|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, ndim, bias=True):
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(ndim))
|
|
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
|
|
|
def forward(self, x):
|
|
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.n_head = config.n_head
|
|
self.head_dim = config.n_embd // config.n_head
|
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
|
self.attn_dropout = nn.Dropout(config.dropout)
|
|
self.resid_dropout = nn.Dropout(config.dropout)
|
|
|
|
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
|
.view(1, 1, config.block_size, config.block_size))
|
|
|
|
def forward(self, x):
|
|
B, T, C = x.size()
|
|
|
|
|
|
q, k, v = self.c_attn(x).split(self.config.n_embd, dim=2)
|
|
k = k.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
|
q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
|
v = v.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
|
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
|
|
att = F.softmax(att, dim=-1)
|
|
att = self.attn_dropout(att)
|
|
y = att @ v
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
|
|
|
return self.resid_dropout(self.c_proj(y))
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
|
self.gelu = nn.GELU()
|
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
def forward(self, x):
|
|
x = self.c_fc(x)
|
|
x = self.gelu(x)
|
|
x = self.c_proj(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
|
|
self.attn = MultiHeadAttention(config)
|
|
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
|
|
self.mlp = MLP(config)
|
|
|
|
def forward(self, x):
|
|
x = x + self.attn(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
class ModelConfig:
|
|
def __init__(self, vocab_size=50257, block_size=1024, n_layer=24, n_head=16,
|
|
n_embd=1024, dropout=0.1, bias=True):
|
|
self.vocab_size = vocab_size
|
|
self.block_size = block_size
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
self.n_embd = n_embd
|
|
self.dropout = dropout
|
|
self.bias = bias
|
|
def count_parameters(model):
|
|
"""Count number of trainable parameters in the model"""
|
|
total = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
|
|
|
|
embedding_params = model.transformer.wte.weight.numel() + model.transformer.wpe.weight.numel()
|
|
|
|
attention_params = 0
|
|
mlp_params = 0
|
|
layer_norm_params = 0
|
|
|
|
for block in model.transformer.h:
|
|
|
|
attention_params += (
|
|
block.attn.c_attn.weight.numel() +
|
|
(block.attn.c_attn.bias.numel() if block.attn.c_attn.bias is not None else 0) +
|
|
block.attn.c_proj.weight.numel() +
|
|
(block.attn.c_proj.bias.numel() if block.attn.c_proj.bias is not None else 0)
|
|
)
|
|
|
|
|
|
mlp_params += (
|
|
block.mlp.c_fc.weight.numel() +
|
|
(block.mlp.c_fc.bias.numel() if block.mlp.c_fc.bias is not None else 0) +
|
|
block.mlp.c_proj.weight.numel() +
|
|
(block.mlp.c_proj.bias.numel() if block.mlp.c_proj.bias is not None else 0)
|
|
)
|
|
|
|
|
|
layer_norm_params += (
|
|
block.ln_1.weight.numel() +
|
|
(block.ln_1.bias.numel() if block.ln_1.bias is not None else 0) +
|
|
block.ln_2.weight.numel() +
|
|
(block.ln_2.bias.numel() if block.ln_2.bias is not None else 0)
|
|
)
|
|
|
|
|
|
layer_norm_params += (
|
|
model.transformer.ln_f.weight.numel() +
|
|
(model.transformer.ln_f.bias.numel() if model.transformer.ln_f.bias is not None else 0)
|
|
)
|
|
|
|
|
|
print(f"\nParameter Count Breakdown:")
|
|
print(f"Embeddings: {embedding_params:,} parameters")
|
|
print(f"Attention Layers: {attention_params:,} parameters")
|
|
print(f"MLP Layers: {mlp_params:,} parameters")
|
|
print(f"Layer Normalization: {layer_norm_params:,} parameters")
|
|
print(f"Total: {total:,} parameters")
|
|
|
|
return total
|
|
class SmallLanguageModel(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.transformer = nn.ModuleDict(dict(
|
|
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
|
wpe = nn.Embedding(config.block_size, config.n_embd),
|
|
drop = nn.Dropout(config.dropout),
|
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
|
ln_f = LayerNorm(config.n_embd, bias=config.bias),
|
|
))
|
|
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
self.transformer.wte.weight = self.lm_head.weight
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
print("\nModel Configuration:")
|
|
|
|
print(f"Layers: {config.n_layer}")
|
|
|
|
print(f"Heads: {config.n_head}")
|
|
|
|
print(f"Embedding Dimension: {config.n_embd}")
|
|
|
|
print(f"Context Window: {config.block_size}")
|
|
|
|
count_parameters(self)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
def forward(self, input_ids, targets=None):
|
|
device = input_ids.device
|
|
b, t = input_ids.size()
|
|
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
|
|
|
|
|
tok_emb = self.transformer.wte(input_ids)
|
|
pos_emb = self.transformer.wpe(pos)
|
|
x = self.transformer.drop(tok_emb + pos_emb)
|
|
|
|
for block in self.transformer.h:
|
|
x = block(x)
|
|
|
|
x = self.transformer.ln_f(x)
|
|
logits = self.lm_head(x)
|
|
|
|
if targets is not None:
|
|
|
|
logits = logits.reshape(-1, logits.size(-1))
|
|
targets = targets.reshape(-1)
|
|
loss = F.cross_entropy(logits, targets)
|
|
return logits, loss
|
|
|
|
return logits
|
|
|