whisper-finetuned-v3_15e_augment
This model is a fine-tuned version of openai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0618
- Wer: 42.9388
- Cer: 25.8427
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.1455 | 1.0 | 1178 | 0.1225 | 66.9805 | 32.9972 |
0.0709 | 2.0 | 2356 | 0.0756 | 56.7249 | 28.5366 |
0.0434 | 3.0 | 3534 | 0.0650 | 52.0847 | 28.0039 |
0.0275 | 4.0 | 4712 | 0.0673 | 51.9502 | 27.1703 |
0.0153 | 5.0 | 5890 | 0.0571 | 48.6550 | 26.8105 |
0.0091 | 6.0 | 7068 | 0.0606 | 48.0498 | 26.7170 |
0.0063 | 7.0 | 8246 | 0.0622 | 45.9314 | 26.2351 |
0.002 | 8.0 | 9424 | 0.0609 | 44.7545 | 26.1131 |
0.0013 | 9.0 | 10602 | 0.0618 | 43.8467 | 25.9789 |
0.0007 | 9.9919 | 11770 | 0.0618 | 42.9388 | 25.8427 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for tranha1412/whisper-finetuned-v3_15e_augment
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo