update
Browse files- attention_temporal_videoae.py +1314 -0
- base_encoder.py +68 -0
- builder.py +17 -0
- llava_arch.py +76 -52
- llava_qwen.py +44 -24
- mm_utils.py +18 -14
- modeling_qwen2.py +4 -1
- sae.py +45 -0
- sae_utils.py +302 -0
- siglip_encoder.py +154 -0
- utils.py +166 -0
- utils_encoder.py +296 -0
attention_temporal_videoae.py
ADDED
@@ -0,0 +1,1314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch as th
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch import nn, einsum
|
7 |
+
from einops import rearrange, repeat
|
8 |
+
from typing import Optional, Any
|
9 |
+
|
10 |
+
try:
|
11 |
+
import xformers
|
12 |
+
import xformers.ops
|
13 |
+
|
14 |
+
XFORMERS_IS_AVAILBLE = True
|
15 |
+
except:
|
16 |
+
XFORMERS_IS_AVAILBLE = False
|
17 |
+
|
18 |
+
from .utils_encoder import (
|
19 |
+
conv_nd,
|
20 |
+
zero_module,
|
21 |
+
normalization,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def exists(val):
|
26 |
+
return val is not None
|
27 |
+
|
28 |
+
|
29 |
+
def uniq(arr):
|
30 |
+
return {el: True for el in arr}.keys()
|
31 |
+
|
32 |
+
|
33 |
+
def default(val, d):
|
34 |
+
if exists(val):
|
35 |
+
return val
|
36 |
+
return d() if isfunction(d) else d
|
37 |
+
|
38 |
+
|
39 |
+
def max_neg_value(t):
|
40 |
+
return -torch.finfo(t.dtype).max
|
41 |
+
|
42 |
+
|
43 |
+
def init_(tensor):
|
44 |
+
dim = tensor.shape[-1]
|
45 |
+
std = 1 / math.sqrt(dim)
|
46 |
+
tensor.uniform_(-std, std)
|
47 |
+
return tensor
|
48 |
+
|
49 |
+
|
50 |
+
# feedforward
|
51 |
+
class GEGLU(nn.Module):
|
52 |
+
def __init__(self, dim_in, dim_out):
|
53 |
+
super().__init__()
|
54 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
58 |
+
return x * F.gelu(gate)
|
59 |
+
|
60 |
+
|
61 |
+
class FeedForward(nn.Module):
|
62 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
63 |
+
super().__init__()
|
64 |
+
inner_dim = int(dim * mult)
|
65 |
+
dim_out = default(dim_out, dim)
|
66 |
+
project_in = (
|
67 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
68 |
+
if not glu
|
69 |
+
else GEGLU(dim, inner_dim)
|
70 |
+
)
|
71 |
+
|
72 |
+
self.net = nn.Sequential(
|
73 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
74 |
+
)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
return self.net(x)
|
78 |
+
|
79 |
+
|
80 |
+
def zero_module(module):
|
81 |
+
"""
|
82 |
+
Zero out the parameters of a module and return it.
|
83 |
+
"""
|
84 |
+
for p in module.parameters():
|
85 |
+
p.detach().zero_()
|
86 |
+
return module
|
87 |
+
|
88 |
+
|
89 |
+
def Normalize(in_channels, num_groups=32):
|
90 |
+
return torch.nn.GroupNorm(
|
91 |
+
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
# ---------------------------------------------------------------------------------------------------
|
96 |
+
class RelativePosition(nn.Module):
|
97 |
+
"""https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py"""
|
98 |
+
|
99 |
+
def __init__(self, num_units, max_relative_position):
|
100 |
+
super().__init__()
|
101 |
+
self.num_units = num_units
|
102 |
+
self.max_relative_position = max_relative_position
|
103 |
+
self.embeddings_table = nn.Parameter(
|
104 |
+
th.Tensor(max_relative_position * 2 + 1, num_units)
|
105 |
+
)
|
106 |
+
nn.init.xavier_uniform_(self.embeddings_table)
|
107 |
+
|
108 |
+
def forward(self, length_q, length_k):
|
109 |
+
device = self.embeddings_table.device
|
110 |
+
range_vec_q = th.arange(length_q, device=device)
|
111 |
+
range_vec_k = th.arange(length_k, device=device)
|
112 |
+
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
|
113 |
+
distance_mat_clipped = th.clamp(
|
114 |
+
distance_mat, -self.max_relative_position, self.max_relative_position
|
115 |
+
)
|
116 |
+
final_mat = distance_mat_clipped + self.max_relative_position
|
117 |
+
# final_mat = th.LongTensor(final_mat).to(self.embeddings_table.device)
|
118 |
+
# final_mat = th.tensor(final_mat, device=self.embeddings_table.device, dtype=torch.long)
|
119 |
+
final_mat = final_mat.long()
|
120 |
+
embeddings = self.embeddings_table[final_mat]
|
121 |
+
return embeddings
|
122 |
+
|
123 |
+
|
124 |
+
class TemporalCrossAttention(nn.Module):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
query_dim,
|
128 |
+
context_dim=None,
|
129 |
+
heads=8,
|
130 |
+
dim_head=64,
|
131 |
+
dropout=0.0,
|
132 |
+
temporal_length=None, # For relative positional representation and image-video joint training.
|
133 |
+
image_length=None, # For image-video joint training.
|
134 |
+
use_relative_position=False, # whether use relative positional representation in temporal attention.
|
135 |
+
img_video_joint_train=False, # For image-video joint training.
|
136 |
+
use_tempoal_causal_attn=False,
|
137 |
+
bidirectional_causal_attn=False,
|
138 |
+
tempoal_attn_type=None,
|
139 |
+
joint_train_mode="same_batch",
|
140 |
+
**kwargs,
|
141 |
+
):
|
142 |
+
super().__init__()
|
143 |
+
inner_dim = dim_head * heads
|
144 |
+
context_dim = default(context_dim, query_dim)
|
145 |
+
self.context_dim = context_dim
|
146 |
+
|
147 |
+
self.scale = dim_head**-0.5
|
148 |
+
self.heads = heads
|
149 |
+
self.temporal_length = temporal_length
|
150 |
+
self.use_relative_position = use_relative_position
|
151 |
+
self.img_video_joint_train = img_video_joint_train
|
152 |
+
self.bidirectional_causal_attn = bidirectional_causal_attn
|
153 |
+
self.joint_train_mode = joint_train_mode
|
154 |
+
assert joint_train_mode in ["same_batch", "diff_batch"]
|
155 |
+
self.tempoal_attn_type = tempoal_attn_type
|
156 |
+
|
157 |
+
if bidirectional_causal_attn:
|
158 |
+
assert use_tempoal_causal_attn
|
159 |
+
if tempoal_attn_type:
|
160 |
+
assert tempoal_attn_type in ["sparse_causal", "sparse_causal_first"]
|
161 |
+
assert not use_tempoal_causal_attn
|
162 |
+
assert not (
|
163 |
+
img_video_joint_train and (self.joint_train_mode == "same_batch")
|
164 |
+
)
|
165 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
166 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
167 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
168 |
+
|
169 |
+
assert not (
|
170 |
+
img_video_joint_train
|
171 |
+
and (self.joint_train_mode == "same_batch")
|
172 |
+
and use_tempoal_causal_attn
|
173 |
+
)
|
174 |
+
if img_video_joint_train:
|
175 |
+
if self.joint_train_mode == "same_batch":
|
176 |
+
mask = torch.ones(
|
177 |
+
[1, temporal_length + image_length, temporal_length + image_length]
|
178 |
+
)
|
179 |
+
# mask[:, image_length:, :] = 0
|
180 |
+
# mask[:, :, image_length:] = 0
|
181 |
+
mask[:, temporal_length:, :] = 0
|
182 |
+
mask[:, :, temporal_length:] = 0
|
183 |
+
self.mask = mask
|
184 |
+
else:
|
185 |
+
self.mask = None
|
186 |
+
elif use_tempoal_causal_attn:
|
187 |
+
# normal causal attn
|
188 |
+
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
|
189 |
+
elif tempoal_attn_type == "sparse_causal":
|
190 |
+
# all frames interact with only the `prev` & self frame
|
191 |
+
mask1 = torch.tril(
|
192 |
+
torch.ones([1, temporal_length, temporal_length])
|
193 |
+
).bool() # true indicates keeping
|
194 |
+
mask2 = torch.zeros(
|
195 |
+
[1, temporal_length, temporal_length]
|
196 |
+
) # initialize to same shape with mask1
|
197 |
+
mask2[:, 2:temporal_length, : temporal_length - 2] = torch.tril(
|
198 |
+
torch.ones([1, temporal_length - 2, temporal_length - 2])
|
199 |
+
)
|
200 |
+
mask2 = (1 - mask2).bool() # false indicates masking
|
201 |
+
self.mask = mask1 & mask2
|
202 |
+
elif tempoal_attn_type == "sparse_causal_first":
|
203 |
+
# all frames interact with only the `first` & self frame
|
204 |
+
mask1 = torch.tril(
|
205 |
+
torch.ones([1, temporal_length, temporal_length])
|
206 |
+
).bool() # true indicates keeping
|
207 |
+
mask2 = torch.zeros([1, temporal_length, temporal_length])
|
208 |
+
mask2[:, 2:temporal_length, 1 : temporal_length - 1] = torch.tril(
|
209 |
+
torch.ones([1, temporal_length - 2, temporal_length - 2])
|
210 |
+
)
|
211 |
+
mask2 = (1 - mask2).bool() # false indicates masking
|
212 |
+
self.mask = mask1 & mask2
|
213 |
+
else:
|
214 |
+
self.mask = None
|
215 |
+
|
216 |
+
if use_relative_position:
|
217 |
+
assert temporal_length is not None
|
218 |
+
self.relative_position_k = RelativePosition(
|
219 |
+
num_units=dim_head, max_relative_position=temporal_length
|
220 |
+
)
|
221 |
+
self.relative_position_v = RelativePosition(
|
222 |
+
num_units=dim_head, max_relative_position=temporal_length
|
223 |
+
)
|
224 |
+
|
225 |
+
self.to_out = nn.Sequential(
|
226 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
227 |
+
)
|
228 |
+
|
229 |
+
nn.init.constant_(self.to_q.weight, 0)
|
230 |
+
nn.init.constant_(self.to_k.weight, 0)
|
231 |
+
nn.init.constant_(self.to_v.weight, 0)
|
232 |
+
nn.init.constant_(self.to_out[0].weight, 0)
|
233 |
+
nn.init.constant_(self.to_out[0].bias, 0)
|
234 |
+
|
235 |
+
def forward(self, x, context=None, mask=None):
|
236 |
+
# if context is None:
|
237 |
+
# print(f'[Temp Attn] x={x.shape},context=None')
|
238 |
+
# else:
|
239 |
+
# print(f'[Temp Attn] x={x.shape},context={context.shape}')
|
240 |
+
|
241 |
+
nh = self.heads
|
242 |
+
out = x
|
243 |
+
q = self.to_q(out)
|
244 |
+
# if context is not None:
|
245 |
+
# print(f'temporal context 1 ={context.shape}')
|
246 |
+
# print(f'x={x.shape}')
|
247 |
+
context = default(context, x)
|
248 |
+
# print(f'temporal context 2 ={context.shape}')
|
249 |
+
k = self.to_k(context)
|
250 |
+
v = self.to_v(context)
|
251 |
+
# print(f'q ={q.shape},k={k.shape}')
|
252 |
+
|
253 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=nh), (q, k, v))
|
254 |
+
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
255 |
+
|
256 |
+
if self.use_relative_position:
|
257 |
+
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
|
258 |
+
k2 = self.relative_position_k(len_q, len_k)
|
259 |
+
sim2 = einsum("b t d, t s d -> b t s", q, k2) * self.scale # TODO check
|
260 |
+
sim += sim2
|
261 |
+
# print('mask',mask)
|
262 |
+
if exists(self.mask):
|
263 |
+
if mask is None:
|
264 |
+
mask = self.mask.to(sim.device)
|
265 |
+
else:
|
266 |
+
mask = self.mask.to(sim.device).bool() & mask # .to(sim.device)
|
267 |
+
else:
|
268 |
+
mask = mask
|
269 |
+
# if self.img_video_joint_train:
|
270 |
+
# # process mask (make mask same shape with sim)
|
271 |
+
# c, h, w = mask.shape
|
272 |
+
# c, t, s = sim.shape
|
273 |
+
# # assert(h == w and t == s),f"mask={mask.shape}, sim={sim.shape}, h={h}, w={w}, t={t}, s={s}"
|
274 |
+
|
275 |
+
# if h > t:
|
276 |
+
# mask = mask[:, :t, :]
|
277 |
+
# elif h < t: # pad zeros to mask (no attention) only initial mask =1 area compute weights
|
278 |
+
# mask_ = torch.zeros([c,t,w]).to(mask.device)
|
279 |
+
# mask_[:, :h, :] = mask
|
280 |
+
# mask = mask_
|
281 |
+
# c, h, w = mask.shape
|
282 |
+
# if w > s:
|
283 |
+
# mask = mask[:, :, :s]
|
284 |
+
# elif w < s: # pad zeros to mask
|
285 |
+
# mask_ = torch.zeros([c,h,s]).to(mask.device)
|
286 |
+
# mask_[:, :, :w] = mask
|
287 |
+
# mask = mask_
|
288 |
+
|
289 |
+
# max_neg_value = -torch.finfo(sim.dtype).max
|
290 |
+
# sim = sim.float().masked_fill(mask == 0, max_neg_value)
|
291 |
+
if mask is not None:
|
292 |
+
max_neg_value = -1e9
|
293 |
+
sim = sim + (1 - mask.float()) * max_neg_value # 1=masking,0=no masking
|
294 |
+
# print('sim after masking: ', sim)
|
295 |
+
|
296 |
+
# if torch.isnan(sim).any() or torch.isinf(sim).any() or (not sim.any()):
|
297 |
+
# print(f'sim [after masking], isnan={torch.isnan(sim).any()}, isinf={torch.isinf(sim).any()}, allzero={not sim.any()}')
|
298 |
+
|
299 |
+
attn = sim.softmax(dim=-1)
|
300 |
+
# print('attn after softmax: ', attn)
|
301 |
+
# if torch.isnan(attn).any() or torch.isinf(attn).any() or (not attn.any()):
|
302 |
+
# print(f'attn [after softmax], isnan={torch.isnan(attn).any()}, isinf={torch.isinf(attn).any()}, allzero={not attn.any()}')
|
303 |
+
|
304 |
+
# attn = torch.where(torch.isnan(attn), torch.full_like(attn,0), attn)
|
305 |
+
# if torch.isinf(attn.detach()).any():
|
306 |
+
# import pdb;pdb.set_trace()
|
307 |
+
# if torch.isnan(attn.detach()).any():
|
308 |
+
# import pdb;pdb.set_trace()
|
309 |
+
out = einsum("b i j, b j d -> b i d", attn, v)
|
310 |
+
|
311 |
+
if self.bidirectional_causal_attn:
|
312 |
+
mask_reverse = torch.triu(
|
313 |
+
torch.ones(
|
314 |
+
[1, self.temporal_length, self.temporal_length], device=sim.device
|
315 |
+
)
|
316 |
+
)
|
317 |
+
sim_reverse = sim.float().masked_fill(mask_reverse == 0, max_neg_value)
|
318 |
+
attn_reverse = sim_reverse.softmax(dim=-1)
|
319 |
+
out_reverse = einsum("b i j, b j d -> b i d", attn_reverse, v)
|
320 |
+
out += out_reverse
|
321 |
+
|
322 |
+
if self.use_relative_position:
|
323 |
+
v2 = self.relative_position_v(len_q, len_v)
|
324 |
+
out2 = einsum("b t s, t s d -> b t d", attn, v2) # TODO check
|
325 |
+
out += out2 # TODO check:先add还是先merge head?先计算rpr,on split head之后的数据,然后再merge。
|
326 |
+
out = rearrange(out, "(b h) n d -> b n (h d)", h=nh) # merge head
|
327 |
+
return self.to_out(out)
|
328 |
+
|
329 |
+
|
330 |
+
# ---------------------------------------------------------------------------------------------------
|
331 |
+
|
332 |
+
|
333 |
+
class SpatialSelfAttention(nn.Module):
|
334 |
+
def __init__(self, in_channels):
|
335 |
+
super().__init__()
|
336 |
+
self.in_channels = in_channels
|
337 |
+
|
338 |
+
self.norm = Normalize(in_channels)
|
339 |
+
self.q = torch.nn.Conv2d(
|
340 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
341 |
+
)
|
342 |
+
self.k = torch.nn.Conv2d(
|
343 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
344 |
+
)
|
345 |
+
self.v = torch.nn.Conv2d(
|
346 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
347 |
+
)
|
348 |
+
self.proj_out = torch.nn.Conv2d(
|
349 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
350 |
+
)
|
351 |
+
|
352 |
+
def forward(self, x):
|
353 |
+
h_ = x
|
354 |
+
h_ = self.norm(h_)
|
355 |
+
q = self.q(h_)
|
356 |
+
k = self.k(h_)
|
357 |
+
v = self.v(h_)
|
358 |
+
|
359 |
+
# compute attention
|
360 |
+
b, c, h, w = q.shape
|
361 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
362 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
363 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
364 |
+
|
365 |
+
w_ = w_ * (int(c) ** (-0.5))
|
366 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
367 |
+
|
368 |
+
# attend to values
|
369 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
370 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
371 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
372 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
373 |
+
h_ = self.proj_out(h_)
|
374 |
+
|
375 |
+
return x + h_
|
376 |
+
|
377 |
+
|
378 |
+
class CrossAttention(nn.Module):
|
379 |
+
def __init__(
|
380 |
+
self,
|
381 |
+
query_dim,
|
382 |
+
context_dim=None,
|
383 |
+
heads=8,
|
384 |
+
dim_head=64,
|
385 |
+
dropout=0.0,
|
386 |
+
sa_shared_kv=False,
|
387 |
+
shared_type="only_first",
|
388 |
+
**kwargs,
|
389 |
+
):
|
390 |
+
super().__init__()
|
391 |
+
inner_dim = dim_head * heads
|
392 |
+
context_dim = default(context_dim, query_dim)
|
393 |
+
self.sa_shared_kv = sa_shared_kv
|
394 |
+
assert shared_type in [
|
395 |
+
"only_first",
|
396 |
+
"all_frames",
|
397 |
+
"first_and_prev",
|
398 |
+
"only_prev",
|
399 |
+
"full",
|
400 |
+
"causal",
|
401 |
+
"full_qkv",
|
402 |
+
]
|
403 |
+
self.shared_type = shared_type
|
404 |
+
|
405 |
+
self.scale = dim_head**-0.5
|
406 |
+
self.heads = heads
|
407 |
+
self.dim_head = dim_head
|
408 |
+
|
409 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
410 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
411 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
412 |
+
|
413 |
+
self.to_out = nn.Sequential(
|
414 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
415 |
+
)
|
416 |
+
self.attention_op: Optional[Any] = None
|
417 |
+
|
418 |
+
def forward(self, x, context=None, mask=None):
|
419 |
+
h = self.heads
|
420 |
+
b = x.shape[0]
|
421 |
+
|
422 |
+
q = self.to_q(x)
|
423 |
+
context = default(context, x)
|
424 |
+
k = self.to_k(context)
|
425 |
+
v = self.to_v(context)
|
426 |
+
if self.sa_shared_kv:
|
427 |
+
if self.shared_type == "only_first":
|
428 |
+
k, v = map(
|
429 |
+
lambda xx: rearrange(xx[0].unsqueeze(0), "b n c -> (b n) c")
|
430 |
+
.unsqueeze(0)
|
431 |
+
.repeat(b, 1, 1),
|
432 |
+
(k, v),
|
433 |
+
)
|
434 |
+
else:
|
435 |
+
raise NotImplementedError
|
436 |
+
|
437 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
438 |
+
|
439 |
+
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
440 |
+
|
441 |
+
if exists(mask):
|
442 |
+
mask = rearrange(mask, "b ... -> b (...)")
|
443 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
444 |
+
mask = repeat(mask, "b j -> (b h) () j", h=h)
|
445 |
+
sim.masked_fill_(~mask, max_neg_value)
|
446 |
+
|
447 |
+
# attention, what we cannot get enough of
|
448 |
+
attn = sim.softmax(dim=-1)
|
449 |
+
|
450 |
+
out = einsum("b i j, b j d -> b i d", attn, v)
|
451 |
+
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
452 |
+
return self.to_out(out)
|
453 |
+
|
454 |
+
def efficient_forward(self, x, context=None, mask=None):
|
455 |
+
q = self.to_q(x)
|
456 |
+
context = default(context, x)
|
457 |
+
k = self.to_k(context)
|
458 |
+
v = self.to_v(context)
|
459 |
+
|
460 |
+
b, _, _ = q.shape
|
461 |
+
q, k, v = map(
|
462 |
+
lambda t: t.unsqueeze(3)
|
463 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
464 |
+
.permute(0, 2, 1, 3)
|
465 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
466 |
+
.contiguous(),
|
467 |
+
(q, k, v),
|
468 |
+
)
|
469 |
+
# actually compute the attention, what we cannot get enough of
|
470 |
+
out = xformers.ops.memory_efficient_attention(
|
471 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
472 |
+
)
|
473 |
+
|
474 |
+
if exists(mask):
|
475 |
+
raise NotImplementedError
|
476 |
+
out = (
|
477 |
+
out.unsqueeze(0)
|
478 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
479 |
+
.permute(0, 2, 1, 3)
|
480 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
481 |
+
)
|
482 |
+
return self.to_out(out)
|
483 |
+
|
484 |
+
|
485 |
+
class VideoSpatialCrossAttention(CrossAttention):
|
486 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0):
|
487 |
+
super().__init__(query_dim, context_dim, heads, dim_head, dropout)
|
488 |
+
|
489 |
+
def forward(self, x, context=None, mask=None):
|
490 |
+
b, c, t, h, w = x.shape
|
491 |
+
if context is not None:
|
492 |
+
context = context.repeat(t, 1, 1)
|
493 |
+
x = super.forward(spatial_attn_reshape(x), context=context) + x
|
494 |
+
return spatial_attn_reshape_back(x, b, h)
|
495 |
+
|
496 |
+
|
497 |
+
# class BasicTransformerBlockST(nn.Module):
|
498 |
+
# def __init__(
|
499 |
+
# self,
|
500 |
+
# # Spatial Stuff
|
501 |
+
# dim,
|
502 |
+
# n_heads,
|
503 |
+
# d_head,
|
504 |
+
# dropout=0.0,
|
505 |
+
# context_dim=None,
|
506 |
+
# gated_ff=True,
|
507 |
+
# checkpoint=True,
|
508 |
+
# # Temporal Stuff
|
509 |
+
# temporal_length=None,
|
510 |
+
# image_length=None,
|
511 |
+
# use_relative_position=True,
|
512 |
+
# img_video_joint_train=False,
|
513 |
+
# cross_attn_on_tempoal=False,
|
514 |
+
# temporal_crossattn_type="selfattn",
|
515 |
+
# order="stst",
|
516 |
+
# temporalcrossfirst=False,
|
517 |
+
# temporal_context_dim=None,
|
518 |
+
# split_stcontext=False,
|
519 |
+
# local_spatial_temporal_attn=False,
|
520 |
+
# window_size=2,
|
521 |
+
# random_t=False,
|
522 |
+
# **kwargs,
|
523 |
+
# ):
|
524 |
+
# super().__init__()
|
525 |
+
# # Self attention
|
526 |
+
# self.attn1 = CrossAttention(
|
527 |
+
# query_dim=dim,
|
528 |
+
# heads=n_heads,
|
529 |
+
# dim_head=d_head,
|
530 |
+
# dropout=dropout,
|
531 |
+
# **kwargs,
|
532 |
+
# )
|
533 |
+
# self.attn2 = CrossAttention(
|
534 |
+
# query_dim=dim,
|
535 |
+
# context_dim=context_dim,
|
536 |
+
# heads=n_heads,
|
537 |
+
# dim_head=d_head,
|
538 |
+
# dropout=dropout,
|
539 |
+
# **kwargs,
|
540 |
+
# )
|
541 |
+
# if XFORMERS_IS_AVAILBLE:
|
542 |
+
# self.attn1.forward = self.attn1.efficient_forward
|
543 |
+
# self.attn2.forward = self.attn2.efficient_forward
|
544 |
+
|
545 |
+
# self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
546 |
+
# # cross attention if context is not None
|
547 |
+
|
548 |
+
# self.norm1 = nn.LayerNorm(dim)
|
549 |
+
# self.norm2 = nn.LayerNorm(dim)
|
550 |
+
# self.norm3 = nn.LayerNorm(dim)
|
551 |
+
# self.checkpoint = checkpoint
|
552 |
+
# self.order = order
|
553 |
+
# assert self.order in ["stst", "sstt", "st_parallel"]
|
554 |
+
# self.temporalcrossfirst = temporalcrossfirst
|
555 |
+
# self.split_stcontext = split_stcontext
|
556 |
+
# self.local_spatial_temporal_attn = local_spatial_temporal_attn
|
557 |
+
# if self.local_spatial_temporal_attn:
|
558 |
+
# assert self.order == "stst"
|
559 |
+
# assert self.order == "stst"
|
560 |
+
# self.window_size = window_size
|
561 |
+
# if not split_stcontext:
|
562 |
+
# temporal_context_dim = context_dim
|
563 |
+
# # Temporal attention
|
564 |
+
# assert temporal_crossattn_type in ["selfattn", "crossattn", "skip"]
|
565 |
+
# self.temporal_crossattn_type = temporal_crossattn_type
|
566 |
+
# self.attn1_tmp = TemporalCrossAttention(
|
567 |
+
# query_dim=dim,
|
568 |
+
# heads=n_heads,
|
569 |
+
# dim_head=d_head,
|
570 |
+
# dropout=dropout,
|
571 |
+
# temporal_length=temporal_length,
|
572 |
+
# image_length=image_length,
|
573 |
+
# use_relative_position=use_relative_position,
|
574 |
+
# img_video_joint_train=img_video_joint_train,
|
575 |
+
# **kwargs,
|
576 |
+
# )
|
577 |
+
# self.attn2_tmp = TemporalCrossAttention(
|
578 |
+
# query_dim=dim,
|
579 |
+
# heads=n_heads,
|
580 |
+
# dim_head=d_head,
|
581 |
+
# dropout=dropout,
|
582 |
+
# # cross attn
|
583 |
+
# context_dim=(
|
584 |
+
# temporal_context_dim if temporal_crossattn_type == "crossattn" else None
|
585 |
+
# ),
|
586 |
+
# # temporal attn
|
587 |
+
# temporal_length=temporal_length,
|
588 |
+
# image_length=image_length,
|
589 |
+
# use_relative_position=use_relative_position,
|
590 |
+
# img_video_joint_train=img_video_joint_train,
|
591 |
+
# **kwargs,
|
592 |
+
# )
|
593 |
+
# self.norm4 = nn.LayerNorm(dim)
|
594 |
+
# self.norm5 = nn.LayerNorm(dim)
|
595 |
+
# self.random_t = random_t
|
596 |
+
# # self.norm1_tmp = nn.LayerNorm(dim)
|
597 |
+
# # self.norm2_tmp = nn.LayerNorm(dim)
|
598 |
+
|
599 |
+
# ##############################################################################################################################################
|
600 |
+
# def forward(
|
601 |
+
# self,
|
602 |
+
# x,
|
603 |
+
# context=None,
|
604 |
+
# temporal_context=None,
|
605 |
+
# no_temporal_attn=None,
|
606 |
+
# attn_mask=None,
|
607 |
+
# **kwargs,
|
608 |
+
# ):
|
609 |
+
# # print(f'no_temporal_attn={no_temporal_attn}')
|
610 |
+
|
611 |
+
# if not self.split_stcontext:
|
612 |
+
# # st cross attention use the same context vector
|
613 |
+
# temporal_context = context.detach().clone()
|
614 |
+
|
615 |
+
# if context is None and temporal_context is None:
|
616 |
+
# # self-attention models
|
617 |
+
# if no_temporal_attn:
|
618 |
+
# raise NotImplementedError
|
619 |
+
# return checkpoint(
|
620 |
+
# self._forward_nocontext, (x), self.parameters(), self.checkpoint
|
621 |
+
# )
|
622 |
+
# else:
|
623 |
+
# # cross-attention models
|
624 |
+
# if no_temporal_attn:
|
625 |
+
# forward_func = self._forward_no_temporal_attn
|
626 |
+
# else:
|
627 |
+
# forward_func = self._forward
|
628 |
+
# inputs = (
|
629 |
+
# (x, context, temporal_context)
|
630 |
+
# if temporal_context is not None
|
631 |
+
# else (x, context)
|
632 |
+
# )
|
633 |
+
# return checkpoint(forward_func, inputs, self.parameters(), self.checkpoint)
|
634 |
+
# # if attn_mask is not None:
|
635 |
+
# # return checkpoint(self._forward, (x, context, temporal_context, attn_mask), self.parameters(), self.checkpoint)
|
636 |
+
# # return checkpoint(self._forward, (x, context, temporal_context), self.parameters(), self.checkpoint)
|
637 |
+
|
638 |
+
# def _forward(
|
639 |
+
# self,
|
640 |
+
# x,
|
641 |
+
# context=None,
|
642 |
+
# temporal_context=None,
|
643 |
+
# mask=None,
|
644 |
+
# no_temporal_attn=None,
|
645 |
+
# ):
|
646 |
+
# assert x.dim() == 5, f"x shape = {x.shape}"
|
647 |
+
# b, c, t, h, w = x.shape
|
648 |
+
|
649 |
+
# if self.order in ["stst", "sstt"]:
|
650 |
+
# x = self._st_cross_attn(
|
651 |
+
# x,
|
652 |
+
# context,
|
653 |
+
# temporal_context=temporal_context,
|
654 |
+
# order=self.order,
|
655 |
+
# mask=mask,
|
656 |
+
# ) # no_temporal_attn=no_temporal_attn,
|
657 |
+
# elif self.order == "st_parallel":
|
658 |
+
# x = self._st_cross_attn_parallel(
|
659 |
+
# x,
|
660 |
+
# context,
|
661 |
+
# temporal_context=temporal_context,
|
662 |
+
# order=self.order,
|
663 |
+
# ) # no_temporal_attn=no_temporal_attn,
|
664 |
+
# else:
|
665 |
+
# raise NotImplementedError
|
666 |
+
|
667 |
+
# x = self.ff(self.norm3(x)) + x
|
668 |
+
# if (no_temporal_attn is None) or (not no_temporal_attn):
|
669 |
+
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
670 |
+
# elif no_temporal_attn:
|
671 |
+
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
672 |
+
# return x
|
673 |
+
|
674 |
+
# def _forward_no_temporal_attn(
|
675 |
+
# self,
|
676 |
+
# x,
|
677 |
+
# context=None,
|
678 |
+
# temporal_context=None,
|
679 |
+
# ):
|
680 |
+
# # temporary implementation :(
|
681 |
+
# # because checkpoint does not support non-tensor inputs currently.
|
682 |
+
# assert x.dim() == 5, f"x shape = {x.shape}"
|
683 |
+
# b, c, t, h, w = x.shape
|
684 |
+
|
685 |
+
# if self.order in ["stst", "sstt"]:
|
686 |
+
# # x = self._st_cross_attn(x, context, temporal_context=temporal_context, order=self.order, no_temporal_attn=True,)
|
687 |
+
# # mask = torch.zeros([1, t, t], device=x.device).bool() if context is None else torch.zeros([1, context.shape[1], t], device=x.device).bool()
|
688 |
+
# mask = torch.zeros([1, t, t], device=x.device).bool()
|
689 |
+
# x = self._st_cross_attn(
|
690 |
+
# x,
|
691 |
+
# context,
|
692 |
+
# temporal_context=temporal_context,
|
693 |
+
# order=self.order,
|
694 |
+
# mask=mask,
|
695 |
+
# )
|
696 |
+
# elif self.order == "st_parallel":
|
697 |
+
# x = self._st_cross_attn_parallel(
|
698 |
+
# x,
|
699 |
+
# context,
|
700 |
+
# temporal_context=temporal_context,
|
701 |
+
# order=self.order,
|
702 |
+
# no_temporal_attn=True,
|
703 |
+
# )
|
704 |
+
# else:
|
705 |
+
# raise NotImplementedError
|
706 |
+
|
707 |
+
# x = self.ff(self.norm3(x)) + x
|
708 |
+
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
709 |
+
# # x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
|
710 |
+
# return x
|
711 |
+
|
712 |
+
# def _forward_nocontext(self, x, no_temporal_attn=None):
|
713 |
+
# assert x.dim() == 5, f"x shape = {x.shape}"
|
714 |
+
# b, c, t, h, w = x.shape
|
715 |
+
|
716 |
+
# if self.order in ["stst", "sstt"]:
|
717 |
+
# x = self._st_cross_attn(
|
718 |
+
# x, order=self.order, no_temporal_attn=no_temporal_attn
|
719 |
+
# )
|
720 |
+
# elif self.order == "st_parallel":
|
721 |
+
# x = self._st_cross_attn_parallel(
|
722 |
+
# x, order=self.order, no_temporal_attn=no_temporal_attn
|
723 |
+
# )
|
724 |
+
# else:
|
725 |
+
# raise NotImplementedError
|
726 |
+
|
727 |
+
# x = self.ff(self.norm3(x)) + x
|
728 |
+
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
729 |
+
|
730 |
+
# return x
|
731 |
+
|
732 |
+
# ##############################################################################################################################################
|
733 |
+
|
734 |
+
# def _st_cross_attn(
|
735 |
+
# self, x, context=None, temporal_context=None, order="stst", mask=None
|
736 |
+
# ): # no_temporal_attn=None,
|
737 |
+
# b, c, t, h, w = x.shape
|
738 |
+
# # if context is not None:
|
739 |
+
# # print(f'[_st_cross_attn input] x={x.shape}, context={context.shape}')
|
740 |
+
# # else:
|
741 |
+
# # print(f'[_st_cross_attn input] x={x.shape}')
|
742 |
+
|
743 |
+
# if order == "stst":
|
744 |
+
# # spatial self attention
|
745 |
+
# x = rearrange(x, "b c t h w -> (b t) (h w) c")
|
746 |
+
# # print(f'before attn1,x={x.shape}')
|
747 |
+
|
748 |
+
# x = self.attn1(self.norm1(x)) + x
|
749 |
+
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
750 |
+
|
751 |
+
# # temporal self attention
|
752 |
+
# # if (no_temporal_attn is None) or (not no_temporal_attn):
|
753 |
+
# if self.local_spatial_temporal_attn:
|
754 |
+
# x = local_spatial_temporal_attn_reshape(x, window_size=self.window_size)
|
755 |
+
# else:
|
756 |
+
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
757 |
+
# x = self.attn1_tmp(self.norm4(x), mask=mask) + x
|
758 |
+
|
759 |
+
# if self.local_spatial_temporal_attn:
|
760 |
+
# x = local_spatial_temporal_attn_reshape_back(
|
761 |
+
# x, window_size=self.window_size, b=b, h=h, w=w, t=t
|
762 |
+
# )
|
763 |
+
# else:
|
764 |
+
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
765 |
+
|
766 |
+
# # spatial cross attention
|
767 |
+
# x = rearrange(x, "b c t h w -> (b t) (h w) c")
|
768 |
+
# # print(f'before attn2, x={x.shape}')
|
769 |
+
# # if context is not None:
|
770 |
+
# # print(f'[before attn2] context={context.shape}')
|
771 |
+
# if context is not None:
|
772 |
+
# if self.random_t:
|
773 |
+
# context_ = []
|
774 |
+
# for i in range(context.shape[0]):
|
775 |
+
# context_.append(context[i].unsqueeze(0).repeat(t, 1, 1))
|
776 |
+
# context_ = torch.cat(context_, dim=0)
|
777 |
+
# else:
|
778 |
+
# if context.shape[0] == t: # img captions no_temporal_attn or
|
779 |
+
# context_ = context
|
780 |
+
# else:
|
781 |
+
# # repeat conditions with t times
|
782 |
+
# context_ = []
|
783 |
+
# for i in range(context.shape[0]):
|
784 |
+
# context_.append(context[i].unsqueeze(0).repeat(t, 1, 1))
|
785 |
+
# context_ = torch.cat(context_, dim=0)
|
786 |
+
# else:
|
787 |
+
# context_ = None
|
788 |
+
|
789 |
+
# # if context_ is not None:
|
790 |
+
# # print(f'[before attn2] x={x.shape}, context_={context_.shape}')
|
791 |
+
# # else:
|
792 |
+
# # print(f'[before attn2] x={x.shape}')
|
793 |
+
|
794 |
+
# x = self.attn2(self.norm2(x), context=context_) + x
|
795 |
+
|
796 |
+
# # temporal cross attention
|
797 |
+
# # if (no_temporal_attn is None) or (not no_temporal_attn):
|
798 |
+
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
799 |
+
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
800 |
+
# if self.temporal_crossattn_type == "crossattn":
|
801 |
+
# # tmporal cross attention
|
802 |
+
# if temporal_context is not None:
|
803 |
+
# # print(f'STATTN context={context.shape}, temporal_context={temporal_context.shape}')
|
804 |
+
# temporal_context = torch.cat(
|
805 |
+
# [context, temporal_context], dim=1
|
806 |
+
# ) # blc
|
807 |
+
# # print(f'STATTN after concat temporal_context={temporal_context.shape}')
|
808 |
+
# temporal_context = temporal_context.repeat(h * w, 1, 1)
|
809 |
+
# # print(f'after repeat temporal_context={temporal_context.shape}')
|
810 |
+
# else:
|
811 |
+
# temporal_context = context[0:1, ...].repeat(h * w, 1, 1)
|
812 |
+
# # print(f'STATTN after concat x={x.shape}')
|
813 |
+
# x = (
|
814 |
+
# self.attn2_tmp(self.norm5(x), context=temporal_context, mask=mask)
|
815 |
+
# + x
|
816 |
+
# )
|
817 |
+
# elif self.temporal_crossattn_type == "selfattn":
|
818 |
+
# # temporal self attention
|
819 |
+
# x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
|
820 |
+
# elif self.temporal_crossattn_type == "skip":
|
821 |
+
# # no temporal cross and self attention
|
822 |
+
# pass
|
823 |
+
# else:
|
824 |
+
# raise NotImplementedError
|
825 |
+
|
826 |
+
# elif order == "sstt":
|
827 |
+
# # spatial self attention
|
828 |
+
# x = rearrange(x, "b c t h w -> (b t) (h w) c")
|
829 |
+
# x = self.attn1(self.norm1(x)) + x
|
830 |
+
|
831 |
+
# # spatial cross attention
|
832 |
+
# context_ = context.repeat(t, 1, 1) if context is not None else None
|
833 |
+
# x = self.attn2(self.norm2(x), context=context_) + x
|
834 |
+
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
835 |
+
|
836 |
+
# if (no_temporal_attn is None) or (not no_temporal_attn):
|
837 |
+
# if self.temporalcrossfirst:
|
838 |
+
# # temporal cross attention
|
839 |
+
# if self.temporal_crossattn_type == "crossattn":
|
840 |
+
# # if temporal_context is not None:
|
841 |
+
# temporal_context = context.repeat(h * w, 1, 1)
|
842 |
+
# x = (
|
843 |
+
# self.attn2_tmp(
|
844 |
+
# self.norm5(x), context=temporal_context, mask=mask
|
845 |
+
# )
|
846 |
+
# + x
|
847 |
+
# )
|
848 |
+
# elif self.temporal_crossattn_type == "selfattn":
|
849 |
+
# x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
|
850 |
+
# elif self.temporal_crossattn_type == "skip":
|
851 |
+
# pass
|
852 |
+
# else:
|
853 |
+
# raise NotImplementedError
|
854 |
+
# # temporal self attention
|
855 |
+
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
856 |
+
# x = self.attn1_tmp(self.norm4(x), mask=mask) + x
|
857 |
+
# else:
|
858 |
+
# # temporal self attention
|
859 |
+
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
860 |
+
# x = self.attn1_tmp(self.norm4(x), mask=mask) + x
|
861 |
+
# # temporal cross attention
|
862 |
+
# if self.temporal_crossattn_type == "crossattn":
|
863 |
+
# if temporal_context is not None:
|
864 |
+
# temporal_context = context.repeat(h * w, 1, 1)
|
865 |
+
# x = (
|
866 |
+
# self.attn2_tmp(
|
867 |
+
# self.norm5(x), context=temporal_context, mask=mask
|
868 |
+
# )
|
869 |
+
# + x
|
870 |
+
# )
|
871 |
+
# elif self.temporal_crossattn_type == "selfattn":
|
872 |
+
# x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
|
873 |
+
# elif self.temporal_crossattn_type == "skip":
|
874 |
+
# pass
|
875 |
+
# else:
|
876 |
+
# raise NotImplementedError
|
877 |
+
# else:
|
878 |
+
# raise NotImplementedError
|
879 |
+
|
880 |
+
# return x
|
881 |
+
|
882 |
+
# def _st_cross_attn_parallel(
|
883 |
+
# self, x, context=None, temporal_context=None, order="sst", no_temporal_attn=None
|
884 |
+
# ):
|
885 |
+
# """order: x -> Self Attn -> Cross Attn -> attn_s
|
886 |
+
# x -> Temp Self Attn -> attn_t
|
887 |
+
# x' = x + attn_s + attn_t
|
888 |
+
# """
|
889 |
+
# if no_temporal_attn is not None:
|
890 |
+
# raise NotImplementedError
|
891 |
+
|
892 |
+
# B, C, T, H, W = x.shape
|
893 |
+
# # spatial self attention
|
894 |
+
# h = x
|
895 |
+
# h = rearrange(h, "b c t h w -> (b t) (h w) c")
|
896 |
+
# h = self.attn1(self.norm1(h)) + h
|
897 |
+
# # spatial cross
|
898 |
+
# # context_ = context.repeat(T, 1, 1) if context is not None else None
|
899 |
+
# if context is not None:
|
900 |
+
# context_ = []
|
901 |
+
# for i in range(context.shape[0]):
|
902 |
+
# context_.append(context[i].unsqueeze(0).repeat(T, 1, 1))
|
903 |
+
# context_ = torch.cat(context_, dim=0)
|
904 |
+
# else:
|
905 |
+
# context_ = None
|
906 |
+
|
907 |
+
# h = self.attn2(self.norm2(h), context=context_) + h
|
908 |
+
# h = rearrange(h, "(b t) (h w) c -> b c t h w", b=B, h=H)
|
909 |
+
|
910 |
+
# # temporal self
|
911 |
+
# h2 = x
|
912 |
+
# h2 = rearrange(h2, "b c t h w -> (b h w) t c")
|
913 |
+
# h2 = self.attn1_tmp(self.norm4(h2)) # + h2
|
914 |
+
# h2 = rearrange(h2, "(b h w) t c -> b c t h w", b=B, h=H, w=W)
|
915 |
+
# out = h + h2
|
916 |
+
# return rearrange(out, "b c t h w -> (b h w) t c")
|
917 |
+
|
918 |
+
##############################################################################################################################################
|
919 |
+
|
920 |
+
|
921 |
+
def spatial_attn_reshape(x):
|
922 |
+
return rearrange(x, "b c t h w -> (b t) (h w) c")
|
923 |
+
|
924 |
+
|
925 |
+
def spatial_attn_reshape_back(x, b, h):
|
926 |
+
return rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
927 |
+
|
928 |
+
|
929 |
+
def temporal_attn_reshape(x):
|
930 |
+
return rearrange(x, "b c t h w -> (b h w) t c")
|
931 |
+
|
932 |
+
|
933 |
+
def temporal_attn_reshape_back(x, b, h, w):
|
934 |
+
return rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w)
|
935 |
+
|
936 |
+
|
937 |
+
def local_spatial_temporal_attn_reshape(x, window_size):
|
938 |
+
B, C, T, H, W = x.shape
|
939 |
+
NH = H // window_size
|
940 |
+
NW = W // window_size
|
941 |
+
# x = x.view(B, C, T, NH, window_size, NW, window_size)
|
942 |
+
# tokens = x.permute(0, 1, 2, 3, 5, 4, 6).contiguous()
|
943 |
+
# tokens = tokens.view(-1, window_size, window_size, C)
|
944 |
+
x = rearrange(
|
945 |
+
x,
|
946 |
+
"b c t (nh wh) (nw ww) -> b c t nh wh nw ww",
|
947 |
+
nh=NH,
|
948 |
+
nw=NW,
|
949 |
+
wh=window_size,
|
950 |
+
ww=window_size,
|
951 |
+
).contiguous() # # B, C, T, NH, NW, window_size, window_size
|
952 |
+
x = rearrange(
|
953 |
+
x, "b c t nh wh nw ww -> (b nh nw) (t wh ww) c"
|
954 |
+
) # (B, NH, NW) (T, window_size, window_size) C
|
955 |
+
return x
|
956 |
+
|
957 |
+
|
958 |
+
def local_spatial_temporal_attn_reshape_back(x, window_size, b, h, w, t):
|
959 |
+
B, L, C = x.shape
|
960 |
+
NH = h // window_size
|
961 |
+
NW = w // window_size
|
962 |
+
x = rearrange(
|
963 |
+
x,
|
964 |
+
"(b nh nw) (t wh ww) c -> b c t nh wh nw ww",
|
965 |
+
b=b,
|
966 |
+
nh=NH,
|
967 |
+
nw=NW,
|
968 |
+
t=t,
|
969 |
+
wh=window_size,
|
970 |
+
ww=window_size,
|
971 |
+
)
|
972 |
+
x = rearrange(x, "b c t nh wh nw ww -> b c t (nh wh) (nw ww)")
|
973 |
+
return x
|
974 |
+
|
975 |
+
|
976 |
+
class SpatialTemporalTransformer(nn.Module):
|
977 |
+
"""
|
978 |
+
Transformer block for video-like data (5D tensor).
|
979 |
+
First, project the input (aka embedding) with NO reshape.
|
980 |
+
Then apply standard transformer action.
|
981 |
+
The 5D -> 3D reshape operation will be done in the specific attention module.
|
982 |
+
"""
|
983 |
+
|
984 |
+
def __init__(
|
985 |
+
self,
|
986 |
+
in_channels,
|
987 |
+
n_heads,
|
988 |
+
d_head,
|
989 |
+
depth=1,
|
990 |
+
dropout=0.0,
|
991 |
+
context_dim=None,
|
992 |
+
# Temporal stuff
|
993 |
+
temporal_length=None,
|
994 |
+
image_length=None,
|
995 |
+
use_relative_position=True,
|
996 |
+
img_video_joint_train=False,
|
997 |
+
cross_attn_on_tempoal=False,
|
998 |
+
temporal_crossattn_type="selfattn",
|
999 |
+
order="stst",
|
1000 |
+
temporalcrossfirst=False,
|
1001 |
+
split_stcontext=False,
|
1002 |
+
temporal_context_dim=None,
|
1003 |
+
**kwargs,
|
1004 |
+
):
|
1005 |
+
super().__init__()
|
1006 |
+
|
1007 |
+
self.in_channels = in_channels
|
1008 |
+
inner_dim = n_heads * d_head
|
1009 |
+
|
1010 |
+
self.norm = Normalize(in_channels)
|
1011 |
+
self.proj_in = nn.Conv3d(
|
1012 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
self.transformer_blocks = nn.ModuleList(
|
1016 |
+
[
|
1017 |
+
BasicTransformerBlockST(
|
1018 |
+
inner_dim,
|
1019 |
+
n_heads,
|
1020 |
+
d_head,
|
1021 |
+
dropout=dropout,
|
1022 |
+
# cross attn
|
1023 |
+
context_dim=context_dim,
|
1024 |
+
# temporal attn
|
1025 |
+
temporal_length=temporal_length,
|
1026 |
+
image_length=image_length,
|
1027 |
+
use_relative_position=use_relative_position,
|
1028 |
+
img_video_joint_train=img_video_joint_train,
|
1029 |
+
temporal_crossattn_type=temporal_crossattn_type,
|
1030 |
+
order=order,
|
1031 |
+
temporalcrossfirst=temporalcrossfirst,
|
1032 |
+
split_stcontext=split_stcontext,
|
1033 |
+
temporal_context_dim=temporal_context_dim,
|
1034 |
+
**kwargs,
|
1035 |
+
)
|
1036 |
+
for d in range(depth)
|
1037 |
+
]
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
self.proj_out = zero_module(
|
1041 |
+
nn.Conv3d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
def forward(self, x, context=None, temporal_context=None, **kwargs):
|
1045 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
1046 |
+
assert x.dim() == 5, f"x shape = {x.shape}"
|
1047 |
+
b, c, t, h, w = x.shape
|
1048 |
+
x_in = x
|
1049 |
+
|
1050 |
+
x = self.norm(x)
|
1051 |
+
x = self.proj_in(x)
|
1052 |
+
|
1053 |
+
for block in self.transformer_blocks:
|
1054 |
+
x = block(x, context=context, temporal_context=temporal_context, **kwargs)
|
1055 |
+
|
1056 |
+
x = self.proj_out(x)
|
1057 |
+
return x + x_in
|
1058 |
+
|
1059 |
+
|
1060 |
+
# ---------------------------------------------------------------------------------------------------
|
1061 |
+
|
1062 |
+
|
1063 |
+
class STAttentionBlock2(nn.Module):
|
1064 |
+
def __init__(
|
1065 |
+
self,
|
1066 |
+
channels,
|
1067 |
+
num_heads=1,
|
1068 |
+
num_head_channels=-1,
|
1069 |
+
use_checkpoint=False, # not used, only used in ResBlock
|
1070 |
+
use_new_attention_order=False, # QKVAttention or QKVAttentionLegacy
|
1071 |
+
temporal_length=16, # used in relative positional representation.
|
1072 |
+
image_length=8, # used for image-video joint training.
|
1073 |
+
use_relative_position=False, # whether use relative positional representation in temporal attention.
|
1074 |
+
img_video_joint_train=False,
|
1075 |
+
# norm_type="groupnorm",
|
1076 |
+
attn_norm_type="group",
|
1077 |
+
use_tempoal_causal_attn=False,
|
1078 |
+
):
|
1079 |
+
"""
|
1080 |
+
version 1: guided_diffusion implemented version
|
1081 |
+
version 2: remove args input argument
|
1082 |
+
"""
|
1083 |
+
super().__init__()
|
1084 |
+
|
1085 |
+
if num_head_channels == -1:
|
1086 |
+
self.num_heads = num_heads
|
1087 |
+
else:
|
1088 |
+
assert (
|
1089 |
+
channels % num_head_channels == 0
|
1090 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
1091 |
+
self.num_heads = channels // num_head_channels
|
1092 |
+
self.use_checkpoint = use_checkpoint
|
1093 |
+
|
1094 |
+
self.temporal_length = temporal_length
|
1095 |
+
self.image_length = image_length
|
1096 |
+
self.use_relative_position = use_relative_position
|
1097 |
+
self.img_video_joint_train = img_video_joint_train
|
1098 |
+
self.attn_norm_type = attn_norm_type
|
1099 |
+
assert self.attn_norm_type in ["group", "no_norm"]
|
1100 |
+
self.use_tempoal_causal_attn = use_tempoal_causal_attn
|
1101 |
+
|
1102 |
+
if self.attn_norm_type == "group":
|
1103 |
+
self.norm_s = normalization(channels)
|
1104 |
+
self.norm_t = normalization(channels)
|
1105 |
+
|
1106 |
+
self.qkv_s = conv_nd(1, channels, channels * 3, 1)
|
1107 |
+
self.qkv_t = conv_nd(1, channels, channels * 3, 1)
|
1108 |
+
|
1109 |
+
if self.img_video_joint_train:
|
1110 |
+
mask = th.ones(
|
1111 |
+
[1, temporal_length + image_length, temporal_length + image_length]
|
1112 |
+
)
|
1113 |
+
mask[:, temporal_length:, :] = 0
|
1114 |
+
mask[:, :, temporal_length:] = 0
|
1115 |
+
self.register_buffer("mask", mask)
|
1116 |
+
else:
|
1117 |
+
self.mask = None
|
1118 |
+
|
1119 |
+
if use_new_attention_order:
|
1120 |
+
# split qkv before split heads
|
1121 |
+
self.attention_s = QKVAttention(self.num_heads)
|
1122 |
+
self.attention_t = QKVAttention(self.num_heads)
|
1123 |
+
else:
|
1124 |
+
# split heads before split qkv
|
1125 |
+
self.attention_s = QKVAttentionLegacy(self.num_heads)
|
1126 |
+
self.attention_t = QKVAttentionLegacy(self.num_heads)
|
1127 |
+
|
1128 |
+
if use_relative_position:
|
1129 |
+
self.relative_position_k = RelativePosition(
|
1130 |
+
num_units=channels // self.num_heads,
|
1131 |
+
max_relative_position=temporal_length,
|
1132 |
+
)
|
1133 |
+
self.relative_position_v = RelativePosition(
|
1134 |
+
num_units=channels // self.num_heads,
|
1135 |
+
max_relative_position=temporal_length,
|
1136 |
+
)
|
1137 |
+
|
1138 |
+
self.proj_out_s = zero_module(
|
1139 |
+
conv_nd(1, channels, channels, 1)
|
1140 |
+
) # conv_dim, in_channels, out_channels, kernel_size
|
1141 |
+
self.proj_out_t = zero_module(
|
1142 |
+
conv_nd(1, channels, channels, 1)
|
1143 |
+
) # conv_dim, in_channels, out_channels, kernel_size
|
1144 |
+
|
1145 |
+
def forward(self, x, mask=None):
|
1146 |
+
b, c, t, h, w = x.shape
|
1147 |
+
|
1148 |
+
# spatial
|
1149 |
+
out = rearrange(x, "b c t h w -> (b t) c (h w)")
|
1150 |
+
if self.attn_norm_type == "no_norm":
|
1151 |
+
qkv = self.qkv_s(out)
|
1152 |
+
else:
|
1153 |
+
qkv = self.qkv_s(self.norm_s(out))
|
1154 |
+
out = self.attention_s(qkv)
|
1155 |
+
out = self.proj_out_s(out)
|
1156 |
+
out = rearrange(out, "(b t) c (h w) -> b c t h w", b=b, h=h)
|
1157 |
+
x += out
|
1158 |
+
|
1159 |
+
# temporal
|
1160 |
+
out = rearrange(x, "b c t h w -> (b h w) c t")
|
1161 |
+
if self.attn_norm_type == "no_norm":
|
1162 |
+
qkv = self.qkv_t(out)
|
1163 |
+
else:
|
1164 |
+
qkv = self.qkv_t(self.norm_t(out))
|
1165 |
+
|
1166 |
+
# relative positional embedding
|
1167 |
+
if self.use_relative_position:
|
1168 |
+
len_q = qkv.size()[-1]
|
1169 |
+
len_k, len_v = len_q, len_q
|
1170 |
+
k_rp = self.relative_position_k(len_q, len_k)
|
1171 |
+
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
1172 |
+
out = self.attention_t(
|
1173 |
+
qkv,
|
1174 |
+
rp=(k_rp, v_rp),
|
1175 |
+
mask=self.mask,
|
1176 |
+
use_tempoal_causal_attn=self.use_tempoal_causal_attn,
|
1177 |
+
)
|
1178 |
+
else:
|
1179 |
+
out = self.attention_t(
|
1180 |
+
qkv,
|
1181 |
+
rp=None,
|
1182 |
+
mask=self.mask,
|
1183 |
+
use_tempoal_causal_attn=self.use_tempoal_causal_attn,
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
out = self.proj_out_t(out)
|
1187 |
+
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
1188 |
+
|
1189 |
+
return x + out
|
1190 |
+
|
1191 |
+
|
1192 |
+
# ---------------------------------------------------------------------------------------------------------------
|
1193 |
+
|
1194 |
+
|
1195 |
+
class QKVAttentionLegacy(nn.Module):
|
1196 |
+
"""
|
1197 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
1198 |
+
"""
|
1199 |
+
|
1200 |
+
def __init__(self, n_heads):
|
1201 |
+
super().__init__()
|
1202 |
+
self.n_heads = n_heads
|
1203 |
+
|
1204 |
+
def forward(self, qkv, rp=None, mask=None):
|
1205 |
+
"""
|
1206 |
+
Apply QKV attention.
|
1207 |
+
|
1208 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
1209 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
1210 |
+
"""
|
1211 |
+
if rp is not None or mask is not None:
|
1212 |
+
raise NotImplementedError
|
1213 |
+
bs, width, length = qkv.shape
|
1214 |
+
assert width % (3 * self.n_heads) == 0
|
1215 |
+
ch = width // (3 * self.n_heads)
|
1216 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
1217 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
1218 |
+
weight = th.einsum(
|
1219 |
+
"bct,bcs->bts", q * scale, k * scale
|
1220 |
+
) # More stable with f16 than dividing afterwards
|
1221 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
1222 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
1223 |
+
return a.reshape(bs, -1, length)
|
1224 |
+
|
1225 |
+
@staticmethod
|
1226 |
+
def count_flops(model, _x, y):
|
1227 |
+
return count_flops_attn(model, _x, y)
|
1228 |
+
|
1229 |
+
|
1230 |
+
# ---------------------------------------------------------------------------------------------------------------
|
1231 |
+
|
1232 |
+
|
1233 |
+
class QKVAttention(nn.Module):
|
1234 |
+
"""
|
1235 |
+
A module which performs QKV attention and splits in a different order.
|
1236 |
+
"""
|
1237 |
+
|
1238 |
+
def __init__(self, n_heads):
|
1239 |
+
super().__init__()
|
1240 |
+
self.n_heads = n_heads
|
1241 |
+
|
1242 |
+
def forward(self, qkv, rp=None, mask=None, use_tempoal_causal_attn=False):
|
1243 |
+
"""
|
1244 |
+
Apply QKV attention.
|
1245 |
+
|
1246 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
1247 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
1248 |
+
"""
|
1249 |
+
bs, width, length = qkv.shape
|
1250 |
+
assert width % (3 * self.n_heads) == 0
|
1251 |
+
ch = width // (3 * self.n_heads)
|
1252 |
+
# print('qkv', qkv.size())
|
1253 |
+
qkv=qkv.contiguous()
|
1254 |
+
q, k, v = qkv.chunk(3, dim=1)
|
1255 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
1256 |
+
# print('bs, self.n_heads, ch, length', bs, self.n_heads, ch, length)
|
1257 |
+
|
1258 |
+
weight = th.einsum(
|
1259 |
+
"bct,bcs->bts",
|
1260 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
1261 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
1262 |
+
) # More stable with f16 than dividing afterwards
|
1263 |
+
# weight:[b,t,s] b=bs*n_heads*T
|
1264 |
+
|
1265 |
+
if rp is not None:
|
1266 |
+
k_rp, v_rp = rp # [length, length, head_dim] [8, 8, 48]
|
1267 |
+
weight2 = th.einsum(
|
1268 |
+
"bct,tsc->bst", (q * scale).view(bs * self.n_heads, ch, length), k_rp
|
1269 |
+
)
|
1270 |
+
weight += weight2
|
1271 |
+
|
1272 |
+
if use_tempoal_causal_attn:
|
1273 |
+
# weight = torch.tril(weight)
|
1274 |
+
assert mask is None, f"Not implemented for merging two masks!"
|
1275 |
+
mask = torch.tril(torch.ones(weight.shape))
|
1276 |
+
else:
|
1277 |
+
if mask is not None: # only keep upper-left matrix
|
1278 |
+
# process mask
|
1279 |
+
c, t, _ = weight.shape
|
1280 |
+
|
1281 |
+
if mask.shape[-1] > t:
|
1282 |
+
mask = mask[:, :t, :t]
|
1283 |
+
elif mask.shape[-1] < t: # pad ones
|
1284 |
+
mask_ = th.zeros([c, t, t]).to(mask.device)
|
1285 |
+
t_ = mask.shape[-1]
|
1286 |
+
mask_[:, :t_, :t_] = mask
|
1287 |
+
mask = mask_
|
1288 |
+
else:
|
1289 |
+
assert (
|
1290 |
+
weight.shape[-1] == mask.shape[-1]
|
1291 |
+
), f"weight={weight.shape}, mask={mask.shape}"
|
1292 |
+
|
1293 |
+
if mask is not None:
|
1294 |
+
INF = -1e8 # float('-inf')
|
1295 |
+
weight = weight.float().masked_fill(mask == 0, INF)
|
1296 |
+
|
1297 |
+
weight = F.softmax(weight.float(), dim=-1).type(
|
1298 |
+
weight.dtype
|
1299 |
+
) # [256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
|
1300 |
+
# weight = F.softmax(weight, dim=-1)#[256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
|
1301 |
+
a = th.einsum(
|
1302 |
+
"bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)
|
1303 |
+
) # [256, 48, 8] [b, head_dim, t]
|
1304 |
+
|
1305 |
+
if rp is not None:
|
1306 |
+
a2 = th.einsum("bts,tsc->btc", weight, v_rp).transpose(1, 2) # btc->bct
|
1307 |
+
a += a2
|
1308 |
+
|
1309 |
+
return a.reshape(bs, -1, length)
|
1310 |
+
|
1311 |
+
|
1312 |
+
# ---------------------------------------------------------------------------------------------------------------
|
1313 |
+
|
1314 |
+
# ---------------------------------------------------------------------------------------------------------------
|
base_encoder.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class BaseVisionTower(nn.Module):
|
8 |
+
def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.is_loaded = False
|
12 |
+
|
13 |
+
self.vision_tower_name = vision_tower_name
|
14 |
+
self.delay_load = delay_load
|
15 |
+
|
16 |
+
@abstractmethod
|
17 |
+
def load_model(self, device_map=None):
|
18 |
+
raise NotImplementedError("Subclasses must implement load_model")
|
19 |
+
|
20 |
+
@abstractmethod
|
21 |
+
def _forward(self, images):
|
22 |
+
raise NotImplementedError("Subclasses must implement forward")
|
23 |
+
|
24 |
+
def forward(self, images):
|
25 |
+
if type(images) is list:
|
26 |
+
image_features = [self._forward(image.unsqueeze(0)) for image in images]
|
27 |
+
else:
|
28 |
+
image_features = self._forward(images)
|
29 |
+
|
30 |
+
return image_features
|
31 |
+
|
32 |
+
@property
|
33 |
+
def dummy_feature(self):
|
34 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
35 |
+
|
36 |
+
@property
|
37 |
+
def dtype(self):
|
38 |
+
# Dynamically infer the dtype from the first parameter, if not explicitly specified
|
39 |
+
if hasattr(self.vision_tower, "dtype"):
|
40 |
+
return self.vision_tower.dtype
|
41 |
+
else:
|
42 |
+
params = list(self.vision_tower.parameters())
|
43 |
+
return (
|
44 |
+
params[0].dtype if len(params) > 0 else torch.float32
|
45 |
+
) # Default to torch.float32 if no parameters
|
46 |
+
|
47 |
+
@property
|
48 |
+
def device(self):
|
49 |
+
# Dynamically infer the device from the first parameter, if not explicitly specified
|
50 |
+
if hasattr(self.vision_tower, "device"):
|
51 |
+
return self.vision_tower.device
|
52 |
+
else:
|
53 |
+
params = list(self.vision_tower.parameters())
|
54 |
+
return (
|
55 |
+
params[0].device if len(params) > 0 else torch.device("cpu")
|
56 |
+
) # Default to CPU if no parameters
|
57 |
+
@property
|
58 |
+
def config(self):
|
59 |
+
if self.is_loaded:
|
60 |
+
return self.vision_tower.config
|
61 |
+
else:
|
62 |
+
return self.cfg_only
|
63 |
+
@property
|
64 |
+
def hidden_size(self):
|
65 |
+
try:
|
66 |
+
return self.config.hidden_size
|
67 |
+
except:
|
68 |
+
return self._hidden_size
|
builder.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .siglip_encoder import SigLipVisionTower
|
3 |
+
|
4 |
+
|
5 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
6 |
+
|
7 |
+
vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
|
8 |
+
is_absolute_path_exists = os.path.exists(vision_tower)
|
9 |
+
use_s2 = getattr(vision_tower_cfg, "s2", False)
|
10 |
+
|
11 |
+
#print(getattr(vision_tower_cfg, "vision_tower", None))
|
12 |
+
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
13 |
+
if getattr(vision_tower_cfg, "vision_tower", None) and "siglip" in getattr(vision_tower_cfg, "vision_tower", None).lower():
|
14 |
+
#print('*************\n')
|
15 |
+
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
16 |
+
|
17 |
+
raise ValueError(f"Unknown vision tower: {vision_tower}")
|
llava_arch.py
CHANGED
@@ -14,25 +14,48 @@
|
|
14 |
|
15 |
|
16 |
from abc import ABC, abstractmethod
|
17 |
-
|
|
|
18 |
import math
|
19 |
import re
|
20 |
import time
|
21 |
import torch
|
22 |
import torch.nn as nn
|
23 |
import torch.nn.functional as F
|
24 |
-
|
25 |
-
|
26 |
-
from .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
from transformers import AutoTokenizer
|
28 |
|
29 |
-
from
|
30 |
|
31 |
-
from
|
32 |
-
from
|
33 |
import random
|
34 |
from .sae import SiglipAE
|
35 |
-
from .WindowTimeToTokenAttention import WindowTimeToTokenAttention
|
36 |
import numpy as np
|
37 |
import torch.nn.functional as F
|
38 |
import pdb
|
@@ -281,15 +304,13 @@ class LlavaMetaForCausalLM(ABC):
|
|
281 |
return expanded_x
|
282 |
|
283 |
def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None):
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
#################################################################################
|
291 |
# Define the maximum batch size (1024 frames)
|
292 |
-
max_batch_size =
|
293 |
num_frames = videos_or_images.shape[0]
|
294 |
# Initialize a list to store the features from each batch
|
295 |
videos_or_images_features = []
|
@@ -312,47 +333,49 @@ class LlavaMetaForCausalLM(ABC):
|
|
312 |
else:
|
313 |
videos_or_images_features = self.get_model().get_vision_tower()(videos_or_images)
|
314 |
|
315 |
-
per_videos_or_images_features = torch.split(videos_or_images_features, split_sizes, dim=0)
|
316 |
all_videos_or_images_features = []
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
for idx, feat in enumerate(per_videos_or_images_features):
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
-
bc,ch,h,w=feat.shape
|
329 |
-
|
330 |
-
feat = feat.view(bc//4,ch,4,h,w)
|
331 |
-
if bc//4>24:
|
332 |
-
chunk_size = 24
|
333 |
-
chunks = torch.split(feat, chunk_size, dim=0)
|
334 |
-
interpolated_chunks = []
|
335 |
-
for chunk in chunks:
|
336 |
-
interpolated_chunk=self.get_model().sae(chunk).squeeze(2)
|
337 |
-
interpolated_chunks.append(interpolated_chunk)
|
338 |
-
feat = torch.cat(interpolated_chunks, dim=0)
|
339 |
-
del interpolated_chunks
|
340 |
-
del chunks
|
341 |
-
else:
|
342 |
-
feat=self.get_model().sae(feat).squeeze(2)
|
343 |
-
feat = feat.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
|
344 |
-
#print(feat.shape,end='3\n')
|
345 |
-
feat = self.get_model().mm_projector(feat)
|
346 |
-
#print(feat.shape,end='4\n')
|
347 |
-
# Post pooling
|
348 |
-
if idx in video_idx_in_batch:
|
349 |
-
#print('************************',idx,video_idx_in_batch)
|
350 |
-
feat = self.get_2dPool(feat)
|
351 |
-
all_videos_or_images_features.append(feat)
|
352 |
-
|
353 |
del per_videos_or_images_features
|
|
|
|
|
|
|
|
|
354 |
return all_videos_or_images_features
|
355 |
-
|
|
|
356 |
def interpolate(self,image_features):
|
357 |
b, num_tokens, dim = image_features.shape
|
358 |
|
@@ -383,6 +406,7 @@ class LlavaMetaForCausalLM(ABC):
|
|
383 |
return image_features
|
384 |
|
385 |
def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None,time_embedding=None):
|
|
|
386 |
vision_tower = self.get_vision_tower()
|
387 |
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
388 |
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
|
|
14 |
|
15 |
|
16 |
from abc import ABC, abstractmethod
|
17 |
+
import importlib.util
|
18 |
+
import os.path as osp
|
19 |
import math
|
20 |
import re
|
21 |
import time
|
22 |
import torch
|
23 |
import torch.nn as nn
|
24 |
import torch.nn.functional as F
|
25 |
+
|
26 |
+
try:
|
27 |
+
from .builder import build_vision_tower
|
28 |
+
from .builder import build_vision_resampler
|
29 |
+
from .builder import build_vision_projector
|
30 |
+
except ModuleNotFoundError:
|
31 |
+
spec = importlib.util.spec_from_file_location(
|
32 |
+
"builder",
|
33 |
+
osp.join(osp.dirname(__file__), "builder.py"),
|
34 |
+
)
|
35 |
+
builder = importlib.util.module_from_spec(spec)
|
36 |
+
spec.loader.exec_module(builder)
|
37 |
+
build_vision_tower = getattr(
|
38 |
+
builder,
|
39 |
+
"build_vision_tower",
|
40 |
+
)
|
41 |
+
build_vision_resampler = getattr(
|
42 |
+
builder,
|
43 |
+
"build_vision_resampler",
|
44 |
+
)
|
45 |
+
build_vision_projector = getattr(
|
46 |
+
builder,
|
47 |
+
"build_vision_projector",
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
from transformers import AutoTokenizer
|
52 |
|
53 |
+
from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
54 |
|
55 |
+
from .mm_utils import get_anyres_image_grid_shape
|
56 |
+
from .utils import rank0_print
|
57 |
import random
|
58 |
from .sae import SiglipAE
|
|
|
59 |
import numpy as np
|
60 |
import torch.nn.functional as F
|
61 |
import pdb
|
|
|
304 |
return expanded_x
|
305 |
|
306 |
def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None):
|
307 |
+
pdb.set_trace()
|
308 |
+
if self.config.enable_chunk_prefill:
|
309 |
+
chunk_size_for_vision_tower = self.config.prefill_config['chunk_size_for_vision_tower']
|
310 |
+
else:
|
311 |
+
chunk_size_for_vision_tower = 100000
|
|
|
|
|
312 |
# Define the maximum batch size (1024 frames)
|
313 |
+
max_batch_size = chunk_size_for_vision_tower
|
314 |
num_frames = videos_or_images.shape[0]
|
315 |
# Initialize a list to store the features from each batch
|
316 |
videos_or_images_features = []
|
|
|
333 |
else:
|
334 |
videos_or_images_features = self.get_model().get_vision_tower()(videos_or_images)
|
335 |
|
336 |
+
per_videos_or_images_features = torch.split(videos_or_images_features, split_sizes, dim=0)
|
337 |
all_videos_or_images_features = []
|
338 |
+
|
339 |
+
peak_memory_allocated = torch.cuda.max_memory_allocated()
|
340 |
+
print(f"vision encoder 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
341 |
+
|
342 |
+
del videos_or_images_features
|
343 |
+
torch.cuda.empty_cache()
|
344 |
+
|
345 |
+
chunk_size = chunk_size_for_vision_tower
|
346 |
+
all_feat_list = []
|
347 |
for idx, feat in enumerate(per_videos_or_images_features):
|
348 |
+
for i in range(0, feat.shape[0], chunk_size):
|
349 |
+
batched_feat = feat[i:i+chunk_size]
|
350 |
+
batched_feat=self.interpolate(batched_feat) # torch.Size([187, 1152, 24, 24])
|
351 |
+
if idx in video_idx_in_batch:
|
352 |
+
batched_feat = self.add_video(batched_feat) # torch.Size([188, 1152, 24, 24])
|
353 |
+
else:
|
354 |
+
batched_feat = self.add_image(batched_feat)
|
355 |
+
|
356 |
+
bc,ch,h,w = batched_feat.shape
|
357 |
+
batched_feat = batched_feat.view(bc//4,ch,4,h,w)
|
358 |
+
|
359 |
+
batched_feat=self.get_model().sae(batched_feat).squeeze(2)
|
360 |
+
batched_feat = batched_feat.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
|
361 |
+
batched_feat = self.get_model().mm_projector(batched_feat)
|
362 |
+
|
363 |
+
|
364 |
+
batched_feat = self.get_2dPool(batched_feat)
|
365 |
+
all_feat_list.append(batched_feat)
|
366 |
+
|
367 |
+
feat = torch.cat(all_feat_list, dim=0)
|
368 |
+
peak_memory_allocated = torch.cuda.max_memory_allocated()
|
369 |
+
print(f"sae 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
370 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
del per_videos_or_images_features
|
372 |
+
del all_feat_list
|
373 |
+
torch.cuda.empty_cache()
|
374 |
+
|
375 |
+
all_videos_or_images_features.append(feat)
|
376 |
return all_videos_or_images_features
|
377 |
+
|
378 |
+
|
379 |
def interpolate(self,image_features):
|
380 |
b, num_tokens, dim = image_features.shape
|
381 |
|
|
|
406 |
return image_features
|
407 |
|
408 |
def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None,time_embedding=None):
|
409 |
+
pdb.set_trace()
|
410 |
vision_tower = self.get_vision_tower()
|
411 |
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
412 |
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
llava_qwen.py
CHANGED
@@ -21,7 +21,7 @@ import transformers
|
|
21 |
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM
|
22 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
23 |
from transformers.generation.utils import GenerateOutput
|
24 |
-
from
|
25 |
from .modeling_qwen2 import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
26 |
import pdb
|
27 |
import time
|
@@ -211,6 +211,7 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
211 |
time_token_end_indices=None,
|
212 |
block_size_chosed=None,
|
213 |
prev_blocks_num=None,
|
|
|
214 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
215 |
|
216 |
block_size = block_size_chosed
|
@@ -218,7 +219,6 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
218 |
visual_token_end_pos = visual_token_end_pos
|
219 |
visual_len = visual_token_end_pos - visual_token_start_pos
|
220 |
num_blocks = (frames_num + block_size * 4 - 1) // (block_size * 4)
|
221 |
-
# print(f'block_size: {block_size}, num_blocks: {num_blocks}')
|
222 |
|
223 |
# streaming inps
|
224 |
blocks_positions = [[(0, 0, visual_token_start_pos)]]
|
@@ -254,10 +254,10 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
254 |
suffix_embeds = full_inputs_embeds[:, visual_token_end_pos:, :]
|
255 |
num_visual_tokens = visual_embeds.size(1)
|
256 |
|
257 |
-
all_past_key_values = [[] for _ in range(len(self.model.layers))]
|
258 |
prefix_past_key_values = []
|
259 |
|
260 |
-
torch.cuda.reset_peak_memory_stats()
|
261 |
|
262 |
if prefix_embeds.size(1) > 0:
|
263 |
pkv = self.process_block(prefix_embeds, bsz=bsz, device=device)
|
@@ -288,16 +288,15 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
288 |
|
289 |
block_streaming_past_key_values_part1 = prefix_past_key_values
|
290 |
position_ids_part1 = torch.arange(0, prefix_past_key_values[0][0].size(2), dtype=torch.long, device=device)
|
291 |
-
block_streaming_past_key_values_part2 = [[] for _ in range(len(self.model.layers))]
|
292 |
position_ids_part2 = torch.tensor([], dtype=torch.long, device=device)
|
293 |
block_streaming_past_key_values_part3=None
|
294 |
position_ids_part3 = None
|
295 |
|
296 |
query_position_ids = None
|
297 |
for idx, single_block in enumerate(blocks_positions[:]):
|
298 |
-
|
299 |
-
|
300 |
-
if idx <= prev_blocks_num:
|
301 |
continue
|
302 |
|
303 |
b_start, _, _ = single_block[0]
|
@@ -312,13 +311,15 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
312 |
true_block_length = b_end - b_start
|
313 |
|
314 |
block_streaming_past_key_values_part3 = [tmp[-prev_blocks_num:] for tmp in all_past_key_values]
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
|
|
|
|
322 |
|
323 |
block_streaming_past_key_values = self.cat_history_kvs(block_streaming_past_key_values_part1, block_streaming_past_key_values_part2, block_streaming_past_key_values_part3)
|
324 |
|
@@ -337,8 +338,11 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
337 |
key_this_block, val_this_block = pkv[i]
|
338 |
key_this_block = key_this_block[:,:,length_before_chunk:,:]
|
339 |
val_this_block = val_this_block[:,:,length_before_chunk:,:]
|
340 |
-
|
341 |
-
|
|
|
|
|
|
|
342 |
|
343 |
time_keys_list = []
|
344 |
time_vals_list = []
|
@@ -371,6 +375,9 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
371 |
values = torch.cat([pkv[1].to(device=device) for pkv in layer_pkvs], dim=2)
|
372 |
merged_pkv.append((keys, values))
|
373 |
|
|
|
|
|
|
|
374 |
|
375 |
pkv = merged_pkv
|
376 |
del block_streaming_past_key_values
|
@@ -383,6 +390,8 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
383 |
# TODO: bi-decoding acceleration
|
384 |
mixed_prefill_past_key_values = pkv
|
385 |
prefill_len = visual_token_end_pos
|
|
|
|
|
386 |
|
387 |
# Process suffix
|
388 |
if suffix_embeds.size(1) > 0:
|
@@ -404,6 +413,8 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
404 |
return_dict=return_dict,
|
405 |
# blocks_positions=None,
|
406 |
)
|
|
|
|
|
407 |
del mixed_prefill_past_key_values
|
408 |
torch.cuda.empty_cache()
|
409 |
|
@@ -508,12 +519,17 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
508 |
)
|
509 |
|
510 |
if inputs_embeds is None:
|
|
|
511 |
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes, time_embedding)
|
512 |
|
513 |
-
if self.config.
|
514 |
-
|
515 |
-
|
516 |
-
|
|
|
|
|
|
|
|
|
517 |
return self.forward_streaming(
|
518 |
input_ids=input_ids,
|
519 |
attention_mask=attention_mask,
|
@@ -533,10 +549,11 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
533 |
frames_num=frames_num,
|
534 |
time_token_indices=time_token_indices,
|
535 |
time_token_end_indices=time_token_end_indices,
|
536 |
-
block_size_chosed=
|
537 |
-
prev_blocks_num=
|
|
|
538 |
)
|
539 |
-
elif
|
540 |
return self.forward_mask(
|
541 |
input_ids=input_ids,
|
542 |
attention_mask=attention_mask,
|
@@ -584,6 +601,8 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
584 |
**kwargs,
|
585 |
) -> Union[GenerateOutput, torch.LongTensor]:
|
586 |
|
|
|
|
|
587 |
position_ids = kwargs.pop("position_ids", None)
|
588 |
attention_mask = kwargs.pop("attention_mask", None)
|
589 |
|
@@ -631,6 +650,7 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
631 |
sample_fps=1,
|
632 |
max_sample_fps=4,
|
633 |
generation_config={}):
|
|
|
634 |
|
635 |
# prepare text input
|
636 |
conv = conv_templates["qwen_1_5"].copy()
|
|
|
21 |
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM
|
22 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
23 |
from transformers.generation.utils import GenerateOutput
|
24 |
+
from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
25 |
from .modeling_qwen2 import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
26 |
import pdb
|
27 |
import time
|
|
|
211 |
time_token_end_indices=None,
|
212 |
block_size_chosed=None,
|
213 |
prev_blocks_num=None,
|
214 |
+
offload: Optional[bool] = None,
|
215 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
216 |
|
217 |
block_size = block_size_chosed
|
|
|
219 |
visual_token_end_pos = visual_token_end_pos
|
220 |
visual_len = visual_token_end_pos - visual_token_start_pos
|
221 |
num_blocks = (frames_num + block_size * 4 - 1) // (block_size * 4)
|
|
|
222 |
|
223 |
# streaming inps
|
224 |
blocks_positions = [[(0, 0, visual_token_start_pos)]]
|
|
|
254 |
suffix_embeds = full_inputs_embeds[:, visual_token_end_pos:, :]
|
255 |
num_visual_tokens = visual_embeds.size(1)
|
256 |
|
257 |
+
all_past_key_values = [[] for _ in range(len(self.model.layers))]
|
258 |
prefix_past_key_values = []
|
259 |
|
260 |
+
# torch.cuda.reset_peak_memory_stats()
|
261 |
|
262 |
if prefix_embeds.size(1) > 0:
|
263 |
pkv = self.process_block(prefix_embeds, bsz=bsz, device=device)
|
|
|
288 |
|
289 |
block_streaming_past_key_values_part1 = prefix_past_key_values
|
290 |
position_ids_part1 = torch.arange(0, prefix_past_key_values[0][0].size(2), dtype=torch.long, device=device)
|
291 |
+
block_streaming_past_key_values_part2 = [[] for _ in range(len(self.model.layers))]
|
292 |
position_ids_part2 = torch.tensor([], dtype=torch.long, device=device)
|
293 |
block_streaming_past_key_values_part3=None
|
294 |
position_ids_part3 = None
|
295 |
|
296 |
query_position_ids = None
|
297 |
for idx, single_block in enumerate(blocks_positions[:]):
|
298 |
+
|
299 |
+
if idx == 0 or idx <= prev_blocks_num:
|
|
|
300 |
continue
|
301 |
|
302 |
b_start, _, _ = single_block[0]
|
|
|
311 |
true_block_length = b_end - b_start
|
312 |
|
313 |
block_streaming_past_key_values_part3 = [tmp[-prev_blocks_num:] for tmp in all_past_key_values]
|
314 |
+
|
315 |
+
if offload:
|
316 |
+
block_streaming_past_key_values_part3 = [
|
317 |
+
[
|
318 |
+
(t[0].to(device=device), t[1].to(device=device))
|
319 |
+
for t in sublist
|
320 |
+
]
|
321 |
+
for sublist in block_streaming_past_key_values_part3
|
322 |
+
]
|
323 |
|
324 |
block_streaming_past_key_values = self.cat_history_kvs(block_streaming_past_key_values_part1, block_streaming_past_key_values_part2, block_streaming_past_key_values_part3)
|
325 |
|
|
|
338 |
key_this_block, val_this_block = pkv[i]
|
339 |
key_this_block = key_this_block[:,:,length_before_chunk:,:]
|
340 |
val_this_block = val_this_block[:,:,length_before_chunk:,:]
|
341 |
+
|
342 |
+
if offload:
|
343 |
+
all_past_key_values[i].append( (key_this_block.to('cpu'), val_this_block.to('cpu')) )
|
344 |
+
else:
|
345 |
+
all_past_key_values[i].append( (key_this_block, val_this_block) )
|
346 |
|
347 |
time_keys_list = []
|
348 |
time_vals_list = []
|
|
|
375 |
values = torch.cat([pkv[1].to(device=device) for pkv in layer_pkvs], dim=2)
|
376 |
merged_pkv.append((keys, values))
|
377 |
|
378 |
+
peak_memory_allocated = torch.cuda.max_memory_allocated()
|
379 |
+
print(f"prefill 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
380 |
+
|
381 |
|
382 |
pkv = merged_pkv
|
383 |
del block_streaming_past_key_values
|
|
|
390 |
# TODO: bi-decoding acceleration
|
391 |
mixed_prefill_past_key_values = pkv
|
392 |
prefill_len = visual_token_end_pos
|
393 |
+
|
394 |
+
# torch.cuda.reset_peak_memory_stats()
|
395 |
|
396 |
# Process suffix
|
397 |
if suffix_embeds.size(1) > 0:
|
|
|
413 |
return_dict=return_dict,
|
414 |
# blocks_positions=None,
|
415 |
)
|
416 |
+
peak_memory_allocated = torch.cuda.max_memory_allocated()
|
417 |
+
print(f"decoding 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
418 |
del mixed_prefill_past_key_values
|
419 |
torch.cuda.empty_cache()
|
420 |
|
|
|
519 |
)
|
520 |
|
521 |
if inputs_embeds is None:
|
522 |
+
pdb.set_trace()
|
523 |
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes, time_embedding)
|
524 |
|
525 |
+
if self.config.enable_chunk_prefill:
|
526 |
+
|
527 |
+
prefill_mode = self.config.prefill_config['chunk_prefill_mode']
|
528 |
+
chunk_size = self.config.prefill_config['chunk_size']
|
529 |
+
step_size = self.config.prefill_config['step_size']
|
530 |
+
offload = self.config.prefill_config['offload']
|
531 |
+
|
532 |
+
if prefill_mode=='streaming':
|
533 |
return self.forward_streaming(
|
534 |
input_ids=input_ids,
|
535 |
attention_mask=attention_mask,
|
|
|
549 |
frames_num=frames_num,
|
550 |
time_token_indices=time_token_indices,
|
551 |
time_token_end_indices=time_token_end_indices,
|
552 |
+
block_size_chosed=chunk_size,
|
553 |
+
prev_blocks_num=chunk_size - step_size,
|
554 |
+
offload=offload,
|
555 |
)
|
556 |
+
elif prefill_mode=='mask':
|
557 |
return self.forward_mask(
|
558 |
input_ids=input_ids,
|
559 |
attention_mask=attention_mask,
|
|
|
601 |
**kwargs,
|
602 |
) -> Union[GenerateOutput, torch.LongTensor]:
|
603 |
|
604 |
+
|
605 |
+
|
606 |
position_ids = kwargs.pop("position_ids", None)
|
607 |
attention_mask = kwargs.pop("attention_mask", None)
|
608 |
|
|
|
650 |
sample_fps=1,
|
651 |
max_sample_fps=4,
|
652 |
generation_config={}):
|
653 |
+
pdb.set_trace()
|
654 |
|
655 |
# prepare text input
|
656 |
conv = conv_templates["qwen_1_5"].copy()
|
mm_utils.py
CHANGED
@@ -419,6 +419,7 @@ class KeywordsStoppingCriteria(StoppingCriteria):
|
|
419 |
|
420 |
from decord import VideoReader, cpu
|
421 |
def load_video(video_path, max_frames_num, fps=1, max_fps=4):
|
|
|
422 |
if isinstance(video_path, str):
|
423 |
vr = VideoReader(video_path, ctx=cpu(0))
|
424 |
else:
|
@@ -431,22 +432,25 @@ def load_video(video_path, max_frames_num, fps=1, max_fps=4):
|
|
431 |
return None, None, []
|
432 |
|
433 |
video_fps = fps
|
434 |
-
step = round(avg_fps_from_decord / video_fps) if video_fps > 0 and avg_fps_from_decord > 0 else 1
|
435 |
-
frame_idx = [i for i in range(0, total_frame_num, step)]
|
436 |
-
|
437 |
fps_upbound = max_fps
|
438 |
frames_upbound = max_frames_num
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
|
451 |
timestamps = [round(idx / avg_fps_from_decord, 1) for idx in frame_idx]
|
452 |
video = vr.get_batch(frame_idx).asnumpy()
|
|
|
419 |
|
420 |
from decord import VideoReader, cpu
|
421 |
def load_video(video_path, max_frames_num, fps=1, max_fps=4):
|
422 |
+
|
423 |
if isinstance(video_path, str):
|
424 |
vr = VideoReader(video_path, ctx=cpu(0))
|
425 |
else:
|
|
|
432 |
return None, None, []
|
433 |
|
434 |
video_fps = fps
|
|
|
|
|
|
|
435 |
fps_upbound = max_fps
|
436 |
frames_upbound = max_frames_num
|
437 |
+
if fps is not None:
|
438 |
+
step = round(avg_fps_from_decord / video_fps) if video_fps > 0 and avg_fps_from_decord > 0 else 1
|
439 |
+
frame_idx = [i for i in range(0, total_frame_num, step)]
|
440 |
+
|
441 |
+
if fps_upbound is not None:
|
442 |
+
higher_fps = min(frames_upbound//len(frame_idx), fps_upbound)
|
443 |
+
if higher_fps > video_fps:
|
444 |
+
higher_steps = round(avg_fps_from_decord / higher_fps)
|
445 |
+
frame_idx = [i for i in range(0, total_frame_num, higher_steps)]
|
446 |
+
|
447 |
+
if frames_upbound > 0:
|
448 |
+
if len(frame_idx) > frames_upbound:
|
449 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, frames_upbound, dtype=int)
|
450 |
+
frame_idx = uniform_sampled_frames.tolist()
|
451 |
+
else: # use uiform sample
|
452 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, frames_upbound, dtype=int)
|
453 |
+
frame_idx = uniform_sampled_frames.tolist()
|
454 |
|
455 |
timestamps = [round(idx / avg_fps_from_decord, 1) for idx in frame_idx]
|
456 |
video = vr.get_batch(frame_idx).asnumpy()
|
modeling_qwen2.py
CHANGED
@@ -688,7 +688,10 @@ class Qwen2SdpaAttention(Qwen2Attention):
|
|
688 |
|
689 |
try:
|
690 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, key_position_ids)
|
691 |
-
except:
|
|
|
|
|
|
|
692 |
pdb.set_trace()
|
693 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
694 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
688 |
|
689 |
try:
|
690 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, key_position_ids)
|
691 |
+
except Exception as e:
|
692 |
+
print(e)
|
693 |
+
import traceback
|
694 |
+
traceback.print_exc()
|
695 |
pdb.set_trace()
|
696 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
697 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
sae.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from .sae_utils import SamePadConv3d,Normalize,SiLU,TemporalAttention,AttnBlock3D,MultiHeadAttention3D,TemporalAttention_lin
|
4 |
+
import torch.nn as nn
|
5 |
+
import pdb
|
6 |
+
|
7 |
+
class SiglipAE(nn.Module):
|
8 |
+
def __init__(self):
|
9 |
+
super().__init__()
|
10 |
+
temporal_stride=2
|
11 |
+
norm_type = "group"
|
12 |
+
|
13 |
+
self.temporal_encoding = nn.Parameter(torch.randn((4,1152)))
|
14 |
+
#self.vision_tower=SigLipVisionTower('google/siglip-so400m-patch14-384')
|
15 |
+
self.encoder=nn.Sequential(
|
16 |
+
AttnBlock3D(1152),
|
17 |
+
TemporalAttention(1152),
|
18 |
+
|
19 |
+
SamePadConv3d(1152,1152,kernel_size=3,stride=(temporal_stride, 1, 1),padding_type="replicate"),
|
20 |
+
|
21 |
+
AttnBlock3D(1152),
|
22 |
+
TemporalAttention(1152),
|
23 |
+
|
24 |
+
SamePadConv3d(1152,1152,kernel_size=3,stride=(temporal_stride, 1, 1),padding_type="replicate"),
|
25 |
+
|
26 |
+
)
|
27 |
+
def forward(self, x):
|
28 |
+
b_,c_,t_,h_,w_=x.shape
|
29 |
+
|
30 |
+
temporal_encoding = self.temporal_encoding.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
31 |
+
temporal_encoding = temporal_encoding.expand(b_, -1, -1, h_, w_) # (B, T, C, H, W)
|
32 |
+
temporal_encoding = temporal_encoding.permute(0, 2, 1, 3, 4) # (B, C, T, H, W)
|
33 |
+
x = x + temporal_encoding
|
34 |
+
|
35 |
+
x=self.encoder(x)
|
36 |
+
return x
|
37 |
+
# image=torch.randn(1,1152,4,24,24).to('cuda')
|
38 |
+
|
39 |
+
|
40 |
+
# model = SiglipAE().to('cuda')
|
41 |
+
# model.load_state_dict(torch.load('encoder.pth'),strict=False)
|
42 |
+
|
43 |
+
# image=model(image)
|
44 |
+
|
45 |
+
# print(image.shape)
|
sae_utils.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers.activations import ACT2FN
|
5 |
+
from .attention_temporal_videoae import *
|
6 |
+
from einops import rearrange, reduce, repeat
|
7 |
+
|
8 |
+
try:
|
9 |
+
import xformers
|
10 |
+
import xformers.ops as xops
|
11 |
+
|
12 |
+
XFORMERS_IS_AVAILBLE = True
|
13 |
+
except:
|
14 |
+
XFORMERS_IS_AVAILBLE = False
|
15 |
+
|
16 |
+
def silu(x):
|
17 |
+
# swish
|
18 |
+
return x * torch.sigmoid(x)
|
19 |
+
|
20 |
+
|
21 |
+
class SiLU(nn.Module):
|
22 |
+
def __init__(self):
|
23 |
+
super(SiLU, self).__init__()
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
return silu(x)
|
27 |
+
|
28 |
+
|
29 |
+
def Normalize(in_channels, norm_type="group"):
|
30 |
+
assert norm_type in ["group", "batch",'layer']
|
31 |
+
if norm_type == "group":
|
32 |
+
return torch.nn.GroupNorm(
|
33 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
34 |
+
)
|
35 |
+
elif norm_type == "batch":
|
36 |
+
return torch.nn.SyncBatchNorm(in_channels)
|
37 |
+
elif norm_type == "layer":
|
38 |
+
return nn.LayerNorm(in_channels)
|
39 |
+
|
40 |
+
class SamePadConv3d(nn.Module):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
in_channels,
|
44 |
+
out_channels,
|
45 |
+
kernel_size,
|
46 |
+
stride=1,
|
47 |
+
bias=True,
|
48 |
+
padding_type="replicate",
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
if isinstance(kernel_size, int):
|
52 |
+
kernel_size = (kernel_size,) * 3
|
53 |
+
if isinstance(stride, int):
|
54 |
+
stride = (stride,) * 3
|
55 |
+
|
56 |
+
# assumes that the input shape is divisible by stride
|
57 |
+
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
|
58 |
+
pad_input = []
|
59 |
+
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
|
60 |
+
pad_input.append((p // 2 + p % 2, p // 2))
|
61 |
+
pad_input = sum(pad_input, tuple())
|
62 |
+
|
63 |
+
self.pad_input = pad_input
|
64 |
+
self.padding_type = padding_type
|
65 |
+
|
66 |
+
self.conv = nn.Conv3d(
|
67 |
+
in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias
|
68 |
+
)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
tp=x.dtype
|
72 |
+
x = x.float()
|
73 |
+
|
74 |
+
# 执行填充操作
|
75 |
+
x_padded = F.pad(x, self.pad_input, mode=self.padding_type)
|
76 |
+
|
77 |
+
# 如果需要,将结果转换回 BFloat16
|
78 |
+
x_padded = x_padded.to(tp)
|
79 |
+
|
80 |
+
return self.conv(x_padded)
|
81 |
+
|
82 |
+
class TemporalAttention(nn.Module):
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
channels,
|
86 |
+
num_heads=1,
|
87 |
+
num_head_channels=-1,
|
88 |
+
max_temporal_length=64,
|
89 |
+
):
|
90 |
+
"""
|
91 |
+
a clean multi-head temporal attention
|
92 |
+
"""
|
93 |
+
super().__init__()
|
94 |
+
|
95 |
+
if num_head_channels == -1:
|
96 |
+
self.num_heads = num_heads
|
97 |
+
else:
|
98 |
+
assert (
|
99 |
+
channels % num_head_channels == 0
|
100 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
101 |
+
self.num_heads = channels // num_head_channels
|
102 |
+
|
103 |
+
self.norm = Normalize(channels)
|
104 |
+
self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1))
|
105 |
+
self.attention = QKVAttention(self.num_heads)
|
106 |
+
self.relative_position_k = RelativePosition(
|
107 |
+
num_units=channels // self.num_heads,
|
108 |
+
max_relative_position=max_temporal_length,
|
109 |
+
)
|
110 |
+
self.relative_position_v = RelativePosition(
|
111 |
+
num_units=channels // self.num_heads,
|
112 |
+
max_relative_position=max_temporal_length,
|
113 |
+
)
|
114 |
+
self.proj_out = zero_module(
|
115 |
+
conv_nd(1, channels, channels, 1)
|
116 |
+
) # conv_dim, in_channels, out_channels, kernel_size
|
117 |
+
|
118 |
+
def forward(self, x, mask=None):
|
119 |
+
b, c, t, h, w = x.shape
|
120 |
+
out = rearrange(x, "b c t h w -> (b h w) c t")
|
121 |
+
# torch.Size([4608, 1152, 2])1
|
122 |
+
# torch.Size([4608, 3456, 2])2
|
123 |
+
# torch.Size([4608, 1152, 2])3
|
124 |
+
# torch.Size([4608, 1152, 2])4
|
125 |
+
#print(out.shape,end='1\n')
|
126 |
+
qkv = self.qkv(self.norm(out))
|
127 |
+
#print(qkv.shape,end='2\n')
|
128 |
+
|
129 |
+
len_q = qkv.size()[-1]
|
130 |
+
len_k, len_v = len_q, len_q
|
131 |
+
|
132 |
+
k_rp = self.relative_position_k(len_q, len_k)
|
133 |
+
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
134 |
+
out = self.attention(qkv, rp=(k_rp, v_rp))
|
135 |
+
#print(out.shape,end='3\n')
|
136 |
+
out = self.proj_out(out)
|
137 |
+
#print(out.shape,end='4\n')
|
138 |
+
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
139 |
+
|
140 |
+
return x + out
|
141 |
+
class TemporalAttention_lin(nn.Module):
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
channels,
|
145 |
+
num_heads=8,
|
146 |
+
num_head_channels=-1,
|
147 |
+
max_temporal_length=64,
|
148 |
+
):
|
149 |
+
"""
|
150 |
+
a clean multi-head temporal attention
|
151 |
+
"""
|
152 |
+
super().__init__()
|
153 |
+
|
154 |
+
if num_head_channels == -1:
|
155 |
+
self.num_heads = num_heads
|
156 |
+
else:
|
157 |
+
assert (
|
158 |
+
channels % num_head_channels == 0
|
159 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
160 |
+
self.num_heads = channels // num_head_channels
|
161 |
+
|
162 |
+
self.norm = nn.LayerNorm(channels)
|
163 |
+
#self.norm = Normalize(channels)
|
164 |
+
#self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1))
|
165 |
+
self.qkv = nn.Linear(channels, channels * 3)
|
166 |
+
self.attention = QKVAttention(self.num_heads)
|
167 |
+
self.relative_position_k = RelativePosition(
|
168 |
+
num_units=channels // self.num_heads,
|
169 |
+
max_relative_position=max_temporal_length,
|
170 |
+
)
|
171 |
+
self.relative_position_v = RelativePosition(
|
172 |
+
num_units=channels // self.num_heads,
|
173 |
+
max_relative_position=max_temporal_length,
|
174 |
+
)
|
175 |
+
self.proj_out = nn.Linear(channels, channels)
|
176 |
+
|
177 |
+
def forward(self, x, mask=None):
|
178 |
+
b, c, t, h, w = x.shape
|
179 |
+
out = rearrange(x, "b c t h w -> (b h w) t c")
|
180 |
+
# torch.Size([4608, 1152, 2])1
|
181 |
+
# torch.Size([4608, 3456, 2])2
|
182 |
+
# torch.Size([4608, 1152, 2])3
|
183 |
+
# torch.Size([4608, 1152, 2])4
|
184 |
+
#print(out.shape,end='1\n')
|
185 |
+
qkv = self.qkv(self.norm(out)).transpose(-1, -2)
|
186 |
+
#print(qkv.shape,end='2\n')
|
187 |
+
|
188 |
+
len_q = qkv.size()[-1]
|
189 |
+
len_k, len_v = len_q, len_q
|
190 |
+
|
191 |
+
k_rp = self.relative_position_k(len_q, len_k)
|
192 |
+
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
193 |
+
|
194 |
+
out = self.attention(qkv, rp=(k_rp, v_rp))
|
195 |
+
|
196 |
+
out = self.proj_out(out.transpose(-1, -2)).transpose(-1, -2)
|
197 |
+
|
198 |
+
#print(out.shape,end='4\n')
|
199 |
+
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
200 |
+
|
201 |
+
return x + out
|
202 |
+
|
203 |
+
class AttnBlock3D(nn.Module):
|
204 |
+
def __init__(self, in_channels):
|
205 |
+
super().__init__()
|
206 |
+
self.in_channels = in_channels
|
207 |
+
|
208 |
+
self.norm = Normalize(in_channels)
|
209 |
+
self.q = torch.nn.Conv3d(
|
210 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
211 |
+
)
|
212 |
+
self.k = torch.nn.Conv3d(
|
213 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
214 |
+
)
|
215 |
+
self.v = torch.nn.Conv3d(
|
216 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
217 |
+
)
|
218 |
+
self.proj_out = torch.nn.Conv3d(
|
219 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
220 |
+
)
|
221 |
+
|
222 |
+
def forward(self, x):
|
223 |
+
h_ = x
|
224 |
+
# self.norm.to(x.device)
|
225 |
+
# self.norm.to(x.dtype)
|
226 |
+
h_ = self.norm(h_)
|
227 |
+
q = self.q(h_)
|
228 |
+
k = self.k(h_)
|
229 |
+
v = self.v(h_)
|
230 |
+
|
231 |
+
b, c, t, h, w = q.shape
|
232 |
+
# q = q.reshape(b,c,h*w) # bcl
|
233 |
+
# q = q.permute(0,2,1) # bcl -> blc l=hw
|
234 |
+
# k = k.reshape(b,c,h*w) # bcl
|
235 |
+
q = rearrange(q, "b c t h w -> (b t) (h w) c") # blc
|
236 |
+
k = rearrange(k, "b c t h w -> (b t) c (h w)") # bcl
|
237 |
+
|
238 |
+
w_ = torch.bmm(q, k) # b,l,l
|
239 |
+
w_ = w_ * (int(c) ** (-0.5))
|
240 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
241 |
+
|
242 |
+
# v = v.reshape(b,c,h*w)
|
243 |
+
v = rearrange(v, "b c t h w -> (b t) c (h w)") # bcl
|
244 |
+
|
245 |
+
# attend to values
|
246 |
+
w_ = w_.permute(0, 2, 1) # bll
|
247 |
+
h_ = torch.bmm(v, w_) # bcl
|
248 |
+
|
249 |
+
# h_ = h_.reshape(b,c,h,w)
|
250 |
+
h_ = rearrange(h_, "(b t) c (h w) -> b c t h w", b=b, h=h)
|
251 |
+
|
252 |
+
h_ = self.proj_out(h_)
|
253 |
+
|
254 |
+
return x + h_
|
255 |
+
|
256 |
+
class MultiHeadAttention3D(nn.Module):
|
257 |
+
def __init__(self, in_channels, num_heads=8):
|
258 |
+
super().__init__()
|
259 |
+
self.in_channels = in_channels
|
260 |
+
self.num_heads = num_heads
|
261 |
+
self.head_dim = in_channels // num_heads
|
262 |
+
|
263 |
+
assert self.head_dim * num_heads == in_channels, "in_channels must be divisible by num_heads"
|
264 |
+
|
265 |
+
self.norm = nn.LayerNorm(in_channels)
|
266 |
+
self.q_linear = nn.Linear(in_channels, in_channels)
|
267 |
+
self.k_linear = nn.Linear(in_channels, in_channels)
|
268 |
+
self.v_linear = nn.Linear(in_channels, in_channels)
|
269 |
+
self.proj_out = nn.Linear(in_channels, in_channels)
|
270 |
+
|
271 |
+
def forward(self, x):
|
272 |
+
b, c, t, h, w = x.shape
|
273 |
+
#print(x.shape)
|
274 |
+
# Normalize and reshape input
|
275 |
+
h_ = rearrange(x, "b c t h w -> (b t) (h w) c")
|
276 |
+
h_ = self.norm(h_)
|
277 |
+
|
278 |
+
# Linear projections
|
279 |
+
q = self.q_linear(h_)
|
280 |
+
k = self.k_linear(h_)
|
281 |
+
v = self.v_linear(h_)
|
282 |
+
|
283 |
+
# Reshape to multi-head
|
284 |
+
q = rearrange(q, "b l (h d) -> b h l d", h=self.num_heads)
|
285 |
+
k = rearrange(k, "b l (h d) -> b h l d", h=self.num_heads)
|
286 |
+
v = rearrange(v, "b l (h d) -> b h l d", h=self.num_heads)
|
287 |
+
|
288 |
+
# Scaled Dot-Product Attention
|
289 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5)
|
290 |
+
attn = F.softmax(scores, dim=-1)
|
291 |
+
|
292 |
+
# Apply attention to values
|
293 |
+
out = torch.matmul(attn, v)
|
294 |
+
out = rearrange(out, "b h l d -> b l (h d)")
|
295 |
+
|
296 |
+
# Project back to original dimension
|
297 |
+
out = self.proj_out(out)
|
298 |
+
|
299 |
+
# Reshape back to original shape
|
300 |
+
out = rearrange(out, "(b t) (h w) c -> b c t h w", b=b, h=h, t=t)
|
301 |
+
#print(out.shape)
|
302 |
+
return x + out
|
siglip_encoder.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
from typing import Optional, Tuple, Union, Dict
|
5 |
+
from PIL import Image
|
6 |
+
from functools import partial, reduce
|
7 |
+
from transformers import SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
|
8 |
+
|
9 |
+
from .base_encoder import BaseVisionTower
|
10 |
+
import torch.distributed as dist
|
11 |
+
# --data_path /share/shuyan/video_traindata/anno/\{cinepine_order\}.json \
|
12 |
+
# --image_folder /share/shuyan/video_traindata/Bunny-v1_0-data/finetune/images \
|
13 |
+
# --video_folder /share/shuyan/video_traindata \
|
14 |
+
def rank0_print(*args):
|
15 |
+
if dist.is_initialized():
|
16 |
+
if dist.get_rank() == 0:
|
17 |
+
print(f"Rank {dist.get_rank()}: ", *args)
|
18 |
+
else:
|
19 |
+
print(*args)
|
20 |
+
|
21 |
+
|
22 |
+
from transformers.image_processing_utils import BatchFeature, get_size_dict
|
23 |
+
from transformers.image_transforms import (
|
24 |
+
convert_to_rgb,
|
25 |
+
normalize,
|
26 |
+
rescale,
|
27 |
+
resize,
|
28 |
+
to_channel_dimension_format,
|
29 |
+
)
|
30 |
+
from transformers.image_utils import (
|
31 |
+
ChannelDimension,
|
32 |
+
PILImageResampling,
|
33 |
+
to_numpy_array,
|
34 |
+
)
|
35 |
+
class SigLipImageProcessor:
|
36 |
+
def __init__(self, image_mean=(0.5, 0.5, 0.5), image_std=(0.5, 0.5, 0.5), size=(384, 384), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST):
|
37 |
+
crop_size = crop_size if crop_size is not None else {"height": 384, "width": 384}
|
38 |
+
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
39 |
+
|
40 |
+
self.image_mean = image_mean
|
41 |
+
self.image_std = image_std
|
42 |
+
self.size = size
|
43 |
+
self.resample = resample
|
44 |
+
self.rescale_factor = rescale_factor
|
45 |
+
self.data_format = data_format
|
46 |
+
self.crop_size = crop_size
|
47 |
+
|
48 |
+
def preprocess(self, images, return_tensors):
|
49 |
+
if isinstance(images, Image.Image):
|
50 |
+
images = [images]
|
51 |
+
else:
|
52 |
+
# to adapt video data
|
53 |
+
images = [to_numpy_array(image) for image in images]
|
54 |
+
assert isinstance(images, list)
|
55 |
+
|
56 |
+
transforms = [
|
57 |
+
convert_to_rgb,
|
58 |
+
to_numpy_array,
|
59 |
+
partial(resize, size=self.size, resample=self.resample, data_format=self.data_format),
|
60 |
+
partial(rescale, scale=self.rescale_factor, data_format=self.data_format),
|
61 |
+
partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format),
|
62 |
+
partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format),
|
63 |
+
]
|
64 |
+
|
65 |
+
images = reduce(lambda x, f: [*map(f, x)], transforms, images)
|
66 |
+
|
67 |
+
data = {"pixel_values": images}
|
68 |
+
|
69 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
70 |
+
|
71 |
+
class SigLipVisionTower(BaseVisionTower):
|
72 |
+
def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
|
73 |
+
super(SigLipVisionTower, self).__init__(vision_tower_name, vision_tower_cfg, delay_load)
|
74 |
+
|
75 |
+
# model_path = "google/siglip-so400m-patch14-384"
|
76 |
+
# base_model_name, res, interp = model_path, 384, 576
|
77 |
+
# self.vision_tower_name = base_model_name
|
78 |
+
self.vision_tower_name, res, interp = vision_tower_name, 384, 576
|
79 |
+
self._image_size = res if res is not None else 512
|
80 |
+
self.unfreeze_mm_vision_tower = getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False)
|
81 |
+
|
82 |
+
if not delay_load:
|
83 |
+
rank0_print(f"Loading vision tower: {vision_tower_name}")
|
84 |
+
self.load_model()
|
85 |
+
elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False):
|
86 |
+
# TODO: better detector is needed.
|
87 |
+
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
|
88 |
+
self.load_model()
|
89 |
+
elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts:
|
90 |
+
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
|
91 |
+
self.load_model()
|
92 |
+
else:
|
93 |
+
self.cfg_only = self.config
|
94 |
+
|
95 |
+
def load_model(self, device_map=None):
|
96 |
+
self.vision_model = "siglip"
|
97 |
+
# clip_model, processor = create_model_from_pretrained(self.vision_tower_name)
|
98 |
+
print(self.vision_tower_name)
|
99 |
+
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
|
100 |
+
|
101 |
+
# self.vision_tower = clip_model.visual.trunk
|
102 |
+
self.vision_tower.output_tokens = True
|
103 |
+
|
104 |
+
self._hidden_size = self.vision_tower.config.hidden_size
|
105 |
+
|
106 |
+
self.image_processor = SigLipImageProcessor()
|
107 |
+
|
108 |
+
del self.vision_tower.vision_model.encoder.layers[-1:]
|
109 |
+
self.vision_tower.vision_model.head = nn.Identity()
|
110 |
+
|
111 |
+
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
|
112 |
+
|
113 |
+
self.is_loaded = True
|
114 |
+
|
115 |
+
def _forward(self, images):
|
116 |
+
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
|
117 |
+
image_features = self.vision_tower.forward(
|
118 |
+
images.to(device=self.device, dtype=self.dtype),
|
119 |
+
output_hidden_states=True,
|
120 |
+
).hidden_states[-1]
|
121 |
+
return image_features
|
122 |
+
@property
|
123 |
+
def dummy_feature(self):
|
124 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
125 |
+
|
126 |
+
@property
|
127 |
+
def dtype(self):
|
128 |
+
for p in self.vision_tower.parameters():
|
129 |
+
return p.dtype
|
130 |
+
|
131 |
+
@property
|
132 |
+
def device(self):
|
133 |
+
for p in self.vision_tower.parameters():
|
134 |
+
return p.device
|
135 |
+
|
136 |
+
@property
|
137 |
+
def hidden_size(self):
|
138 |
+
return self.config.hidden_size
|
139 |
+
|
140 |
+
@property
|
141 |
+
def num_patches(self):
|
142 |
+
return (336 // 14) ** 2
|
143 |
+
|
144 |
+
@property
|
145 |
+
def num_patches_per_side(self):
|
146 |
+
#return self.config.image_size // self.config.patch_size
|
147 |
+
return 336//14
|
148 |
+
#return 27
|
149 |
+
# return self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"]
|
150 |
+
|
151 |
+
@property
|
152 |
+
def image_size(self):
|
153 |
+
return 384
|
154 |
+
#return self.config.image_size
|
utils.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import logging
|
3 |
+
import logging.handlers
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
import requests
|
9 |
+
|
10 |
+
from .constants import LOGDIR
|
11 |
+
|
12 |
+
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
13 |
+
moderation_msg = "I am sorry. Your input may violate our content moderation guidelines. Please avoid using harmful or offensive content."
|
14 |
+
|
15 |
+
handler = None
|
16 |
+
|
17 |
+
import torch.distributed as dist
|
18 |
+
|
19 |
+
try:
|
20 |
+
import av
|
21 |
+
except ImportError:
|
22 |
+
print("Please install pyav to use video processing functions.")
|
23 |
+
|
24 |
+
|
25 |
+
def process_video_with_pyav(video_file, data_args):
|
26 |
+
container = av.open(video_file)
|
27 |
+
stream = container.streams.video[0]
|
28 |
+
total_frame_num = stream.frames
|
29 |
+
avg_fps = round(stream.average_rate / data_args.video_fps)
|
30 |
+
frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
|
31 |
+
if data_args.frames_upbound > 0:
|
32 |
+
if len(frame_idx) > data_args.frames_upbound:
|
33 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, data_args.frames_upbound, dtype=int)
|
34 |
+
frame_idx = uniform_sampled_frames.tolist()
|
35 |
+
|
36 |
+
video_frames = []
|
37 |
+
for index, frame in enumerate(container.decode(video=0)):
|
38 |
+
if index in frame_idx:
|
39 |
+
video_frames.append(frame.to_rgb().to_ndarray())
|
40 |
+
if len(video_frames) == len(frame_idx): # Stop decoding once we have all needed frames
|
41 |
+
break
|
42 |
+
|
43 |
+
video = np.stack(video_frames)
|
44 |
+
return video
|
45 |
+
|
46 |
+
|
47 |
+
def rank0_print(*args):
|
48 |
+
if dist.is_initialized():
|
49 |
+
if dist.get_rank() == 0:
|
50 |
+
print(f"Rank {dist.get_rank()}: ", *args)
|
51 |
+
else:
|
52 |
+
print(*args)
|
53 |
+
|
54 |
+
|
55 |
+
def build_logger(logger_name, logger_filename):
|
56 |
+
global handler
|
57 |
+
|
58 |
+
formatter = logging.Formatter(
|
59 |
+
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
60 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
61 |
+
)
|
62 |
+
|
63 |
+
# Set the format of root handlers
|
64 |
+
if not logging.getLogger().handlers:
|
65 |
+
logging.basicConfig(level=logging.INFO)
|
66 |
+
logging.getLogger().handlers[0].setFormatter(formatter)
|
67 |
+
|
68 |
+
# Redirect stdout and stderr to loggers
|
69 |
+
stdout_logger = logging.getLogger("stdout")
|
70 |
+
stdout_logger.setLevel(logging.INFO)
|
71 |
+
sl = StreamToLogger(stdout_logger, logging.INFO)
|
72 |
+
sys.stdout = sl
|
73 |
+
|
74 |
+
stderr_logger = logging.getLogger("stderr")
|
75 |
+
stderr_logger.setLevel(logging.ERROR)
|
76 |
+
sl = StreamToLogger(stderr_logger, logging.ERROR)
|
77 |
+
sys.stderr = sl
|
78 |
+
|
79 |
+
# Get logger
|
80 |
+
logger = logging.getLogger(logger_name)
|
81 |
+
logger.setLevel(logging.INFO)
|
82 |
+
|
83 |
+
# Add a file handler for all loggers
|
84 |
+
if handler is None:
|
85 |
+
os.makedirs(LOGDIR, exist_ok=True)
|
86 |
+
filename = os.path.join(LOGDIR, logger_filename)
|
87 |
+
handler = logging.handlers.TimedRotatingFileHandler(filename, when="D", utc=True)
|
88 |
+
handler.setFormatter(formatter)
|
89 |
+
|
90 |
+
for name, item in logging.root.manager.loggerDict.items():
|
91 |
+
if isinstance(item, logging.Logger):
|
92 |
+
item.addHandler(handler)
|
93 |
+
|
94 |
+
return logger
|
95 |
+
|
96 |
+
|
97 |
+
class StreamToLogger(object):
|
98 |
+
"""
|
99 |
+
Fake file-like stream object that redirects writes to a logger instance.
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, logger, log_level=logging.INFO):
|
103 |
+
self.terminal = sys.stdout
|
104 |
+
self.logger = logger
|
105 |
+
self.log_level = log_level
|
106 |
+
self.linebuf = ""
|
107 |
+
|
108 |
+
def __getattr__(self, attr):
|
109 |
+
return getattr(self.terminal, attr)
|
110 |
+
|
111 |
+
def write(self, buf):
|
112 |
+
temp_linebuf = self.linebuf + buf
|
113 |
+
self.linebuf = ""
|
114 |
+
for line in temp_linebuf.splitlines(True):
|
115 |
+
# From the io.TextIOWrapper docs:
|
116 |
+
# On output, if newline is None, any '\n' characters written
|
117 |
+
# are translated to the system default line separator.
|
118 |
+
# By default sys.stdout.write() expects '\n' newlines and then
|
119 |
+
# translates them so this is still cross platform.
|
120 |
+
if line[-1] == "\n":
|
121 |
+
self.logger.log(self.log_level, line.rstrip())
|
122 |
+
else:
|
123 |
+
self.linebuf += line
|
124 |
+
|
125 |
+
def flush(self):
|
126 |
+
if self.linebuf != "":
|
127 |
+
self.logger.log(self.log_level, self.linebuf.rstrip())
|
128 |
+
self.linebuf = ""
|
129 |
+
|
130 |
+
|
131 |
+
def disable_torch_init():
|
132 |
+
"""
|
133 |
+
Disable the redundant torch default initialization to accelerate model creation.
|
134 |
+
"""
|
135 |
+
import torch
|
136 |
+
|
137 |
+
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
138 |
+
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
139 |
+
|
140 |
+
|
141 |
+
def violates_moderation(text):
|
142 |
+
"""
|
143 |
+
Check whether the text violates OpenAI moderation API.
|
144 |
+
"""
|
145 |
+
url = "https://api.openai.com/v1/moderations"
|
146 |
+
headers = {"Content-Type": "application/json", "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
|
147 |
+
text = text.replace("\n", "")
|
148 |
+
data = "{" + '"input": ' + f'"{text}"' + "}"
|
149 |
+
data = data.encode("utf-8")
|
150 |
+
try:
|
151 |
+
ret = requests.post(url, headers=headers, data=data, timeout=5)
|
152 |
+
flagged = ret.json()["results"][0]["flagged"]
|
153 |
+
except requests.exceptions.RequestException as e:
|
154 |
+
print(f"######################### Moderation Error: {e} #########################")
|
155 |
+
flagged = False
|
156 |
+
except KeyError as e:
|
157 |
+
print(f"######################### Moderation Error: {e} #########################")
|
158 |
+
flagged = False
|
159 |
+
|
160 |
+
return flagged
|
161 |
+
|
162 |
+
|
163 |
+
def pretty_print_semaphore(semaphore):
|
164 |
+
if semaphore is None:
|
165 |
+
return "None"
|
166 |
+
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|
utils_encoder.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import numpy as np
|
3 |
+
import cv2, os
|
4 |
+
import torch
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
def count_params(model, verbose=False):
|
9 |
+
total_params = sum(p.numel() for p in model.parameters())
|
10 |
+
if verbose:
|
11 |
+
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
12 |
+
return total_params
|
13 |
+
|
14 |
+
|
15 |
+
def check_istarget(name, para_list):
|
16 |
+
"""
|
17 |
+
name: full name of source para
|
18 |
+
para_list: partial name of target para
|
19 |
+
"""
|
20 |
+
istarget = False
|
21 |
+
for para in para_list:
|
22 |
+
if para in name:
|
23 |
+
return True
|
24 |
+
return istarget
|
25 |
+
|
26 |
+
|
27 |
+
def instantiate_from_config(config):
|
28 |
+
if not "target" in config:
|
29 |
+
if config == "__is_first_stage__":
|
30 |
+
return None
|
31 |
+
elif config == "__is_unconditional__":
|
32 |
+
return None
|
33 |
+
raise KeyError("Expected key `target` to instantiate.")
|
34 |
+
|
35 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
36 |
+
|
37 |
+
|
38 |
+
def get_obj_from_str(string, reload=False):
|
39 |
+
module, cls = string.rsplit(".", 1)
|
40 |
+
if reload:
|
41 |
+
module_imp = importlib.import_module(module)
|
42 |
+
importlib.reload(module_imp)
|
43 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
44 |
+
|
45 |
+
|
46 |
+
def load_npz_from_dir(data_dir):
|
47 |
+
data = [
|
48 |
+
np.load(os.path.join(data_dir, data_name))["arr_0"]
|
49 |
+
for data_name in os.listdir(data_dir)
|
50 |
+
]
|
51 |
+
data = np.concatenate(data, axis=0)
|
52 |
+
return data
|
53 |
+
|
54 |
+
|
55 |
+
def load_npz_from_paths(data_paths):
|
56 |
+
data = [np.load(data_path)["arr_0"] for data_path in data_paths]
|
57 |
+
data = np.concatenate(data, axis=0)
|
58 |
+
return data
|
59 |
+
|
60 |
+
|
61 |
+
def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
|
62 |
+
h, w = image.shape[:2]
|
63 |
+
if resize_short_edge is not None:
|
64 |
+
k = resize_short_edge / min(h, w)
|
65 |
+
else:
|
66 |
+
k = max_resolution / (h * w)
|
67 |
+
k = k**0.5
|
68 |
+
h = int(np.round(h * k / 64)) * 64
|
69 |
+
w = int(np.round(w * k / 64)) * 64
|
70 |
+
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
|
71 |
+
return image
|
72 |
+
|
73 |
+
|
74 |
+
def setup_dist(args):
|
75 |
+
if dist.is_initialized():
|
76 |
+
return
|
77 |
+
torch.cuda.set_device(args.local_rank)
|
78 |
+
torch.distributed.init_process_group("nccl", init_method="env://")
|
79 |
+
|
80 |
+
|
81 |
+
# adopted from
|
82 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
83 |
+
# and
|
84 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
85 |
+
# and
|
86 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
87 |
+
#
|
88 |
+
# thanks!
|
89 |
+
|
90 |
+
import torch.nn as nn
|
91 |
+
import math
|
92 |
+
from inspect import isfunction
|
93 |
+
import torch
|
94 |
+
from torch import nn
|
95 |
+
import torch.distributed as dist
|
96 |
+
|
97 |
+
|
98 |
+
def gather_data(data, return_np=True):
|
99 |
+
"""gather data from multiple processes to one list"""
|
100 |
+
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
|
101 |
+
dist.all_gather(data_list, data) # gather not supported with NCCL
|
102 |
+
if return_np:
|
103 |
+
data_list = [data.cpu().numpy() for data in data_list]
|
104 |
+
return data_list
|
105 |
+
|
106 |
+
|
107 |
+
def autocast(f):
|
108 |
+
def do_autocast(*args, **kwargs):
|
109 |
+
with torch.cuda.amp.autocast(
|
110 |
+
enabled=True,
|
111 |
+
dtype=torch.get_autocast_gpu_dtype(),
|
112 |
+
cache_enabled=torch.is_autocast_cache_enabled(),
|
113 |
+
):
|
114 |
+
return f(*args, **kwargs)
|
115 |
+
|
116 |
+
return do_autocast
|
117 |
+
|
118 |
+
|
119 |
+
def extract_into_tensor(a, t, x_shape):
|
120 |
+
b, *_ = t.shape
|
121 |
+
out = a.gather(-1, t)
|
122 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
123 |
+
|
124 |
+
|
125 |
+
def noise_like(shape, device, repeat=False):
|
126 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
127 |
+
shape[0], *((1,) * (len(shape) - 1))
|
128 |
+
)
|
129 |
+
noise = lambda: torch.randn(shape, device=device)
|
130 |
+
return repeat_noise() if repeat else noise()
|
131 |
+
|
132 |
+
|
133 |
+
def default(val, d):
|
134 |
+
if exists(val):
|
135 |
+
return val
|
136 |
+
return d() if isfunction(d) else d
|
137 |
+
|
138 |
+
|
139 |
+
def exists(val):
|
140 |
+
return val is not None
|
141 |
+
|
142 |
+
|
143 |
+
def identity(*args, **kwargs):
|
144 |
+
return nn.Identity()
|
145 |
+
|
146 |
+
|
147 |
+
def uniq(arr):
|
148 |
+
return {el: True for el in arr}.keys()
|
149 |
+
|
150 |
+
|
151 |
+
def mean_flat(tensor):
|
152 |
+
"""
|
153 |
+
Take the mean over all non-batch dimensions.
|
154 |
+
"""
|
155 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
156 |
+
|
157 |
+
|
158 |
+
def ismap(x):
|
159 |
+
if not isinstance(x, torch.Tensor):
|
160 |
+
return False
|
161 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
162 |
+
|
163 |
+
|
164 |
+
def isimage(x):
|
165 |
+
if not isinstance(x, torch.Tensor):
|
166 |
+
return False
|
167 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
168 |
+
|
169 |
+
|
170 |
+
def max_neg_value(t):
|
171 |
+
return -torch.finfo(t.dtype).max
|
172 |
+
|
173 |
+
|
174 |
+
def shape_to_str(x):
|
175 |
+
shape_str = "x".join([str(x) for x in x.shape])
|
176 |
+
return shape_str
|
177 |
+
|
178 |
+
|
179 |
+
def init_(tensor):
|
180 |
+
dim = tensor.shape[-1]
|
181 |
+
std = 1 / math.sqrt(dim)
|
182 |
+
tensor.uniform_(-std, std)
|
183 |
+
return tensor
|
184 |
+
|
185 |
+
|
186 |
+
# ckpt = torch.utils.checkpoint.checkpoint
|
187 |
+
|
188 |
+
|
189 |
+
# def checkpoint(func, inputs, params, flag):
|
190 |
+
# """
|
191 |
+
# Evaluate a function without caching intermediate activations, allowing for
|
192 |
+
# reduced memory at the expense of extra compute in the backward pass.
|
193 |
+
# :param func: the function to evaluate.
|
194 |
+
# :param inputs: the argument sequence to pass to `func`.
|
195 |
+
# :param params: a sequence of parameters `func` depends on but does not
|
196 |
+
# explicitly take as arguments.
|
197 |
+
# :param flag: if False, disable gradient checkpointing.
|
198 |
+
# """
|
199 |
+
# if flag:
|
200 |
+
# return ckpt(func, *inputs)
|
201 |
+
# else:
|
202 |
+
# return func(*inputs)
|
203 |
+
|
204 |
+
|
205 |
+
def disabled_train(self, mode=True):
|
206 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
207 |
+
does not change anymore."""
|
208 |
+
return self
|
209 |
+
|
210 |
+
|
211 |
+
def zero_module(module):
|
212 |
+
"""
|
213 |
+
Zero out the parameters of a module and return it.
|
214 |
+
"""
|
215 |
+
for p in module.parameters():
|
216 |
+
p.detach().zero_()
|
217 |
+
return module
|
218 |
+
|
219 |
+
|
220 |
+
def scale_module(module, scale):
|
221 |
+
"""
|
222 |
+
Scale the parameters of a module and return it.
|
223 |
+
"""
|
224 |
+
for p in module.parameters():
|
225 |
+
p.detach().mul_(scale)
|
226 |
+
return module
|
227 |
+
|
228 |
+
|
229 |
+
def conv_nd(dims, *args, **kwargs):
|
230 |
+
"""
|
231 |
+
Create a 1D, 2D, or 3D convolution module.
|
232 |
+
"""
|
233 |
+
if dims == 1:
|
234 |
+
return nn.Conv1d(*args, **kwargs)
|
235 |
+
elif dims == 2:
|
236 |
+
return nn.Conv2d(*args, **kwargs)
|
237 |
+
elif dims == 3:
|
238 |
+
return nn.Conv3d(*args, **kwargs)
|
239 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
240 |
+
|
241 |
+
|
242 |
+
def linear(*args, **kwargs):
|
243 |
+
"""
|
244 |
+
Create a linear module.
|
245 |
+
"""
|
246 |
+
return nn.Linear(*args, **kwargs)
|
247 |
+
|
248 |
+
|
249 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
250 |
+
"""
|
251 |
+
Create a 1D, 2D, or 3D average pooling module.
|
252 |
+
"""
|
253 |
+
if dims == 1:
|
254 |
+
return nn.AvgPool1d(*args, **kwargs)
|
255 |
+
elif dims == 2:
|
256 |
+
return nn.AvgPool2d(*args, **kwargs)
|
257 |
+
elif dims == 3:
|
258 |
+
return nn.AvgPool3d(*args, **kwargs)
|
259 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
260 |
+
|
261 |
+
|
262 |
+
def nonlinearity(type="silu"):
|
263 |
+
if type == "silu":
|
264 |
+
return nn.SiLU()
|
265 |
+
elif type == "leaky_relu":
|
266 |
+
return nn.LeakyReLU()
|
267 |
+
|
268 |
+
|
269 |
+
class GroupNormSpecific(nn.GroupNorm):
|
270 |
+
def forward(self, x):
|
271 |
+
if x.dtype == torch.float16 or x.dtype == torch.bfloat16:
|
272 |
+
return super().forward(x).type(x.dtype)
|
273 |
+
else:
|
274 |
+
return super().forward(x.float()).type(x.dtype)
|
275 |
+
|
276 |
+
|
277 |
+
def normalization(channels, num_groups=32):
|
278 |
+
"""
|
279 |
+
Make a standard normalization layer.
|
280 |
+
:param channels: number of input channels.
|
281 |
+
:return: an nn.Module for normalization.
|
282 |
+
"""
|
283 |
+
return GroupNormSpecific(num_groups, channels)
|
284 |
+
|
285 |
+
|
286 |
+
class HybridConditioner(nn.Module):
|
287 |
+
|
288 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
289 |
+
super().__init__()
|
290 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
291 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
292 |
+
|
293 |
+
def forward(self, c_concat, c_crossattn):
|
294 |
+
c_concat = self.concat_conditioner(c_concat)
|
295 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
296 |
+
return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}
|