7cf2280-5
|
)
pydantic_parsing_chain = TransformChain(
transform=partial(_parse_tag_pydantic, pydantic_schema=pydantic_schema),
input_variables=["input"],
output_variables=["output"],
)
return SimpleSequentialChain(chains=[chain, pydantic_parsing_chain])
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/openai_functions.html
|
56a7ec5e72cf-0
|
Source code for langchain.chains.loading
"""Functionality for loading chains."""
import json
from pathlib import Path
from typing import Any, Union
import yaml
from langchain.chains.api.base import APIChain
from langchain.chains.base import Chain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain
from langchain.chains.combine_documents.refine import RefineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder
from langchain.chains.llm import LLMChain
from langchain.chains.llm_bash.base import LLMBashChain
from langchain.chains.llm_checker.base import LLMCheckerChain
from langchain.chains.llm_math.base import LLMMathChain
from langchain.chains.llm_requests import LLMRequestsChain
from langchain.chains.pal.base import PALChain
from langchain.chains.qa_with_sources.base import QAWithSourcesChain
from langchain.chains.qa_with_sources.vector_db import VectorDBQAWithSourcesChain
from langchain.chains.retrieval_qa.base import RetrievalQA, VectorDBQA
from langchain.chains.sql_database.base import SQLDatabaseChain
from langchain.llms.loading import load_llm, load_llm_from_config
from langchain.prompts.loading import load_prompt, load_prompt_from_config
from langchain.utilities.loading import try_load_from_hub
URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/chains/"
def _load_llm_chain(config: dict, **kwargs: Any) -> LLMChain:
"""Load LLM chain from config dict."""
if "llm" in config:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-1
|
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
elif "prompt_path" in config:
prompt = load_prompt(config.pop("prompt_path"))
else:
raise ValueError("One of `prompt` or `prompt_path` must be present.")
return LLMChain(llm=llm, prompt=prompt, **config)
def _load_hyde_chain(config: dict, **kwargs: Any) -> HypotheticalDocumentEmbedder:
"""Load hypothetical document embedder chain from config dict."""
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.")
if "embeddings" in kwargs:
embeddings = kwargs.pop("embeddings")
else:
raise ValueError("`embeddings` must be present.")
return HypotheticalDocumentEmbedder(
llm_chain=llm_chain, base_embeddings=embeddings, **config
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-2
|
)
def _load_stuff_documents_chain(config: dict, **kwargs: Any) -> StuffDocumentsChain:
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.")
if not isinstance(llm_chain, LLMChain):
raise ValueError(f"Expected LLMChain, got {llm_chain}")
if "document_prompt" in config:
prompt_config = config.pop("document_prompt")
document_prompt = load_prompt_from_config(prompt_config)
elif "document_prompt_path" in config:
document_prompt = load_prompt(config.pop("document_prompt_path"))
else:
raise ValueError(
"One of `document_prompt` or `document_prompt_path` must be present."
)
return StuffDocumentsChain(
llm_chain=llm_chain, document_prompt=document_prompt, **config
)
def _load_map_reduce_documents_chain(
config: dict, **kwargs: Any
) -> MapReduceDocumentsChain:
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.")
if not isinstance(llm_chain, LLMChain):
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-3
|
if not isinstance(llm_chain, LLMChain):
raise ValueError(f"Expected LLMChain, got {llm_chain}")
if "combine_document_chain" in config:
combine_document_chain_config = config.pop("combine_document_chain")
combine_document_chain = load_chain_from_config(combine_document_chain_config)
elif "combine_document_chain_path" in config:
combine_document_chain = load_chain(config.pop("combine_document_chain_path"))
else:
raise ValueError(
"One of `combine_document_chain` or "
"`combine_document_chain_path` must be present."
)
if "collapse_document_chain" in config:
collapse_document_chain_config = config.pop("collapse_document_chain")
if collapse_document_chain_config is None:
collapse_document_chain = None
else:
collapse_document_chain = load_chain_from_config(
collapse_document_chain_config
)
elif "collapse_document_chain_path" in config:
collapse_document_chain = load_chain(config.pop("collapse_document_chain_path"))
return MapReduceDocumentsChain(
llm_chain=llm_chain,
combine_document_chain=combine_document_chain,
collapse_document_chain=collapse_document_chain,
**config,
)
def _load_llm_bash_chain(config: dict, **kwargs: Any) -> LLMBashChain:
llm_chain = None
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
# llm attribute is deprecated in favor of llm_chain, here to support old configs
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-4
|
# llm attribute is deprecated in favor of llm_chain, here to support old configs
elif "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
# llm_path attribute is deprecated in favor of llm_chain_path,
# its to support old configs
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
elif "prompt_path" in config:
prompt = load_prompt(config.pop("prompt_path"))
if llm_chain:
return LLMBashChain(llm_chain=llm_chain, prompt=prompt, **config)
else:
return LLMBashChain(llm=llm, prompt=prompt, **config)
def _load_llm_checker_chain(config: dict, **kwargs: Any) -> LLMCheckerChain:
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "create_draft_answer_prompt" in config:
create_draft_answer_prompt_config = config.pop("create_draft_answer_prompt")
create_draft_answer_prompt = load_prompt_from_config(
create_draft_answer_prompt_config
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-5
|
create_draft_answer_prompt_config
)
elif "create_draft_answer_prompt_path" in config:
create_draft_answer_prompt = load_prompt(
config.pop("create_draft_answer_prompt_path")
)
if "list_assertions_prompt" in config:
list_assertions_prompt_config = config.pop("list_assertions_prompt")
list_assertions_prompt = load_prompt_from_config(list_assertions_prompt_config)
elif "list_assertions_prompt_path" in config:
list_assertions_prompt = load_prompt(config.pop("list_assertions_prompt_path"))
if "check_assertions_prompt" in config:
check_assertions_prompt_config = config.pop("check_assertions_prompt")
check_assertions_prompt = load_prompt_from_config(
check_assertions_prompt_config
)
elif "check_assertions_prompt_path" in config:
check_assertions_prompt = load_prompt(
config.pop("check_assertions_prompt_path")
)
if "revised_answer_prompt" in config:
revised_answer_prompt_config = config.pop("revised_answer_prompt")
revised_answer_prompt = load_prompt_from_config(revised_answer_prompt_config)
elif "revised_answer_prompt_path" in config:
revised_answer_prompt = load_prompt(config.pop("revised_answer_prompt_path"))
return LLMCheckerChain(
llm=llm,
create_draft_answer_prompt=create_draft_answer_prompt,
list_assertions_prompt=list_assertions_prompt,
check_assertions_prompt=check_assertions_prompt,
revised_answer_prompt=revised_answer_prompt,
**config,
)
def _load_llm_math_chain(config: dict, **kwargs: Any) -> LLMMathChain:
llm_chain = None
if "llm_chain" in config:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-6
|
llm_chain = None
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
# llm attribute is deprecated in favor of llm_chain, here to support old configs
elif "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
# llm_path attribute is deprecated in favor of llm_chain_path,
# its to support old configs
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
elif "prompt_path" in config:
prompt = load_prompt(config.pop("prompt_path"))
if llm_chain:
return LLMMathChain(llm_chain=llm_chain, prompt=prompt, **config)
else:
return LLMMathChain(llm=llm, prompt=prompt, **config)
def _load_map_rerank_documents_chain(
config: dict, **kwargs: Any
) -> MapRerankDocumentsChain:
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-7
|
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.")
return MapRerankDocumentsChain(llm_chain=llm_chain, **config)
def _load_pal_chain(config: dict, **kwargs: Any) -> PALChain:
llm_chain = None
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
# llm attribute is deprecated in favor of llm_chain, here to support old configs
elif "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
# llm_path attribute is deprecated in favor of llm_chain_path,
# its to support old configs
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
elif "prompt_path" in config:
prompt = load_prompt(config.pop("prompt_path"))
else:
raise ValueError("One of `prompt` or `prompt_path` must be present.")
if llm_chain:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-8
|
if llm_chain:
return PALChain(llm_chain=llm_chain, prompt=prompt, **config)
else:
return PALChain(llm=llm, prompt=prompt, **config)
def _load_refine_documents_chain(config: dict, **kwargs: Any) -> RefineDocumentsChain:
if "initial_llm_chain" in config:
initial_llm_chain_config = config.pop("initial_llm_chain")
initial_llm_chain = load_chain_from_config(initial_llm_chain_config)
elif "initial_llm_chain_path" in config:
initial_llm_chain = load_chain(config.pop("initial_llm_chain_path"))
else:
raise ValueError(
"One of `initial_llm_chain` or `initial_llm_chain_config` must be present."
)
if "refine_llm_chain" in config:
refine_llm_chain_config = config.pop("refine_llm_chain")
refine_llm_chain = load_chain_from_config(refine_llm_chain_config)
elif "refine_llm_chain_path" in config:
refine_llm_chain = load_chain(config.pop("refine_llm_chain_path"))
else:
raise ValueError(
"One of `refine_llm_chain` or `refine_llm_chain_config` must be present."
)
if "document_prompt" in config:
prompt_config = config.pop("document_prompt")
document_prompt = load_prompt_from_config(prompt_config)
elif "document_prompt_path" in config:
document_prompt = load_prompt(config.pop("document_prompt_path"))
return RefineDocumentsChain(
initial_llm_chain=initial_llm_chain,
refine_llm_chain=refine_llm_chain,
document_prompt=document_prompt,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-9
|
refine_llm_chain=refine_llm_chain,
document_prompt=document_prompt,
**config,
)
def _load_qa_with_sources_chain(config: dict, **kwargs: Any) -> QAWithSourcesChain:
if "combine_documents_chain" in config:
combine_documents_chain_config = config.pop("combine_documents_chain")
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif "combine_documents_chain_path" in config:
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
else:
raise ValueError(
"One of `combine_documents_chain` or "
"`combine_documents_chain_path` must be present."
)
return QAWithSourcesChain(combine_documents_chain=combine_documents_chain, **config)
def _load_sql_database_chain(config: dict, **kwargs: Any) -> SQLDatabaseChain:
if "database" in kwargs:
database = kwargs.pop("database")
else:
raise ValueError("`database` must be present.")
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
else:
prompt = None
return SQLDatabaseChain.from_llm(llm, database, prompt=prompt, **config)
def _load_vector_db_qa_with_sources_chain(
config: dict, **kwargs: Any
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-10
|
config: dict, **kwargs: Any
) -> VectorDBQAWithSourcesChain:
if "vectorstore" in kwargs:
vectorstore = kwargs.pop("vectorstore")
else:
raise ValueError("`vectorstore` must be present.")
if "combine_documents_chain" in config:
combine_documents_chain_config = config.pop("combine_documents_chain")
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif "combine_documents_chain_path" in config:
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
else:
raise ValueError(
"One of `combine_documents_chain` or "
"`combine_documents_chain_path` must be present."
)
return VectorDBQAWithSourcesChain(
combine_documents_chain=combine_documents_chain,
vectorstore=vectorstore,
**config,
)
def _load_retrieval_qa(config: dict, **kwargs: Any) -> RetrievalQA:
if "retriever" in kwargs:
retriever = kwargs.pop("retriever")
else:
raise ValueError("`retriever` must be present.")
if "combine_documents_chain" in config:
combine_documents_chain_config = config.pop("combine_documents_chain")
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif "combine_documents_chain_path" in config:
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
else:
raise ValueError(
"One of `combine_documents_chain` or "
"`combine_documents_chain_path` must be present."
)
return RetrievalQA(
combine_documents_chain=combine_documents_chain,
retriever=retriever,
**config,
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-11
|
retriever=retriever,
**config,
)
def _load_vector_db_qa(config: dict, **kwargs: Any) -> VectorDBQA:
if "vectorstore" in kwargs:
vectorstore = kwargs.pop("vectorstore")
else:
raise ValueError("`vectorstore` must be present.")
if "combine_documents_chain" in config:
combine_documents_chain_config = config.pop("combine_documents_chain")
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif "combine_documents_chain_path" in config:
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
else:
raise ValueError(
"One of `combine_documents_chain` or "
"`combine_documents_chain_path` must be present."
)
return VectorDBQA(
combine_documents_chain=combine_documents_chain,
vectorstore=vectorstore,
**config,
)
def _load_api_chain(config: dict, **kwargs: Any) -> APIChain:
if "api_request_chain" in config:
api_request_chain_config = config.pop("api_request_chain")
api_request_chain = load_chain_from_config(api_request_chain_config)
elif "api_request_chain_path" in config:
api_request_chain = load_chain(config.pop("api_request_chain_path"))
else:
raise ValueError(
"One of `api_request_chain` or `api_request_chain_path` must be present."
)
if "api_answer_chain" in config:
api_answer_chain_config = config.pop("api_answer_chain")
api_answer_chain = load_chain_from_config(api_answer_chain_config)
elif "api_answer_chain_path" in config:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-12
|
elif "api_answer_chain_path" in config:
api_answer_chain = load_chain(config.pop("api_answer_chain_path"))
else:
raise ValueError(
"One of `api_answer_chain` or `api_answer_chain_path` must be present."
)
if "requests_wrapper" in kwargs:
requests_wrapper = kwargs.pop("requests_wrapper")
else:
raise ValueError("`requests_wrapper` must be present.")
return APIChain(
api_request_chain=api_request_chain,
api_answer_chain=api_answer_chain,
requests_wrapper=requests_wrapper,
**config,
)
def _load_llm_requests_chain(config: dict, **kwargs: Any) -> LLMRequestsChain:
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.")
if "requests_wrapper" in kwargs:
requests_wrapper = kwargs.pop("requests_wrapper")
return LLMRequestsChain(
llm_chain=llm_chain, requests_wrapper=requests_wrapper, **config
)
else:
return LLMRequestsChain(llm_chain=llm_chain, **config)
type_to_loader_dict = {
"api_chain": _load_api_chain,
"hyde_chain": _load_hyde_chain,
"llm_chain": _load_llm_chain,
"llm_bash_chain": _load_llm_bash_chain,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-13
|
"llm_bash_chain": _load_llm_bash_chain,
"llm_checker_chain": _load_llm_checker_chain,
"llm_math_chain": _load_llm_math_chain,
"llm_requests_chain": _load_llm_requests_chain,
"pal_chain": _load_pal_chain,
"qa_with_sources_chain": _load_qa_with_sources_chain,
"stuff_documents_chain": _load_stuff_documents_chain,
"map_reduce_documents_chain": _load_map_reduce_documents_chain,
"map_rerank_documents_chain": _load_map_rerank_documents_chain,
"refine_documents_chain": _load_refine_documents_chain,
"sql_database_chain": _load_sql_database_chain,
"vector_db_qa_with_sources_chain": _load_vector_db_qa_with_sources_chain,
"vector_db_qa": _load_vector_db_qa,
"retrieval_qa": _load_retrieval_qa,
}
def load_chain_from_config(config: dict, **kwargs: Any) -> Chain:
"""Load chain from Config Dict."""
if "_type" not in config:
raise ValueError("Must specify a chain Type in config")
config_type = config.pop("_type")
if config_type not in type_to_loader_dict:
raise ValueError(f"Loading {config_type} chain not supported")
chain_loader = type_to_loader_dict[config_type]
return chain_loader(config, **kwargs)
[docs]def load_chain(path: Union[str, Path], **kwargs: Any) -> Chain:
"""Unified method for loading a chain from LangChainHub or local fs."""
if hub_result := try_load_from_hub(
path, _load_chain_from_file, "chains", {"json", "yaml"}, **kwargs
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
56a7ec5e72cf-14
|
):
return hub_result
else:
return _load_chain_from_file(path, **kwargs)
def _load_chain_from_file(file: Union[str, Path], **kwargs: Any) -> Chain:
"""Load chain from file."""
# Convert file to Path object.
if isinstance(file, str):
file_path = Path(file)
else:
file_path = file
# Load from either json or yaml.
if file_path.suffix == ".json":
with open(file_path) as f:
config = json.load(f)
elif file_path.suffix == ".yaml":
with open(file_path, "r") as f:
config = yaml.safe_load(f)
else:
raise ValueError("File type must be json or yaml")
# Override default 'verbose' and 'memory' for the chain
if "verbose" in kwargs:
config["verbose"] = kwargs.pop("verbose")
if "memory" in kwargs:
config["memory"] = kwargs.pop("memory")
# Load the chain from the config now.
return load_chain_from_config(config, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/loading.html
|
209dafa2fa0a-0
|
Source code for langchain.chains.constitutional_ai.base
"""Chain for applying constitutional principles to the outputs of another chain."""
from typing import Any, Dict, List, Optional
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
from langchain.chains.constitutional_ai.principles import PRINCIPLES
from langchain.chains.constitutional_ai.prompts import CRITIQUE_PROMPT, REVISION_PROMPT
from langchain.chains.llm import LLMChain
from langchain.prompts.base import BasePromptTemplate
[docs]class ConstitutionalChain(Chain):
"""Chain for applying constitutional principles.
Example:
.. code-block:: python
from langchain.llms import OpenAI
from langchain.chains import LLMChain, ConstitutionalChain
from langchain.chains.constitutional_ai.models \
import ConstitutionalPrinciple
llm = OpenAI()
qa_prompt = PromptTemplate(
template="Q: {question} A:",
input_variables=["question"],
)
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
constitutional_chain = ConstitutionalChain.from_llm(
llm=llm,
chain=qa_chain,
constitutional_principles=[
ConstitutionalPrinciple(
critique_request="Tell if this answer is good.",
revision_request="Give a better answer.",
)
],
)
constitutional_chain.run(question="What is the meaning of life?")
"""
chain: LLMChain
constitutional_principles: List[ConstitutionalPrinciple]
critique_chain: LLMChain
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/constitutional_ai/base.html
|
209dafa2fa0a-1
|
critique_chain: LLMChain
revision_chain: LLMChain
return_intermediate_steps: bool = False
[docs] @classmethod
def get_principles(
cls, names: Optional[List[str]] = None
) -> List[ConstitutionalPrinciple]:
if names is None:
return list(PRINCIPLES.values())
else:
return [PRINCIPLES[name] for name in names]
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
chain: LLMChain,
critique_prompt: BasePromptTemplate = CRITIQUE_PROMPT,
revision_prompt: BasePromptTemplate = REVISION_PROMPT,
**kwargs: Any,
) -> "ConstitutionalChain":
"""Create a chain from an LLM."""
critique_chain = LLMChain(llm=llm, prompt=critique_prompt)
revision_chain = LLMChain(llm=llm, prompt=revision_prompt)
return cls(
chain=chain,
critique_chain=critique_chain,
revision_chain=revision_chain,
**kwargs,
)
@property
def input_keys(self) -> List[str]:
"""Defines the input keys."""
return self.chain.input_keys
@property
def output_keys(self) -> List[str]:
"""Defines the output keys."""
if self.return_intermediate_steps:
return ["output", "critiques_and_revisions", "initial_output"]
return ["output"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/constitutional_ai/base.html
|
209dafa2fa0a-2
|
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
response = self.chain.run(
**inputs,
callbacks=_run_manager.get_child("original"),
)
initial_response = response
input_prompt = self.chain.prompt.format(**inputs)
_run_manager.on_text(
text="Initial response: " + response + "\n\n",
verbose=self.verbose,
color="yellow",
)
critiques_and_revisions = []
for constitutional_principle in self.constitutional_principles:
# Do critique
raw_critique = self.critique_chain.run(
input_prompt=input_prompt,
output_from_model=response,
critique_request=constitutional_principle.critique_request,
callbacks=_run_manager.get_child("critique"),
)
critique = self._parse_critique(
output_string=raw_critique,
).strip()
# if the critique contains "No critique needed", then we're done
# in this case, initial_output is the same as output,
# but we'll keep it for consistency
if "no critique needed" in critique.lower():
critiques_and_revisions.append((critique, ""))
continue
# Do revision
revision = self.revision_chain.run(
input_prompt=input_prompt,
output_from_model=response,
critique_request=constitutional_principle.critique_request,
critique=critique,
revision_request=constitutional_principle.revision_request,
callbacks=_run_manager.get_child("revision"),
).strip()
response = revision
critiques_and_revisions.append((critique, revision))
_run_manager.on_text(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/constitutional_ai/base.html
|
209dafa2fa0a-3
|
_run_manager.on_text(
text=f"Applying {constitutional_principle.name}..." + "\n\n",
verbose=self.verbose,
color="green",
)
_run_manager.on_text(
text="Critique: " + critique + "\n\n",
verbose=self.verbose,
color="blue",
)
_run_manager.on_text(
text="Updated response: " + revision + "\n\n",
verbose=self.verbose,
color="yellow",
)
final_output: Dict[str, Any] = {"output": response}
if self.return_intermediate_steps:
final_output["initial_output"] = initial_response
final_output["critiques_and_revisions"] = critiques_and_revisions
return final_output
@staticmethod
def _parse_critique(output_string: str) -> str:
if "Revision request:" not in output_string:
return output_string
output_string = output_string.split("Revision request:")[0]
if "\n\n" in output_string:
output_string = output_string.split("\n\n")[0]
return output_string
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/constitutional_ai/base.html
|
b777d01dc2e3-0
|
Source code for langchain.chains.graph_qa.base
"""Question answering over a graph."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.graph_qa.prompts import ENTITY_EXTRACTION_PROMPT, PROMPT
from langchain.chains.llm import LLMChain
from langchain.graphs.networkx_graph import NetworkxEntityGraph, get_entities
from langchain.prompts.base import BasePromptTemplate
[docs]class GraphQAChain(Chain):
"""Chain for question-answering against a graph."""
graph: NetworkxEntityGraph = Field(exclude=True)
entity_extraction_chain: LLMChain
qa_chain: LLMChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
return _output_keys
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
qa_prompt: BasePromptTemplate = PROMPT,
entity_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT,
**kwargs: Any,
) -> GraphQAChain:
"""Initialize from LLM."""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/graph_qa/base.html
|
b777d01dc2e3-1
|
) -> GraphQAChain:
"""Initialize from LLM."""
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
entity_chain = LLMChain(llm=llm, prompt=entity_prompt)
return cls(
qa_chain=qa_chain,
entity_extraction_chain=entity_chain,
**kwargs,
)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
"""Extract entities, look up info and answer question."""
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs[self.input_key]
entity_string = self.entity_extraction_chain.run(question)
_run_manager.on_text("Entities Extracted:", end="\n", verbose=self.verbose)
_run_manager.on_text(
entity_string, color="green", end="\n", verbose=self.verbose
)
entities = get_entities(entity_string)
context = ""
for entity in entities:
triplets = self.graph.get_entity_knowledge(entity)
context += "\n".join(triplets)
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
_run_manager.on_text(context, color="green", end="\n", verbose=self.verbose)
result = self.qa_chain(
{"question": question, "context": context},
callbacks=_run_manager.get_child(),
)
return {self.output_key: result[self.qa_chain.output_key]}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/graph_qa/base.html
|
681c8f58002b-0
|
Source code for langchain.chains.graph_qa.cypher
"""Question answering over a graph."""
from __future__ import annotations
import re
from typing import Any, Dict, List, Optional
from pydantic import Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.graph_qa.prompts import CYPHER_GENERATION_PROMPT, CYPHER_QA_PROMPT
from langchain.chains.llm import LLMChain
from langchain.graphs.neo4j_graph import Neo4jGraph
from langchain.prompts.base import BasePromptTemplate
INTERMEDIATE_STEPS_KEY = "intermediate_steps"
def extract_cypher(text: str) -> str:
# The pattern to find Cypher code enclosed in triple backticks
pattern = r"```(.*?)```"
# Find all matches in the input text
matches = re.findall(pattern, text, re.DOTALL)
return matches[0] if matches else text
[docs]class GraphCypherQAChain(Chain):
"""Chain for question-answering against a graph by generating Cypher statements."""
graph: Neo4jGraph = Field(exclude=True)
cypher_generation_chain: LLMChain
qa_chain: LLMChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
top_k: int = 10
"""Number of results to return from the query"""
return_intermediate_steps: bool = False
"""Whether or not to return the intermediate steps along with the final answer."""
return_direct: bool = False
"""Whether or not to return the result of querying the graph directly."""
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/graph_qa/cypher.html
|
681c8f58002b-1
|
"""Whether or not to return the result of querying the graph directly."""
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
return _output_keys
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
*,
qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT,
cypher_prompt: BasePromptTemplate = CYPHER_GENERATION_PROMPT,
**kwargs: Any,
) -> GraphCypherQAChain:
"""Initialize from LLM."""
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
cypher_generation_chain = LLMChain(llm=llm, prompt=cypher_prompt)
return cls(
qa_chain=qa_chain,
cypher_generation_chain=cypher_generation_chain,
**kwargs,
)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Generate Cypher statement, use it to look up in db and answer question."""
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
question = inputs[self.input_key]
intermediate_steps: List = []
generated_cypher = self.cypher_generation_chain.run(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/graph_qa/cypher.html
|
681c8f58002b-2
|
generated_cypher = self.cypher_generation_chain.run(
{"question": question, "schema": self.graph.get_schema}, callbacks=callbacks
)
# Extract Cypher code if it is wrapped in backticks
generated_cypher = extract_cypher(generated_cypher)
_run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose)
_run_manager.on_text(
generated_cypher, color="green", end="\n", verbose=self.verbose
)
intermediate_steps.append({"query": generated_cypher})
# Retrieve and limit the number of results
context = self.graph.query(generated_cypher)[: self.top_k]
if self.return_direct:
final_result = context
else:
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
_run_manager.on_text(
str(context), color="green", end="\n", verbose=self.verbose
)
intermediate_steps.append({"context": context})
result = self.qa_chain(
{"question": question, "context": context},
callbacks=callbacks,
)
final_result = result[self.qa_chain.output_key]
chain_result: Dict[str, Any] = {self.output_key: final_result}
if self.return_intermediate_steps:
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
return chain_result
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/graph_qa/cypher.html
|
4d9d8870a777-0
|
Source code for langchain.chains.graph_qa.nebulagraph
"""Question answering over a graph."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.graph_qa.prompts import CYPHER_QA_PROMPT, NGQL_GENERATION_PROMPT
from langchain.chains.llm import LLMChain
from langchain.graphs.nebula_graph import NebulaGraph
from langchain.prompts.base import BasePromptTemplate
[docs]class NebulaGraphQAChain(Chain):
"""Chain for question-answering against a graph by generating nGQL statements."""
graph: NebulaGraph = Field(exclude=True)
ngql_generation_chain: LLMChain
qa_chain: LLMChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
return _output_keys
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
*,
qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT,
ngql_prompt: BasePromptTemplate = NGQL_GENERATION_PROMPT,
**kwargs: Any,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/graph_qa/nebulagraph.html
|
4d9d8870a777-1
|
**kwargs: Any,
) -> NebulaGraphQAChain:
"""Initialize from LLM."""
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
ngql_generation_chain = LLMChain(llm=llm, prompt=ngql_prompt)
return cls(
qa_chain=qa_chain,
ngql_generation_chain=ngql_generation_chain,
**kwargs,
)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
"""Generate nGQL statement, use it to look up in db and answer question."""
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
question = inputs[self.input_key]
generated_ngql = self.ngql_generation_chain.run(
{"question": question, "schema": self.graph.get_schema}, callbacks=callbacks
)
_run_manager.on_text("Generated nGQL:", end="\n", verbose=self.verbose)
_run_manager.on_text(
generated_ngql, color="green", end="\n", verbose=self.verbose
)
context = self.graph.query(generated_ngql)
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
_run_manager.on_text(
str(context), color="green", end="\n", verbose=self.verbose
)
result = self.qa_chain(
{"question": question, "context": context},
callbacks=callbacks,
)
return {self.output_key: result[self.qa_chain.output_key]}
By Harrison Chase
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/graph_qa/nebulagraph.html
|
4d9d8870a777-2
|
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/graph_qa/nebulagraph.html
|
28dda867c41f-0
|
Source code for langchain.chains.conversational_retrieval.base
"""Chain for chatting with a vector database."""
from __future__ import annotations
import warnings
from abc import abstractmethod
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from pydantic import Extra, Field, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
Callbacks,
)
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseMessage, BaseRetriever, Document
from langchain.vectorstores.base import VectorStore
# Depending on the memory type and configuration, the chat history format may differ.
# This needs to be consolidated.
CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage]
_ROLE_MAP = {"human": "Human: ", "ai": "Assistant: "}
def _get_chat_history(chat_history: List[CHAT_TURN_TYPE]) -> str:
buffer = ""
for dialogue_turn in chat_history:
if isinstance(dialogue_turn, BaseMessage):
role_prefix = _ROLE_MAP.get(dialogue_turn.type, f"{dialogue_turn.type}: ")
buffer += f"\n{role_prefix}{dialogue_turn.content}"
elif isinstance(dialogue_turn, tuple):
human = "Human: " + dialogue_turn[0]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/conversational_retrieval/base.html
|
28dda867c41f-1
|
human = "Human: " + dialogue_turn[0]
ai = "Assistant: " + dialogue_turn[1]
buffer += "\n" + "\n".join([human, ai])
else:
raise ValueError(
f"Unsupported chat history format: {type(dialogue_turn)}."
f" Full chat history: {chat_history} "
)
return buffer
class BaseConversationalRetrievalChain(Chain):
"""Chain for chatting with an index."""
combine_docs_chain: BaseCombineDocumentsChain
question_generator: LLMChain
output_key: str = "answer"
return_source_documents: bool = False
return_generated_question: bool = False
get_chat_history: Optional[Callable[[CHAT_TURN_TYPE], str]] = None
"""Return the source documents."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
allow_population_by_field_name = True
@property
def input_keys(self) -> List[str]:
"""Input keys."""
return ["question", "chat_history"]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
if self.return_generated_question:
_output_keys = _output_keys + ["generated_question"]
return _output_keys
@abstractmethod
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs."""
def _call(
self,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/conversational_retrieval/base.html
|
28dda867c41f-2
|
"""Get docs."""
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs["question"]
get_chat_history = self.get_chat_history or _get_chat_history
chat_history_str = get_chat_history(inputs["chat_history"])
if chat_history_str:
callbacks = _run_manager.get_child()
new_question = self.question_generator.run(
question=question, chat_history=chat_history_str, callbacks=callbacks
)
else:
new_question = question
docs = self._get_docs(new_question, inputs)
new_inputs = inputs.copy()
new_inputs["question"] = new_question
new_inputs["chat_history"] = chat_history_str
answer = self.combine_docs_chain.run(
input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs
)
output: Dict[str, Any] = {self.output_key: answer}
if self.return_source_documents:
output["source_documents"] = docs
if self.return_generated_question:
output["generated_question"] = new_question
return output
@abstractmethod
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs."""
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
question = inputs["question"]
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/conversational_retrieval/base.html
|
28dda867c41f-3
|
question = inputs["question"]
get_chat_history = self.get_chat_history or _get_chat_history
chat_history_str = get_chat_history(inputs["chat_history"])
if chat_history_str:
callbacks = _run_manager.get_child()
new_question = await self.question_generator.arun(
question=question, chat_history=chat_history_str, callbacks=callbacks
)
else:
new_question = question
docs = await self._aget_docs(new_question, inputs)
new_inputs = inputs.copy()
new_inputs["question"] = new_question
new_inputs["chat_history"] = chat_history_str
answer = await self.combine_docs_chain.arun(
input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs
)
output: Dict[str, Any] = {self.output_key: answer}
if self.return_source_documents:
output["source_documents"] = docs
if self.return_generated_question:
output["generated_question"] = new_question
return output
def save(self, file_path: Union[Path, str]) -> None:
if self.get_chat_history:
raise ValueError("Chain not savable when `get_chat_history` is not None.")
super().save(file_path)
[docs]class ConversationalRetrievalChain(BaseConversationalRetrievalChain):
"""Chain for chatting with an index."""
retriever: BaseRetriever
"""Index to connect to."""
max_tokens_limit: Optional[int] = None
"""If set, restricts the docs to return from store based on tokens, enforced only
for StuffDocumentChain"""
def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]:
num_docs = len(docs)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/conversational_retrieval/base.html
|
28dda867c41f-4
|
num_docs = len(docs)
if self.max_tokens_limit and isinstance(
self.combine_docs_chain, StuffDocumentsChain
):
tokens = [
self.combine_docs_chain.llm_chain.llm.get_num_tokens(doc.page_content)
for doc in docs
]
token_count = sum(tokens[:num_docs])
while token_count > self.max_tokens_limit:
num_docs -= 1
token_count -= tokens[num_docs]
return docs[:num_docs]
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
docs = self.retriever.get_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
docs = await self.retriever.aget_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
retriever: BaseRetriever,
condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT,
chain_type: str = "stuff",
verbose: bool = False,
condense_question_llm: Optional[BaseLanguageModel] = None,
combine_docs_chain_kwargs: Optional[Dict] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> BaseConversationalRetrievalChain:
"""Load chain from LLM."""
combine_docs_chain_kwargs = combine_docs_chain_kwargs or {}
doc_chain = load_qa_chain(
llm,
chain_type=chain_type,
verbose=verbose,
callbacks=callbacks,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/conversational_retrieval/base.html
|
28dda867c41f-5
|
chain_type=chain_type,
verbose=verbose,
callbacks=callbacks,
**combine_docs_chain_kwargs,
)
_llm = condense_question_llm or llm
condense_question_chain = LLMChain(
llm=_llm,
prompt=condense_question_prompt,
verbose=verbose,
callbacks=callbacks,
)
return cls(
retriever=retriever,
combine_docs_chain=doc_chain,
question_generator=condense_question_chain,
callbacks=callbacks,
**kwargs,
)
[docs]class ChatVectorDBChain(BaseConversationalRetrievalChain):
"""Chain for chatting with a vector database."""
vectorstore: VectorStore = Field(alias="vectorstore")
top_k_docs_for_context: int = 4
search_kwargs: dict = Field(default_factory=dict)
@property
def _chain_type(self) -> str:
return "chat-vector-db"
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
warnings.warn(
"`ChatVectorDBChain` is deprecated - "
"please use `from langchain.chains import ConversationalRetrievalChain`"
)
return values
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
vectordbkwargs = inputs.get("vectordbkwargs", {})
full_kwargs = {**self.search_kwargs, **vectordbkwargs}
return self.vectorstore.similarity_search(
question, k=self.top_k_docs_for_context, **full_kwargs
)
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/conversational_retrieval/base.html
|
28dda867c41f-6
|
raise NotImplementedError("ChatVectorDBChain does not support async")
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
vectorstore: VectorStore,
condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT,
chain_type: str = "stuff",
combine_docs_chain_kwargs: Optional[Dict] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> BaseConversationalRetrievalChain:
"""Load chain from LLM."""
combine_docs_chain_kwargs = combine_docs_chain_kwargs or {}
doc_chain = load_qa_chain(
llm,
chain_type=chain_type,
callbacks=callbacks,
**combine_docs_chain_kwargs,
)
condense_question_chain = LLMChain(
llm=llm, prompt=condense_question_prompt, callbacks=callbacks
)
return cls(
vectorstore=vectorstore,
combine_docs_chain=doc_chain,
question_generator=condense_question_chain,
callbacks=callbacks,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/conversational_retrieval/base.html
|
dbcf35fa34c1-0
|
Source code for langchain.chains.llm_bash.base
"""Chain that interprets a prompt and executes bash code to perform bash operations."""
from __future__ import annotations
import logging
import warnings
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_bash.prompt import PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import OutputParserException
from langchain.utilities.bash import BashProcess
logger = logging.getLogger(__name__)
[docs]class LLMBashChain(Chain):
"""Chain that interprets a prompt and executes bash code to perform bash operations.
Example:
.. code-block:: python
from langchain import LLMBashChain, OpenAI
llm_bash = LLMBashChain.from_llm(OpenAI())
"""
llm_chain: LLMChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
input_key: str = "question" #: :meta private:
output_key: str = "answer" #: :meta private:
prompt: BasePromptTemplate = PROMPT
"""[Deprecated]"""
bash_process: BashProcess = Field(default_factory=BashProcess) #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_bash/base.html
|
dbcf35fa34c1-1
|
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating an LLMBashChain with an llm is deprecated. "
"Please instantiate with llm_chain or using the from_llm class method."
)
if "llm_chain" not in values and values["llm"] is not None:
prompt = values.get("prompt", PROMPT)
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
return values
@root_validator
def validate_prompt(cls, values: Dict) -> Dict:
if values["llm_chain"].prompt.output_parser is None:
raise ValueError(
"The prompt used by llm_chain is expected to have an output_parser."
)
return values
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
_run_manager.on_text(inputs[self.input_key], verbose=self.verbose)
t = self.llm_chain.predict(
question=inputs[self.input_key], callbacks=_run_manager.get_child()
)
_run_manager.on_text(t, color="green", verbose=self.verbose)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_bash/base.html
|
dbcf35fa34c1-2
|
)
_run_manager.on_text(t, color="green", verbose=self.verbose)
t = t.strip()
try:
parser = self.llm_chain.prompt.output_parser
command_list = parser.parse(t) # type: ignore[union-attr]
except OutputParserException as e:
_run_manager.on_chain_error(e, verbose=self.verbose)
raise e
if self.verbose:
_run_manager.on_text("\nCode: ", verbose=self.verbose)
_run_manager.on_text(
str(command_list), color="yellow", verbose=self.verbose
)
output = self.bash_process.run(command_list)
_run_manager.on_text("\nAnswer: ", verbose=self.verbose)
_run_manager.on_text(output, color="yellow", verbose=self.verbose)
return {self.output_key: output}
@property
def _chain_type(self) -> str:
return "llm_bash_chain"
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: BasePromptTemplate = PROMPT,
**kwargs: Any,
) -> LLMBashChain:
llm_chain = LLMChain(llm=llm, prompt=prompt)
return cls(llm_chain=llm_chain, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_bash/base.html
|
ede3f62a4d55-0
|
Source code for langchain.chains.pal.base
"""Implements Program-Aided Language Models.
As in https://arxiv.org/pdf/2211.10435.pdf.
"""
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.pal.colored_object_prompt import COLORED_OBJECT_PROMPT
from langchain.chains.pal.math_prompt import MATH_PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.utilities import PythonREPL
[docs]class PALChain(Chain):
"""Implements Program-Aided Language Models."""
llm_chain: LLMChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated]"""
prompt: BasePromptTemplate = MATH_PROMPT
"""[Deprecated]"""
stop: str = "\n\n"
get_answer_expr: str = "print(solution())"
python_globals: Optional[Dict[str, Any]] = None
python_locals: Optional[Dict[str, Any]] = None
output_key: str = "result" #: :meta private:
return_intermediate_steps: bool = False
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating an PALChain with an llm is deprecated. "
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/pal/base.html
|
ede3f62a4d55-1
|
"Directly instantiating an PALChain with an llm is deprecated. "
"Please instantiate with llm_chain argument or using the one of "
"the class method constructors from_math_prompt, "
"from_colored_object_prompt."
)
if "llm_chain" not in values and values["llm"] is not None:
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=MATH_PROMPT)
return values
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
code = self.llm_chain.predict(
stop=[self.stop], callbacks=_run_manager.get_child(), **inputs
)
_run_manager.on_text(code, color="green", end="\n", verbose=self.verbose)
repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals)
res = repl.run(code + f"\n{self.get_answer_expr}")
output = {self.output_key: res.strip()}
if self.return_intermediate_steps:
output["intermediate_steps"] = code
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/pal/base.html
|
ede3f62a4d55-2
|
if self.return_intermediate_steps:
output["intermediate_steps"] = code
return output
[docs] @classmethod
def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain:
"""Load PAL from math prompt."""
llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT)
return cls(
llm_chain=llm_chain,
stop="\n\n",
get_answer_expr="print(solution())",
**kwargs,
)
[docs] @classmethod
def from_colored_object_prompt(
cls, llm: BaseLanguageModel, **kwargs: Any
) -> PALChain:
"""Load PAL from colored object prompt."""
llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT)
return cls(
llm_chain=llm_chain,
stop="\n\n\n",
get_answer_expr="print(answer)",
**kwargs,
)
@property
def _chain_type(self) -> str:
return "pal_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/pal/base.html
|
b0d36af50343-0
|
Source code for langchain.chains.qa_generation.base
from __future__ import annotations
import json
from typing import Any, Dict, List, Optional
from pydantic import Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.qa_generation.prompt import PROMPT_SELECTOR
from langchain.prompts.base import BasePromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
[docs]class QAGenerationChain(Chain):
llm_chain: LLMChain
text_splitter: TextSplitter = Field(
default=RecursiveCharacterTextSplitter(chunk_overlap=500)
)
input_key: str = "text"
output_key: str = "questions"
k: Optional[int] = None
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> QAGenerationChain:
_prompt = prompt or PROMPT_SELECTOR.get_prompt(llm)
chain = LLMChain(llm=llm, prompt=_prompt)
return cls(llm_chain=chain, **kwargs)
@property
def _chain_type(self) -> str:
raise NotImplementedError
@property
def input_keys(self) -> List[str]:
return [self.input_key]
@property
def output_keys(self) -> List[str]:
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/qa_generation/base.html
|
b0d36af50343-1
|
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, List]:
docs = self.text_splitter.create_documents([inputs[self.input_key]])
results = self.llm_chain.generate(
[{"text": d.page_content} for d in docs], run_manager=run_manager
)
qa = [json.loads(res[0].text) for res in results.generations]
return {self.output_key: qa}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/qa_generation/base.html
|
2fe7a8cae991-0
|
Source code for langchain.chains.flare.base
from __future__ import annotations
import re
from abc import abstractmethod
from typing import Any, Dict, List, Optional, Sequence, Tuple
import numpy as np
from pydantic import Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import (
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.chains.flare.prompts import (
PROMPT,
QUESTION_GENERATOR_PROMPT,
FinishedOutputParser,
)
from langchain.chains.llm import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import BasePromptTemplate
from langchain.schema import BaseRetriever, Generation
class _ResponseChain(LLMChain):
prompt: BasePromptTemplate = PROMPT
@property
def input_keys(self) -> List[str]:
return self.prompt.input_variables
def generate_tokens_and_log_probs(
self,
_input: Dict[str, Any],
*,
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Tuple[Sequence[str], Sequence[float]]:
llm_result = self.generate([_input], run_manager=run_manager)
return self._extract_tokens_and_log_probs(llm_result.generations[0])
@abstractmethod
def _extract_tokens_and_log_probs(
self, generations: List[Generation]
) -> Tuple[Sequence[str], Sequence[float]]:
"""Extract tokens and log probs from response."""
class _OpenAIResponseChain(_ResponseChain):
llm: OpenAI = Field(
default_factory=lambda: OpenAI(
max_tokens=32, model_kwargs={"logprobs": 1}, temperature=0
)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/flare/base.html
|
2fe7a8cae991-1
|
)
)
def _extract_tokens_and_log_probs(
self, generations: List[Generation]
) -> Tuple[Sequence[str], Sequence[float]]:
tokens = []
log_probs = []
for gen in generations:
if gen.generation_info is None:
raise ValueError
tokens.extend(gen.generation_info["logprobs"]["tokens"])
log_probs.extend(gen.generation_info["logprobs"]["token_logprobs"])
return tokens, log_probs
class QuestionGeneratorChain(LLMChain):
prompt: BasePromptTemplate = QUESTION_GENERATOR_PROMPT
@property
def input_keys(self) -> List[str]:
return ["user_input", "context", "response"]
def _low_confidence_spans(
tokens: Sequence[str],
log_probs: Sequence[float],
min_prob: float,
min_token_gap: int,
num_pad_tokens: int,
) -> List[str]:
_low_idx = np.where(np.exp(log_probs) < min_prob)[0]
low_idx = [i for i in _low_idx if re.search(r"\w", tokens[i])]
if len(low_idx) == 0:
return []
spans = [[low_idx[0], low_idx[0] + num_pad_tokens + 1]]
for i, idx in enumerate(low_idx[1:]):
end = idx + num_pad_tokens + 1
if idx - low_idx[i] < min_token_gap:
spans[-1][1] = end
else:
spans.append([idx, end])
return ["".join(tokens[start:end]) for start, end in spans]
[docs]class FlareChain(Chain):
question_generator_chain: QuestionGeneratorChain
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/flare/base.html
|
2fe7a8cae991-2
|
[docs]class FlareChain(Chain):
question_generator_chain: QuestionGeneratorChain
response_chain: _ResponseChain = Field(default_factory=_OpenAIResponseChain)
output_parser: FinishedOutputParser = Field(default_factory=FinishedOutputParser)
retriever: BaseRetriever
min_prob: float = 0.2
min_token_gap: int = 5
num_pad_tokens: int = 2
max_iter: int = 10
start_with_retrieval: bool = True
@property
def input_keys(self) -> List[str]:
return ["user_input"]
@property
def output_keys(self) -> List[str]:
return ["response"]
def _do_generation(
self,
questions: List[str],
user_input: str,
response: str,
_run_manager: CallbackManagerForChainRun,
) -> Tuple[str, bool]:
callbacks = _run_manager.get_child()
docs = []
for question in questions:
docs.extend(self.retriever.get_relevant_documents(question))
context = "\n\n".join(d.page_content for d in docs)
result = self.response_chain.predict(
user_input=user_input,
context=context,
response=response,
callbacks=callbacks,
)
marginal, finished = self.output_parser.parse(result)
return marginal, finished
def _do_retrieval(
self,
low_confidence_spans: List[str],
_run_manager: CallbackManagerForChainRun,
user_input: str,
response: str,
initial_response: str,
) -> Tuple[str, bool]:
question_gen_inputs = [
{
"user_input": user_input,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/flare/base.html
|
2fe7a8cae991-3
|
question_gen_inputs = [
{
"user_input": user_input,
"current_response": initial_response,
"uncertain_span": span,
}
for span in low_confidence_spans
]
callbacks = _run_manager.get_child()
question_gen_outputs = self.question_generator_chain.apply(
question_gen_inputs, callbacks=callbacks
)
questions = [
output[self.question_generator_chain.output_keys[0]]
for output in question_gen_outputs
]
_run_manager.on_text(
f"Generated Questions: {questions}", color="yellow", end="\n"
)
return self._do_generation(questions, user_input, response, _run_manager)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
user_input = inputs[self.input_keys[0]]
response = ""
for i in range(self.max_iter):
_run_manager.on_text(
f"Current Response: {response}", color="blue", end="\n"
)
_input = {"user_input": user_input, "context": "", "response": response}
tokens, log_probs = self.response_chain.generate_tokens_and_log_probs(
_input, run_manager=_run_manager
)
low_confidence_spans = _low_confidence_spans(
tokens,
log_probs,
self.min_prob,
self.min_token_gap,
self.num_pad_tokens,
)
initial_response = response.strip() + " " + "".join(tokens)
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/flare/base.html
|
2fe7a8cae991-4
|
)
initial_response = response.strip() + " " + "".join(tokens)
if not low_confidence_spans:
response = initial_response
final_response, finished = self.output_parser.parse(response)
if finished:
return {self.output_keys[0]: final_response}
continue
marginal, finished = self._do_retrieval(
low_confidence_spans,
_run_manager,
user_input,
response,
initial_response,
)
response = response.strip() + " " + marginal
if finished:
break
return {self.output_keys[0]: response}
[docs] @classmethod
def from_llm(
cls, llm: BaseLanguageModel, max_generation_len: int = 32, **kwargs: Any
) -> FlareChain:
question_gen_chain = QuestionGeneratorChain(llm=llm)
response_llm = OpenAI(
max_tokens=max_generation_len, model_kwargs={"logprobs": 1}, temperature=0
)
response_chain = _OpenAIResponseChain(llm=response_llm)
return cls(
question_generator_chain=question_gen_chain,
response_chain=response_chain,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/flare/base.html
|
5efa9f4a47c4-0
|
Source code for langchain.chains.llm_checker.base
"""Chain for question-answering with self-verification."""
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_checker.prompt import (
CHECK_ASSERTIONS_PROMPT,
CREATE_DRAFT_ANSWER_PROMPT,
LIST_ASSERTIONS_PROMPT,
REVISED_ANSWER_PROMPT,
)
from langchain.chains.sequential import SequentialChain
from langchain.prompts import PromptTemplate
def _load_question_to_checked_assertions_chain(
llm: BaseLanguageModel,
create_draft_answer_prompt: PromptTemplate,
list_assertions_prompt: PromptTemplate,
check_assertions_prompt: PromptTemplate,
revised_answer_prompt: PromptTemplate,
) -> SequentialChain:
create_draft_answer_chain = LLMChain(
llm=llm,
prompt=create_draft_answer_prompt,
output_key="statement",
)
list_assertions_chain = LLMChain(
llm=llm,
prompt=list_assertions_prompt,
output_key="assertions",
)
check_assertions_chain = LLMChain(
llm=llm,
prompt=check_assertions_prompt,
output_key="checked_assertions",
)
revised_answer_chain = LLMChain(
llm=llm,
prompt=revised_answer_prompt,
output_key="revised_statement",
)
chains = [
create_draft_answer_chain,
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_checker/base.html
|
5efa9f4a47c4-1
|
)
chains = [
create_draft_answer_chain,
list_assertions_chain,
check_assertions_chain,
revised_answer_chain,
]
question_to_checked_assertions_chain = SequentialChain(
chains=chains,
input_variables=["question"],
output_variables=["revised_statement"],
verbose=True,
)
return question_to_checked_assertions_chain
[docs]class LLMCheckerChain(Chain):
"""Chain for question-answering with self-verification.
Example:
.. code-block:: python
from langchain import OpenAI, LLMCheckerChain
llm = OpenAI(temperature=0.7)
checker_chain = LLMCheckerChain.from_llm(llm)
"""
question_to_checked_assertions_chain: SequentialChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT
"""[Deprecated]"""
list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT
"""[Deprecated]"""
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT
"""[Deprecated]"""
revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT
"""[Deprecated] Prompt to use when questioning the documents."""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_checker/base.html
|
5efa9f4a47c4-2
|
if "llm" in values:
warnings.warn(
"Directly instantiating an LLMCheckerChain with an llm is deprecated. "
"Please instantiate with question_to_checked_assertions_chain "
"or using the from_llm class method."
)
if (
"question_to_checked_assertions_chain" not in values
and values["llm"] is not None
):
question_to_checked_assertions_chain = (
_load_question_to_checked_assertions_chain(
values["llm"],
values.get(
"create_draft_answer_prompt", CREATE_DRAFT_ANSWER_PROMPT
),
values.get("list_assertions_prompt", LIST_ASSERTIONS_PROMPT),
values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT),
values.get("revised_answer_prompt", REVISED_ANSWER_PROMPT),
)
)
values[
"question_to_checked_assertions_chain"
] = question_to_checked_assertions_chain
return values
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs[self.input_key]
output = self.question_to_checked_assertions_chain(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_checker/base.html
|
5efa9f4a47c4-3
|
output = self.question_to_checked_assertions_chain(
{"question": question}, callbacks=_run_manager.get_child()
)
return {self.output_key: output["revised_statement"]}
@property
def _chain_type(self) -> str:
return "llm_checker_chain"
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT,
list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT,
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT,
revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT,
**kwargs: Any,
) -> LLMCheckerChain:
question_to_checked_assertions_chain = (
_load_question_to_checked_assertions_chain(
llm,
create_draft_answer_prompt,
list_assertions_prompt,
check_assertions_prompt,
revised_answer_prompt,
)
)
return cls(
question_to_checked_assertions_chain=question_to_checked_assertions_chain,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 16, 2023.
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_checker/base.html
|
d791178e0d57-0
|
Source code for langchain.chains.llm_summarization_checker.base
"""Chain for summarization with self-verification."""
from __future__ import annotations
import warnings
from pathlib import Path
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.sequential import SequentialChain
from langchain.prompts.prompt import PromptTemplate
PROMPTS_DIR = Path(__file__).parent / "prompts"
CREATE_ASSERTIONS_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "create_facts.txt", ["summary"]
)
CHECK_ASSERTIONS_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "check_facts.txt", ["assertions"]
)
REVISED_SUMMARY_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "revise_summary.txt", ["checked_assertions", "summary"]
)
ARE_ALL_TRUE_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "are_all_true_prompt.txt", ["checked_assertions"]
)
def _load_sequential_chain(
llm: BaseLanguageModel,
create_assertions_prompt: PromptTemplate,
check_assertions_prompt: PromptTemplate,
revised_summary_prompt: PromptTemplate,
are_all_true_prompt: PromptTemplate,
verbose: bool = False,
) -> SequentialChain:
chain = SequentialChain(
chains=[
LLMChain(
llm=llm,
prompt=create_assertions_prompt,
output_key="assertions",
verbose=verbose,
),
LLMChain(
|
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/chains/llm_summarization_checker/base.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.