tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
6ca0c47 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - csr
  - generated_from_trainer
  - dataset_size:99000
  - loss:CSRLoss
  - loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
  - text: >-
      Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
      Arabia continue to take somewhat differing stances on regional conflicts
      such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
      the Southern Movement, which has fought against Saudi-backed forces, and
      the Syrian Civil War, where the UAE has disagreed with Saudi support for
      Islamist movements.[4]
  - text: >-
      Economy of New Zealand New Zealand's diverse market economy has a sizable
      service sector, accounting for 63% of all GDP activity in 2013.[17] Large
      scale manufacturing industries include aluminium production, food
      processing, metal fabrication, wood and paper products. Mining,
      manufacturing, electricity, gas, water, and waste services accounted for
      16.5% of GDP in 2013.[17] The primary sector continues to dominate New
      Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - text: >-
      who was the first president of indian science congress meeting held in
      kolkata in 1914
  - text: >-
      Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
      as a single after a fourteen-year breakup. It was also the first song
      written by bandmates Don Henley and Glenn Frey when the band reunited.
      "Get Over It" was played live for the first time during their Hell Freezes
      Over tour in 1994. It returned the band to the U.S. Top 40 after a
      fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
      It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
      was not played live by the Eagles after the "Hell Freezes Over" tour in
      1994. It remains the group's last Top 40 hit in the U.S.
  - text: >-
      Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
      who is considered by Christians to be one of the first Gentiles to convert
      to the faith, as related in Acts of the Apostles.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - row_non_zero_mean_query
  - row_sparsity_mean_query
  - row_non_zero_mean_corpus
  - row_sparsity_mean_corpus
co2_eq_emissions:
  emissions: 78.63547133575128
  energy_consumed: 0.20230271862699775
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.571
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Sparse CSR model trained on Natural Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.34
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.44
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.34
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.14666666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.12400000000000003
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.34
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.44
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.62
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.535047397862425
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4492380952380952
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4565956812862131
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 32
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9921875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 32
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9921875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.4
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.64
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.74
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.4
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.21333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14800000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.4
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.64
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.74
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6142058022889539
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5477142857142856
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5535645073071618
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 64
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.984375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 64
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.984375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.36
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.72
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.36
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.24
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.16
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.36
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.72
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.8
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.8
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6119801006837546
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5479999999999999
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5570329635790349
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 128
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.96875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 128
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.96875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.38
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.68
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.74
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.38
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.22666666666666668
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14800000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.38
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.68
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.74
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.84
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6202495574521795
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5495
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5567587644744507
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.4
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.68
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.76
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.4
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.22666666666666668
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.15200000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.4
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.68
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.76
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6233479483972318
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5590238095238095
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5667471833817065
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.22
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.3
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.36
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.52
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.22
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.16666666666666663
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.156
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.15
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.005369382143489658
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.016195110222025074
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.049293570620457035
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.0806937671045514
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.17174320910928226
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.2927619047619048
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.05298975181660711
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 32
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9921875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 32
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9921875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.26
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.4
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.46
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.56
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.26
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.21599999999999994
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.18
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.010097102114744272
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.04537644219647232
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.06148760758910991
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.09415095559842784
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2096821639525137
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.34343650793650793
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.08064284502822883
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 64
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.984375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 64
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.984375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.34
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.48
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.52
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.58
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.34
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3133333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.27599999999999997
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.23
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.03101859044799731
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.06237480359765744
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.07386821785513752
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.10186854211536649
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.27455891665154974
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.42166666666666663
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.11672912090576673
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 128
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.96875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 128
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.96875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.46
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.64
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.74
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.324
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.28600000000000003
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.010179819259573217
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.04444946823515787
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.07791010802255334
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.13377621691836752
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3108609159740967
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.43744444444444447
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.12265426034977883
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.68
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.35999999999999993
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.32
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.27
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04635628984780851
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.07762856181796872
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.09496420727524445
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.12650888877020955
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3261739681282223
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5003888888888889
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.15272488982108906
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.5
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.58
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.68
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.16666666666666669
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.11599999999999999
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.28
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.47
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.55
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.64
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.45947191204401955
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.40702380952380957
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.40647141879184173
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 32
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9921875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 32
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9921875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.32
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.62
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.76
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.32
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.20666666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07800000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.32
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.59
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.65
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.72
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5338423179297352
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.47974603174603175
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4773890418843979
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 64
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.984375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 64
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.984375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.5
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.23333333333333336
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14800000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.49
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.65
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.68
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.74
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6242982941698777
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5989682539682539
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5901794633844323
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 128
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.96875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 128
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.96875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.48
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.68
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.86
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.48
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.22666666666666668
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14800000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.092
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.47
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.64
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.69
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6403993438837419
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5924126984126983
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5839678374146947
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.48
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.72
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.76
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.48
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.24666666666666665
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.15600000000000003
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08999999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.47
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.68
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.71
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.8
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6448325805638914
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6067142857142857
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5961039318128456
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.41333333333333333
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.52
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.6733333333333333
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.16
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.132
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.10066666666666667
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.20845646071449656
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.3087317034073417
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.406431190206819
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5135645890348505
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.38875417300524223
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.38300793650793646
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3053522839648873
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 32
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9921875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 32
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9921875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.32666666666666666
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.5533333333333333
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6333333333333333
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7133333333333333
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.32666666666666666
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.21777777777777776
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.168
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.11333333333333334
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.24336570070491478
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.42512548073215745
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.4838292025297033
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5447169851994759
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.452576761390401
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4569656084656084
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.37053213140659613
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 64
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.984375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 64
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.984375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.39999999999999997
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6333333333333333
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.68
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7200000000000001
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.39999999999999997
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2622222222222222
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.19466666666666665
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13066666666666668
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.29367286348266575
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.47745826786588585
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5179560726183792
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5472895140384555
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.503612437168394
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5228783068783068
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.42131384928974464
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 128
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.96875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 128
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.96875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.38666666666666666
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6066666666666668
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6999999999999998
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8133333333333334
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.38666666666666666
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2511111111111111
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.2066666666666667
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.154
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.28672660641985775
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.45481648941171926
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5026367026741845
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5979254056394558
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.523836605770006
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5264523809523809
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.42112695407964146
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.5592778649921507
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7628571428571431
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8106122448979591
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8722448979591836
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5592778649921507
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.35674515960230246
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.26938147566718995
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.1812558869701727
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.34109493852292166
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.5189062733737264
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5724982683825325
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.6452176942587184
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6079916454695821
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6703401734320101
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5307417107665151
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.48
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.56
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.64
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.18
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.136
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.086
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.115
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.21166666666666664
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.2756666666666666
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.33399999999999996
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2808719551174852
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.39607936507936503
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.22053769794247585
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: dot_accuracy@1
            value: 0.74
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.9
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.92
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.98
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.74
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.64
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.5920000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.468
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.08983751675202471
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.1711487813957697
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.23824154407745554
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.3593446163014364
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6048782764547271
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.8311904761904763
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.44329574170124053
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.84
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.96
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.96
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.96
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.84
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.32666666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.19999999999999996
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.102
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.7866666666666667
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.9166666666666667
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.9233333333333333
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9333333333333332
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.8812058128870981
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.89
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.8538462377203007
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: dot_accuracy@1
            value: 0.4
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.64
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.4
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.29333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.22399999999999998
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13599999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.20724603174603173
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.4124603174603174
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5158968253968254
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.6268412698412699
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4880473026320133
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5356349206349206
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4061457504951077
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: dot_accuracy@1
            value: 0.78
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.94
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.98
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 1
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.78
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5266666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.33599999999999997
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.17999999999999997
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.39
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.79
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.84
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.8241120096573138
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.8728571428571428
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.7643662862369045
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: dot_accuracy@1
            value: 0.92
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.98
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 1
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 1
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.92
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.40666666666666657
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.25999999999999995
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13599999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.8073333333333333
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.9420000000000001
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.976
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9933333333333334
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.9567316042376142
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.955
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.9393269841269841
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: dot_accuracy@1
            value: 0.46
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.66
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.74
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.86
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.46
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.34
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.28
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.198
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.09766666666666665
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.21366666666666667
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.28966666666666663
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.4056666666666666
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3897243669463839
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5808015873015874
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3103398502941357
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: dot_accuracy@1
            value: 0.32
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.82
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.88
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.96
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.32
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2733333333333334
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.176
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09599999999999997
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.32
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.82
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.88
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.96
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.661824665356718
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.563047619047619
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5655109621561234
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: dot_accuracy@1
            value: 0.7
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.72
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.78
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.86
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.7
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.26666666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.17199999999999996
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09599999999999997
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.665
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.715
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.765
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.85
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.7555617268006612
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7335238095238098
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.7269493414387032
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: dot_accuracy@1
            value: 0.5306122448979592
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.8571428571428571
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8979591836734694
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9591836734693877
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5306122448979592
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5510204081632653
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.4979591836734694
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.4163265306122449
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.039127695785450424
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.1155438931843869
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.17370824555673137
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.2788019171170908
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.46657917392520565
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6901603498542274
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.35374738283707957
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus

Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq")
# Run inference
sentences = [
    'who is cornelius in the book of acts',
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 4096)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

  • Datasets: NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoMSMARCO NanoNFCorpus NanoNQ NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.4 0.42 0.48 0.28 0.74 0.84 0.4 0.78 0.92 0.46 0.32 0.7 0.5306
dot_accuracy@3 0.68 0.56 0.72 0.48 0.9 0.96 0.64 0.94 0.98 0.66 0.82 0.72 0.8571
dot_accuracy@5 0.76 0.6 0.76 0.56 0.92 0.96 0.7 0.98 1.0 0.74 0.88 0.78 0.898
dot_accuracy@10 0.82 0.68 0.84 0.64 0.98 0.96 0.78 1.0 1.0 0.86 0.96 0.86 0.9592
dot_precision@1 0.4 0.42 0.48 0.28 0.74 0.84 0.4 0.78 0.92 0.46 0.32 0.7 0.5306
dot_precision@3 0.2267 0.36 0.2467 0.18 0.64 0.3267 0.2933 0.5267 0.4067 0.34 0.2733 0.2667 0.551
dot_precision@5 0.152 0.32 0.156 0.136 0.592 0.2 0.224 0.336 0.26 0.28 0.176 0.172 0.498
dot_precision@10 0.082 0.27 0.09 0.086 0.468 0.102 0.136 0.18 0.136 0.198 0.096 0.096 0.4163
dot_recall@1 0.4 0.0464 0.47 0.115 0.0898 0.7867 0.2072 0.39 0.8073 0.0977 0.32 0.665 0.0391
dot_recall@3 0.68 0.0776 0.68 0.2117 0.1711 0.9167 0.4125 0.79 0.942 0.2137 0.82 0.715 0.1155
dot_recall@5 0.76 0.095 0.71 0.2757 0.2382 0.9233 0.5159 0.84 0.976 0.2897 0.88 0.765 0.1737
dot_recall@10 0.82 0.1265 0.8 0.334 0.3593 0.9333 0.6268 0.9 0.9933 0.4057 0.96 0.85 0.2788
dot_ndcg@10 0.6233 0.3262 0.6448 0.2809 0.6049 0.8812 0.488 0.8241 0.9567 0.3897 0.6618 0.7556 0.4666
dot_mrr@10 0.559 0.5004 0.6067 0.3961 0.8312 0.89 0.5356 0.8729 0.955 0.5808 0.563 0.7335 0.6902
dot_map@100 0.5667 0.1527 0.5961 0.2205 0.4433 0.8538 0.4061 0.7644 0.9393 0.3103 0.5655 0.7269 0.3537
row_non_zero_mean_query 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0
row_sparsity_mean_query 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375
row_non_zero_mean_corpus 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0
row_sparsity_mean_corpus 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.28
dot_accuracy@3 0.4133
dot_accuracy@5 0.52
dot_accuracy@10 0.6733
dot_precision@1 0.28
dot_precision@3 0.16
dot_precision@5 0.132
dot_precision@10 0.1007
dot_recall@1 0.2085
dot_recall@3 0.3087
dot_recall@5 0.4064
dot_recall@10 0.5136
dot_ndcg@10 0.3888
dot_mrr@10 0.383
dot_map@100 0.3054
row_non_zero_mean_query 32.0
row_sparsity_mean_query 0.9922
row_non_zero_mean_corpus 32.0
row_sparsity_mean_corpus 0.9922

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3267
dot_accuracy@3 0.5533
dot_accuracy@5 0.6333
dot_accuracy@10 0.7133
dot_precision@1 0.3267
dot_precision@3 0.2178
dot_precision@5 0.168
dot_precision@10 0.1133
dot_recall@1 0.2434
dot_recall@3 0.4251
dot_recall@5 0.4838
dot_recall@10 0.5447
dot_ndcg@10 0.4526
dot_mrr@10 0.457
dot_map@100 0.3705
row_non_zero_mean_query 64.0
row_sparsity_mean_query 0.9844
row_non_zero_mean_corpus 64.0
row_sparsity_mean_corpus 0.9844

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4
dot_accuracy@3 0.6333
dot_accuracy@5 0.68
dot_accuracy@10 0.72
dot_precision@1 0.4
dot_precision@3 0.2622
dot_precision@5 0.1947
dot_precision@10 0.1307
dot_recall@1 0.2937
dot_recall@3 0.4775
dot_recall@5 0.518
dot_recall@10 0.5473
dot_ndcg@10 0.5036
dot_mrr@10 0.5229
dot_map@100 0.4213
row_non_zero_mean_query 128.0
row_sparsity_mean_query 0.9688
row_non_zero_mean_corpus 128.0
row_sparsity_mean_corpus 0.9688

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3867
dot_accuracy@3 0.6067
dot_accuracy@5 0.7
dot_accuracy@10 0.8133
dot_precision@1 0.3867
dot_precision@3 0.2511
dot_precision@5 0.2067
dot_precision@10 0.154
dot_recall@1 0.2867
dot_recall@3 0.4548
dot_recall@5 0.5026
dot_recall@10 0.5979
dot_ndcg@10 0.5238
dot_mrr@10 0.5265
dot_map@100 0.4211
row_non_zero_mean_query 256.0
row_sparsity_mean_query 0.9375
row_non_zero_mean_corpus 256.0
row_sparsity_mean_corpus 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.5593
dot_accuracy@3 0.7629
dot_accuracy@5 0.8106
dot_accuracy@10 0.8722
dot_precision@1 0.5593
dot_precision@3 0.3567
dot_precision@5 0.2694
dot_precision@10 0.1813
dot_recall@1 0.3411
dot_recall@3 0.5189
dot_recall@5 0.5725
dot_recall@10 0.6452
dot_ndcg@10 0.608
dot_mrr@10 0.6703
dot_map@100 0.5307
row_non_zero_mean_query 256.0
row_sparsity_mean_query 0.9375
row_non_zero_mean_corpus 256.0
row_sparsity_mean_corpus 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 1.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 1.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10 NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10
0.0646 100 0.3429 - - - - - - - - - - - - - - -
0.1293 200 0.3521 - - - - - - - - - - - - - - -
0.1939 300 0.3399 0.3572 0.6207 0.3281 0.6434 0.5308 - - - - - - - - - -
0.2586 400 0.3458 - - - - - - - - - - - - - - -
0.3232 500 0.3383 - - - - - - - - - - - - - - -
0.3878 600 0.3613 0.3705 0.5998 0.3108 0.6044 0.5050 - - - - - - - - - -
0.4525 700 0.3323 - - - - - - - - - - - - - - -
0.5171 800 0.316 - - - - - - - - - - - - - - -
0.5818 900 0.3336 0.3499 0.5970 0.3092 0.6616 0.5226 - - - - - - - - - -
0.6464 1000 0.3161 - - - - - - - - - - - - - - -
0.7111 1100 0.3329 - - - - - - - - - - - - - - -
0.7757 1200 0.3615 0.3609 0.6036 0.3108 0.6372 0.5172 - - - - - - - - - -
0.8403 1300 0.337 - - - - - - - - - - - - - - -
0.9050 1400 0.3265 - - - - - - - - - - - - - - -
0.9696 1500 0.3246 0.3527 0.6202 0.3109 0.6404 0.5238 - - - - - - - - - -
-1 -1 - - 0.6233 0.3262 0.6448 0.6080 0.2809 0.6049 0.8812 0.4880 0.8241 0.9567 0.3897 0.6618 0.7556 0.4666
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.202 kWh
  • Carbon Emitted: 0.079 kg of CO2
  • Hours Used: 0.571 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}