YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Xiang_Lookalike Text-to-Image (14B) Generation

This repository contains the necessary steps and scripts to generate Xiang_Lookalike using the Wan2.1-T2V-14B text-to-video model with LoRA (Low-Rank Adaptation) weights.


Prerequisites

Before proceeding, ensure that you have the following installed on your system:

  • Ubuntu (or a compatible Linux distribution)
  • Python 3.x
  • pip (Python package manager)
  • Git
  • Git LFS (Git Large File Storage)

Installation

  1. Update and Install Dependencies

    sudo apt-get update && sudo apt-get install build-essential git-lfs
    
  2. Clone the Repository

    ⚠️ Note: You can use any existing Wan2.1-compatible repo structure or clone directly from Hugging Face.

    git clone https://huggingface.co/svjack/Xiang_Lookalike_wan_2_1_14_B_text2video_lora
    cd Xiang_Lookalike_wan_2_1_14_B_text2video_lora
    
  3. Install Python Dependencies

    pip install torch torchvision
    pip install -r requirements.txt
    pip install ascii-magic matplotlib tensorboard huggingface_hub datasets
    pip install sageattention==1.0.6
    
  4. Download Model Weights

    # Base Models
    wget https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/diffusion_models/wan2.1_t2v_14B_bf16.safetensors
    wget https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/resolve/main/models_t5_umt5-xxl-enc-bf16.pth
    wget https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/resolve/main/Wan2.1_VAE.pth
    

Usage

To generate an image, use the wan_generate_video.py script with the --task t2v-14B parameter.

Example: Xiang looklike boy

python wan_generate_video.py --fp8 --task t2v-14B --video_size 480 832 --infer_steps 35 --video_length 45 \
--save_path save --output_type both \
--dit wan2.1_t2v_14B_bf16.safetensors --vae Wan2.1_VAE.pth \
--t5 models_t5_umt5-xxl-enc-bf16.pth \
--attn_mode torch \
--lora_weight XiangLooklike_w14_outputs/XiangLooklike_w14_lora-000005.safetensors \
--lora_multiplier 1.0 \
--interactive

Prompt

  • 1
一个年轻的男子在喝奶。

  • 2
一个年轻男子在舔棒棒糖。

  • 3
一个年轻的男子赤裸全身站在镜头前,正在吃冰淇凌。

Key Parameters

Parameter Description
--fp8 Enable FP8 precision for improved performance
--task Set to t2i-14B for image generation
--video_size Output resolution (e.g., 480 832)
--infer_steps Speed vs quality trade-off (20 recommended for quick test)
--lora_weight Path to LoRA weight files (can specify multiple)
--lora_multiplier Strength of LoRA effect (default: 1.0)
--prompt Include "3D Chibi Style" for best results

Style Characteristics

For optimal results, prompts should emphasize:

  • Chibi-style characters with exaggerated heads and facial expressions
  • Vibrant colors and dynamic lighting effects
  • Fantasy or magical settings (e.g., gardens, castles, floating islands)
  • Neon or glowing elements, especially in futuristic or energetic scenes

Output

Generated images will be saved in the specified --save_path directory with:

  • PNG image file
  • (Optional) MP4 video (if --output_type both is used)

Troubleshooting

  • Ensure all model weights are correctly downloaded and placed in the right directories.
  • Check GPU memory availability; at least 20GB VRAM is recommended for 14B models.
  • Verify no conflicts exist between Python packages using pip check.

License

This project is licensed under the MIT License.


Acknowledgments

  • Hugging Face – For hosting the model and dataset repositories
  • Wan-AI – For providing base diffusion models
  • svjack – For adapting and sharing LoRA weights for various styles

For support or feedback, please open an issue in this repository.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support