File size: 7,568 Bytes
81c887b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

class LayerNorm(nn.Module):
    def __init__(self, ndim, bias=True):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None

    def forward(self, x):
        return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)

class MultiHeadAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.n_head = config.n_head
        self.head_dim = config.n_embd // config.n_head
        
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
                                    .view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        B, T, C = x.size() # batch, sequence length, embedding dim
        
        # calculate query, key, values
        q, k, v = self.c_attn(x).split(self.config.n_embd, dim=2)
        k = k.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
        q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
        v = v.view(B, T, self.n_head, self.head_dim).transpose(1, 2)

        # causal self-attention
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
        att = F.softmax(att, dim=-1)
        att = self.attn_dropout(att)
        y = att @ v
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        
        return self.resid_dropout(self.c_proj(y))

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu = nn.GELU()
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
        self.attn = MultiHeadAttention(config)
        self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

class ModelConfig:
    def __init__(self, vocab_size=50257, block_size=1024, n_layer=24, n_head=16, 

                 n_embd=1024, dropout=0.1, bias=True):
        self.vocab_size = vocab_size
        self.block_size = block_size
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_embd = n_embd
        self.dropout = dropout
        self.bias = bias
def count_parameters(model):
    """Count number of trainable parameters in the model"""
    total = sum(p.numel() for p in model.parameters() if p.requires_grad)
    
    # Calculate parameters for each component
    embedding_params = model.transformer.wte.weight.numel() + model.transformer.wpe.weight.numel()
    
    attention_params = 0
    mlp_params = 0
    layer_norm_params = 0
    
    for block in model.transformer.h:
        # Attention parameters
        attention_params += (
            block.attn.c_attn.weight.numel() + 
            (block.attn.c_attn.bias.numel() if block.attn.c_attn.bias is not None else 0) +
            block.attn.c_proj.weight.numel() +
            (block.attn.c_proj.bias.numel() if block.attn.c_proj.bias is not None else 0)
        )
        
        # MLP parameters
        mlp_params += (
            block.mlp.c_fc.weight.numel() + 
            (block.mlp.c_fc.bias.numel() if block.mlp.c_fc.bias is not None else 0) +
            block.mlp.c_proj.weight.numel() +
            (block.mlp.c_proj.bias.numel() if block.mlp.c_proj.bias is not None else 0)
        )
        
        # Layer norm parameters
        layer_norm_params += (
            block.ln_1.weight.numel() + 
            (block.ln_1.bias.numel() if block.ln_1.bias is not None else 0) +
            block.ln_2.weight.numel() +
            (block.ln_2.bias.numel() if block.ln_2.bias is not None else 0)
        )
    
    # Final layer norm
    layer_norm_params += (
        model.transformer.ln_f.weight.numel() + 
        (model.transformer.ln_f.bias.numel() if model.transformer.ln_f.bias is not None else 0)
    )
    
    # Print detailed breakdown
    print(f"\nParameter Count Breakdown:")
    print(f"Embeddings: {embedding_params:,} parameters")
    print(f"Attention Layers: {attention_params:,} parameters")
    print(f"MLP Layers: {mlp_params:,} parameters")
    print(f"Layer Normalization: {layer_norm_params:,} parameters")
    print(f"Total: {total:,} parameters")
    
    return total
class SmallLanguageModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            drop = nn.Dropout(config.dropout),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = LayerNorm(config.n_embd, bias=config.bias),
        ))
        
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight

        # Initialize weights
        self.apply(self._init_weights)

        print("\nModel Configuration:")

        print(f"Layers: {config.n_layer}")

        print(f"Heads: {config.n_head}")

        print(f"Embedding Dimension: {config.n_embd}")

        print(f"Context Window: {config.block_size}")

        count_parameters(self)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, input_ids, targets=None):
        device = input_ids.device
        b, t = input_ids.size()
        pos = torch.arange(0, t, dtype=torch.long, device=device)
        
        # forward the model
        tok_emb = self.transformer.wte(input_ids)
        pos_emb = self.transformer.wpe(pos)
        x = self.transformer.drop(tok_emb + pos_emb)
        
        for block in self.transformer.h:
            x = block(x)
        
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x)

        if targets is not None:
            # Reshape logits and targets for loss calculation
            logits = logits.reshape(-1, logits.size(-1))
            targets = targets.reshape(-1)
            loss = F.cross_entropy(logits, targets)
            return logits, loss
        
        return logits