|
--- |
|
library_name: transformers |
|
base_model: microsoft/codebert-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: codebert-java-inconsistency |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# codebert-java-inconsistency |
|
|
|
This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3543 |
|
- Accuracy: 0.9167 |
|
- F1: 0.9183 |
|
- Precision: 0.9235 |
|
- Recall: 0.9167 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 1.4625 | 3.1290 | 50 | 0.8954 | 0.7531 | 0.7554 | 0.7765 | 0.7531 | |
|
| 0.5834 | 6.2581 | 100 | 0.5559 | 0.8189 | 0.8241 | 0.8483 | 0.8189 | |
|
| 0.2858 | 9.3871 | 150 | 0.4046 | 0.8930 | 0.8945 | 0.8995 | 0.8930 | |
|
| 0.1624 | 12.5161 | 200 | 0.4461 | 0.8642 | 0.8661 | 0.8750 | 0.8642 | |
|
| 0.1084 | 15.6452 | 250 | 0.4012 | 0.9012 | 0.9038 | 0.9123 | 0.9012 | |
|
| 0.074 | 18.7742 | 300 | 0.4689 | 0.8765 | 0.8817 | 0.8972 | 0.8765 | |
|
| 0.0574 | 21.9032 | 350 | 0.4885 | 0.8807 | 0.8845 | 0.8970 | 0.8807 | |
|
| 0.0452 | 25.0 | 400 | 0.4900 | 0.8848 | 0.8888 | 0.9011 | 0.8848 | |
|
| 0.0396 | 28.1290 | 450 | 0.4896 | 0.8765 | 0.8805 | 0.8934 | 0.8765 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.5.0 |
|
- Tokenizers 0.21.1 |
|
|