fix bug
Browse files- attention_temporal_videoae.py +0 -1314
- base_encoder.py +0 -68
- builder.py +0 -17
- config.json +4 -2
- configuration_qwen2.py +0 -169
- llava_arch.py +30 -105
- llava_qwen.py +673 -9
- modeling_qwen2.py +2 -0
- multimodal_encoder/.ipynb_checkpoints/base_encoder-checkpoint.py +0 -68
- multimodal_encoder/.ipynb_checkpoints/builder-checkpoint.py +0 -29
- multimodal_encoder/.ipynb_checkpoints/clip_encoder-checkpoint.py +0 -179
- multimodal_encoder/.ipynb_checkpoints/siglip_encoder-checkpoint.py +0 -151
- multimodal_encoder/__pycache__/base_encoder.cpython-310.pyc +0 -0
- multimodal_encoder/__pycache__/builder.cpython-310.pyc +0 -0
- multimodal_encoder/__pycache__/clip_encoder.cpython-310.pyc +0 -0
- multimodal_encoder/__pycache__/siglip_encoder.cpython-310.pyc +0 -0
- multimodal_encoder/base_encoder.py +0 -68
- multimodal_encoder/builder.py +0 -20
- multimodal_projector/__pycache__/builder.cpython-310.pyc +0 -0
- multimodal_projector/__pycache__/pooler_projector.cpython-310.pyc +0 -0
- multimodal_projector/pooler_projector.py +0 -33
- multimodal_resampler/__pycache__/builder.cpython-310.pyc +0 -0
- multimodal_resampler/__pycache__/masked_drop.cpython-310.pyc +0 -0
- multimodal_resampler/__pycache__/perceiver.cpython-310.pyc +0 -0
- multimodal_resampler/__pycache__/qformer.cpython-310.pyc +0 -0
- multimodal_resampler/__pycache__/spatial_pool.cpython-310.pyc +0 -0
- multimodal_resampler/builder.py +0 -34
- multimodal_resampler/masked_drop.py +0 -80
- multimodal_resampler/perceiver.py +0 -155
- multimodal_resampler/qformer.py +0 -1160
- sae.py +1434 -10
- sae_utils.py +0 -302
- siglip_encoder.py +0 -154
- utils_encoder.py +0 -296
- multimodal_projector/builder.py → vision_projector_builder.py +29 -1
- multimodal_resampler/spatial_pool.py → vision_resampler_builder.py +23 -0
- multimodal_encoder/siglip_encoder.py → vision_tower_builder.py +92 -17
attention_temporal_videoae.py
DELETED
@@ -1,1314 +0,0 @@
|
|
1 |
-
from inspect import isfunction
|
2 |
-
import math
|
3 |
-
import torch
|
4 |
-
import torch as th
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from torch import nn, einsum
|
7 |
-
from einops import rearrange, repeat
|
8 |
-
from typing import Optional, Any
|
9 |
-
|
10 |
-
try:
|
11 |
-
import xformers
|
12 |
-
import xformers.ops
|
13 |
-
|
14 |
-
XFORMERS_IS_AVAILBLE = True
|
15 |
-
except:
|
16 |
-
XFORMERS_IS_AVAILBLE = False
|
17 |
-
|
18 |
-
from .utils_encoder import (
|
19 |
-
conv_nd,
|
20 |
-
zero_module,
|
21 |
-
normalization,
|
22 |
-
)
|
23 |
-
|
24 |
-
|
25 |
-
def exists(val):
|
26 |
-
return val is not None
|
27 |
-
|
28 |
-
|
29 |
-
def uniq(arr):
|
30 |
-
return {el: True for el in arr}.keys()
|
31 |
-
|
32 |
-
|
33 |
-
def default(val, d):
|
34 |
-
if exists(val):
|
35 |
-
return val
|
36 |
-
return d() if isfunction(d) else d
|
37 |
-
|
38 |
-
|
39 |
-
def max_neg_value(t):
|
40 |
-
return -torch.finfo(t.dtype).max
|
41 |
-
|
42 |
-
|
43 |
-
def init_(tensor):
|
44 |
-
dim = tensor.shape[-1]
|
45 |
-
std = 1 / math.sqrt(dim)
|
46 |
-
tensor.uniform_(-std, std)
|
47 |
-
return tensor
|
48 |
-
|
49 |
-
|
50 |
-
# feedforward
|
51 |
-
class GEGLU(nn.Module):
|
52 |
-
def __init__(self, dim_in, dim_out):
|
53 |
-
super().__init__()
|
54 |
-
self.proj = nn.Linear(dim_in, dim_out * 2)
|
55 |
-
|
56 |
-
def forward(self, x):
|
57 |
-
x, gate = self.proj(x).chunk(2, dim=-1)
|
58 |
-
return x * F.gelu(gate)
|
59 |
-
|
60 |
-
|
61 |
-
class FeedForward(nn.Module):
|
62 |
-
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
63 |
-
super().__init__()
|
64 |
-
inner_dim = int(dim * mult)
|
65 |
-
dim_out = default(dim_out, dim)
|
66 |
-
project_in = (
|
67 |
-
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
68 |
-
if not glu
|
69 |
-
else GEGLU(dim, inner_dim)
|
70 |
-
)
|
71 |
-
|
72 |
-
self.net = nn.Sequential(
|
73 |
-
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
74 |
-
)
|
75 |
-
|
76 |
-
def forward(self, x):
|
77 |
-
return self.net(x)
|
78 |
-
|
79 |
-
|
80 |
-
def zero_module(module):
|
81 |
-
"""
|
82 |
-
Zero out the parameters of a module and return it.
|
83 |
-
"""
|
84 |
-
for p in module.parameters():
|
85 |
-
p.detach().zero_()
|
86 |
-
return module
|
87 |
-
|
88 |
-
|
89 |
-
def Normalize(in_channels, num_groups=32):
|
90 |
-
return torch.nn.GroupNorm(
|
91 |
-
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
92 |
-
)
|
93 |
-
|
94 |
-
|
95 |
-
# ---------------------------------------------------------------------------------------------------
|
96 |
-
class RelativePosition(nn.Module):
|
97 |
-
"""https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py"""
|
98 |
-
|
99 |
-
def __init__(self, num_units, max_relative_position):
|
100 |
-
super().__init__()
|
101 |
-
self.num_units = num_units
|
102 |
-
self.max_relative_position = max_relative_position
|
103 |
-
self.embeddings_table = nn.Parameter(
|
104 |
-
th.Tensor(max_relative_position * 2 + 1, num_units)
|
105 |
-
)
|
106 |
-
nn.init.xavier_uniform_(self.embeddings_table)
|
107 |
-
|
108 |
-
def forward(self, length_q, length_k):
|
109 |
-
device = self.embeddings_table.device
|
110 |
-
range_vec_q = th.arange(length_q, device=device)
|
111 |
-
range_vec_k = th.arange(length_k, device=device)
|
112 |
-
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
|
113 |
-
distance_mat_clipped = th.clamp(
|
114 |
-
distance_mat, -self.max_relative_position, self.max_relative_position
|
115 |
-
)
|
116 |
-
final_mat = distance_mat_clipped + self.max_relative_position
|
117 |
-
# final_mat = th.LongTensor(final_mat).to(self.embeddings_table.device)
|
118 |
-
# final_mat = th.tensor(final_mat, device=self.embeddings_table.device, dtype=torch.long)
|
119 |
-
final_mat = final_mat.long()
|
120 |
-
embeddings = self.embeddings_table[final_mat]
|
121 |
-
return embeddings
|
122 |
-
|
123 |
-
|
124 |
-
class TemporalCrossAttention(nn.Module):
|
125 |
-
def __init__(
|
126 |
-
self,
|
127 |
-
query_dim,
|
128 |
-
context_dim=None,
|
129 |
-
heads=8,
|
130 |
-
dim_head=64,
|
131 |
-
dropout=0.0,
|
132 |
-
temporal_length=None, # For relative positional representation and image-video joint training.
|
133 |
-
image_length=None, # For image-video joint training.
|
134 |
-
use_relative_position=False, # whether use relative positional representation in temporal attention.
|
135 |
-
img_video_joint_train=False, # For image-video joint training.
|
136 |
-
use_tempoal_causal_attn=False,
|
137 |
-
bidirectional_causal_attn=False,
|
138 |
-
tempoal_attn_type=None,
|
139 |
-
joint_train_mode="same_batch",
|
140 |
-
**kwargs,
|
141 |
-
):
|
142 |
-
super().__init__()
|
143 |
-
inner_dim = dim_head * heads
|
144 |
-
context_dim = default(context_dim, query_dim)
|
145 |
-
self.context_dim = context_dim
|
146 |
-
|
147 |
-
self.scale = dim_head**-0.5
|
148 |
-
self.heads = heads
|
149 |
-
self.temporal_length = temporal_length
|
150 |
-
self.use_relative_position = use_relative_position
|
151 |
-
self.img_video_joint_train = img_video_joint_train
|
152 |
-
self.bidirectional_causal_attn = bidirectional_causal_attn
|
153 |
-
self.joint_train_mode = joint_train_mode
|
154 |
-
assert joint_train_mode in ["same_batch", "diff_batch"]
|
155 |
-
self.tempoal_attn_type = tempoal_attn_type
|
156 |
-
|
157 |
-
if bidirectional_causal_attn:
|
158 |
-
assert use_tempoal_causal_attn
|
159 |
-
if tempoal_attn_type:
|
160 |
-
assert tempoal_attn_type in ["sparse_causal", "sparse_causal_first"]
|
161 |
-
assert not use_tempoal_causal_attn
|
162 |
-
assert not (
|
163 |
-
img_video_joint_train and (self.joint_train_mode == "same_batch")
|
164 |
-
)
|
165 |
-
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
166 |
-
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
167 |
-
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
168 |
-
|
169 |
-
assert not (
|
170 |
-
img_video_joint_train
|
171 |
-
and (self.joint_train_mode == "same_batch")
|
172 |
-
and use_tempoal_causal_attn
|
173 |
-
)
|
174 |
-
if img_video_joint_train:
|
175 |
-
if self.joint_train_mode == "same_batch":
|
176 |
-
mask = torch.ones(
|
177 |
-
[1, temporal_length + image_length, temporal_length + image_length]
|
178 |
-
)
|
179 |
-
# mask[:, image_length:, :] = 0
|
180 |
-
# mask[:, :, image_length:] = 0
|
181 |
-
mask[:, temporal_length:, :] = 0
|
182 |
-
mask[:, :, temporal_length:] = 0
|
183 |
-
self.mask = mask
|
184 |
-
else:
|
185 |
-
self.mask = None
|
186 |
-
elif use_tempoal_causal_attn:
|
187 |
-
# normal causal attn
|
188 |
-
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
|
189 |
-
elif tempoal_attn_type == "sparse_causal":
|
190 |
-
# all frames interact with only the `prev` & self frame
|
191 |
-
mask1 = torch.tril(
|
192 |
-
torch.ones([1, temporal_length, temporal_length])
|
193 |
-
).bool() # true indicates keeping
|
194 |
-
mask2 = torch.zeros(
|
195 |
-
[1, temporal_length, temporal_length]
|
196 |
-
) # initialize to same shape with mask1
|
197 |
-
mask2[:, 2:temporal_length, : temporal_length - 2] = torch.tril(
|
198 |
-
torch.ones([1, temporal_length - 2, temporal_length - 2])
|
199 |
-
)
|
200 |
-
mask2 = (1 - mask2).bool() # false indicates masking
|
201 |
-
self.mask = mask1 & mask2
|
202 |
-
elif tempoal_attn_type == "sparse_causal_first":
|
203 |
-
# all frames interact with only the `first` & self frame
|
204 |
-
mask1 = torch.tril(
|
205 |
-
torch.ones([1, temporal_length, temporal_length])
|
206 |
-
).bool() # true indicates keeping
|
207 |
-
mask2 = torch.zeros([1, temporal_length, temporal_length])
|
208 |
-
mask2[:, 2:temporal_length, 1 : temporal_length - 1] = torch.tril(
|
209 |
-
torch.ones([1, temporal_length - 2, temporal_length - 2])
|
210 |
-
)
|
211 |
-
mask2 = (1 - mask2).bool() # false indicates masking
|
212 |
-
self.mask = mask1 & mask2
|
213 |
-
else:
|
214 |
-
self.mask = None
|
215 |
-
|
216 |
-
if use_relative_position:
|
217 |
-
assert temporal_length is not None
|
218 |
-
self.relative_position_k = RelativePosition(
|
219 |
-
num_units=dim_head, max_relative_position=temporal_length
|
220 |
-
)
|
221 |
-
self.relative_position_v = RelativePosition(
|
222 |
-
num_units=dim_head, max_relative_position=temporal_length
|
223 |
-
)
|
224 |
-
|
225 |
-
self.to_out = nn.Sequential(
|
226 |
-
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
227 |
-
)
|
228 |
-
|
229 |
-
nn.init.constant_(self.to_q.weight, 0)
|
230 |
-
nn.init.constant_(self.to_k.weight, 0)
|
231 |
-
nn.init.constant_(self.to_v.weight, 0)
|
232 |
-
nn.init.constant_(self.to_out[0].weight, 0)
|
233 |
-
nn.init.constant_(self.to_out[0].bias, 0)
|
234 |
-
|
235 |
-
def forward(self, x, context=None, mask=None):
|
236 |
-
# if context is None:
|
237 |
-
# print(f'[Temp Attn] x={x.shape},context=None')
|
238 |
-
# else:
|
239 |
-
# print(f'[Temp Attn] x={x.shape},context={context.shape}')
|
240 |
-
|
241 |
-
nh = self.heads
|
242 |
-
out = x
|
243 |
-
q = self.to_q(out)
|
244 |
-
# if context is not None:
|
245 |
-
# print(f'temporal context 1 ={context.shape}')
|
246 |
-
# print(f'x={x.shape}')
|
247 |
-
context = default(context, x)
|
248 |
-
# print(f'temporal context 2 ={context.shape}')
|
249 |
-
k = self.to_k(context)
|
250 |
-
v = self.to_v(context)
|
251 |
-
# print(f'q ={q.shape},k={k.shape}')
|
252 |
-
|
253 |
-
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=nh), (q, k, v))
|
254 |
-
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
255 |
-
|
256 |
-
if self.use_relative_position:
|
257 |
-
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
|
258 |
-
k2 = self.relative_position_k(len_q, len_k)
|
259 |
-
sim2 = einsum("b t d, t s d -> b t s", q, k2) * self.scale # TODO check
|
260 |
-
sim += sim2
|
261 |
-
# print('mask',mask)
|
262 |
-
if exists(self.mask):
|
263 |
-
if mask is None:
|
264 |
-
mask = self.mask.to(sim.device)
|
265 |
-
else:
|
266 |
-
mask = self.mask.to(sim.device).bool() & mask # .to(sim.device)
|
267 |
-
else:
|
268 |
-
mask = mask
|
269 |
-
# if self.img_video_joint_train:
|
270 |
-
# # process mask (make mask same shape with sim)
|
271 |
-
# c, h, w = mask.shape
|
272 |
-
# c, t, s = sim.shape
|
273 |
-
# # assert(h == w and t == s),f"mask={mask.shape}, sim={sim.shape}, h={h}, w={w}, t={t}, s={s}"
|
274 |
-
|
275 |
-
# if h > t:
|
276 |
-
# mask = mask[:, :t, :]
|
277 |
-
# elif h < t: # pad zeros to mask (no attention) only initial mask =1 area compute weights
|
278 |
-
# mask_ = torch.zeros([c,t,w]).to(mask.device)
|
279 |
-
# mask_[:, :h, :] = mask
|
280 |
-
# mask = mask_
|
281 |
-
# c, h, w = mask.shape
|
282 |
-
# if w > s:
|
283 |
-
# mask = mask[:, :, :s]
|
284 |
-
# elif w < s: # pad zeros to mask
|
285 |
-
# mask_ = torch.zeros([c,h,s]).to(mask.device)
|
286 |
-
# mask_[:, :, :w] = mask
|
287 |
-
# mask = mask_
|
288 |
-
|
289 |
-
# max_neg_value = -torch.finfo(sim.dtype).max
|
290 |
-
# sim = sim.float().masked_fill(mask == 0, max_neg_value)
|
291 |
-
if mask is not None:
|
292 |
-
max_neg_value = -1e9
|
293 |
-
sim = sim + (1 - mask.float()) * max_neg_value # 1=masking,0=no masking
|
294 |
-
# print('sim after masking: ', sim)
|
295 |
-
|
296 |
-
# if torch.isnan(sim).any() or torch.isinf(sim).any() or (not sim.any()):
|
297 |
-
# print(f'sim [after masking], isnan={torch.isnan(sim).any()}, isinf={torch.isinf(sim).any()}, allzero={not sim.any()}')
|
298 |
-
|
299 |
-
attn = sim.softmax(dim=-1)
|
300 |
-
# print('attn after softmax: ', attn)
|
301 |
-
# if torch.isnan(attn).any() or torch.isinf(attn).any() or (not attn.any()):
|
302 |
-
# print(f'attn [after softmax], isnan={torch.isnan(attn).any()}, isinf={torch.isinf(attn).any()}, allzero={not attn.any()}')
|
303 |
-
|
304 |
-
# attn = torch.where(torch.isnan(attn), torch.full_like(attn,0), attn)
|
305 |
-
# if torch.isinf(attn.detach()).any():
|
306 |
-
# import pdb;pdb.set_trace()
|
307 |
-
# if torch.isnan(attn.detach()).any():
|
308 |
-
# import pdb;pdb.set_trace()
|
309 |
-
out = einsum("b i j, b j d -> b i d", attn, v)
|
310 |
-
|
311 |
-
if self.bidirectional_causal_attn:
|
312 |
-
mask_reverse = torch.triu(
|
313 |
-
torch.ones(
|
314 |
-
[1, self.temporal_length, self.temporal_length], device=sim.device
|
315 |
-
)
|
316 |
-
)
|
317 |
-
sim_reverse = sim.float().masked_fill(mask_reverse == 0, max_neg_value)
|
318 |
-
attn_reverse = sim_reverse.softmax(dim=-1)
|
319 |
-
out_reverse = einsum("b i j, b j d -> b i d", attn_reverse, v)
|
320 |
-
out += out_reverse
|
321 |
-
|
322 |
-
if self.use_relative_position:
|
323 |
-
v2 = self.relative_position_v(len_q, len_v)
|
324 |
-
out2 = einsum("b t s, t s d -> b t d", attn, v2) # TODO check
|
325 |
-
out += out2 # TODO check:先add还是先merge head?先计算rpr,on split head之后的数据,然后再merge。
|
326 |
-
out = rearrange(out, "(b h) n d -> b n (h d)", h=nh) # merge head
|
327 |
-
return self.to_out(out)
|
328 |
-
|
329 |
-
|
330 |
-
# ---------------------------------------------------------------------------------------------------
|
331 |
-
|
332 |
-
|
333 |
-
class SpatialSelfAttention(nn.Module):
|
334 |
-
def __init__(self, in_channels):
|
335 |
-
super().__init__()
|
336 |
-
self.in_channels = in_channels
|
337 |
-
|
338 |
-
self.norm = Normalize(in_channels)
|
339 |
-
self.q = torch.nn.Conv2d(
|
340 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
341 |
-
)
|
342 |
-
self.k = torch.nn.Conv2d(
|
343 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
344 |
-
)
|
345 |
-
self.v = torch.nn.Conv2d(
|
346 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
347 |
-
)
|
348 |
-
self.proj_out = torch.nn.Conv2d(
|
349 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
350 |
-
)
|
351 |
-
|
352 |
-
def forward(self, x):
|
353 |
-
h_ = x
|
354 |
-
h_ = self.norm(h_)
|
355 |
-
q = self.q(h_)
|
356 |
-
k = self.k(h_)
|
357 |
-
v = self.v(h_)
|
358 |
-
|
359 |
-
# compute attention
|
360 |
-
b, c, h, w = q.shape
|
361 |
-
q = rearrange(q, "b c h w -> b (h w) c")
|
362 |
-
k = rearrange(k, "b c h w -> b c (h w)")
|
363 |
-
w_ = torch.einsum("bij,bjk->bik", q, k)
|
364 |
-
|
365 |
-
w_ = w_ * (int(c) ** (-0.5))
|
366 |
-
w_ = torch.nn.functional.softmax(w_, dim=2)
|
367 |
-
|
368 |
-
# attend to values
|
369 |
-
v = rearrange(v, "b c h w -> b c (h w)")
|
370 |
-
w_ = rearrange(w_, "b i j -> b j i")
|
371 |
-
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
372 |
-
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
373 |
-
h_ = self.proj_out(h_)
|
374 |
-
|
375 |
-
return x + h_
|
376 |
-
|
377 |
-
|
378 |
-
class CrossAttention(nn.Module):
|
379 |
-
def __init__(
|
380 |
-
self,
|
381 |
-
query_dim,
|
382 |
-
context_dim=None,
|
383 |
-
heads=8,
|
384 |
-
dim_head=64,
|
385 |
-
dropout=0.0,
|
386 |
-
sa_shared_kv=False,
|
387 |
-
shared_type="only_first",
|
388 |
-
**kwargs,
|
389 |
-
):
|
390 |
-
super().__init__()
|
391 |
-
inner_dim = dim_head * heads
|
392 |
-
context_dim = default(context_dim, query_dim)
|
393 |
-
self.sa_shared_kv = sa_shared_kv
|
394 |
-
assert shared_type in [
|
395 |
-
"only_first",
|
396 |
-
"all_frames",
|
397 |
-
"first_and_prev",
|
398 |
-
"only_prev",
|
399 |
-
"full",
|
400 |
-
"causal",
|
401 |
-
"full_qkv",
|
402 |
-
]
|
403 |
-
self.shared_type = shared_type
|
404 |
-
|
405 |
-
self.scale = dim_head**-0.5
|
406 |
-
self.heads = heads
|
407 |
-
self.dim_head = dim_head
|
408 |
-
|
409 |
-
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
410 |
-
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
411 |
-
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
412 |
-
|
413 |
-
self.to_out = nn.Sequential(
|
414 |
-
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
415 |
-
)
|
416 |
-
self.attention_op: Optional[Any] = None
|
417 |
-
|
418 |
-
def forward(self, x, context=None, mask=None):
|
419 |
-
h = self.heads
|
420 |
-
b = x.shape[0]
|
421 |
-
|
422 |
-
q = self.to_q(x)
|
423 |
-
context = default(context, x)
|
424 |
-
k = self.to_k(context)
|
425 |
-
v = self.to_v(context)
|
426 |
-
if self.sa_shared_kv:
|
427 |
-
if self.shared_type == "only_first":
|
428 |
-
k, v = map(
|
429 |
-
lambda xx: rearrange(xx[0].unsqueeze(0), "b n c -> (b n) c")
|
430 |
-
.unsqueeze(0)
|
431 |
-
.repeat(b, 1, 1),
|
432 |
-
(k, v),
|
433 |
-
)
|
434 |
-
else:
|
435 |
-
raise NotImplementedError
|
436 |
-
|
437 |
-
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
438 |
-
|
439 |
-
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
440 |
-
|
441 |
-
if exists(mask):
|
442 |
-
mask = rearrange(mask, "b ... -> b (...)")
|
443 |
-
max_neg_value = -torch.finfo(sim.dtype).max
|
444 |
-
mask = repeat(mask, "b j -> (b h) () j", h=h)
|
445 |
-
sim.masked_fill_(~mask, max_neg_value)
|
446 |
-
|
447 |
-
# attention, what we cannot get enough of
|
448 |
-
attn = sim.softmax(dim=-1)
|
449 |
-
|
450 |
-
out = einsum("b i j, b j d -> b i d", attn, v)
|
451 |
-
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
452 |
-
return self.to_out(out)
|
453 |
-
|
454 |
-
def efficient_forward(self, x, context=None, mask=None):
|
455 |
-
q = self.to_q(x)
|
456 |
-
context = default(context, x)
|
457 |
-
k = self.to_k(context)
|
458 |
-
v = self.to_v(context)
|
459 |
-
|
460 |
-
b, _, _ = q.shape
|
461 |
-
q, k, v = map(
|
462 |
-
lambda t: t.unsqueeze(3)
|
463 |
-
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
464 |
-
.permute(0, 2, 1, 3)
|
465 |
-
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
466 |
-
.contiguous(),
|
467 |
-
(q, k, v),
|
468 |
-
)
|
469 |
-
# actually compute the attention, what we cannot get enough of
|
470 |
-
out = xformers.ops.memory_efficient_attention(
|
471 |
-
q, k, v, attn_bias=None, op=self.attention_op
|
472 |
-
)
|
473 |
-
|
474 |
-
if exists(mask):
|
475 |
-
raise NotImplementedError
|
476 |
-
out = (
|
477 |
-
out.unsqueeze(0)
|
478 |
-
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
479 |
-
.permute(0, 2, 1, 3)
|
480 |
-
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
481 |
-
)
|
482 |
-
return self.to_out(out)
|
483 |
-
|
484 |
-
|
485 |
-
class VideoSpatialCrossAttention(CrossAttention):
|
486 |
-
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0):
|
487 |
-
super().__init__(query_dim, context_dim, heads, dim_head, dropout)
|
488 |
-
|
489 |
-
def forward(self, x, context=None, mask=None):
|
490 |
-
b, c, t, h, w = x.shape
|
491 |
-
if context is not None:
|
492 |
-
context = context.repeat(t, 1, 1)
|
493 |
-
x = super.forward(spatial_attn_reshape(x), context=context) + x
|
494 |
-
return spatial_attn_reshape_back(x, b, h)
|
495 |
-
|
496 |
-
|
497 |
-
# class BasicTransformerBlockST(nn.Module):
|
498 |
-
# def __init__(
|
499 |
-
# self,
|
500 |
-
# # Spatial Stuff
|
501 |
-
# dim,
|
502 |
-
# n_heads,
|
503 |
-
# d_head,
|
504 |
-
# dropout=0.0,
|
505 |
-
# context_dim=None,
|
506 |
-
# gated_ff=True,
|
507 |
-
# checkpoint=True,
|
508 |
-
# # Temporal Stuff
|
509 |
-
# temporal_length=None,
|
510 |
-
# image_length=None,
|
511 |
-
# use_relative_position=True,
|
512 |
-
# img_video_joint_train=False,
|
513 |
-
# cross_attn_on_tempoal=False,
|
514 |
-
# temporal_crossattn_type="selfattn",
|
515 |
-
# order="stst",
|
516 |
-
# temporalcrossfirst=False,
|
517 |
-
# temporal_context_dim=None,
|
518 |
-
# split_stcontext=False,
|
519 |
-
# local_spatial_temporal_attn=False,
|
520 |
-
# window_size=2,
|
521 |
-
# random_t=False,
|
522 |
-
# **kwargs,
|
523 |
-
# ):
|
524 |
-
# super().__init__()
|
525 |
-
# # Self attention
|
526 |
-
# self.attn1 = CrossAttention(
|
527 |
-
# query_dim=dim,
|
528 |
-
# heads=n_heads,
|
529 |
-
# dim_head=d_head,
|
530 |
-
# dropout=dropout,
|
531 |
-
# **kwargs,
|
532 |
-
# )
|
533 |
-
# self.attn2 = CrossAttention(
|
534 |
-
# query_dim=dim,
|
535 |
-
# context_dim=context_dim,
|
536 |
-
# heads=n_heads,
|
537 |
-
# dim_head=d_head,
|
538 |
-
# dropout=dropout,
|
539 |
-
# **kwargs,
|
540 |
-
# )
|
541 |
-
# if XFORMERS_IS_AVAILBLE:
|
542 |
-
# self.attn1.forward = self.attn1.efficient_forward
|
543 |
-
# self.attn2.forward = self.attn2.efficient_forward
|
544 |
-
|
545 |
-
# self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
546 |
-
# # cross attention if context is not None
|
547 |
-
|
548 |
-
# self.norm1 = nn.LayerNorm(dim)
|
549 |
-
# self.norm2 = nn.LayerNorm(dim)
|
550 |
-
# self.norm3 = nn.LayerNorm(dim)
|
551 |
-
# self.checkpoint = checkpoint
|
552 |
-
# self.order = order
|
553 |
-
# assert self.order in ["stst", "sstt", "st_parallel"]
|
554 |
-
# self.temporalcrossfirst = temporalcrossfirst
|
555 |
-
# self.split_stcontext = split_stcontext
|
556 |
-
# self.local_spatial_temporal_attn = local_spatial_temporal_attn
|
557 |
-
# if self.local_spatial_temporal_attn:
|
558 |
-
# assert self.order == "stst"
|
559 |
-
# assert self.order == "stst"
|
560 |
-
# self.window_size = window_size
|
561 |
-
# if not split_stcontext:
|
562 |
-
# temporal_context_dim = context_dim
|
563 |
-
# # Temporal attention
|
564 |
-
# assert temporal_crossattn_type in ["selfattn", "crossattn", "skip"]
|
565 |
-
# self.temporal_crossattn_type = temporal_crossattn_type
|
566 |
-
# self.attn1_tmp = TemporalCrossAttention(
|
567 |
-
# query_dim=dim,
|
568 |
-
# heads=n_heads,
|
569 |
-
# dim_head=d_head,
|
570 |
-
# dropout=dropout,
|
571 |
-
# temporal_length=temporal_length,
|
572 |
-
# image_length=image_length,
|
573 |
-
# use_relative_position=use_relative_position,
|
574 |
-
# img_video_joint_train=img_video_joint_train,
|
575 |
-
# **kwargs,
|
576 |
-
# )
|
577 |
-
# self.attn2_tmp = TemporalCrossAttention(
|
578 |
-
# query_dim=dim,
|
579 |
-
# heads=n_heads,
|
580 |
-
# dim_head=d_head,
|
581 |
-
# dropout=dropout,
|
582 |
-
# # cross attn
|
583 |
-
# context_dim=(
|
584 |
-
# temporal_context_dim if temporal_crossattn_type == "crossattn" else None
|
585 |
-
# ),
|
586 |
-
# # temporal attn
|
587 |
-
# temporal_length=temporal_length,
|
588 |
-
# image_length=image_length,
|
589 |
-
# use_relative_position=use_relative_position,
|
590 |
-
# img_video_joint_train=img_video_joint_train,
|
591 |
-
# **kwargs,
|
592 |
-
# )
|
593 |
-
# self.norm4 = nn.LayerNorm(dim)
|
594 |
-
# self.norm5 = nn.LayerNorm(dim)
|
595 |
-
# self.random_t = random_t
|
596 |
-
# # self.norm1_tmp = nn.LayerNorm(dim)
|
597 |
-
# # self.norm2_tmp = nn.LayerNorm(dim)
|
598 |
-
|
599 |
-
# ##############################################################################################################################################
|
600 |
-
# def forward(
|
601 |
-
# self,
|
602 |
-
# x,
|
603 |
-
# context=None,
|
604 |
-
# temporal_context=None,
|
605 |
-
# no_temporal_attn=None,
|
606 |
-
# attn_mask=None,
|
607 |
-
# **kwargs,
|
608 |
-
# ):
|
609 |
-
# # print(f'no_temporal_attn={no_temporal_attn}')
|
610 |
-
|
611 |
-
# if not self.split_stcontext:
|
612 |
-
# # st cross attention use the same context vector
|
613 |
-
# temporal_context = context.detach().clone()
|
614 |
-
|
615 |
-
# if context is None and temporal_context is None:
|
616 |
-
# # self-attention models
|
617 |
-
# if no_temporal_attn:
|
618 |
-
# raise NotImplementedError
|
619 |
-
# return checkpoint(
|
620 |
-
# self._forward_nocontext, (x), self.parameters(), self.checkpoint
|
621 |
-
# )
|
622 |
-
# else:
|
623 |
-
# # cross-attention models
|
624 |
-
# if no_temporal_attn:
|
625 |
-
# forward_func = self._forward_no_temporal_attn
|
626 |
-
# else:
|
627 |
-
# forward_func = self._forward
|
628 |
-
# inputs = (
|
629 |
-
# (x, context, temporal_context)
|
630 |
-
# if temporal_context is not None
|
631 |
-
# else (x, context)
|
632 |
-
# )
|
633 |
-
# return checkpoint(forward_func, inputs, self.parameters(), self.checkpoint)
|
634 |
-
# # if attn_mask is not None:
|
635 |
-
# # return checkpoint(self._forward, (x, context, temporal_context, attn_mask), self.parameters(), self.checkpoint)
|
636 |
-
# # return checkpoint(self._forward, (x, context, temporal_context), self.parameters(), self.checkpoint)
|
637 |
-
|
638 |
-
# def _forward(
|
639 |
-
# self,
|
640 |
-
# x,
|
641 |
-
# context=None,
|
642 |
-
# temporal_context=None,
|
643 |
-
# mask=None,
|
644 |
-
# no_temporal_attn=None,
|
645 |
-
# ):
|
646 |
-
# assert x.dim() == 5, f"x shape = {x.shape}"
|
647 |
-
# b, c, t, h, w = x.shape
|
648 |
-
|
649 |
-
# if self.order in ["stst", "sstt"]:
|
650 |
-
# x = self._st_cross_attn(
|
651 |
-
# x,
|
652 |
-
# context,
|
653 |
-
# temporal_context=temporal_context,
|
654 |
-
# order=self.order,
|
655 |
-
# mask=mask,
|
656 |
-
# ) # no_temporal_attn=no_temporal_attn,
|
657 |
-
# elif self.order == "st_parallel":
|
658 |
-
# x = self._st_cross_attn_parallel(
|
659 |
-
# x,
|
660 |
-
# context,
|
661 |
-
# temporal_context=temporal_context,
|
662 |
-
# order=self.order,
|
663 |
-
# ) # no_temporal_attn=no_temporal_attn,
|
664 |
-
# else:
|
665 |
-
# raise NotImplementedError
|
666 |
-
|
667 |
-
# x = self.ff(self.norm3(x)) + x
|
668 |
-
# if (no_temporal_attn is None) or (not no_temporal_attn):
|
669 |
-
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
670 |
-
# elif no_temporal_attn:
|
671 |
-
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
672 |
-
# return x
|
673 |
-
|
674 |
-
# def _forward_no_temporal_attn(
|
675 |
-
# self,
|
676 |
-
# x,
|
677 |
-
# context=None,
|
678 |
-
# temporal_context=None,
|
679 |
-
# ):
|
680 |
-
# # temporary implementation :(
|
681 |
-
# # because checkpoint does not support non-tensor inputs currently.
|
682 |
-
# assert x.dim() == 5, f"x shape = {x.shape}"
|
683 |
-
# b, c, t, h, w = x.shape
|
684 |
-
|
685 |
-
# if self.order in ["stst", "sstt"]:
|
686 |
-
# # x = self._st_cross_attn(x, context, temporal_context=temporal_context, order=self.order, no_temporal_attn=True,)
|
687 |
-
# # mask = torch.zeros([1, t, t], device=x.device).bool() if context is None else torch.zeros([1, context.shape[1], t], device=x.device).bool()
|
688 |
-
# mask = torch.zeros([1, t, t], device=x.device).bool()
|
689 |
-
# x = self._st_cross_attn(
|
690 |
-
# x,
|
691 |
-
# context,
|
692 |
-
# temporal_context=temporal_context,
|
693 |
-
# order=self.order,
|
694 |
-
# mask=mask,
|
695 |
-
# )
|
696 |
-
# elif self.order == "st_parallel":
|
697 |
-
# x = self._st_cross_attn_parallel(
|
698 |
-
# x,
|
699 |
-
# context,
|
700 |
-
# temporal_context=temporal_context,
|
701 |
-
# order=self.order,
|
702 |
-
# no_temporal_attn=True,
|
703 |
-
# )
|
704 |
-
# else:
|
705 |
-
# raise NotImplementedError
|
706 |
-
|
707 |
-
# x = self.ff(self.norm3(x)) + x
|
708 |
-
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
709 |
-
# # x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
|
710 |
-
# return x
|
711 |
-
|
712 |
-
# def _forward_nocontext(self, x, no_temporal_attn=None):
|
713 |
-
# assert x.dim() == 5, f"x shape = {x.shape}"
|
714 |
-
# b, c, t, h, w = x.shape
|
715 |
-
|
716 |
-
# if self.order in ["stst", "sstt"]:
|
717 |
-
# x = self._st_cross_attn(
|
718 |
-
# x, order=self.order, no_temporal_attn=no_temporal_attn
|
719 |
-
# )
|
720 |
-
# elif self.order == "st_parallel":
|
721 |
-
# x = self._st_cross_attn_parallel(
|
722 |
-
# x, order=self.order, no_temporal_attn=no_temporal_attn
|
723 |
-
# )
|
724 |
-
# else:
|
725 |
-
# raise NotImplementedError
|
726 |
-
|
727 |
-
# x = self.ff(self.norm3(x)) + x
|
728 |
-
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
729 |
-
|
730 |
-
# return x
|
731 |
-
|
732 |
-
# ##############################################################################################################################################
|
733 |
-
|
734 |
-
# def _st_cross_attn(
|
735 |
-
# self, x, context=None, temporal_context=None, order="stst", mask=None
|
736 |
-
# ): # no_temporal_attn=None,
|
737 |
-
# b, c, t, h, w = x.shape
|
738 |
-
# # if context is not None:
|
739 |
-
# # print(f'[_st_cross_attn input] x={x.shape}, context={context.shape}')
|
740 |
-
# # else:
|
741 |
-
# # print(f'[_st_cross_attn input] x={x.shape}')
|
742 |
-
|
743 |
-
# if order == "stst":
|
744 |
-
# # spatial self attention
|
745 |
-
# x = rearrange(x, "b c t h w -> (b t) (h w) c")
|
746 |
-
# # print(f'before attn1,x={x.shape}')
|
747 |
-
|
748 |
-
# x = self.attn1(self.norm1(x)) + x
|
749 |
-
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
750 |
-
|
751 |
-
# # temporal self attention
|
752 |
-
# # if (no_temporal_attn is None) or (not no_temporal_attn):
|
753 |
-
# if self.local_spatial_temporal_attn:
|
754 |
-
# x = local_spatial_temporal_attn_reshape(x, window_size=self.window_size)
|
755 |
-
# else:
|
756 |
-
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
757 |
-
# x = self.attn1_tmp(self.norm4(x), mask=mask) + x
|
758 |
-
|
759 |
-
# if self.local_spatial_temporal_attn:
|
760 |
-
# x = local_spatial_temporal_attn_reshape_back(
|
761 |
-
# x, window_size=self.window_size, b=b, h=h, w=w, t=t
|
762 |
-
# )
|
763 |
-
# else:
|
764 |
-
# x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d
|
765 |
-
|
766 |
-
# # spatial cross attention
|
767 |
-
# x = rearrange(x, "b c t h w -> (b t) (h w) c")
|
768 |
-
# # print(f'before attn2, x={x.shape}')
|
769 |
-
# # if context is not None:
|
770 |
-
# # print(f'[before attn2] context={context.shape}')
|
771 |
-
# if context is not None:
|
772 |
-
# if self.random_t:
|
773 |
-
# context_ = []
|
774 |
-
# for i in range(context.shape[0]):
|
775 |
-
# context_.append(context[i].unsqueeze(0).repeat(t, 1, 1))
|
776 |
-
# context_ = torch.cat(context_, dim=0)
|
777 |
-
# else:
|
778 |
-
# if context.shape[0] == t: # img captions no_temporal_attn or
|
779 |
-
# context_ = context
|
780 |
-
# else:
|
781 |
-
# # repeat conditions with t times
|
782 |
-
# context_ = []
|
783 |
-
# for i in range(context.shape[0]):
|
784 |
-
# context_.append(context[i].unsqueeze(0).repeat(t, 1, 1))
|
785 |
-
# context_ = torch.cat(context_, dim=0)
|
786 |
-
# else:
|
787 |
-
# context_ = None
|
788 |
-
|
789 |
-
# # if context_ is not None:
|
790 |
-
# # print(f'[before attn2] x={x.shape}, context_={context_.shape}')
|
791 |
-
# # else:
|
792 |
-
# # print(f'[before attn2] x={x.shape}')
|
793 |
-
|
794 |
-
# x = self.attn2(self.norm2(x), context=context_) + x
|
795 |
-
|
796 |
-
# # temporal cross attention
|
797 |
-
# # if (no_temporal_attn is None) or (not no_temporal_attn):
|
798 |
-
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
799 |
-
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
800 |
-
# if self.temporal_crossattn_type == "crossattn":
|
801 |
-
# # tmporal cross attention
|
802 |
-
# if temporal_context is not None:
|
803 |
-
# # print(f'STATTN context={context.shape}, temporal_context={temporal_context.shape}')
|
804 |
-
# temporal_context = torch.cat(
|
805 |
-
# [context, temporal_context], dim=1
|
806 |
-
# ) # blc
|
807 |
-
# # print(f'STATTN after concat temporal_context={temporal_context.shape}')
|
808 |
-
# temporal_context = temporal_context.repeat(h * w, 1, 1)
|
809 |
-
# # print(f'after repeat temporal_context={temporal_context.shape}')
|
810 |
-
# else:
|
811 |
-
# temporal_context = context[0:1, ...].repeat(h * w, 1, 1)
|
812 |
-
# # print(f'STATTN after concat x={x.shape}')
|
813 |
-
# x = (
|
814 |
-
# self.attn2_tmp(self.norm5(x), context=temporal_context, mask=mask)
|
815 |
-
# + x
|
816 |
-
# )
|
817 |
-
# elif self.temporal_crossattn_type == "selfattn":
|
818 |
-
# # temporal self attention
|
819 |
-
# x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
|
820 |
-
# elif self.temporal_crossattn_type == "skip":
|
821 |
-
# # no temporal cross and self attention
|
822 |
-
# pass
|
823 |
-
# else:
|
824 |
-
# raise NotImplementedError
|
825 |
-
|
826 |
-
# elif order == "sstt":
|
827 |
-
# # spatial self attention
|
828 |
-
# x = rearrange(x, "b c t h w -> (b t) (h w) c")
|
829 |
-
# x = self.attn1(self.norm1(x)) + x
|
830 |
-
|
831 |
-
# # spatial cross attention
|
832 |
-
# context_ = context.repeat(t, 1, 1) if context is not None else None
|
833 |
-
# x = self.attn2(self.norm2(x), context=context_) + x
|
834 |
-
# x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
835 |
-
|
836 |
-
# if (no_temporal_attn is None) or (not no_temporal_attn):
|
837 |
-
# if self.temporalcrossfirst:
|
838 |
-
# # temporal cross attention
|
839 |
-
# if self.temporal_crossattn_type == "crossattn":
|
840 |
-
# # if temporal_context is not None:
|
841 |
-
# temporal_context = context.repeat(h * w, 1, 1)
|
842 |
-
# x = (
|
843 |
-
# self.attn2_tmp(
|
844 |
-
# self.norm5(x), context=temporal_context, mask=mask
|
845 |
-
# )
|
846 |
-
# + x
|
847 |
-
# )
|
848 |
-
# elif self.temporal_crossattn_type == "selfattn":
|
849 |
-
# x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
|
850 |
-
# elif self.temporal_crossattn_type == "skip":
|
851 |
-
# pass
|
852 |
-
# else:
|
853 |
-
# raise NotImplementedError
|
854 |
-
# # temporal self attention
|
855 |
-
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
856 |
-
# x = self.attn1_tmp(self.norm4(x), mask=mask) + x
|
857 |
-
# else:
|
858 |
-
# # temporal self attention
|
859 |
-
# x = rearrange(x, "b c t h w -> (b h w) t c")
|
860 |
-
# x = self.attn1_tmp(self.norm4(x), mask=mask) + x
|
861 |
-
# # temporal cross attention
|
862 |
-
# if self.temporal_crossattn_type == "crossattn":
|
863 |
-
# if temporal_context is not None:
|
864 |
-
# temporal_context = context.repeat(h * w, 1, 1)
|
865 |
-
# x = (
|
866 |
-
# self.attn2_tmp(
|
867 |
-
# self.norm5(x), context=temporal_context, mask=mask
|
868 |
-
# )
|
869 |
-
# + x
|
870 |
-
# )
|
871 |
-
# elif self.temporal_crossattn_type == "selfattn":
|
872 |
-
# x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
|
873 |
-
# elif self.temporal_crossattn_type == "skip":
|
874 |
-
# pass
|
875 |
-
# else:
|
876 |
-
# raise NotImplementedError
|
877 |
-
# else:
|
878 |
-
# raise NotImplementedError
|
879 |
-
|
880 |
-
# return x
|
881 |
-
|
882 |
-
# def _st_cross_attn_parallel(
|
883 |
-
# self, x, context=None, temporal_context=None, order="sst", no_temporal_attn=None
|
884 |
-
# ):
|
885 |
-
# """order: x -> Self Attn -> Cross Attn -> attn_s
|
886 |
-
# x -> Temp Self Attn -> attn_t
|
887 |
-
# x' = x + attn_s + attn_t
|
888 |
-
# """
|
889 |
-
# if no_temporal_attn is not None:
|
890 |
-
# raise NotImplementedError
|
891 |
-
|
892 |
-
# B, C, T, H, W = x.shape
|
893 |
-
# # spatial self attention
|
894 |
-
# h = x
|
895 |
-
# h = rearrange(h, "b c t h w -> (b t) (h w) c")
|
896 |
-
# h = self.attn1(self.norm1(h)) + h
|
897 |
-
# # spatial cross
|
898 |
-
# # context_ = context.repeat(T, 1, 1) if context is not None else None
|
899 |
-
# if context is not None:
|
900 |
-
# context_ = []
|
901 |
-
# for i in range(context.shape[0]):
|
902 |
-
# context_.append(context[i].unsqueeze(0).repeat(T, 1, 1))
|
903 |
-
# context_ = torch.cat(context_, dim=0)
|
904 |
-
# else:
|
905 |
-
# context_ = None
|
906 |
-
|
907 |
-
# h = self.attn2(self.norm2(h), context=context_) + h
|
908 |
-
# h = rearrange(h, "(b t) (h w) c -> b c t h w", b=B, h=H)
|
909 |
-
|
910 |
-
# # temporal self
|
911 |
-
# h2 = x
|
912 |
-
# h2 = rearrange(h2, "b c t h w -> (b h w) t c")
|
913 |
-
# h2 = self.attn1_tmp(self.norm4(h2)) # + h2
|
914 |
-
# h2 = rearrange(h2, "(b h w) t c -> b c t h w", b=B, h=H, w=W)
|
915 |
-
# out = h + h2
|
916 |
-
# return rearrange(out, "b c t h w -> (b h w) t c")
|
917 |
-
|
918 |
-
##############################################################################################################################################
|
919 |
-
|
920 |
-
|
921 |
-
def spatial_attn_reshape(x):
|
922 |
-
return rearrange(x, "b c t h w -> (b t) (h w) c")
|
923 |
-
|
924 |
-
|
925 |
-
def spatial_attn_reshape_back(x, b, h):
|
926 |
-
return rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
927 |
-
|
928 |
-
|
929 |
-
def temporal_attn_reshape(x):
|
930 |
-
return rearrange(x, "b c t h w -> (b h w) t c")
|
931 |
-
|
932 |
-
|
933 |
-
def temporal_attn_reshape_back(x, b, h, w):
|
934 |
-
return rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w)
|
935 |
-
|
936 |
-
|
937 |
-
def local_spatial_temporal_attn_reshape(x, window_size):
|
938 |
-
B, C, T, H, W = x.shape
|
939 |
-
NH = H // window_size
|
940 |
-
NW = W // window_size
|
941 |
-
# x = x.view(B, C, T, NH, window_size, NW, window_size)
|
942 |
-
# tokens = x.permute(0, 1, 2, 3, 5, 4, 6).contiguous()
|
943 |
-
# tokens = tokens.view(-1, window_size, window_size, C)
|
944 |
-
x = rearrange(
|
945 |
-
x,
|
946 |
-
"b c t (nh wh) (nw ww) -> b c t nh wh nw ww",
|
947 |
-
nh=NH,
|
948 |
-
nw=NW,
|
949 |
-
wh=window_size,
|
950 |
-
ww=window_size,
|
951 |
-
).contiguous() # # B, C, T, NH, NW, window_size, window_size
|
952 |
-
x = rearrange(
|
953 |
-
x, "b c t nh wh nw ww -> (b nh nw) (t wh ww) c"
|
954 |
-
) # (B, NH, NW) (T, window_size, window_size) C
|
955 |
-
return x
|
956 |
-
|
957 |
-
|
958 |
-
def local_spatial_temporal_attn_reshape_back(x, window_size, b, h, w, t):
|
959 |
-
B, L, C = x.shape
|
960 |
-
NH = h // window_size
|
961 |
-
NW = w // window_size
|
962 |
-
x = rearrange(
|
963 |
-
x,
|
964 |
-
"(b nh nw) (t wh ww) c -> b c t nh wh nw ww",
|
965 |
-
b=b,
|
966 |
-
nh=NH,
|
967 |
-
nw=NW,
|
968 |
-
t=t,
|
969 |
-
wh=window_size,
|
970 |
-
ww=window_size,
|
971 |
-
)
|
972 |
-
x = rearrange(x, "b c t nh wh nw ww -> b c t (nh wh) (nw ww)")
|
973 |
-
return x
|
974 |
-
|
975 |
-
|
976 |
-
class SpatialTemporalTransformer(nn.Module):
|
977 |
-
"""
|
978 |
-
Transformer block for video-like data (5D tensor).
|
979 |
-
First, project the input (aka embedding) with NO reshape.
|
980 |
-
Then apply standard transformer action.
|
981 |
-
The 5D -> 3D reshape operation will be done in the specific attention module.
|
982 |
-
"""
|
983 |
-
|
984 |
-
def __init__(
|
985 |
-
self,
|
986 |
-
in_channels,
|
987 |
-
n_heads,
|
988 |
-
d_head,
|
989 |
-
depth=1,
|
990 |
-
dropout=0.0,
|
991 |
-
context_dim=None,
|
992 |
-
# Temporal stuff
|
993 |
-
temporal_length=None,
|
994 |
-
image_length=None,
|
995 |
-
use_relative_position=True,
|
996 |
-
img_video_joint_train=False,
|
997 |
-
cross_attn_on_tempoal=False,
|
998 |
-
temporal_crossattn_type="selfattn",
|
999 |
-
order="stst",
|
1000 |
-
temporalcrossfirst=False,
|
1001 |
-
split_stcontext=False,
|
1002 |
-
temporal_context_dim=None,
|
1003 |
-
**kwargs,
|
1004 |
-
):
|
1005 |
-
super().__init__()
|
1006 |
-
|
1007 |
-
self.in_channels = in_channels
|
1008 |
-
inner_dim = n_heads * d_head
|
1009 |
-
|
1010 |
-
self.norm = Normalize(in_channels)
|
1011 |
-
self.proj_in = nn.Conv3d(
|
1012 |
-
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
1013 |
-
)
|
1014 |
-
|
1015 |
-
self.transformer_blocks = nn.ModuleList(
|
1016 |
-
[
|
1017 |
-
BasicTransformerBlockST(
|
1018 |
-
inner_dim,
|
1019 |
-
n_heads,
|
1020 |
-
d_head,
|
1021 |
-
dropout=dropout,
|
1022 |
-
# cross attn
|
1023 |
-
context_dim=context_dim,
|
1024 |
-
# temporal attn
|
1025 |
-
temporal_length=temporal_length,
|
1026 |
-
image_length=image_length,
|
1027 |
-
use_relative_position=use_relative_position,
|
1028 |
-
img_video_joint_train=img_video_joint_train,
|
1029 |
-
temporal_crossattn_type=temporal_crossattn_type,
|
1030 |
-
order=order,
|
1031 |
-
temporalcrossfirst=temporalcrossfirst,
|
1032 |
-
split_stcontext=split_stcontext,
|
1033 |
-
temporal_context_dim=temporal_context_dim,
|
1034 |
-
**kwargs,
|
1035 |
-
)
|
1036 |
-
for d in range(depth)
|
1037 |
-
]
|
1038 |
-
)
|
1039 |
-
|
1040 |
-
self.proj_out = zero_module(
|
1041 |
-
nn.Conv3d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
1042 |
-
)
|
1043 |
-
|
1044 |
-
def forward(self, x, context=None, temporal_context=None, **kwargs):
|
1045 |
-
# note: if no context is given, cross-attention defaults to self-attention
|
1046 |
-
assert x.dim() == 5, f"x shape = {x.shape}"
|
1047 |
-
b, c, t, h, w = x.shape
|
1048 |
-
x_in = x
|
1049 |
-
|
1050 |
-
x = self.norm(x)
|
1051 |
-
x = self.proj_in(x)
|
1052 |
-
|
1053 |
-
for block in self.transformer_blocks:
|
1054 |
-
x = block(x, context=context, temporal_context=temporal_context, **kwargs)
|
1055 |
-
|
1056 |
-
x = self.proj_out(x)
|
1057 |
-
return x + x_in
|
1058 |
-
|
1059 |
-
|
1060 |
-
# ---------------------------------------------------------------------------------------------------
|
1061 |
-
|
1062 |
-
|
1063 |
-
class STAttentionBlock2(nn.Module):
|
1064 |
-
def __init__(
|
1065 |
-
self,
|
1066 |
-
channels,
|
1067 |
-
num_heads=1,
|
1068 |
-
num_head_channels=-1,
|
1069 |
-
use_checkpoint=False, # not used, only used in ResBlock
|
1070 |
-
use_new_attention_order=False, # QKVAttention or QKVAttentionLegacy
|
1071 |
-
temporal_length=16, # used in relative positional representation.
|
1072 |
-
image_length=8, # used for image-video joint training.
|
1073 |
-
use_relative_position=False, # whether use relative positional representation in temporal attention.
|
1074 |
-
img_video_joint_train=False,
|
1075 |
-
# norm_type="groupnorm",
|
1076 |
-
attn_norm_type="group",
|
1077 |
-
use_tempoal_causal_attn=False,
|
1078 |
-
):
|
1079 |
-
"""
|
1080 |
-
version 1: guided_diffusion implemented version
|
1081 |
-
version 2: remove args input argument
|
1082 |
-
"""
|
1083 |
-
super().__init__()
|
1084 |
-
|
1085 |
-
if num_head_channels == -1:
|
1086 |
-
self.num_heads = num_heads
|
1087 |
-
else:
|
1088 |
-
assert (
|
1089 |
-
channels % num_head_channels == 0
|
1090 |
-
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
1091 |
-
self.num_heads = channels // num_head_channels
|
1092 |
-
self.use_checkpoint = use_checkpoint
|
1093 |
-
|
1094 |
-
self.temporal_length = temporal_length
|
1095 |
-
self.image_length = image_length
|
1096 |
-
self.use_relative_position = use_relative_position
|
1097 |
-
self.img_video_joint_train = img_video_joint_train
|
1098 |
-
self.attn_norm_type = attn_norm_type
|
1099 |
-
assert self.attn_norm_type in ["group", "no_norm"]
|
1100 |
-
self.use_tempoal_causal_attn = use_tempoal_causal_attn
|
1101 |
-
|
1102 |
-
if self.attn_norm_type == "group":
|
1103 |
-
self.norm_s = normalization(channels)
|
1104 |
-
self.norm_t = normalization(channels)
|
1105 |
-
|
1106 |
-
self.qkv_s = conv_nd(1, channels, channels * 3, 1)
|
1107 |
-
self.qkv_t = conv_nd(1, channels, channels * 3, 1)
|
1108 |
-
|
1109 |
-
if self.img_video_joint_train:
|
1110 |
-
mask = th.ones(
|
1111 |
-
[1, temporal_length + image_length, temporal_length + image_length]
|
1112 |
-
)
|
1113 |
-
mask[:, temporal_length:, :] = 0
|
1114 |
-
mask[:, :, temporal_length:] = 0
|
1115 |
-
self.register_buffer("mask", mask)
|
1116 |
-
else:
|
1117 |
-
self.mask = None
|
1118 |
-
|
1119 |
-
if use_new_attention_order:
|
1120 |
-
# split qkv before split heads
|
1121 |
-
self.attention_s = QKVAttention(self.num_heads)
|
1122 |
-
self.attention_t = QKVAttention(self.num_heads)
|
1123 |
-
else:
|
1124 |
-
# split heads before split qkv
|
1125 |
-
self.attention_s = QKVAttentionLegacy(self.num_heads)
|
1126 |
-
self.attention_t = QKVAttentionLegacy(self.num_heads)
|
1127 |
-
|
1128 |
-
if use_relative_position:
|
1129 |
-
self.relative_position_k = RelativePosition(
|
1130 |
-
num_units=channels // self.num_heads,
|
1131 |
-
max_relative_position=temporal_length,
|
1132 |
-
)
|
1133 |
-
self.relative_position_v = RelativePosition(
|
1134 |
-
num_units=channels // self.num_heads,
|
1135 |
-
max_relative_position=temporal_length,
|
1136 |
-
)
|
1137 |
-
|
1138 |
-
self.proj_out_s = zero_module(
|
1139 |
-
conv_nd(1, channels, channels, 1)
|
1140 |
-
) # conv_dim, in_channels, out_channels, kernel_size
|
1141 |
-
self.proj_out_t = zero_module(
|
1142 |
-
conv_nd(1, channels, channels, 1)
|
1143 |
-
) # conv_dim, in_channels, out_channels, kernel_size
|
1144 |
-
|
1145 |
-
def forward(self, x, mask=None):
|
1146 |
-
b, c, t, h, w = x.shape
|
1147 |
-
|
1148 |
-
# spatial
|
1149 |
-
out = rearrange(x, "b c t h w -> (b t) c (h w)")
|
1150 |
-
if self.attn_norm_type == "no_norm":
|
1151 |
-
qkv = self.qkv_s(out)
|
1152 |
-
else:
|
1153 |
-
qkv = self.qkv_s(self.norm_s(out))
|
1154 |
-
out = self.attention_s(qkv)
|
1155 |
-
out = self.proj_out_s(out)
|
1156 |
-
out = rearrange(out, "(b t) c (h w) -> b c t h w", b=b, h=h)
|
1157 |
-
x += out
|
1158 |
-
|
1159 |
-
# temporal
|
1160 |
-
out = rearrange(x, "b c t h w -> (b h w) c t")
|
1161 |
-
if self.attn_norm_type == "no_norm":
|
1162 |
-
qkv = self.qkv_t(out)
|
1163 |
-
else:
|
1164 |
-
qkv = self.qkv_t(self.norm_t(out))
|
1165 |
-
|
1166 |
-
# relative positional embedding
|
1167 |
-
if self.use_relative_position:
|
1168 |
-
len_q = qkv.size()[-1]
|
1169 |
-
len_k, len_v = len_q, len_q
|
1170 |
-
k_rp = self.relative_position_k(len_q, len_k)
|
1171 |
-
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
1172 |
-
out = self.attention_t(
|
1173 |
-
qkv,
|
1174 |
-
rp=(k_rp, v_rp),
|
1175 |
-
mask=self.mask,
|
1176 |
-
use_tempoal_causal_attn=self.use_tempoal_causal_attn,
|
1177 |
-
)
|
1178 |
-
else:
|
1179 |
-
out = self.attention_t(
|
1180 |
-
qkv,
|
1181 |
-
rp=None,
|
1182 |
-
mask=self.mask,
|
1183 |
-
use_tempoal_causal_attn=self.use_tempoal_causal_attn,
|
1184 |
-
)
|
1185 |
-
|
1186 |
-
out = self.proj_out_t(out)
|
1187 |
-
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
1188 |
-
|
1189 |
-
return x + out
|
1190 |
-
|
1191 |
-
|
1192 |
-
# ---------------------------------------------------------------------------------------------------------------
|
1193 |
-
|
1194 |
-
|
1195 |
-
class QKVAttentionLegacy(nn.Module):
|
1196 |
-
"""
|
1197 |
-
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
1198 |
-
"""
|
1199 |
-
|
1200 |
-
def __init__(self, n_heads):
|
1201 |
-
super().__init__()
|
1202 |
-
self.n_heads = n_heads
|
1203 |
-
|
1204 |
-
def forward(self, qkv, rp=None, mask=None):
|
1205 |
-
"""
|
1206 |
-
Apply QKV attention.
|
1207 |
-
|
1208 |
-
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
1209 |
-
:return: an [N x (H * C) x T] tensor after attention.
|
1210 |
-
"""
|
1211 |
-
if rp is not None or mask is not None:
|
1212 |
-
raise NotImplementedError
|
1213 |
-
bs, width, length = qkv.shape
|
1214 |
-
assert width % (3 * self.n_heads) == 0
|
1215 |
-
ch = width // (3 * self.n_heads)
|
1216 |
-
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
1217 |
-
scale = 1 / math.sqrt(math.sqrt(ch))
|
1218 |
-
weight = th.einsum(
|
1219 |
-
"bct,bcs->bts", q * scale, k * scale
|
1220 |
-
) # More stable with f16 than dividing afterwards
|
1221 |
-
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
1222 |
-
a = th.einsum("bts,bcs->bct", weight, v)
|
1223 |
-
return a.reshape(bs, -1, length)
|
1224 |
-
|
1225 |
-
@staticmethod
|
1226 |
-
def count_flops(model, _x, y):
|
1227 |
-
return count_flops_attn(model, _x, y)
|
1228 |
-
|
1229 |
-
|
1230 |
-
# ---------------------------------------------------------------------------------------------------------------
|
1231 |
-
|
1232 |
-
|
1233 |
-
class QKVAttention(nn.Module):
|
1234 |
-
"""
|
1235 |
-
A module which performs QKV attention and splits in a different order.
|
1236 |
-
"""
|
1237 |
-
|
1238 |
-
def __init__(self, n_heads):
|
1239 |
-
super().__init__()
|
1240 |
-
self.n_heads = n_heads
|
1241 |
-
|
1242 |
-
def forward(self, qkv, rp=None, mask=None, use_tempoal_causal_attn=False):
|
1243 |
-
"""
|
1244 |
-
Apply QKV attention.
|
1245 |
-
|
1246 |
-
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
1247 |
-
:return: an [N x (H * C) x T] tensor after attention.
|
1248 |
-
"""
|
1249 |
-
bs, width, length = qkv.shape
|
1250 |
-
assert width % (3 * self.n_heads) == 0
|
1251 |
-
ch = width // (3 * self.n_heads)
|
1252 |
-
# print('qkv', qkv.size())
|
1253 |
-
qkv=qkv.contiguous()
|
1254 |
-
q, k, v = qkv.chunk(3, dim=1)
|
1255 |
-
scale = 1 / math.sqrt(math.sqrt(ch))
|
1256 |
-
# print('bs, self.n_heads, ch, length', bs, self.n_heads, ch, length)
|
1257 |
-
|
1258 |
-
weight = th.einsum(
|
1259 |
-
"bct,bcs->bts",
|
1260 |
-
(q * scale).view(bs * self.n_heads, ch, length),
|
1261 |
-
(k * scale).view(bs * self.n_heads, ch, length),
|
1262 |
-
) # More stable with f16 than dividing afterwards
|
1263 |
-
# weight:[b,t,s] b=bs*n_heads*T
|
1264 |
-
|
1265 |
-
if rp is not None:
|
1266 |
-
k_rp, v_rp = rp # [length, length, head_dim] [8, 8, 48]
|
1267 |
-
weight2 = th.einsum(
|
1268 |
-
"bct,tsc->bst", (q * scale).view(bs * self.n_heads, ch, length), k_rp
|
1269 |
-
)
|
1270 |
-
weight += weight2
|
1271 |
-
|
1272 |
-
if use_tempoal_causal_attn:
|
1273 |
-
# weight = torch.tril(weight)
|
1274 |
-
assert mask is None, f"Not implemented for merging two masks!"
|
1275 |
-
mask = torch.tril(torch.ones(weight.shape))
|
1276 |
-
else:
|
1277 |
-
if mask is not None: # only keep upper-left matrix
|
1278 |
-
# process mask
|
1279 |
-
c, t, _ = weight.shape
|
1280 |
-
|
1281 |
-
if mask.shape[-1] > t:
|
1282 |
-
mask = mask[:, :t, :t]
|
1283 |
-
elif mask.shape[-1] < t: # pad ones
|
1284 |
-
mask_ = th.zeros([c, t, t]).to(mask.device)
|
1285 |
-
t_ = mask.shape[-1]
|
1286 |
-
mask_[:, :t_, :t_] = mask
|
1287 |
-
mask = mask_
|
1288 |
-
else:
|
1289 |
-
assert (
|
1290 |
-
weight.shape[-1] == mask.shape[-1]
|
1291 |
-
), f"weight={weight.shape}, mask={mask.shape}"
|
1292 |
-
|
1293 |
-
if mask is not None:
|
1294 |
-
INF = -1e8 # float('-inf')
|
1295 |
-
weight = weight.float().masked_fill(mask == 0, INF)
|
1296 |
-
|
1297 |
-
weight = F.softmax(weight.float(), dim=-1).type(
|
1298 |
-
weight.dtype
|
1299 |
-
) # [256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
|
1300 |
-
# weight = F.softmax(weight, dim=-1)#[256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
|
1301 |
-
a = th.einsum(
|
1302 |
-
"bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)
|
1303 |
-
) # [256, 48, 8] [b, head_dim, t]
|
1304 |
-
|
1305 |
-
if rp is not None:
|
1306 |
-
a2 = th.einsum("bts,tsc->btc", weight, v_rp).transpose(1, 2) # btc->bct
|
1307 |
-
a += a2
|
1308 |
-
|
1309 |
-
return a.reshape(bs, -1, length)
|
1310 |
-
|
1311 |
-
|
1312 |
-
# ---------------------------------------------------------------------------------------------------------------
|
1313 |
-
|
1314 |
-
# ---------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
base_encoder.py
DELETED
@@ -1,68 +0,0 @@
|
|
1 |
-
from abc import ABC, abstractmethod
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
|
6 |
-
|
7 |
-
class BaseVisionTower(nn.Module):
|
8 |
-
def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
|
9 |
-
super().__init__()
|
10 |
-
|
11 |
-
self.is_loaded = False
|
12 |
-
|
13 |
-
self.vision_tower_name = vision_tower_name
|
14 |
-
self.delay_load = delay_load
|
15 |
-
|
16 |
-
@abstractmethod
|
17 |
-
def load_model(self, device_map=None):
|
18 |
-
raise NotImplementedError("Subclasses must implement load_model")
|
19 |
-
|
20 |
-
@abstractmethod
|
21 |
-
def _forward(self, images):
|
22 |
-
raise NotImplementedError("Subclasses must implement forward")
|
23 |
-
|
24 |
-
def forward(self, images):
|
25 |
-
if type(images) is list:
|
26 |
-
image_features = [self._forward(image.unsqueeze(0)) for image in images]
|
27 |
-
else:
|
28 |
-
image_features = self._forward(images)
|
29 |
-
|
30 |
-
return image_features
|
31 |
-
|
32 |
-
@property
|
33 |
-
def dummy_feature(self):
|
34 |
-
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
35 |
-
|
36 |
-
@property
|
37 |
-
def dtype(self):
|
38 |
-
# Dynamically infer the dtype from the first parameter, if not explicitly specified
|
39 |
-
if hasattr(self.vision_tower, "dtype"):
|
40 |
-
return self.vision_tower.dtype
|
41 |
-
else:
|
42 |
-
params = list(self.vision_tower.parameters())
|
43 |
-
return (
|
44 |
-
params[0].dtype if len(params) > 0 else torch.float32
|
45 |
-
) # Default to torch.float32 if no parameters
|
46 |
-
|
47 |
-
@property
|
48 |
-
def device(self):
|
49 |
-
# Dynamically infer the device from the first parameter, if not explicitly specified
|
50 |
-
if hasattr(self.vision_tower, "device"):
|
51 |
-
return self.vision_tower.device
|
52 |
-
else:
|
53 |
-
params = list(self.vision_tower.parameters())
|
54 |
-
return (
|
55 |
-
params[0].device if len(params) > 0 else torch.device("cpu")
|
56 |
-
) # Default to CPU if no parameters
|
57 |
-
@property
|
58 |
-
def config(self):
|
59 |
-
if self.is_loaded:
|
60 |
-
return self.vision_tower.config
|
61 |
-
else:
|
62 |
-
return self.cfg_only
|
63 |
-
@property
|
64 |
-
def hidden_size(self):
|
65 |
-
try:
|
66 |
-
return self.config.hidden_size
|
67 |
-
except:
|
68 |
-
return self._hidden_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
builder.py
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from .siglip_encoder import SigLipVisionTower
|
3 |
-
|
4 |
-
|
5 |
-
def build_vision_tower(vision_tower_cfg, **kwargs):
|
6 |
-
|
7 |
-
vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
|
8 |
-
is_absolute_path_exists = os.path.exists(vision_tower)
|
9 |
-
use_s2 = getattr(vision_tower_cfg, "s2", False)
|
10 |
-
|
11 |
-
#print(getattr(vision_tower_cfg, "vision_tower", None))
|
12 |
-
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
13 |
-
if getattr(vision_tower_cfg, "vision_tower", None) and "siglip" in getattr(vision_tower_cfg, "vision_tower", None).lower():
|
14 |
-
#print('*************\n')
|
15 |
-
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
16 |
-
|
17 |
-
raise ValueError(f"Unknown vision tower: {vision_tower}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
],
|
5 |
"auto_map": {
|
6 |
"AutoConfig": "llava_qwen.LlavaQwenConfig",
|
7 |
-
"
|
8 |
},
|
9 |
"attention_dropout": 0.0,
|
10 |
"bos_token_id": 151643,
|
@@ -202,5 +202,7 @@
|
|
202 |
"use_pos_skipping": false,
|
203 |
"use_sliding_window": false,
|
204 |
"vision_tower_pretrained": null,
|
205 |
-
"vocab_size": 152064
|
|
|
|
|
206 |
}
|
|
|
4 |
],
|
5 |
"auto_map": {
|
6 |
"AutoConfig": "llava_qwen.LlavaQwenConfig",
|
7 |
+
"AutoModelForCausalLM": "llava_qwen.LlavaQwenForCausalLM"
|
8 |
},
|
9 |
"attention_dropout": 0.0,
|
10 |
"bos_token_id": 151643,
|
|
|
202 |
"use_pos_skipping": false,
|
203 |
"use_sliding_window": false,
|
204 |
"vision_tower_pretrained": null,
|
205 |
+
"vocab_size": 152064,
|
206 |
+
"enable_chunk_prefill": false,
|
207 |
+
"prefill_config": {}
|
208 |
}
|
configuration_qwen2.py
DELETED
@@ -1,169 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
""" Qwen2 model configuration"""
|
16 |
-
|
17 |
-
from transformers.configuration_utils import PretrainedConfig
|
18 |
-
from transformers.utils import logging
|
19 |
-
|
20 |
-
|
21 |
-
logger = logging.get_logger(__name__)
|
22 |
-
|
23 |
-
QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
-
"Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json",
|
25 |
-
}
|
26 |
-
|
27 |
-
|
28 |
-
class Qwen2Config(PretrainedConfig):
|
29 |
-
r"""
|
30 |
-
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
31 |
-
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
32 |
-
with the defaults will yield a similar configuration to that of
|
33 |
-
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
34 |
-
|
35 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
-
documentation from [`PretrainedConfig`] for more information.
|
37 |
-
|
38 |
-
|
39 |
-
Args:
|
40 |
-
vocab_size (`int`, *optional*, defaults to 151936):
|
41 |
-
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
42 |
-
`inputs_ids` passed when calling [`Qwen2Model`]
|
43 |
-
hidden_size (`int`, *optional*, defaults to 4096):
|
44 |
-
Dimension of the hidden representations.
|
45 |
-
intermediate_size (`int`, *optional*, defaults to 22016):
|
46 |
-
Dimension of the MLP representations.
|
47 |
-
num_hidden_layers (`int`, *optional*, defaults to 32):
|
48 |
-
Number of hidden layers in the Transformer encoder.
|
49 |
-
num_attention_heads (`int`, *optional*, defaults to 32):
|
50 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
-
num_key_value_heads (`int`, *optional*, defaults to 32):
|
52 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
53 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
54 |
-
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
55 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
56 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
57 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
58 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
-
The non-linear activation function (function or string) in the decoder.
|
60 |
-
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
61 |
-
The maximum sequence length that this model might ever be used with.
|
62 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
65 |
-
The epsilon used by the rms normalization layers.
|
66 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
-
relevant if `config.is_decoder=True`.
|
69 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
70 |
-
Whether the model's input and output word embeddings should be tied.
|
71 |
-
rope_theta (`float`, *optional*, defaults to 10000.0):
|
72 |
-
The base period of the RoPE embeddings.
|
73 |
-
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
74 |
-
Whether to use sliding window attention.
|
75 |
-
sliding_window (`int`, *optional*, defaults to 4096):
|
76 |
-
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
77 |
-
max_window_layers (`int`, *optional*, defaults to 28):
|
78 |
-
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
79 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
80 |
-
The dropout ratio for the attention probabilities.
|
81 |
-
|
82 |
-
```python
|
83 |
-
>>> from transformers import Qwen2Model, Qwen2Config
|
84 |
-
|
85 |
-
>>> # Initializing a Qwen2 style configuration
|
86 |
-
>>> configuration = Qwen2Config()
|
87 |
-
|
88 |
-
>>> # Initializing a model from the Qwen2-7B style configuration
|
89 |
-
>>> model = Qwen2Model(configuration)
|
90 |
-
|
91 |
-
>>> # Accessing the model configuration
|
92 |
-
>>> configuration = model.config
|
93 |
-
```"""
|
94 |
-
|
95 |
-
model_type = "qwen2"
|
96 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
97 |
-
|
98 |
-
def __init__(
|
99 |
-
self,
|
100 |
-
vocab_size=151936,
|
101 |
-
hidden_size=4096,
|
102 |
-
intermediate_size=22016,
|
103 |
-
num_hidden_layers=32,
|
104 |
-
num_attention_heads=32,
|
105 |
-
num_key_value_heads=32,
|
106 |
-
hidden_act="silu",
|
107 |
-
max_position_embeddings=32768,
|
108 |
-
initializer_range=0.02,
|
109 |
-
rms_norm_eps=1e-6,
|
110 |
-
use_cache=True,
|
111 |
-
tie_word_embeddings=False,
|
112 |
-
rope_theta=10000.0,
|
113 |
-
use_sliding_window=False,
|
114 |
-
sliding_window=4096,
|
115 |
-
rope_scaling=None,
|
116 |
-
max_window_layers=28,
|
117 |
-
attention_dropout=0.0,
|
118 |
-
beacon_window=1024,
|
119 |
-
beacon_stride=1024,
|
120 |
-
beacon_attn="full-coverage",
|
121 |
-
beacon_ratio=[2,4,8,16,32],
|
122 |
-
beacon_ratio_mix="step-random",
|
123 |
-
beacon_param=[],
|
124 |
-
beacon_embed_init="eos",
|
125 |
-
beacon_sink_size=0,
|
126 |
-
beacon_attend_prev=True,
|
127 |
-
beacon_pos="interleave",
|
128 |
-
beacon_parallel_window=1,
|
129 |
-
**kwargs,
|
130 |
-
):
|
131 |
-
self.vocab_size = vocab_size
|
132 |
-
self.max_position_embeddings = max_position_embeddings
|
133 |
-
self.hidden_size = hidden_size
|
134 |
-
self.intermediate_size = intermediate_size
|
135 |
-
self.num_hidden_layers = num_hidden_layers
|
136 |
-
self.num_attention_heads = num_attention_heads
|
137 |
-
self.use_sliding_window = use_sliding_window
|
138 |
-
self.sliding_window = sliding_window
|
139 |
-
self.max_window_layers = max_window_layers
|
140 |
-
self.rope_scaling = rope_scaling
|
141 |
-
|
142 |
-
# for backward compatibility
|
143 |
-
if num_key_value_heads is None:
|
144 |
-
num_key_value_heads = num_attention_heads
|
145 |
-
|
146 |
-
self.num_key_value_heads = num_key_value_heads
|
147 |
-
self.hidden_act = hidden_act
|
148 |
-
self.initializer_range = initializer_range
|
149 |
-
self.rms_norm_eps = rms_norm_eps
|
150 |
-
self.use_cache = use_cache
|
151 |
-
self.rope_theta = rope_theta
|
152 |
-
self.attention_dropout = attention_dropout
|
153 |
-
|
154 |
-
self.beacon_window = beacon_window
|
155 |
-
self.beacon_stride = beacon_stride
|
156 |
-
self.beacon_attn = beacon_attn
|
157 |
-
self.beacon_ratio = beacon_ratio
|
158 |
-
self.beacon_ratio_mix = beacon_ratio_mix
|
159 |
-
self.beacon_param = beacon_param
|
160 |
-
self.beacon_embed_init = beacon_embed_init
|
161 |
-
self.beacon_sink_size = beacon_sink_size
|
162 |
-
self.beacon_attend_prev = beacon_attend_prev
|
163 |
-
self.beacon_pos = beacon_pos
|
164 |
-
self.beacon_parallel_window = beacon_parallel_window
|
165 |
-
|
166 |
-
super().__init__(
|
167 |
-
tie_word_embeddings=tie_word_embeddings,
|
168 |
-
**kwargs,
|
169 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llava_arch.py
CHANGED
@@ -1,17 +1,3 @@
|
|
1 |
-
# Copyright 2023 Haotian Liu
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
from abc import ABC, abstractmethod
|
16 |
import importlib.util
|
17 |
import os.path as osp
|
@@ -26,25 +12,6 @@ import torch.nn.functional as F
|
|
26 |
from .multimodal_encoder.builder import build_vision_tower
|
27 |
from .multimodal_resampler.builder import build_vision_resampler
|
28 |
from .multimodal_projector.builder import build_vision_projector
|
29 |
-
# except ModuleNotFoundError:
|
30 |
-
# spec = importlib.util.spec_from_file_location(
|
31 |
-
# "builder",
|
32 |
-
# osp.join(osp.dirname(__file__), "builder.py"),
|
33 |
-
# )
|
34 |
-
# builder = importlib.util.module_from_spec(spec)
|
35 |
-
# spec.loader.exec_module(builder)
|
36 |
-
# build_vision_tower = getattr(
|
37 |
-
# builder,
|
38 |
-
# "build_vision_tower",
|
39 |
-
# )
|
40 |
-
# build_vision_resampler = getattr(
|
41 |
-
# builder,
|
42 |
-
# "build_vision_resampler",
|
43 |
-
# )
|
44 |
-
# build_vision_projector = getattr(
|
45 |
-
# builder,
|
46 |
-
# "build_vision_projector",
|
47 |
-
# )
|
48 |
|
49 |
from transformers import AutoTokenizer
|
50 |
|
@@ -59,7 +26,6 @@ import torch.nn.functional as F
|
|
59 |
import pdb
|
60 |
|
61 |
class LlavaMetaModel:
|
62 |
-
|
63 |
def __init__(self, config):
|
64 |
super(LlavaMetaModel, self).__init__(config)
|
65 |
|
@@ -72,31 +38,13 @@ class LlavaMetaModel:
|
|
72 |
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
|
73 |
self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))
|
74 |
|
75 |
-
# self.llm_tokenizer = AutoTokenizer.from_pretrained(config._name_or_path)
|
76 |
self.hidden_size=config.hidden_size
|
77 |
-
# print(config)
|
78 |
-
# exit(0)
|
79 |
-
|
80 |
-
# self.text_tokenizer = T5Tokenizer.from_pretrained('google-t5/t5-small')
|
81 |
-
##############################################################################
|
82 |
-
# self.text_select_model = T5EncoderModel.from_pretrained('google-t5/t5-small')
|
83 |
-
|
84 |
-
# self.text_gamma=0.75
|
85 |
-
|
86 |
-
###############################################################################
|
87 |
self.text_mlp=nn.Sequential(
|
88 |
nn.Linear(config.hidden_size,config.hidden_size),
|
89 |
nn.GELU(),
|
90 |
)
|
91 |
self.sae=SiglipAE()
|
92 |
-
|
93 |
-
|
94 |
-
###############################################################################
|
95 |
-
# self.vision_select=nn.Parameter(
|
96 |
-
# torch.randn((4, self.config.hidden_size), dtype=self.dtype)
|
97 |
-
# )
|
98 |
-
##############################################################################
|
99 |
-
|
100 |
def get_vision_tower(self):
|
101 |
vision_tower = getattr(self, "vision_tower", None)
|
102 |
if type(vision_tower) is list:
|
@@ -147,22 +95,6 @@ class LlavaMetaModel:
|
|
147 |
|
148 |
self.sae=SiglipAE()
|
149 |
self.sae.load_state_dict(torch.load('/share/LXRlxr0_0/code/videoxl2/videoxl2/longva/longva/model/encoder.pth'),strict=False)
|
150 |
-
##############################################################################
|
151 |
-
# self.vision_select=nn.Parameter(
|
152 |
-
# torch.randn((30, self.config.hidden_size), dtype=self.dtype)
|
153 |
-
# )
|
154 |
-
|
155 |
-
# #self.text_tokenizer = T5Tokenizer.from_pretrained('google-t5/t5-small')
|
156 |
-
# self.text_select_model = T5EncoderModel.from_pretrained('google-t5/t5-small')
|
157 |
-
|
158 |
-
# self.text_mlp=nn.Sequential(
|
159 |
-
# nn.Linear(512,self.config.hidden_size),
|
160 |
-
# nn.GELU(),
|
161 |
-
# # nn.Linear(config.hidden_size,config.hidden_size),
|
162 |
-
# # nn.GELU(),
|
163 |
-
# )
|
164 |
-
##############################################################################
|
165 |
-
|
166 |
|
167 |
if getattr(self, "mm_projector", None) is None:
|
168 |
self.mm_projector = build_vision_projector(self.config, vision_cfg=vision_tower.config)
|
@@ -185,15 +117,7 @@ class LlavaMetaModel:
|
|
185 |
rank0_print(f"Loaded mm projector weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
|
186 |
incompatible_keys = self.vision_resampler.load_state_dict(get_w(mm_projector_weights, "vision_resampler"), strict=False)
|
187 |
rank0_print(f"Loaded vision resampler weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
|
188 |
-
|
189 |
-
|
190 |
-
# self.vision_select.data = mm_projector_weights["model.vision_select"]
|
191 |
-
|
192 |
-
# self.text_mlp.load_state_dict(get_w(mm_projector_weights, "text_mlp"))
|
193 |
-
|
194 |
-
# self.text_select_model.load_state_dict(get_w(mm_projector_weights, "text_select_model"),strict=False)
|
195 |
-
#self.vision_tower.load_state_dict(get_w(mm_projector_weights, "vision_tower"),strict=False)
|
196 |
-
|
197 |
def unpad_image(tensor, original_size):
|
198 |
"""
|
199 |
Unpads a PyTorch tensor of a padded and resized image.
|
@@ -283,25 +207,30 @@ class LlavaMetaForCausalLM(ABC):
|
|
283 |
return torch.repeat_interleave(image_features, repeats=4, dim=0)
|
284 |
|
285 |
def add_video(self, video_features):
|
286 |
-
|
|
|
|
|
|
|
287 |
last_feature = video_features[-1:]
|
288 |
-
|
289 |
-
|
|
|
|
|
290 |
expanded_x = torch.cat([video_features, repeated_features], dim=0)
|
291 |
return expanded_x
|
292 |
-
|
293 |
-
repeat_counts = torch.ones(video_features.size(0), dtype=torch.long, device=video_features.device)
|
294 |
|
295 |
-
|
296 |
-
if
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
|
|
|
|
302 |
|
303 |
-
return
|
304 |
-
|
305 |
def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None):
|
306 |
if self.config.enable_chunk_prefill:
|
307 |
chunk_size_for_vision_tower = self.config.prefill_config['chunk_size_for_vision_tower']
|
@@ -351,28 +280,27 @@ class LlavaMetaForCausalLM(ABC):
|
|
351 |
torch.cuda.empty_cache()
|
352 |
|
353 |
chunk_size = chunk_size_for_vision_tower
|
354 |
-
print(f'chunk_size: {chunk_size}')
|
355 |
all_feat_list = []
|
356 |
for idx, feat in enumerate(per_videos_or_images_features):
|
357 |
for i in range(0, feat.shape[0], chunk_size):
|
358 |
-
batched_feat = feat[i:i+chunk_size]
|
359 |
-
batched_feat=self.interpolate(batched_feat) #
|
360 |
if idx in video_idx_in_batch:
|
361 |
-
batched_feat = self.add_video(batched_feat)
|
362 |
else:
|
363 |
batched_feat = self.add_image(batched_feat)
|
364 |
|
365 |
bc,ch,h,w = batched_feat.shape
|
366 |
batched_feat = batched_feat.view(bc//4,ch,4,h,w)
|
367 |
|
368 |
-
batched_feat=self.get_model().sae(batched_feat).squeeze(2)
|
369 |
batched_feat = batched_feat.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
|
|
|
370 |
batched_feat = self.get_model().mm_projector(batched_feat)
|
371 |
-
|
372 |
-
|
373 |
batched_feat = self.get_2dPool(batched_feat)
|
374 |
all_feat_list.append(batched_feat)
|
375 |
-
|
376 |
feat = torch.cat(all_feat_list, dim=0)
|
377 |
# peak_memory_allocated = torch.cuda.max_memory_allocated()
|
378 |
# print(f"sae 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
@@ -380,10 +308,8 @@ class LlavaMetaForCausalLM(ABC):
|
|
380 |
del per_videos_or_images_features
|
381 |
del all_feat_list
|
382 |
torch.cuda.empty_cache()
|
383 |
-
|
384 |
all_videos_or_images_features.append(feat)
|
385 |
return all_videos_or_images_features
|
386 |
-
|
387 |
|
388 |
def interpolate(self,image_features):
|
389 |
b, num_tokens, dim = image_features.shape
|
@@ -673,7 +599,7 @@ class LlavaMetaForCausalLM(ABC):
|
|
673 |
|
674 |
# Truncate sequences to max length as image embeddings can make the sequence longer
|
675 |
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
|
676 |
-
# NOTE: qmh
|
677 |
# new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
|
678 |
# new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]
|
679 |
|
@@ -771,5 +697,4 @@ class LlavaMetaForCausalLM(ABC):
|
|
771 |
for p in self.get_input_embeddings().parameters():
|
772 |
p.requires_grad = False
|
773 |
for p in self.get_output_embeddings().parameters():
|
774 |
-
p.requires_grad = False
|
775 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from abc import ABC, abstractmethod
|
2 |
import importlib.util
|
3 |
import os.path as osp
|
|
|
12 |
from .multimodal_encoder.builder import build_vision_tower
|
13 |
from .multimodal_resampler.builder import build_vision_resampler
|
14 |
from .multimodal_projector.builder import build_vision_projector
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
from transformers import AutoTokenizer
|
17 |
|
|
|
26 |
import pdb
|
27 |
|
28 |
class LlavaMetaModel:
|
|
|
29 |
def __init__(self, config):
|
30 |
super(LlavaMetaModel, self).__init__(config)
|
31 |
|
|
|
38 |
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
|
39 |
self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))
|
40 |
|
|
|
41 |
self.hidden_size=config.hidden_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
self.text_mlp=nn.Sequential(
|
43 |
nn.Linear(config.hidden_size,config.hidden_size),
|
44 |
nn.GELU(),
|
45 |
)
|
46 |
self.sae=SiglipAE()
|
47 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def get_vision_tower(self):
|
49 |
vision_tower = getattr(self, "vision_tower", None)
|
50 |
if type(vision_tower) is list:
|
|
|
95 |
|
96 |
self.sae=SiglipAE()
|
97 |
self.sae.load_state_dict(torch.load('/share/LXRlxr0_0/code/videoxl2/videoxl2/longva/longva/model/encoder.pth'),strict=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
if getattr(self, "mm_projector", None) is None:
|
100 |
self.mm_projector = build_vision_projector(self.config, vision_cfg=vision_tower.config)
|
|
|
117 |
rank0_print(f"Loaded mm projector weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
|
118 |
incompatible_keys = self.vision_resampler.load_state_dict(get_w(mm_projector_weights, "vision_resampler"), strict=False)
|
119 |
rank0_print(f"Loaded vision resampler weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
|
120 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
def unpad_image(tensor, original_size):
|
122 |
"""
|
123 |
Unpads a PyTorch tensor of a padded and resized image.
|
|
|
207 |
return torch.repeat_interleave(image_features, repeats=4, dim=0)
|
208 |
|
209 |
def add_video(self, video_features):
|
210 |
+
# Current batch size
|
211 |
+
current_batch_size = video_features.size(0)
|
212 |
+
# Handle cases where the batch size is less than 4
|
213 |
+
if current_batch_size < 4:
|
214 |
last_feature = video_features[-1:]
|
215 |
+
# Calculate how many times the last feature needs to be repeated
|
216 |
+
num_repeats = 4 - current_batch_size
|
217 |
+
repeated_features = last_feature.repeat(num_repeats, 1, 1, 1)
|
218 |
+
# Concatenate original features with repeated last feature
|
219 |
expanded_x = torch.cat([video_features, repeated_features], dim=0)
|
220 |
return expanded_x
|
|
|
|
|
221 |
|
222 |
+
# Handle cases where the batch size is 4 or greater, but not a multiple of 4
|
223 |
+
if current_batch_size % 4 != 0:
|
224 |
+
last_feature = video_features[-1:]
|
225 |
+
# Calculate how many features are needed to reach the next multiple of 4
|
226 |
+
padding_size = 4 - (current_batch_size % 4)
|
227 |
+
repeated_features = last_feature.repeat(padding_size, 1, 1, 1)
|
228 |
+
# Concatenate original features with repeated last feature
|
229 |
+
expanded_x = torch.cat([video_features, repeated_features], dim=0)
|
230 |
+
return expanded_x
|
231 |
|
232 |
+
# If the batch size is already a multiple of 4, return as is
|
233 |
+
return video_features
|
234 |
def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None):
|
235 |
if self.config.enable_chunk_prefill:
|
236 |
chunk_size_for_vision_tower = self.config.prefill_config['chunk_size_for_vision_tower']
|
|
|
280 |
torch.cuda.empty_cache()
|
281 |
|
282 |
chunk_size = chunk_size_for_vision_tower
|
283 |
+
# print(f'chunk_size: {chunk_size}')
|
284 |
all_feat_list = []
|
285 |
for idx, feat in enumerate(per_videos_or_images_features):
|
286 |
for i in range(0, feat.shape[0], chunk_size):
|
287 |
+
batched_feat = feat[i:i+chunk_size] # chunk_size = 48, batched_feat.shape=[48, 729, 1152]
|
288 |
+
batched_feat=self.interpolate(batched_feat) # 插值后 batched_feat.shape=[48, 1152, 24, 24]
|
289 |
if idx in video_idx_in_batch:
|
290 |
+
batched_feat = self.add_video(batched_feat) # 第一纬度补充到4的倍数
|
291 |
else:
|
292 |
batched_feat = self.add_image(batched_feat)
|
293 |
|
294 |
bc,ch,h,w = batched_feat.shape
|
295 |
batched_feat = batched_feat.view(bc//4,ch,4,h,w)
|
296 |
|
297 |
+
batched_feat = self.get_model().sae(batched_feat).squeeze(2)
|
298 |
batched_feat = batched_feat.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
|
299 |
+
|
300 |
batched_feat = self.get_model().mm_projector(batched_feat)
|
|
|
|
|
301 |
batched_feat = self.get_2dPool(batched_feat)
|
302 |
all_feat_list.append(batched_feat)
|
303 |
+
|
304 |
feat = torch.cat(all_feat_list, dim=0)
|
305 |
# peak_memory_allocated = torch.cuda.max_memory_allocated()
|
306 |
# print(f"sae 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
|
|
308 |
del per_videos_or_images_features
|
309 |
del all_feat_list
|
310 |
torch.cuda.empty_cache()
|
|
|
311 |
all_videos_or_images_features.append(feat)
|
312 |
return all_videos_or_images_features
|
|
|
313 |
|
314 |
def interpolate(self,image_features):
|
315 |
b, num_tokens, dim = image_features.shape
|
|
|
599 |
|
600 |
# Truncate sequences to max length as image embeddings can make the sequence longer
|
601 |
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
|
602 |
+
# NOTE: qmh
|
603 |
# new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
|
604 |
# new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]
|
605 |
|
|
|
697 |
for p in self.get_input_embeddings().parameters():
|
698 |
p.requires_grad = False
|
699 |
for p in self.get_output_embeddings().parameters():
|
700 |
+
p.requires_grad = False
|
|
llava_qwen.py
CHANGED
@@ -11,8 +11,6 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
|
15 |
-
|
16 |
from typing import List, Optional, Tuple, Union, Dict
|
17 |
import torch
|
18 |
import torch.nn as nn
|
@@ -21,9 +19,9 @@ import transformers
|
|
21 |
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM
|
22 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
23 |
from transformers.generation.utils import GenerateOutput
|
24 |
-
from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
25 |
-
# from longva.longva.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
26 |
from .modeling_qwen2 import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
|
|
27 |
import pdb
|
28 |
import time
|
29 |
import random
|
@@ -35,7 +33,671 @@ import PIL
|
|
35 |
from decord import VideoReader, cpu
|
36 |
from .conversation import conv_templates, SeparatorStyle
|
37 |
from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_TOKEN
|
38 |
-
from .mm_utils import tokenizer_image_token, load_video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
class LlavaQwenConfig(Qwen2Config):
|
@@ -518,7 +1180,6 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
518 |
)
|
519 |
|
520 |
if inputs_embeds is None:
|
521 |
-
pdb.set_trace()
|
522 |
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes, time_embedding)
|
523 |
|
524 |
if self.config.enable_chunk_prefill:
|
@@ -600,8 +1261,6 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
600 |
**kwargs,
|
601 |
) -> Union[GenerateOutput, torch.LongTensor]:
|
602 |
|
603 |
-
|
604 |
-
|
605 |
position_ids = kwargs.pop("position_ids", None)
|
606 |
attention_mask = kwargs.pop("attention_mask", None)
|
607 |
|
@@ -664,9 +1323,14 @@ class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
|
|
664 |
prompt = conv.get_prompt()
|
665 |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(self.model.device)
|
666 |
|
|
|
|
|
|
|
|
|
|
|
667 |
# prepare video input
|
668 |
frames, timestamps = load_video(video_path, max_num_frames, fps=sample_fps, max_fps=max_sample_fps)
|
669 |
-
print(f'video has loaded,
|
670 |
|
671 |
time_stamps=[]
|
672 |
token_frames_sum=(len(timestamps)+3)//4
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
|
|
|
|
14 |
from typing import List, Optional, Tuple, Union, Dict
|
15 |
import torch
|
16 |
import torch.nn as nn
|
|
|
19 |
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM
|
20 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
21 |
from transformers.generation.utils import GenerateOutput
|
22 |
+
# from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
|
|
23 |
from .modeling_qwen2 import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
24 |
+
# from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
25 |
import pdb
|
26 |
import time
|
27 |
import random
|
|
|
33 |
from decord import VideoReader, cpu
|
34 |
from .conversation import conv_templates, SeparatorStyle
|
35 |
from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_TOKEN
|
36 |
+
from .mm_utils import tokenizer_image_token, load_video, KeywordsStoppingCriteria, get_anyres_image_grid_shape
|
37 |
+
import math
|
38 |
+
import re
|
39 |
+
from .vision_tower_builder import build_vision_tower
|
40 |
+
from .vision_resampler_builder import build_vision_resampler
|
41 |
+
from .vision_projector_builder import build_vision_projector
|
42 |
+
from .utils import rank0_print
|
43 |
+
from .sae import SiglipAE
|
44 |
+
import numpy as np
|
45 |
+
import pdb
|
46 |
+
from abc import ABC, abstractmethod
|
47 |
+
|
48 |
+
class LlavaMetaModel:
|
49 |
+
def __init__(self, config):
|
50 |
+
super(LlavaMetaModel, self).__init__(config)
|
51 |
+
|
52 |
+
if hasattr(config, "mm_vision_tower"):
|
53 |
+
delay_load = getattr(config, "delay_load", False)
|
54 |
+
self.vision_tower = build_vision_tower(config, delay_load=delay_load)
|
55 |
+
self.vision_resampler = build_vision_resampler(config, vision_tower=self.vision_tower)
|
56 |
+
self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config)
|
57 |
+
|
58 |
+
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
|
59 |
+
self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))
|
60 |
+
|
61 |
+
self.hidden_size=config.hidden_size
|
62 |
+
self.text_mlp=nn.Sequential(
|
63 |
+
nn.Linear(config.hidden_size,config.hidden_size),
|
64 |
+
nn.GELU(),
|
65 |
+
)
|
66 |
+
self.sae=SiglipAE()
|
67 |
+
|
68 |
+
def get_vision_tower(self):
|
69 |
+
vision_tower = getattr(self, "vision_tower", None)
|
70 |
+
if type(vision_tower) is list:
|
71 |
+
vision_tower = vision_tower[0]
|
72 |
+
return vision_tower
|
73 |
+
|
74 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
75 |
+
vision_tower = model_args.vision_tower
|
76 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
77 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
78 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
79 |
+
mm_patch_merge_type = model_args.mm_patch_merge_type
|
80 |
+
|
81 |
+
self.config.mm_vision_tower = vision_tower
|
82 |
+
self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "")
|
83 |
+
|
84 |
+
if self.get_vision_tower() is None:
|
85 |
+
vision_tower = build_vision_tower(model_args)
|
86 |
+
vision_resampler = build_vision_resampler(model_args, vision_tower=vision_tower)
|
87 |
+
for k, v in vision_resampler.config.items():
|
88 |
+
setattr(self.config, k, v)
|
89 |
+
|
90 |
+
if fsdp is not None and len(fsdp) > 0:
|
91 |
+
self.vision_tower = [vision_tower]
|
92 |
+
self.vision_resampler = [vision_resampler]
|
93 |
+
else:
|
94 |
+
self.vision_tower = vision_tower
|
95 |
+
self.vision_resampler = vision_resampler
|
96 |
+
else:
|
97 |
+
if fsdp is not None and len(fsdp) > 0:
|
98 |
+
vision_resampler = self.vision_resampler[0]
|
99 |
+
vision_tower = self.vision_tower[0]
|
100 |
+
else:
|
101 |
+
vision_resampler = self.vision_resampler
|
102 |
+
vision_tower = self.vision_tower
|
103 |
+
vision_tower.load_model()
|
104 |
+
|
105 |
+
# In case it is frozen by LoRA
|
106 |
+
for p in self.vision_resampler.parameters():
|
107 |
+
p.requires_grad = True
|
108 |
+
|
109 |
+
self.config.use_mm_proj = True
|
110 |
+
self.config.mm_projector_type = getattr(model_args, "mm_projector_type", "linear")
|
111 |
+
self.config.mm_hidden_size = getattr(vision_resampler, "hidden_size", vision_tower.hidden_size)
|
112 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
113 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
114 |
+
self.config.mm_patch_merge_type = mm_patch_merge_type
|
115 |
+
|
116 |
+
self.sae=SiglipAE()
|
117 |
+
self.sae.load_state_dict(torch.load('/share/LXRlxr0_0/code/videoxl2/videoxl2/longva/longva/model/encoder.pth'),strict=False)
|
118 |
+
|
119 |
+
if getattr(self, "mm_projector", None) is None:
|
120 |
+
self.mm_projector = build_vision_projector(self.config, vision_cfg=vision_tower.config)
|
121 |
+
|
122 |
+
if "unpad" in mm_patch_merge_type:
|
123 |
+
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
|
124 |
+
self.image_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std)
|
125 |
+
else:
|
126 |
+
# In case it is frozen by LoRA
|
127 |
+
for p in self.mm_projector.parameters():
|
128 |
+
p.requires_grad = True
|
129 |
+
|
130 |
+
if pretrain_mm_mlp_adapter is not None:
|
131 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")
|
132 |
+
|
133 |
+
def get_w(weights, keyword):
|
134 |
+
return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}
|
135 |
+
|
136 |
+
incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))
|
137 |
+
rank0_print(f"Loaded mm projector weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
|
138 |
+
incompatible_keys = self.vision_resampler.load_state_dict(get_w(mm_projector_weights, "vision_resampler"), strict=False)
|
139 |
+
rank0_print(f"Loaded vision resampler weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
|
140 |
+
|
141 |
+
def unpad_image(tensor, original_size):
|
142 |
+
"""
|
143 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
|
147 |
+
original_size (tuple): The original size of the image (height, width).
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
torch.Tensor: The unpadded image tensor.
|
151 |
+
"""
|
152 |
+
original_width, original_height = original_size
|
153 |
+
current_height, current_width = tensor.shape[1:]
|
154 |
+
|
155 |
+
# Compute aspect ratios
|
156 |
+
original_aspect_ratio = original_width / original_height
|
157 |
+
current_aspect_ratio = current_width / current_height
|
158 |
+
|
159 |
+
# Determine padding size and direction
|
160 |
+
if original_aspect_ratio > current_aspect_ratio:
|
161 |
+
# Padding was added to the height
|
162 |
+
scale_factor = current_width / original_width
|
163 |
+
new_height = int(original_height * scale_factor)
|
164 |
+
padding = (current_height - new_height) // 2
|
165 |
+
unpadded_tensor = tensor[:, padding : current_height - padding, :]
|
166 |
+
else:
|
167 |
+
# Padding was added to the width
|
168 |
+
scale_factor = current_height / original_height
|
169 |
+
new_width = int(original_width * scale_factor)
|
170 |
+
padding = (current_width - new_width) // 2
|
171 |
+
unpadded_tensor = tensor[:, :, padding : current_width - padding]
|
172 |
+
|
173 |
+
return unpadded_tensor
|
174 |
+
|
175 |
+
class LlavaMetaForCausalLM(ABC):
|
176 |
+
@abstractmethod
|
177 |
+
def get_model(self):
|
178 |
+
pass
|
179 |
+
|
180 |
+
def get_vision_tower(self):
|
181 |
+
return self.get_model().get_vision_tower()
|
182 |
+
|
183 |
+
def get_2dPool(self, image_feature):
|
184 |
+
height = width = self.get_vision_tower().num_patches_per_side
|
185 |
+
num_frames, num_tokens, num_dim = image_feature.shape
|
186 |
+
image_feature = image_feature.view(num_frames, height, width, -1)
|
187 |
+
image_feature = image_feature.permute(0, 3, 1, 2).contiguous()
|
188 |
+
# image_feature = nn.functional.max_pool2d(image_feature, self.config.mm_spatial_pool_stride)
|
189 |
+
if self.config.mm_spatial_pool_mode == "average":
|
190 |
+
image_feature = nn.functional.avg_pool2d(image_feature, self.config.mm_spatial_pool_stride)
|
191 |
+
elif self.config.mm_spatial_pool_mode == "max":
|
192 |
+
image_feature = nn.functional.max_pool2d(image_feature, self.config.mm_spatial_pool_stride)
|
193 |
+
else:
|
194 |
+
raise ValueError(f"Unexpected mm_spatial_pool_mode: {self.config.mm_spatial_pool_mode}")
|
195 |
+
image_feature = image_feature.permute(0, 2, 3, 1)
|
196 |
+
image_feature = image_feature.view(num_frames, -1, num_dim)
|
197 |
+
return image_feature
|
198 |
+
|
199 |
+
def encode_images(self, images):
|
200 |
+
image_features = self.get_model().get_vision_tower()(images)
|
201 |
+
#image_features = self.get_model().vision_resampler(image_features, images=images)
|
202 |
+
image_features = self.get_model().mm_projector(image_features)
|
203 |
+
image_features = self.get_model().vision_resampler(image_features, images=images)
|
204 |
+
return image_features
|
205 |
+
|
206 |
+
def add_image(self, image_features):
|
207 |
+
return torch.repeat_interleave(image_features, repeats=4, dim=0)
|
208 |
+
|
209 |
+
def add_video(self, video_features):
|
210 |
+
# Current batch size
|
211 |
+
current_batch_size = video_features.size(0)
|
212 |
+
# Handle cases where the batch size is less than 4
|
213 |
+
if current_batch_size < 4:
|
214 |
+
last_feature = video_features[-1:]
|
215 |
+
# Calculate how many times the last feature needs to be repeated
|
216 |
+
num_repeats = 4 - current_batch_size
|
217 |
+
repeated_features = last_feature.repeat(num_repeats, 1, 1, 1)
|
218 |
+
# Concatenate original features with repeated last feature
|
219 |
+
expanded_x = torch.cat([video_features, repeated_features], dim=0)
|
220 |
+
return expanded_x
|
221 |
+
|
222 |
+
# Handle cases where the batch size is 4 or greater, but not a multiple of 4
|
223 |
+
if current_batch_size % 4 != 0:
|
224 |
+
last_feature = video_features[-1:]
|
225 |
+
# Calculate how many features are needed to reach the next multiple of 4
|
226 |
+
padding_size = 4 - (current_batch_size % 4)
|
227 |
+
repeated_features = last_feature.repeat(padding_size, 1, 1, 1)
|
228 |
+
# Concatenate original features with repeated last feature
|
229 |
+
expanded_x = torch.cat([video_features, repeated_features], dim=0)
|
230 |
+
return expanded_x
|
231 |
+
|
232 |
+
# If the batch size is already a multiple of 4, return as is
|
233 |
+
return video_features
|
234 |
+
def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None):
|
235 |
+
if self.config.enable_chunk_prefill:
|
236 |
+
chunk_size_for_vision_tower = self.config.prefill_config['chunk_size_for_vision_tower']
|
237 |
+
else:
|
238 |
+
chunk_size_for_vision_tower = 100000
|
239 |
+
# pdb.set_trace()
|
240 |
+
# Define the maximum batch size (1024 frames)
|
241 |
+
max_batch_size = chunk_size_for_vision_tower
|
242 |
+
# print(f'max_batch_size: {max_batch_size}')
|
243 |
+
num_frames = videos_or_images.shape[0]
|
244 |
+
# Initialize a list to store the features from each batch
|
245 |
+
videos_or_images_features = []
|
246 |
+
|
247 |
+
videos_or_images_features = torch.empty((num_frames, 729, 1152), device=self.get_model().device, dtype=self.get_model().dtype)
|
248 |
+
|
249 |
+
# Split videos_or_images into smaller batches if num_frames > max_batch_size
|
250 |
+
current_idx = 0
|
251 |
+
if num_frames > max_batch_size:
|
252 |
+
# Calculate the number of batches needed
|
253 |
+
num_batches = (num_frames + max_batch_size - 1) // max_batch_size
|
254 |
+
for i in range(num_batches):
|
255 |
+
start_idx = i * max_batch_size
|
256 |
+
end_idx = min((i + 1) * max_batch_size, num_frames)
|
257 |
+
|
258 |
+
# Process each batch separately
|
259 |
+
batch_videos_or_images = videos_or_images[start_idx:end_idx]
|
260 |
+
batch_features = self.get_model().get_vision_tower()(batch_videos_or_images)
|
261 |
+
# videos_or_images_features.append(batch_features)
|
262 |
+
|
263 |
+
videos_or_images_features[current_idx:current_idx + batch_features.shape[0]] = batch_features
|
264 |
+
# Update the current index for the next batch
|
265 |
+
current_idx += batch_features.shape[0]
|
266 |
+
# peak_memory_allocated = torch.cuda.max_memory_allocated()
|
267 |
+
# print(f"vision encoder 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
268 |
+
|
269 |
+
# Concatenate the features of all batches
|
270 |
+
# videos_or_images_features = torch.cat(videos_or_images_features, dim=0)
|
271 |
+
else:
|
272 |
+
videos_or_images_features = self.get_model().get_vision_tower()(videos_or_images)
|
273 |
+
|
274 |
+
per_videos_or_images_features = torch.split(videos_or_images_features, split_sizes, dim=0)
|
275 |
+
all_videos_or_images_features = []
|
276 |
+
|
277 |
+
# peak_memory_allocated = torch.cuda.max_memory_allocated()
|
278 |
+
# print(f"vision encoder 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
279 |
+
del videos_or_images_features
|
280 |
+
torch.cuda.empty_cache()
|
281 |
+
|
282 |
+
chunk_size = chunk_size_for_vision_tower
|
283 |
+
# print(f'chunk_size: {chunk_size}')
|
284 |
+
all_feat_list = []
|
285 |
+
for idx, feat in enumerate(per_videos_or_images_features):
|
286 |
+
for i in range(0, feat.shape[0], chunk_size):
|
287 |
+
batched_feat = feat[i:i+chunk_size] # chunk_size = 48, batched_feat.shape=[48, 729, 1152]
|
288 |
+
batched_feat=self.interpolate(batched_feat) # 插值后 batched_feat.shape=[48, 1152, 24, 24]
|
289 |
+
if idx in video_idx_in_batch:
|
290 |
+
batched_feat = self.add_video(batched_feat) # 第一纬度补充到4的倍数
|
291 |
+
else:
|
292 |
+
batched_feat = self.add_image(batched_feat)
|
293 |
+
|
294 |
+
bc,ch,h,w = batched_feat.shape
|
295 |
+
batched_feat = batched_feat.view(bc//4,ch,4,h,w)
|
296 |
+
|
297 |
+
batched_feat = self.get_model().sae(batched_feat).squeeze(2)
|
298 |
+
batched_feat = batched_feat.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
|
299 |
+
|
300 |
+
batched_feat = self.get_model().mm_projector(batched_feat)
|
301 |
+
batched_feat = self.get_2dPool(batched_feat)
|
302 |
+
all_feat_list.append(batched_feat)
|
303 |
+
|
304 |
+
feat = torch.cat(all_feat_list, dim=0)
|
305 |
+
# peak_memory_allocated = torch.cuda.max_memory_allocated()
|
306 |
+
# print(f"sae 显存峰值: {peak_memory_allocated / (1024**3):.2f} GB") # 转换为GB
|
307 |
+
|
308 |
+
del per_videos_or_images_features
|
309 |
+
del all_feat_list
|
310 |
+
torch.cuda.empty_cache()
|
311 |
+
all_videos_or_images_features.append(feat)
|
312 |
+
return all_videos_or_images_features
|
313 |
+
|
314 |
+
def interpolate(self,image_features):
|
315 |
+
b, num_tokens, dim = image_features.shape
|
316 |
+
|
317 |
+
#print(str(image_features.shape)+' i\n')
|
318 |
+
|
319 |
+
target_h = target_w = int(576**0.5)
|
320 |
+
h = w = int(num_tokens**0.5)
|
321 |
+
|
322 |
+
image_features = image_features.view(b, h, w, dim)
|
323 |
+
image_features = image_features.permute(0, 3, 1, 2).contiguous()
|
324 |
+
|
325 |
+
chunk_size = 24
|
326 |
+
chunks = torch.split(image_features, chunk_size, dim=0)
|
327 |
+
interpolated_chunks = []
|
328 |
+
for chunk in chunks:
|
329 |
+
interpolated_chunk = F.interpolate(
|
330 |
+
chunk.to(torch.float32),
|
331 |
+
size=(target_h, target_w),
|
332 |
+
mode="bilinear",
|
333 |
+
align_corners=False,
|
334 |
+
).to(chunk.dtype)
|
335 |
+
interpolated_chunks.append(interpolated_chunk)
|
336 |
+
image_features = torch.cat(interpolated_chunks, dim=0)
|
337 |
+
del interpolated_chunks
|
338 |
+
|
339 |
+
del chunks
|
340 |
+
|
341 |
+
return image_features
|
342 |
+
|
343 |
+
def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None,time_embedding=None):
|
344 |
+
|
345 |
+
vision_tower = self.get_vision_tower()
|
346 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
347 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
348 |
+
|
349 |
+
if type(images) is list or images.ndim == 5:
|
350 |
+
if type(images) is list:
|
351 |
+
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
|
352 |
+
|
353 |
+
video_idx_in_batch = []
|
354 |
+
for _ in range(len(modalities)):
|
355 |
+
if modalities[_] == "video":
|
356 |
+
video_idx_in_batch.append(_)
|
357 |
+
|
358 |
+
images_list = []
|
359 |
+
for image in images:
|
360 |
+
if image.ndim == 4:
|
361 |
+
images_list.append(image)
|
362 |
+
else:
|
363 |
+
images_list.append(image.unsqueeze(0))
|
364 |
+
#print(len(images_list),images_list[0].shape)
|
365 |
+
|
366 |
+
concat_images = torch.cat([image for image in images_list], dim=0)
|
367 |
+
split_sizes = [image.shape[0] for image in images_list]
|
368 |
+
|
369 |
+
image_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes) #16,144,3584
|
370 |
+
|
371 |
+
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
|
372 |
+
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
|
373 |
+
|
374 |
+
visual_drop_score=[]
|
375 |
+
new_image_features=[]
|
376 |
+
|
377 |
+
if mm_patch_merge_type == "flat":
|
378 |
+
|
379 |
+
if image_features[0].ndim>2:
|
380 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
381 |
+
elif mm_patch_merge_type== "unires":
|
382 |
+
#print('unires')
|
383 |
+
for image_idx, image_feature in enumerate(image_features):
|
384 |
+
# rank0_print(f"Initial feature size : {image_feature.shape}")
|
385 |
+
if image_idx in video_idx_in_batch: # video operations
|
386 |
+
#print(image_feature.shape)
|
387 |
+
image_feature = image_feature.flatten(0, 1)
|
388 |
+
|
389 |
+
elif image_feature.shape[0] > 1:
|
390 |
+
# base image feature is never used in unires
|
391 |
+
base_image_feature = image_feature[0]
|
392 |
+
image_feature = image_feature[1:]
|
393 |
+
|
394 |
+
height = width = self.get_vision_tower().num_patches_per_side
|
395 |
+
assert height * width == base_image_feature.shape[0]
|
396 |
+
|
397 |
+
kernel_size = mm_patch_merge_type.split("avgpool")[-1].split("x")[-1]
|
398 |
+
kernel_size = 2
|
399 |
+
image_feature = image_feature.view(image_feature.shape[0], height, width, -1) # [4, 24, 24, 4096]
|
400 |
+
image_feature = image_feature.permute(0, 3, 1, 2).contiguous() # [4, 4096, 24, 24]
|
401 |
+
image_feature = nn.functional.avg_pool2d(image_feature,kernel_size) # [4, 4096, 12, 12]
|
402 |
+
image_feature = image_feature.flatten(2, 3) # [4, 4096, 144]
|
403 |
+
image_feature = image_feature.permute(0, 2, 1).contiguous() # [4, 144, 4096]
|
404 |
+
|
405 |
+
#print(image_feature.shape)
|
406 |
+
image_feature = image_feature.flatten(0, 1)
|
407 |
+
|
408 |
+
else:
|
409 |
+
|
410 |
+
image_feature = image_feature[0]
|
411 |
+
|
412 |
+
new_image_features.append(image_feature)
|
413 |
+
|
414 |
+
image_features = new_image_features
|
415 |
+
|
416 |
+
elif mm_patch_merge_type.startswith("spatial"):
|
417 |
+
new_image_features = []
|
418 |
+
for image_idx, image_feature in enumerate(image_features):
|
419 |
+
# FIXME: now assume the image is square, and split to 2x2 patches
|
420 |
+
# num_patches = h * w, where h = w = sqrt(num_patches)
|
421 |
+
# currently image_feature is a tensor of shape (4, num_patches, hidden_size)
|
422 |
+
# we want to first unflatten it to (2, 2, h, w, hidden_size)
|
423 |
+
if image_idx in video_idx_in_batch: # video operations
|
424 |
+
if "unpad" in mm_patch_merge_type:
|
425 |
+
# image_feature = image_feature.permute(2, 0, 1).contiguous()
|
426 |
+
# image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
|
427 |
+
# image_feature = image_feature.permute(1, 2, 0).contiguous()
|
428 |
+
image_feature = image_feature.flatten(0, 1)
|
429 |
+
image_feature = torch.cat((image_feature, self.model.image_newline[None].to(image_feature.device)), dim=0)
|
430 |
+
|
431 |
+
elif image_feature.shape[0] > 1: # multi patches and multi images operations
|
432 |
+
base_image_feature = image_feature[0]
|
433 |
+
image_feature = image_feature[1:]
|
434 |
+
height = width = self.get_vision_tower().num_patches_per_side
|
435 |
+
assert height * width == base_image_feature.shape[0]
|
436 |
+
|
437 |
+
if "anyres_max" in image_aspect_ratio:
|
438 |
+
matched_anyres_max_num_patches = re.match(r"anyres_max_(\d+)", image_aspect_ratio)
|
439 |
+
if matched_anyres_max_num_patches:
|
440 |
+
max_num_patches = int(matched_anyres_max_num_patches.group(1))
|
441 |
+
|
442 |
+
if image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio:
|
443 |
+
if hasattr(self.get_vision_tower(), "image_size"):
|
444 |
+
vision_tower_image_size = self.get_vision_tower().image_size
|
445 |
+
else:
|
446 |
+
raise ValueError("vision_tower_image_size is not found in the vision tower.")
|
447 |
+
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, vision_tower_image_size)
|
448 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
449 |
+
else:
|
450 |
+
image_feature = image_feature.view(2, 2, height, width, -1)
|
451 |
+
|
452 |
+
if "maxpool2x2" in mm_patch_merge_type:
|
453 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
454 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
455 |
+
image_feature = nn.functional.max_pool2d(image_feature, 2)
|
456 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
457 |
+
elif "unpad" in mm_patch_merge_type and "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches:
|
458 |
+
unit = image_feature.shape[2]
|
459 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
460 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
461 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
462 |
+
c, h, w = image_feature.shape
|
463 |
+
times = math.sqrt(h * w / (max_num_patches * unit**2))
|
464 |
+
if times > 1.1:
|
465 |
+
image_feature = image_feature[None]
|
466 |
+
image_feature = nn.functional.interpolate(image_feature, [int(h // times), int(w // times)], mode="bilinear")[0]
|
467 |
+
image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
|
468 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
469 |
+
elif "unpad" in mm_patch_merge_type:
|
470 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
471 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
472 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
473 |
+
image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
|
474 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
475 |
+
else:
|
476 |
+
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
|
477 |
+
image_feature = image_feature.flatten(0, 3)
|
478 |
+
if "nobase" in mm_patch_merge_type:
|
479 |
+
pass
|
480 |
+
else:
|
481 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
482 |
+
else: # single image operations
|
483 |
+
image_feature = image_feature[0]
|
484 |
+
if "unpad" in mm_patch_merge_type:
|
485 |
+
image_feature = torch.cat((image_feature, self.model.image_newline[None]), dim=0)
|
486 |
+
|
487 |
+
new_image_features.append(image_feature)
|
488 |
+
image_features = new_image_features
|
489 |
+
else:
|
490 |
+
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
|
491 |
+
else:
|
492 |
+
error_message = """
|
493 |
+
Something is wrong with the input shape. Most likely, you did not wrap the image or video input in a list:
|
494 |
+
This is correct:
|
495 |
+
model.generate(input_ids, images=[video_tensor], modalities=["video"], **gen_kwargs)
|
496 |
+
model.generate(input_ids, images=[image_tensor], modalities=["image"], **gen_kwargs)
|
497 |
+
This is wrong:
|
498 |
+
model.generate(input_ids, images=video_tensor, modalities=["video"], **gen_kwargs)
|
499 |
+
model.generate(input_ids, images=image_tensor, modalities=["image"], **gen_kwargs)
|
500 |
+
"""
|
501 |
+
raise ValueError(error_message)
|
502 |
+
|
503 |
+
#print(time_embedding[0].shape)
|
504 |
+
#video_token_indices=[]
|
505 |
+
for image_idx, image_feature in enumerate(image_features):
|
506 |
+
if time_embedding[image_idx] is not None:
|
507 |
+
mask = (time_embedding[image_idx] == 151654)
|
508 |
+
indices = torch.nonzero(mask).squeeze()
|
509 |
+
|
510 |
+
embed_token=self.get_model().embed_tokens(time_embedding[image_idx])
|
511 |
+
embed_token[indices]=image_features[image_idx]
|
512 |
+
|
513 |
+
#video_token_indices.append(indices)
|
514 |
+
|
515 |
+
image_features[image_idx]=embed_token
|
516 |
+
|
517 |
+
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False):
|
518 |
+
raise NotImplementedError
|
519 |
+
|
520 |
+
# Let's just add dummy tensors if they do not exist,
|
521 |
+
# it is a headache to deal with None all the time.
|
522 |
+
# But it is not ideal, and if you have a better idea,
|
523 |
+
# please open an issue / submit a PR, thanks.
|
524 |
+
_labels = labels
|
525 |
+
_position_ids = position_ids
|
526 |
+
_attention_mask = attention_mask
|
527 |
+
if attention_mask is None:
|
528 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
529 |
+
else:
|
530 |
+
attention_mask = attention_mask.bool()
|
531 |
+
if position_ids is None:
|
532 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
533 |
+
if labels is None:
|
534 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
535 |
+
|
536 |
+
# remove the padding using attention_mask -- FIXME
|
537 |
+
_input_ids = input_ids
|
538 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
539 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
540 |
+
|
541 |
+
new_input_embeds = []
|
542 |
+
new_labels = []
|
543 |
+
cur_image_idx = 0
|
544 |
+
|
545 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
546 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
547 |
+
#print(num_images)
|
548 |
+
if num_images>=2:
|
549 |
+
print(num_images,input_ids)
|
550 |
+
if num_images == 0:
|
551 |
+
cur_image_features = image_features[cur_image_idx]
|
552 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
553 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
554 |
+
new_input_embeds.append(cur_input_embeds)
|
555 |
+
new_labels.append(labels[batch_idx])
|
556 |
+
cur_image_idx += 1
|
557 |
+
continue
|
558 |
+
|
559 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
560 |
+
#print(image_token_indices) #[-1, 14, 236]
|
561 |
+
cur_input_ids_noim = []
|
562 |
+
cur_labels = labels[batch_idx]
|
563 |
+
|
564 |
+
# print(cur_input_ids)
|
565 |
+
# print(labels[batch_idx])
|
566 |
+
|
567 |
+
cur_labels_noim = []
|
568 |
+
for i in range(len(image_token_indices) - 1):
|
569 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]])
|
570 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]])
|
571 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
572 |
+
|
573 |
+
#print(torch.cat(cur_input_ids_noim).shape,torch.cat(cur_input_ids_noim))
|
574 |
+
|
575 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
576 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
577 |
+
cur_new_input_embeds = []
|
578 |
+
cur_new_labels = []
|
579 |
+
|
580 |
+
for i in range(num_images + 1):
|
581 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
582 |
+
cur_new_labels.append(cur_labels_noim[i])
|
583 |
+
if i < num_images:
|
584 |
+
##############
|
585 |
+
cur_image_features = image_features[cur_image_idx]
|
586 |
+
cur_image_idx += 1
|
587 |
+
cur_new_input_embeds.append(cur_image_features)
|
588 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
589 |
+
|
590 |
+
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
591 |
+
|
592 |
+
# import pdb; pdb.set_trace()
|
593 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
594 |
+
|
595 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
596 |
+
|
597 |
+
new_input_embeds.append(cur_new_input_embeds)
|
598 |
+
new_labels.append(cur_new_labels)
|
599 |
+
|
600 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
601 |
+
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
|
602 |
+
# NOTE: qmh
|
603 |
+
# new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
|
604 |
+
# new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]
|
605 |
+
|
606 |
+
# TODO: Hard code for control loss spike
|
607 |
+
# if tokenizer_model_max_length is not None:
|
608 |
+
# new_input_embeds = [x[:4096] if modality != "video" else x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
|
609 |
+
# new_labels = [x[:4096] if modality != "video" else x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]
|
610 |
+
|
611 |
+
# Combine them
|
612 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
613 |
+
batch_size = len(new_input_embeds)
|
614 |
+
|
615 |
+
new_input_embeds_padded = []
|
616 |
+
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
617 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
618 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
619 |
+
|
620 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
621 |
+
cur_len = cur_new_embed.shape[0]
|
622 |
+
if getattr(self.config, "tokenizer_padding_side", "right") == "left":
|
623 |
+
new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0))
|
624 |
+
if cur_len > 0:
|
625 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
626 |
+
attention_mask[i, -cur_len:] = True
|
627 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
628 |
+
else:
|
629 |
+
new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0))
|
630 |
+
if cur_len > 0:
|
631 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
632 |
+
attention_mask[i, :cur_len] = True
|
633 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
634 |
+
|
635 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
636 |
+
|
637 |
+
if _labels is None:
|
638 |
+
new_labels = None
|
639 |
+
else:
|
640 |
+
new_labels = new_labels_padded
|
641 |
+
|
642 |
+
if _attention_mask is None:
|
643 |
+
attention_mask = None
|
644 |
+
else:
|
645 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
646 |
+
|
647 |
+
if _position_ids is None:
|
648 |
+
position_ids = None
|
649 |
+
if getattr(self.config, "use_pos_skipping", False) and self.training:
|
650 |
+
position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device)
|
651 |
+
split_position = random.randint(0, new_input_embeds.size(1))
|
652 |
+
left_add = random.randint(0, self.config.pos_skipping_range)
|
653 |
+
right_add = random.randint(left_add, self.config.pos_skipping_range)
|
654 |
+
position_ids[:, :split_position] += left_add
|
655 |
+
position_ids[:, split_position:] += right_add
|
656 |
+
# import pdb; pdb.set_trace()
|
657 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
658 |
+
|
659 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
660 |
+
if model_args.mm_use_im_patch_token:
|
661 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
662 |
+
self.resize_token_embeddings(len(tokenizer))
|
663 |
+
|
664 |
+
if model_args.mm_use_im_start_end:
|
665 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
666 |
+
self.resize_token_embeddings(len(tokenizer))
|
667 |
+
|
668 |
+
if num_new_tokens > 0:
|
669 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
670 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
671 |
+
|
672 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
|
673 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
|
674 |
+
|
675 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
676 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
677 |
+
|
678 |
+
if model_args.tune_mm_mlp_adapter:
|
679 |
+
for p in self.get_input_embeddings().parameters():
|
680 |
+
p.requires_grad = True
|
681 |
+
for p in self.get_output_embeddings().parameters():
|
682 |
+
p.requires_grad = False
|
683 |
+
|
684 |
+
if model_args.pretrain_mm_mlp_adapter:
|
685 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location="cpu")
|
686 |
+
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
|
687 |
+
assert num_new_tokens == 2
|
688 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
689 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
690 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
691 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
692 |
+
else:
|
693 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
694 |
+
|
695 |
+
elif model_args.mm_use_im_patch_token:
|
696 |
+
if model_args.tune_mm_mlp_adapter:
|
697 |
+
for p in self.get_input_embeddings().parameters():
|
698 |
+
p.requires_grad = False
|
699 |
+
for p in self.get_output_embeddings().parameters():
|
700 |
+
p.requires_grad = False
|
701 |
|
702 |
|
703 |
class LlavaQwenConfig(Qwen2Config):
|
|
|
1180 |
)
|
1181 |
|
1182 |
if inputs_embeds is None:
|
|
|
1183 |
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes, time_embedding)
|
1184 |
|
1185 |
if self.config.enable_chunk_prefill:
|
|
|
1261 |
**kwargs,
|
1262 |
) -> Union[GenerateOutput, torch.LongTensor]:
|
1263 |
|
|
|
|
|
1264 |
position_ids = kwargs.pop("position_ids", None)
|
1265 |
attention_mask = kwargs.pop("attention_mask", None)
|
1266 |
|
|
|
1323 |
prompt = conv.get_prompt()
|
1324 |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(self.model.device)
|
1325 |
|
1326 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
1327 |
+
keywords = [stop_str]
|
1328 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
1329 |
+
generation_config["stopping_criteria"] = [stopping_criteria]
|
1330 |
+
|
1331 |
# prepare video input
|
1332 |
frames, timestamps = load_video(video_path, max_num_frames, fps=sample_fps, max_fps=max_sample_fps)
|
1333 |
+
print(f'video has loaded, extract {len(frames)} frames.')
|
1334 |
|
1335 |
time_stamps=[]
|
1336 |
token_frames_sum=(len(timestamps)+3)//4
|
modeling_qwen2.py
CHANGED
@@ -503,10 +503,12 @@ class Qwen2FlashAttention2(Qwen2Attention):
|
|
503 |
hidden_states: torch.Tensor,
|
504 |
attention_mask: Optional[torch.Tensor] = None,
|
505 |
position_ids: Optional[torch.LongTensor] = None,
|
|
|
506 |
past_key_value: Optional[Cache] = None,
|
507 |
output_attentions: bool = False,
|
508 |
use_cache: bool = False,
|
509 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
510 |
):
|
511 |
bsz, q_len, _ = hidden_states.size()
|
512 |
|
|
|
503 |
hidden_states: torch.Tensor,
|
504 |
attention_mask: Optional[torch.Tensor] = None,
|
505 |
position_ids: Optional[torch.LongTensor] = None,
|
506 |
+
key_position_ids: Optional[torch.LongTensor] = None,
|
507 |
past_key_value: Optional[Cache] = None,
|
508 |
output_attentions: bool = False,
|
509 |
use_cache: bool = False,
|
510 |
cache_position: Optional[torch.LongTensor] = None,
|
511 |
+
blocks_positions=None,
|
512 |
):
|
513 |
bsz, q_len, _ = hidden_states.size()
|
514 |
|
multimodal_encoder/.ipynb_checkpoints/base_encoder-checkpoint.py
DELETED
@@ -1,68 +0,0 @@
|
|
1 |
-
from abc import ABC, abstractmethod
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
|
6 |
-
|
7 |
-
class BaseVisionTower(nn.Module):
|
8 |
-
def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
|
9 |
-
super().__init__()
|
10 |
-
|
11 |
-
self.is_loaded = False
|
12 |
-
|
13 |
-
self.vision_tower_name = vision_tower_name
|
14 |
-
self.delay_load = delay_load
|
15 |
-
|
16 |
-
@abstractmethod
|
17 |
-
def load_model(self, device_map=None):
|
18 |
-
raise NotImplementedError("Subclasses must implement load_model")
|
19 |
-
|
20 |
-
@abstractmethod
|
21 |
-
def _forward(self, images):
|
22 |
-
raise NotImplementedError("Subclasses must implement forward")
|
23 |
-
|
24 |
-
def forward(self, images):
|
25 |
-
if type(images) is list:
|
26 |
-
image_features = [self._forward(image.unsqueeze(0)) for image in images]
|
27 |
-
else:
|
28 |
-
image_features = self._forward(images)
|
29 |
-
|
30 |
-
return image_features
|
31 |
-
|
32 |
-
@property
|
33 |
-
def dummy_feature(self):
|
34 |
-
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
35 |
-
|
36 |
-
@property
|
37 |
-
def dtype(self):
|
38 |
-
# Dynamically infer the dtype from the first parameter, if not explicitly specified
|
39 |
-
if hasattr(self.vision_tower, "dtype"):
|
40 |
-
return self.vision_tower.dtype
|
41 |
-
else:
|
42 |
-
params = list(self.vision_tower.parameters())
|
43 |
-
return (
|
44 |
-
params[0].dtype if len(params) > 0 else torch.float32
|
45 |
-
) # Default to torch.float32 if no parameters
|
46 |
-
|
47 |
-
@property
|
48 |
-
def device(self):
|
49 |
-
# Dynamically infer the device from the first parameter, if not explicitly specified
|
50 |
-
if hasattr(self.vision_tower, "device"):
|
51 |
-
return self.vision_tower.device
|
52 |
-
else:
|
53 |
-
params = list(self.vision_tower.parameters())
|
54 |
-
return (
|
55 |
-
params[0].device if len(params) > 0 else torch.device("cpu")
|
56 |
-
) # Default to CPU if no parameters
|
57 |
-
@property
|
58 |
-
def config(self):
|
59 |
-
if self.is_loaded:
|
60 |
-
return self.vision_tower.config
|
61 |
-
else:
|
62 |
-
return self.cfg_only
|
63 |
-
@property
|
64 |
-
def hidden_size(self):
|
65 |
-
try:
|
66 |
-
return self.config.hidden_size
|
67 |
-
except:
|
68 |
-
return self._hidden_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multimodal_encoder/.ipynb_checkpoints/builder-checkpoint.py
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from .clip_encoder import CLIPVisionTower, CLIPVisionTowerS2
|
3 |
-
from .siglip_encoder import SigLipVisionTower
|
4 |
-
# from .eva_clip.eva_clip_encoder import EvaClipVisionTower
|
5 |
-
# from .dev_eva_clip.eva_vit import EvaViTWrapper
|
6 |
-
|
7 |
-
|
8 |
-
def build_vision_tower(vision_tower_cfg, **kwargs):
|
9 |
-
|
10 |
-
vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
|
11 |
-
is_absolute_path_exists = os.path.exists(vision_tower)
|
12 |
-
use_s2 = getattr(vision_tower_cfg, "s2", False)
|
13 |
-
|
14 |
-
#print(getattr(vision_tower_cfg, "vision_tower", None))
|
15 |
-
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
16 |
-
if getattr(vision_tower_cfg, "vision_tower", None) and "siglip" in getattr(vision_tower_cfg, "vision_tower", None).lower():
|
17 |
-
#print('*************\n')
|
18 |
-
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
19 |
-
if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or "ShareGPT4V" in vision_tower:
|
20 |
-
if use_s2:
|
21 |
-
return CLIPVisionTowerS2(vision_tower, args=vision_tower_cfg, **kwargs)
|
22 |
-
else:
|
23 |
-
return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
24 |
-
# elif "internal-eva" in vision_tower.lower() or "eva02" in vision_tower.lower():
|
25 |
-
# return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
26 |
-
# elif vision_tower in ["EVA-CLIP-8B", "EVA-CLIP-8B-plus"]:
|
27 |
-
# return EvaViTWrapper(vision_tower, args=vision_tower_cfg, **kwargs)
|
28 |
-
|
29 |
-
raise ValueError(f"Unknown vision tower: {vision_tower}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multimodal_encoder/.ipynb_checkpoints/clip_encoder-checkpoint.py
DELETED
@@ -1,179 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from longva.longva.utils import rank0_print
|
4 |
-
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
5 |
-
|
6 |
-
try:
|
7 |
-
from s2wrapper import forward as multiscale_forward
|
8 |
-
except:
|
9 |
-
pass
|
10 |
-
|
11 |
-
|
12 |
-
class CLIPVisionTower(nn.Module):
|
13 |
-
def __init__(self, vision_tower, args, delay_load=False):
|
14 |
-
super().__init__()
|
15 |
-
|
16 |
-
self.is_loaded = False
|
17 |
-
|
18 |
-
self.vision_tower_name = vision_tower
|
19 |
-
self.select_layer = args.mm_vision_select_layer
|
20 |
-
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
|
21 |
-
|
22 |
-
if not delay_load:
|
23 |
-
rank0_print(f"Loading vision tower: {vision_tower}")
|
24 |
-
self.load_model()
|
25 |
-
elif getattr(args, "unfreeze_mm_vision_tower", False):
|
26 |
-
# TODO: better detector is needed.
|
27 |
-
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
|
28 |
-
self.load_model()
|
29 |
-
elif hasattr(args, "mm_tunable_parts") and "mm_vision_tower" in args.mm_tunable_parts:
|
30 |
-
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
|
31 |
-
self.load_model()
|
32 |
-
else:
|
33 |
-
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
|
34 |
-
|
35 |
-
def load_model(self, device_map=None):
|
36 |
-
if self.is_loaded:
|
37 |
-
rank0_print("{} is already loaded, `load_model` called again, skipping.".format(self.vision_tower_name))
|
38 |
-
return
|
39 |
-
|
40 |
-
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
41 |
-
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
42 |
-
self.vision_tower.requires_grad_(False)
|
43 |
-
|
44 |
-
self.is_loaded = True
|
45 |
-
|
46 |
-
def feature_select(self, image_forward_outs):
|
47 |
-
select_feature_type = self.select_feature
|
48 |
-
|
49 |
-
if self.select_feature in ["slicefour_patch", "slicefour_cls_patch"]:
|
50 |
-
select_every_k_layer = len(image_forward_outs.hidden_states) // 4
|
51 |
-
image_features = torch.cat([image_forward_outs.hidden_states[i] for i in range(select_every_k_layer + self.select_layer, len(image_forward_outs.hidden_states), select_every_k_layer)], dim=-1)
|
52 |
-
select_feature_type = select_feature_type.replace("slicefour_", "")
|
53 |
-
elif self.select_feature in ["slice_m25811_f6_patch", "slice_m25811_f6_cls_patch"]:
|
54 |
-
select_layers = [-2, -5, -8, -11, 6]
|
55 |
-
image_features = torch.cat([image_forward_outs.hidden_states[i] for i in select_layers], dim=-1)
|
56 |
-
select_feature_type = select_feature_type.replace("slice_m25811_f6_", "")
|
57 |
-
else:
|
58 |
-
image_features = image_forward_outs.hidden_states[self.select_layer]
|
59 |
-
|
60 |
-
if select_feature_type == "patch":
|
61 |
-
image_features = image_features[:, 1:]
|
62 |
-
elif select_feature_type == "cls_patch":
|
63 |
-
image_features = image_features
|
64 |
-
else:
|
65 |
-
raise ValueError(f"Unexpected select feature: {select_feature_type}")
|
66 |
-
return image_features
|
67 |
-
|
68 |
-
def forward(self, images):
|
69 |
-
if type(images) is list:
|
70 |
-
image_features = []
|
71 |
-
for image in images:
|
72 |
-
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
73 |
-
#print('image_feature before select ',image_forward_out.hidden_states[-1].shape)
|
74 |
-
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
75 |
-
#print('image_feature after select ',image_feature.shape)
|
76 |
-
image_features.append(image_feature)
|
77 |
-
else:
|
78 |
-
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
79 |
-
#print('image_feature before select ',image_forward_outs.hidden_states[-1].shape)
|
80 |
-
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
81 |
-
#print('image_feature after select ',image_features.shape)
|
82 |
-
|
83 |
-
return image_features
|
84 |
-
|
85 |
-
@property
|
86 |
-
def dummy_feature(self):
|
87 |
-
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
88 |
-
|
89 |
-
@property
|
90 |
-
def dtype(self):
|
91 |
-
return self.vision_tower.dtype
|
92 |
-
|
93 |
-
@property
|
94 |
-
def device(self):
|
95 |
-
return self.vision_tower.device
|
96 |
-
|
97 |
-
@property
|
98 |
-
def config(self):
|
99 |
-
if self.is_loaded:
|
100 |
-
return self.vision_tower.config
|
101 |
-
else:
|
102 |
-
return self.cfg_only
|
103 |
-
|
104 |
-
@property
|
105 |
-
def hidden_size(self):
|
106 |
-
_hidden_size = self.config.hidden_size
|
107 |
-
if "slicefour" in self.select_feature:
|
108 |
-
_hidden_size *= 4
|
109 |
-
if "slice_m25811_f6" in self.select_feature:
|
110 |
-
_hidden_size *= 5
|
111 |
-
return _hidden_size
|
112 |
-
|
113 |
-
@property
|
114 |
-
def num_patches_per_side(self):
|
115 |
-
return self.config.image_size // self.config.patch_size
|
116 |
-
|
117 |
-
@property
|
118 |
-
def num_patches(self):
|
119 |
-
_num_patches = (self.config.image_size // self.config.patch_size) ** 2
|
120 |
-
if "cls_patch" in self.select_feature:
|
121 |
-
_num_patches += 1
|
122 |
-
return _num_patches
|
123 |
-
|
124 |
-
@property
|
125 |
-
def image_size(self):
|
126 |
-
return self.config.image_size
|
127 |
-
|
128 |
-
|
129 |
-
class CLIPVisionTowerS2(CLIPVisionTower):
|
130 |
-
def __init__(self, vision_tower, args, delay_load=False):
|
131 |
-
|
132 |
-
self.s2_scales = getattr(args, "s2_scales", "336,672,1008")
|
133 |
-
self.s2_scales = list(map(int, self.s2_scales.split(",")))
|
134 |
-
self.s2_scales.sort()
|
135 |
-
self.s2_split_size = self.s2_scales[0]
|
136 |
-
self.s2_image_size = self.s2_scales[-1]
|
137 |
-
|
138 |
-
super().__init__(vision_tower, args, delay_load)
|
139 |
-
|
140 |
-
# change resize/crop size in preprocessing to the largest image size in s2_scale
|
141 |
-
if not delay_load or getattr(args, "unfreeze_mm_vision_tower", False):
|
142 |
-
self.image_processor.size["shortest_edge"] = self.s2_image_size
|
143 |
-
self.image_processor.crop_size["height"] = self.image_processor.crop_size["width"] = self.s2_image_size
|
144 |
-
|
145 |
-
def load_model(self, device_map=None):
|
146 |
-
if self.is_loaded:
|
147 |
-
rank0_print("{} is already loaded, `load_model` called again, skipping.".format(self.vision_tower_name))
|
148 |
-
return
|
149 |
-
|
150 |
-
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
151 |
-
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
152 |
-
self.vision_tower.requires_grad_(False)
|
153 |
-
|
154 |
-
self.image_processor.size["shortest_edge"] = self.s2_image_size
|
155 |
-
self.image_processor.crop_size["height"] = self.image_processor.crop_size["width"] = self.s2_image_size
|
156 |
-
|
157 |
-
self.is_loaded = True
|
158 |
-
|
159 |
-
@torch.no_grad()
|
160 |
-
def forward_feature(self, images):
|
161 |
-
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
162 |
-
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
163 |
-
return image_features
|
164 |
-
|
165 |
-
@torch.no_grad()
|
166 |
-
def forward(self, images):
|
167 |
-
if type(images) is list:
|
168 |
-
image_features = []
|
169 |
-
for image in images:
|
170 |
-
image_feature = multiscale_forward(self.forward_feature, image.unsqueeze(0), img_sizes=self.s2_scales, max_split_size=self.s2_split_size, split_forward=True)
|
171 |
-
image_features.append(image_feature)
|
172 |
-
else:
|
173 |
-
image_features = multiscale_forward(self.forward_feature, images, img_sizes=self.s2_scales, max_split_size=self.s2_split_size, split_forward=True)
|
174 |
-
|
175 |
-
return image_features
|
176 |
-
|
177 |
-
@property
|
178 |
-
def hidden_size(self):
|
179 |
-
return self.config.hidden_size * len(self.s2_scales)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multimodal_encoder/.ipynb_checkpoints/siglip_encoder-checkpoint.py
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
from torch import nn
|
4 |
-
from typing import Optional, Tuple, Union, Dict
|
5 |
-
from PIL import Image
|
6 |
-
from functools import partial, reduce
|
7 |
-
from transformers import SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
|
8 |
-
|
9 |
-
from .base_encoder import BaseVisionTower
|
10 |
-
import torch.distributed as dist
|
11 |
-
# --data_path /share/shuyan/video_traindata/anno/\{cinepine_order\}.json \
|
12 |
-
# --image_folder /share/shuyan/video_traindata/Bunny-v1_0-data/finetune/images \
|
13 |
-
# --video_folder /share/shuyan/video_traindata \
|
14 |
-
def rank0_print(*args):
|
15 |
-
if dist.is_initialized():
|
16 |
-
if dist.get_rank() == 0:
|
17 |
-
print(f"Rank {dist.get_rank()}: ", *args)
|
18 |
-
else:
|
19 |
-
print(*args)
|
20 |
-
|
21 |
-
|
22 |
-
from transformers.image_processing_utils import BatchFeature, get_size_dict
|
23 |
-
from transformers.image_transforms import (
|
24 |
-
convert_to_rgb,
|
25 |
-
normalize,
|
26 |
-
rescale,
|
27 |
-
resize,
|
28 |
-
to_channel_dimension_format,
|
29 |
-
)
|
30 |
-
from transformers.image_utils import (
|
31 |
-
ChannelDimension,
|
32 |
-
PILImageResampling,
|
33 |
-
to_numpy_array,
|
34 |
-
)
|
35 |
-
class SigLipImageProcessor:
|
36 |
-
def __init__(self, image_mean=(0.5, 0.5, 0.5), image_std=(0.5, 0.5, 0.5), size=(384, 384), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST):
|
37 |
-
crop_size = crop_size if crop_size is not None else {"height": 384, "width": 384}
|
38 |
-
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
39 |
-
|
40 |
-
self.image_mean = image_mean
|
41 |
-
self.image_std = image_std
|
42 |
-
self.size = size
|
43 |
-
self.resample = resample
|
44 |
-
self.rescale_factor = rescale_factor
|
45 |
-
self.data_format = data_format
|
46 |
-
self.crop_size = crop_size
|
47 |
-
|
48 |
-
def preprocess(self, images, return_tensors):
|
49 |
-
if isinstance(images, Image.Image):
|
50 |
-
images = [images]
|
51 |
-
else:
|
52 |
-
# to adapt video data
|
53 |
-
images = [to_numpy_array(image) for image in images]
|
54 |
-
assert isinstance(images, list)
|
55 |
-
|
56 |
-
transforms = [
|
57 |
-
convert_to_rgb,
|
58 |
-
to_numpy_array,
|
59 |
-
partial(resize, size=self.size, resample=self.resample, data_format=self.data_format),
|
60 |
-
partial(rescale, scale=self.rescale_factor, data_format=self.data_format),
|
61 |
-
partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format),
|
62 |
-
partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format),
|
63 |
-
]
|
64 |
-
|
65 |
-
images = reduce(lambda x, f: [*map(f, x)], transforms, images)
|
66 |
-
|
67 |
-
data = {"pixel_values": images}
|
68 |
-
|
69 |
-
return BatchFeature(data=data, tensor_type=return_tensors)
|
70 |
-
|
71 |
-
class SigLipVisionTower(BaseVisionTower):
|
72 |
-
def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
|
73 |
-
super(SigLipVisionTower, self).__init__(vision_tower_name, vision_tower_cfg, delay_load)
|
74 |
-
|
75 |
-
model_path = "google/siglip-so400m-patch14-384"
|
76 |
-
base_model_name, res, interp = model_path, 384, 576
|
77 |
-
self.vision_tower_name = base_model_name
|
78 |
-
self._image_size = res if res is not None else 512
|
79 |
-
self.unfreeze_mm_vision_tower = getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False)
|
80 |
-
|
81 |
-
if not delay_load:
|
82 |
-
rank0_print(f"Loading vision tower: {vision_tower_name}")
|
83 |
-
self.load_model()
|
84 |
-
elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False):
|
85 |
-
# TODO: better detector is needed.
|
86 |
-
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
|
87 |
-
self.load_model()
|
88 |
-
elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts:
|
89 |
-
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
|
90 |
-
self.load_model()
|
91 |
-
else:
|
92 |
-
self.cfg_only = self.config
|
93 |
-
|
94 |
-
def load_model(self, device_map=None):
|
95 |
-
self.vision_model = "siglip"
|
96 |
-
# clip_model, processor = create_model_from_pretrained(self.vision_tower_name)
|
97 |
-
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
|
98 |
-
|
99 |
-
# self.vision_tower = clip_model.visual.trunk
|
100 |
-
self.vision_tower.output_tokens = True
|
101 |
-
|
102 |
-
self._hidden_size = self.vision_tower.config.hidden_size
|
103 |
-
|
104 |
-
self.image_processor = SigLipImageProcessor()
|
105 |
-
|
106 |
-
del self.vision_tower.vision_model.encoder.layers[-1:]
|
107 |
-
self.vision_tower.vision_model.head = nn.Identity()
|
108 |
-
|
109 |
-
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
|
110 |
-
self.is_loaded = True
|
111 |
-
|
112 |
-
def _forward(self, images):
|
113 |
-
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
|
114 |
-
image_features = self.vision_tower.forward(
|
115 |
-
images.to(device=self.device, dtype=self.dtype),
|
116 |
-
output_hidden_states=True,
|
117 |
-
).hidden_states[-1]
|
118 |
-
return image_features
|
119 |
-
@property
|
120 |
-
def dummy_feature(self):
|
121 |
-
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
122 |
-
|
123 |
-
@property
|
124 |
-
def dtype(self):
|
125 |
-
for p in self.vision_tower.parameters():
|
126 |
-
return p.dtype
|
127 |
-
|
128 |
-
@property
|
129 |
-
def device(self):
|
130 |
-
for p in self.vision_tower.parameters():
|
131 |
-
return p.device
|
132 |
-
|
133 |
-
@property
|
134 |
-
def hidden_size(self):
|
135 |
-
return self.config.hidden_size
|
136 |
-
|
137 |
-
@property
|
138 |
-
def num_patches(self):
|
139 |
-
return (336 // 14) ** 2
|
140 |
-
|
141 |
-
@property
|
142 |
-
def num_patches_per_side(self):
|
143 |
-
#return self.config.image_size // self.config.patch_size
|
144 |
-
return 336//14
|
145 |
-
#return 27
|
146 |
-
# return self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"]
|
147 |
-
|
148 |
-
@property
|
149 |
-
def image_size(self):
|
150 |
-
return 384
|
151 |
-
#return self.config.image_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multimodal_encoder/__pycache__/base_encoder.cpython-310.pyc
DELETED
Binary file (2.62 kB)
|
|
multimodal_encoder/__pycache__/builder.cpython-310.pyc
DELETED
Binary file (697 Bytes)
|
|
multimodal_encoder/__pycache__/clip_encoder.cpython-310.pyc
DELETED
Binary file (6.53 kB)
|
|
multimodal_encoder/__pycache__/siglip_encoder.cpython-310.pyc
DELETED
Binary file (5.81 kB)
|
|
multimodal_encoder/base_encoder.py
DELETED
@@ -1,68 +0,0 @@
|
|
1 |
-
from abc import ABC, abstractmethod
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
|
6 |
-
|
7 |
-
class BaseVisionTower(nn.Module):
|
8 |
-
def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
|
9 |
-
super().__init__()
|
10 |
-
|
11 |
-
self.is_loaded = False
|
12 |
-
|
13 |
-
self.vision_tower_name = vision_tower_name
|
14 |
-
self.delay_load = delay_load
|
15 |
-
|
16 |
-
@abstractmethod
|
17 |
-
def load_model(self, device_map=None):
|
18 |
-
raise NotImplementedError("Subclasses must implement load_model")
|
19 |
-
|
20 |
-
@abstractmethod
|
21 |
-
def _forward(self, images):
|
22 |
-
raise NotImplementedError("Subclasses must implement forward")
|
23 |
-
|
24 |
-
def forward(self, images):
|
25 |
-
if type(images) is list:
|
26 |
-
image_features = [self._forward(image.unsqueeze(0)) for image in images]
|
27 |
-
else:
|
28 |
-
image_features = self._forward(images)
|
29 |
-
|
30 |
-
return image_features
|
31 |
-
|
32 |
-
@property
|
33 |
-
def dummy_feature(self):
|
34 |
-
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
35 |
-
|
36 |
-
@property
|
37 |
-
def dtype(self):
|
38 |
-
# Dynamically infer the dtype from the first parameter, if not explicitly specified
|
39 |
-
if hasattr(self.vision_tower, "dtype"):
|
40 |
-
return self.vision_tower.dtype
|
41 |
-
else:
|
42 |
-
params = list(self.vision_tower.parameters())
|
43 |
-
return (
|
44 |
-
params[0].dtype if len(params) > 0 else torch.float32
|
45 |
-
) # Default to torch.float32 if no parameters
|
46 |
-
|
47 |
-
@property
|
48 |
-
def device(self):
|
49 |
-
# Dynamically infer the device from the first parameter, if not explicitly specified
|
50 |
-
if hasattr(self.vision_tower, "device"):
|
51 |
-
return self.vision_tower.device
|
52 |
-
else:
|
53 |
-
params = list(self.vision_tower.parameters())
|
54 |
-
return (
|
55 |
-
params[0].device if len(params) > 0 else torch.device("cpu")
|
56 |
-
) # Default to CPU if no parameters
|
57 |
-
@property
|
58 |
-
def config(self):
|
59 |
-
if self.is_loaded:
|
60 |
-
return self.vision_tower.config
|
61 |
-
else:
|
62 |
-
return self.cfg_only
|
63 |
-
@property
|
64 |
-
def hidden_size(self):
|
65 |
-
try:
|
66 |
-
return self.config.hidden_size
|
67 |
-
except:
|
68 |
-
return self._hidden_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multimodal_encoder/builder.py
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from .siglip_encoder import SigLipVisionTower
|
3 |
-
# from .eva_clip.eva_clip_encoder import EvaClipVisionTower
|
4 |
-
# from .dev_eva_clip.eva_vit import EvaViTWrapper
|
5 |
-
|
6 |
-
|
7 |
-
def build_vision_tower(vision_tower_cfg, **kwargs):
|
8 |
-
|
9 |
-
vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
|
10 |
-
is_absolute_path_exists = os.path.exists(vision_tower)
|
11 |
-
use_s2 = getattr(vision_tower_cfg, "s2", False)
|
12 |
-
|
13 |
-
#print(getattr(vision_tower_cfg, "vision_tower", None))
|
14 |
-
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
15 |
-
if getattr(vision_tower_cfg, "vision_tower", None) and "siglip" in getattr(vision_tower_cfg, "vision_tower", None).lower():
|
16 |
-
#print('*************\n')
|
17 |
-
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
18 |
-
|
19 |
-
|
20 |
-
raise ValueError(f"Unknown vision tower: {vision_tower}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multimodal_projector/__pycache__/builder.cpython-310.pyc
DELETED
Binary file (2.4 kB)
|
|
multimodal_projector/__pycache__/pooler_projector.cpython-310.pyc
DELETED
Binary file (1.47 kB)
|
|
multimodal_projector/pooler_projector.py
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
import math
|
5 |
-
|
6 |
-
from transformers.models.clip.modeling_clip import CLIPVisionModel
|
7 |
-
|
8 |
-
|
9 |
-
class PoolerProjector(nn.Module):
|
10 |
-
def __init__(self, config, vision_cfg):
|
11 |
-
super().__init__()
|
12 |
-
self._config = config
|
13 |
-
self.hw = vision_cfg.image_size // vision_cfg.patch_size
|
14 |
-
|
15 |
-
self.conv_pool = nn.Conv2d(config.mm_hidden_size, config.hidden_size, kernel_size=2, stride=2)
|
16 |
-
|
17 |
-
self.proj = nn.Sequential(
|
18 |
-
nn.GELU(),
|
19 |
-
nn.Linear(config.hidden_size, config.hidden_size),
|
20 |
-
)
|
21 |
-
|
22 |
-
def forward(self, x, *args, **kwargs):
|
23 |
-
height = width = self.hw
|
24 |
-
assert height * width == x.shape[1]
|
25 |
-
x = x.view(x.shape[0], height, width, -1).permute(0, 3, 1, 2)
|
26 |
-
x = self.conv_pool(x)
|
27 |
-
x = x.flatten(2).transpose(1, 2)
|
28 |
-
x = self.proj(x)
|
29 |
-
return x
|
30 |
-
|
31 |
-
@property
|
32 |
-
def config(self):
|
33 |
-
return {"mm_projector_type": "pooler"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multimodal_resampler/__pycache__/builder.cpython-310.pyc
DELETED
Binary file (1.45 kB)
|
|
multimodal_resampler/__pycache__/masked_drop.cpython-310.pyc
DELETED
Binary file (2.47 kB)
|
|
multimodal_resampler/__pycache__/perceiver.cpython-310.pyc
DELETED
Binary file (4.86 kB)
|
|
multimodal_resampler/__pycache__/qformer.cpython-310.pyc
DELETED
Binary file (32.7 kB)
|
|
multimodal_resampler/__pycache__/spatial_pool.cpython-310.pyc
DELETED
Binary file (1.9 kB)
|
|
multimodal_resampler/builder.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
from .masked_drop import MaskedDrop
|
4 |
-
from .spatial_pool import SpatialPool
|
5 |
-
from .perceiver import PerceiverResampler
|
6 |
-
from .qformer import Qformer
|
7 |
-
|
8 |
-
|
9 |
-
class IdentityMap(torch.nn.Module):
|
10 |
-
def __init__(self):
|
11 |
-
super().__init__()
|
12 |
-
|
13 |
-
def forward(self, x, *args, **kwargs):
|
14 |
-
return x
|
15 |
-
|
16 |
-
@property
|
17 |
-
def config(self):
|
18 |
-
return {"mm_resampler_type": None}
|
19 |
-
|
20 |
-
|
21 |
-
def build_vision_resampler(model_args, delay_load=False, **kwargs):
|
22 |
-
resampler_type = getattr(model_args, "mm_resampler_type", None)
|
23 |
-
if resampler_type == "masked_drop":
|
24 |
-
return MaskedDrop(model_args)
|
25 |
-
elif resampler_type == "spatial_pool":
|
26 |
-
return SpatialPool(model_args, **kwargs)
|
27 |
-
elif resampler_type == "perceiver":
|
28 |
-
return PerceiverResampler(model_args, **kwargs)
|
29 |
-
elif resampler_type == "qformer":
|
30 |
-
return Qformer(model_args, **kwargs)
|
31 |
-
elif resampler_type is None:
|
32 |
-
return IdentityMap()
|
33 |
-
|
34 |
-
raise ValueError(f"Unknown resampler type: {resampler_type}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multimodal_resampler/masked_drop.py
DELETED
@@ -1,80 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
import random
|
5 |
-
|
6 |
-
|
7 |
-
class MaskedDrop(nn.Module):
|
8 |
-
def __init__(self, model_args):
|
9 |
-
super().__init__()
|
10 |
-
|
11 |
-
self.mode = model_args.mm_mask_drop_mode
|
12 |
-
self.skip_percentage = model_args.mm_mask_drop_skip_percentage
|
13 |
-
self.ratio = model_args.mm_mask_drop_ratio
|
14 |
-
self.ratio_upper = model_args.mm_mask_drop_ratio_upper
|
15 |
-
self.ratio_lower = model_args.mm_mask_drop_ratio_lower
|
16 |
-
|
17 |
-
def forward(self, image_features, *args, **kwargs):
|
18 |
-
|
19 |
-
if not self.training:
|
20 |
-
return image_features
|
21 |
-
|
22 |
-
if self.skip_percentage > random.random():
|
23 |
-
return image_features
|
24 |
-
|
25 |
-
masked_features = []
|
26 |
-
|
27 |
-
for image_feature in image_features:
|
28 |
-
num_tokens = image_feature.shape[0]
|
29 |
-
if self.mode == "fixed":
|
30 |
-
num_keep = int(num_tokens * self.ratio)
|
31 |
-
masked_features.append(self.random_masking(image_feature.unsqueeze(0), num_keep)[0][0])
|
32 |
-
elif self.mode == "range":
|
33 |
-
num_keep = int(num_tokens * random.uniform(self.ratio_lower, self.ratio_upper))
|
34 |
-
masked_features.append(self.random_masking(image_feature.unsqueeze(0), num_keep)[0])
|
35 |
-
elif self.mode == "cls_only":
|
36 |
-
masked_features.append(image_feature[0:1])
|
37 |
-
else:
|
38 |
-
raise ValueError(f"Unexpected masked drop mode: {self.mode}")
|
39 |
-
|
40 |
-
if self.mode not in ["range"] and (type(image_features) is not list or self.mode in ["cls_only"]):
|
41 |
-
masked_features = torch.stack(masked_features, dim=0)
|
42 |
-
|
43 |
-
return masked_features
|
44 |
-
|
45 |
-
@property
|
46 |
-
def config(self):
|
47 |
-
return {
|
48 |
-
"mm_resampler_type": "masked_drop",
|
49 |
-
"mm_mask_drop_mode": self.mode,
|
50 |
-
"mm_mask_drop_skip_percentage": self.skip_percentage,
|
51 |
-
"mm_mask_drop_ratio": self.ratio,
|
52 |
-
"mm_mask_drop_ratio_upper": self.ratio_upper,
|
53 |
-
"mm_mask_drop_ratio_lower": self.ratio_lower,
|
54 |
-
}
|
55 |
-
|
56 |
-
def random_masking(self, x, len_keep):
|
57 |
-
"""
|
58 |
-
Perform per-sample random masking by per-sample shuffling.
|
59 |
-
Per-sample shuffling is done by argsort random noise.
|
60 |
-
x: [N, L, D], sequence
|
61 |
-
"""
|
62 |
-
N, L, D = x.shape # batch, length, dim
|
63 |
-
|
64 |
-
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
|
65 |
-
|
66 |
-
# sort noise for each sample
|
67 |
-
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
|
68 |
-
ids_restore = torch.argsort(ids_shuffle, dim=1)
|
69 |
-
|
70 |
-
# keep the first subset
|
71 |
-
ids_keep = ids_shuffle[:, :len_keep]
|
72 |
-
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
|
73 |
-
|
74 |
-
# generate the binary mask: 0 is keep, 1 is remove
|
75 |
-
mask = torch.ones([N, L], device=x.device)
|
76 |
-
mask[:, :len_keep] = 0
|
77 |
-
# unshuffle to get the binary mask
|
78 |
-
mask = torch.gather(mask, dim=1, index=ids_restore)
|
79 |
-
|
80 |
-
return x_masked, mask, ids_restore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multimodal_resampler/perceiver.py
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Taken from https://github.com/lucidrains/flamingo-pytorch
|
3 |
-
"""
|
4 |
-
|
5 |
-
import torch
|
6 |
-
from einops import rearrange, repeat
|
7 |
-
|
8 |
-
try:
|
9 |
-
from einops_exts import rearrange_many
|
10 |
-
except:
|
11 |
-
pass
|
12 |
-
|
13 |
-
from torch import einsum, nn
|
14 |
-
|
15 |
-
|
16 |
-
def exists(val):
|
17 |
-
return val is not None
|
18 |
-
|
19 |
-
|
20 |
-
def FeedForward(dim, mult=4):
|
21 |
-
inner_dim = int(dim * mult)
|
22 |
-
return nn.Sequential(
|
23 |
-
nn.LayerNorm(dim),
|
24 |
-
nn.Linear(dim, inner_dim, bias=False),
|
25 |
-
nn.GELU(),
|
26 |
-
nn.Linear(inner_dim, dim, bias=False),
|
27 |
-
)
|
28 |
-
|
29 |
-
|
30 |
-
class PerceiverAttention(nn.Module):
|
31 |
-
def __init__(self, *, dim, dim_head=64, heads=8):
|
32 |
-
super().__init__()
|
33 |
-
self.scale = dim_head**-0.5
|
34 |
-
self.heads = heads
|
35 |
-
inner_dim = dim_head * heads
|
36 |
-
|
37 |
-
self.norm_media = nn.LayerNorm(dim)
|
38 |
-
self.norm_latents = nn.LayerNorm(dim)
|
39 |
-
|
40 |
-
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
41 |
-
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
42 |
-
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
43 |
-
|
44 |
-
def forward(self, x, latents):
|
45 |
-
"""
|
46 |
-
Args:
|
47 |
-
x (torch.Tensor): image features
|
48 |
-
shape (b, T, n1, D)
|
49 |
-
latent (torch.Tensor): latent features
|
50 |
-
shape (b, T, n2, D)
|
51 |
-
"""
|
52 |
-
x = self.norm_media(x)
|
53 |
-
latents = self.norm_latents(latents)
|
54 |
-
|
55 |
-
h = self.heads
|
56 |
-
|
57 |
-
q = self.to_q(latents)
|
58 |
-
kv_input = torch.cat((x, latents), dim=-2)
|
59 |
-
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
60 |
-
q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h)
|
61 |
-
q = q * self.scale
|
62 |
-
|
63 |
-
# attention
|
64 |
-
sim = einsum("... i d, ... j d -> ... i j", q, k)
|
65 |
-
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
|
66 |
-
attn = sim.softmax(dim=-1)
|
67 |
-
|
68 |
-
out = einsum("... i j, ... j d -> ... i d", attn, v)
|
69 |
-
out = rearrange(out, "b h t n d -> b t n (h d)", h=h)
|
70 |
-
return self.to_out(out)
|
71 |
-
|
72 |
-
|
73 |
-
class PerceiverResamplerModule(nn.Module):
|
74 |
-
def __init__(
|
75 |
-
self,
|
76 |
-
*,
|
77 |
-
dim,
|
78 |
-
depth=6,
|
79 |
-
dim_head=64,
|
80 |
-
heads=8,
|
81 |
-
num_latents=64,
|
82 |
-
max_num_media=None,
|
83 |
-
max_num_frames=None,
|
84 |
-
ff_mult=4,
|
85 |
-
):
|
86 |
-
super().__init__()
|
87 |
-
self.latents = nn.Parameter(torch.randn(num_latents, dim))
|
88 |
-
self.frame_embs = nn.Parameter(torch.randn(max_num_frames, dim)) if exists(max_num_frames) else None
|
89 |
-
self.media_time_embs = nn.Parameter(torch.randn(max_num_media, 1, dim)) if exists(max_num_media) else None
|
90 |
-
|
91 |
-
self.layers = nn.ModuleList([])
|
92 |
-
for _ in range(depth):
|
93 |
-
self.layers.append(
|
94 |
-
nn.ModuleList(
|
95 |
-
[
|
96 |
-
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
97 |
-
FeedForward(dim=dim, mult=ff_mult) if ff_mult > 0 else nn.Identity(),
|
98 |
-
]
|
99 |
-
)
|
100 |
-
)
|
101 |
-
|
102 |
-
self.norm = nn.LayerNorm(dim)
|
103 |
-
|
104 |
-
def forward(self, x):
|
105 |
-
"""
|
106 |
-
Args:
|
107 |
-
x (torch.Tensor): image features
|
108 |
-
shape (b, T, F, v, D)
|
109 |
-
Returns:
|
110 |
-
shape (b, T, n, D) where n is self.num_latents
|
111 |
-
"""
|
112 |
-
b, T, F, v = x.shape[:4]
|
113 |
-
|
114 |
-
# frame and media time embeddings
|
115 |
-
if exists(self.frame_embs):
|
116 |
-
frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v=v)
|
117 |
-
x = x + frame_embs
|
118 |
-
x = rearrange(x, "b T F v d -> b T (F v) d") # flatten the frame and spatial dimensions
|
119 |
-
if exists(self.media_time_embs):
|
120 |
-
x = x + self.media_time_embs[:T]
|
121 |
-
|
122 |
-
# blocks
|
123 |
-
latents = repeat(self.latents, "n d -> b T n d", b=b, T=T)
|
124 |
-
for attn, ff in self.layers:
|
125 |
-
latents = attn(x, latents) + latents
|
126 |
-
latents = ff(latents) + latents
|
127 |
-
return self.norm(latents)
|
128 |
-
|
129 |
-
|
130 |
-
class PerceiverResampler(nn.Module):
|
131 |
-
def __init__(self, model_args, vision_tower):
|
132 |
-
super().__init__()
|
133 |
-
|
134 |
-
self.depth = model_args.mm_perceiver_depth
|
135 |
-
self.num_latents = model_args.mm_perceiver_latents
|
136 |
-
self.ff_mult = model_args.mm_perceiver_ff_mult
|
137 |
-
self.pretrained = model_args.mm_perceiver_pretrained
|
138 |
-
|
139 |
-
self.perceiver = PerceiverResamplerModule(dim=vision_tower.hidden_size, depth=self.depth, num_latents=self.num_latents, ff_mult=self.ff_mult)
|
140 |
-
|
141 |
-
if self.pretrained is not None:
|
142 |
-
self.load_state_dict(torch.load(self.pretrained))
|
143 |
-
|
144 |
-
def forward(self, image_features, *args, **kwargs):
|
145 |
-
return self.perceiver(image_features[:, None, None]).squeeze(1)
|
146 |
-
|
147 |
-
@property
|
148 |
-
def config(self):
|
149 |
-
return {
|
150 |
-
"mm_resampler_type": "perceiver",
|
151 |
-
"mm_perceiver_depth": self.depth,
|
152 |
-
"mm_perceiver_latents": self.num_latents,
|
153 |
-
"mm_perceiver_ff_mult": self.ff_mult,
|
154 |
-
"mm_perceiver_pretrained": self.pretrained,
|
155 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multimodal_resampler/qformer.py
DELETED
@@ -1,1160 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
* Copyright (c) 2023, salesforce.com, inc.
|
3 |
-
* All rights reserved.
|
4 |
-
* SPDX-License-Identifier: BSD-3-Clause
|
5 |
-
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
-
* By Junnan Li
|
7 |
-
* Based on huggingface code base
|
8 |
-
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
9 |
-
"""
|
10 |
-
|
11 |
-
import math
|
12 |
-
import os
|
13 |
-
import warnings
|
14 |
-
from dataclasses import dataclass
|
15 |
-
from typing import Optional, Tuple, Dict, Any
|
16 |
-
|
17 |
-
import torch
|
18 |
-
from torch import Tensor, device, dtype, nn
|
19 |
-
import torch.utils.checkpoint
|
20 |
-
from torch import nn
|
21 |
-
from torch.nn import CrossEntropyLoss
|
22 |
-
import torch.nn.functional as F
|
23 |
-
|
24 |
-
from transformers.activations import ACT2FN
|
25 |
-
from transformers.file_utils import (
|
26 |
-
ModelOutput,
|
27 |
-
)
|
28 |
-
from transformers.modeling_outputs import (
|
29 |
-
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
-
BaseModelOutputWithPoolingAndCrossAttentions,
|
31 |
-
CausalLMOutputWithCrossAttentions,
|
32 |
-
MaskedLMOutput,
|
33 |
-
MultipleChoiceModelOutput,
|
34 |
-
NextSentencePredictorOutput,
|
35 |
-
QuestionAnsweringModelOutput,
|
36 |
-
SequenceClassifierOutput,
|
37 |
-
TokenClassifierOutput,
|
38 |
-
)
|
39 |
-
from transformers.modeling_utils import (
|
40 |
-
PreTrainedModel,
|
41 |
-
apply_chunking_to_forward,
|
42 |
-
find_pruneable_heads_and_indices,
|
43 |
-
prune_linear_layer,
|
44 |
-
)
|
45 |
-
from transformers.utils import logging
|
46 |
-
from transformers.models.bert.configuration_bert import BertConfig
|
47 |
-
|
48 |
-
logger = logging.get_logger(__name__)
|
49 |
-
|
50 |
-
|
51 |
-
def disabled_train(self, mode=True):
|
52 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
53 |
-
does not change anymore."""
|
54 |
-
return self
|
55 |
-
|
56 |
-
|
57 |
-
class BertEmbeddings(nn.Module):
|
58 |
-
"""Construct the embeddings from word and position embeddings."""
|
59 |
-
|
60 |
-
def __init__(self, config):
|
61 |
-
super().__init__()
|
62 |
-
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
63 |
-
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
64 |
-
|
65 |
-
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
66 |
-
# any TensorFlow checkpoint file
|
67 |
-
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
68 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
69 |
-
|
70 |
-
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
71 |
-
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
72 |
-
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
73 |
-
|
74 |
-
self.config = config
|
75 |
-
|
76 |
-
def forward(
|
77 |
-
self,
|
78 |
-
input_ids=None,
|
79 |
-
position_ids=None,
|
80 |
-
query_embeds=None,
|
81 |
-
past_key_values_length=0,
|
82 |
-
):
|
83 |
-
if input_ids is not None:
|
84 |
-
seq_length = input_ids.size()[1]
|
85 |
-
else:
|
86 |
-
seq_length = 0
|
87 |
-
|
88 |
-
if position_ids is None:
|
89 |
-
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length].clone()
|
90 |
-
|
91 |
-
if input_ids is not None:
|
92 |
-
embeddings = self.word_embeddings(input_ids)
|
93 |
-
if self.position_embedding_type == "absolute":
|
94 |
-
position_embeddings = self.position_embeddings(position_ids)
|
95 |
-
embeddings = embeddings + position_embeddings
|
96 |
-
|
97 |
-
if query_embeds is not None:
|
98 |
-
embeddings = torch.cat((query_embeds, embeddings), dim=1)
|
99 |
-
else:
|
100 |
-
embeddings = query_embeds
|
101 |
-
|
102 |
-
embeddings = self.LayerNorm(embeddings)
|
103 |
-
embeddings = self.dropout(embeddings)
|
104 |
-
return embeddings
|
105 |
-
|
106 |
-
|
107 |
-
class BertSelfAttention(nn.Module):
|
108 |
-
def __init__(self, config, is_cross_attention):
|
109 |
-
super().__init__()
|
110 |
-
self.config = config
|
111 |
-
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
112 |
-
raise ValueError("The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads))
|
113 |
-
|
114 |
-
self.num_attention_heads = config.num_attention_heads
|
115 |
-
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
116 |
-
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
117 |
-
|
118 |
-
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
119 |
-
if is_cross_attention:
|
120 |
-
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
121 |
-
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
122 |
-
else:
|
123 |
-
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
124 |
-
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
125 |
-
|
126 |
-
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
127 |
-
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
128 |
-
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
129 |
-
self.max_position_embeddings = config.max_position_embeddings
|
130 |
-
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
131 |
-
self.save_attention = False
|
132 |
-
|
133 |
-
def save_attn_gradients(self, attn_gradients):
|
134 |
-
self.attn_gradients = attn_gradients
|
135 |
-
|
136 |
-
def get_attn_gradients(self):
|
137 |
-
return self.attn_gradients
|
138 |
-
|
139 |
-
def save_attention_map(self, attention_map):
|
140 |
-
self.attention_map = attention_map
|
141 |
-
|
142 |
-
def get_attention_map(self):
|
143 |
-
return self.attention_map
|
144 |
-
|
145 |
-
def transpose_for_scores(self, x):
|
146 |
-
new_x_shape = x.size()[:-1] + (
|
147 |
-
self.num_attention_heads,
|
148 |
-
self.attention_head_size,
|
149 |
-
)
|
150 |
-
x = x.view(*new_x_shape)
|
151 |
-
return x.permute(0, 2, 1, 3)
|
152 |
-
|
153 |
-
def forward(
|
154 |
-
self,
|
155 |
-
hidden_states,
|
156 |
-
attention_mask=None,
|
157 |
-
head_mask=None,
|
158 |
-
encoder_hidden_states=None,
|
159 |
-
encoder_attention_mask=None,
|
160 |
-
past_key_value=None,
|
161 |
-
output_attentions=False,
|
162 |
-
):
|
163 |
-
|
164 |
-
# If this is instantiated as a cross-attention module, the keys
|
165 |
-
# and values come from an encoder; the attention mask needs to be
|
166 |
-
# such that the encoder's padding tokens are not attended to.
|
167 |
-
is_cross_attention = encoder_hidden_states is not None
|
168 |
-
|
169 |
-
if is_cross_attention:
|
170 |
-
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
171 |
-
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
172 |
-
attention_mask = encoder_attention_mask
|
173 |
-
elif past_key_value is not None:
|
174 |
-
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
175 |
-
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
176 |
-
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
177 |
-
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
178 |
-
else:
|
179 |
-
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
180 |
-
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
181 |
-
|
182 |
-
mixed_query_layer = self.query(hidden_states)
|
183 |
-
|
184 |
-
query_layer = self.transpose_for_scores(mixed_query_layer)
|
185 |
-
|
186 |
-
past_key_value = (key_layer, value_layer)
|
187 |
-
|
188 |
-
# Take the dot product between "query" and "key" to get the raw attention scores.
|
189 |
-
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
190 |
-
|
191 |
-
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
192 |
-
seq_length = hidden_states.size()[1]
|
193 |
-
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
194 |
-
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
195 |
-
distance = position_ids_l - position_ids_r
|
196 |
-
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
197 |
-
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
198 |
-
|
199 |
-
if self.position_embedding_type == "relative_key":
|
200 |
-
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
201 |
-
attention_scores = attention_scores + relative_position_scores
|
202 |
-
elif self.position_embedding_type == "relative_key_query":
|
203 |
-
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
204 |
-
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
205 |
-
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
206 |
-
|
207 |
-
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
208 |
-
if attention_mask is not None:
|
209 |
-
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
210 |
-
attention_scores = attention_scores + attention_mask
|
211 |
-
|
212 |
-
# Normalize the attention scores to probabilities.
|
213 |
-
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
214 |
-
|
215 |
-
if is_cross_attention and self.save_attention:
|
216 |
-
self.save_attention_map(attention_probs)
|
217 |
-
attention_probs.register_hook(self.save_attn_gradients)
|
218 |
-
|
219 |
-
# This is actually dropping out entire tokens to attend to, which might
|
220 |
-
# seem a bit unusual, but is taken from the original Transformer paper.
|
221 |
-
attention_probs_dropped = self.dropout(attention_probs)
|
222 |
-
|
223 |
-
# Mask heads if we want to
|
224 |
-
if head_mask is not None:
|
225 |
-
attention_probs_dropped = attention_probs_dropped * head_mask
|
226 |
-
|
227 |
-
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
228 |
-
|
229 |
-
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
230 |
-
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
231 |
-
context_layer = context_layer.view(*new_context_layer_shape)
|
232 |
-
|
233 |
-
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
234 |
-
|
235 |
-
outputs = outputs + (past_key_value,)
|
236 |
-
return outputs
|
237 |
-
|
238 |
-
|
239 |
-
class BertSelfOutput(nn.Module):
|
240 |
-
def __init__(self, config):
|
241 |
-
super().__init__()
|
242 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
243 |
-
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
244 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
245 |
-
|
246 |
-
def forward(self, hidden_states, input_tensor):
|
247 |
-
hidden_states = self.dense(hidden_states)
|
248 |
-
hidden_states = self.dropout(hidden_states)
|
249 |
-
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
250 |
-
return hidden_states
|
251 |
-
|
252 |
-
|
253 |
-
class BertAttention(nn.Module):
|
254 |
-
def __init__(self, config, is_cross_attention=False):
|
255 |
-
super().__init__()
|
256 |
-
self.self = BertSelfAttention(config, is_cross_attention)
|
257 |
-
self.output = BertSelfOutput(config)
|
258 |
-
self.pruned_heads = set()
|
259 |
-
|
260 |
-
def prune_heads(self, heads):
|
261 |
-
if len(heads) == 0:
|
262 |
-
return
|
263 |
-
heads, index = find_pruneable_heads_and_indices(
|
264 |
-
heads,
|
265 |
-
self.self.num_attention_heads,
|
266 |
-
self.self.attention_head_size,
|
267 |
-
self.pruned_heads,
|
268 |
-
)
|
269 |
-
|
270 |
-
# Prune linear layers
|
271 |
-
self.self.query = prune_linear_layer(self.self.query, index)
|
272 |
-
self.self.key = prune_linear_layer(self.self.key, index)
|
273 |
-
self.self.value = prune_linear_layer(self.self.value, index)
|
274 |
-
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
275 |
-
|
276 |
-
# Update hyper params and store pruned heads
|
277 |
-
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
278 |
-
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
279 |
-
self.pruned_heads = self.pruned_heads.union(heads)
|
280 |
-
|
281 |
-
def forward(
|
282 |
-
self,
|
283 |
-
hidden_states,
|
284 |
-
attention_mask=None,
|
285 |
-
head_mask=None,
|
286 |
-
encoder_hidden_states=None,
|
287 |
-
encoder_attention_mask=None,
|
288 |
-
past_key_value=None,
|
289 |
-
output_attentions=False,
|
290 |
-
):
|
291 |
-
self_outputs = self.self(
|
292 |
-
hidden_states,
|
293 |
-
attention_mask,
|
294 |
-
head_mask,
|
295 |
-
encoder_hidden_states,
|
296 |
-
encoder_attention_mask,
|
297 |
-
past_key_value,
|
298 |
-
output_attentions,
|
299 |
-
)
|
300 |
-
attention_output = self.output(self_outputs[0], hidden_states)
|
301 |
-
|
302 |
-
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
303 |
-
return outputs
|
304 |
-
|
305 |
-
|
306 |
-
class BertIntermediate(nn.Module):
|
307 |
-
def __init__(self, config):
|
308 |
-
super().__init__()
|
309 |
-
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
310 |
-
if isinstance(config.hidden_act, str):
|
311 |
-
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
312 |
-
else:
|
313 |
-
self.intermediate_act_fn = config.hidden_act
|
314 |
-
|
315 |
-
def forward(self, hidden_states):
|
316 |
-
hidden_states = self.dense(hidden_states)
|
317 |
-
hidden_states = self.intermediate_act_fn(hidden_states)
|
318 |
-
return hidden_states
|
319 |
-
|
320 |
-
|
321 |
-
class BertOutput(nn.Module):
|
322 |
-
def __init__(self, config):
|
323 |
-
super().__init__()
|
324 |
-
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
325 |
-
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
326 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
327 |
-
|
328 |
-
def forward(self, hidden_states, input_tensor):
|
329 |
-
hidden_states = self.dense(hidden_states)
|
330 |
-
hidden_states = self.dropout(hidden_states)
|
331 |
-
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
332 |
-
return hidden_states
|
333 |
-
|
334 |
-
|
335 |
-
class BertLayer(nn.Module):
|
336 |
-
def __init__(self, config, layer_num):
|
337 |
-
super().__init__()
|
338 |
-
self.config = config
|
339 |
-
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
340 |
-
self.seq_len_dim = 1
|
341 |
-
self.attention = BertAttention(config)
|
342 |
-
self.layer_num = layer_num
|
343 |
-
if self.config.add_cross_attention and layer_num % self.config.cross_attention_freq == 0:
|
344 |
-
self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
|
345 |
-
self.has_cross_attention = True
|
346 |
-
else:
|
347 |
-
self.has_cross_attention = False
|
348 |
-
self.intermediate = BertIntermediate(config)
|
349 |
-
self.output = BertOutput(config)
|
350 |
-
|
351 |
-
self.intermediate_query = BertIntermediate(config)
|
352 |
-
self.output_query = BertOutput(config)
|
353 |
-
|
354 |
-
def forward(
|
355 |
-
self,
|
356 |
-
hidden_states,
|
357 |
-
attention_mask=None,
|
358 |
-
head_mask=None,
|
359 |
-
encoder_hidden_states=None,
|
360 |
-
encoder_attention_mask=None,
|
361 |
-
past_key_value=None,
|
362 |
-
output_attentions=False,
|
363 |
-
query_length=0,
|
364 |
-
):
|
365 |
-
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
366 |
-
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
367 |
-
self_attention_outputs = self.attention(
|
368 |
-
hidden_states,
|
369 |
-
attention_mask,
|
370 |
-
head_mask,
|
371 |
-
output_attentions=output_attentions,
|
372 |
-
past_key_value=self_attn_past_key_value,
|
373 |
-
)
|
374 |
-
attention_output = self_attention_outputs[0]
|
375 |
-
outputs = self_attention_outputs[1:-1]
|
376 |
-
|
377 |
-
present_key_value = self_attention_outputs[-1]
|
378 |
-
|
379 |
-
if query_length > 0:
|
380 |
-
query_attention_output = attention_output[:, :query_length, :]
|
381 |
-
|
382 |
-
if self.has_cross_attention:
|
383 |
-
assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
|
384 |
-
cross_attention_outputs = self.crossattention(
|
385 |
-
query_attention_output,
|
386 |
-
attention_mask,
|
387 |
-
head_mask,
|
388 |
-
encoder_hidden_states,
|
389 |
-
encoder_attention_mask,
|
390 |
-
output_attentions=output_attentions,
|
391 |
-
)
|
392 |
-
query_attention_output = cross_attention_outputs[0]
|
393 |
-
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
394 |
-
|
395 |
-
layer_output = apply_chunking_to_forward(
|
396 |
-
self.feed_forward_chunk_query,
|
397 |
-
self.chunk_size_feed_forward,
|
398 |
-
self.seq_len_dim,
|
399 |
-
query_attention_output,
|
400 |
-
)
|
401 |
-
if attention_output.shape[1] > query_length:
|
402 |
-
layer_output_text = apply_chunking_to_forward(
|
403 |
-
self.feed_forward_chunk,
|
404 |
-
self.chunk_size_feed_forward,
|
405 |
-
self.seq_len_dim,
|
406 |
-
attention_output[:, query_length:, :],
|
407 |
-
)
|
408 |
-
layer_output = torch.cat([layer_output, layer_output_text], dim=1)
|
409 |
-
else:
|
410 |
-
layer_output = apply_chunking_to_forward(
|
411 |
-
self.feed_forward_chunk,
|
412 |
-
self.chunk_size_feed_forward,
|
413 |
-
self.seq_len_dim,
|
414 |
-
attention_output,
|
415 |
-
)
|
416 |
-
outputs = (layer_output,) + outputs
|
417 |
-
|
418 |
-
outputs = outputs + (present_key_value,)
|
419 |
-
|
420 |
-
return outputs
|
421 |
-
|
422 |
-
def feed_forward_chunk(self, attention_output):
|
423 |
-
intermediate_output = self.intermediate(attention_output)
|
424 |
-
layer_output = self.output(intermediate_output, attention_output)
|
425 |
-
return layer_output
|
426 |
-
|
427 |
-
def feed_forward_chunk_query(self, attention_output):
|
428 |
-
intermediate_output = self.intermediate_query(attention_output)
|
429 |
-
layer_output = self.output_query(intermediate_output, attention_output)
|
430 |
-
return layer_output
|
431 |
-
|
432 |
-
|
433 |
-
class BertEncoder(nn.Module):
|
434 |
-
def __init__(self, config):
|
435 |
-
super().__init__()
|
436 |
-
self.config = config
|
437 |
-
self.layer = nn.ModuleList([BertLayer(config, i) for i in range(config.num_hidden_layers)])
|
438 |
-
|
439 |
-
def forward(
|
440 |
-
self,
|
441 |
-
hidden_states,
|
442 |
-
attention_mask=None,
|
443 |
-
head_mask=None,
|
444 |
-
encoder_hidden_states=None,
|
445 |
-
encoder_attention_mask=None,
|
446 |
-
past_key_values=None,
|
447 |
-
use_cache=None,
|
448 |
-
output_attentions=False,
|
449 |
-
output_hidden_states=False,
|
450 |
-
return_dict=True,
|
451 |
-
query_length=0,
|
452 |
-
):
|
453 |
-
all_hidden_states = () if output_hidden_states else None
|
454 |
-
all_self_attentions = () if output_attentions else None
|
455 |
-
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
456 |
-
|
457 |
-
next_decoder_cache = () if use_cache else None
|
458 |
-
|
459 |
-
for i in range(self.config.num_hidden_layers):
|
460 |
-
layer_module = self.layer[i]
|
461 |
-
if output_hidden_states:
|
462 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
463 |
-
|
464 |
-
layer_head_mask = head_mask[i] if head_mask is not None else None
|
465 |
-
past_key_value = past_key_values[i] if past_key_values is not None else None
|
466 |
-
|
467 |
-
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
468 |
-
|
469 |
-
if use_cache:
|
470 |
-
logger.warn("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
471 |
-
use_cache = False
|
472 |
-
|
473 |
-
def create_custom_forward(module):
|
474 |
-
def custom_forward(*inputs):
|
475 |
-
return module(*inputs, past_key_value, output_attentions, query_length)
|
476 |
-
|
477 |
-
return custom_forward
|
478 |
-
|
479 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
480 |
-
create_custom_forward(layer_module),
|
481 |
-
hidden_states,
|
482 |
-
attention_mask,
|
483 |
-
layer_head_mask,
|
484 |
-
encoder_hidden_states,
|
485 |
-
encoder_attention_mask,
|
486 |
-
)
|
487 |
-
else:
|
488 |
-
layer_outputs = layer_module(
|
489 |
-
hidden_states,
|
490 |
-
attention_mask,
|
491 |
-
layer_head_mask,
|
492 |
-
encoder_hidden_states,
|
493 |
-
encoder_attention_mask,
|
494 |
-
past_key_value,
|
495 |
-
output_attentions,
|
496 |
-
query_length,
|
497 |
-
)
|
498 |
-
|
499 |
-
hidden_states = layer_outputs[0]
|
500 |
-
if use_cache:
|
501 |
-
next_decoder_cache += (layer_outputs[-1],)
|
502 |
-
if output_attentions:
|
503 |
-
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
504 |
-
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
505 |
-
|
506 |
-
if output_hidden_states:
|
507 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
508 |
-
|
509 |
-
if not return_dict:
|
510 |
-
return tuple(
|
511 |
-
v
|
512 |
-
for v in [
|
513 |
-
hidden_states,
|
514 |
-
next_decoder_cache,
|
515 |
-
all_hidden_states,
|
516 |
-
all_self_attentions,
|
517 |
-
all_cross_attentions,
|
518 |
-
]
|
519 |
-
if v is not None
|
520 |
-
)
|
521 |
-
return BaseModelOutputWithPastAndCrossAttentions(
|
522 |
-
last_hidden_state=hidden_states,
|
523 |
-
past_key_values=next_decoder_cache,
|
524 |
-
hidden_states=all_hidden_states,
|
525 |
-
attentions=all_self_attentions,
|
526 |
-
cross_attentions=all_cross_attentions,
|
527 |
-
)
|
528 |
-
|
529 |
-
|
530 |
-
class BertPooler(nn.Module):
|
531 |
-
def __init__(self, config):
|
532 |
-
super().__init__()
|
533 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
534 |
-
self.activation = nn.Tanh()
|
535 |
-
|
536 |
-
def forward(self, hidden_states):
|
537 |
-
# We "pool" the model by simply taking the hidden state corresponding
|
538 |
-
# to the first token.
|
539 |
-
first_token_tensor = hidden_states[:, 0]
|
540 |
-
pooled_output = self.dense(first_token_tensor)
|
541 |
-
pooled_output = self.activation(pooled_output)
|
542 |
-
return pooled_output
|
543 |
-
|
544 |
-
|
545 |
-
class BertPredictionHeadTransform(nn.Module):
|
546 |
-
def __init__(self, config):
|
547 |
-
super().__init__()
|
548 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
549 |
-
if isinstance(config.hidden_act, str):
|
550 |
-
self.transform_act_fn = ACT2FN[config.hidden_act]
|
551 |
-
else:
|
552 |
-
self.transform_act_fn = config.hidden_act
|
553 |
-
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
554 |
-
|
555 |
-
def forward(self, hidden_states):
|
556 |
-
hidden_states = self.dense(hidden_states)
|
557 |
-
hidden_states = self.transform_act_fn(hidden_states)
|
558 |
-
hidden_states = self.LayerNorm(hidden_states)
|
559 |
-
return hidden_states
|
560 |
-
|
561 |
-
|
562 |
-
class BertLMPredictionHead(nn.Module):
|
563 |
-
def __init__(self, config):
|
564 |
-
super().__init__()
|
565 |
-
self.transform = BertPredictionHeadTransform(config)
|
566 |
-
|
567 |
-
# The output weights are the same as the input embeddings, but there is
|
568 |
-
# an output-only bias for each token.
|
569 |
-
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
570 |
-
|
571 |
-
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
572 |
-
|
573 |
-
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
574 |
-
self.decoder.bias = self.bias
|
575 |
-
|
576 |
-
def forward(self, hidden_states):
|
577 |
-
hidden_states = self.transform(hidden_states)
|
578 |
-
hidden_states = self.decoder(hidden_states)
|
579 |
-
return hidden_states
|
580 |
-
|
581 |
-
|
582 |
-
class BertOnlyMLMHead(nn.Module):
|
583 |
-
def __init__(self, config):
|
584 |
-
super().__init__()
|
585 |
-
self.predictions = BertLMPredictionHead(config)
|
586 |
-
|
587 |
-
def forward(self, sequence_output):
|
588 |
-
prediction_scores = self.predictions(sequence_output)
|
589 |
-
return prediction_scores
|
590 |
-
|
591 |
-
|
592 |
-
class BertPreTrainedModel(PreTrainedModel):
|
593 |
-
"""
|
594 |
-
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
595 |
-
models.
|
596 |
-
"""
|
597 |
-
|
598 |
-
config_class = BertConfig
|
599 |
-
base_model_prefix = "bert"
|
600 |
-
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
601 |
-
|
602 |
-
def _init_weights(self, module):
|
603 |
-
"""Initialize the weights"""
|
604 |
-
if isinstance(module, (nn.Linear, nn.Embedding)):
|
605 |
-
# Slightly different from the TF version which uses truncated_normal for initialization
|
606 |
-
# cf https://github.com/pytorch/pytorch/pull/5617
|
607 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
608 |
-
elif isinstance(module, nn.LayerNorm):
|
609 |
-
module.bias.data.zero_()
|
610 |
-
module.weight.data.fill_(1.0)
|
611 |
-
if isinstance(module, nn.Linear) and module.bias is not None:
|
612 |
-
module.bias.data.zero_()
|
613 |
-
|
614 |
-
|
615 |
-
class BertModel(BertPreTrainedModel):
|
616 |
-
"""
|
617 |
-
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
618 |
-
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
619 |
-
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
620 |
-
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
621 |
-
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
622 |
-
input to the forward pass.
|
623 |
-
"""
|
624 |
-
|
625 |
-
def __init__(self, config, add_pooling_layer=False):
|
626 |
-
super().__init__(config)
|
627 |
-
self.config = config
|
628 |
-
|
629 |
-
self.embeddings = BertEmbeddings(config)
|
630 |
-
|
631 |
-
self.encoder = BertEncoder(config)
|
632 |
-
|
633 |
-
self.pooler = BertPooler(config) if add_pooling_layer else None
|
634 |
-
|
635 |
-
self.init_weights()
|
636 |
-
|
637 |
-
def get_input_embeddings(self):
|
638 |
-
return self.embeddings.word_embeddings
|
639 |
-
|
640 |
-
def set_input_embeddings(self, value):
|
641 |
-
self.embeddings.word_embeddings = value
|
642 |
-
|
643 |
-
def _prune_heads(self, heads_to_prune):
|
644 |
-
"""
|
645 |
-
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
646 |
-
class PreTrainedModel
|
647 |
-
"""
|
648 |
-
for layer, heads in heads_to_prune.items():
|
649 |
-
self.encoder.layer[layer].attention.prune_heads(heads)
|
650 |
-
|
651 |
-
def get_extended_attention_mask(
|
652 |
-
self,
|
653 |
-
attention_mask: Tensor,
|
654 |
-
input_shape: Tuple[int],
|
655 |
-
device: device,
|
656 |
-
is_decoder: bool,
|
657 |
-
has_query: bool = False,
|
658 |
-
) -> Tensor:
|
659 |
-
"""
|
660 |
-
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
661 |
-
|
662 |
-
Arguments:
|
663 |
-
attention_mask (:obj:`torch.Tensor`):
|
664 |
-
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
665 |
-
input_shape (:obj:`Tuple[int]`):
|
666 |
-
The shape of the input to the model.
|
667 |
-
device: (:obj:`torch.device`):
|
668 |
-
The device of the input to the model.
|
669 |
-
|
670 |
-
Returns:
|
671 |
-
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
672 |
-
"""
|
673 |
-
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
674 |
-
# ourselves in which case we just need to make it broadcastable to all heads.
|
675 |
-
if attention_mask.dim() == 3:
|
676 |
-
extended_attention_mask = attention_mask[:, None, :, :]
|
677 |
-
elif attention_mask.dim() == 2:
|
678 |
-
# Provided a padding mask of dimensions [batch_size, seq_length]
|
679 |
-
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
680 |
-
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
681 |
-
if is_decoder:
|
682 |
-
batch_size, seq_length = input_shape
|
683 |
-
|
684 |
-
seq_ids = torch.arange(seq_length, device=device)
|
685 |
-
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
686 |
-
|
687 |
-
# add a prefix ones mask to the causal mask
|
688 |
-
# causal and attention masks must have same type with pytorch version < 1.3
|
689 |
-
causal_mask = causal_mask.to(attention_mask.dtype)
|
690 |
-
|
691 |
-
if causal_mask.shape[1] < attention_mask.shape[1]:
|
692 |
-
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
693 |
-
if has_query: # UniLM style attention mask
|
694 |
-
causal_mask = torch.cat(
|
695 |
-
[
|
696 |
-
torch.zeros(
|
697 |
-
(batch_size, prefix_seq_len, seq_length),
|
698 |
-
device=device,
|
699 |
-
dtype=causal_mask.dtype,
|
700 |
-
),
|
701 |
-
causal_mask,
|
702 |
-
],
|
703 |
-
axis=1,
|
704 |
-
)
|
705 |
-
causal_mask = torch.cat(
|
706 |
-
[
|
707 |
-
torch.ones(
|
708 |
-
(batch_size, causal_mask.shape[1], prefix_seq_len),
|
709 |
-
device=device,
|
710 |
-
dtype=causal_mask.dtype,
|
711 |
-
),
|
712 |
-
causal_mask,
|
713 |
-
],
|
714 |
-
axis=-1,
|
715 |
-
)
|
716 |
-
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
717 |
-
else:
|
718 |
-
extended_attention_mask = attention_mask[:, None, None, :]
|
719 |
-
else:
|
720 |
-
raise ValueError("Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(input_shape, attention_mask.shape))
|
721 |
-
|
722 |
-
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
723 |
-
# masked positions, this operation will create a tensor which is 0.0 for
|
724 |
-
# positions we want to attend and -10000.0 for masked positions.
|
725 |
-
# Since we are adding it to the raw scores before the softmax, this is
|
726 |
-
# effectively the same as removing these entirely.
|
727 |
-
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
728 |
-
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
729 |
-
return extended_attention_mask
|
730 |
-
|
731 |
-
def forward(
|
732 |
-
self,
|
733 |
-
input_ids=None,
|
734 |
-
attention_mask=None,
|
735 |
-
position_ids=None,
|
736 |
-
head_mask=None,
|
737 |
-
query_embeds=None,
|
738 |
-
encoder_hidden_states=None,
|
739 |
-
encoder_attention_mask=None,
|
740 |
-
past_key_values=None,
|
741 |
-
use_cache=None,
|
742 |
-
output_attentions=None,
|
743 |
-
output_hidden_states=None,
|
744 |
-
return_dict=None,
|
745 |
-
is_decoder=False,
|
746 |
-
):
|
747 |
-
r"""
|
748 |
-
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
749 |
-
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
750 |
-
the model is configured as a decoder.
|
751 |
-
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
752 |
-
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
753 |
-
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
754 |
-
- 1 for tokens that are **not masked**,
|
755 |
-
- 0 for tokens that are **masked**.
|
756 |
-
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
757 |
-
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
758 |
-
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
759 |
-
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
760 |
-
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
761 |
-
use_cache (:obj:`bool`, `optional`):
|
762 |
-
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
763 |
-
decoding (see :obj:`past_key_values`).
|
764 |
-
"""
|
765 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
766 |
-
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
767 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
768 |
-
|
769 |
-
# use_cache = use_cache if use_cache is not None else self.config.use_cache
|
770 |
-
|
771 |
-
if input_ids is None:
|
772 |
-
assert query_embeds is not None, "You have to specify query_embeds when input_ids is None"
|
773 |
-
|
774 |
-
# past_key_values_length
|
775 |
-
past_key_values_length = past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0
|
776 |
-
|
777 |
-
query_length = query_embeds.shape[1] if query_embeds is not None else 0
|
778 |
-
|
779 |
-
embedding_output = self.embeddings(
|
780 |
-
input_ids=input_ids,
|
781 |
-
position_ids=position_ids,
|
782 |
-
query_embeds=query_embeds,
|
783 |
-
past_key_values_length=past_key_values_length,
|
784 |
-
)
|
785 |
-
|
786 |
-
input_shape = embedding_output.size()[:-1]
|
787 |
-
batch_size, seq_length = input_shape
|
788 |
-
device = embedding_output.device
|
789 |
-
|
790 |
-
if attention_mask is None:
|
791 |
-
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
792 |
-
|
793 |
-
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
794 |
-
# ourselves in which case we just need to make it broadcastable to all heads.
|
795 |
-
if is_decoder:
|
796 |
-
extended_attention_mask = self.get_extended_attention_mask(
|
797 |
-
attention_mask,
|
798 |
-
input_ids.shape,
|
799 |
-
device,
|
800 |
-
is_decoder,
|
801 |
-
has_query=(query_embeds is not None),
|
802 |
-
)
|
803 |
-
else:
|
804 |
-
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device, is_decoder)
|
805 |
-
|
806 |
-
# If a 2D or 3D attention mask is provided for the cross-attention
|
807 |
-
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
808 |
-
if encoder_hidden_states is not None:
|
809 |
-
if type(encoder_hidden_states) == list:
|
810 |
-
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
811 |
-
else:
|
812 |
-
(
|
813 |
-
encoder_batch_size,
|
814 |
-
encoder_sequence_length,
|
815 |
-
_,
|
816 |
-
) = encoder_hidden_states.size()
|
817 |
-
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
818 |
-
|
819 |
-
if type(encoder_attention_mask) == list:
|
820 |
-
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
821 |
-
elif encoder_attention_mask is None:
|
822 |
-
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
823 |
-
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
824 |
-
else:
|
825 |
-
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
826 |
-
else:
|
827 |
-
encoder_extended_attention_mask = None
|
828 |
-
|
829 |
-
# Prepare head mask if needed
|
830 |
-
# 1.0 in head_mask indicate we keep the head
|
831 |
-
# attention_probs has shape bsz x n_heads x N x N
|
832 |
-
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
833 |
-
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
834 |
-
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
835 |
-
|
836 |
-
encoder_outputs = self.encoder(
|
837 |
-
embedding_output,
|
838 |
-
attention_mask=extended_attention_mask,
|
839 |
-
head_mask=head_mask,
|
840 |
-
encoder_hidden_states=encoder_hidden_states,
|
841 |
-
encoder_attention_mask=encoder_extended_attention_mask,
|
842 |
-
past_key_values=past_key_values,
|
843 |
-
use_cache=use_cache,
|
844 |
-
output_attentions=output_attentions,
|
845 |
-
output_hidden_states=output_hidden_states,
|
846 |
-
return_dict=return_dict,
|
847 |
-
query_length=query_length,
|
848 |
-
)
|
849 |
-
sequence_output = encoder_outputs[0]
|
850 |
-
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
851 |
-
|
852 |
-
if not return_dict:
|
853 |
-
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
854 |
-
|
855 |
-
return BaseModelOutputWithPoolingAndCrossAttentions(
|
856 |
-
last_hidden_state=sequence_output,
|
857 |
-
pooler_output=pooled_output,
|
858 |
-
past_key_values=encoder_outputs.past_key_values,
|
859 |
-
hidden_states=encoder_outputs.hidden_states,
|
860 |
-
attentions=encoder_outputs.attentions,
|
861 |
-
cross_attentions=encoder_outputs.cross_attentions,
|
862 |
-
)
|
863 |
-
|
864 |
-
|
865 |
-
class BertLMHeadModel(BertPreTrainedModel):
|
866 |
-
|
867 |
-
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
868 |
-
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
869 |
-
|
870 |
-
def __init__(self, config):
|
871 |
-
super().__init__(config)
|
872 |
-
|
873 |
-
self.bert = BertModel(config, add_pooling_layer=False)
|
874 |
-
self.cls = BertOnlyMLMHead(config)
|
875 |
-
|
876 |
-
self.init_weights()
|
877 |
-
|
878 |
-
def get_output_embeddings(self):
|
879 |
-
return self.cls.predictions.decoder
|
880 |
-
|
881 |
-
def set_output_embeddings(self, new_embeddings):
|
882 |
-
self.cls.predictions.decoder = new_embeddings
|
883 |
-
|
884 |
-
def forward(
|
885 |
-
self,
|
886 |
-
input_ids=None,
|
887 |
-
attention_mask=None,
|
888 |
-
position_ids=None,
|
889 |
-
head_mask=None,
|
890 |
-
query_embeds=None,
|
891 |
-
encoder_hidden_states=None,
|
892 |
-
encoder_attention_mask=None,
|
893 |
-
labels=None,
|
894 |
-
past_key_values=None,
|
895 |
-
use_cache=True,
|
896 |
-
output_attentions=None,
|
897 |
-
output_hidden_states=None,
|
898 |
-
return_dict=None,
|
899 |
-
return_logits=False,
|
900 |
-
is_decoder=True,
|
901 |
-
reduction="mean",
|
902 |
-
):
|
903 |
-
r"""
|
904 |
-
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
905 |
-
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
906 |
-
the model is configured as a decoder.
|
907 |
-
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
908 |
-
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
909 |
-
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
910 |
-
- 1 for tokens that are **not masked**,
|
911 |
-
- 0 for tokens that are **masked**.
|
912 |
-
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
913 |
-
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
914 |
-
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
915 |
-
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
916 |
-
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
917 |
-
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
918 |
-
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
919 |
-
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
920 |
-
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
921 |
-
use_cache (:obj:`bool`, `optional`):
|
922 |
-
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
923 |
-
decoding (see :obj:`past_key_values`).
|
924 |
-
Returns:
|
925 |
-
Example::
|
926 |
-
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
927 |
-
>>> import torch
|
928 |
-
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
929 |
-
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
930 |
-
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
931 |
-
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
932 |
-
>>> outputs = model(**inputs)
|
933 |
-
>>> prediction_logits = outputs.logits
|
934 |
-
"""
|
935 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
936 |
-
if labels is not None:
|
937 |
-
use_cache = False
|
938 |
-
if past_key_values is not None:
|
939 |
-
query_embeds = None
|
940 |
-
|
941 |
-
outputs = self.bert(
|
942 |
-
input_ids,
|
943 |
-
attention_mask=attention_mask,
|
944 |
-
position_ids=position_ids,
|
945 |
-
head_mask=head_mask,
|
946 |
-
query_embeds=query_embeds,
|
947 |
-
encoder_hidden_states=encoder_hidden_states,
|
948 |
-
encoder_attention_mask=encoder_attention_mask,
|
949 |
-
past_key_values=past_key_values,
|
950 |
-
use_cache=use_cache,
|
951 |
-
output_attentions=output_attentions,
|
952 |
-
output_hidden_states=output_hidden_states,
|
953 |
-
return_dict=return_dict,
|
954 |
-
is_decoder=is_decoder,
|
955 |
-
)
|
956 |
-
|
957 |
-
sequence_output = outputs[0]
|
958 |
-
if query_embeds is not None:
|
959 |
-
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
|
960 |
-
|
961 |
-
prediction_scores = self.cls(sequence_output)
|
962 |
-
|
963 |
-
if return_logits:
|
964 |
-
return prediction_scores[:, :-1, :].contiguous()
|
965 |
-
|
966 |
-
lm_loss = None
|
967 |
-
if labels is not None:
|
968 |
-
# we are doing next-token prediction; shift prediction scores and input ids by one
|
969 |
-
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
970 |
-
labels = labels[:, 1:].contiguous()
|
971 |
-
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
972 |
-
lm_loss = loss_fct(
|
973 |
-
shifted_prediction_scores.view(-1, self.config.vocab_size),
|
974 |
-
labels.view(-1),
|
975 |
-
)
|
976 |
-
if reduction == "none":
|
977 |
-
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
|
978 |
-
|
979 |
-
if not return_dict:
|
980 |
-
output = (prediction_scores,) + outputs[2:]
|
981 |
-
return ((lm_loss,) + output) if lm_loss is not None else output
|
982 |
-
|
983 |
-
return CausalLMOutputWithCrossAttentions(
|
984 |
-
loss=lm_loss,
|
985 |
-
logits=prediction_scores,
|
986 |
-
past_key_values=outputs.past_key_values,
|
987 |
-
hidden_states=outputs.hidden_states,
|
988 |
-
attentions=outputs.attentions,
|
989 |
-
cross_attentions=outputs.cross_attentions,
|
990 |
-
)
|
991 |
-
|
992 |
-
def prepare_inputs_for_generation(self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs):
|
993 |
-
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
994 |
-
if attention_mask is None:
|
995 |
-
attention_mask = input_ids.new_ones(input_ids.shape)
|
996 |
-
query_mask = input_ids.new_ones(query_embeds.shape[:-1])
|
997 |
-
attention_mask = torch.cat([query_mask, attention_mask], dim=-1)
|
998 |
-
|
999 |
-
# cut decoder_input_ids if past is used
|
1000 |
-
if past is not None:
|
1001 |
-
input_ids = input_ids[:, -1:]
|
1002 |
-
|
1003 |
-
return {
|
1004 |
-
"input_ids": input_ids,
|
1005 |
-
"query_embeds": query_embeds,
|
1006 |
-
"attention_mask": attention_mask,
|
1007 |
-
"past_key_values": past,
|
1008 |
-
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
1009 |
-
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
1010 |
-
"is_decoder": True,
|
1011 |
-
}
|
1012 |
-
|
1013 |
-
def _reorder_cache(self, past, beam_idx):
|
1014 |
-
reordered_past = ()
|
1015 |
-
for layer_past in past:
|
1016 |
-
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1017 |
-
return reordered_past
|
1018 |
-
|
1019 |
-
|
1020 |
-
class BertForMaskedLM(BertPreTrainedModel):
|
1021 |
-
|
1022 |
-
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1023 |
-
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1024 |
-
|
1025 |
-
def __init__(self, config):
|
1026 |
-
super().__init__(config)
|
1027 |
-
|
1028 |
-
self.bert = BertModel(config, add_pooling_layer=False)
|
1029 |
-
self.cls = BertOnlyMLMHead(config)
|
1030 |
-
|
1031 |
-
self.init_weights()
|
1032 |
-
|
1033 |
-
def get_output_embeddings(self):
|
1034 |
-
return self.cls.predictions.decoder
|
1035 |
-
|
1036 |
-
def set_output_embeddings(self, new_embeddings):
|
1037 |
-
self.cls.predictions.decoder = new_embeddings
|
1038 |
-
|
1039 |
-
def forward(
|
1040 |
-
self,
|
1041 |
-
input_ids=None,
|
1042 |
-
attention_mask=None,
|
1043 |
-
position_ids=None,
|
1044 |
-
head_mask=None,
|
1045 |
-
query_embeds=None,
|
1046 |
-
encoder_hidden_states=None,
|
1047 |
-
encoder_attention_mask=None,
|
1048 |
-
labels=None,
|
1049 |
-
output_attentions=None,
|
1050 |
-
output_hidden_states=None,
|
1051 |
-
return_dict=None,
|
1052 |
-
return_logits=False,
|
1053 |
-
is_decoder=False,
|
1054 |
-
):
|
1055 |
-
r"""
|
1056 |
-
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1057 |
-
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1058 |
-
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1059 |
-
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1060 |
-
"""
|
1061 |
-
|
1062 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1063 |
-
|
1064 |
-
outputs = self.bert(
|
1065 |
-
input_ids,
|
1066 |
-
attention_mask=attention_mask,
|
1067 |
-
position_ids=position_ids,
|
1068 |
-
head_mask=head_mask,
|
1069 |
-
query_embeds=query_embeds,
|
1070 |
-
encoder_hidden_states=encoder_hidden_states,
|
1071 |
-
encoder_attention_mask=encoder_attention_mask,
|
1072 |
-
output_attentions=output_attentions,
|
1073 |
-
output_hidden_states=output_hidden_states,
|
1074 |
-
return_dict=return_dict,
|
1075 |
-
is_decoder=is_decoder,
|
1076 |
-
)
|
1077 |
-
|
1078 |
-
if query_embeds is not None:
|
1079 |
-
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
|
1080 |
-
prediction_scores = self.cls(sequence_output)
|
1081 |
-
|
1082 |
-
if return_logits:
|
1083 |
-
return prediction_scores
|
1084 |
-
|
1085 |
-
masked_lm_loss = None
|
1086 |
-
if labels is not None:
|
1087 |
-
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1088 |
-
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1089 |
-
|
1090 |
-
if not return_dict:
|
1091 |
-
output = (prediction_scores,) + outputs[2:]
|
1092 |
-
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1093 |
-
|
1094 |
-
return MaskedLMOutput(
|
1095 |
-
loss=masked_lm_loss,
|
1096 |
-
logits=prediction_scores,
|
1097 |
-
hidden_states=outputs.hidden_states,
|
1098 |
-
attentions=outputs.attentions,
|
1099 |
-
)
|
1100 |
-
|
1101 |
-
|
1102 |
-
class Qformer(nn.Module):
|
1103 |
-
def __init__(self, model_args, vision_tower):
|
1104 |
-
super().__init__()
|
1105 |
-
|
1106 |
-
self.depth = model_args.mm_qformer_depth
|
1107 |
-
self.num_latents = model_args.mm_qformer_latents
|
1108 |
-
self.pretrained = model_args.mm_qformer_pretrained
|
1109 |
-
|
1110 |
-
self.Qformer, self.query_tokens, self.ln_vision = self.build_Qformer(vision_tower.hidden_size, self.depth, self.num_latents)
|
1111 |
-
|
1112 |
-
if self.pretrained is not None:
|
1113 |
-
pretrained_dict = torch.load(self.pretrained, map_location="cpu")["model"]
|
1114 |
-
pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith("t5_proj")}
|
1115 |
-
self.load_state_dict(pretrained_dict)
|
1116 |
-
|
1117 |
-
def build_Qformer(self, vision_width, cross_attention_freq, num_query_token):
|
1118 |
-
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
|
1119 |
-
encoder_config.encoder_width = vision_width
|
1120 |
-
# insert cross-attention layer every other block
|
1121 |
-
encoder_config.add_cross_attention = True
|
1122 |
-
encoder_config.cross_attention_freq = cross_attention_freq
|
1123 |
-
encoder_config.query_length = num_query_token
|
1124 |
-
Qformer = BertLMHeadModel(config=encoder_config)
|
1125 |
-
query_tokens = nn.Parameter(torch.zeros(1, num_query_token, encoder_config.hidden_size))
|
1126 |
-
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
|
1127 |
-
Qformer.cls = None
|
1128 |
-
Qformer.bert.embeddings.word_embeddings = None
|
1129 |
-
Qformer.bert.embeddings.position_embeddings = None
|
1130 |
-
for layer in Qformer.bert.encoder.layer:
|
1131 |
-
layer.output = None
|
1132 |
-
layer.intermediate = None
|
1133 |
-
return Qformer, query_tokens, nn.LayerNorm(vision_width)
|
1134 |
-
|
1135 |
-
def forward(self, image_features, *args, **kwargs):
|
1136 |
-
x = self.ln_vision(image_features)
|
1137 |
-
image_atts = torch.ones(x.size()[:-1], dtype=torch.long).to(x.device)
|
1138 |
-
|
1139 |
-
query_tokens = self.query_tokens.expand(x.shape[0], -1, -1)
|
1140 |
-
query_output = self.Qformer.bert(
|
1141 |
-
query_embeds=query_tokens,
|
1142 |
-
encoder_hidden_states=x,
|
1143 |
-
encoder_attention_mask=image_atts,
|
1144 |
-
return_dict=True,
|
1145 |
-
)
|
1146 |
-
|
1147 |
-
return query_output.last_hidden_state
|
1148 |
-
|
1149 |
-
@property
|
1150 |
-
def hidden_size(self):
|
1151 |
-
return 768
|
1152 |
-
|
1153 |
-
@property
|
1154 |
-
def config(self):
|
1155 |
-
return {
|
1156 |
-
"mm_resampler_type": "qformer",
|
1157 |
-
"mm_qformer_depth": self.depth,
|
1158 |
-
"mm_qformer_latents": self.num_latents,
|
1159 |
-
"mm_qformer_pretrained": self.pretrained,
|
1160 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sae.py
CHANGED
@@ -1,8 +1,1440 @@
|
|
1 |
import torch
|
2 |
-
|
3 |
-
from .sae_utils import SamePadConv3d,Normalize,SiLU,TemporalAttention,AttnBlock3D,MultiHeadAttention3D,TemporalAttention_lin
|
4 |
import torch.nn as nn
|
5 |
import pdb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
class SiglipAE(nn.Module):
|
8 |
def __init__(self):
|
@@ -34,12 +1466,4 @@ class SiglipAE(nn.Module):
|
|
34 |
|
35 |
x=self.encoder(x)
|
36 |
return x
|
37 |
-
# image=torch.randn(1,1152,4,24,24).to('cuda')
|
38 |
-
|
39 |
-
|
40 |
-
# model = SiglipAE().to('cuda')
|
41 |
-
# model.load_state_dict(torch.load('encoder.pth'),strict=False)
|
42 |
-
|
43 |
-
# image=model(image)
|
44 |
|
45 |
-
# print(image.shape)
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import torch.nn as nn
|
3 |
import pdb
|
4 |
+
import math
|
5 |
+
from transformers.activations import ACT2FN
|
6 |
+
from einops import rearrange, reduce, repeat
|
7 |
+
from inspect import isfunction
|
8 |
+
import math
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch import nn, einsum
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
from typing import Optional, Any
|
13 |
+
|
14 |
+
try:
|
15 |
+
import xformers
|
16 |
+
import xformers.ops
|
17 |
+
|
18 |
+
XFORMERS_IS_AVAILBLE = True
|
19 |
+
except:
|
20 |
+
XFORMERS_IS_AVAILBLE = False
|
21 |
+
|
22 |
+
import importlib
|
23 |
+
import numpy as np
|
24 |
+
import cv2, os
|
25 |
+
import torch.distributed as dist
|
26 |
+
|
27 |
+
|
28 |
+
def count_params(model, verbose=False):
|
29 |
+
total_params = sum(p.numel() for p in model.parameters())
|
30 |
+
if verbose:
|
31 |
+
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
32 |
+
return total_params
|
33 |
+
|
34 |
+
|
35 |
+
def check_istarget(name, para_list):
|
36 |
+
"""
|
37 |
+
name: full name of source para
|
38 |
+
para_list: partial name of target para
|
39 |
+
"""
|
40 |
+
istarget = False
|
41 |
+
for para in para_list:
|
42 |
+
if para in name:
|
43 |
+
return True
|
44 |
+
return istarget
|
45 |
+
|
46 |
+
|
47 |
+
def instantiate_from_config(config):
|
48 |
+
if not "target" in config:
|
49 |
+
if config == "__is_first_stage__":
|
50 |
+
return None
|
51 |
+
elif config == "__is_unconditional__":
|
52 |
+
return None
|
53 |
+
raise KeyError("Expected key `target` to instantiate.")
|
54 |
+
|
55 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
56 |
+
|
57 |
+
|
58 |
+
def get_obj_from_str(string, reload=False):
|
59 |
+
module, cls = string.rsplit(".", 1)
|
60 |
+
if reload:
|
61 |
+
module_imp = importlib.import_module(module)
|
62 |
+
importlib.reload(module_imp)
|
63 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
64 |
+
|
65 |
+
|
66 |
+
def load_npz_from_dir(data_dir):
|
67 |
+
data = [
|
68 |
+
np.load(os.path.join(data_dir, data_name))["arr_0"]
|
69 |
+
for data_name in os.listdir(data_dir)
|
70 |
+
]
|
71 |
+
data = np.concatenate(data, axis=0)
|
72 |
+
return data
|
73 |
+
|
74 |
+
|
75 |
+
def load_npz_from_paths(data_paths):
|
76 |
+
data = [np.load(data_path)["arr_0"] for data_path in data_paths]
|
77 |
+
data = np.concatenate(data, axis=0)
|
78 |
+
return data
|
79 |
+
|
80 |
+
|
81 |
+
def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
|
82 |
+
h, w = image.shape[:2]
|
83 |
+
if resize_short_edge is not None:
|
84 |
+
k = resize_short_edge / min(h, w)
|
85 |
+
else:
|
86 |
+
k = max_resolution / (h * w)
|
87 |
+
k = k**0.5
|
88 |
+
h = int(np.round(h * k / 64)) * 64
|
89 |
+
w = int(np.round(w * k / 64)) * 64
|
90 |
+
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
|
91 |
+
return image
|
92 |
+
|
93 |
+
|
94 |
+
def setup_dist(args):
|
95 |
+
if dist.is_initialized():
|
96 |
+
return
|
97 |
+
torch.cuda.set_device(args.local_rank)
|
98 |
+
torch.distributed.init_process_group("nccl", init_method="env://")
|
99 |
+
|
100 |
+
|
101 |
+
# adopted from
|
102 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
103 |
+
# and
|
104 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
105 |
+
# and
|
106 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
107 |
+
#
|
108 |
+
# thanks!
|
109 |
+
|
110 |
+
import torch.nn as nn
|
111 |
+
import math
|
112 |
+
from inspect import isfunction
|
113 |
+
import torch
|
114 |
+
from torch import nn
|
115 |
+
import torch.distributed as dist
|
116 |
+
|
117 |
+
|
118 |
+
def gather_data(data, return_np=True):
|
119 |
+
"""gather data from multiple processes to one list"""
|
120 |
+
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
|
121 |
+
dist.all_gather(data_list, data) # gather not supported with NCCL
|
122 |
+
if return_np:
|
123 |
+
data_list = [data.cpu().numpy() for data in data_list]
|
124 |
+
return data_list
|
125 |
+
|
126 |
+
|
127 |
+
def autocast(f):
|
128 |
+
def do_autocast(*args, **kwargs):
|
129 |
+
with torch.cuda.amp.autocast(
|
130 |
+
enabled=True,
|
131 |
+
dtype=torch.get_autocast_gpu_dtype(),
|
132 |
+
cache_enabled=torch.is_autocast_cache_enabled(),
|
133 |
+
):
|
134 |
+
return f(*args, **kwargs)
|
135 |
+
|
136 |
+
return do_autocast
|
137 |
+
|
138 |
+
|
139 |
+
def extract_into_tensor(a, t, x_shape):
|
140 |
+
b, *_ = t.shape
|
141 |
+
out = a.gather(-1, t)
|
142 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
143 |
+
|
144 |
+
|
145 |
+
def noise_like(shape, device, repeat=False):
|
146 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
147 |
+
shape[0], *((1,) * (len(shape) - 1))
|
148 |
+
)
|
149 |
+
noise = lambda: torch.randn(shape, device=device)
|
150 |
+
return repeat_noise() if repeat else noise()
|
151 |
+
|
152 |
+
|
153 |
+
def default(val, d):
|
154 |
+
if exists(val):
|
155 |
+
return val
|
156 |
+
return d() if isfunction(d) else d
|
157 |
+
|
158 |
+
|
159 |
+
def exists(val):
|
160 |
+
return val is not None
|
161 |
+
|
162 |
+
|
163 |
+
def identity(*args, **kwargs):
|
164 |
+
return nn.Identity()
|
165 |
+
|
166 |
+
|
167 |
+
def uniq(arr):
|
168 |
+
return {el: True for el in arr}.keys()
|
169 |
+
|
170 |
+
|
171 |
+
def mean_flat(tensor):
|
172 |
+
"""
|
173 |
+
Take the mean over all non-batch dimensions.
|
174 |
+
"""
|
175 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
176 |
+
|
177 |
+
|
178 |
+
def ismap(x):
|
179 |
+
if not isinstance(x, torch.Tensor):
|
180 |
+
return False
|
181 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
182 |
+
|
183 |
+
|
184 |
+
def isimage(x):
|
185 |
+
if not isinstance(x, torch.Tensor):
|
186 |
+
return False
|
187 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
188 |
+
|
189 |
+
|
190 |
+
def max_neg_value(t):
|
191 |
+
return -torch.finfo(t.dtype).max
|
192 |
+
|
193 |
+
|
194 |
+
def shape_to_str(x):
|
195 |
+
shape_str = "x".join([str(x) for x in x.shape])
|
196 |
+
return shape_str
|
197 |
+
|
198 |
+
|
199 |
+
def init_(tensor):
|
200 |
+
dim = tensor.shape[-1]
|
201 |
+
std = 1 / math.sqrt(dim)
|
202 |
+
tensor.uniform_(-std, std)
|
203 |
+
return tensor
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
def disabled_train(self, mode=True):
|
208 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
209 |
+
does not change anymore."""
|
210 |
+
return self
|
211 |
+
|
212 |
+
|
213 |
+
def zero_module(module):
|
214 |
+
"""
|
215 |
+
Zero out the parameters of a module and return it.
|
216 |
+
"""
|
217 |
+
for p in module.parameters():
|
218 |
+
p.detach().zero_()
|
219 |
+
return module
|
220 |
+
|
221 |
+
|
222 |
+
def scale_module(module, scale):
|
223 |
+
"""
|
224 |
+
Scale the parameters of a module and return it.
|
225 |
+
"""
|
226 |
+
for p in module.parameters():
|
227 |
+
p.detach().mul_(scale)
|
228 |
+
return module
|
229 |
+
|
230 |
+
|
231 |
+
def conv_nd(dims, *args, **kwargs):
|
232 |
+
"""
|
233 |
+
Create a 1D, 2D, or 3D convolution module.
|
234 |
+
"""
|
235 |
+
if dims == 1:
|
236 |
+
return nn.Conv1d(*args, **kwargs)
|
237 |
+
elif dims == 2:
|
238 |
+
return nn.Conv2d(*args, **kwargs)
|
239 |
+
elif dims == 3:
|
240 |
+
return nn.Conv3d(*args, **kwargs)
|
241 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
242 |
+
|
243 |
+
|
244 |
+
def linear(*args, **kwargs):
|
245 |
+
"""
|
246 |
+
Create a linear module.
|
247 |
+
"""
|
248 |
+
return nn.Linear(*args, **kwargs)
|
249 |
+
|
250 |
+
|
251 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
252 |
+
"""
|
253 |
+
Create a 1D, 2D, or 3D average pooling module.
|
254 |
+
"""
|
255 |
+
if dims == 1:
|
256 |
+
return nn.AvgPool1d(*args, **kwargs)
|
257 |
+
elif dims == 2:
|
258 |
+
return nn.AvgPool2d(*args, **kwargs)
|
259 |
+
elif dims == 3:
|
260 |
+
return nn.AvgPool3d(*args, **kwargs)
|
261 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
262 |
+
|
263 |
+
|
264 |
+
def nonlinearity(type="silu"):
|
265 |
+
if type == "silu":
|
266 |
+
return nn.SiLU()
|
267 |
+
elif type == "leaky_relu":
|
268 |
+
return nn.LeakyReLU()
|
269 |
+
|
270 |
+
|
271 |
+
class GroupNormSpecific(nn.GroupNorm):
|
272 |
+
def forward(self, x):
|
273 |
+
if x.dtype == torch.float16 or x.dtype == torch.bfloat16:
|
274 |
+
return super().forward(x).type(x.dtype)
|
275 |
+
else:
|
276 |
+
return super().forward(x.float()).type(x.dtype)
|
277 |
+
|
278 |
+
|
279 |
+
def normalization(channels, num_groups=32):
|
280 |
+
"""
|
281 |
+
Make a standard normalization layer.
|
282 |
+
:param channels: number of input channels.
|
283 |
+
:return: an nn.Module for normalization.
|
284 |
+
"""
|
285 |
+
return GroupNormSpecific(num_groups, channels)
|
286 |
+
|
287 |
+
|
288 |
+
class HybridConditioner(nn.Module):
|
289 |
+
|
290 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
291 |
+
super().__init__()
|
292 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
293 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
294 |
+
|
295 |
+
def forward(self, c_concat, c_crossattn):
|
296 |
+
c_concat = self.concat_conditioner(c_concat)
|
297 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
298 |
+
return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}
|
299 |
+
|
300 |
+
def exists(val):
|
301 |
+
return val is not None
|
302 |
+
|
303 |
+
|
304 |
+
def uniq(arr):
|
305 |
+
return {el: True for el in arr}.keys()
|
306 |
+
|
307 |
+
|
308 |
+
def default(val, d):
|
309 |
+
if exists(val):
|
310 |
+
return val
|
311 |
+
return d() if isfunction(d) else d
|
312 |
+
|
313 |
+
|
314 |
+
def max_neg_value(t):
|
315 |
+
return -torch.finfo(t.dtype).max
|
316 |
+
|
317 |
+
|
318 |
+
def init_(tensor):
|
319 |
+
dim = tensor.shape[-1]
|
320 |
+
std = 1 / math.sqrt(dim)
|
321 |
+
tensor.uniform_(-std, std)
|
322 |
+
return tensor
|
323 |
+
|
324 |
+
|
325 |
+
# feedforward
|
326 |
+
class GEGLU(nn.Module):
|
327 |
+
def __init__(self, dim_in, dim_out):
|
328 |
+
super().__init__()
|
329 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
330 |
+
|
331 |
+
def forward(self, x):
|
332 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
333 |
+
return x * F.gelu(gate)
|
334 |
+
|
335 |
+
|
336 |
+
class FeedForward(nn.Module):
|
337 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
338 |
+
super().__init__()
|
339 |
+
inner_dim = int(dim * mult)
|
340 |
+
dim_out = default(dim_out, dim)
|
341 |
+
project_in = (
|
342 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
343 |
+
if not glu
|
344 |
+
else GEGLU(dim, inner_dim)
|
345 |
+
)
|
346 |
+
|
347 |
+
self.net = nn.Sequential(
|
348 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
349 |
+
)
|
350 |
+
|
351 |
+
def forward(self, x):
|
352 |
+
return self.net(x)
|
353 |
+
|
354 |
+
|
355 |
+
def zero_module(module):
|
356 |
+
"""
|
357 |
+
Zero out the parameters of a module and return it.
|
358 |
+
"""
|
359 |
+
for p in module.parameters():
|
360 |
+
p.detach().zero_()
|
361 |
+
return module
|
362 |
+
|
363 |
+
|
364 |
+
def Normalize(in_channels, num_groups=32):
|
365 |
+
return torch.nn.GroupNorm(
|
366 |
+
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
367 |
+
)
|
368 |
+
|
369 |
+
|
370 |
+
class RelativePosition(nn.Module):
|
371 |
+
"""https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py"""
|
372 |
+
|
373 |
+
def __init__(self, num_units, max_relative_position):
|
374 |
+
super().__init__()
|
375 |
+
self.num_units = num_units
|
376 |
+
self.max_relative_position = max_relative_position
|
377 |
+
self.embeddings_table = nn.Parameter(
|
378 |
+
torch.Tensor(max_relative_position * 2 + 1, num_units)
|
379 |
+
)
|
380 |
+
nn.init.xavier_uniform_(self.embeddings_table)
|
381 |
+
|
382 |
+
def forward(self, length_q, length_k):
|
383 |
+
device = self.embeddings_table.device
|
384 |
+
range_vec_q = torch.arange(length_q, device=device)
|
385 |
+
range_vec_k = torch.arange(length_k, device=device)
|
386 |
+
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
|
387 |
+
distance_mat_clipped = torch.clamp(
|
388 |
+
distance_mat, -self.max_relative_position, self.max_relative_position
|
389 |
+
)
|
390 |
+
final_mat = distance_mat_clipped + self.max_relative_position
|
391 |
+
# final_mat = torch.LongTensor(final_mat).to(self.embeddings_table.device)
|
392 |
+
# final_mat = torch.tensor(final_mat, device=self.embeddings_table.device, dtype=torch.long)
|
393 |
+
final_mat = final_mat.long()
|
394 |
+
embeddings = self.embeddings_table[final_mat]
|
395 |
+
return embeddings
|
396 |
+
|
397 |
+
|
398 |
+
class TemporalCrossAttention(nn.Module):
|
399 |
+
def __init__(
|
400 |
+
self,
|
401 |
+
query_dim,
|
402 |
+
context_dim=None,
|
403 |
+
heads=8,
|
404 |
+
dim_head=64,
|
405 |
+
dropout=0.0,
|
406 |
+
temporal_length=None, # For relative positional representation and image-video joint training.
|
407 |
+
image_length=None, # For image-video joint training.
|
408 |
+
use_relative_position=False, # whether use relative positional representation in temporal attention.
|
409 |
+
img_video_joint_train=False, # For image-video joint training.
|
410 |
+
use_tempoal_causal_attn=False,
|
411 |
+
bidirectional_causal_attn=False,
|
412 |
+
tempoal_attn_type=None,
|
413 |
+
joint_train_mode="same_batch",
|
414 |
+
**kwargs,
|
415 |
+
):
|
416 |
+
super().__init__()
|
417 |
+
inner_dim = dim_head * heads
|
418 |
+
context_dim = default(context_dim, query_dim)
|
419 |
+
self.context_dim = context_dim
|
420 |
+
|
421 |
+
self.scale = dim_head**-0.5
|
422 |
+
self.heads = heads
|
423 |
+
self.temporal_length = temporal_length
|
424 |
+
self.use_relative_position = use_relative_position
|
425 |
+
self.img_video_joint_train = img_video_joint_train
|
426 |
+
self.bidirectional_causal_attn = bidirectional_causal_attn
|
427 |
+
self.joint_train_mode = joint_train_mode
|
428 |
+
assert joint_train_mode in ["same_batch", "diff_batch"]
|
429 |
+
self.tempoal_attn_type = tempoal_attn_type
|
430 |
+
|
431 |
+
if bidirectional_causal_attn:
|
432 |
+
assert use_tempoal_causal_attn
|
433 |
+
if tempoal_attn_type:
|
434 |
+
assert tempoal_attn_type in ["sparse_causal", "sparse_causal_first"]
|
435 |
+
assert not use_tempoal_causal_attn
|
436 |
+
assert not (
|
437 |
+
img_video_joint_train and (self.joint_train_mode == "same_batch")
|
438 |
+
)
|
439 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
440 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
441 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
442 |
+
|
443 |
+
assert not (
|
444 |
+
img_video_joint_train
|
445 |
+
and (self.joint_train_mode == "same_batch")
|
446 |
+
and use_tempoal_causal_attn
|
447 |
+
)
|
448 |
+
if img_video_joint_train:
|
449 |
+
if self.joint_train_mode == "same_batch":
|
450 |
+
mask = torch.ones(
|
451 |
+
[1, temporal_length + image_length, temporal_length + image_length]
|
452 |
+
)
|
453 |
+
# mask[:, image_length:, :] = 0
|
454 |
+
# mask[:, :, image_length:] = 0
|
455 |
+
mask[:, temporal_length:, :] = 0
|
456 |
+
mask[:, :, temporal_length:] = 0
|
457 |
+
self.mask = mask
|
458 |
+
else:
|
459 |
+
self.mask = None
|
460 |
+
elif use_tempoal_causal_attn:
|
461 |
+
# normal causal attn
|
462 |
+
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
|
463 |
+
elif tempoal_attn_type == "sparse_causal":
|
464 |
+
# all frames interact with only the `prev` & self frame
|
465 |
+
mask1 = torch.tril(
|
466 |
+
torch.ones([1, temporal_length, temporal_length])
|
467 |
+
).bool() # true indicates keeping
|
468 |
+
mask2 = torch.zeros(
|
469 |
+
[1, temporal_length, temporal_length]
|
470 |
+
) # initialize to same shape with mask1
|
471 |
+
mask2[:, 2:temporal_length, : temporal_length - 2] = torch.tril(
|
472 |
+
torch.ones([1, temporal_length - 2, temporal_length - 2])
|
473 |
+
)
|
474 |
+
mask2 = (1 - mask2).bool() # false indicates masking
|
475 |
+
self.mask = mask1 & mask2
|
476 |
+
elif tempoal_attn_type == "sparse_causal_first":
|
477 |
+
# all frames interact with only the `first` & self frame
|
478 |
+
mask1 = torch.tril(
|
479 |
+
torch.ones([1, temporal_length, temporal_length])
|
480 |
+
).bool() # true indicates keeping
|
481 |
+
mask2 = torch.zeros([1, temporal_length, temporal_length])
|
482 |
+
mask2[:, 2:temporal_length, 1 : temporal_length - 1] = torch.tril(
|
483 |
+
torch.ones([1, temporal_length - 2, temporal_length - 2])
|
484 |
+
)
|
485 |
+
mask2 = (1 - mask2).bool() # false indicates masking
|
486 |
+
self.mask = mask1 & mask2
|
487 |
+
else:
|
488 |
+
self.mask = None
|
489 |
+
|
490 |
+
if use_relative_position:
|
491 |
+
assert temporal_length is not None
|
492 |
+
self.relative_position_k = RelativePosition(
|
493 |
+
num_units=dim_head, max_relative_position=temporal_length
|
494 |
+
)
|
495 |
+
self.relative_position_v = RelativePosition(
|
496 |
+
num_units=dim_head, max_relative_position=temporal_length
|
497 |
+
)
|
498 |
+
|
499 |
+
self.to_out = nn.Sequential(
|
500 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
501 |
+
)
|
502 |
+
|
503 |
+
nn.init.constant_(self.to_q.weight, 0)
|
504 |
+
nn.init.constant_(self.to_k.weight, 0)
|
505 |
+
nn.init.constant_(self.to_v.weight, 0)
|
506 |
+
nn.init.constant_(self.to_out[0].weight, 0)
|
507 |
+
nn.init.constant_(self.to_out[0].bias, 0)
|
508 |
+
|
509 |
+
def forward(self, x, context=None, mask=None):
|
510 |
+
# if context is None:
|
511 |
+
# print(f'[Temp Attn] x={x.shape},context=None')
|
512 |
+
# else:
|
513 |
+
# print(f'[Temp Attn] x={x.shape},context={context.shape}')
|
514 |
+
|
515 |
+
nh = self.heads
|
516 |
+
out = x
|
517 |
+
q = self.to_q(out)
|
518 |
+
# if context is not None:
|
519 |
+
# print(f'temporal context 1 ={context.shape}')
|
520 |
+
# print(f'x={x.shape}')
|
521 |
+
context = default(context, x)
|
522 |
+
# print(f'temporal context 2 ={context.shape}')
|
523 |
+
k = self.to_k(context)
|
524 |
+
v = self.to_v(context)
|
525 |
+
# print(f'q ={q.shape},k={k.shape}')
|
526 |
+
|
527 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=nh), (q, k, v))
|
528 |
+
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
529 |
+
|
530 |
+
if self.use_relative_position:
|
531 |
+
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
|
532 |
+
k2 = self.relative_position_k(len_q, len_k)
|
533 |
+
sim2 = einsum("b t d, t s d -> b t s", q, k2) * self.scale # TODO check
|
534 |
+
sim += sim2
|
535 |
+
# print('mask',mask)
|
536 |
+
if exists(self.mask):
|
537 |
+
if mask is None:
|
538 |
+
mask = self.mask.to(sim.device)
|
539 |
+
else:
|
540 |
+
mask = self.mask.to(sim.device).bool() & mask # .to(sim.device)
|
541 |
+
else:
|
542 |
+
mask = mask
|
543 |
+
# if self.img_video_joint_train:
|
544 |
+
# # process mask (make mask same shape with sim)
|
545 |
+
# c, h, w = mask.shape
|
546 |
+
# c, t, s = sim.shape
|
547 |
+
# # assert(h == w and t == s),f"mask={mask.shape}, sim={sim.shape}, h={h}, w={w}, t={t}, s={s}"
|
548 |
+
|
549 |
+
# if h > t:
|
550 |
+
# mask = mask[:, :t, :]
|
551 |
+
# elif h < t: # pad zeros to mask (no attention) only initial mask =1 area compute weights
|
552 |
+
# mask_ = torch.zeros([c,t,w]).to(mask.device)
|
553 |
+
# mask_[:, :h, :] = mask
|
554 |
+
# mask = mask_
|
555 |
+
# c, h, w = mask.shape
|
556 |
+
# if w > s:
|
557 |
+
# mask = mask[:, :, :s]
|
558 |
+
# elif w < s: # pad zeros to mask
|
559 |
+
# mask_ = torch.zeros([c,h,s]).to(mask.device)
|
560 |
+
# mask_[:, :, :w] = mask
|
561 |
+
# mask = mask_
|
562 |
+
|
563 |
+
# max_neg_value = -torch.finfo(sim.dtype).max
|
564 |
+
# sim = sim.float().masked_fill(mask == 0, max_neg_value)
|
565 |
+
if mask is not None:
|
566 |
+
max_neg_value = -1e9
|
567 |
+
sim = sim + (1 - mask.float()) * max_neg_value # 1=masking,0=no masking
|
568 |
+
# print('sim after masking: ', sim)
|
569 |
+
|
570 |
+
# if torch.isnan(sim).any() or torch.isinf(sim).any() or (not sim.any()):
|
571 |
+
# print(f'sim [after masking], isnan={torch.isnan(sim).any()}, isinf={torch.isinf(sim).any()}, allzero={not sim.any()}')
|
572 |
+
|
573 |
+
attn = sim.softmax(dim=-1)
|
574 |
+
# print('attn after softmax: ', attn)
|
575 |
+
# if torch.isnan(attn).any() or torch.isinf(attn).any() or (not attn.any()):
|
576 |
+
# print(f'attn [after softmax], isnan={torch.isnan(attn).any()}, isinf={torch.isinf(attn).any()}, allzero={not attn.any()}')
|
577 |
+
|
578 |
+
# attn = torch.where(torch.isnan(attn), torch.full_like(attn,0), attn)
|
579 |
+
# if torch.isinf(attn.detach()).any():
|
580 |
+
# import pdb;pdb.set_trace()
|
581 |
+
# if torch.isnan(attn.detach()).any():
|
582 |
+
# import pdb;pdb.set_trace()
|
583 |
+
out = einsum("b i j, b j d -> b i d", attn, v)
|
584 |
+
|
585 |
+
if self.bidirectional_causal_attn:
|
586 |
+
mask_reverse = torch.triu(
|
587 |
+
torch.ones(
|
588 |
+
[1, self.temporal_length, self.temporal_length], device=sim.device
|
589 |
+
)
|
590 |
+
)
|
591 |
+
sim_reverse = sim.float().masked_fill(mask_reverse == 0, max_neg_value)
|
592 |
+
attn_reverse = sim_reverse.softmax(dim=-1)
|
593 |
+
out_reverse = einsum("b i j, b j d -> b i d", attn_reverse, v)
|
594 |
+
out += out_reverse
|
595 |
+
|
596 |
+
if self.use_relative_position:
|
597 |
+
v2 = self.relative_position_v(len_q, len_v)
|
598 |
+
out2 = einsum("b t s, t s d -> b t d", attn, v2) # TODO check
|
599 |
+
out += out2 # TODO check:先add还是先merge head?先计算rpr,on split head之后的数据,然后再merge。
|
600 |
+
out = rearrange(out, "(b h) n d -> b n (h d)", h=nh) # merge head
|
601 |
+
return self.to_out(out)
|
602 |
+
|
603 |
+
|
604 |
+
class SpatialSelfAttention(nn.Module):
|
605 |
+
def __init__(self, in_channels):
|
606 |
+
super().__init__()
|
607 |
+
self.in_channels = in_channels
|
608 |
+
|
609 |
+
self.norm = Normalize(in_channels)
|
610 |
+
self.q = torch.nn.Conv2d(
|
611 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
612 |
+
)
|
613 |
+
self.k = torch.nn.Conv2d(
|
614 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
615 |
+
)
|
616 |
+
self.v = torch.nn.Conv2d(
|
617 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
618 |
+
)
|
619 |
+
self.proj_out = torch.nn.Conv2d(
|
620 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
621 |
+
)
|
622 |
+
|
623 |
+
def forward(self, x):
|
624 |
+
h_ = x
|
625 |
+
h_ = self.norm(h_)
|
626 |
+
q = self.q(h_)
|
627 |
+
k = self.k(h_)
|
628 |
+
v = self.v(h_)
|
629 |
+
|
630 |
+
# compute attention
|
631 |
+
b, c, h, w = q.shape
|
632 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
633 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
634 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
635 |
+
|
636 |
+
w_ = w_ * (int(c) ** (-0.5))
|
637 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
638 |
+
|
639 |
+
# attend to values
|
640 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
641 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
642 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
643 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
644 |
+
h_ = self.proj_out(h_)
|
645 |
+
|
646 |
+
return x + h_
|
647 |
+
|
648 |
+
|
649 |
+
class CrossAttention(nn.Module):
|
650 |
+
def __init__(
|
651 |
+
self,
|
652 |
+
query_dim,
|
653 |
+
context_dim=None,
|
654 |
+
heads=8,
|
655 |
+
dim_head=64,
|
656 |
+
dropout=0.0,
|
657 |
+
sa_shared_kv=False,
|
658 |
+
shared_type="only_first",
|
659 |
+
**kwargs,
|
660 |
+
):
|
661 |
+
super().__init__()
|
662 |
+
inner_dim = dim_head * heads
|
663 |
+
context_dim = default(context_dim, query_dim)
|
664 |
+
self.sa_shared_kv = sa_shared_kv
|
665 |
+
assert shared_type in [
|
666 |
+
"only_first",
|
667 |
+
"all_frames",
|
668 |
+
"first_and_prev",
|
669 |
+
"only_prev",
|
670 |
+
"full",
|
671 |
+
"causal",
|
672 |
+
"full_qkv",
|
673 |
+
]
|
674 |
+
self.shared_type = shared_type
|
675 |
+
|
676 |
+
self.scale = dim_head**-0.5
|
677 |
+
self.heads = heads
|
678 |
+
self.dim_head = dim_head
|
679 |
+
|
680 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
681 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
682 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
683 |
+
|
684 |
+
self.to_out = nn.Sequential(
|
685 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
686 |
+
)
|
687 |
+
self.attention_op: Optional[Any] = None
|
688 |
+
|
689 |
+
def forward(self, x, context=None, mask=None):
|
690 |
+
h = self.heads
|
691 |
+
b = x.shape[0]
|
692 |
+
|
693 |
+
q = self.to_q(x)
|
694 |
+
context = default(context, x)
|
695 |
+
k = self.to_k(context)
|
696 |
+
v = self.to_v(context)
|
697 |
+
if self.sa_shared_kv:
|
698 |
+
if self.shared_type == "only_first":
|
699 |
+
k, v = map(
|
700 |
+
lambda xx: rearrange(xx[0].unsqueeze(0), "b n c -> (b n) c")
|
701 |
+
.unsqueeze(0)
|
702 |
+
.repeat(b, 1, 1),
|
703 |
+
(k, v),
|
704 |
+
)
|
705 |
+
else:
|
706 |
+
raise NotImplementedError
|
707 |
+
|
708 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
709 |
+
|
710 |
+
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
711 |
+
|
712 |
+
if exists(mask):
|
713 |
+
mask = rearrange(mask, "b ... -> b (...)")
|
714 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
715 |
+
mask = repeat(mask, "b j -> (b h) () j", h=h)
|
716 |
+
sim.masked_fill_(~mask, max_neg_value)
|
717 |
+
|
718 |
+
# attention, what we cannot get enough of
|
719 |
+
attn = sim.softmax(dim=-1)
|
720 |
+
|
721 |
+
out = einsum("b i j, b j d -> b i d", attn, v)
|
722 |
+
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
723 |
+
return self.to_out(out)
|
724 |
+
|
725 |
+
def efficient_forward(self, x, context=None, mask=None):
|
726 |
+
q = self.to_q(x)
|
727 |
+
context = default(context, x)
|
728 |
+
k = self.to_k(context)
|
729 |
+
v = self.to_v(context)
|
730 |
+
|
731 |
+
b, _, _ = q.shape
|
732 |
+
q, k, v = map(
|
733 |
+
lambda t: t.unsqueeze(3)
|
734 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
735 |
+
.permute(0, 2, 1, 3)
|
736 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
737 |
+
.contiguous(),
|
738 |
+
(q, k, v),
|
739 |
+
)
|
740 |
+
# actually compute the attention, what we cannot get enough of
|
741 |
+
out = xformers.ops.memory_efficient_attention(
|
742 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
743 |
+
)
|
744 |
+
|
745 |
+
if exists(mask):
|
746 |
+
raise NotImplementedError
|
747 |
+
out = (
|
748 |
+
out.unsqueeze(0)
|
749 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
750 |
+
.permute(0, 2, 1, 3)
|
751 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
752 |
+
)
|
753 |
+
return self.to_out(out)
|
754 |
+
|
755 |
+
|
756 |
+
class VideoSpatialCrossAttention(CrossAttention):
|
757 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0):
|
758 |
+
super().__init__(query_dim, context_dim, heads, dim_head, dropout)
|
759 |
+
|
760 |
+
def forward(self, x, context=None, mask=None):
|
761 |
+
b, c, t, h, w = x.shape
|
762 |
+
if context is not None:
|
763 |
+
context = context.repeat(t, 1, 1)
|
764 |
+
x = super.forward(spatial_attn_reshape(x), context=context) + x
|
765 |
+
return spatial_attn_reshape_back(x, b, h)
|
766 |
+
|
767 |
+
|
768 |
+
def spatial_attn_reshape(x):
|
769 |
+
return rearrange(x, "b c t h w -> (b t) (h w) c")
|
770 |
+
|
771 |
+
|
772 |
+
def spatial_attn_reshape_back(x, b, h):
|
773 |
+
return rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h)
|
774 |
+
|
775 |
+
|
776 |
+
def temporal_attn_reshape(x):
|
777 |
+
return rearrange(x, "b c t h w -> (b h w) t c")
|
778 |
+
|
779 |
+
|
780 |
+
def temporal_attn_reshape_back(x, b, h, w):
|
781 |
+
return rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w)
|
782 |
+
|
783 |
+
|
784 |
+
def local_spatial_temporal_attn_reshape(x, window_size):
|
785 |
+
B, C, T, H, W = x.shape
|
786 |
+
NH = H // window_size
|
787 |
+
NW = W // window_size
|
788 |
+
# x = x.view(B, C, T, NH, window_size, NW, window_size)
|
789 |
+
# tokens = x.permute(0, 1, 2, 3, 5, 4, 6).contiguous()
|
790 |
+
# tokens = tokens.view(-1, window_size, window_size, C)
|
791 |
+
x = rearrange(
|
792 |
+
x,
|
793 |
+
"b c t (nh wh) (nw ww) -> b c t nh wh nw ww",
|
794 |
+
nh=NH,
|
795 |
+
nw=NW,
|
796 |
+
wh=window_size,
|
797 |
+
ww=window_size,
|
798 |
+
).contiguous() # # B, C, T, NH, NW, window_size, window_size
|
799 |
+
x = rearrange(
|
800 |
+
x, "b c t nh wh nw ww -> (b nh nw) (t wh ww) c"
|
801 |
+
) # (B, NH, NW) (T, window_size, window_size) C
|
802 |
+
return x
|
803 |
+
|
804 |
+
|
805 |
+
def local_spatial_temporal_attn_reshape_back(x, window_size, b, h, w, t):
|
806 |
+
B, L, C = x.shape
|
807 |
+
NH = h // window_size
|
808 |
+
NW = w // window_size
|
809 |
+
x = rearrange(
|
810 |
+
x,
|
811 |
+
"(b nh nw) (t wh ww) c -> b c t nh wh nw ww",
|
812 |
+
b=b,
|
813 |
+
nh=NH,
|
814 |
+
nw=NW,
|
815 |
+
t=t,
|
816 |
+
wh=window_size,
|
817 |
+
ww=window_size,
|
818 |
+
)
|
819 |
+
x = rearrange(x, "b c t nh wh nw ww -> b c t (nh wh) (nw ww)")
|
820 |
+
return x
|
821 |
+
|
822 |
+
|
823 |
+
class SpatialTemporalTransformer(nn.Module):
|
824 |
+
"""
|
825 |
+
Transformer block for video-like data (5D tensor).
|
826 |
+
First, project the input (aka embedding) with NO reshape.
|
827 |
+
Then apply standard transformer action.
|
828 |
+
The 5D -> 3D reshape operation will be done in the specific attention module.
|
829 |
+
"""
|
830 |
+
|
831 |
+
def __init__(
|
832 |
+
self,
|
833 |
+
in_channels,
|
834 |
+
n_heads,
|
835 |
+
d_head,
|
836 |
+
depth=1,
|
837 |
+
dropout=0.0,
|
838 |
+
context_dim=None,
|
839 |
+
# Temporal stuff
|
840 |
+
temporal_length=None,
|
841 |
+
image_length=None,
|
842 |
+
use_relative_position=True,
|
843 |
+
img_video_joint_train=False,
|
844 |
+
cross_attn_on_tempoal=False,
|
845 |
+
temporal_crossattn_type="selfattn",
|
846 |
+
order="stst",
|
847 |
+
temporalcrossfirst=False,
|
848 |
+
split_stcontext=False,
|
849 |
+
temporal_context_dim=None,
|
850 |
+
**kwargs,
|
851 |
+
):
|
852 |
+
super().__init__()
|
853 |
+
|
854 |
+
self.in_channels = in_channels
|
855 |
+
inner_dim = n_heads * d_head
|
856 |
+
|
857 |
+
self.norm = Normalize(in_channels)
|
858 |
+
self.proj_in = nn.Conv3d(
|
859 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
860 |
+
)
|
861 |
+
|
862 |
+
self.transformer_blocks = nn.ModuleList(
|
863 |
+
[
|
864 |
+
BasicTransformerBlockST(
|
865 |
+
inner_dim,
|
866 |
+
n_heads,
|
867 |
+
d_head,
|
868 |
+
dropout=dropout,
|
869 |
+
# cross attn
|
870 |
+
context_dim=context_dim,
|
871 |
+
# temporal attn
|
872 |
+
temporal_length=temporal_length,
|
873 |
+
image_length=image_length,
|
874 |
+
use_relative_position=use_relative_position,
|
875 |
+
img_video_joint_train=img_video_joint_train,
|
876 |
+
temporal_crossattn_type=temporal_crossattn_type,
|
877 |
+
order=order,
|
878 |
+
temporalcrossfirst=temporalcrossfirst,
|
879 |
+
split_stcontext=split_stcontext,
|
880 |
+
temporal_context_dim=temporal_context_dim,
|
881 |
+
**kwargs,
|
882 |
+
)
|
883 |
+
for d in range(depth)
|
884 |
+
]
|
885 |
+
)
|
886 |
+
|
887 |
+
self.proj_out = zero_module(
|
888 |
+
nn.Conv3d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
889 |
+
)
|
890 |
+
|
891 |
+
def forward(self, x, context=None, temporal_context=None, **kwargs):
|
892 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
893 |
+
assert x.dim() == 5, f"x shape = {x.shape}"
|
894 |
+
b, c, t, h, w = x.shape
|
895 |
+
x_in = x
|
896 |
+
|
897 |
+
x = self.norm(x)
|
898 |
+
x = self.proj_in(x)
|
899 |
+
|
900 |
+
for block in self.transformer_blocks:
|
901 |
+
x = block(x, context=context, temporal_context=temporal_context, **kwargs)
|
902 |
+
|
903 |
+
x = self.proj_out(x)
|
904 |
+
return x + x_in
|
905 |
+
|
906 |
+
|
907 |
+
class STAttentionBlock2(nn.Module):
|
908 |
+
def __init__(
|
909 |
+
self,
|
910 |
+
channels,
|
911 |
+
num_heads=1,
|
912 |
+
num_head_channels=-1,
|
913 |
+
use_checkpoint=False, # not used, only used in ResBlock
|
914 |
+
use_new_attention_order=False, # QKVAttention or QKVAttentionLegacy
|
915 |
+
temporal_length=16, # used in relative positional representation.
|
916 |
+
image_length=8, # used for image-video joint training.
|
917 |
+
use_relative_position=False, # whether use relative positional representation in temporal attention.
|
918 |
+
img_video_joint_train=False,
|
919 |
+
# norm_type="groupnorm",
|
920 |
+
attn_norm_type="group",
|
921 |
+
use_tempoal_causal_attn=False,
|
922 |
+
):
|
923 |
+
"""
|
924 |
+
version 1: guided_diffusion implemented version
|
925 |
+
version 2: remove args input argument
|
926 |
+
"""
|
927 |
+
super().__init__()
|
928 |
+
|
929 |
+
if num_head_channels == -1:
|
930 |
+
self.num_heads = num_heads
|
931 |
+
else:
|
932 |
+
assert (
|
933 |
+
channels % num_head_channels == 0
|
934 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
935 |
+
self.num_heads = channels // num_head_channels
|
936 |
+
self.use_checkpoint = use_checkpoint
|
937 |
+
|
938 |
+
self.temporal_length = temporal_length
|
939 |
+
self.image_length = image_length
|
940 |
+
self.use_relative_position = use_relative_position
|
941 |
+
self.img_video_joint_train = img_video_joint_train
|
942 |
+
self.attn_norm_type = attn_norm_type
|
943 |
+
assert self.attn_norm_type in ["group", "no_norm"]
|
944 |
+
self.use_tempoal_causal_attn = use_tempoal_causal_attn
|
945 |
+
|
946 |
+
if self.attn_norm_type == "group":
|
947 |
+
self.norm_s = normalization(channels)
|
948 |
+
self.norm_t = normalization(channels)
|
949 |
+
|
950 |
+
self.qkv_s = conv_nd(1, channels, channels * 3, 1)
|
951 |
+
self.qkv_t = conv_nd(1, channels, channels * 3, 1)
|
952 |
+
|
953 |
+
if self.img_video_joint_train:
|
954 |
+
mask = torch.ones(
|
955 |
+
[1, temporal_length + image_length, temporal_length + image_length]
|
956 |
+
)
|
957 |
+
mask[:, temporal_length:, :] = 0
|
958 |
+
mask[:, :, temporal_length:] = 0
|
959 |
+
self.register_buffer("mask", mask)
|
960 |
+
else:
|
961 |
+
self.mask = None
|
962 |
+
|
963 |
+
if use_new_attention_order:
|
964 |
+
# split qkv before split heads
|
965 |
+
self.attention_s = QKVAttention(self.num_heads)
|
966 |
+
self.attention_t = QKVAttention(self.num_heads)
|
967 |
+
else:
|
968 |
+
# split heads before split qkv
|
969 |
+
self.attention_s = QKVAttentionLegacy(self.num_heads)
|
970 |
+
self.attention_t = QKVAttentionLegacy(self.num_heads)
|
971 |
+
|
972 |
+
if use_relative_position:
|
973 |
+
self.relative_position_k = RelativePosition(
|
974 |
+
num_units=channels // self.num_heads,
|
975 |
+
max_relative_position=temporal_length,
|
976 |
+
)
|
977 |
+
self.relative_position_v = RelativePosition(
|
978 |
+
num_units=channels // self.num_heads,
|
979 |
+
max_relative_position=temporal_length,
|
980 |
+
)
|
981 |
+
|
982 |
+
self.proj_out_s = zero_module(
|
983 |
+
conv_nd(1, channels, channels, 1)
|
984 |
+
) # conv_dim, in_channels, out_channels, kernel_size
|
985 |
+
self.proj_out_t = zero_module(
|
986 |
+
conv_nd(1, channels, channels, 1)
|
987 |
+
) # conv_dim, in_channels, out_channels, kernel_size
|
988 |
+
|
989 |
+
def forward(self, x, mask=None):
|
990 |
+
b, c, t, h, w = x.shape
|
991 |
+
|
992 |
+
# spatial
|
993 |
+
out = rearrange(x, "b c t h w -> (b t) c (h w)")
|
994 |
+
if self.attn_norm_type == "no_norm":
|
995 |
+
qkv = self.qkv_s(out)
|
996 |
+
else:
|
997 |
+
qkv = self.qkv_s(self.norm_s(out))
|
998 |
+
out = self.attention_s(qkv)
|
999 |
+
out = self.proj_out_s(out)
|
1000 |
+
out = rearrange(out, "(b t) c (h w) -> b c t h w", b=b, h=h)
|
1001 |
+
x += out
|
1002 |
+
|
1003 |
+
# temporal
|
1004 |
+
out = rearrange(x, "b c t h w -> (b h w) c t")
|
1005 |
+
if self.attn_norm_type == "no_norm":
|
1006 |
+
qkv = self.qkv_t(out)
|
1007 |
+
else:
|
1008 |
+
qkv = self.qkv_t(self.norm_t(out))
|
1009 |
+
|
1010 |
+
# relative positional embedding
|
1011 |
+
if self.use_relative_position:
|
1012 |
+
len_q = qkv.size()[-1]
|
1013 |
+
len_k, len_v = len_q, len_q
|
1014 |
+
k_rp = self.relative_position_k(len_q, len_k)
|
1015 |
+
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
1016 |
+
out = self.attention_t(
|
1017 |
+
qkv,
|
1018 |
+
rp=(k_rp, v_rp),
|
1019 |
+
mask=self.mask,
|
1020 |
+
use_tempoal_causal_attn=self.use_tempoal_causal_attn,
|
1021 |
+
)
|
1022 |
+
else:
|
1023 |
+
out = self.attention_t(
|
1024 |
+
qkv,
|
1025 |
+
rp=None,
|
1026 |
+
mask=self.mask,
|
1027 |
+
use_tempoal_causal_attn=self.use_tempoal_causal_attn,
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
out = self.proj_out_t(out)
|
1031 |
+
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
1032 |
+
|
1033 |
+
return x + out
|
1034 |
+
|
1035 |
+
|
1036 |
+
class QKVAttentionLegacy(nn.Module):
|
1037 |
+
"""
|
1038 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
1039 |
+
"""
|
1040 |
+
|
1041 |
+
def __init__(self, n_heads):
|
1042 |
+
super().__init__()
|
1043 |
+
self.n_heads = n_heads
|
1044 |
+
|
1045 |
+
def forward(self, qkv, rp=None, mask=None):
|
1046 |
+
"""
|
1047 |
+
Apply QKV attention.
|
1048 |
+
|
1049 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
1050 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
1051 |
+
"""
|
1052 |
+
if rp is not None or mask is not None:
|
1053 |
+
raise NotImplementedError
|
1054 |
+
bs, width, length = qkv.shape
|
1055 |
+
assert width % (3 * self.n_heads) == 0
|
1056 |
+
ch = width // (3 * self.n_heads)
|
1057 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
1058 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
1059 |
+
weight = torch.einsum(
|
1060 |
+
"bct,bcs->bts", q * scale, k * scale
|
1061 |
+
) # More stable with f16 than dividing afterwards
|
1062 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
1063 |
+
a = torch.einsum("bts,bcs->bct", weight, v)
|
1064 |
+
return a.reshape(bs, -1, length)
|
1065 |
+
|
1066 |
+
@staticmethod
|
1067 |
+
def count_flops(model, _x, y):
|
1068 |
+
return count_flops_attn(model, _x, y)
|
1069 |
+
|
1070 |
+
|
1071 |
+
class QKVAttention(nn.Module):
|
1072 |
+
"""
|
1073 |
+
A module which performs QKV attention and splits in a different order.
|
1074 |
+
"""
|
1075 |
+
|
1076 |
+
def __init__(self, n_heads):
|
1077 |
+
super().__init__()
|
1078 |
+
self.n_heads = n_heads
|
1079 |
+
|
1080 |
+
def forward(self, qkv, rp=None, mask=None, use_tempoal_causal_attn=False):
|
1081 |
+
"""
|
1082 |
+
Apply QKV attention.
|
1083 |
+
|
1084 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
1085 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
1086 |
+
"""
|
1087 |
+
bs, width, length = qkv.shape
|
1088 |
+
assert width % (3 * self.n_heads) == 0
|
1089 |
+
ch = width // (3 * self.n_heads)
|
1090 |
+
# print('qkv', qkv.size())
|
1091 |
+
qkv=qkv.contiguous()
|
1092 |
+
q, k, v = qkv.chunk(3, dim=1)
|
1093 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
1094 |
+
# print('bs, self.n_heads, ch, length', bs, self.n_heads, ch, length)
|
1095 |
+
|
1096 |
+
weight = torch.einsum(
|
1097 |
+
"bct,bcs->bts",
|
1098 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
1099 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
1100 |
+
) # More stable with f16 than dividing afterwards
|
1101 |
+
# weight:[b,t,s] b=bs*n_heads*T
|
1102 |
+
|
1103 |
+
if rp is not None:
|
1104 |
+
k_rp, v_rp = rp # [length, length, head_dim] [8, 8, 48]
|
1105 |
+
weight2 = torch.einsum(
|
1106 |
+
"bct,tsc->bst", (q * scale).view(bs * self.n_heads, ch, length), k_rp
|
1107 |
+
)
|
1108 |
+
weight += weight2
|
1109 |
+
|
1110 |
+
if use_tempoal_causal_attn:
|
1111 |
+
# weight = torch.tril(weight)
|
1112 |
+
assert mask is None, f"Not implemented for merging two masks!"
|
1113 |
+
mask = torch.tril(torch.ones(weight.shape))
|
1114 |
+
else:
|
1115 |
+
if mask is not None: # only keep upper-left matrix
|
1116 |
+
# process mask
|
1117 |
+
c, t, _ = weight.shape
|
1118 |
+
|
1119 |
+
if mask.shape[-1] > t:
|
1120 |
+
mask = mask[:, :t, :t]
|
1121 |
+
elif mask.shape[-1] < t: # pad ones
|
1122 |
+
mask_ = torch.zeros([c, t, t]).to(mask.device)
|
1123 |
+
t_ = mask.shape[-1]
|
1124 |
+
mask_[:, :t_, :t_] = mask
|
1125 |
+
mask = mask_
|
1126 |
+
else:
|
1127 |
+
assert (
|
1128 |
+
weight.shape[-1] == mask.shape[-1]
|
1129 |
+
), f"weight={weight.shape}, mask={mask.shape}"
|
1130 |
+
|
1131 |
+
if mask is not None:
|
1132 |
+
INF = -1e8 # float('-inf')
|
1133 |
+
weight = weight.float().masked_fill(mask == 0, INF)
|
1134 |
+
|
1135 |
+
weight = F.softmax(weight.float(), dim=-1).type(
|
1136 |
+
weight.dtype
|
1137 |
+
) # [256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
|
1138 |
+
# weight = F.softmax(weight, dim=-1)#[256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
|
1139 |
+
a = torch.einsum(
|
1140 |
+
"bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)
|
1141 |
+
) # [256, 48, 8] [b, head_dim, t]
|
1142 |
+
|
1143 |
+
if rp is not None:
|
1144 |
+
a2 = torch.einsum("bts,tsc->btc", weight, v_rp).transpose(1, 2) # btc->bct
|
1145 |
+
a += a2
|
1146 |
+
|
1147 |
+
return a.reshape(bs, -1, length)
|
1148 |
+
|
1149 |
+
|
1150 |
+
def silu(x):
|
1151 |
+
# swish
|
1152 |
+
return x * torch.sigmoid(x)
|
1153 |
+
|
1154 |
+
|
1155 |
+
class SiLU(nn.Module):
|
1156 |
+
def __init__(self):
|
1157 |
+
super(SiLU, self).__init__()
|
1158 |
+
|
1159 |
+
def forward(self, x):
|
1160 |
+
return silu(x)
|
1161 |
+
|
1162 |
+
|
1163 |
+
def Normalize(in_channels, norm_type="group"):
|
1164 |
+
assert norm_type in ["group", "batch",'layer']
|
1165 |
+
if norm_type == "group":
|
1166 |
+
return torch.nn.GroupNorm(
|
1167 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
1168 |
+
)
|
1169 |
+
elif norm_type == "batch":
|
1170 |
+
return torch.nn.SyncBatchNorm(in_channels)
|
1171 |
+
elif norm_type == "layer":
|
1172 |
+
return nn.LayerNorm(in_channels)
|
1173 |
+
|
1174 |
+
class SamePadConv3d(nn.Module):
|
1175 |
+
def __init__(
|
1176 |
+
self,
|
1177 |
+
in_channels,
|
1178 |
+
out_channels,
|
1179 |
+
kernel_size,
|
1180 |
+
stride=1,
|
1181 |
+
bias=True,
|
1182 |
+
padding_type="replicate",
|
1183 |
+
):
|
1184 |
+
super().__init__()
|
1185 |
+
if isinstance(kernel_size, int):
|
1186 |
+
kernel_size = (kernel_size,) * 3
|
1187 |
+
if isinstance(stride, int):
|
1188 |
+
stride = (stride,) * 3
|
1189 |
+
|
1190 |
+
# assumes that the input shape is divisible by stride
|
1191 |
+
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
|
1192 |
+
pad_input = []
|
1193 |
+
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
|
1194 |
+
pad_input.append((p // 2 + p % 2, p // 2))
|
1195 |
+
pad_input = sum(pad_input, tuple())
|
1196 |
+
|
1197 |
+
self.pad_input = pad_input
|
1198 |
+
self.padding_type = padding_type
|
1199 |
+
|
1200 |
+
self.conv = nn.Conv3d(
|
1201 |
+
in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias
|
1202 |
+
)
|
1203 |
+
|
1204 |
+
def forward(self, x):
|
1205 |
+
tp=x.dtype
|
1206 |
+
x = x.float()
|
1207 |
+
|
1208 |
+
# 执行填充操作
|
1209 |
+
x_padded = F.pad(x, self.pad_input, mode=self.padding_type)
|
1210 |
+
|
1211 |
+
# 如果需要,将结果转换回 BFloat16
|
1212 |
+
x_padded = x_padded.to(tp)
|
1213 |
+
|
1214 |
+
return self.conv(x_padded)
|
1215 |
+
|
1216 |
+
class TemporalAttention(nn.Module):
|
1217 |
+
def __init__(
|
1218 |
+
self,
|
1219 |
+
channels,
|
1220 |
+
num_heads=1,
|
1221 |
+
num_head_channels=-1,
|
1222 |
+
max_temporal_length=64,
|
1223 |
+
):
|
1224 |
+
"""
|
1225 |
+
a clean multi-head temporal attention
|
1226 |
+
"""
|
1227 |
+
super().__init__()
|
1228 |
+
|
1229 |
+
if num_head_channels == -1:
|
1230 |
+
self.num_heads = num_heads
|
1231 |
+
else:
|
1232 |
+
assert (
|
1233 |
+
channels % num_head_channels == 0
|
1234 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
1235 |
+
self.num_heads = channels // num_head_channels
|
1236 |
+
|
1237 |
+
self.norm = Normalize(channels)
|
1238 |
+
self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1))
|
1239 |
+
self.attention = QKVAttention(self.num_heads)
|
1240 |
+
self.relative_position_k = RelativePosition(
|
1241 |
+
num_units=channels // self.num_heads,
|
1242 |
+
max_relative_position=max_temporal_length,
|
1243 |
+
)
|
1244 |
+
self.relative_position_v = RelativePosition(
|
1245 |
+
num_units=channels // self.num_heads,
|
1246 |
+
max_relative_position=max_temporal_length,
|
1247 |
+
)
|
1248 |
+
self.proj_out = zero_module(
|
1249 |
+
conv_nd(1, channels, channels, 1)
|
1250 |
+
) # conv_dim, in_channels, out_channels, kernel_size
|
1251 |
+
|
1252 |
+
def forward(self, x, mask=None):
|
1253 |
+
b, c, t, h, w = x.shape
|
1254 |
+
out = rearrange(x, "b c t h w -> (b h w) c t")
|
1255 |
+
# torch.Size([4608, 1152, 2])1
|
1256 |
+
# torch.Size([4608, 3456, 2])2
|
1257 |
+
# torch.Size([4608, 1152, 2])3
|
1258 |
+
# torch.Size([4608, 1152, 2])4
|
1259 |
+
#print(out.shape,end='1\n')
|
1260 |
+
qkv = self.qkv(self.norm(out))
|
1261 |
+
#print(qkv.shape,end='2\n')
|
1262 |
+
|
1263 |
+
len_q = qkv.size()[-1]
|
1264 |
+
len_k, len_v = len_q, len_q
|
1265 |
+
|
1266 |
+
k_rp = self.relative_position_k(len_q, len_k)
|
1267 |
+
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
1268 |
+
out = self.attention(qkv, rp=(k_rp, v_rp))
|
1269 |
+
#print(out.shape,end='3\n')
|
1270 |
+
out = self.proj_out(out)
|
1271 |
+
#print(out.shape,end='4\n')
|
1272 |
+
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
1273 |
+
|
1274 |
+
return x + out
|
1275 |
+
class TemporalAttention_lin(nn.Module):
|
1276 |
+
def __init__(
|
1277 |
+
self,
|
1278 |
+
channels,
|
1279 |
+
num_heads=8,
|
1280 |
+
num_head_channels=-1,
|
1281 |
+
max_temporal_length=64,
|
1282 |
+
):
|
1283 |
+
"""
|
1284 |
+
a clean multi-head temporal attention
|
1285 |
+
"""
|
1286 |
+
super().__init__()
|
1287 |
+
|
1288 |
+
if num_head_channels == -1:
|
1289 |
+
self.num_heads = num_heads
|
1290 |
+
else:
|
1291 |
+
assert (
|
1292 |
+
channels % num_head_channels == 0
|
1293 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
1294 |
+
self.num_heads = channels // num_head_channels
|
1295 |
+
|
1296 |
+
self.norm = nn.LayerNorm(channels)
|
1297 |
+
#self.norm = Normalize(channels)
|
1298 |
+
#self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1))
|
1299 |
+
self.qkv = nn.Linear(channels, channels * 3)
|
1300 |
+
self.attention = QKVAttention(self.num_heads)
|
1301 |
+
self.relative_position_k = RelativePosition(
|
1302 |
+
num_units=channels // self.num_heads,
|
1303 |
+
max_relative_position=max_temporal_length,
|
1304 |
+
)
|
1305 |
+
self.relative_position_v = RelativePosition(
|
1306 |
+
num_units=channels // self.num_heads,
|
1307 |
+
max_relative_position=max_temporal_length,
|
1308 |
+
)
|
1309 |
+
self.proj_out = nn.Linear(channels, channels)
|
1310 |
+
|
1311 |
+
def forward(self, x, mask=None):
|
1312 |
+
b, c, t, h, w = x.shape
|
1313 |
+
out = rearrange(x, "b c t h w -> (b h w) t c")
|
1314 |
+
# torch.Size([4608, 1152, 2])1
|
1315 |
+
# torch.Size([4608, 3456, 2])2
|
1316 |
+
# torch.Size([4608, 1152, 2])3
|
1317 |
+
# torch.Size([4608, 1152, 2])4
|
1318 |
+
#print(out.shape,end='1\n')
|
1319 |
+
qkv = self.qkv(self.norm(out)).transpose(-1, -2)
|
1320 |
+
#print(qkv.shape,end='2\n')
|
1321 |
+
|
1322 |
+
len_q = qkv.size()[-1]
|
1323 |
+
len_k, len_v = len_q, len_q
|
1324 |
+
|
1325 |
+
k_rp = self.relative_position_k(len_q, len_k)
|
1326 |
+
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
1327 |
+
|
1328 |
+
out = self.attention(qkv, rp=(k_rp, v_rp))
|
1329 |
+
|
1330 |
+
out = self.proj_out(out.transpose(-1, -2)).transpose(-1, -2)
|
1331 |
+
|
1332 |
+
#print(out.shape,end='4\n')
|
1333 |
+
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
1334 |
+
|
1335 |
+
return x + out
|
1336 |
+
|
1337 |
+
class AttnBlock3D(nn.Module):
|
1338 |
+
def __init__(self, in_channels):
|
1339 |
+
super().__init__()
|
1340 |
+
self.in_channels = in_channels
|
1341 |
+
|
1342 |
+
self.norm = Normalize(in_channels)
|
1343 |
+
self.q = torch.nn.Conv3d(
|
1344 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
1345 |
+
)
|
1346 |
+
self.k = torch.nn.Conv3d(
|
1347 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
1348 |
+
)
|
1349 |
+
self.v = torch.nn.Conv3d(
|
1350 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
1351 |
+
)
|
1352 |
+
self.proj_out = torch.nn.Conv3d(
|
1353 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
1354 |
+
)
|
1355 |
+
|
1356 |
+
def forward(self, x):
|
1357 |
+
h_ = x
|
1358 |
+
# self.norm.to(x.device)
|
1359 |
+
# self.norm.to(x.dtype)
|
1360 |
+
h_ = self.norm(h_)
|
1361 |
+
q = self.q(h_)
|
1362 |
+
k = self.k(h_)
|
1363 |
+
v = self.v(h_)
|
1364 |
+
|
1365 |
+
b, c, t, h, w = q.shape
|
1366 |
+
# q = q.reshape(b,c,h*w) # bcl
|
1367 |
+
# q = q.permute(0,2,1) # bcl -> blc l=hw
|
1368 |
+
# k = k.reshape(b,c,h*w) # bcl
|
1369 |
+
q = rearrange(q, "b c t h w -> (b t) (h w) c") # blc
|
1370 |
+
k = rearrange(k, "b c t h w -> (b t) c (h w)") # bcl
|
1371 |
+
|
1372 |
+
w_ = torch.bmm(q, k) # b,l,l
|
1373 |
+
w_ = w_ * (int(c) ** (-0.5))
|
1374 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
1375 |
+
|
1376 |
+
# v = v.reshape(b,c,h*w)
|
1377 |
+
v = rearrange(v, "b c t h w -> (b t) c (h w)") # bcl
|
1378 |
+
|
1379 |
+
# attend to values
|
1380 |
+
w_ = w_.permute(0, 2, 1) # bll
|
1381 |
+
h_ = torch.bmm(v, w_) # bcl
|
1382 |
+
|
1383 |
+
# h_ = h_.reshape(b,c,h,w)
|
1384 |
+
h_ = rearrange(h_, "(b t) c (h w) -> b c t h w", b=b, h=h)
|
1385 |
+
|
1386 |
+
h_ = self.proj_out(h_)
|
1387 |
+
|
1388 |
+
return x + h_
|
1389 |
+
|
1390 |
+
class MultiHeadAttention3D(nn.Module):
|
1391 |
+
def __init__(self, in_channels, num_heads=8):
|
1392 |
+
super().__init__()
|
1393 |
+
self.in_channels = in_channels
|
1394 |
+
self.num_heads = num_heads
|
1395 |
+
self.head_dim = in_channels // num_heads
|
1396 |
+
|
1397 |
+
assert self.head_dim * num_heads == in_channels, "in_channels must be divisible by num_heads"
|
1398 |
+
|
1399 |
+
self.norm = nn.LayerNorm(in_channels)
|
1400 |
+
self.q_linear = nn.Linear(in_channels, in_channels)
|
1401 |
+
self.k_linear = nn.Linear(in_channels, in_channels)
|
1402 |
+
self.v_linear = nn.Linear(in_channels, in_channels)
|
1403 |
+
self.proj_out = nn.Linear(in_channels, in_channels)
|
1404 |
+
|
1405 |
+
def forward(self, x):
|
1406 |
+
b, c, t, h, w = x.shape
|
1407 |
+
#print(x.shape)
|
1408 |
+
# Normalize and reshape input
|
1409 |
+
h_ = rearrange(x, "b c t h w -> (b t) (h w) c")
|
1410 |
+
h_ = self.norm(h_)
|
1411 |
+
|
1412 |
+
# Linear projections
|
1413 |
+
q = self.q_linear(h_)
|
1414 |
+
k = self.k_linear(h_)
|
1415 |
+
v = self.v_linear(h_)
|
1416 |
+
|
1417 |
+
# Reshape to multi-head
|
1418 |
+
q = rearrange(q, "b l (h d) -> b h l d", h=self.num_heads)
|
1419 |
+
k = rearrange(k, "b l (h d) -> b h l d", h=self.num_heads)
|
1420 |
+
v = rearrange(v, "b l (h d) -> b h l d", h=self.num_heads)
|
1421 |
+
|
1422 |
+
# Scaled Dot-Product Attention
|
1423 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5)
|
1424 |
+
attn = F.softmax(scores, dim=-1)
|
1425 |
+
|
1426 |
+
# Apply attention to values
|
1427 |
+
out = torch.matmul(attn, v)
|
1428 |
+
out = rearrange(out, "b h l d -> b l (h d)")
|
1429 |
+
|
1430 |
+
# Project back to original dimension
|
1431 |
+
out = self.proj_out(out)
|
1432 |
+
|
1433 |
+
# Reshape back to original shape
|
1434 |
+
out = rearrange(out, "(b t) (h w) c -> b c t h w", b=b, h=h, t=t)
|
1435 |
+
#print(out.shape)
|
1436 |
+
return x + out
|
1437 |
+
|
1438 |
|
1439 |
class SiglipAE(nn.Module):
|
1440 |
def __init__(self):
|
|
|
1466 |
|
1467 |
x=self.encoder(x)
|
1468 |
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1469 |
|
|
sae_utils.py
DELETED
@@ -1,302 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from transformers.activations import ACT2FN
|
5 |
-
from .attention_temporal_videoae import *
|
6 |
-
from einops import rearrange, reduce, repeat
|
7 |
-
|
8 |
-
try:
|
9 |
-
import xformers
|
10 |
-
import xformers.ops as xops
|
11 |
-
|
12 |
-
XFORMERS_IS_AVAILBLE = True
|
13 |
-
except:
|
14 |
-
XFORMERS_IS_AVAILBLE = False
|
15 |
-
|
16 |
-
def silu(x):
|
17 |
-
# swish
|
18 |
-
return x * torch.sigmoid(x)
|
19 |
-
|
20 |
-
|
21 |
-
class SiLU(nn.Module):
|
22 |
-
def __init__(self):
|
23 |
-
super(SiLU, self).__init__()
|
24 |
-
|
25 |
-
def forward(self, x):
|
26 |
-
return silu(x)
|
27 |
-
|
28 |
-
|
29 |
-
def Normalize(in_channels, norm_type="group"):
|
30 |
-
assert norm_type in ["group", "batch",'layer']
|
31 |
-
if norm_type == "group":
|
32 |
-
return torch.nn.GroupNorm(
|
33 |
-
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
34 |
-
)
|
35 |
-
elif norm_type == "batch":
|
36 |
-
return torch.nn.SyncBatchNorm(in_channels)
|
37 |
-
elif norm_type == "layer":
|
38 |
-
return nn.LayerNorm(in_channels)
|
39 |
-
|
40 |
-
class SamePadConv3d(nn.Module):
|
41 |
-
def __init__(
|
42 |
-
self,
|
43 |
-
in_channels,
|
44 |
-
out_channels,
|
45 |
-
kernel_size,
|
46 |
-
stride=1,
|
47 |
-
bias=True,
|
48 |
-
padding_type="replicate",
|
49 |
-
):
|
50 |
-
super().__init__()
|
51 |
-
if isinstance(kernel_size, int):
|
52 |
-
kernel_size = (kernel_size,) * 3
|
53 |
-
if isinstance(stride, int):
|
54 |
-
stride = (stride,) * 3
|
55 |
-
|
56 |
-
# assumes that the input shape is divisible by stride
|
57 |
-
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
|
58 |
-
pad_input = []
|
59 |
-
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
|
60 |
-
pad_input.append((p // 2 + p % 2, p // 2))
|
61 |
-
pad_input = sum(pad_input, tuple())
|
62 |
-
|
63 |
-
self.pad_input = pad_input
|
64 |
-
self.padding_type = padding_type
|
65 |
-
|
66 |
-
self.conv = nn.Conv3d(
|
67 |
-
in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias
|
68 |
-
)
|
69 |
-
|
70 |
-
def forward(self, x):
|
71 |
-
tp=x.dtype
|
72 |
-
x = x.float()
|
73 |
-
|
74 |
-
# 执行填充操作
|
75 |
-
x_padded = F.pad(x, self.pad_input, mode=self.padding_type)
|
76 |
-
|
77 |
-
# 如果需要,将结果转换回 BFloat16
|
78 |
-
x_padded = x_padded.to(tp)
|
79 |
-
|
80 |
-
return self.conv(x_padded)
|
81 |
-
|
82 |
-
class TemporalAttention(nn.Module):
|
83 |
-
def __init__(
|
84 |
-
self,
|
85 |
-
channels,
|
86 |
-
num_heads=1,
|
87 |
-
num_head_channels=-1,
|
88 |
-
max_temporal_length=64,
|
89 |
-
):
|
90 |
-
"""
|
91 |
-
a clean multi-head temporal attention
|
92 |
-
"""
|
93 |
-
super().__init__()
|
94 |
-
|
95 |
-
if num_head_channels == -1:
|
96 |
-
self.num_heads = num_heads
|
97 |
-
else:
|
98 |
-
assert (
|
99 |
-
channels % num_head_channels == 0
|
100 |
-
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
101 |
-
self.num_heads = channels // num_head_channels
|
102 |
-
|
103 |
-
self.norm = Normalize(channels)
|
104 |
-
self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1))
|
105 |
-
self.attention = QKVAttention(self.num_heads)
|
106 |
-
self.relative_position_k = RelativePosition(
|
107 |
-
num_units=channels // self.num_heads,
|
108 |
-
max_relative_position=max_temporal_length,
|
109 |
-
)
|
110 |
-
self.relative_position_v = RelativePosition(
|
111 |
-
num_units=channels // self.num_heads,
|
112 |
-
max_relative_position=max_temporal_length,
|
113 |
-
)
|
114 |
-
self.proj_out = zero_module(
|
115 |
-
conv_nd(1, channels, channels, 1)
|
116 |
-
) # conv_dim, in_channels, out_channels, kernel_size
|
117 |
-
|
118 |
-
def forward(self, x, mask=None):
|
119 |
-
b, c, t, h, w = x.shape
|
120 |
-
out = rearrange(x, "b c t h w -> (b h w) c t")
|
121 |
-
# torch.Size([4608, 1152, 2])1
|
122 |
-
# torch.Size([4608, 3456, 2])2
|
123 |
-
# torch.Size([4608, 1152, 2])3
|
124 |
-
# torch.Size([4608, 1152, 2])4
|
125 |
-
#print(out.shape,end='1\n')
|
126 |
-
qkv = self.qkv(self.norm(out))
|
127 |
-
#print(qkv.shape,end='2\n')
|
128 |
-
|
129 |
-
len_q = qkv.size()[-1]
|
130 |
-
len_k, len_v = len_q, len_q
|
131 |
-
|
132 |
-
k_rp = self.relative_position_k(len_q, len_k)
|
133 |
-
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
134 |
-
out = self.attention(qkv, rp=(k_rp, v_rp))
|
135 |
-
#print(out.shape,end='3\n')
|
136 |
-
out = self.proj_out(out)
|
137 |
-
#print(out.shape,end='4\n')
|
138 |
-
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
139 |
-
|
140 |
-
return x + out
|
141 |
-
class TemporalAttention_lin(nn.Module):
|
142 |
-
def __init__(
|
143 |
-
self,
|
144 |
-
channels,
|
145 |
-
num_heads=8,
|
146 |
-
num_head_channels=-1,
|
147 |
-
max_temporal_length=64,
|
148 |
-
):
|
149 |
-
"""
|
150 |
-
a clean multi-head temporal attention
|
151 |
-
"""
|
152 |
-
super().__init__()
|
153 |
-
|
154 |
-
if num_head_channels == -1:
|
155 |
-
self.num_heads = num_heads
|
156 |
-
else:
|
157 |
-
assert (
|
158 |
-
channels % num_head_channels == 0
|
159 |
-
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
160 |
-
self.num_heads = channels // num_head_channels
|
161 |
-
|
162 |
-
self.norm = nn.LayerNorm(channels)
|
163 |
-
#self.norm = Normalize(channels)
|
164 |
-
#self.qkv = zero_module(conv_nd(1, channels, channels * 3, 1))
|
165 |
-
self.qkv = nn.Linear(channels, channels * 3)
|
166 |
-
self.attention = QKVAttention(self.num_heads)
|
167 |
-
self.relative_position_k = RelativePosition(
|
168 |
-
num_units=channels // self.num_heads,
|
169 |
-
max_relative_position=max_temporal_length,
|
170 |
-
)
|
171 |
-
self.relative_position_v = RelativePosition(
|
172 |
-
num_units=channels // self.num_heads,
|
173 |
-
max_relative_position=max_temporal_length,
|
174 |
-
)
|
175 |
-
self.proj_out = nn.Linear(channels, channels)
|
176 |
-
|
177 |
-
def forward(self, x, mask=None):
|
178 |
-
b, c, t, h, w = x.shape
|
179 |
-
out = rearrange(x, "b c t h w -> (b h w) t c")
|
180 |
-
# torch.Size([4608, 1152, 2])1
|
181 |
-
# torch.Size([4608, 3456, 2])2
|
182 |
-
# torch.Size([4608, 1152, 2])3
|
183 |
-
# torch.Size([4608, 1152, 2])4
|
184 |
-
#print(out.shape,end='1\n')
|
185 |
-
qkv = self.qkv(self.norm(out)).transpose(-1, -2)
|
186 |
-
#print(qkv.shape,end='2\n')
|
187 |
-
|
188 |
-
len_q = qkv.size()[-1]
|
189 |
-
len_k, len_v = len_q, len_q
|
190 |
-
|
191 |
-
k_rp = self.relative_position_k(len_q, len_k)
|
192 |
-
v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim]
|
193 |
-
|
194 |
-
out = self.attention(qkv, rp=(k_rp, v_rp))
|
195 |
-
|
196 |
-
out = self.proj_out(out.transpose(-1, -2)).transpose(-1, -2)
|
197 |
-
|
198 |
-
#print(out.shape,end='4\n')
|
199 |
-
out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w)
|
200 |
-
|
201 |
-
return x + out
|
202 |
-
|
203 |
-
class AttnBlock3D(nn.Module):
|
204 |
-
def __init__(self, in_channels):
|
205 |
-
super().__init__()
|
206 |
-
self.in_channels = in_channels
|
207 |
-
|
208 |
-
self.norm = Normalize(in_channels)
|
209 |
-
self.q = torch.nn.Conv3d(
|
210 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
211 |
-
)
|
212 |
-
self.k = torch.nn.Conv3d(
|
213 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
214 |
-
)
|
215 |
-
self.v = torch.nn.Conv3d(
|
216 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
217 |
-
)
|
218 |
-
self.proj_out = torch.nn.Conv3d(
|
219 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
220 |
-
)
|
221 |
-
|
222 |
-
def forward(self, x):
|
223 |
-
h_ = x
|
224 |
-
# self.norm.to(x.device)
|
225 |
-
# self.norm.to(x.dtype)
|
226 |
-
h_ = self.norm(h_)
|
227 |
-
q = self.q(h_)
|
228 |
-
k = self.k(h_)
|
229 |
-
v = self.v(h_)
|
230 |
-
|
231 |
-
b, c, t, h, w = q.shape
|
232 |
-
# q = q.reshape(b,c,h*w) # bcl
|
233 |
-
# q = q.permute(0,2,1) # bcl -> blc l=hw
|
234 |
-
# k = k.reshape(b,c,h*w) # bcl
|
235 |
-
q = rearrange(q, "b c t h w -> (b t) (h w) c") # blc
|
236 |
-
k = rearrange(k, "b c t h w -> (b t) c (h w)") # bcl
|
237 |
-
|
238 |
-
w_ = torch.bmm(q, k) # b,l,l
|
239 |
-
w_ = w_ * (int(c) ** (-0.5))
|
240 |
-
w_ = torch.nn.functional.softmax(w_, dim=2)
|
241 |
-
|
242 |
-
# v = v.reshape(b,c,h*w)
|
243 |
-
v = rearrange(v, "b c t h w -> (b t) c (h w)") # bcl
|
244 |
-
|
245 |
-
# attend to values
|
246 |
-
w_ = w_.permute(0, 2, 1) # bll
|
247 |
-
h_ = torch.bmm(v, w_) # bcl
|
248 |
-
|
249 |
-
# h_ = h_.reshape(b,c,h,w)
|
250 |
-
h_ = rearrange(h_, "(b t) c (h w) -> b c t h w", b=b, h=h)
|
251 |
-
|
252 |
-
h_ = self.proj_out(h_)
|
253 |
-
|
254 |
-
return x + h_
|
255 |
-
|
256 |
-
class MultiHeadAttention3D(nn.Module):
|
257 |
-
def __init__(self, in_channels, num_heads=8):
|
258 |
-
super().__init__()
|
259 |
-
self.in_channels = in_channels
|
260 |
-
self.num_heads = num_heads
|
261 |
-
self.head_dim = in_channels // num_heads
|
262 |
-
|
263 |
-
assert self.head_dim * num_heads == in_channels, "in_channels must be divisible by num_heads"
|
264 |
-
|
265 |
-
self.norm = nn.LayerNorm(in_channels)
|
266 |
-
self.q_linear = nn.Linear(in_channels, in_channels)
|
267 |
-
self.k_linear = nn.Linear(in_channels, in_channels)
|
268 |
-
self.v_linear = nn.Linear(in_channels, in_channels)
|
269 |
-
self.proj_out = nn.Linear(in_channels, in_channels)
|
270 |
-
|
271 |
-
def forward(self, x):
|
272 |
-
b, c, t, h, w = x.shape
|
273 |
-
#print(x.shape)
|
274 |
-
# Normalize and reshape input
|
275 |
-
h_ = rearrange(x, "b c t h w -> (b t) (h w) c")
|
276 |
-
h_ = self.norm(h_)
|
277 |
-
|
278 |
-
# Linear projections
|
279 |
-
q = self.q_linear(h_)
|
280 |
-
k = self.k_linear(h_)
|
281 |
-
v = self.v_linear(h_)
|
282 |
-
|
283 |
-
# Reshape to multi-head
|
284 |
-
q = rearrange(q, "b l (h d) -> b h l d", h=self.num_heads)
|
285 |
-
k = rearrange(k, "b l (h d) -> b h l d", h=self.num_heads)
|
286 |
-
v = rearrange(v, "b l (h d) -> b h l d", h=self.num_heads)
|
287 |
-
|
288 |
-
# Scaled Dot-Product Attention
|
289 |
-
scores = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5)
|
290 |
-
attn = F.softmax(scores, dim=-1)
|
291 |
-
|
292 |
-
# Apply attention to values
|
293 |
-
out = torch.matmul(attn, v)
|
294 |
-
out = rearrange(out, "b h l d -> b l (h d)")
|
295 |
-
|
296 |
-
# Project back to original dimension
|
297 |
-
out = self.proj_out(out)
|
298 |
-
|
299 |
-
# Reshape back to original shape
|
300 |
-
out = rearrange(out, "(b t) (h w) c -> b c t h w", b=b, h=h, t=t)
|
301 |
-
#print(out.shape)
|
302 |
-
return x + out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
siglip_encoder.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
from torch import nn
|
4 |
-
from typing import Optional, Tuple, Union, Dict
|
5 |
-
from PIL import Image
|
6 |
-
from functools import partial, reduce
|
7 |
-
from transformers import SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
|
8 |
-
|
9 |
-
from .base_encoder import BaseVisionTower
|
10 |
-
import torch.distributed as dist
|
11 |
-
# --data_path /share/shuyan/video_traindata/anno/\{cinepine_order\}.json \
|
12 |
-
# --image_folder /share/shuyan/video_traindata/Bunny-v1_0-data/finetune/images \
|
13 |
-
# --video_folder /share/shuyan/video_traindata \
|
14 |
-
def rank0_print(*args):
|
15 |
-
if dist.is_initialized():
|
16 |
-
if dist.get_rank() == 0:
|
17 |
-
print(f"Rank {dist.get_rank()}: ", *args)
|
18 |
-
else:
|
19 |
-
print(*args)
|
20 |
-
|
21 |
-
|
22 |
-
from transformers.image_processing_utils import BatchFeature, get_size_dict
|
23 |
-
from transformers.image_transforms import (
|
24 |
-
convert_to_rgb,
|
25 |
-
normalize,
|
26 |
-
rescale,
|
27 |
-
resize,
|
28 |
-
to_channel_dimension_format,
|
29 |
-
)
|
30 |
-
from transformers.image_utils import (
|
31 |
-
ChannelDimension,
|
32 |
-
PILImageResampling,
|
33 |
-
to_numpy_array,
|
34 |
-
)
|
35 |
-
class SigLipImageProcessor:
|
36 |
-
def __init__(self, image_mean=(0.5, 0.5, 0.5), image_std=(0.5, 0.5, 0.5), size=(384, 384), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST):
|
37 |
-
crop_size = crop_size if crop_size is not None else {"height": 384, "width": 384}
|
38 |
-
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
39 |
-
|
40 |
-
self.image_mean = image_mean
|
41 |
-
self.image_std = image_std
|
42 |
-
self.size = size
|
43 |
-
self.resample = resample
|
44 |
-
self.rescale_factor = rescale_factor
|
45 |
-
self.data_format = data_format
|
46 |
-
self.crop_size = crop_size
|
47 |
-
|
48 |
-
def preprocess(self, images, return_tensors):
|
49 |
-
if isinstance(images, Image.Image):
|
50 |
-
images = [images]
|
51 |
-
else:
|
52 |
-
# to adapt video data
|
53 |
-
images = [to_numpy_array(image) for image in images]
|
54 |
-
assert isinstance(images, list)
|
55 |
-
|
56 |
-
transforms = [
|
57 |
-
convert_to_rgb,
|
58 |
-
to_numpy_array,
|
59 |
-
partial(resize, size=self.size, resample=self.resample, data_format=self.data_format),
|
60 |
-
partial(rescale, scale=self.rescale_factor, data_format=self.data_format),
|
61 |
-
partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format),
|
62 |
-
partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format),
|
63 |
-
]
|
64 |
-
|
65 |
-
images = reduce(lambda x, f: [*map(f, x)], transforms, images)
|
66 |
-
|
67 |
-
data = {"pixel_values": images}
|
68 |
-
|
69 |
-
return BatchFeature(data=data, tensor_type=return_tensors)
|
70 |
-
|
71 |
-
class SigLipVisionTower(BaseVisionTower):
|
72 |
-
def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
|
73 |
-
super(SigLipVisionTower, self).__init__(vision_tower_name, vision_tower_cfg, delay_load)
|
74 |
-
|
75 |
-
# model_path = "google/siglip-so400m-patch14-384"
|
76 |
-
# base_model_name, res, interp = model_path, 384, 576
|
77 |
-
# self.vision_tower_name = base_model_name
|
78 |
-
self.vision_tower_name, res, interp = vision_tower_name, 384, 576
|
79 |
-
self._image_size = res if res is not None else 512
|
80 |
-
self.unfreeze_mm_vision_tower = getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False)
|
81 |
-
|
82 |
-
if not delay_load:
|
83 |
-
rank0_print(f"Loading vision tower: {vision_tower_name}")
|
84 |
-
self.load_model()
|
85 |
-
elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False):
|
86 |
-
# TODO: better detector is needed.
|
87 |
-
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
|
88 |
-
self.load_model()
|
89 |
-
elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts:
|
90 |
-
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
|
91 |
-
self.load_model()
|
92 |
-
else:
|
93 |
-
self.cfg_only = self.config
|
94 |
-
|
95 |
-
def load_model(self, device_map=None):
|
96 |
-
self.vision_model = "siglip"
|
97 |
-
# clip_model, processor = create_model_from_pretrained(self.vision_tower_name)
|
98 |
-
print(self.vision_tower_name)
|
99 |
-
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
|
100 |
-
|
101 |
-
# self.vision_tower = clip_model.visual.trunk
|
102 |
-
self.vision_tower.output_tokens = True
|
103 |
-
|
104 |
-
self._hidden_size = self.vision_tower.config.hidden_size
|
105 |
-
|
106 |
-
self.image_processor = SigLipImageProcessor()
|
107 |
-
|
108 |
-
del self.vision_tower.vision_model.encoder.layers[-1:]
|
109 |
-
self.vision_tower.vision_model.head = nn.Identity()
|
110 |
-
|
111 |
-
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
|
112 |
-
|
113 |
-
self.is_loaded = True
|
114 |
-
|
115 |
-
def _forward(self, images):
|
116 |
-
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
|
117 |
-
image_features = self.vision_tower.forward(
|
118 |
-
images.to(device=self.device, dtype=self.dtype),
|
119 |
-
output_hidden_states=True,
|
120 |
-
).hidden_states[-1]
|
121 |
-
return image_features
|
122 |
-
@property
|
123 |
-
def dummy_feature(self):
|
124 |
-
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
125 |
-
|
126 |
-
@property
|
127 |
-
def dtype(self):
|
128 |
-
for p in self.vision_tower.parameters():
|
129 |
-
return p.dtype
|
130 |
-
|
131 |
-
@property
|
132 |
-
def device(self):
|
133 |
-
for p in self.vision_tower.parameters():
|
134 |
-
return p.device
|
135 |
-
|
136 |
-
@property
|
137 |
-
def hidden_size(self):
|
138 |
-
return self.config.hidden_size
|
139 |
-
|
140 |
-
@property
|
141 |
-
def num_patches(self):
|
142 |
-
return (336 // 14) ** 2
|
143 |
-
|
144 |
-
@property
|
145 |
-
def num_patches_per_side(self):
|
146 |
-
#return self.config.image_size // self.config.patch_size
|
147 |
-
return 336//14
|
148 |
-
#return 27
|
149 |
-
# return self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"]
|
150 |
-
|
151 |
-
@property
|
152 |
-
def image_size(self):
|
153 |
-
return 384
|
154 |
-
#return self.config.image_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils_encoder.py
DELETED
@@ -1,296 +0,0 @@
|
|
1 |
-
import importlib
|
2 |
-
import numpy as np
|
3 |
-
import cv2, os
|
4 |
-
import torch
|
5 |
-
import torch.distributed as dist
|
6 |
-
|
7 |
-
|
8 |
-
def count_params(model, verbose=False):
|
9 |
-
total_params = sum(p.numel() for p in model.parameters())
|
10 |
-
if verbose:
|
11 |
-
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
12 |
-
return total_params
|
13 |
-
|
14 |
-
|
15 |
-
def check_istarget(name, para_list):
|
16 |
-
"""
|
17 |
-
name: full name of source para
|
18 |
-
para_list: partial name of target para
|
19 |
-
"""
|
20 |
-
istarget = False
|
21 |
-
for para in para_list:
|
22 |
-
if para in name:
|
23 |
-
return True
|
24 |
-
return istarget
|
25 |
-
|
26 |
-
|
27 |
-
def instantiate_from_config(config):
|
28 |
-
if not "target" in config:
|
29 |
-
if config == "__is_first_stage__":
|
30 |
-
return None
|
31 |
-
elif config == "__is_unconditional__":
|
32 |
-
return None
|
33 |
-
raise KeyError("Expected key `target` to instantiate.")
|
34 |
-
|
35 |
-
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
36 |
-
|
37 |
-
|
38 |
-
def get_obj_from_str(string, reload=False):
|
39 |
-
module, cls = string.rsplit(".", 1)
|
40 |
-
if reload:
|
41 |
-
module_imp = importlib.import_module(module)
|
42 |
-
importlib.reload(module_imp)
|
43 |
-
return getattr(importlib.import_module(module, package=None), cls)
|
44 |
-
|
45 |
-
|
46 |
-
def load_npz_from_dir(data_dir):
|
47 |
-
data = [
|
48 |
-
np.load(os.path.join(data_dir, data_name))["arr_0"]
|
49 |
-
for data_name in os.listdir(data_dir)
|
50 |
-
]
|
51 |
-
data = np.concatenate(data, axis=0)
|
52 |
-
return data
|
53 |
-
|
54 |
-
|
55 |
-
def load_npz_from_paths(data_paths):
|
56 |
-
data = [np.load(data_path)["arr_0"] for data_path in data_paths]
|
57 |
-
data = np.concatenate(data, axis=0)
|
58 |
-
return data
|
59 |
-
|
60 |
-
|
61 |
-
def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
|
62 |
-
h, w = image.shape[:2]
|
63 |
-
if resize_short_edge is not None:
|
64 |
-
k = resize_short_edge / min(h, w)
|
65 |
-
else:
|
66 |
-
k = max_resolution / (h * w)
|
67 |
-
k = k**0.5
|
68 |
-
h = int(np.round(h * k / 64)) * 64
|
69 |
-
w = int(np.round(w * k / 64)) * 64
|
70 |
-
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
|
71 |
-
return image
|
72 |
-
|
73 |
-
|
74 |
-
def setup_dist(args):
|
75 |
-
if dist.is_initialized():
|
76 |
-
return
|
77 |
-
torch.cuda.set_device(args.local_rank)
|
78 |
-
torch.distributed.init_process_group("nccl", init_method="env://")
|
79 |
-
|
80 |
-
|
81 |
-
# adopted from
|
82 |
-
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
83 |
-
# and
|
84 |
-
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
85 |
-
# and
|
86 |
-
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
87 |
-
#
|
88 |
-
# thanks!
|
89 |
-
|
90 |
-
import torch.nn as nn
|
91 |
-
import math
|
92 |
-
from inspect import isfunction
|
93 |
-
import torch
|
94 |
-
from torch import nn
|
95 |
-
import torch.distributed as dist
|
96 |
-
|
97 |
-
|
98 |
-
def gather_data(data, return_np=True):
|
99 |
-
"""gather data from multiple processes to one list"""
|
100 |
-
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
|
101 |
-
dist.all_gather(data_list, data) # gather not supported with NCCL
|
102 |
-
if return_np:
|
103 |
-
data_list = [data.cpu().numpy() for data in data_list]
|
104 |
-
return data_list
|
105 |
-
|
106 |
-
|
107 |
-
def autocast(f):
|
108 |
-
def do_autocast(*args, **kwargs):
|
109 |
-
with torch.cuda.amp.autocast(
|
110 |
-
enabled=True,
|
111 |
-
dtype=torch.get_autocast_gpu_dtype(),
|
112 |
-
cache_enabled=torch.is_autocast_cache_enabled(),
|
113 |
-
):
|
114 |
-
return f(*args, **kwargs)
|
115 |
-
|
116 |
-
return do_autocast
|
117 |
-
|
118 |
-
|
119 |
-
def extract_into_tensor(a, t, x_shape):
|
120 |
-
b, *_ = t.shape
|
121 |
-
out = a.gather(-1, t)
|
122 |
-
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
123 |
-
|
124 |
-
|
125 |
-
def noise_like(shape, device, repeat=False):
|
126 |
-
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
127 |
-
shape[0], *((1,) * (len(shape) - 1))
|
128 |
-
)
|
129 |
-
noise = lambda: torch.randn(shape, device=device)
|
130 |
-
return repeat_noise() if repeat else noise()
|
131 |
-
|
132 |
-
|
133 |
-
def default(val, d):
|
134 |
-
if exists(val):
|
135 |
-
return val
|
136 |
-
return d() if isfunction(d) else d
|
137 |
-
|
138 |
-
|
139 |
-
def exists(val):
|
140 |
-
return val is not None
|
141 |
-
|
142 |
-
|
143 |
-
def identity(*args, **kwargs):
|
144 |
-
return nn.Identity()
|
145 |
-
|
146 |
-
|
147 |
-
def uniq(arr):
|
148 |
-
return {el: True for el in arr}.keys()
|
149 |
-
|
150 |
-
|
151 |
-
def mean_flat(tensor):
|
152 |
-
"""
|
153 |
-
Take the mean over all non-batch dimensions.
|
154 |
-
"""
|
155 |
-
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
156 |
-
|
157 |
-
|
158 |
-
def ismap(x):
|
159 |
-
if not isinstance(x, torch.Tensor):
|
160 |
-
return False
|
161 |
-
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
162 |
-
|
163 |
-
|
164 |
-
def isimage(x):
|
165 |
-
if not isinstance(x, torch.Tensor):
|
166 |
-
return False
|
167 |
-
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
168 |
-
|
169 |
-
|
170 |
-
def max_neg_value(t):
|
171 |
-
return -torch.finfo(t.dtype).max
|
172 |
-
|
173 |
-
|
174 |
-
def shape_to_str(x):
|
175 |
-
shape_str = "x".join([str(x) for x in x.shape])
|
176 |
-
return shape_str
|
177 |
-
|
178 |
-
|
179 |
-
def init_(tensor):
|
180 |
-
dim = tensor.shape[-1]
|
181 |
-
std = 1 / math.sqrt(dim)
|
182 |
-
tensor.uniform_(-std, std)
|
183 |
-
return tensor
|
184 |
-
|
185 |
-
|
186 |
-
# ckpt = torch.utils.checkpoint.checkpoint
|
187 |
-
|
188 |
-
|
189 |
-
# def checkpoint(func, inputs, params, flag):
|
190 |
-
# """
|
191 |
-
# Evaluate a function without caching intermediate activations, allowing for
|
192 |
-
# reduced memory at the expense of extra compute in the backward pass.
|
193 |
-
# :param func: the function to evaluate.
|
194 |
-
# :param inputs: the argument sequence to pass to `func`.
|
195 |
-
# :param params: a sequence of parameters `func` depends on but does not
|
196 |
-
# explicitly take as arguments.
|
197 |
-
# :param flag: if False, disable gradient checkpointing.
|
198 |
-
# """
|
199 |
-
# if flag:
|
200 |
-
# return ckpt(func, *inputs)
|
201 |
-
# else:
|
202 |
-
# return func(*inputs)
|
203 |
-
|
204 |
-
|
205 |
-
def disabled_train(self, mode=True):
|
206 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
207 |
-
does not change anymore."""
|
208 |
-
return self
|
209 |
-
|
210 |
-
|
211 |
-
def zero_module(module):
|
212 |
-
"""
|
213 |
-
Zero out the parameters of a module and return it.
|
214 |
-
"""
|
215 |
-
for p in module.parameters():
|
216 |
-
p.detach().zero_()
|
217 |
-
return module
|
218 |
-
|
219 |
-
|
220 |
-
def scale_module(module, scale):
|
221 |
-
"""
|
222 |
-
Scale the parameters of a module and return it.
|
223 |
-
"""
|
224 |
-
for p in module.parameters():
|
225 |
-
p.detach().mul_(scale)
|
226 |
-
return module
|
227 |
-
|
228 |
-
|
229 |
-
def conv_nd(dims, *args, **kwargs):
|
230 |
-
"""
|
231 |
-
Create a 1D, 2D, or 3D convolution module.
|
232 |
-
"""
|
233 |
-
if dims == 1:
|
234 |
-
return nn.Conv1d(*args, **kwargs)
|
235 |
-
elif dims == 2:
|
236 |
-
return nn.Conv2d(*args, **kwargs)
|
237 |
-
elif dims == 3:
|
238 |
-
return nn.Conv3d(*args, **kwargs)
|
239 |
-
raise ValueError(f"unsupported dimensions: {dims}")
|
240 |
-
|
241 |
-
|
242 |
-
def linear(*args, **kwargs):
|
243 |
-
"""
|
244 |
-
Create a linear module.
|
245 |
-
"""
|
246 |
-
return nn.Linear(*args, **kwargs)
|
247 |
-
|
248 |
-
|
249 |
-
def avg_pool_nd(dims, *args, **kwargs):
|
250 |
-
"""
|
251 |
-
Create a 1D, 2D, or 3D average pooling module.
|
252 |
-
"""
|
253 |
-
if dims == 1:
|
254 |
-
return nn.AvgPool1d(*args, **kwargs)
|
255 |
-
elif dims == 2:
|
256 |
-
return nn.AvgPool2d(*args, **kwargs)
|
257 |
-
elif dims == 3:
|
258 |
-
return nn.AvgPool3d(*args, **kwargs)
|
259 |
-
raise ValueError(f"unsupported dimensions: {dims}")
|
260 |
-
|
261 |
-
|
262 |
-
def nonlinearity(type="silu"):
|
263 |
-
if type == "silu":
|
264 |
-
return nn.SiLU()
|
265 |
-
elif type == "leaky_relu":
|
266 |
-
return nn.LeakyReLU()
|
267 |
-
|
268 |
-
|
269 |
-
class GroupNormSpecific(nn.GroupNorm):
|
270 |
-
def forward(self, x):
|
271 |
-
if x.dtype == torch.float16 or x.dtype == torch.bfloat16:
|
272 |
-
return super().forward(x).type(x.dtype)
|
273 |
-
else:
|
274 |
-
return super().forward(x.float()).type(x.dtype)
|
275 |
-
|
276 |
-
|
277 |
-
def normalization(channels, num_groups=32):
|
278 |
-
"""
|
279 |
-
Make a standard normalization layer.
|
280 |
-
:param channels: number of input channels.
|
281 |
-
:return: an nn.Module for normalization.
|
282 |
-
"""
|
283 |
-
return GroupNormSpecific(num_groups, channels)
|
284 |
-
|
285 |
-
|
286 |
-
class HybridConditioner(nn.Module):
|
287 |
-
|
288 |
-
def __init__(self, c_concat_config, c_crossattn_config):
|
289 |
-
super().__init__()
|
290 |
-
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
291 |
-
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
292 |
-
|
293 |
-
def forward(self, c_concat, c_crossattn):
|
294 |
-
c_concat = self.concat_conditioner(c_concat)
|
295 |
-
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
296 |
-
return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multimodal_projector/builder.py → vision_projector_builder.py
RENAMED
@@ -1,8 +1,36 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
from .pooler_projector import PoolerProjector
|
6 |
|
7 |
|
8 |
class IdentityMap(nn.Module):
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import re
|
4 |
+
import math
|
5 |
+
from transformers.models.clip.modeling_clip import CLIPVisionModel
|
6 |
+
|
7 |
+
|
8 |
+
class PoolerProjector(nn.Module):
|
9 |
+
def __init__(self, config, vision_cfg):
|
10 |
+
super().__init__()
|
11 |
+
self._config = config
|
12 |
+
self.hw = vision_cfg.image_size // vision_cfg.patch_size
|
13 |
+
|
14 |
+
self.conv_pool = nn.Conv2d(config.mm_hidden_size, config.hidden_size, kernel_size=2, stride=2)
|
15 |
+
|
16 |
+
self.proj = nn.Sequential(
|
17 |
+
nn.GELU(),
|
18 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
19 |
+
)
|
20 |
+
|
21 |
+
def forward(self, x, *args, **kwargs):
|
22 |
+
height = width = self.hw
|
23 |
+
assert height * width == x.shape[1]
|
24 |
+
x = x.view(x.shape[0], height, width, -1).permute(0, 3, 1, 2)
|
25 |
+
x = self.conv_pool(x)
|
26 |
+
x = x.flatten(2).transpose(1, 2)
|
27 |
+
x = self.proj(x)
|
28 |
+
return x
|
29 |
+
|
30 |
+
@property
|
31 |
+
def config(self):
|
32 |
+
return {"mm_projector_type": "pooler"}
|
33 |
|
|
|
34 |
|
35 |
|
36 |
class IdentityMap(nn.Module):
|
multimodal_resampler/spatial_pool.py → vision_resampler_builder.py
RENAMED
@@ -43,3 +43,26 @@ class SpatialPool(nn.Module):
|
|
43 |
@property
|
44 |
def hidden_size(self):
|
45 |
return self.out_channels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
@property
|
44 |
def hidden_size(self):
|
45 |
return self.out_channels
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
class IdentityMap(torch.nn.Module):
|
50 |
+
def __init__(self):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
def forward(self, x, *args, **kwargs):
|
54 |
+
return x
|
55 |
+
|
56 |
+
@property
|
57 |
+
def config(self):
|
58 |
+
return {"mm_resampler_type": None}
|
59 |
+
|
60 |
+
|
61 |
+
def build_vision_resampler(model_args, delay_load=False, **kwargs):
|
62 |
+
resampler_type = getattr(model_args, "mm_resampler_type", None)
|
63 |
+
if resampler_type == "spatial_pool":
|
64 |
+
return SpatialPool(model_args, **kwargs)
|
65 |
+
elif resampler_type is None:
|
66 |
+
return IdentityMap()
|
67 |
+
|
68 |
+
raise ValueError(f"Unknown resampler type: {resampler_type}")
|
multimodal_encoder/siglip_encoder.py → vision_tower_builder.py
RENAMED
@@ -1,24 +1,13 @@
|
|
1 |
-
import
|
2 |
-
import torch.nn.functional as F
|
3 |
-
from torch import nn
|
4 |
from typing import Optional, Tuple, Union, Dict
|
5 |
from PIL import Image
|
6 |
from functools import partial, reduce
|
7 |
from transformers import SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
|
8 |
-
|
9 |
-
from .base_encoder import BaseVisionTower
|
10 |
import torch.distributed as dist
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
if dist.is_initialized():
|
16 |
-
if dist.get_rank() == 0:
|
17 |
-
print(f"Rank {dist.get_rank()}: ", *args)
|
18 |
-
else:
|
19 |
-
print(*args)
|
20 |
-
|
21 |
-
|
22 |
from transformers.image_processing_utils import BatchFeature, get_size_dict
|
23 |
from transformers.image_transforms import (
|
24 |
convert_to_rgb,
|
@@ -32,6 +21,78 @@ from transformers.image_utils import (
|
|
32 |
PILImageResampling,
|
33 |
to_numpy_array,
|
34 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
class SigLipImageProcessor:
|
36 |
def __init__(self, image_mean=(0.5, 0.5, 0.5), image_std=(0.5, 0.5, 0.5), size=(384, 384), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST):
|
37 |
crop_size = crop_size if crop_size is not None else {"height": 384, "width": 384}
|
@@ -151,4 +212,18 @@ class SigLipVisionTower(BaseVisionTower):
|
|
151 |
@property
|
152 |
def image_size(self):
|
153 |
return 384
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
|
|
|
|
2 |
from typing import Optional, Tuple, Union, Dict
|
3 |
from PIL import Image
|
4 |
from functools import partial, reduce
|
5 |
from transformers import SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
|
|
|
|
|
6 |
import torch.distributed as dist
|
7 |
+
from abc import ABC, abstractmethod
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from transformers.image_processing_utils import BatchFeature, get_size_dict
|
12 |
from transformers.image_transforms import (
|
13 |
convert_to_rgb,
|
|
|
21 |
PILImageResampling,
|
22 |
to_numpy_array,
|
23 |
)
|
24 |
+
|
25 |
+
def rank0_print(*args):
|
26 |
+
if dist.is_initialized():
|
27 |
+
if dist.get_rank() == 0:
|
28 |
+
print(f"Rank {dist.get_rank()}: ", *args)
|
29 |
+
else:
|
30 |
+
print(*args)
|
31 |
+
|
32 |
+
|
33 |
+
class BaseVisionTower(nn.Module):
|
34 |
+
def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
self.is_loaded = False
|
38 |
+
|
39 |
+
self.vision_tower_name = vision_tower_name
|
40 |
+
self.delay_load = delay_load
|
41 |
+
|
42 |
+
@abstractmethod
|
43 |
+
def load_model(self, device_map=None):
|
44 |
+
raise NotImplementedError("Subclasses must implement load_model")
|
45 |
+
|
46 |
+
@abstractmethod
|
47 |
+
def _forward(self, images):
|
48 |
+
raise NotImplementedError("Subclasses must implement forward")
|
49 |
+
|
50 |
+
def forward(self, images):
|
51 |
+
if type(images) is list:
|
52 |
+
image_features = [self._forward(image.unsqueeze(0)) for image in images]
|
53 |
+
else:
|
54 |
+
image_features = self._forward(images)
|
55 |
+
|
56 |
+
return image_features
|
57 |
+
|
58 |
+
@property
|
59 |
+
def dummy_feature(self):
|
60 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
61 |
+
|
62 |
+
@property
|
63 |
+
def dtype(self):
|
64 |
+
# Dynamically infer the dtype from the first parameter, if not explicitly specified
|
65 |
+
if hasattr(self.vision_tower, "dtype"):
|
66 |
+
return self.vision_tower.dtype
|
67 |
+
else:
|
68 |
+
params = list(self.vision_tower.parameters())
|
69 |
+
return (
|
70 |
+
params[0].dtype if len(params) > 0 else torch.float32
|
71 |
+
) # Default to torch.float32 if no parameters
|
72 |
+
|
73 |
+
@property
|
74 |
+
def device(self):
|
75 |
+
# Dynamically infer the device from the first parameter, if not explicitly specified
|
76 |
+
if hasattr(self.vision_tower, "device"):
|
77 |
+
return self.vision_tower.device
|
78 |
+
else:
|
79 |
+
params = list(self.vision_tower.parameters())
|
80 |
+
return (
|
81 |
+
params[0].device if len(params) > 0 else torch.device("cpu")
|
82 |
+
) # Default to CPU if no parameters
|
83 |
+
@property
|
84 |
+
def config(self):
|
85 |
+
if self.is_loaded:
|
86 |
+
return self.vision_tower.config
|
87 |
+
else:
|
88 |
+
return self.cfg_only
|
89 |
+
@property
|
90 |
+
def hidden_size(self):
|
91 |
+
try:
|
92 |
+
return self.config.hidden_size
|
93 |
+
except:
|
94 |
+
return self._hidden_size
|
95 |
+
|
96 |
class SigLipImageProcessor:
|
97 |
def __init__(self, image_mean=(0.5, 0.5, 0.5), image_std=(0.5, 0.5, 0.5), size=(384, 384), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST):
|
98 |
crop_size = crop_size if crop_size is not None else {"height": 384, "width": 384}
|
|
|
212 |
@property
|
213 |
def image_size(self):
|
214 |
return 384
|
215 |
+
|
216 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
217 |
+
|
218 |
+
vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
|
219 |
+
is_absolute_path_exists = os.path.exists(vision_tower)
|
220 |
+
use_s2 = getattr(vision_tower_cfg, "s2", False)
|
221 |
+
|
222 |
+
#print(getattr(vision_tower_cfg, "vision_tower", None))
|
223 |
+
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
224 |
+
if getattr(vision_tower_cfg, "vision_tower", None) and "siglip" in getattr(vision_tower_cfg, "vision_tower", None).lower():
|
225 |
+
#print('*************\n')
|
226 |
+
return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
|
227 |
+
|
228 |
+
|
229 |
+
raise ValueError(f"Unknown vision tower: {vision_tower}")
|