morriszms's picture
Update README.md
51681b6 verified
metadata
language:
  - en
library_name: transformers
pipeline_tag: text-generation
datasets:
  - jondurbin/airoboros-2.2
  - Open-Orca/OpenOrca
  - garage-bAInd/Open-Platypus
  - WizardLM/WizardLM_evol_instruct_V2_196k
  - TokenBender/python_eval_instruct_51k
tags:
  - llama-2
  - code
  - TensorBlock
  - GGUF
license: llama2
base_model: uukuguy/speechless-coding-7b-16k-tora
model-index:
  - name: SpeechlessCoder
    results:
      - task:
          type: text-generation
        dataset:
          name: HumanEval
          type: openai_humaneval
        metrics:
          - type: pass@1
            value: 52.439
            name: pass@1
            verified: false
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

uukuguy/speechless-coding-7b-16k-tora - GGUF

This repo contains GGUF format model files for uukuguy/speechless-coding-7b-16k-tora.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Our projects

Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€
## Prompt template

Model file specification

Filename Quant type File Size Description
speechless-coding-7b-16k-tora-Q2_K.gguf Q2_K 2.533 GB smallest, significant quality loss - not recommended for most purposes
speechless-coding-7b-16k-tora-Q3_K_S.gguf Q3_K_S 2.948 GB very small, high quality loss
speechless-coding-7b-16k-tora-Q3_K_M.gguf Q3_K_M 3.298 GB very small, high quality loss
speechless-coding-7b-16k-tora-Q3_K_L.gguf Q3_K_L 3.597 GB small, substantial quality loss
speechless-coding-7b-16k-tora-Q4_0.gguf Q4_0 3.826 GB legacy; small, very high quality loss - prefer using Q3_K_M
speechless-coding-7b-16k-tora-Q4_K_S.gguf Q4_K_S 3.857 GB small, greater quality loss
speechless-coding-7b-16k-tora-Q4_K_M.gguf Q4_K_M 4.081 GB medium, balanced quality - recommended
speechless-coding-7b-16k-tora-Q5_0.gguf Q5_0 4.652 GB legacy; medium, balanced quality - prefer using Q4_K_M
speechless-coding-7b-16k-tora-Q5_K_S.gguf Q5_K_S 4.652 GB large, low quality loss - recommended
speechless-coding-7b-16k-tora-Q5_K_M.gguf Q5_K_M 4.783 GB large, very low quality loss - recommended
speechless-coding-7b-16k-tora-Q6_K.gguf Q6_K 5.529 GB very large, extremely low quality loss
speechless-coding-7b-16k-tora-Q8_0.gguf Q8_0 7.161 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/speechless-coding-7b-16k-tora-GGUF --include "speechless-coding-7b-16k-tora-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/speechless-coding-7b-16k-tora-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'