id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
59
127
f754198f078c-5
ai_prefix: str = "AI" llm: BaseLanguageModel entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT entity_summarization_prompt: BasePromptTemplate = ENTITY_SUMMARIZATION_PROMPT entity_cache: List[str] = [] k: int = 3 chat_history_key: str = "history" entity_store: BaseEntityStore = Field(default_factory=InMemoryEntityStore) @property def buffer(self) -> List[BaseMessage]: return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return ["entities", self.chat_history_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt) if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key buffer_string = get_buffer_string( self.buffer[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=inputs[prompt_input_key], ) if output.strip() == "NONE": entities = [] else: entities = [w.strip() for w in output.split(",")] entity_summaries = {} for entity in entities: entity_summaries[entity] = self.entity_store.get(entity, "") self.entity_cache = entities if self.return_messages:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/entity.html
f754198f078c-6
self.entity_cache = entities if self.return_messages: buffer: Any = self.buffer[-self.k * 2 :] else: buffer = buffer_string return { self.chat_history_key: buffer, "entities": entity_summaries, } [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key buffer_string = get_buffer_string( self.buffer[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) input_data = inputs[prompt_input_key] chain = LLMChain(llm=self.llm, prompt=self.entity_summarization_prompt) for entity in self.entity_cache: existing_summary = self.entity_store.get(entity, "") output = chain.predict( summary=existing_summary, entity=entity, history=buffer_string, input=input_data, ) self.entity_store.set(entity, output.strip()) [docs] def clear(self) -> None: """Clear memory contents.""" self.chat_memory.clear() self.entity_cache.clear() self.entity_store.clear() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/entity.html
3eae703cd074-0
Source code for langchain.memory.buffer from typing import Any, Dict, List, Optional from pydantic import root_validator from langchain.memory.chat_memory import BaseChatMemory, BaseMemory from langchain.memory.utils import get_prompt_input_key from langchain.schema import get_buffer_string [docs]class ConversationBufferMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: @property def buffer(self) -> Any: """String buffer of memory.""" if self.return_messages: return self.chat_memory.messages else: return get_buffer_string( self.chat_memory.messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" return {self.memory_key: self.buffer} [docs]class ConversationStringBufferMemory(BaseMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" """Prefix to use for AI generated responses.""" buffer: str = "" output_key: Optional[str] = None input_key: Optional[str] = None memory_key: str = "history" #: :meta private: @root_validator() def validate_chains(cls, values: Dict) -> Dict:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/buffer.html
3eae703cd074-1
def validate_chains(cls, values: Dict) -> Dict: """Validate that return messages is not True.""" if values.get("return_messages", False): raise ValueError( "return_messages must be False for ConversationStringBufferMemory" ) return values @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return history buffer.""" return {self.memory_key: self.buffer} [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") output_key = list(outputs.keys())[0] else: output_key = self.output_key human = f"{self.human_prefix}: " + inputs[prompt_input_key] ai = f"{self.ai_prefix}: " + outputs[output_key] self.buffer += "\n" + "\n".join([human, ai]) [docs] def clear(self) -> None: """Clear memory contents.""" self.buffer = "" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/buffer.html
da535f71bcbf-0
Source code for langchain.memory.readonly from typing import Any, Dict, List from langchain.schema import BaseMemory [docs]class ReadOnlySharedMemory(BaseMemory): """A memory wrapper that is read-only and cannot be changed.""" memory: BaseMemory @property def memory_variables(self) -> List[str]: """Return memory variables.""" return self.memory.memory_variables [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load memory variables from memory.""" return self.memory.load_memory_variables(inputs) [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Nothing should be saved or changed""" pass [docs] def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/readonly.html
7bade8772e28-0
Source code for langchain.memory.summary from __future__ import annotations from typing import Any, Dict, List, Type from pydantic import BaseModel, root_validator from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import SUMMARY_PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.schema import ( BaseChatMessageHistory, BaseMessage, SystemMessage, get_buffer_string, ) class SummarizerMixin(BaseModel): human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel prompt: BasePromptTemplate = SUMMARY_PROMPT summary_message_cls: Type[BaseMessage] = SystemMessage def predict_new_summary( self, messages: List[BaseMessage], existing_summary: str ) -> str: new_lines = get_buffer_string( messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) chain = LLMChain(llm=self.llm, prompt=self.prompt) return chain.predict(summary=existing_summary, new_lines=new_lines) [docs]class ConversationSummaryMemory(BaseChatMemory, SummarizerMixin): """Conversation summarizer to memory.""" buffer: str = "" memory_key: str = "history" #: :meta private: [docs] @classmethod def from_messages( cls, llm: BaseLanguageModel, chat_memory: BaseChatMessageHistory, *, summarize_step: int = 2, **kwargs: Any, ) -> ConversationSummaryMemory:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/summary.html
7bade8772e28-1
**kwargs: Any, ) -> ConversationSummaryMemory: obj = cls(llm=llm, chat_memory=chat_memory, **kwargs) for i in range(0, len(obj.chat_memory.messages), summarize_step): obj.buffer = obj.predict_new_summary( obj.chat_memory.messages[i : i + summarize_step], obj.buffer ) return obj @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" if self.return_messages: buffer: Any = [self.summary_message_cls(content=self.buffer)] else: buffer = self.buffer return {self.memory_key: buffer} @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" prompt_variables = values["prompt"].input_variables expected_keys = {"summary", "new_lines"} if expected_keys != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but it should have {expected_keys}." ) return values [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self.buffer = self.predict_new_summary( self.chat_memory.messages[-2:], self.buffer ) [docs] def clear(self) -> None: """Clear memory contents."""
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/summary.html
7bade8772e28-2
[docs] def clear(self) -> None: """Clear memory contents.""" super().clear() self.buffer = "" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/summary.html
9c91c449cbfa-0
Source code for langchain.memory.vectorstore """Class for a VectorStore-backed memory object.""" from typing import Any, Dict, List, Optional, Union from pydantic import Field from langchain.memory.chat_memory import BaseMemory from langchain.memory.utils import get_prompt_input_key from langchain.schema import Document from langchain.vectorstores.base import VectorStoreRetriever [docs]class VectorStoreRetrieverMemory(BaseMemory): """Class for a VectorStore-backed memory object.""" retriever: VectorStoreRetriever = Field(exclude=True) """VectorStoreRetriever object to connect to.""" memory_key: str = "history" #: :meta private: """Key name to locate the memories in the result of load_memory_variables.""" input_key: Optional[str] = None """Key name to index the inputs to load_memory_variables.""" return_docs: bool = False """Whether or not to return the result of querying the database directly.""" @property def memory_variables(self) -> List[str]: """The list of keys emitted from the load_memory_variables method.""" return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key [docs] def load_memory_variables( self, inputs: Dict[str, Any] ) -> Dict[str, Union[List[Document], str]]: """Return history buffer.""" input_key = self._get_prompt_input_key(inputs) query = inputs[input_key] docs = self.retriever.get_relevant_documents(query)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/vectorstore.html
9c91c449cbfa-1
docs = self.retriever.get_relevant_documents(query) result: Union[List[Document], str] if not self.return_docs: result = "\n".join([doc.page_content for doc in docs]) else: result = docs return {self.memory_key: result} def _form_documents( self, inputs: Dict[str, Any], outputs: Dict[str, str] ) -> List[Document]: """Format context from this conversation to buffer.""" # Each document should only include the current turn, not the chat history filtered_inputs = {k: v for k, v in inputs.items() if k != self.memory_key} texts = [ f"{k}: {v}" for k, v in list(filtered_inputs.items()) + list(outputs.items()) ] page_content = "\n".join(texts) return [Document(page_content=page_content)] [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" documents = self._form_documents(inputs, outputs) self.retriever.add_documents(documents) [docs] def clear(self) -> None: """Nothing to clear.""" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/vectorstore.html
41f620be7ba0-0
Source code for langchain.memory.simple from typing import Any, Dict, List from langchain.schema import BaseMemory [docs]class SimpleMemory(BaseMemory): """Simple memory for storing context or other bits of information that shouldn't ever change between prompts. """ memories: Dict[str, Any] = dict() @property def memory_variables(self) -> List[str]: return list(self.memories.keys()) [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: return self.memories [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Nothing should be saved or changed, my memory is set in stone.""" pass [docs] def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/simple.html
44c59d235693-0
Source code for langchain.memory.buffer_window from typing import Any, Dict, List from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMessage, get_buffer_string [docs]class ConversationBufferWindowMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: k: int = 5 @property def buffer(self) -> List[BaseMessage]: """String buffer of memory.""" return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return history buffer.""" buffer: Any = self.buffer[-self.k * 2 :] if self.k > 0 else [] if not self.return_messages: buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) return {self.memory_key: buffer} By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/buffer_window.html
9b2f4aad14b2-0
Source code for langchain.memory.combined import warnings from typing import Any, Dict, List, Set from pydantic import validator from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMemory [docs]class CombinedMemory(BaseMemory): """Class for combining multiple memories' data together.""" memories: List[BaseMemory] """For tracking all the memories that should be accessed.""" @validator("memories") def check_repeated_memory_variable( cls, value: List[BaseMemory] ) -> List[BaseMemory]: all_variables: Set[str] = set() for val in value: overlap = all_variables.intersection(val.memory_variables) if overlap: raise ValueError( f"The same variables {overlap} are found in multiple" "memory object, which is not allowed by CombinedMemory." ) all_variables |= set(val.memory_variables) return value @validator("memories") def check_input_key(cls, value: List[BaseMemory]) -> List[BaseMemory]: """Check that if memories are of type BaseChatMemory that input keys exist.""" for val in value: if isinstance(val, BaseChatMemory): if val.input_key is None: warnings.warn( "When using CombinedMemory, " "input keys should be so the input is known. " f" Was not set on {val}" ) return value @property def memory_variables(self) -> List[str]: """All the memory variables that this instance provides.""" """Collected from the all the linked memories.""" memory_variables = [] for memory in self.memories: memory_variables.extend(memory.memory_variables)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/combined.html
9b2f4aad14b2-1
for memory in self.memories: memory_variables.extend(memory.memory_variables) return memory_variables [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load all vars from sub-memories.""" memory_data: Dict[str, Any] = {} # Collect vars from all sub-memories for memory in self.memories: data = memory.load_memory_variables(inputs) memory_data = { **memory_data, **data, } return memory_data [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this session for every memory.""" # Save context for all sub-memories for memory in self.memories: memory.save_context(inputs, outputs) [docs] def clear(self) -> None: """Clear context from this session for every memory.""" for memory in self.memories: memory.clear() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/combined.html
20edaa51834b-0
Source code for langchain.memory.chat_message_histories.cassandra import json import logging from typing import List from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_KEYSPACE_NAME = "chat_history" DEFAULT_TABLE_NAME = "message_store" DEFAULT_USERNAME = "cassandra" DEFAULT_PASSWORD = "cassandra" DEFAULT_PORT = 9042 [docs]class CassandraChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in Cassandra. Args: contact_points: list of ips to connect to Cassandra cluster session_id: arbitrary key that is used to store the messages of a single chat session. port: port to connect to Cassandra cluster username: username to connect to Cassandra cluster password: password to connect to Cassandra cluster keyspace_name: name of the keyspace to use table_name: name of the table to use """ def __init__( self, contact_points: List[str], session_id: str, port: int = DEFAULT_PORT, username: str = DEFAULT_USERNAME, password: str = DEFAULT_PASSWORD, keyspace_name: str = DEFAULT_KEYSPACE_NAME, table_name: str = DEFAULT_TABLE_NAME, ): self.contact_points = contact_points self.session_id = session_id self.port = port self.username = username self.password = password self.keyspace_name = keyspace_name self.table_name = table_name try: from cassandra import ( AuthenticationFailed, OperationTimedOut, UnresolvableContactPoints, )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/cassandra.html
20edaa51834b-1
OperationTimedOut, UnresolvableContactPoints, ) from cassandra.cluster import Cluster, PlainTextAuthProvider except ImportError: raise ValueError( "Could not import cassandra-driver python package. " "Please install it with `pip install cassandra-driver`." ) self.cluster: Cluster = Cluster( contact_points, port=port, auth_provider=PlainTextAuthProvider( username=self.username, password=self.password ), ) try: self.session = self.cluster.connect() except ( AuthenticationFailed, UnresolvableContactPoints, OperationTimedOut, ) as error: logger.error( "Unable to establish connection with \ cassandra chat message history database" ) raise error self._prepare_cassandra() def _prepare_cassandra(self) -> None: """Create the keyspace and table if they don't exist yet""" from cassandra import OperationTimedOut, Unavailable try: self.session.execute( f"""CREATE KEYSPACE IF NOT EXISTS {self.keyspace_name} WITH REPLICATION = {{ 'class' : 'SimpleStrategy', 'replication_factor' : 1 }};""" ) except (OperationTimedOut, Unavailable) as error: logger.error( f"Unable to create cassandra \ chat message history keyspace: {self.keyspace_name}." ) raise error self.session.set_keyspace(self.keyspace_name) try: self.session.execute( f"""CREATE TABLE IF NOT EXISTS {self.table_name} (id UUID, session_id varchar,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/cassandra.html
20edaa51834b-2
{self.table_name} (id UUID, session_id varchar, history text, PRIMARY KEY ((session_id), id) );""" ) except (OperationTimedOut, Unavailable) as error: logger.error( f"Unable to create cassandra \ chat message history table: {self.table_name}" ) raise error @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from Cassandra""" from cassandra import ReadFailure, ReadTimeout, Unavailable try: rows = self.session.execute( f"""SELECT * FROM {self.table_name} WHERE session_id = '{self.session_id}' ;""" ) except (Unavailable, ReadTimeout, ReadFailure) as error: logger.error("Unable to Retreive chat history messages from cassadra") raise error if rows: items = [json.loads(row.history) for row in rows] else: items = [] messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in Cassandra""" import uuid from cassandra import Unavailable, WriteFailure, WriteTimeout try: self.session.execute( """INSERT INTO message_store (id, session_id, history) VALUES (%s, %s, %s);""", (uuid.uuid4(), self.session_id, json.dumps(_message_to_dict(message))), ) except (Unavailable, WriteTimeout, WriteFailure) as error: logger.error("Unable to write chat history messages to cassandra") raise error
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/cassandra.html
20edaa51834b-3
logger.error("Unable to write chat history messages to cassandra") raise error [docs] def clear(self) -> None: """Clear session memory from Cassandra""" from cassandra import OperationTimedOut, Unavailable try: self.session.execute( f"DELETE FROM {self.table_name} WHERE session_id = '{self.session_id}';" ) except (Unavailable, OperationTimedOut) as error: logger.error("Unable to clear chat history messages from cassandra") raise error def __del__(self) -> None: if self.session: self.session.shutdown() if self.cluster: self.cluster.shutdown() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/cassandra.html
6749248172d0-0
Source code for langchain.memory.chat_message_histories.cosmos_db """Azure CosmosDB Memory History.""" from __future__ import annotations import logging from types import TracebackType from typing import TYPE_CHECKING, Any, List, Optional, Type from langchain.schema import ( BaseChatMessageHistory, BaseMessage, messages_from_dict, messages_to_dict, ) logger = logging.getLogger(__name__) if TYPE_CHECKING: from azure.cosmos import ContainerProxy [docs]class CosmosDBChatMessageHistory(BaseChatMessageHistory): """Chat history backed by Azure CosmosDB.""" def __init__( self, cosmos_endpoint: str, cosmos_database: str, cosmos_container: str, session_id: str, user_id: str, credential: Any = None, connection_string: Optional[str] = None, ttl: Optional[int] = None, cosmos_client_kwargs: Optional[dict] = None, ): """ Initializes a new instance of the CosmosDBChatMessageHistory class. Make sure to call prepare_cosmos or use the context manager to make sure your database is ready. Either a credential or a connection string must be provided. :param cosmos_endpoint: The connection endpoint for the Azure Cosmos DB account. :param cosmos_database: The name of the database to use. :param cosmos_container: The name of the container to use. :param session_id: The session ID to use, can be overwritten while loading. :param user_id: The user ID to use, can be overwritten while loading. :param credential: The credential to use to authenticate to Azure Cosmos DB. :param connection_string: The connection string to use to authenticate.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/cosmos_db.html
6749248172d0-1
:param connection_string: The connection string to use to authenticate. :param ttl: The time to live (in seconds) to use for documents in the container. :param cosmos_client_kwargs: Additional kwargs to pass to the CosmosClient. """ self.cosmos_endpoint = cosmos_endpoint self.cosmos_database = cosmos_database self.cosmos_container = cosmos_container self.credential = credential self.conn_string = connection_string self.session_id = session_id self.user_id = user_id self.ttl = ttl self.messages: List[BaseMessage] = [] try: from azure.cosmos import ( # pylint: disable=import-outside-toplevel # noqa: E501 CosmosClient, ) except ImportError as exc: raise ImportError( "You must install the azure-cosmos package to use the CosmosDBChatMessageHistory." # noqa: E501 ) from exc if self.credential: self._client = CosmosClient( url=self.cosmos_endpoint, credential=self.credential, **cosmos_client_kwargs or {}, ) elif self.conn_string: self._client = CosmosClient.from_connection_string( conn_str=self.conn_string, **cosmos_client_kwargs or {}, ) else: raise ValueError("Either a connection string or a credential must be set.") self._container: Optional[ContainerProxy] = None [docs] def prepare_cosmos(self) -> None: """Prepare the CosmosDB client. Use this function or the context manager to make sure your database is ready. """ try: from azure.cosmos import ( # pylint: disable=import-outside-toplevel # noqa: E501
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/cosmos_db.html
6749248172d0-2
PartitionKey, ) except ImportError as exc: raise ImportError( "You must install the azure-cosmos package to use the CosmosDBChatMessageHistory." # noqa: E501 ) from exc database = self._client.create_database_if_not_exists(self.cosmos_database) self._container = database.create_container_if_not_exists( self.cosmos_container, partition_key=PartitionKey("/user_id"), default_ttl=self.ttl, ) self.load_messages() def __enter__(self) -> "CosmosDBChatMessageHistory": """Context manager entry point.""" self._client.__enter__() self.prepare_cosmos() return self def __exit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: """Context manager exit""" self.upsert_messages() self._client.__exit__(exc_type, exc_val, traceback) [docs] def load_messages(self) -> None: """Retrieve the messages from Cosmos""" if not self._container: raise ValueError("Container not initialized") try: from azure.cosmos.exceptions import ( # pylint: disable=import-outside-toplevel # noqa: E501 CosmosHttpResponseError, ) except ImportError as exc: raise ImportError( "You must install the azure-cosmos package to use the CosmosDBChatMessageHistory." # noqa: E501 ) from exc try: item = self._container.read_item( item=self.session_id, partition_key=self.user_id ) except CosmosHttpResponseError:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/cosmos_db.html
6749248172d0-3
) except CosmosHttpResponseError: logger.info("no session found") return if "messages" in item and len(item["messages"]) > 0: self.messages = messages_from_dict(item["messages"]) [docs] def add_message(self, message: BaseMessage) -> None: """Add a self-created message to the store""" self.messages.append(message) self.upsert_messages() [docs] def upsert_messages(self) -> None: """Update the cosmosdb item.""" if not self._container: raise ValueError("Container not initialized") self._container.upsert_item( body={ "id": self.session_id, "user_id": self.user_id, "messages": messages_to_dict(self.messages), } ) [docs] def clear(self) -> None: """Clear session memory from this memory and cosmos.""" self.messages = [] if self._container: self._container.delete_item( item=self.session_id, partition_key=self.user_id ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/cosmos_db.html
854ce6e834b8-0
Source code for langchain.memory.chat_message_histories.in_memory from typing import List from pydantic import BaseModel from langchain.schema import ( BaseChatMessageHistory, BaseMessage, ) [docs]class ChatMessageHistory(BaseChatMessageHistory, BaseModel): messages: List[BaseMessage] = [] [docs] def add_message(self, message: BaseMessage) -> None: """Add a self-created message to the store""" self.messages.append(message) [docs] def clear(self) -> None: self.messages = [] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/in_memory.html
2aa1cbe92cf1-0
Source code for langchain.memory.chat_message_histories.file import json import logging from pathlib import Path from typing import List from langchain.schema import ( BaseChatMessageHistory, BaseMessage, messages_from_dict, messages_to_dict, ) logger = logging.getLogger(__name__) [docs]class FileChatMessageHistory(BaseChatMessageHistory): """ Chat message history that stores history in a local file. Args: file_path: path of the local file to store the messages. """ def __init__(self, file_path: str): self.file_path = Path(file_path) if not self.file_path.exists(): self.file_path.touch() self.file_path.write_text(json.dumps([])) @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from the local file""" items = json.loads(self.file_path.read_text()) messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in the local file""" messages = messages_to_dict(self.messages) messages.append(messages_to_dict([message])[0]) self.file_path.write_text(json.dumps(messages)) [docs] def clear(self) -> None: """Clear session memory from the local file""" self.file_path.write_text(json.dumps([])) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/file.html
74dcd0b60b09-0
Source code for langchain.memory.chat_message_histories.redis import json import logging from typing import List, Optional from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) [docs]class RedisChatMessageHistory(BaseChatMessageHistory): def __init__( self, session_id: str, url: str = "redis://localhost:6379/0", key_prefix: str = "message_store:", ttl: Optional[int] = None, ): try: import redis except ImportError: raise ImportError( "Could not import redis python package. " "Please install it with `pip install redis`." ) try: self.redis_client = redis.Redis.from_url(url=url) except redis.exceptions.ConnectionError as error: logger.error(error) self.session_id = session_id self.key_prefix = key_prefix self.ttl = ttl @property def key(self) -> str: """Construct the record key to use""" return self.key_prefix + self.session_id @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from Redis""" _items = self.redis_client.lrange(self.key, 0, -1) items = [json.loads(m.decode("utf-8")) for m in _items[::-1]] messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in Redis"""
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/redis.html
74dcd0b60b09-1
"""Append the message to the record in Redis""" self.redis_client.lpush(self.key, json.dumps(_message_to_dict(message))) if self.ttl: self.redis_client.expire(self.key, self.ttl) [docs] def clear(self) -> None: """Clear session memory from Redis""" self.redis_client.delete(self.key) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/redis.html
865da7177912-0
Source code for langchain.memory.chat_message_histories.postgres import json import logging from typing import List from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_CONNECTION_STRING = "postgresql://postgres:mypassword@localhost/chat_history" [docs]class PostgresChatMessageHistory(BaseChatMessageHistory): def __init__( self, session_id: str, connection_string: str = DEFAULT_CONNECTION_STRING, table_name: str = "message_store", ): import psycopg from psycopg.rows import dict_row try: self.connection = psycopg.connect(connection_string) self.cursor = self.connection.cursor(row_factory=dict_row) except psycopg.OperationalError as error: logger.error(error) self.session_id = session_id self.table_name = table_name self._create_table_if_not_exists() def _create_table_if_not_exists(self) -> None: create_table_query = f"""CREATE TABLE IF NOT EXISTS {self.table_name} ( id SERIAL PRIMARY KEY, session_id TEXT NOT NULL, message JSONB NOT NULL );""" self.cursor.execute(create_table_query) self.connection.commit() @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from PostgreSQL""" query = f"SELECT message FROM {self.table_name} WHERE session_id = %s;" self.cursor.execute(query, (self.session_id,)) items = [record["message"] for record in self.cursor.fetchall()] messages = messages_from_dict(items) return messages
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/postgres.html
865da7177912-1
messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in PostgreSQL""" from psycopg import sql query = sql.SQL("INSERT INTO {} (session_id, message) VALUES (%s, %s);").format( sql.Identifier(self.table_name) ) self.cursor.execute( query, (self.session_id, json.dumps(_message_to_dict(message))) ) self.connection.commit() [docs] def clear(self) -> None: """Clear session memory from PostgreSQL""" query = f"DELETE FROM {self.table_name} WHERE session_id = %s;" self.cursor.execute(query, (self.session_id,)) self.connection.commit() def __del__(self) -> None: if self.cursor: self.cursor.close() if self.connection: self.connection.close() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/postgres.html
c80fabc7b629-0
Source code for langchain.memory.chat_message_histories.dynamodb import logging from typing import List, Optional from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, messages_to_dict, ) logger = logging.getLogger(__name__) [docs]class DynamoDBChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in AWS DynamoDB. This class expects that a DynamoDB table with name `table_name` and a partition Key of `SessionId` is present. Args: table_name: name of the DynamoDB table session_id: arbitrary key that is used to store the messages of a single chat session. endpoint_url: URL of the AWS endpoint to connect to. This argument is optional and useful for test purposes, like using Localstack. If you plan to use AWS cloud service, you normally don't have to worry about setting the endpoint_url. """ def __init__( self, table_name: str, session_id: str, endpoint_url: Optional[str] = None ): import boto3 if endpoint_url: client = boto3.resource("dynamodb", endpoint_url=endpoint_url) else: client = boto3.resource("dynamodb") self.table = client.Table(table_name) self.session_id = session_id @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from DynamoDB""" from botocore.exceptions import ClientError try: response = self.table.get_item(Key={"SessionId": self.session_id}) except ClientError as error:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/dynamodb.html
c80fabc7b629-1
except ClientError as error: if error.response["Error"]["Code"] == "ResourceNotFoundException": logger.warning("No record found with session id: %s", self.session_id) else: logger.error(error) if response and "Item" in response: items = response["Item"]["History"] else: items = [] messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in DynamoDB""" from botocore.exceptions import ClientError messages = messages_to_dict(self.messages) _message = _message_to_dict(message) messages.append(_message) try: self.table.put_item( Item={"SessionId": self.session_id, "History": messages} ) except ClientError as err: logger.error(err) [docs] def clear(self) -> None: """Clear session memory from DynamoDB""" from botocore.exceptions import ClientError try: self.table.delete_item(Key={"SessionId": self.session_id}) except ClientError as err: logger.error(err) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/dynamodb.html
a9683cbd94d7-0
Source code for langchain.memory.chat_message_histories.momento from __future__ import annotations import json from datetime import timedelta from typing import TYPE_CHECKING, Any, Optional from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, ) from langchain.utils import get_from_env if TYPE_CHECKING: import momento def _ensure_cache_exists(cache_client: momento.CacheClient, cache_name: str) -> None: """Create cache if it doesn't exist. Raises: SdkException: Momento service or network error Exception: Unexpected response """ from momento.responses import CreateCache create_cache_response = cache_client.create_cache(cache_name) if isinstance(create_cache_response, CreateCache.Success) or isinstance( create_cache_response, CreateCache.CacheAlreadyExists ): return None elif isinstance(create_cache_response, CreateCache.Error): raise create_cache_response.inner_exception else: raise Exception(f"Unexpected response cache creation: {create_cache_response}") [docs]class MomentoChatMessageHistory(BaseChatMessageHistory): """Chat message history cache that uses Momento as a backend. See https://gomomento.com/""" def __init__( self, session_id: str, cache_client: momento.CacheClient, cache_name: str, *, key_prefix: str = "message_store:", ttl: Optional[timedelta] = None, ensure_cache_exists: bool = True, ): """Instantiate a chat message history cache that uses Momento as a backend. Note: to instantiate the cache client passed to MomentoChatMessageHistory,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/momento.html
a9683cbd94d7-1
Note: to instantiate the cache client passed to MomentoChatMessageHistory, you must have a Momento account at https://gomomento.com/. Args: session_id (str): The session ID to use for this chat session. cache_client (CacheClient): The Momento cache client. cache_name (str): The name of the cache to use to store the messages. key_prefix (str, optional): The prefix to apply to the cache key. Defaults to "message_store:". ttl (Optional[timedelta], optional): The TTL to use for the messages. Defaults to None, ie the default TTL of the cache will be used. ensure_cache_exists (bool, optional): Create the cache if it doesn't exist. Defaults to True. Raises: ImportError: Momento python package is not installed. TypeError: cache_client is not of type momento.CacheClientObject """ try: from momento import CacheClient from momento.requests import CollectionTtl except ImportError: raise ImportError( "Could not import momento python package. " "Please install it with `pip install momento`." ) if not isinstance(cache_client, CacheClient): raise TypeError("cache_client must be a momento.CacheClient object.") if ensure_cache_exists: _ensure_cache_exists(cache_client, cache_name) self.key = key_prefix + session_id self.cache_client = cache_client self.cache_name = cache_name if ttl is not None: self.ttl = CollectionTtl.of(ttl) else: self.ttl = CollectionTtl.from_cache_ttl() [docs] @classmethod def from_client_params( cls, session_id: str,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/momento.html
a9683cbd94d7-2
def from_client_params( cls, session_id: str, cache_name: str, ttl: timedelta, *, configuration: Optional[momento.config.Configuration] = None, auth_token: Optional[str] = None, **kwargs: Any, ) -> MomentoChatMessageHistory: """Construct cache from CacheClient parameters.""" try: from momento import CacheClient, Configurations, CredentialProvider except ImportError: raise ImportError( "Could not import momento python package. " "Please install it with `pip install momento`." ) if configuration is None: configuration = Configurations.Laptop.v1() auth_token = auth_token or get_from_env("auth_token", "MOMENTO_AUTH_TOKEN") credentials = CredentialProvider.from_string(auth_token) cache_client = CacheClient(configuration, credentials, default_ttl=ttl) return cls(session_id, cache_client, cache_name, ttl=ttl, **kwargs) @property def messages(self) -> list[BaseMessage]: # type: ignore[override] """Retrieve the messages from Momento. Raises: SdkException: Momento service or network error Exception: Unexpected response Returns: list[BaseMessage]: List of cached messages """ from momento.responses import CacheListFetch fetch_response = self.cache_client.list_fetch(self.cache_name, self.key) if isinstance(fetch_response, CacheListFetch.Hit): items = [json.loads(m) for m in fetch_response.value_list_string] return messages_from_dict(items) elif isinstance(fetch_response, CacheListFetch.Miss): return [] elif isinstance(fetch_response, CacheListFetch.Error):
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/momento.html
a9683cbd94d7-3
return [] elif isinstance(fetch_response, CacheListFetch.Error): raise fetch_response.inner_exception else: raise Exception(f"Unexpected response: {fetch_response}") [docs] def add_message(self, message: BaseMessage) -> None: """Store a message in the cache. Args: message (BaseMessage): The message object to store. Raises: SdkException: Momento service or network error. Exception: Unexpected response. """ from momento.responses import CacheListPushBack item = json.dumps(_message_to_dict(message)) push_response = self.cache_client.list_push_back( self.cache_name, self.key, item, ttl=self.ttl ) if isinstance(push_response, CacheListPushBack.Success): return None elif isinstance(push_response, CacheListPushBack.Error): raise push_response.inner_exception else: raise Exception(f"Unexpected response: {push_response}") [docs] def clear(self) -> None: """Remove the session's messages from the cache. Raises: SdkException: Momento service or network error. Exception: Unexpected response. """ from momento.responses import CacheDelete delete_response = self.cache_client.delete(self.cache_name, self.key) if isinstance(delete_response, CacheDelete.Success): return None elif isinstance(delete_response, CacheDelete.Error): raise delete_response.inner_exception else: raise Exception(f"Unexpected response: {delete_response}") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/momento.html
19a9baed8b87-0
Source code for langchain.memory.chat_message_histories.mongodb import json import logging from typing import List from langchain.schema import ( BaseChatMessageHistory, BaseMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_DBNAME = "chat_history" DEFAULT_COLLECTION_NAME = "message_store" [docs]class MongoDBChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in MongoDB. Args: connection_string: connection string to connect to MongoDB session_id: arbitrary key that is used to store the messages of a single chat session. database_name: name of the database to use collection_name: name of the collection to use """ def __init__( self, connection_string: str, session_id: str, database_name: str = DEFAULT_DBNAME, collection_name: str = DEFAULT_COLLECTION_NAME, ): from pymongo import MongoClient, errors self.connection_string = connection_string self.session_id = session_id self.database_name = database_name self.collection_name = collection_name try: self.client: MongoClient = MongoClient(connection_string) except errors.ConnectionFailure as error: logger.error(error) self.db = self.client[database_name] self.collection = self.db[collection_name] self.collection.create_index("SessionId") @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from MongoDB""" from pymongo import errors try: cursor = self.collection.find({"SessionId": self.session_id}) except errors.OperationFailure as error: logger.error(error) if cursor:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/mongodb.html
19a9baed8b87-1
except errors.OperationFailure as error: logger.error(error) if cursor: items = [json.loads(document["History"]) for document in cursor] else: items = [] messages = messages_from_dict(items) return messages [docs] def add_message(self, message: BaseMessage) -> None: """Append the message to the record in MongoDB""" from pymongo import errors try: self.collection.insert_one( { "SessionId": self.session_id, "History": json.dumps(_message_to_dict(message)), } ) except errors.WriteError as err: logger.error(err) [docs] def clear(self) -> None: """Clear session memory from MongoDB""" from pymongo import errors try: self.collection.delete_many({"SessionId": self.session_id}) except errors.WriteError as err: logger.error(err) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/memory/chat_message_histories/mongodb.html
e7a97b3acca7-0
Source code for langchain.llms.deepinfra """Wrapper around DeepInfra APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env DEFAULT_MODEL_ID = "google/flan-t5-xl" [docs]class DeepInfra(LLM): """Wrapper around DeepInfra deployed models. To use, you should have the ``requests`` python package installed, and the environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Only supports `text-generation` and `text2text-generation` for now. Example: .. code-block:: python from langchain.llms import DeepInfra di = DeepInfra(model_id="google/flan-t5-xl", deepinfra_api_token="my-api-key") """ model_id: str = DEFAULT_MODEL_ID model_kwargs: Optional[dict] = None deepinfra_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" deepinfra_api_token = get_from_dict_or_env( values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN" ) values["deepinfra_api_token"] = deepinfra_api_token return values @property
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/deepinfra.html
e7a97b3acca7-1
return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_id": self.model_id}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "deepinfra" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to DeepInfra's inference API endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = di("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} _model_kwargs = {**_model_kwargs, **kwargs} # HTTP headers for authorization headers = { "Authorization": f"bearer {self.deepinfra_api_token}", "Content-Type": "application/json", } try: res = requests.post( f"https://api.deepinfra.com/v1/inference/{self.model_id}", headers=headers, json={"input": prompt, **_model_kwargs}, ) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") if res.status_code != 200: raise ValueError(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/deepinfra.html
e7a97b3acca7-2
if res.status_code != 200: raise ValueError( "Error raised by inference API HTTP code: %s, %s" % (res.status_code, res.text) ) try: t = res.json() text = t["results"][0]["generated_text"] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {res.text}" ) if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/deepinfra.html
06b7f3f65424-0
Source code for langchain.llms.rwkv """Wrapper for the RWKV model. Based on https://github.com/saharNooby/rwkv.cpp/blob/master/rwkv/chat_with_bot.py https://github.com/BlinkDL/ChatRWKV/blob/main/v2/chat.py """ from typing import Any, Dict, List, Mapping, Optional, Set from pydantic import BaseModel, Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens [docs]class RWKV(LLM, BaseModel): r"""Wrapper around RWKV language models. To use, you should have the ``rwkv`` python package installed, the pre-trained model file, and the model's config information. Example: .. code-block:: python from langchain.llms import RWKV model = RWKV(model="./models/rwkv-3b-fp16.bin", strategy="cpu fp32") # Simplest invocation response = model("Once upon a time, ") """ model: str """Path to the pre-trained RWKV model file.""" tokens_path: str """Path to the RWKV tokens file.""" strategy: str = "cpu fp32" """Token context window.""" rwkv_verbose: bool = True """Print debug information.""" temperature: float = 1.0 """The temperature to use for sampling.""" top_p: float = 0.5 """The top-p value to use for sampling.""" penalty_alpha_frequency: float = 0.4 """Positive values penalize new tokens based on their existing frequency
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/rwkv.html
06b7f3f65424-1
"""Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim..""" penalty_alpha_presence: float = 0.4 """Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics..""" CHUNK_LEN: int = 256 """Batch size for prompt processing.""" max_tokens_per_generation: int = 256 """Maximum number of tokens to generate.""" client: Any = None #: :meta private: tokenizer: Any = None #: :meta private: pipeline: Any = None #: :meta private: model_tokens: Any = None #: :meta private: model_state: Any = None #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @property def _default_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "verbose": self.verbose, "top_p": self.top_p, "temperature": self.temperature, "penalty_alpha_frequency": self.penalty_alpha_frequency, "penalty_alpha_presence": self.penalty_alpha_presence, "CHUNK_LEN": self.CHUNK_LEN, "max_tokens_per_generation": self.max_tokens_per_generation, } @staticmethod def _rwkv_param_names() -> Set[str]: """Get the identifying parameters.""" return { "verbose", } @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in the environment."""
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/rwkv.html
06b7f3f65424-2
"""Validate that the python package exists in the environment.""" try: import tokenizers except ImportError: raise ImportError( "Could not import tokenizers python package. " "Please install it with `pip install tokenizers`." ) try: from rwkv.model import RWKV as RWKVMODEL from rwkv.utils import PIPELINE values["tokenizer"] = tokenizers.Tokenizer.from_file(values["tokens_path"]) rwkv_keys = cls._rwkv_param_names() model_kwargs = {k: v for k, v in values.items() if k in rwkv_keys} model_kwargs["verbose"] = values["rwkv_verbose"] values["client"] = RWKVMODEL( values["model"], strategy=values["strategy"], **model_kwargs ) values["pipeline"] = PIPELINE(values["client"], values["tokens_path"]) except ImportError: raise ValueError( "Could not import rwkv python package. " "Please install it with `pip install rwkv`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model": self.model, **self._default_params, **{k: v for k, v in self.__dict__.items() if k in RWKV._rwkv_param_names()}, } @property def _llm_type(self) -> str: """Return the type of llm.""" return "rwkv-4" def run_rnn(self, _tokens: List[str], newline_adj: int = 0) -> Any: AVOID_REPEAT_TOKENS = []
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/rwkv.html
06b7f3f65424-3
AVOID_REPEAT_TOKENS = [] AVOID_REPEAT = ",:?!" for i in AVOID_REPEAT: dd = self.pipeline.encode(i) assert len(dd) == 1 AVOID_REPEAT_TOKENS += dd tokens = [int(x) for x in _tokens] self.model_tokens += tokens out: Any = None while len(tokens) > 0: out, self.model_state = self.client.forward( tokens[: self.CHUNK_LEN], self.model_state ) tokens = tokens[self.CHUNK_LEN :] END_OF_LINE = 187 out[END_OF_LINE] += newline_adj # adjust \n probability if self.model_tokens[-1] in AVOID_REPEAT_TOKENS: out[self.model_tokens[-1]] = -999999999 return out def rwkv_generate(self, prompt: str) -> str: self.model_state = None self.model_tokens = [] logits = self.run_rnn(self.tokenizer.encode(prompt).ids) begin = len(self.model_tokens) out_last = begin occurrence: Dict = {} decoded = "" for i in range(self.max_tokens_per_generation): for n in occurrence: logits[n] -= ( self.penalty_alpha_presence + occurrence[n] * self.penalty_alpha_frequency ) token = self.pipeline.sample_logits( logits, temperature=self.temperature, top_p=self.top_p ) END_OF_TEXT = 0 if token == END_OF_TEXT: break if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 logits = self.run_rnn([token])
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/rwkv.html
06b7f3f65424-4
occurrence[token] += 1 logits = self.run_rnn([token]) xxx = self.tokenizer.decode(self.model_tokens[out_last:]) if "\ufffd" not in xxx: # avoid utf-8 display issues decoded += xxx out_last = begin + i + 1 if i >= self.max_tokens_per_generation - 100: break return decoded def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: r"""RWKV generation Args: prompt: The prompt to pass into the model. stop: A list of strings to stop generation when encountered. Returns: The string generated by the model. Example: .. code-block:: python prompt = "Once upon a time, " response = model(prompt, n_predict=55) """ text = self.rwkv_generate(prompt) if stop is not None: text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/rwkv.html
867e1d128899-0
Source code for langchain.llms.sagemaker_endpoint """Wrapper around Sagemaker InvokeEndpoint API.""" from abc import abstractmethod from typing import Any, Dict, Generic, List, Mapping, Optional, TypeVar, Union from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens INPUT_TYPE = TypeVar("INPUT_TYPE", bound=Union[str, List[str]]) OUTPUT_TYPE = TypeVar("OUTPUT_TYPE", bound=Union[str, List[List[float]]]) class ContentHandlerBase(Generic[INPUT_TYPE, OUTPUT_TYPE]): """A handler class to transform input from LLM to a format that SageMaker endpoint expects. Similarily, the class also handles transforming output from the SageMaker endpoint to a format that LLM class expects. """ """ Example: .. code-block:: python class ContentHandler(ContentHandlerBase): content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({prompt: prompt, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) return response_json[0]["generated_text"] """ content_type: Optional[str] = "text/plain" """The MIME type of the input data passed to endpoint""" accepts: Optional[str] = "text/plain" """The MIME type of the response data returned from endpoint""" @abstractmethod
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/sagemaker_endpoint.html
867e1d128899-1
"""The MIME type of the response data returned from endpoint""" @abstractmethod def transform_input(self, prompt: INPUT_TYPE, model_kwargs: Dict) -> bytes: """Transforms the input to a format that model can accept as the request Body. Should return bytes or seekable file like object in the format specified in the content_type request header. """ @abstractmethod def transform_output(self, output: bytes) -> OUTPUT_TYPE: """Transforms the output from the model to string that the LLM class expects. """ class LLMContentHandler(ContentHandlerBase[str, str]): """Content handler for LLM class.""" [docs]class SagemakerEndpoint(LLM): """Wrapper around custom Sagemaker Inference Endpoints. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html """ """ Example: .. code-block:: python from langchain import SagemakerEndpoint endpoint_name = ( "my-endpoint-name" ) region_name = ( "us-west-2" ) credentials_profile_name = ( "default" )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/sagemaker_endpoint.html
867e1d128899-2
) credentials_profile_name = ( "default" ) se = SagemakerEndpoint( endpoint_name=endpoint_name, region_name=region_name, credentials_profile_name=credentials_profile_name ) """ client: Any #: :meta private: endpoint_name: str = "" """The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region.""" region_name: str = "" """The aws region where the Sagemaker model is deployed, eg. `us-west-2`.""" credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ content_handler: LLMContentHandler """The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. """ """ Example: .. code-block:: python from langchain.llms.sagemaker_endpoint import LLMContentHandler class ContentHandler(LLMContentHandler): content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({prompt: prompt, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/sagemaker_endpoint.html
867e1d128899-3
def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) return response_json[0]["generated_text"] """ model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" endpoint_kwargs: Optional[Dict] = None """Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" try: import boto3 try: if values["credentials_profile_name"] is not None: session = boto3.Session( profile_name=values["credentials_profile_name"] ) else: # use default credentials session = boto3.Session() values["client"] = session.client( "sagemaker-runtime", region_name=values["region_name"] ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e except ImportError: raise ImportError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/sagemaker_endpoint.html
867e1d128899-4
@property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"endpoint_name": self.endpoint_name}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "sagemaker_endpoint" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Sagemaker inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = se("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} _model_kwargs = {**_model_kwargs, **kwargs} _endpoint_kwargs = self.endpoint_kwargs or {} body = self.content_handler.transform_input(prompt, _model_kwargs) content_type = self.content_handler.content_type accepts = self.content_handler.accepts # send request try: response = self.client.invoke_endpoint( EndpointName=self.endpoint_name, Body=body, ContentType=content_type, Accept=accepts, **_endpoint_kwargs, ) except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") text = self.content_handler.transform_output(response["Body"])
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/sagemaker_endpoint.html
867e1d128899-5
text = self.content_handler.transform_output(response["Body"]) if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to the sagemaker endpoint. text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/sagemaker_endpoint.html
6912a53ff031-0
Source code for langchain.llms.petals """Wrapper around Petals API.""" import logging from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class Petals(LLM): """Wrapper around Petals Bloom models. To use, you should have the ``petals`` python package installed, and the environment variable ``HUGGINGFACE_API_KEY`` set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import petals petals = Petals() """ client: Any """The client to use for the API calls.""" tokenizer: Any """The tokenizer to use for the API calls.""" model_name: str = "bigscience/bloom-petals" """The model to use.""" temperature: float = 0.7 """What sampling temperature to use""" max_new_tokens: int = 256 """The maximum number of new tokens to generate in the completion.""" top_p: float = 0.9 """The cumulative probability for top-p sampling.""" top_k: Optional[int] = None """The number of highest probability vocabulary tokens to keep for top-k-filtering.""" do_sample: bool = True """Whether or not to use sampling; use greedy decoding otherwise."""
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/petals.html
6912a53ff031-1
"""Whether or not to use sampling; use greedy decoding otherwise.""" max_length: Optional[int] = None """The maximum length of the sequence to be generated.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" huggingface_api_key: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingface_api_key = get_from_dict_or_env( values, "huggingface_api_key", "HUGGINGFACE_API_KEY" ) try: from petals import DistributedBloomForCausalLM from transformers import BloomTokenizerFast
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/petals.html
6912a53ff031-2
from petals import DistributedBloomForCausalLM from transformers import BloomTokenizerFast model_name = values["model_name"] values["tokenizer"] = BloomTokenizerFast.from_pretrained(model_name) values["client"] = DistributedBloomForCausalLM.from_pretrained(model_name) values["huggingface_api_key"] = huggingface_api_key except ImportError: raise ValueError( "Could not import transformers or petals python package." "Please install with `pip install -U transformers petals`." ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Petals API.""" normal_params = { "temperature": self.temperature, "max_new_tokens": self.max_new_tokens, "top_p": self.top_p, "top_k": self.top_k, "do_sample": self.do_sample, "max_length": self.max_length, } return {**normal_params, **self.model_kwargs} @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "petals" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the Petals API.""" params = self._default_params
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/petals.html
6912a53ff031-3
"""Call the Petals API.""" params = self._default_params params = {**params, **kwargs} inputs = self.tokenizer(prompt, return_tensors="pt")["input_ids"] outputs = self.client.generate(inputs, **params) text = self.tokenizer.decode(outputs[0]) if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/petals.html
9d38096d69b8-0
Source code for langchain.llms.writer """Wrapper around Writer APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env [docs]class Writer(LLM): """Wrapper around Writer large language models. To use, you should have the environment variable ``WRITER_API_KEY`` and ``WRITER_ORG_ID`` set with your API key and organization ID respectively. Example: .. code-block:: python from langchain import Writer writer = Writer(model_id="palmyra-base") """ writer_org_id: Optional[str] = None """Writer organization ID.""" model_id: str = "palmyra-instruct" """Model name to use.""" min_tokens: Optional[int] = None """Minimum number of tokens to generate.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" temperature: Optional[float] = None """What sampling temperature to use.""" top_p: Optional[float] = None """Total probability mass of tokens to consider at each step.""" stop: Optional[List[str]] = None """Sequences when completion generation will stop.""" presence_penalty: Optional[float] = None """Penalizes repeated tokens regardless of frequency.""" repetition_penalty: Optional[float] = None """Penalizes repeated tokens according to frequency.""" best_of: Optional[int] = None """Generates this many completions server-side and returns the "best".""" logprobs: bool = False
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/writer.html
9d38096d69b8-1
logprobs: bool = False """Whether to return log probabilities.""" n: Optional[int] = None """How many completions to generate.""" writer_api_key: Optional[str] = None """Writer API key.""" base_url: Optional[str] = None """Base url to use, if None decides based on model name.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and organization id exist in environment.""" writer_api_key = get_from_dict_or_env( values, "writer_api_key", "WRITER_API_KEY" ) values["writer_api_key"] = writer_api_key writer_org_id = get_from_dict_or_env(values, "writer_org_id", "WRITER_ORG_ID") values["writer_org_id"] = writer_org_id return values @property def _default_params(self) -> Mapping[str, Any]: """Get the default parameters for calling Writer API.""" return { "minTokens": self.min_tokens, "maxTokens": self.max_tokens, "temperature": self.temperature, "topP": self.top_p, "stop": self.stop, "presencePenalty": self.presence_penalty, "repetitionPenalty": self.repetition_penalty, "bestOf": self.best_of, "logprobs": self.logprobs, "n": self.n, } @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/writer.html
9d38096d69b8-2
"""Get the identifying parameters.""" return { **{"model_id": self.model_id, "writer_org_id": self.writer_org_id}, **self._default_params, } @property def _llm_type(self) -> str: """Return type of llm.""" return "writer" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Writer's completions endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = Writer("Tell me a joke.") """ if self.base_url is not None: base_url = self.base_url else: base_url = ( "https://enterprise-api.writer.com/llm" f"/organization/{self.writer_org_id}" f"/model/{self.model_id}/completions" ) params = {**self._default_params, **kwargs} response = requests.post( url=base_url, headers={ "Authorization": f"{self.writer_api_key}", "Content-Type": "application/json", "Accept": "application/json", }, json={"prompt": prompt, **params}, ) text = response.text if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/writer.html
9d38096d69b8-3
# are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/writer.html
1fc3dc302d95-0
Source code for langchain.llms.mosaicml """Wrapper around MosaicML APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env INSTRUCTION_KEY = "### Instruction:" RESPONSE_KEY = "### Response:" INTRO_BLURB = ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request." ) PROMPT_FOR_GENERATION_FORMAT = """{intro} {instruction_key} {instruction} {response_key} """.format( intro=INTRO_BLURB, instruction_key=INSTRUCTION_KEY, instruction="{instruction}", response_key=RESPONSE_KEY, ) [docs]class MosaicML(LLM): """Wrapper around MosaicML's LLM inference service. To use, you should have the environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.llms import MosaicML endpoint_url = ( "https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict" ) mosaic_llm = MosaicML( endpoint_url=endpoint_url, mosaicml_api_token="my-api-key" ) """ endpoint_url: str = (
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/mosaicml.html
1fc3dc302d95-1
) """ endpoint_url: str = ( "https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict" ) """Endpoint URL to use.""" inject_instruction_format: bool = False """Whether to inject the instruction format into the prompt.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" retry_sleep: float = 1.0 """How long to try sleeping for if a rate limit is encountered""" mosaicml_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" mosaicml_api_token = get_from_dict_or_env( values, "mosaicml_api_token", "MOSAICML_API_TOKEN" ) values["mosaicml_api_token"] = mosaicml_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"endpoint_url": self.endpoint_url}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "mosaicml" def _transform_prompt(self, prompt: str) -> str: """Transform prompt.""" if self.inject_instruction_format: prompt = PROMPT_FOR_GENERATION_FORMAT.format( instruction=prompt, )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/mosaicml.html
1fc3dc302d95-2
instruction=prompt, ) return prompt def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, is_retry: bool = False, **kwargs: Any, ) -> str: """Call out to a MosaicML LLM inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = mosaic_llm("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} prompt = self._transform_prompt(prompt) payload = {"input_strings": [prompt]} payload.update(_model_kwargs) payload.update(kwargs) # HTTP headers for authorization headers = { "Authorization": f"{self.mosaicml_api_token}", "Content-Type": "application/json", } # send request try: response = requests.post(self.endpoint_url, headers=headers, json=payload) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") try: parsed_response = response.json() if "error" in parsed_response: # if we get rate limited, try sleeping for 1 second if ( not is_retry and "rate limit exceeded" in parsed_response["error"].lower() ): import time time.sleep(self.retry_sleep) return self._call(prompt, stop, run_manager, is_retry=True) raise ValueError(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/mosaicml.html
1fc3dc302d95-3
raise ValueError( f"Error raised by inference API: {parsed_response['error']}" ) # The inference API has changed a couple of times, so we add some handling # to be robust to multiple response formats. if isinstance(parsed_response, dict): if "data" in parsed_response: output_item = parsed_response["data"] elif "output" in parsed_response: output_item = parsed_response["output"] else: raise ValueError( f"No key data or output in response: {parsed_response}" ) if isinstance(output_item, list): text = output_item[0] else: text = output_item elif isinstance(parsed_response, list): first_item = parsed_response[0] if isinstance(first_item, str): text = first_item elif isinstance(first_item, dict): if "output" in parsed_response: text = first_item["output"] else: raise ValueError( f"No key data or output in response: {parsed_response}" ) else: raise ValueError(f"Unexpected response format: {parsed_response}") else: raise ValueError(f"Unexpected response type: {parsed_response}") text = text[len(prompt) :] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {response.text}" ) # TODO: replace when MosaicML supports custom stop tokens natively if stop is not None: text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/mosaicml.html
1fc3dc302d95-4
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/mosaicml.html
70dcace8783d-0
Source code for langchain.llms.replicate """Wrapper around Replicate API.""" import logging from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class Replicate(LLM): """Wrapper around Replicate models. To use, you should have the ``replicate`` python package installed, and the environment variable ``REPLICATE_API_TOKEN`` set with your API token. You can find your token here: https://replicate.com/account The model param is required, but any other model parameters can also be passed in with the format input={model_param: value, ...} Example: .. code-block:: python from langchain.llms import Replicate replicate = Replicate(model="stability-ai/stable-diffusion: \ 27b93a2413e7f36cd83da926f365628\ 0b2931564ff050bf9575f1fdf9bcd7478", input={"image_dimensions": "512x512"}) """ model: str input: Dict[str, Any] = Field(default_factory=dict) model_kwargs: Dict[str, Any] = Field(default_factory=dict) replicate_api_token: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in."""
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/replicate.html
70dcace8783d-1
"""Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" replicate_api_token = get_from_dict_or_env( values, "REPLICATE_API_TOKEN", "REPLICATE_API_TOKEN" ) values["replicate_api_token"] = replicate_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of model.""" return "replicate" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to replicate endpoint.""" try: import replicate as replicate_python except ImportError: raise ImportError(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/replicate.html
70dcace8783d-2
import replicate as replicate_python except ImportError: raise ImportError( "Could not import replicate python package. " "Please install it with `pip install replicate`." ) # get the model and version model_str, version_str = self.model.split(":") model = replicate_python.models.get(model_str) version = model.versions.get(version_str) # sort through the openapi schema to get the name of the first input input_properties = sorted( version.openapi_schema["components"]["schemas"]["Input"][ "properties" ].items(), key=lambda item: item[1].get("x-order", 0), ) first_input_name = input_properties[0][0] inputs = {first_input_name: prompt, **self.input} iterator = replicate_python.run(self.model, input={**inputs, **kwargs}) return "".join([output for output in iterator]) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/replicate.html
8e5972ee73f8-0
Source code for langchain.llms.huggingface_endpoint """Wrapper around HuggingFace APIs.""" from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env VALID_TASKS = ("text2text-generation", "text-generation", "summarization") [docs]class HuggingFaceEndpoint(LLM): """Wrapper around HuggingFaceHub Inference Endpoints. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Only supports `text-generation` and `text2text-generation` for now. Example: .. code-block:: python from langchain.llms import HuggingFaceEndpoint endpoint_url = ( "https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud" ) hf = HuggingFaceEndpoint( endpoint_url=endpoint_url, huggingfacehub_api_token="my-api-key" ) """ endpoint_url: str = "" """Endpoint URL to use.""" task: Optional[str] = None """Task to call the model with. Should be a task that returns `generated_text` or `summary_text`.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None class Config:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_endpoint.html
8e5972ee73f8-1
huggingfacehub_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub.hf_api import HfApi try: HfApi( endpoint="https://huggingface.co", # Can be a Private Hub endpoint. token=huggingfacehub_api_token, ).whoami() except Exception as e: raise ValueError( "Could not authenticate with huggingface_hub. " "Please check your API token." ) from e except ImportError: raise ValueError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) values["huggingfacehub_api_token"] = huggingfacehub_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"endpoint_url": self.endpoint_url, "task": self.task}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "huggingface_endpoint" def _call( self,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_endpoint.html
8e5972ee73f8-2
return "huggingface_endpoint" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to HuggingFace Hub's inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = hf("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} # payload samples params = {**_model_kwargs, **kwargs} parameter_payload = {"inputs": prompt, "parameters": params} # HTTP headers for authorization headers = { "Authorization": f"Bearer {self.huggingfacehub_api_token}", "Content-Type": "application/json", } # send request try: response = requests.post( self.endpoint_url, headers=headers, json=parameter_payload ) except requests.exceptions.RequestException as e: # This is the correct syntax raise ValueError(f"Error raised by inference endpoint: {e}") generated_text = response.json() if "error" in generated_text: raise ValueError( f"Error raised by inference API: {generated_text['error']}" ) if self.task == "text-generation": # Text generation return includes the starter text. text = generated_text[0]["generated_text"][len(prompt) :] elif self.task == "text2text-generation":
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_endpoint.html
8e5972ee73f8-3
elif self.task == "text2text-generation": text = generated_text[0]["generated_text"] elif self.task == "summarization": text = generated_text[0]["summary_text"] else: raise ValueError( f"Got invalid task {self.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to huggingface_hub. text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_endpoint.html
1fbaaa65f49e-0
Source code for langchain.llms.self_hosted_hugging_face """Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware.""" import importlib.util import logging from typing import Any, Callable, List, Mapping, Optional from pydantic import Extra from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.self_hosted import SelfHostedPipeline from langchain.llms.utils import enforce_stop_tokens DEFAULT_MODEL_ID = "gpt2" DEFAULT_TASK = "text-generation" VALID_TASKS = ("text2text-generation", "text-generation", "summarization") logger = logging.getLogger(__name__) def _generate_text( pipeline: Any, prompt: str, *args: Any, stop: Optional[List[str]] = None, **kwargs: Any, ) -> str: """Inference function to send to the remote hardware. Accepts a Hugging Face pipeline (or more likely, a key pointing to such a pipeline on the cluster's object store) and returns generated text. """ response = pipeline(prompt, *args, **kwargs) if pipeline.task == "text-generation": # Text generation return includes the starter text. text = response[0]["generated_text"][len(prompt) :] elif pipeline.task == "text2text-generation": text = response[0]["generated_text"] elif pipeline.task == "summarization": text = response[0]["summary_text"] else: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None: text = enforce_stop_tokens(text, stop) return text
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/self_hosted_hugging_face.html
1fbaaa65f49e-1
text = enforce_stop_tokens(text, stop) return text def _load_transformer( model_id: str = DEFAULT_MODEL_ID, task: str = DEFAULT_TASK, device: int = 0, model_kwargs: Optional[dict] = None, ) -> Any: """Inference function to send to the remote hardware. Accepts a huggingface model_id and returns a pipeline for the task. """ from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer from transformers import pipeline as hf_pipeline _model_kwargs = model_kwargs or {} tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs) try: if task == "text-generation": model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs) elif task in ("text2text-generation", "summarization"): model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs) else: raise ValueError( f"Got invalid task {task}, " f"currently only {VALID_TASKS} are supported" ) except ImportError as e: raise ValueError( f"Could not load the {task} model due to missing dependencies." ) from e if importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" )
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/self_hosted_hugging_face.html
1fbaaa65f49e-2
) if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) pipeline = hf_pipeline( task=task, model=model, tokenizer=tokenizer, device=device, model_kwargs=_model_kwargs, ) if pipeline.task not in VALID_TASKS: raise ValueError( f"Got invalid task {pipeline.task}, " f"currently only {VALID_TASKS} are supported" ) return pipeline [docs]class SelfHostedHuggingFaceLLM(SelfHostedPipeline): """Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Only supports `text-generation`, `text2text-generation` and `summarization` for now. Example using from_model_id: .. code-block:: python from langchain.llms import SelfHostedHuggingFaceLLM import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceLLM(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/self_hosted_hugging_face.html
1fbaaa65f49e-3
hf = SelfHostedHuggingFaceLLM( model_id="google/flan-t5-large", task="text2text-generation", hardware=gpu ) Example passing fn that generates a pipeline (bc the pipeline is not serializable): .. code-block:: python from langchain.llms import SelfHostedHuggingFaceLLM from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh def get_pipeline(): model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer ) return pipe hf = SelfHostedHuggingFaceLLM( model_load_fn=get_pipeline, model_id="gpt2", hardware=gpu) """ model_id: str = DEFAULT_MODEL_ID """Hugging Face model_id to load the model.""" task: str = DEFAULT_TASK """Hugging Face task ("text-generation", "text2text-generation" or "summarization").""" device: int = 0 """Device to use for inference. -1 for CPU, 0 for GPU, 1 for second GPU, etc.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" hardware: Any """Remote hardware to send the inference function to.""" model_reqs: List[str] = ["./", "transformers", "torch"] """Requirements to install on hardware to inference the model.""" model_load_fn: Callable = _load_transformer """Function to load the model remotely on the server."""
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/self_hosted_hugging_face.html
1fbaaa65f49e-4
"""Function to load the model remotely on the server.""" inference_fn: Callable = _generate_text #: :meta private: """Inference function to send to the remote hardware.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def __init__(self, **kwargs: Any): """Construct the pipeline remotely using an auxiliary function. The load function needs to be importable to be imported and run on the server, i.e. in a module and not a REPL or closure. Then, initialize the remote inference function. """ load_fn_kwargs = { "model_id": kwargs.get("model_id", DEFAULT_MODEL_ID), "task": kwargs.get("task", DEFAULT_TASK), "device": kwargs.get("device", 0), "model_kwargs": kwargs.get("model_kwargs", None), } super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_id": self.model_id}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: return "selfhosted_huggingface_pipeline" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: return self.client( pipeline=self.pipeline_ref, prompt=prompt, stop=stop, **kwargs ) By Harrison Chase
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/self_hosted_hugging_face.html
1fbaaa65f49e-5
) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/self_hosted_hugging_face.html
15c77f83a7b2-0
Source code for langchain.llms.stochasticai """Wrapper around StochasticAI APIs.""" import logging import time from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class StochasticAI(LLM): """Wrapper around StochasticAI large language models. To use, you should have the environment variable ``STOCHASTICAI_API_KEY`` set with your API key. Example: .. code-block:: python from langchain.llms import StochasticAI stochasticai = StochasticAI(api_url="") """ api_url: str = "" """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" stochasticai_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.")
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/stochasticai.html
15c77f83a7b2-1
raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" stochasticai_api_key = get_from_dict_or_env( values, "stochasticai_api_key", "STOCHASTICAI_API_KEY" ) values["stochasticai_api_key"] = stochasticai_api_key return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"endpoint_url": self.api_url}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "stochasticai" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to StochasticAI's complete endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = StochasticAI("Tell me a joke.") """
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/stochasticai.html
15c77f83a7b2-2
response = StochasticAI("Tell me a joke.") """ params = self.model_kwargs or {} params = {**params, **kwargs} response_post = requests.post( url=self.api_url, json={"prompt": prompt, "params": params}, headers={ "apiKey": f"{self.stochasticai_api_key}", "Accept": "application/json", "Content-Type": "application/json", }, ) response_post.raise_for_status() response_post_json = response_post.json() completed = False while not completed: response_get = requests.get( url=response_post_json["data"]["responseUrl"], headers={ "apiKey": f"{self.stochasticai_api_key}", "Accept": "application/json", "Content-Type": "application/json", }, ) response_get.raise_for_status() response_get_json = response_get.json()["data"] text = response_get_json.get("completion") completed = text is not None time.sleep(0.5) text = text[0] if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/stochasticai.html
2be2f3485db7-0
Source code for langchain.llms.beam """Wrapper around Beam API.""" import base64 import json import logging import subprocess import textwrap import time from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) DEFAULT_NUM_TRIES = 10 DEFAULT_SLEEP_TIME = 4 [docs]class Beam(LLM): """Wrapper around Beam API for gpt2 large language model. To use, you should have the ``beam-sdk`` python package installed, and the environment variable ``BEAM_CLIENT_ID`` set with your client id and ``BEAM_CLIENT_SECRET`` set with your client secret. Information on how to get these is available here: https://docs.beam.cloud/account/api-keys. The wrapper can then be called as follows, where the name, cpu, memory, gpu, python version, and python packages can be updated accordingly. Once deployed, the instance can be called. Example: .. code-block:: python llm = Beam(model_name="gpt2", name="langchain-gpt2", cpu=8, memory="32Gi", gpu="A10G", python_version="python3.8", python_packages=[ "diffusers[torch]>=0.10", "transformers", "torch", "pillow", "accelerate", "safetensors", "xformers",], max_length=50) llm._deploy()
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/beam.html
2be2f3485db7-1
max_length=50) llm._deploy() call_result = llm._call(input) """ model_name: str = "" name: str = "" cpu: str = "" memory: str = "" gpu: str = "" python_version: str = "" python_packages: List[str] = [] max_length: str = "" url: str = "" """model endpoint to use""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" beam_client_id: str = "" beam_client_secret: str = "" app_id: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict:
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/beam.html
2be2f3485db7-2
@root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" beam_client_id = get_from_dict_or_env( values, "beam_client_id", "BEAM_CLIENT_ID" ) beam_client_secret = get_from_dict_or_env( values, "beam_client_secret", "BEAM_CLIENT_SECRET" ) values["beam_client_id"] = beam_client_id values["beam_client_secret"] = beam_client_secret return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_name": self.model_name, "name": self.name, "cpu": self.cpu, "memory": self.memory, "gpu": self.gpu, "python_version": self.python_version, "python_packages": self.python_packages, "max_length": self.max_length, "model_kwargs": self.model_kwargs, } @property def _llm_type(self) -> str: """Return type of llm.""" return "beam" [docs] def app_creation(self) -> None: """Creates a Python file which will contain your Beam app definition.""" script = textwrap.dedent( """\ import beam # The environment your code will run on app = beam.App( name="{name}", cpu={cpu}, memory="{memory}", gpu="{gpu}", python_version="{python_version}", python_packages={python_packages}, ) app.Trigger.RestAPI(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/beam.html
2be2f3485db7-3
python_packages={python_packages}, ) app.Trigger.RestAPI( inputs={{"prompt": beam.Types.String(), "max_length": beam.Types.String()}}, outputs={{"text": beam.Types.String()}}, handler="run.py:beam_langchain", ) """ ) script_name = "app.py" with open(script_name, "w") as file: file.write( script.format( name=self.name, cpu=self.cpu, memory=self.memory, gpu=self.gpu, python_version=self.python_version, python_packages=self.python_packages, ) ) [docs] def run_creation(self) -> None: """Creates a Python file which will be deployed on beam.""" script = textwrap.dedent( """ import os import transformers from transformers import GPT2LMHeadModel, GPT2Tokenizer model_name = "{model_name}" def beam_langchain(**inputs): prompt = inputs["prompt"] length = inputs["max_length"] tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) encodedPrompt = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(encodedPrompt, max_length=int(length), do_sample=True, pad_token_id=tokenizer.eos_token_id) output = tokenizer.decode(outputs[0], skip_special_tokens=True) print(output) return {{"text": output}} """ ) script_name = "run.py" with open(script_name, "w") as file: file.write(script.format(model_name=self.model_name))
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/beam.html
2be2f3485db7-4
file.write(script.format(model_name=self.model_name)) def _deploy(self) -> str: """Call to Beam.""" try: import beam # type: ignore if beam.__path__ == "": raise ImportError except ImportError: raise ImportError( "Could not import beam python package. " "Please install it with `curl " "https://raw.githubusercontent.com/slai-labs" "/get-beam/main/get-beam.sh -sSfL | sh`." ) self.app_creation() self.run_creation() process = subprocess.run( "beam deploy app.py", shell=True, capture_output=True, text=True ) if process.returncode == 0: output = process.stdout logger.info(output) lines = output.split("\n") for line in lines: if line.startswith(" i Send requests to: https://apps.beam.cloud/"): self.app_id = line.split("/")[-1] self.url = line.split(":")[1].strip() return self.app_id raise ValueError( f"""Failed to retrieve the appID from the deployment output. Deployment output: {output}""" ) else: raise ValueError(f"Deployment failed. Error: {process.stderr}") @property def authorization(self) -> str: if self.beam_client_id: credential_str = self.beam_client_id + ":" + self.beam_client_secret else: credential_str = self.beam_client_secret return base64.b64encode(credential_str.encode()).decode() def _call( self, prompt: str, stop: Optional[list] = None,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/beam.html
2be2f3485db7-5
self, prompt: str, stop: Optional[list] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to Beam.""" url = "https://apps.beam.cloud/" + self.app_id if self.app_id else self.url payload = {"prompt": prompt, "max_length": self.max_length} payload.update(kwargs) headers = { "Accept": "*/*", "Accept-Encoding": "gzip, deflate", "Authorization": "Basic " + self.authorization, "Connection": "keep-alive", "Content-Type": "application/json", } for _ in range(DEFAULT_NUM_TRIES): request = requests.post(url, headers=headers, data=json.dumps(payload)) if request.status_code == 200: return request.json()["text"] time.sleep(DEFAULT_SLEEP_TIME) logger.warning("Unable to successfully call model.") return "" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/beam.html
aa5d199abcf6-0
Source code for langchain.llms.huggingface_hub """Wrapper around HuggingFace APIs.""" from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env DEFAULT_REPO_ID = "gpt2" VALID_TASKS = ("text2text-generation", "text-generation", "summarization") [docs]class HuggingFaceHub(LLM): """Wrapper around HuggingFaceHub models. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Only supports `text-generation`, `text2text-generation` and `summarization` for now. Example: .. code-block:: python from langchain.llms import HuggingFaceHub hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key") """ client: Any #: :meta private: repo_id: str = DEFAULT_REPO_ID """Model name to use.""" task: Optional[str] = None """Task to call the model with. Should be a task that returns `generated_text` or `summary_text`.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_hub.html
aa5d199abcf6-1
"""Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub.inference_api import InferenceApi repo_id = values["repo_id"] client = InferenceApi( repo_id=repo_id, token=huggingfacehub_api_token, task=values.get("task"), ) if client.task not in VALID_TASKS: raise ValueError( f"Got invalid task {client.task}, " f"currently only {VALID_TASKS} are supported" ) values["client"] = client except ImportError: raise ValueError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"repo_id": self.repo_id, "task": self.task}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "huggingface_hub" def _call( self, prompt: str, stop: Optional[List[str]] = None,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_hub.html
aa5d199abcf6-2
prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to HuggingFace Hub's inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = hf("Tell me a joke.") """ _model_kwargs = self.model_kwargs or {} params = {**_model_kwargs, **kwargs} response = self.client(inputs=prompt, params=params) if "error" in response: raise ValueError(f"Error raised by inference API: {response['error']}") if self.client.task == "text-generation": # Text generation return includes the starter text. text = response[0]["generated_text"][len(prompt) :] elif self.client.task == "text2text-generation": text = response[0]["generated_text"] elif self.client.task == "summarization": text = response[0]["summary_text"] else: raise ValueError( f"Got invalid task {self.client.task}, " f"currently only {VALID_TASKS} are supported" ) if stop is not None: # This is a bit hacky, but I can't figure out a better way to enforce # stop tokens when making calls to huggingface_hub. text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_hub.html
aa5d199abcf6-3
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/huggingface_hub.html
53df2fb38aff-0
Source code for langchain.llms.baseten """Wrapper around Baseten deployed model API.""" import logging from typing import Any, Dict, List, Mapping, Optional from pydantic import Field from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM logger = logging.getLogger(__name__) [docs]class Baseten(LLM): """Use your Baseten models in Langchain To use, you should have the ``baseten`` python package installed, and run ``baseten.login()`` with your Baseten API key. The required ``model`` param can be either a model id or model version id. Using a model version ID will result in slightly faster invocation. Any other model parameters can also be passed in with the format input={model_param: value, ...} The Baseten model must accept a dictionary of input with the key "prompt" and return a dictionary with a key "data" which maps to a list of response strings. Example: .. code-block:: python from langchain.llms import Baseten my_model = Baseten(model="MODEL_ID") output = my_model("prompt") """ model: str input: Dict[str, Any] = Field(default_factory=dict) model_kwargs: Dict[str, Any] = Field(default_factory=dict) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of model.""" return "baseten"
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/baseten.html
53df2fb38aff-1
"""Return type of model.""" return "baseten" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to Baseten deployed model endpoint.""" try: import baseten except ImportError as exc: raise ValueError( "Could not import Baseten Python package. " "Please install it with `pip install baseten`." ) from exc # get the model and version try: model = baseten.deployed_model_version_id(self.model) response = model.predict({"prompt": prompt}) except baseten.common.core.ApiError: model = baseten.deployed_model_id(self.model) response = model.predict({"prompt": prompt}) return "".join(response) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/baseten.html
8682edeeb4ca-0
Source code for langchain.llms.pipelineai """Wrapper around Pipeline Cloud API.""" import logging from typing import Any, Dict, List, Mapping, Optional from pydantic import BaseModel, Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class PipelineAI(LLM, BaseModel): """Wrapper around PipelineAI large language models. To use, you should have the ``pipeline-ai`` python package installed, and the environment variable ``PIPELINE_API_KEY`` set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain import PipelineAI pipeline = PipelineAI(pipeline_key="") """ pipeline_key: str = "" """The id or tag of the target pipeline""" pipeline_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any pipeline parameters valid for `create` call not explicitly specified.""" pipeline_api_key: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("pipeline_kwargs", {}) for field_name in list(values):
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/pipelineai.html
8682edeeb4ca-1
extra = values.get("pipeline_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transfered to pipeline_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["pipeline_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" pipeline_api_key = get_from_dict_or_env( values, "pipeline_api_key", "PIPELINE_API_KEY" ) values["pipeline_api_key"] = pipeline_api_key return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"pipeline_key": self.pipeline_key}, **{"pipeline_kwargs": self.pipeline_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "pipeline_ai" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to Pipeline Cloud endpoint.""" try: from pipeline import PipelineCloud except ImportError: raise ValueError( "Could not import pipeline-ai python package. " "Please install it with `pip install pipeline-ai`."
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/pipelineai.html
8682edeeb4ca-2
"Please install it with `pip install pipeline-ai`." ) client = PipelineCloud(token=self.pipeline_api_key) params = self.pipeline_kwargs or {} params = {**params, **kwargs} run = client.run_pipeline(self.pipeline_key, [prompt, params]) try: text = run.result_preview[0][0] except AttributeError: raise AttributeError( f"A pipeline run should have a `result_preview` attribute." f"Run was: {run}" ) if stop is not None: # I believe this is required since the stop tokens # are not enforced by the pipeline parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 16, 2023.
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/pipelineai.html
bec8d20e826f-0
Source code for langchain.llms.openai """Wrapper around OpenAI APIs.""" from __future__ import annotations import logging import sys import warnings from typing import ( AbstractSet, Any, Callable, Collection, Dict, Generator, List, Literal, Mapping, Optional, Set, Tuple, Union, ) from pydantic import Extra, Field, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import BaseLLM from langchain.schema import Generation, LLMResult from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def update_token_usage( keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any] ) -> None: """Update token usage.""" _keys_to_use = keys.intersection(response["usage"]) for _key in _keys_to_use: if _key not in token_usage: token_usage[_key] = response["usage"][_key] else: token_usage[_key] += response["usage"][_key] def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None: """Update response from the stream response.""" response["choices"][0]["text"] += stream_response["choices"][0]["text"] response["choices"][0]["finish_reason"] = stream_response["choices"][0][ "finish_reason" ]
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/openai.html
bec8d20e826f-1
"finish_reason" ] response["choices"][0]["logprobs"] = stream_response["choices"][0]["logprobs"] def _streaming_response_template() -> Dict[str, Any]: return { "choices": [ { "text": "", "finish_reason": None, "logprobs": None, } ] } def _create_retry_decorator(llm: Union[BaseOpenAI, OpenAIChat]) -> Callable[[Any], Any]: import openai min_seconds = 4 max_seconds = 10 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def completion_with_retry(llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return llm.client.create(**kwargs) return _completion_with_retry(**kwargs)
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/openai.html
bec8d20e826f-2
return llm.client.create(**kwargs) return _completion_with_retry(**kwargs) async def acompletion_with_retry( llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any ) -> Any: """Use tenacity to retry the async completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) class BaseOpenAI(BaseLLM): """Wrapper around OpenAI large language models.""" @property def lc_secrets(self) -> Dict[str, str]: return {"openai_api_key": "OPENAI_API_KEY"} @property def lc_serializable(self) -> bool: return True client: Any #: :meta private: model_name: str = Field("text-davinci-003", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" max_tokens: int = 256 """The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size.""" top_p: float = 1 """Total probability mass of tokens to consider at each step.""" frequency_penalty: float = 0 """Penalizes repeated tokens according to frequency.""" presence_penalty: float = 0 """Penalizes repeated tokens.""" n: int = 1 """How many completions to generate for each prompt."""
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/openai.html
bec8d20e826f-3
"""How many completions to generate for each prompt.""" best_of: int = 1 """Generates best_of completions server-side and returns the "best".""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" openai_api_key: Optional[str] = None openai_api_base: Optional[str] = None openai_organization: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None batch_size: int = 20 """Batch size to use when passing multiple documents to generate.""" request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout for requests to OpenAI completion API. Default is 600 seconds.""" logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict) """Adjust the probability of specific tokens being generated.""" max_retries: int = 6 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]: # type: ignore """Initialize the OpenAI object.""" model_name = data.get("model_name", "") if model_name.startswith("gpt-3.5-turbo") or model_name.startswith("gpt-4"):
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/openai.html
bec8d20e826f-4
warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain.chat_models import ChatOpenAI`" ) return OpenAIChat(**data) return super().__new__(cls) class Config: """Configuration for this pydantic object.""" extra = Extra.ignore allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = cls.all_required_field_names() extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env(
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/openai.html
bec8d20e826f-5
values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai values["client"] = openai.Completion except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if values["streaming"] and values["n"] > 1: raise ValueError("Cannot stream results when n > 1.") if values["streaming"] and values["best_of"] > 1: raise ValueError("Cannot stream results when best_of > 1.") return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" normal_params = { "temperature": self.temperature, "max_tokens": self.max_tokens, "top_p": self.top_p, "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, "n": self.n, "request_timeout": self.request_timeout,
rtdocs_stable/api.python.langchain.com/en/stable/_modules/langchain/llms/openai.html