whisper-finetuned-v3_50e_augment_new

This model is a fine-tuned version of openai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1259
  • Wer: 52.6441
  • Cer: 28.4843

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0997 1.0 1817 0.0970 67.6561 32.4126
0.0625 2.0 3634 0.0800 63.1184 31.0781
0.043 3.0 5451 0.0778 61.1054 30.2406
0.0356 4.0 7268 0.0727 58.4101 29.7911
0.0246 5.0 9085 0.0784 58.2736 30.1020
0.0185 6.0 10902 0.0795 58.9901 30.2346
0.0152 7.0 12719 0.0823 56.7724 29.5693
0.0109 8.0 14536 0.0864 56.8748 29.2486
0.0092 9.0 16353 0.0834 55.8854 29.1001
0.0079 10.0 18170 0.0901 56.3630 29.2129
0.0057 11.0 19987 0.0934 56.1242 29.3694
0.0057 12.0 21804 0.0965 56.8748 29.5476
0.007 13.0 23621 0.0974 56.1583 29.4901
0.0045 14.0 25438 0.1018 57.1477 29.2387
0.0037 15.0 27255 0.0958 56.1583 29.7475
0.0036 16.0 29072 0.0966 55.8171 29.5258
0.0047 17.0 30889 0.1012 54.8959 29.1199
0.0034 18.0 32706 0.0978 56.8066 28.8981
0.003 19.0 34523 0.1010 55.5442 29.0862
0.0034 20.0 36340 0.0981 55.7489 29.0506
0.0027 21.0 38157 0.1034 55.2371 28.9239
0.0021 22.0 39974 0.0997 54.1453 28.6566
0.0023 23.0 41791 0.1038 55.6124 29.1813
0.0016 24.0 43608 0.1049 54.8959 29.0209
0.0024 25.0 45425 0.1033 54.8277 29.4981
0.0016 26.0 47242 0.1031 55.4418 28.8387
0.0016 27.0 49059 0.1109 54.2136 29.2308
0.001 28.0 50876 0.1076 54.2136 29.1219
0.0008 29.0 52693 0.1109 55.3736 29.4406
0.0014 30.0 54510 0.1069 53.5995 28.7318
0.0011 31.0 56327 0.1112 55.0324 28.9932
0.001 32.0 58144 0.1131 55.8512 29.3456
0.0011 33.0 59961 0.1102 54.6912 29.1516
0.0006 34.0 61778 0.1144 53.9748 28.9852
0.0006 35.0 63595 0.1131 54.7936 29.2506
0.0003 36.0 65412 0.1148 54.5889 28.7358
0.0004 37.0 67229 0.1094 53.4630 28.8150
0.0006 38.0 69046 0.1104 53.4630 28.5259
0.0003 39.0 70863 0.1145 53.6336 28.6368
0.0002 40.0 72680 0.1160 53.0194 28.6962
0.0001 41.0 74497 0.1186 53.4971 28.3655
0.0002 42.0 76314 0.1112 52.6100 28.4467
0.0001 43.0 78131 0.1168 52.9853 28.5615
0.0002 44.0 79948 0.1192 52.5077 28.6368
0.0 45.0 81765 0.1236 52.8830 28.5675
0.0001 46.0 83582 0.1234 52.9171 28.3556
0.0001 47.0 85399 0.1229 52.6100 28.5021
0.0 48.0 87216 0.1260 52.6783 28.5536
0.0 49.0 89033 0.1257 52.6783 28.4902
0.0 49.9727 90800 0.1259 52.6441 28.4843

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
809M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tranha/whisper-finetuned-v3_50e_augment_new

Finetuned
(334)
this model