|
--- |
|
language: |
|
- en |
|
base_model: |
|
- openai/clip-vit-large-patch14 |
|
tags: |
|
- emotion_prediction |
|
- VEA |
|
- computer_vision |
|
- perceptual_tasks |
|
- CLIP |
|
- EmoSet |
|
--- |
|
|
|
PreceptCLIP-Emotions is a model designed to predict the emotions that an image evokes in users. This is the official model from the paper ["Don't Judge Before You CLIP: A Unified Approach for Perceptual Tasks"](https://arxiv.org/abs/2503.13260). We apply LoRA adaptation on the CLIP visual encoder with an additional MLP head. Our model *achieves state-of-the-art results*. |
|
|
|
## Training Details |
|
|
|
- *Dataset*: [EmoSet](https://vcc.tech/EmoSet) |
|
- *Architecture*: CLIP Vision Encoder (ViT-L/14) with *LoRA adaptation* |
|
- *Loss Function*: Cross Entropy Loss |
|
- *Optimizer*: AdamW |
|
- *Learning Rate*: 0.0001 |
|
- *Batch Size*: 32 |
|
|
|
## Requirements |
|
- python=3.9.15 |
|
- cudatoolkit=11.7 |
|
- torchvision=0.14.0 |
|
- transformers=4.45.2 |
|
- peft=0.14.0 |
|
|
|
## Usage |
|
|
|
To use the model for inference: |
|
|
|
```python |
|
from torchvision import transforms |
|
import torch |
|
from PIL import Image |
|
from huggingface_hub import hf_hub_download |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
# Load model |
|
model_path = hf_hub_download(repo_id="PerceptCLIP/PerceptCLIP_Emotions", filename="perceptCLIP_Emotions.pth") |
|
model = torch.load(model_path).to(device).eval() |
|
|
|
# Emotion label mapping |
|
idx2label = { |
|
0: "amusement", |
|
1: "awe", |
|
2: "contentment", |
|
3: "excitement", |
|
4: "anger", |
|
5: "disgust", |
|
6: "fear", |
|
7: "sadness" |
|
} |
|
|
|
# Preprocessing function |
|
def emo_preprocess(): |
|
transform = transforms.Compose([ |
|
transforms.Resize(224), |
|
transforms.CenterCrop(size=(224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), |
|
]) |
|
return transform |
|
|
|
# Load an image |
|
image = Image.open("image_path.jpg").convert("RGB") |
|
image = emo_preprocess()(image).unsqueeze(0).to(device) |
|
|
|
# Run inference |
|
with torch.no_grad(): |
|
outputs = model(image) |
|
_, predicted = outputs.max(1) # Get the class index |
|
|
|
# Get emotion label |
|
predicted_emotion = idx2label[predicted.item()] |
|
print(f"Predicted Emotion: {predicted_emotion}") |
|
|