FramePack_Image_Edit_Lora_Early / fpack_train_network.py
svjack's picture
Upload 15 files
1bb2f87 verified
import argparse
import gc
import math
import time
from typing import Optional
from PIL import Image
import numpy as np
import torch
import torchvision.transforms.functional as TF
from tqdm import tqdm
from accelerate import Accelerator, init_empty_weights
from dataset import image_video_dataset
from dataset.image_video_dataset import ARCHITECTURE_FRAMEPACK, ARCHITECTURE_FRAMEPACK_FULL, load_video
from fpack_generate_video import decode_latent
from frame_pack import hunyuan
from frame_pack.clip_vision import hf_clip_vision_encode
from frame_pack.framepack_utils import load_image_encoders, load_text_encoder1, load_text_encoder2
from frame_pack.framepack_utils import load_vae as load_framepack_vae
from frame_pack.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked, load_packed_model
from frame_pack.k_diffusion_hunyuan import sample_hunyuan
from frame_pack.utils import crop_or_pad_yield_mask
from dataset.image_video_dataset import resize_image_to_bucket
from hv_train_network import NetworkTrainer, load_prompts, clean_memory_on_device, setup_parser_common, read_config_from_file
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
from utils import model_utils
from utils.safetensors_utils import load_safetensors, MemoryEfficientSafeOpen
class FramePackNetworkTrainer(NetworkTrainer):
def __init__(self):
super().__init__()
# region model specific
@property
def architecture(self) -> str:
return ARCHITECTURE_FRAMEPACK
@property
def architecture_full_name(self) -> str:
return ARCHITECTURE_FRAMEPACK_FULL
def handle_model_specific_args(self, args):
self._i2v_training = True
self._control_training = False
self.default_guidance_scale = 10.0 # embeded guidance scale
def process_sample_prompts(
self,
args: argparse.Namespace,
accelerator: Accelerator,
sample_prompts: str,
):
device = accelerator.device
logger.info(f"cache Text Encoder outputs for sample prompt: {sample_prompts}")
prompts = load_prompts(sample_prompts)
# load text encoder
tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, device)
tokenizer2, text_encoder2 = load_text_encoder2(args)
text_encoder2.to(device)
sample_prompts_te_outputs = {} # (prompt) -> (t1 embeds, t1 mask, t2 embeds)
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
if p is None or p in sample_prompts_te_outputs:
continue
logger.info(f"cache Text Encoder outputs for prompt: {p}")
with torch.amp.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
llama_vec, clip_l_pooler = hunyuan.encode_prompt_conds(p, text_encoder1, text_encoder2, tokenizer1, tokenizer2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec = llama_vec.to("cpu")
llama_attention_mask = llama_attention_mask.to("cpu")
clip_l_pooler = clip_l_pooler.to("cpu")
sample_prompts_te_outputs[p] = (llama_vec, llama_attention_mask, clip_l_pooler)
del text_encoder1, text_encoder2
clean_memory_on_device(device)
# image embedding for I2V training
feature_extractor, image_encoder = load_image_encoders(args)
image_encoder.to(device)
# encode image with image encoder
sample_prompts_image_embs = {}
for prompt_dict in prompts:
image_path = prompt_dict.get("image_path", None)
assert image_path is not None, "image_path should be set for I2V training"
if image_path in sample_prompts_image_embs:
continue
logger.info(f"Encoding image to image encoder context: {image_path}")
height = prompt_dict.get("height", 256)
width = prompt_dict.get("width", 256)
img = Image.open(image_path).convert("RGB")
img_np = np.array(img) # PIL to numpy, HWC
img_np = image_video_dataset.resize_image_to_bucket(img_np, (width, height)) # returns a numpy array
with torch.no_grad():
image_encoder_output = hf_clip_vision_encode(img_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to("cpu")
sample_prompts_image_embs[image_path] = image_encoder_last_hidden_state
del image_encoder
clean_memory_on_device(device)
# prepare sample parameters
sample_parameters = []
for prompt_dict in prompts:
prompt_dict_copy = prompt_dict.copy()
p = prompt_dict.get("prompt", "")
llama_vec, llama_attention_mask, clip_l_pooler = sample_prompts_te_outputs[p]
prompt_dict_copy["llama_vec"] = llama_vec
prompt_dict_copy["llama_attention_mask"] = llama_attention_mask
prompt_dict_copy["clip_l_pooler"] = clip_l_pooler
p = prompt_dict.get("negative_prompt", "")
llama_vec, llama_attention_mask, clip_l_pooler = sample_prompts_te_outputs[p]
prompt_dict_copy["negative_llama_vec"] = llama_vec
prompt_dict_copy["negative_llama_attention_mask"] = llama_attention_mask
prompt_dict_copy["negative_clip_l_pooler"] = clip_l_pooler
p = prompt_dict.get("image_path", None)
prompt_dict_copy["image_encoder_last_hidden_state"] = sample_prompts_image_embs[p]
sample_parameters.append(prompt_dict_copy)
clean_memory_on_device(accelerator.device)
return sample_parameters
def do_inference(
self,
accelerator,
args,
sample_parameter,
vae,
dit_dtype,
transformer,
discrete_flow_shift,
sample_steps,
width,
height,
frame_count,
generator,
do_classifier_free_guidance,
guidance_scale,
cfg_scale,
image_path=None,
control_video_path=None,
):
"""architecture dependent inference"""
model: HunyuanVideoTransformer3DModelPacked = transformer
device = accelerator.device
if cfg_scale is None:
cfg_scale = 1.0
do_classifier_free_guidance = do_classifier_free_guidance and cfg_scale != 1.0
# prepare parameters
one_frame_mode = args.one_frame
if one_frame_mode:
one_frame_inference = set()
for mode in sample_parameter["one_frame"].split(","):
one_frame_inference.add(mode.strip())
else:
one_frame_inference = None
latent_window_size = args.latent_window_size # default is 9
latent_f = (frame_count - 1) // 4 + 1
total_latent_sections = math.floor((latent_f - 1) / latent_window_size)
if total_latent_sections < 1 and not one_frame_mode:
logger.warning(f"Not enough frames for FramePack: {latent_f}, minimum: {latent_window_size*4+1}")
return None
latent_f = total_latent_sections * latent_window_size + 1
actual_frame_count = (latent_f - 1) * 4 + 1
if actual_frame_count != frame_count:
logger.info(f"Frame count mismatch: {actual_frame_count} != {frame_count}, trimming to {actual_frame_count}")
frame_count = actual_frame_count
num_frames = latent_window_size * 4 - 3
# prepare start and control latent
def encode_image(path):
image = Image.open(path)
if image.mode == "RGBA":
alpha = image.split()[-1]
image = image.convert("RGB")
else:
alpha = None
image = resize_image_to_bucket(image, (width, height)) # returns a numpy array
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(1).unsqueeze(0).float() # 1, C, 1, H, W
image = image / 127.5 - 1 # -1 to 1
return hunyuan.vae_encode(image, vae).to("cpu"), alpha
# VAE encoding
logger.info(f"Encoding image to latent space")
vae.to(device)
start_latent, _ = (
encode_image(image_path) if image_path else torch.zeros((1, 16, 1, height // 8, width // 8), dtype=torch.float32)
)
if one_frame_mode:
control_latents = []
control_alphas = []
if "control_image_path" in sample_parameter:
for control_image_path in sample_parameter["control_image_path"]:
control_latent, control_alpha = encode_image(control_image_path)
control_latents.append(control_latent)
control_alphas.append(control_alpha)
else:
control_latents = None
control_alphas = None
vae.to("cpu") # move VAE to CPU to save memory
clean_memory_on_device(device)
# sampilng
if not one_frame_mode:
f1_mode = args.f1
history_latents = torch.zeros((1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32)
if not f1_mode:
total_generated_latent_frames = 0
latent_paddings = reversed(range(total_latent_sections))
else:
total_generated_latent_frames = 1
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
latent_paddings = [0] * total_latent_sections
if total_latent_sections > 4:
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
latent_paddings = list(latent_paddings)
for loop_index in range(total_latent_sections):
latent_padding = latent_paddings[loop_index]
if not f1_mode:
is_last_section = latent_padding == 0
latent_padding_size = latent_padding * latent_window_size
logger.info(f"latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}")
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
(
clean_latent_indices_pre,
blank_indices,
latent_indices,
clean_latent_indices_post,
clean_latent_2x_indices,
clean_latent_4x_indices,
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split(
[1, 2, 16], dim=2
)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
else:
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
(
clean_latent_indices_start,
clean_latent_4x_indices,
clean_latent_2x_indices,
clean_latent_1x_indices,
latent_indices,
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]) :, :, :].split(
[16, 2, 1], dim=2
)
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
# if use_teacache:
# transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
# else:
# transformer.initialize_teacache(enable_teacache=False)
llama_vec = sample_parameter["llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask = sample_parameter["llama_attention_mask"].to(device)
clip_l_pooler = sample_parameter["clip_l_pooler"].to(device, dtype=torch.bfloat16)
if cfg_scale == 1.0:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
else:
llama_vec_n = sample_parameter["negative_llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask_n = sample_parameter["negative_llama_attention_mask"].to(device)
clip_l_pooler_n = sample_parameter["negative_clip_l_pooler"].to(device, dtype=torch.bfloat16)
image_encoder_last_hidden_state = sample_parameter["image_encoder_last_hidden_state"].to(
device, dtype=torch.bfloat16
)
generated_latents = sample_hunyuan(
transformer=model,
sampler=args.sample_solver,
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg_scale,
distilled_guidance_scale=guidance_scale,
guidance_rescale=0.0,
# shift=3.0,
num_inference_steps=sample_steps,
generator=generator,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
)
total_generated_latent_frames += int(generated_latents.shape[2])
if not f1_mode:
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += 1
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
else:
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
logger.info(f"Generated. Latent shape {real_history_latents.shape}")
else:
# one frame mode
sample_num_frames = 1
latent_indices = torch.zeros((1, 1), dtype=torch.int64) # 1x1 latent index for target image
latent_indices[:, 0] = latent_window_size # last of latent_window
def get_latent_mask(mask_image: Image.Image):
mask_image = mask_image.resize((width // 8, height // 8), Image.LANCZOS)
mask_image = np.array(mask_image) # PIL to numpy, HWC
mask_image = torch.from_numpy(mask_image).float() / 255.0 # 0 to 1.0, HWC
mask_image = mask_image.squeeze(-1) # HWC -> HW
mask_image = mask_image.unsqueeze(0).unsqueeze(0).unsqueeze(0) # HW -> 111HW (B, C, F, H, W)
mask_image = mask_image.to(torch.float32)
return mask_image
if control_latents is None or len(control_latents) == 0:
logger.info(f"No control images provided for one frame inference. Use zero latents for control images.")
control_latents = [torch.zeros(1, 16, 1, height // 8, width // 8, dtype=torch.float32)]
if "no_post" not in one_frame_inference:
# add zero latents as clean latents post
control_latents.append(torch.zeros((1, 16, 1, height // 8, width // 8), dtype=torch.float32))
logger.info(f"Add zero latents as clean latents post for one frame inference.")
# kisekaeichi and 1f-mc: both are using control images, but indices are different
clean_latents = torch.cat(control_latents, dim=2) # (1, 16, num_control_images, H//8, W//8)
clean_latent_indices = torch.zeros((1, len(control_latents)), dtype=torch.int64)
if "no_post" not in one_frame_inference:
clean_latent_indices[:, -1] = 1 + latent_window_size # default index for clean latents post
# apply mask for control latents (clean latents)
for i in range(len(control_alphas)):
control_alpha = control_alphas[i]
if control_alpha is not None:
latent_mask = get_latent_mask(control_alpha)
logger.info(
f"Apply mask for clean latents 1x for {i+1}: shape: {latent_mask.shape}"
)
clean_latents[:, :, i : i + 1, :, :] = clean_latents[:, :, i : i + 1, :, :] * latent_mask
for one_frame_param in one_frame_inference:
if one_frame_param.startswith("target_index="):
target_index = int(one_frame_param.split("=")[1])
latent_indices[:, 0] = target_index
logger.info(f"Set index for target: {target_index}")
elif one_frame_param.startswith("control_index="):
control_indices = one_frame_param.split("=")[1].split(";")
i = 0
while i < len(control_indices) and i < clean_latent_indices.shape[1]:
control_index = int(control_indices[i])
clean_latent_indices[:, i] = control_index
i += 1
logger.info(f"Set index for clean latent 1x: {control_indices}")
if "no_2x" in one_frame_inference:
clean_latents_2x = None
clean_latent_2x_indices = None
logger.info(f"No clean_latents_2x")
else:
clean_latents_2x = torch.zeros((1, 16, 2, height // 8, width // 8), dtype=torch.float32)
index = 1 + latent_window_size + 1
clean_latent_2x_indices = torch.arange(index, index + 2) # 2
if "no_4x" in one_frame_inference:
clean_latents_4x = None
clean_latent_4x_indices = None
logger.info(f"No clean_latents_4x")
else:
index = 1 + latent_window_size + 1 + 2
clean_latent_4x_indices = torch.arange(index, index + 16) # 16
logger.info(
f"One frame inference. clean_latent: {clean_latents.shape} latent_indices: {latent_indices}, clean_latent_indices: {clean_latent_indices}, num_frames: {sample_num_frames}"
)
# prepare conditioning inputs
llama_vec = sample_parameter["llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask = sample_parameter["llama_attention_mask"].to(device)
clip_l_pooler = sample_parameter["clip_l_pooler"].to(device, dtype=torch.bfloat16)
if cfg_scale == 1.0:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
else:
llama_vec_n = sample_parameter["negative_llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask_n = sample_parameter["negative_llama_attention_mask"].to(device)
clip_l_pooler_n = sample_parameter["negative_clip_l_pooler"].to(device, dtype=torch.bfloat16)
image_encoder_last_hidden_state = sample_parameter["image_encoder_last_hidden_state"].to(
device, dtype=torch.bfloat16
)
generated_latents = sample_hunyuan(
transformer=model,
sampler=args.sample_solver,
width=width,
height=height,
frames=1,
real_guidance_scale=cfg_scale,
distilled_guidance_scale=guidance_scale,
guidance_rescale=0.0,
# shift=3.0,
num_inference_steps=sample_steps,
generator=generator,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
)
real_history_latents = generated_latents.to(clean_latents)
# wait for 5 seconds until block swap is done
logger.info("Waiting for 5 seconds to finish block swap")
time.sleep(5)
gc.collect()
clean_memory_on_device(device)
video = decode_latent(
latent_window_size, total_latent_sections, args.bulk_decode, vae, real_history_latents, device, one_frame_mode
)
video = video.to("cpu", dtype=torch.float32).unsqueeze(0) # add batch dimension
video = (video / 2 + 0.5).clamp(0, 1) # -1 to 1 -> 0 to 1
clean_memory_on_device(device)
return video
def load_vae(self, args: argparse.Namespace, vae_dtype: torch.dtype, vae_path: str):
vae_path = args.vae
logger.info(f"Loading VAE model from {vae_path}")
vae = load_framepack_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, "cpu")
return vae
def load_transformer(
self,
accelerator: Accelerator,
args: argparse.Namespace,
dit_path: str,
attn_mode: str,
split_attn: bool,
loading_device: str,
dit_weight_dtype: Optional[torch.dtype],
):
logger.info(f"Loading DiT model from {dit_path}")
device = accelerator.device
model = load_packed_model(device, dit_path, attn_mode, loading_device, args.fp8_scaled, split_attn)
return model
def scale_shift_latents(self, latents):
# FramePack VAE includes scaling
return latents
def call_dit(
self,
args: argparse.Namespace,
accelerator: Accelerator,
transformer,
latents: torch.Tensor,
batch: dict[str, torch.Tensor],
noise: torch.Tensor,
noisy_model_input: torch.Tensor,
timesteps: torch.Tensor,
network_dtype: torch.dtype,
):
model: HunyuanVideoTransformer3DModelPacked = transformer
device = accelerator.device
batch_size = latents.shape[0]
# maybe model.dtype is better than network_dtype...
distilled_guidance = torch.tensor([args.guidance_scale * 1000.0] * batch_size).to(device=device, dtype=network_dtype)
latents = latents.to(device=accelerator.device, dtype=network_dtype)
noisy_model_input = noisy_model_input.to(device=accelerator.device, dtype=network_dtype)
# for k, v in batch.items():
# if isinstance(v, torch.Tensor):
# print(f"{k}: {v.shape} {v.dtype} {v.device}")
with accelerator.autocast():
clean_latent_2x_indices = batch["clean_latent_2x_indices"] if "clean_latent_2x_indices" in batch else None
if clean_latent_2x_indices is not None:
clean_latent_2x = batch["latents_clean_2x"] if "latents_clean_2x" in batch else None
if clean_latent_2x is None:
clean_latent_2x = torch.zeros(
(batch_size, 16, 2, latents.shape[3], latents.shape[4]), dtype=latents.dtype, device=latents.device
)
else:
clean_latent_2x = None
clean_latent_4x_indices = batch["clean_latent_4x_indices"] if "clean_latent_4x_indices" in batch else None
if clean_latent_4x_indices is not None:
clean_latent_4x = batch["latents_clean_4x"] if "latents_clean_4x" in batch else None
if clean_latent_4x is None:
clean_latent_4x = torch.zeros(
(batch_size, 16, 16, latents.shape[3], latents.shape[4]), dtype=latents.dtype, device=latents.device
)
else:
clean_latent_4x = None
model_pred = model(
hidden_states=noisy_model_input,
timestep=timesteps,
encoder_hidden_states=batch["llama_vec"],
encoder_attention_mask=batch["llama_attention_mask"],
pooled_projections=batch["clip_l_pooler"],
guidance=distilled_guidance,
latent_indices=batch["latent_indices"],
clean_latents=batch["latents_clean"],
clean_latent_indices=batch["clean_latent_indices"],
clean_latents_2x=clean_latent_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latent_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
image_embeddings=batch["image_embeddings"],
return_dict=False,
)
model_pred = model_pred[0] # returns tuple (model_pred, )
# flow matching loss
target = noise - latents
return model_pred, target
# endregion model specific
def framepack_setup_parser(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
"""FramePack specific parser setup"""
parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT / DiTにスケーリングされたfp8を使う")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for LLM / LLMにfp8を使う")
parser.add_argument("--text_encoder1", type=str, help="Text Encoder 1 directory / テキストエンコーダ1のディレクトリ")
parser.add_argument("--text_encoder2", type=str, help="Text Encoder 2 directory / テキストエンコーダ2のディレクトリ")
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
parser.add_argument("--image_encoder", type=str, required=True, help="Image encoder (CLIP) checkpoint path or directory")
parser.add_argument("--latent_window_size", type=int, default=9, help="FramePack latent window size (default 9)")
parser.add_argument("--bulk_decode", action="store_true", help="decode all frames at once in sample generation")
parser.add_argument("--f1", action="store_true", help="Use F1 sampling method for sample generation")
parser.add_argument("--one_frame", action="store_true", help="Use one frame sampling method for sample generation")
return parser
if __name__ == "__main__":
parser = setup_parser_common()
parser = framepack_setup_parser(parser)
args = parser.parse_args()
args = read_config_from_file(args, parser)
assert (
args.vae_dtype is None or args.vae_dtype == "float16"
), "VAE dtype must be float16 / VAEのdtypeはfloat16でなければなりません"
args.vae_dtype = "float16" # fixed
args.dit_dtype = "bfloat16" # fixed
args.sample_solver = "unipc" # for sample generation, fixed to unipc
trainer = FramePackNetworkTrainer()
trainer.train(args)