vivit-vit-8-10-epochs-splited_bdd_2-1747208501.832576
This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0410
- Accuracy: 0.9913
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 14940
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2705 | 0.1001 | 1495 | 0.1152 | 0.9625 |
0.0196 | 1.1001 | 2990 | 0.0991 | 0.9793 |
0.0131 | 2.1001 | 4485 | 0.0621 | 0.9846 |
0.0826 | 3.1001 | 5980 | 0.0644 | 0.9866 |
0.0304 | 4.1001 | 7475 | 0.0449 | 0.9880 |
0.032 | 5.1001 | 8970 | 0.0572 | 0.9886 |
0.115 | 6.1001 | 10465 | 0.0497 | 0.9880 |
0.0002 | 7.1001 | 11960 | 0.0667 | 0.9893 |
0.0001 | 8.1001 | 13455 | 0.0500 | 0.9920 |
0.0 | 9.0994 | 14940 | 0.0488 | 0.9906 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for tihonn/vivit-vit-8-10-epochs-splited_bdd_2-1747208501.832576
Base model
google/vivit-b-16x2-kinetics400