File size: 2,182 Bytes
dbe6a3d 2646e67 dbe6a3d 208bef2 7491b18 7e62c9c 7491b18 04c4afb dbe6a3d 314c8b1 71df5d4 dbe6a3d 71df5d4 dbe6a3d 314c8b1 71df5d4 dbe6a3d 71df5d4 78afd29 71df5d4 dbe6a3d 71df5d4 dbe6a3d 71df5d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language:
- en
base_model:
- openai/clip-vit-large-patch14
tags:
- emotion_prediction
- VEA
- computer_vision
- perceptual_tasks
- CLIP
- EmoSet
---
PreceptCLIP-Emotions is a model designed to predict the emotions that an image evokes in users. This is the official model from the paper ["Don't Judge Before You CLIP: A Unified Approach for Perceptual Tasks"](https://arxiv.org/abs/2503.13260). We apply LoRA adaptation on the CLIP visual encoder with an additional MLP head. Our model *achieves state-of-the-art results*.
## Training Details
- *Dataset*: [EmoSet](https://vcc.tech/EmoSet)
- *Architecture*: CLIP Vision Encoder (ViT-L/14) with *LoRA adaptation*
- *Loss Function*: Cross Entropy Loss
- *Optimizer*: AdamW
- *Learning Rate*: 0.0001
- *Batch Size*: 32
## Requirements
- python=3.9.15
- cudatoolkit=11.7
- torchvision=0.14.0
- transformers=4.45.2
- peft=0.14.0
## Usage
To use the model for inference:
```python
from torchvision import transforms
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model
model_path = hf_hub_download(repo_id="PerceptCLIP/PerceptCLIP_Emotions", filename="perceptCLIP_Emotions.pth")
model = torch.load(model_path).to(device).eval()
# Emotion label mapping
idx2label = {
0: "amusement",
1: "awe",
2: "contentment",
3: "excitement",
4: "anger",
5: "disgust",
6: "fear",
7: "sadness"
}
# Preprocessing function
def emo_preprocess():
transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(size=(224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
])
return transform
# Load an image
image = Image.open("image_path.jpg").convert("RGB")
image = emo_preprocess()(image).unsqueeze(0).to(device)
# Run inference
with torch.no_grad():
outputs = model(image)
_, predicted = outputs.max(1) # Get the class index
# Get emotion label
predicted_emotion = idx2label[predicted.item()]
print(f"Predicted Emotion: {predicted_emotion}")
|