BAAI
/

File size: 48,579 Bytes
a5ce455
 
 
5644dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ce455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
import torch
import torch.nn as nn
import pdb
import math
from transformers.activations import ACT2FN
from einops import rearrange, reduce, repeat
from inspect import isfunction
import math
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any

try:
    import xformers
    import xformers.ops

    XFORMERS_IS_AVAILBLE = True
except:
    XFORMERS_IS_AVAILBLE = False

import importlib
import numpy as np
import cv2, os
import torch.distributed as dist


def count_params(model, verbose=False):
    total_params = sum(p.numel() for p in model.parameters())
    if verbose:
        print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
    return total_params


def check_istarget(name, para_list):
    """
    name: full name of source para
    para_list: partial name of target para
    """
    istarget = False
    for para in para_list:
        if para in name:
            return True
    return istarget


def instantiate_from_config(config):
    if not "target" in config:
        if config == "__is_first_stage__":
            return None
        elif config == "__is_unconditional__":
            return None
        raise KeyError("Expected key `target` to instantiate.")

    return get_obj_from_str(config["target"])(**config.get("params", dict()))


def get_obj_from_str(string, reload=False):
    module, cls = string.rsplit(".", 1)
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)


def load_npz_from_dir(data_dir):
    data = [
        np.load(os.path.join(data_dir, data_name))["arr_0"]
        for data_name in os.listdir(data_dir)
    ]
    data = np.concatenate(data, axis=0)
    return data


def load_npz_from_paths(data_paths):
    data = [np.load(data_path)["arr_0"] for data_path in data_paths]
    data = np.concatenate(data, axis=0)
    return data


def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
    h, w = image.shape[:2]
    if resize_short_edge is not None:
        k = resize_short_edge / min(h, w)
    else:
        k = max_resolution / (h * w)
        k = k**0.5
    h = int(np.round(h * k / 64)) * 64
    w = int(np.round(w * k / 64)) * 64
    image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
    return image


def setup_dist(args):
    if dist.is_initialized():
        return
    torch.cuda.set_device(args.local_rank)
    torch.distributed.init_process_group("nccl", init_method="env://")

    
# adopted from
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
# and
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
# and
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
#
# thanks!

import torch.nn as nn
import math
from inspect import isfunction
import torch
from torch import nn
import torch.distributed as dist


def gather_data(data, return_np=True):
    """gather data from multiple processes to one list"""
    data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
    dist.all_gather(data_list, data)  # gather not supported with NCCL
    if return_np:
        data_list = [data.cpu().numpy() for data in data_list]
    return data_list


def autocast(f):
    def do_autocast(*args, **kwargs):
        with torch.cuda.amp.autocast(
            enabled=True,
            dtype=torch.get_autocast_gpu_dtype(),
            cache_enabled=torch.is_autocast_cache_enabled(),
        ):
            return f(*args, **kwargs)

    return do_autocast


def extract_into_tensor(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def noise_like(shape, device, repeat=False):
    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
        shape[0], *((1,) * (len(shape) - 1))
    )
    noise = lambda: torch.randn(shape, device=device)
    return repeat_noise() if repeat else noise()


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def exists(val):
    return val is not None


def identity(*args, **kwargs):
    return nn.Identity()


def uniq(arr):
    return {el: True for el in arr}.keys()


def mean_flat(tensor):
    """
    Take the mean over all non-batch dimensions.
    """
    return tensor.mean(dim=list(range(1, len(tensor.shape))))


def ismap(x):
    if not isinstance(x, torch.Tensor):
        return False
    return (len(x.shape) == 4) and (x.shape[1] > 3)


def isimage(x):
    if not isinstance(x, torch.Tensor):
        return False
    return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def shape_to_str(x):
    shape_str = "x".join([str(x) for x in x.shape])
    return shape_str


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor



def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def scale_module(module, scale):
    """
    Scale the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().mul_(scale)
    return module


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def nonlinearity(type="silu"):
    if type == "silu":
        return nn.SiLU()
    elif type == "leaky_relu":
        return nn.LeakyReLU()


class GroupNormSpecific(nn.GroupNorm):
    def forward(self, x):
        if x.dtype == torch.float16 or x.dtype == torch.bfloat16:
            return super().forward(x).type(x.dtype)
        else:
            return super().forward(x.float()).type(x.dtype)


def normalization(channels, num_groups=32):
    """
    Make a standard normalization layer.
    :param channels: number of input channels.
    :return: an nn.Module for normalization.
    """
    return GroupNormSpecific(num_groups, channels)


class HybridConditioner(nn.Module):

    def __init__(self, c_concat_config, c_crossattn_config):
        super().__init__()
        self.concat_conditioner = instantiate_from_config(c_concat_config)
        self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)

    def forward(self, c_concat, c_crossattn):
        c_concat = self.concat_conditioner(c_concat)
        c_crossattn = self.crossattn_conditioner(c_crossattn)
        return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}

def exists(val):
    return val is not None


def uniq(arr):
    return {el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = (
            nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
            if not glu
            else GEGLU(dim, inner_dim)
        )

        self.net = nn.Sequential(
            project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
        )

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def Normalize(in_channels, num_groups=32):
    return torch.nn.GroupNorm(
        num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
    )


class RelativePosition(nn.Module):
    """https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py"""

    def __init__(self, num_units, max_relative_position):
        super().__init__()
        self.num_units = num_units
        self.max_relative_position = max_relative_position
        self.embeddings_table = nn.Parameter(
            torch.Tensor(max_relative_position * 2 + 1, num_units)
        )
        nn.init.xavier_uniform_(self.embeddings_table)

    def forward(self, length_q, length_k):
        device = self.embeddings_table.device
        range_vec_q = torch.arange(length_q, device=device)
        range_vec_k = torch.arange(length_k, device=device)
        distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
        distance_mat_clipped = torch.clamp(
            distance_mat, -self.max_relative_position, self.max_relative_position
        )
        final_mat = distance_mat_clipped + self.max_relative_position
        # final_mat = torch.LongTensor(final_mat).to(self.embeddings_table.device)
        # final_mat = torch.tensor(final_mat, device=self.embeddings_table.device, dtype=torch.long)
        final_mat = final_mat.long()
        embeddings = self.embeddings_table[final_mat]
        return embeddings


class TemporalCrossAttention(nn.Module):
    def __init__(
        self,
        query_dim,
        context_dim=None,
        heads=8,
        dim_head=64,
        dropout=0.0,
        temporal_length=None,  # For relative positional representation and image-video joint training.
        image_length=None,  # For image-video joint training.
        use_relative_position=False,  # whether use relative positional representation in temporal attention.
        img_video_joint_train=False,  # For image-video joint training.
        use_tempoal_causal_attn=False,
        bidirectional_causal_attn=False,
        tempoal_attn_type=None,
        joint_train_mode="same_batch",
        **kwargs,
    ):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)
        self.context_dim = context_dim

        self.scale = dim_head**-0.5
        self.heads = heads
        self.temporal_length = temporal_length
        self.use_relative_position = use_relative_position
        self.img_video_joint_train = img_video_joint_train
        self.bidirectional_causal_attn = bidirectional_causal_attn
        self.joint_train_mode = joint_train_mode
        assert joint_train_mode in ["same_batch", "diff_batch"]
        self.tempoal_attn_type = tempoal_attn_type

        if bidirectional_causal_attn:
            assert use_tempoal_causal_attn
        if tempoal_attn_type:
            assert tempoal_attn_type in ["sparse_causal", "sparse_causal_first"]
            assert not use_tempoal_causal_attn
            assert not (
                img_video_joint_train and (self.joint_train_mode == "same_batch")
            )
        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        assert not (
            img_video_joint_train
            and (self.joint_train_mode == "same_batch")
            and use_tempoal_causal_attn
        )
        if img_video_joint_train:
            if self.joint_train_mode == "same_batch":
                mask = torch.ones(
                    [1, temporal_length + image_length, temporal_length + image_length]
                )
                # mask[:, image_length:, :] = 0
                # mask[:, :, image_length:] = 0
                mask[:, temporal_length:, :] = 0
                mask[:, :, temporal_length:] = 0
                self.mask = mask
            else:
                self.mask = None
        elif use_tempoal_causal_attn:
            # normal causal attn
            self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
        elif tempoal_attn_type == "sparse_causal":
            # all frames interact with only the `prev` & self frame
            mask1 = torch.tril(
                torch.ones([1, temporal_length, temporal_length])
            ).bool()  # true indicates keeping
            mask2 = torch.zeros(
                [1, temporal_length, temporal_length]
            )  # initialize to same shape with mask1
            mask2[:, 2:temporal_length, : temporal_length - 2] = torch.tril(
                torch.ones([1, temporal_length - 2, temporal_length - 2])
            )
            mask2 = (1 - mask2).bool()  # false indicates masking
            self.mask = mask1 & mask2
        elif tempoal_attn_type == "sparse_causal_first":
            # all frames interact with only the `first` & self frame
            mask1 = torch.tril(
                torch.ones([1, temporal_length, temporal_length])
            ).bool()  # true indicates keeping
            mask2 = torch.zeros([1, temporal_length, temporal_length])
            mask2[:, 2:temporal_length, 1 : temporal_length - 1] = torch.tril(
                torch.ones([1, temporal_length - 2, temporal_length - 2])
            )
            mask2 = (1 - mask2).bool()  # false indicates masking
            self.mask = mask1 & mask2
        else:
            self.mask = None

        if use_relative_position:
            assert temporal_length is not None
            self.relative_position_k = RelativePosition(
                num_units=dim_head, max_relative_position=temporal_length
            )
            self.relative_position_v = RelativePosition(
                num_units=dim_head, max_relative_position=temporal_length
            )

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
        )

        nn.init.constant_(self.to_q.weight, 0)
        nn.init.constant_(self.to_k.weight, 0)
        nn.init.constant_(self.to_v.weight, 0)
        nn.init.constant_(self.to_out[0].weight, 0)
        nn.init.constant_(self.to_out[0].bias, 0)

    def forward(self, x, context=None, mask=None):
        # if context is None:
        #     print(f'[Temp Attn] x={x.shape},context=None')
        # else:
        #     print(f'[Temp Attn] x={x.shape},context={context.shape}')

        nh = self.heads
        out = x
        q = self.to_q(out)
        # if context is not None:
        #     print(f'temporal context 1 ={context.shape}')
        # print(f'x={x.shape}')
        context = default(context, x)
        # print(f'temporal context 2 ={context.shape}')
        k = self.to_k(context)
        v = self.to_v(context)
        # print(f'q ={q.shape},k={k.shape}')

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=nh), (q, k, v))
        sim = einsum("b i d, b j d -> b i j", q, k) * self.scale

        if self.use_relative_position:
            len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
            k2 = self.relative_position_k(len_q, len_k)
            sim2 = einsum("b t d, t s d -> b t s", q, k2) * self.scale  # TODO check
            sim += sim2
        # print('mask',mask)
        if exists(self.mask):
            if mask is None:
                mask = self.mask.to(sim.device)
            else:
                mask = self.mask.to(sim.device).bool() & mask  # .to(sim.device)
        else:
            mask = mask
            # if self.img_video_joint_train:
            #     # process mask (make mask same shape with sim)
            #     c, h, w = mask.shape
            #     c, t, s = sim.shape
            #     # assert(h == w and t == s),f"mask={mask.shape}, sim={sim.shape}, h={h}, w={w}, t={t}, s={s}"

            #     if h > t:
            #         mask = mask[:, :t, :]
            #     elif h < t: # pad zeros to mask (no attention) only initial mask =1 area compute weights
            #         mask_ = torch.zeros([c,t,w]).to(mask.device)
            #         mask_[:, :h, :] = mask
            #         mask = mask_
            #     c, h, w = mask.shape
            #     if w > s:
            #         mask = mask[:, :, :s]
            #     elif w < s: # pad zeros to mask
            #         mask_ = torch.zeros([c,h,s]).to(mask.device)
            #         mask_[:, :, :w] = mask
            #         mask = mask_

            # max_neg_value = -torch.finfo(sim.dtype).max
            # sim = sim.float().masked_fill(mask == 0, max_neg_value)
        if mask is not None:
            max_neg_value = -1e9
            sim = sim + (1 - mask.float()) * max_neg_value  # 1=masking,0=no masking
            # print('sim after masking: ', sim)

            # if torch.isnan(sim).any() or torch.isinf(sim).any() or (not sim.any()):
            #     print(f'sim [after masking], isnan={torch.isnan(sim).any()}, isinf={torch.isinf(sim).any()}, allzero={not sim.any()}')

        attn = sim.softmax(dim=-1)
        # print('attn after softmax: ', attn)
        # if torch.isnan(attn).any() or torch.isinf(attn).any() or (not attn.any()):
        #     print(f'attn [after softmax], isnan={torch.isnan(attn).any()}, isinf={torch.isinf(attn).any()}, allzero={not attn.any()}')

        # attn = torch.where(torch.isnan(attn), torch.full_like(attn,0), attn)
        # if torch.isinf(attn.detach()).any():
        #     import pdb;pdb.set_trace()
        # if torch.isnan(attn.detach()).any():
        #     import pdb;pdb.set_trace()
        out = einsum("b i j, b j d -> b i d", attn, v)

        if self.bidirectional_causal_attn:
            mask_reverse = torch.triu(
                torch.ones(
                    [1, self.temporal_length, self.temporal_length], device=sim.device
                )
            )
            sim_reverse = sim.float().masked_fill(mask_reverse == 0, max_neg_value)
            attn_reverse = sim_reverse.softmax(dim=-1)
            out_reverse = einsum("b i j, b j d -> b i d", attn_reverse, v)
            out += out_reverse

        if self.use_relative_position:
            v2 = self.relative_position_v(len_q, len_v)
            out2 = einsum("b t s, t s d -> b t d", attn, v2)  # TODO check
            out += out2  # TODO check:先add还是先merge head?先计算rpr,on split head之后的数据,然后再merge。
        out = rearrange(out, "(b h) n d -> b n (h d)", h=nh)  # merge head
        return self.to_out(out)


class SpatialSelfAttention(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.k = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.v = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.proj_out = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b, c, h, w = q.shape
        q = rearrange(q, "b c h w -> b (h w) c")
        k = rearrange(k, "b c h w -> b c (h w)")
        w_ = torch.einsum("bij,bjk->bik", q, k)

        w_ = w_ * (int(c) ** (-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = rearrange(v, "b c h w -> b c (h w)")
        w_ = rearrange(w_, "b i j -> b j i")
        h_ = torch.einsum("bij,bjk->bik", v, w_)
        h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
        h_ = self.proj_out(h_)

        return x + h_


class CrossAttention(nn.Module):
    def __init__(
        self,
        query_dim,
        context_dim=None,
        heads=8,
        dim_head=64,
        dropout=0.0,
        sa_shared_kv=False,
        shared_type="only_first",
        **kwargs,
    ):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)
        self.sa_shared_kv = sa_shared_kv
        assert shared_type in [
            "only_first",
            "all_frames",
            "first_and_prev",
            "only_prev",
            "full",
            "causal",
            "full_qkv",
        ]
        self.shared_type = shared_type

        self.scale = dim_head**-0.5
        self.heads = heads
        self.dim_head = dim_head

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
        )
        self.attention_op: Optional[Any] = None

    def forward(self, x, context=None, mask=None):
        h = self.heads
        b = x.shape[0]

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)
        if self.sa_shared_kv:
            if self.shared_type == "only_first":
                k, v = map(
                    lambda xx: rearrange(xx[0].unsqueeze(0), "b n c -> (b n) c")
                    .unsqueeze(0)
                    .repeat(b, 1, 1),
                    (k, v),
                )
            else:
                raise NotImplementedError

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))

        sim = einsum("b i d, b j d -> b i j", q, k) * self.scale

        if exists(mask):
            mask = rearrange(mask, "b ... -> b (...)")
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, "b j -> (b h) () j", h=h)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)

        out = einsum("b i j, b j d -> b i d", attn, v)
        out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
        return self.to_out(out)

    def efficient_forward(self, x, context=None, mask=None):
        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        b, _, _ = q.shape
        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(b, t.shape[1], self.heads, self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b * self.heads, t.shape[1], self.dim_head)
            .contiguous(),
            (q, k, v),
        )
        # actually compute the attention, what we cannot get enough of
        out = xformers.ops.memory_efficient_attention(
            q, k, v, attn_bias=None, op=self.attention_op
        )

        if exists(mask):
            raise NotImplementedError
        out = (
            out.unsqueeze(0)
            .reshape(b, self.heads, out.shape[1], self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b, out.shape[1], self.heads * self.dim_head)
        )
        return self.to_out(out)


class VideoSpatialCrossAttention(CrossAttention):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0):
        super().__init__(query_dim, context_dim, heads, dim_head, dropout)

    def forward(self, x, context=None, mask=None):
        b, c, t, h, w = x.shape
        if context is not None:
            context = context.repeat(t, 1, 1)
        x = super.forward(spatial_attn_reshape(x), context=context) + x
        return spatial_attn_reshape_back(x, b, h)


def spatial_attn_reshape(x):
    return rearrange(x, "b c t h w -> (b t) (h w) c")


def spatial_attn_reshape_back(x, b, h):
    return rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)


def temporal_attn_reshape(x):
    return rearrange(x, "b c t h w -> (b h w) t c")


def temporal_attn_reshape_back(x, b, h, w):
    return rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w)


def local_spatial_temporal_attn_reshape(x, window_size):
    B, C, T, H, W = x.shape
    NH = H // window_size
    NW = W // window_size
    # x = x.view(B, C, T, NH, window_size, NW, window_size)
    # tokens = x.permute(0, 1, 2, 3, 5, 4, 6).contiguous()
    # tokens = tokens.view(-1, window_size, window_size, C)
    x = rearrange(
        x,
        "b c t (nh wh) (nw ww) -> b c t nh wh nw ww",
        nh=NH,
        nw=NW,
        wh=window_size,
        ww=window_size,
    ).contiguous()  # # B, C, T, NH, NW, window_size, window_size
    x = rearrange(
        x, "b c t nh wh nw ww -> (b nh nw) (t wh ww) c"
    )  # (B, NH, NW) (T, window_size, window_size) C
    return x


def local_spatial_temporal_attn_reshape_back(x, window_size, b, h, w, t):
    B, L, C = x.shape
    NH = h // window_size
    NW = w // window_size
    x = rearrange(
        x,
        "(b nh nw) (t wh ww) c -> b c t nh wh nw ww",
        b=b,
        nh=NH,
        nw=NW,
        t=t,
        wh=window_size,
        ww=window_size,
    )
    x = rearrange(x, "b c t nh wh nw ww -> b c t (nh wh) (nw ww)")
    return x


class SpatialTemporalTransformer(nn.Module):
    """
    Transformer block for video-like data (5D tensor).
    First, project the input (aka embedding) with NO reshape.
    Then apply standard transformer action.
    The 5D -> 3D reshape operation will be done in the specific attention module.
    """

    def __init__(
        self,
        in_channels,
        n_heads,
        d_head,
        depth=1,
        dropout=0.0,
        context_dim=None,
        # Temporal stuff
        temporal_length=None,
        image_length=None,
        use_relative_position=True,
        img_video_joint_train=False,
        cross_attn_on_tempoal=False,
        temporal_crossattn_type="selfattn",
        order="stst",
        temporalcrossfirst=False,
        split_stcontext=False,
        temporal_context_dim=None,
        **kwargs,
    ):
        super().__init__()

        self.in_channels = in_channels
        inner_dim = n_heads * d_head

        self.norm = Normalize(in_channels)
        self.proj_in = nn.Conv3d(
            in_channels, inner_dim, kernel_size=1, stride=1, padding=0
        )

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlockST(
                    inner_dim,
                    n_heads,
                    d_head,
                    dropout=dropout,
                    # cross attn
                    context_dim=context_dim,
                    # temporal attn
                    temporal_length=temporal_length,
                    image_length=image_length,
                    use_relative_position=use_relative_position,
                    img_video_joint_train=img_video_joint_train,
                    temporal_crossattn_type=temporal_crossattn_type,
                    order=order,
                    temporalcrossfirst=temporalcrossfirst,
                    split_stcontext=split_stcontext,
                    temporal_context_dim=temporal_context_dim,
                    **kwargs,
                )
                for d in range(depth)
            ]
        )

        self.proj_out = zero_module(
            nn.Conv3d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
        )

    def forward(self, x, context=None, temporal_context=None, **kwargs):
        # note: if no context is given, cross-attention defaults to self-attention
        assert x.dim() == 5, f"x shape = {x.shape}"
        b, c, t, h, w = x.shape
        x_in = x

        x = self.norm(x)
        x = self.proj_in(x)

        for block in self.transformer_blocks:
            x = block(x, context=context, temporal_context=temporal_context, **kwargs)

        x = self.proj_out(x)
        return x + x_in


class STAttentionBlock2(nn.Module):
    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=-1,
        use_checkpoint=False,  # not used, only used in ResBlock
        use_new_attention_order=False,  # QKVAttention or QKVAttentionLegacy
        temporal_length=16,  # used in relative positional representation.
        image_length=8,  # used for image-video joint training.
        use_relative_position=False,  # whether use relative positional representation in temporal attention.
        img_video_joint_train=False,
        # norm_type="groupnorm",
        attn_norm_type="group",
        use_tempoal_causal_attn=False,
    ):
        """
        version 1: guided_diffusion implemented version
        version 2: remove args input argument
        """
        super().__init__()

        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
        self.use_checkpoint = use_checkpoint

        self.temporal_length = temporal_length
        self.image_length = image_length
        self.use_relative_position = use_relative_position
        self.img_video_joint_train = img_video_joint_train
        self.attn_norm_type = attn_norm_type
        assert self.attn_norm_type in ["group", "no_norm"]
        self.use_tempoal_causal_attn = use_tempoal_causal_attn

        if self.attn_norm_type == "group":
            self.norm_s = normalization(channels)
            self.norm_t = normalization(channels)

        self.qkv_s = conv_nd(1, channels, channels * 3, 1)
        self.qkv_t = conv_nd(1, channels, channels * 3, 1)

        if self.img_video_joint_train:
            mask = torch.ones(
                [1, temporal_length + image_length, temporal_length + image_length]
            )
            mask[:, temporal_length:, :] = 0
            mask[:, :, temporal_length:] = 0
            self.register_buffer("mask", mask)
        else:
            self.mask = None

        if use_new_attention_order:
            # split qkv before split heads
            self.attention_s = QKVAttention(self.num_heads)
            self.attention_t = QKVAttention(self.num_heads)
        else:
            # split heads before split qkv
            self.attention_s = QKVAttentionLegacy(self.num_heads)
            self.attention_t = QKVAttentionLegacy(self.num_heads)

        if use_relative_position:
            self.relative_position_k = RelativePosition(
                num_units=channels // self.num_heads,
                max_relative_position=temporal_length,
            )
            self.relative_position_v = RelativePosition(
                num_units=channels // self.num_heads,
                max_relative_position=temporal_length,
            )

        self.proj_out_s = zero_module(
            conv_nd(1, channels, channels, 1)
        )  # conv_dim, in_channels, out_channels, kernel_size
        self.proj_out_t = zero_module(
            conv_nd(1, channels, channels, 1)
        )  # conv_dim, in_channels, out_channels, kernel_size

    def forward(self, x, mask=None):
        b, c, t, h, w = x.shape

        # spatial
        out = rearrange(x, "b c t h w -> (b t) c (h w)")
        if self.attn_norm_type == "no_norm":
            qkv = self.qkv_s(out)
        else:
            qkv = self.qkv_s(self.norm_s(out))
        out = self.attention_s(qkv)
        out = self.proj_out_s(out)
        out = rearrange(out, "(b t) c (h w) -> b c t h w", b=b, h=h)
        x += out

        # temporal
        out = rearrange(x, "b c t h w -> (b h w) c t")
        if self.attn_norm_type == "no_norm":
            qkv = self.qkv_t(out)
        else:
            qkv = self.qkv_t(self.norm_t(out))

        # relative positional embedding
        if self.use_relative_position:
            len_q = qkv.size()[-1]
            len_k, len_v = len_q, len_q
            k_rp = self.relative_position_k(len_q, len_k)
            v_rp = self.relative_position_v(len_q, len_v)  # [T,T,head_dim]
            out = self.attention_t(
                qkv,
                rp=(k_rp, v_rp),
                mask=self.mask,
                use_tempoal_causal_attn=self.use_tempoal_causal_attn,
            )
        else:
            out = self.attention_t(
                qkv,
                rp=None,
                mask=self.mask,
                use_tempoal_causal_attn=self.use_tempoal_causal_attn,
            )

        out = self.proj_out_t(out)
        out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)

        return x + out


class QKVAttentionLegacy(nn.Module):
    """
    A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv, rp=None, mask=None):
        """
        Apply QKV attention.

        :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
        :return: an [N x (H * C) x T] tensor after attention.
        """
        if rp is not None or mask is not None:
            raise NotImplementedError
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum(
            "bct,bcs->bts", q * scale, k * scale
        )  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = torch.einsum("bts,bcs->bct", weight, v)
        return a.reshape(bs, -1, length)

    @staticmethod
    def count_flops(model, _x, y):
        return count_flops_attn(model, _x, y)


class QKVAttention(nn.Module):
    """
    A module which performs QKV attention and splits in a different order.
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv, rp=None, mask=None, use_tempoal_causal_attn=False):
        """
        Apply QKV attention.

        :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
        :return: an [N x (H * C) x T] tensor after attention.
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        # print('qkv', qkv.size())
        qkv=qkv.contiguous()
        q, k, v = qkv.chunk(3, dim=1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        # print('bs, self.n_heads, ch, length', bs, self.n_heads, ch, length)

        weight = torch.einsum(
            "bct,bcs->bts",
            (q * scale).view(bs * self.n_heads, ch, length),
            (k * scale).view(bs * self.n_heads, ch, length),
        )  # More stable with f16 than dividing afterwards
        # weight:[b,t,s] b=bs*n_heads*T

        if rp is not None:
            k_rp, v_rp = rp  # [length, length, head_dim] [8, 8, 48]
            weight2 = torch.einsum(
                "bct,tsc->bst", (q * scale).view(bs * self.n_heads, ch, length), k_rp
            )
            weight += weight2

        if use_tempoal_causal_attn:
            # weight = torch.tril(weight)
            assert mask is None, f"Not implemented for merging two masks!"
            mask = torch.tril(torch.ones(weight.shape))
        else:
            if mask is not None:  # only keep upper-left matrix
                # process mask
                c, t, _ = weight.shape

                if mask.shape[-1] > t:
                    mask = mask[:, :t, :t]
                elif mask.shape[-1] < t:  # pad ones
                    mask_ = torch.zeros([c, t, t]).to(mask.device)
                    t_ = mask.shape[-1]
                    mask_[:, :t_, :t_] = mask
                    mask = mask_
                else:
                    assert (
                        weight.shape[-1] == mask.shape[-1]
                    ), f"weight={weight.shape}, mask={mask.shape}"

        if mask is not None:
            INF = -1e8  # float('-inf')
            weight = weight.float().masked_fill(mask == 0, INF)

        weight = F.softmax(weight.float(), dim=-1).type(
            weight.dtype
        )  # [256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
        # weight = F.softmax(weight, dim=-1)#[256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
        a = torch.einsum(
            "bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)
        )  # [256, 48, 8] [b, head_dim, t]

        if rp is not None:
            a2 = torch.einsum("bts,tsc->btc", weight, v_rp).transpose(1, 2)  # btc->bct
            a += a2

        return a.reshape(bs, -1, length)


def silu(x):
    # swish
    return x * torch.sigmoid(x)


class SiLU(nn.Module):
    def __init__(self):
        super(SiLU, self).__init__()

    def forward(self, x):
        return silu(x)


def Normalize(in_channels, norm_type="group"):
    assert norm_type in ["group", "batch",'layer']
    if norm_type == "group":
        return torch.nn.GroupNorm(
            num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
        )
    elif norm_type == "batch":
        return torch.nn.SyncBatchNorm(in_channels)
    elif norm_type == "layer":
        return nn.LayerNorm(in_channels)
        
class SamePadConv3d(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        bias=True,
        padding_type="replicate",
    ):
        super().__init__()
        if isinstance(kernel_size, int):
            kernel_size = (kernel_size,) * 3
        if isinstance(stride, int):
            stride = (stride,) * 3

        # assumes that the input shape is divisible by stride
        total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
        pad_input = []
        for p in total_pad[::-1]:  # reverse since F.pad starts from last dim
            pad_input.append((p // 2 + p % 2, p // 2))
        pad_input = sum(pad_input, tuple())
        
        self.pad_input = pad_input
        self.padding_type = padding_type

        self.conv = nn.Conv3d(
            in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias
        )

    def forward(self, x):
        tp=x.dtype
        x = x.float()

        # 执行填充操作
        x_padded = F.pad(x, self.pad_input, mode=self.padding_type)

        # 如果需要,将结果转换回 BFloat16
        x_padded = x_padded.to(tp)
        
        return self.conv(x_padded)

class TemporalAttention(nn.Module):
    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=-1,
        max_temporal_length=64,
    ):
        """
        a clean multi-head temporal attention
        """
        super().__init__()

        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels

        self.norm = Normalize(channels)
        self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1))
        self.attention = QKVAttention(self.num_heads)
        self.relative_position_k = RelativePosition(
            num_units=channels // self.num_heads,
            max_relative_position=max_temporal_length,
        )
        self.relative_position_v = RelativePosition(
            num_units=channels // self.num_heads,
            max_relative_position=max_temporal_length,
        )
        self.proj_out = zero_module(
            conv_nd(1, channels, channels, 1)
        )  # conv_dim, in_channels, out_channels, kernel_size

    def forward(self, x, mask=None):
        b, c, t, h, w = x.shape
        out = rearrange(x, "b c t h w -> (b h w) c t")
        # torch.Size([4608, 1152, 2])1
        # torch.Size([4608, 3456, 2])2
        # torch.Size([4608, 1152, 2])3
        # torch.Size([4608, 1152, 2])4
        #print(out.shape,end='1\n')
        qkv = self.qkv(self.norm(out))
        #print(qkv.shape,end='2\n')
        
        len_q = qkv.size()[-1]
        len_k, len_v = len_q, len_q

        k_rp = self.relative_position_k(len_q, len_k)
        v_rp = self.relative_position_v(len_q, len_v)  # [T,T,head_dim]
        out = self.attention(qkv, rp=(k_rp, v_rp))
        #print(out.shape,end='3\n')
        out = self.proj_out(out)
        #print(out.shape,end='4\n')
        out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)

        return x + out
class TemporalAttention_lin(nn.Module):
    def __init__(
        self,
        channels,
        num_heads=8,
        num_head_channels=-1,
        max_temporal_length=64,
    ):
        """
        a clean multi-head temporal attention
        """
        super().__init__()

        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
        
        self.norm = nn.LayerNorm(channels)
        #self.norm = Normalize(channels)
        #self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1))
        self.qkv = nn.Linear(channels, channels * 3)
        self.attention = QKVAttention(self.num_heads)
        self.relative_position_k = RelativePosition(
            num_units=channels // self.num_heads,
            max_relative_position=max_temporal_length,
        )
        self.relative_position_v = RelativePosition(
            num_units=channels // self.num_heads,
            max_relative_position=max_temporal_length,
        )
        self.proj_out = nn.Linear(channels, channels)

    def forward(self, x, mask=None):
        b, c, t, h, w = x.shape
        out = rearrange(x, "b c t h w -> (b h w) t c")
        # torch.Size([4608, 1152, 2])1
        # torch.Size([4608, 3456, 2])2
        # torch.Size([4608, 1152, 2])3
        # torch.Size([4608, 1152, 2])4
        #print(out.shape,end='1\n')
        qkv = self.qkv(self.norm(out)).transpose(-1, -2)
        #print(qkv.shape,end='2\n')
        
        len_q = qkv.size()[-1]
        len_k, len_v = len_q, len_q

        k_rp = self.relative_position_k(len_q, len_k)
        v_rp = self.relative_position_v(len_q, len_v)  # [T,T,head_dim]
        
        out = self.attention(qkv, rp=(k_rp, v_rp))
        
        out = self.proj_out(out.transpose(-1, -2)).transpose(-1, -2)
        
        #print(out.shape,end='4\n')
        out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)

        return x + out
    
class AttnBlock3D(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv3d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.k = torch.nn.Conv3d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.v = torch.nn.Conv3d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.proj_out = torch.nn.Conv3d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )

    def forward(self, x):
        h_ = x
        # self.norm.to(x.device)
        # self.norm.to(x.dtype)
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        b, c, t, h, w = q.shape
        # q = q.reshape(b,c,h*w) # bcl
        # q = q.permute(0,2,1)   # bcl -> blc l=hw
        # k = k.reshape(b,c,h*w) # bcl
        q = rearrange(q, "b c t h w -> (b t) (h w) c")  # blc
        k = rearrange(k, "b c t h w -> (b t) c (h w)")  # bcl

        w_ = torch.bmm(q, k)  # b,l,l
        w_ = w_ * (int(c) ** (-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # v = v.reshape(b,c,h*w)
        v = rearrange(v, "b c t h w -> (b t) c (h w)")  # bcl

        # attend to values
        w_ = w_.permute(0, 2, 1)  # bll
        h_ = torch.bmm(v, w_)  # bcl

        # h_ = h_.reshape(b,c,h,w)
        h_ = rearrange(h_, "(b t) c (h w) -> b c t h w", b=b, h=h)

        h_ = self.proj_out(h_)

        return x + h_
    
class MultiHeadAttention3D(nn.Module):
    def __init__(self, in_channels, num_heads=8):
        super().__init__()
        self.in_channels = in_channels
        self.num_heads = num_heads
        self.head_dim = in_channels // num_heads

        assert self.head_dim * num_heads == in_channels, "in_channels must be divisible by num_heads"

        self.norm = nn.LayerNorm(in_channels)
        self.q_linear = nn.Linear(in_channels, in_channels)
        self.k_linear = nn.Linear(in_channels, in_channels)
        self.v_linear = nn.Linear(in_channels, in_channels)
        self.proj_out = nn.Linear(in_channels, in_channels)

    def forward(self, x):
        b, c, t, h, w = x.shape
        #print(x.shape)
        # Normalize and reshape input
        h_ = rearrange(x, "b c t h w -> (b t) (h w) c")
        h_ = self.norm(h_)

        # Linear projections
        q = self.q_linear(h_)
        k = self.k_linear(h_)
        v = self.v_linear(h_)

        # Reshape to multi-head
        q = rearrange(q, "b l (h d) -> b h l d", h=self.num_heads)
        k = rearrange(k, "b l (h d) -> b h l d", h=self.num_heads)
        v = rearrange(v, "b l (h d) -> b h l d", h=self.num_heads)

        # Scaled Dot-Product Attention
        scores = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5)
        attn = F.softmax(scores, dim=-1)

        # Apply attention to values
        out = torch.matmul(attn, v)
        out = rearrange(out, "b h l d -> b l (h d)")

        # Project back to original dimension
        out = self.proj_out(out)

        # Reshape back to original shape
        out = rearrange(out, "(b t) (h w) c -> b c t h w", b=b, h=h, t=t)
        #print(out.shape)
        return x + out


class SiglipAE(nn.Module):
    def __init__(self):
        super().__init__()
        temporal_stride=2
        norm_type = "group"
                   
        self.temporal_encoding = nn.Parameter(torch.randn((4,1152)))
        #self.vision_tower=SigLipVisionTower('google/siglip-so400m-patch14-384')
        self.encoder=nn.Sequential(
            AttnBlock3D(1152),
            TemporalAttention(1152),
            
            SamePadConv3d(1152,1152,kernel_size=3,stride=(temporal_stride, 1, 1),padding_type="replicate"),
            
            AttnBlock3D(1152),
            TemporalAttention(1152),
            
            SamePadConv3d(1152,1152,kernel_size=3,stride=(temporal_stride, 1, 1),padding_type="replicate"),
            
        )
    def forward(self, x):
        b_,c_,t_,h_,w_=x.shape

        temporal_encoding = self.temporal_encoding.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
        temporal_encoding = temporal_encoding.expand(b_, -1, -1, h_, w_)  # (B, T, C, H, W)
        temporal_encoding = temporal_encoding.permute(0, 2, 1, 3, 4)  # (B, C, T, H, W)  
        x = x + temporal_encoding
        
        x=self.encoder(x)
        return x