tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
509076d verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - csr
  - generated_from_trainer
  - dataset_size:99000
  - loss:CSRLoss
  - loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
  - text: >-
      Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
      Arabia continue to take somewhat differing stances on regional conflicts
      such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
      the Southern Movement, which has fought against Saudi-backed forces, and
      the Syrian Civil War, where the UAE has disagreed with Saudi support for
      Islamist movements.[4]
  - text: >-
      Economy of New Zealand New Zealand's diverse market economy has a sizable
      service sector, accounting for 63% of all GDP activity in 2013.[17] Large
      scale manufacturing industries include aluminium production, food
      processing, metal fabrication, wood and paper products. Mining,
      manufacturing, electricity, gas, water, and waste services accounted for
      16.5% of GDP in 2013.[17] The primary sector continues to dominate New
      Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - text: >-
      who was the first president of indian science congress meeting held in
      kolkata in 1914
  - text: >-
      Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
      as a single after a fourteen-year breakup. It was also the first song
      written by bandmates Don Henley and Glenn Frey when the band reunited.
      "Get Over It" was played live for the first time during their Hell Freezes
      Over tour in 1994. It returned the band to the U.S. Top 40 after a
      fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
      It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
      was not played live by the Eagles after the "Hell Freezes Over" tour in
      1994. It remains the group's last Top 40 hit in the U.S.
  - text: >-
      Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
      who is considered by Christians to be one of the first Gentiles to convert
      to the faith, as related in Acts of the Apostles.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - row_non_zero_mean_query
  - row_sparsity_mean_query
  - row_non_zero_mean_corpus
  - row_sparsity_mean_corpus
co2_eq_emissions:
  emissions: 73.20361367491836
  energy_consumed: 0.18832836896882021
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.525
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Sparse CSR model trained on Natural Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.34
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.64
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.76
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.34
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.128
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07600000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.34
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.6
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.64
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.76
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5461951956850831
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4783333333333332
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4886114783173606
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 32
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9921875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 32
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9921875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.18666666666666668
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.078
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.56
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.78
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5877208923649152
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5268333333333333
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5379890352202846
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 64
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.984375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 64
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.984375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.64
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.21333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.64
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6170710567644069
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5518571428571428
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5582688466837231
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 128
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.96875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 128
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.96875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.38
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.66
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.38
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.22
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.38
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.66
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6054279406769176
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.536
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5451453839729702
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.66
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.76
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.22
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.15200000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.66
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.76
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6230021505155314
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.559579365079365
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5681061401796429
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.24
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.44
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.52
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.54
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.24
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.24666666666666665
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.23600000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.16799999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.004669919461913613
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.020427728422148655
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.032225855738342704
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.05379343324862708
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.19455316428596148
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.341
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.06151820759407443
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 32
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9921875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 32
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9921875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.42
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.5
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.56
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.26
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.26
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.19799999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.029542626120334554
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.044652693879235976
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.06028547009613851
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.07755036888620734
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2366214062101772
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.37585714285714283
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.10067936596479826
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 64
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.984375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 64
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.984375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.38
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.54
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.64
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.38
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.33333333333333326
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.3
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.24
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.03179014108396205
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.06318690279554356
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.07796877283624153
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.1114799837292121
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2931027237585236
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4740238095238095
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.1230254488501482
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 128
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.96875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 128
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.96875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.38
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.38
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3466666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.30000000000000004
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.25
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04457964347980141
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.0790728975013626
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.09009883722070462
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.13307439776648308
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.30763421801409163
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.48096825396825393
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.1488310784840863
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.36
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.58
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.68
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.36
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3399999999999999
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.304
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.25
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04421600711616505
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.07676067662123591
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.09031933665344426
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.1280526321040542
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3058687263048634
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.47285714285714286
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.14946123566548253
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.24
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.3
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.4
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.58
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.24
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.09999999999999998
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.08
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.05800000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.23
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.28
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.37
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.53
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.35458104021173625
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.31448412698412687
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.31511521921352853
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 32
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9921875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 32
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9921875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.34
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.48
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.34
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.15999999999999998
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.33
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.47
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.66
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.78
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5379040930401837
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4738174603174602
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4633356301557521
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 64
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.984375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 64
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.984375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.46
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.66
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.74
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.46
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.22
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14800000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.43
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.61
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.68
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.78
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6051159774116176
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5759365079365079
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5492196930626584
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 128
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.96875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 128
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.96875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.56
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.68
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.76
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.56
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.23333333333333336
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.15600000000000003
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08599999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.53
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.65
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.77
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6573308671626625
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6343571428571428
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.6230919790541427
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.6
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.66
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.76
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.6
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.22666666666666668
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.15600000000000003
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.57
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.63
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.76
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6666113633916609
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6562222222222222
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.6391801455199051
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.2733333333333334
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.4466666666666667
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.52
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.6266666666666666
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.2733333333333334
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.1822222222222222
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.148
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.10066666666666667
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.19155663982063786
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.3001425761407162
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.34740861857944755
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.447931144416209
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.36510980006092697
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.3779391534391534
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.28841496837498787
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 32
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9921875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 32
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9921875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.35333333333333333
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.48666666666666664
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.64
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7266666666666667
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.35333333333333333
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.20222222222222222
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.18133333333333335
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.12
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.2598475420401115
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.358217564626412
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.48009515669871283
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5458501229620691
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.45408213053842533
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.45883597883597876
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3673346771136117
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 64
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.984375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 64
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.984375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6133333333333334
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6866666666666665
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7666666666666666
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.25555555555555554
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.19733333333333336
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.1353333333333333
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.29393004702798736
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.43772896759851454
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.4926562576120805
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5704933279097374
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5050965859781827
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5339391534391534
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.41017132953217655
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 128
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.96875
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 128
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.96875
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.44
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6333333333333334
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6999999999999998
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7733333333333334
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.44
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.26666666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.20000000000000004
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.1393333333333333
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.31819321449326715
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.4630242991671209
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5100329457402348
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5743581325888277
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5234643419512239
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5504417989417989
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4390228138370664
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.5731554160125589
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7366405023547882
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.80138147566719
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8599686028257456
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5731554160125589
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3453898482469911
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.26412558869701724
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.17818838304552587
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.3483653457738811
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.5056041615261917
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5666121938396027
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.6365903026311346
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6044636061819838
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6701240562158929
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.532208950979869
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.44
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.58
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.66
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.1733333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.152
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.096
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.14666666666666667
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.24
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.31666666666666665
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.379
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3188914956894916
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.40419047619047616
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.26051323127424997
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: dot_accuracy@1
            value: 0.74
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.86
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.9
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.94
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.74
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.64
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.56
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.45399999999999996
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.07917649980287217
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.17349972000383132
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.24092496180273404
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.35114625789901227
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5896892964374201
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.8141904761904764
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.43868920344880336
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.78
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.88
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.9
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.94
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.78
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.30666666666666664
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.18799999999999997
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09799999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.7266666666666666
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.8466666666666666
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.8666666666666666
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9066666666666666
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.8324754718241318
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.8367460317460318
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.8012874752784108
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: dot_accuracy@1
            value: 0.54
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.62
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.66
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.72
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.54
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.20800000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.118
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.29257936507936505
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.4266587301587301
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.47401587301587306
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5415952380952381
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.49829838655315356
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.599
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.45314978299438174
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: dot_accuracy@1
            value: 0.84
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.96
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.98
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.98
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.84
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.3439999999999999
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.17599999999999993
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.8
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.86
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.88
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.831808180844114
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.8983333333333333
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.7782796284246765
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: dot_accuracy@1
            value: 0.9
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.98
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.98
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 1
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.9
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.4133333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.25999999999999995
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13799999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.7906666666666666
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.9520000000000001
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.966
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9966666666666666
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.9495440482890076
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.94
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.9292555555555555
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: dot_accuracy@1
            value: 0.5
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.66
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.76
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.33333333333333326
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.29200000000000004
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.20400000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.10666666666666667
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.2096666666666667
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.3016666666666667
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.4186666666666667
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4055677447150387
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6097142857142857
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3297751386475111
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: dot_accuracy@1
            value: 0.34
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.78
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.86
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.98
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.34
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.26
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.17199999999999996
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09799999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.34
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.78
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.86
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.98
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6735247359369816
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.574126984126984
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5746532999164579
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: dot_accuracy@1
            value: 0.58
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.68
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.76
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.58
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.24
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.16399999999999998
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09599999999999997
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.555
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.67
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.745
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.84
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6982128840882104
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6553015873015873
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.6562051918669566
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: dot_accuracy@1
            value: 0.5510204081632653
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.8163265306122449
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8979591836734694
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9795918367346939
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5510204081632653
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5034013605442177
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.4816326530612246
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.4224489795918367
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.03711095639538641
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.10760163972336141
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.16469834844278258
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.2738798061064456
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4645323957761827
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6913508260447035
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3401603339662621
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 256
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9375
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 256
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9375
            name: Row Sparsity Mean Corpus

Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-gemma5")
# Run inference
sentences = [
    'who is cornelius in the book of acts',
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 4096)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

  • Datasets: NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoMSMARCO NanoNFCorpus NanoNQ NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.42 0.36 0.6 0.3 0.74 0.78 0.54 0.84 0.9 0.5 0.34 0.58 0.551
dot_accuracy@3 0.66 0.58 0.66 0.44 0.86 0.88 0.62 0.96 0.98 0.66 0.78 0.68 0.8163
dot_accuracy@5 0.76 0.62 0.76 0.58 0.9 0.9 0.66 0.98 0.98 0.76 0.86 0.76 0.898
dot_accuracy@10 0.82 0.68 0.8 0.66 0.94 0.94 0.72 0.98 1.0 0.84 0.98 0.84 0.9796
dot_precision@1 0.42 0.36 0.6 0.3 0.74 0.78 0.54 0.84 0.9 0.5 0.34 0.58 0.551
dot_precision@3 0.22 0.34 0.2267 0.1733 0.64 0.3067 0.3 0.5333 0.4133 0.3333 0.26 0.24 0.5034
dot_precision@5 0.152 0.304 0.156 0.152 0.56 0.188 0.208 0.344 0.26 0.292 0.172 0.164 0.4816
dot_precision@10 0.082 0.25 0.084 0.096 0.454 0.098 0.118 0.176 0.138 0.204 0.098 0.096 0.4224
dot_recall@1 0.42 0.0442 0.57 0.1467 0.0792 0.7267 0.2926 0.42 0.7907 0.1067 0.34 0.555 0.0371
dot_recall@3 0.66 0.0768 0.63 0.24 0.1735 0.8467 0.4267 0.8 0.952 0.2097 0.78 0.67 0.1076
dot_recall@5 0.76 0.0903 0.72 0.3167 0.2409 0.8667 0.474 0.86 0.966 0.3017 0.86 0.745 0.1647
dot_recall@10 0.82 0.1281 0.76 0.379 0.3511 0.9067 0.5416 0.88 0.9967 0.4187 0.98 0.84 0.2739
dot_ndcg@10 0.623 0.3059 0.6666 0.3189 0.5897 0.8325 0.4983 0.8318 0.9495 0.4056 0.6735 0.6982 0.4645
dot_mrr@10 0.5596 0.4729 0.6562 0.4042 0.8142 0.8367 0.599 0.8983 0.94 0.6097 0.5741 0.6553 0.6914
dot_map@100 0.5681 0.1495 0.6392 0.2605 0.4387 0.8013 0.4531 0.7783 0.9293 0.3298 0.5747 0.6562 0.3402
row_non_zero_mean_query 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0
row_sparsity_mean_query 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375
row_non_zero_mean_corpus 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0
row_sparsity_mean_corpus 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.2733
dot_accuracy@3 0.4467
dot_accuracy@5 0.52
dot_accuracy@10 0.6267
dot_precision@1 0.2733
dot_precision@3 0.1822
dot_precision@5 0.148
dot_precision@10 0.1007
dot_recall@1 0.1916
dot_recall@3 0.3001
dot_recall@5 0.3474
dot_recall@10 0.4479
dot_ndcg@10 0.3651
dot_mrr@10 0.3779
dot_map@100 0.2884
row_non_zero_mean_query 32.0
row_sparsity_mean_query 0.9922
row_non_zero_mean_corpus 32.0
row_sparsity_mean_corpus 0.9922

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3533
dot_accuracy@3 0.4867
dot_accuracy@5 0.64
dot_accuracy@10 0.7267
dot_precision@1 0.3533
dot_precision@3 0.2022
dot_precision@5 0.1813
dot_precision@10 0.12
dot_recall@1 0.2598
dot_recall@3 0.3582
dot_recall@5 0.4801
dot_recall@10 0.5459
dot_ndcg@10 0.4541
dot_mrr@10 0.4588
dot_map@100 0.3673
row_non_zero_mean_query 64.0
row_sparsity_mean_query 0.9844
row_non_zero_mean_corpus 64.0
row_sparsity_mean_corpus 0.9844

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.42
dot_accuracy@3 0.6133
dot_accuracy@5 0.6867
dot_accuracy@10 0.7667
dot_precision@1 0.42
dot_precision@3 0.2556
dot_precision@5 0.1973
dot_precision@10 0.1353
dot_recall@1 0.2939
dot_recall@3 0.4377
dot_recall@5 0.4927
dot_recall@10 0.5705
dot_ndcg@10 0.5051
dot_mrr@10 0.5339
dot_map@100 0.4102
row_non_zero_mean_query 128.0
row_sparsity_mean_query 0.9688
row_non_zero_mean_corpus 128.0
row_sparsity_mean_corpus 0.9688

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.44
dot_accuracy@3 0.6333
dot_accuracy@5 0.7
dot_accuracy@10 0.7733
dot_precision@1 0.44
dot_precision@3 0.2667
dot_precision@5 0.2
dot_precision@10 0.1393
dot_recall@1 0.3182
dot_recall@3 0.463
dot_recall@5 0.51
dot_recall@10 0.5744
dot_ndcg@10 0.5235
dot_mrr@10 0.5504
dot_map@100 0.439
row_non_zero_mean_query 256.0
row_sparsity_mean_query 0.9375
row_non_zero_mean_corpus 256.0
row_sparsity_mean_corpus 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.5732
dot_accuracy@3 0.7366
dot_accuracy@5 0.8014
dot_accuracy@10 0.86
dot_precision@1 0.5732
dot_precision@3 0.3454
dot_precision@5 0.2641
dot_precision@10 0.1782
dot_recall@1 0.3484
dot_recall@3 0.5056
dot_recall@5 0.5666
dot_recall@10 0.6366
dot_ndcg@10 0.6045
dot_mrr@10 0.6701
dot_map@100 0.5322
row_non_zero_mean_query 256.0
row_sparsity_mean_query 0.9375
row_non_zero_mean_corpus 256.0
row_sparsity_mean_corpus 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 5,
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 5,
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10 NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10
0.0646 100 0.599 - - - - - - - - - - - - - - -
0.1293 200 0.69 - - - - - - - - - - - - - - -
0.1939 300 0.61 0.6100 0.6357 0.2858 0.6522 0.5246 - - - - - - - - - -
0.2586 400 0.7066 - - - - - - - - - - - - - - -
0.3232 500 0.6641 - - - - - - - - - - - - - - -
0.3878 600 0.7556 0.5275 0.6150 0.3067 0.6487 0.5235 - - - - - - - - - -
0.4525 700 0.664 - - - - - - - - - - - - - - -
0.5171 800 0.5407 - - - - - - - - - - - - - - -
0.5818 900 0.63 0.4654 0.623 0.3055 0.6666 0.5317 - - - - - - - - - -
0.6464 1000 0.5951 - - - - - - - - - - - - - - -
0.7111 1100 0.6147 - - - - - - - - - - - - - - -
0.7757 1200 0.7111 0.5087 0.6125 0.3061 0.6757 0.5314 - - - - - - - - - -
0.8403 1300 0.6415 - - - - - - - - - - - - - - -
0.9050 1400 0.592 - - - - - - - - - - - - - - -
0.9696 1500 0.5953 0.5013 0.6054 0.3076 0.6573 0.5235 - - - - - - - - - -
-1 -1 - - 0.6230 0.3059 0.6666 0.6045 0.3189 0.5897 0.8325 0.4983 0.8318 0.9495 0.4056 0.6735 0.6982 0.4645
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.188 kWh
  • Carbon Emitted: 0.073 kg of CO2
  • Hours Used: 0.525 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}