File size: 29,389 Bytes
1bb2f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
import argparse
import gc
import math
import time
from typing import Optional
from PIL import Image


import numpy as np
import torch
import torchvision.transforms.functional as TF
from tqdm import tqdm
from accelerate import Accelerator, init_empty_weights

from dataset import image_video_dataset
from dataset.image_video_dataset import ARCHITECTURE_FRAMEPACK, ARCHITECTURE_FRAMEPACK_FULL, load_video
from fpack_generate_video import decode_latent
from frame_pack import hunyuan
from frame_pack.clip_vision import hf_clip_vision_encode
from frame_pack.framepack_utils import load_image_encoders, load_text_encoder1, load_text_encoder2
from frame_pack.framepack_utils import load_vae as load_framepack_vae
from frame_pack.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked, load_packed_model
from frame_pack.k_diffusion_hunyuan import sample_hunyuan
from frame_pack.utils import crop_or_pad_yield_mask
from dataset.image_video_dataset import resize_image_to_bucket
from hv_train_network import NetworkTrainer, load_prompts, clean_memory_on_device, setup_parser_common, read_config_from_file

import logging

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

from utils import model_utils
from utils.safetensors_utils import load_safetensors, MemoryEfficientSafeOpen


class FramePackNetworkTrainer(NetworkTrainer):
    def __init__(self):
        super().__init__()

    # region model specific

    @property
    def architecture(self) -> str:
        return ARCHITECTURE_FRAMEPACK

    @property
    def architecture_full_name(self) -> str:
        return ARCHITECTURE_FRAMEPACK_FULL

    def handle_model_specific_args(self, args):
        self._i2v_training = True
        self._control_training = False
        self.default_guidance_scale = 10.0  # embeded guidance scale

    def process_sample_prompts(
        self,
        args: argparse.Namespace,
        accelerator: Accelerator,
        sample_prompts: str,
    ):
        device = accelerator.device

        logger.info(f"cache Text Encoder outputs for sample prompt: {sample_prompts}")
        prompts = load_prompts(sample_prompts)

        # load text encoder
        tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, device)
        tokenizer2, text_encoder2 = load_text_encoder2(args)
        text_encoder2.to(device)

        sample_prompts_te_outputs = {}  # (prompt) -> (t1 embeds, t1 mask, t2 embeds)
        for prompt_dict in prompts:
            for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
                if p is None or p in sample_prompts_te_outputs:
                    continue
                logger.info(f"cache Text Encoder outputs for prompt: {p}")
                with torch.amp.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
                    llama_vec, clip_l_pooler = hunyuan.encode_prompt_conds(p, text_encoder1, text_encoder2, tokenizer1, tokenizer2)
                llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)

                llama_vec = llama_vec.to("cpu")
                llama_attention_mask = llama_attention_mask.to("cpu")
                clip_l_pooler = clip_l_pooler.to("cpu")
                sample_prompts_te_outputs[p] = (llama_vec, llama_attention_mask, clip_l_pooler)
        del text_encoder1, text_encoder2
        clean_memory_on_device(device)

        # image embedding for I2V training
        feature_extractor, image_encoder = load_image_encoders(args)
        image_encoder.to(device)

        # encode image with image encoder
        sample_prompts_image_embs = {}
        for prompt_dict in prompts:
            image_path = prompt_dict.get("image_path", None)
            assert image_path is not None, "image_path should be set for I2V training"
            if image_path in sample_prompts_image_embs:
                continue

            logger.info(f"Encoding image to image encoder context: {image_path}")

            height = prompt_dict.get("height", 256)
            width = prompt_dict.get("width", 256)

            img = Image.open(image_path).convert("RGB")
            img_np = np.array(img)  # PIL to numpy, HWC
            img_np = image_video_dataset.resize_image_to_bucket(img_np, (width, height))  # returns a numpy array

            with torch.no_grad():
                image_encoder_output = hf_clip_vision_encode(img_np, feature_extractor, image_encoder)
            image_encoder_last_hidden_state = image_encoder_output.last_hidden_state

            image_encoder_last_hidden_state = image_encoder_last_hidden_state.to("cpu")
            sample_prompts_image_embs[image_path] = image_encoder_last_hidden_state

        del image_encoder
        clean_memory_on_device(device)

        # prepare sample parameters
        sample_parameters = []
        for prompt_dict in prompts:
            prompt_dict_copy = prompt_dict.copy()

            p = prompt_dict.get("prompt", "")
            llama_vec, llama_attention_mask, clip_l_pooler = sample_prompts_te_outputs[p]
            prompt_dict_copy["llama_vec"] = llama_vec
            prompt_dict_copy["llama_attention_mask"] = llama_attention_mask
            prompt_dict_copy["clip_l_pooler"] = clip_l_pooler

            p = prompt_dict.get("negative_prompt", "")
            llama_vec, llama_attention_mask, clip_l_pooler = sample_prompts_te_outputs[p]
            prompt_dict_copy["negative_llama_vec"] = llama_vec
            prompt_dict_copy["negative_llama_attention_mask"] = llama_attention_mask
            prompt_dict_copy["negative_clip_l_pooler"] = clip_l_pooler

            p = prompt_dict.get("image_path", None)
            prompt_dict_copy["image_encoder_last_hidden_state"] = sample_prompts_image_embs[p]

            sample_parameters.append(prompt_dict_copy)

        clean_memory_on_device(accelerator.device)
        return sample_parameters

    def do_inference(
        self,
        accelerator,
        args,
        sample_parameter,
        vae,
        dit_dtype,
        transformer,
        discrete_flow_shift,
        sample_steps,
        width,
        height,
        frame_count,
        generator,
        do_classifier_free_guidance,
        guidance_scale,
        cfg_scale,
        image_path=None,
        control_video_path=None,
    ):
        """architecture dependent inference"""
        model: HunyuanVideoTransformer3DModelPacked = transformer
        device = accelerator.device
        if cfg_scale is None:
            cfg_scale = 1.0
        do_classifier_free_guidance = do_classifier_free_guidance and cfg_scale != 1.0

        # prepare parameters
        one_frame_mode = args.one_frame
        if one_frame_mode:
            one_frame_inference = set()
            for mode in sample_parameter["one_frame"].split(","):
                one_frame_inference.add(mode.strip())
        else:
            one_frame_inference = None

        latent_window_size = args.latent_window_size  # default is 9
        latent_f = (frame_count - 1) // 4 + 1
        total_latent_sections = math.floor((latent_f - 1) / latent_window_size)
        if total_latent_sections < 1 and not one_frame_mode:
            logger.warning(f"Not enough frames for FramePack: {latent_f}, minimum: {latent_window_size*4+1}")
            return None

        latent_f = total_latent_sections * latent_window_size + 1
        actual_frame_count = (latent_f - 1) * 4 + 1
        if actual_frame_count != frame_count:
            logger.info(f"Frame count mismatch: {actual_frame_count} != {frame_count}, trimming to {actual_frame_count}")
        frame_count = actual_frame_count
        num_frames = latent_window_size * 4 - 3

        # prepare start and control latent
        def encode_image(path):
            image = Image.open(path)
            if image.mode == "RGBA":
                alpha = image.split()[-1]
                image = image.convert("RGB")
            else:
                alpha = None
            image = resize_image_to_bucket(image, (width, height))  # returns a numpy array
            image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(1).unsqueeze(0).float()  # 1, C, 1, H, W
            image = image / 127.5 - 1  # -1 to 1
            return hunyuan.vae_encode(image, vae).to("cpu"), alpha

        # VAE encoding
        logger.info(f"Encoding image to latent space")
        vae.to(device)

        start_latent, _ = (
            encode_image(image_path) if image_path else torch.zeros((1, 16, 1, height // 8, width // 8), dtype=torch.float32)
        )

        if one_frame_mode:
            control_latents = []
            control_alphas = []
            if "control_image_path" in sample_parameter:
                for control_image_path in sample_parameter["control_image_path"]:
                    control_latent, control_alpha = encode_image(control_image_path)
                    control_latents.append(control_latent)
                    control_alphas.append(control_alpha)
        else:
            control_latents = None
            control_alphas = None

        vae.to("cpu")  # move VAE to CPU to save memory
        clean_memory_on_device(device)

        # sampilng
        if not one_frame_mode:
            f1_mode = args.f1
            history_latents = torch.zeros((1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32)

            if not f1_mode:
                total_generated_latent_frames = 0
                latent_paddings = reversed(range(total_latent_sections))
            else:
                total_generated_latent_frames = 1
                history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
                latent_paddings = [0] * total_latent_sections

            if total_latent_sections > 4:
                latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]

            latent_paddings = list(latent_paddings)
            for loop_index in range(total_latent_sections):
                latent_padding = latent_paddings[loop_index]

                if not f1_mode:
                    is_last_section = latent_padding == 0
                    latent_padding_size = latent_padding * latent_window_size

                    logger.info(f"latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}")

                    indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
                    (
                        clean_latent_indices_pre,
                        blank_indices,
                        latent_indices,
                        clean_latent_indices_post,
                        clean_latent_2x_indices,
                        clean_latent_4x_indices,
                    ) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
                    clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)

                    clean_latents_pre = start_latent.to(history_latents)
                    clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split(
                        [1, 2, 16], dim=2
                    )
                    clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
                else:
                    indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
                    (
                        clean_latent_indices_start,
                        clean_latent_4x_indices,
                        clean_latent_2x_indices,
                        clean_latent_1x_indices,
                        latent_indices,
                    ) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
                    clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)

                    clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]) :, :, :].split(
                        [16, 2, 1], dim=2
                    )
                    clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)

                # if use_teacache:
                #     transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
                # else:
                #     transformer.initialize_teacache(enable_teacache=False)

                llama_vec = sample_parameter["llama_vec"].to(device, dtype=torch.bfloat16)
                llama_attention_mask = sample_parameter["llama_attention_mask"].to(device)
                clip_l_pooler = sample_parameter["clip_l_pooler"].to(device, dtype=torch.bfloat16)
                if cfg_scale == 1.0:
                    llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
                    llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
                else:
                    llama_vec_n = sample_parameter["negative_llama_vec"].to(device, dtype=torch.bfloat16)
                    llama_attention_mask_n = sample_parameter["negative_llama_attention_mask"].to(device)
                    clip_l_pooler_n = sample_parameter["negative_clip_l_pooler"].to(device, dtype=torch.bfloat16)
                image_encoder_last_hidden_state = sample_parameter["image_encoder_last_hidden_state"].to(
                    device, dtype=torch.bfloat16
                )

                generated_latents = sample_hunyuan(
                    transformer=model,
                    sampler=args.sample_solver,
                    width=width,
                    height=height,
                    frames=num_frames,
                    real_guidance_scale=cfg_scale,
                    distilled_guidance_scale=guidance_scale,
                    guidance_rescale=0.0,
                    # shift=3.0,
                    num_inference_steps=sample_steps,
                    generator=generator,
                    prompt_embeds=llama_vec,
                    prompt_embeds_mask=llama_attention_mask,
                    prompt_poolers=clip_l_pooler,
                    negative_prompt_embeds=llama_vec_n,
                    negative_prompt_embeds_mask=llama_attention_mask_n,
                    negative_prompt_poolers=clip_l_pooler_n,
                    device=device,
                    dtype=torch.bfloat16,
                    image_embeddings=image_encoder_last_hidden_state,
                    latent_indices=latent_indices,
                    clean_latents=clean_latents,
                    clean_latent_indices=clean_latent_indices,
                    clean_latents_2x=clean_latents_2x,
                    clean_latent_2x_indices=clean_latent_2x_indices,
                    clean_latents_4x=clean_latents_4x,
                    clean_latent_4x_indices=clean_latent_4x_indices,
                )

                total_generated_latent_frames += int(generated_latents.shape[2])
                if not f1_mode:
                    if is_last_section:
                        generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
                        total_generated_latent_frames += 1
                    history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
                    real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
                else:
                    history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
                    real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]

                logger.info(f"Generated. Latent shape {real_history_latents.shape}")
        else:
            # one frame mode
            sample_num_frames = 1
            latent_indices = torch.zeros((1, 1), dtype=torch.int64)  # 1x1 latent index for target image
            latent_indices[:, 0] = latent_window_size  # last of latent_window

            def get_latent_mask(mask_image: Image.Image):
                mask_image = mask_image.resize((width // 8, height // 8), Image.LANCZOS)
                mask_image = np.array(mask_image)  # PIL to numpy, HWC
                mask_image = torch.from_numpy(mask_image).float() / 255.0  # 0 to 1.0, HWC
                mask_image = mask_image.squeeze(-1)  # HWC -> HW
                mask_image = mask_image.unsqueeze(0).unsqueeze(0).unsqueeze(0)  # HW -> 111HW (B, C, F, H, W)
                mask_image = mask_image.to(torch.float32)
                return mask_image

            if control_latents is None or len(control_latents) == 0:
                logger.info(f"No control images provided for one frame inference. Use zero latents for control images.")
                control_latents = [torch.zeros(1, 16, 1, height // 8, width // 8, dtype=torch.float32)]

            if "no_post" not in one_frame_inference:
                # add zero latents as clean latents post
                control_latents.append(torch.zeros((1, 16, 1, height // 8, width // 8), dtype=torch.float32))
                logger.info(f"Add zero latents as clean latents post for one frame inference.")

            # kisekaeichi and 1f-mc: both are using control images, but indices are different
            clean_latents = torch.cat(control_latents, dim=2)  # (1, 16, num_control_images, H//8, W//8)
            clean_latent_indices = torch.zeros((1, len(control_latents)), dtype=torch.int64)
            if "no_post" not in one_frame_inference:
                clean_latent_indices[:, -1] = 1 + latent_window_size  # default index for clean latents post

            # apply mask for control latents (clean latents)
            for i in range(len(control_alphas)):
                control_alpha = control_alphas[i]
                if control_alpha is not None:
                    latent_mask = get_latent_mask(control_alpha)
                    logger.info(
                        f"Apply mask for clean latents 1x for {i+1}: shape: {latent_mask.shape}"
                    )
                    clean_latents[:, :, i : i + 1, :, :] = clean_latents[:, :, i : i + 1, :, :] * latent_mask

            for one_frame_param in one_frame_inference:
                if one_frame_param.startswith("target_index="):
                    target_index = int(one_frame_param.split("=")[1])
                    latent_indices[:, 0] = target_index
                    logger.info(f"Set index for target: {target_index}")
                elif one_frame_param.startswith("control_index="):
                    control_indices = one_frame_param.split("=")[1].split(";")
                    i = 0
                    while i < len(control_indices) and i < clean_latent_indices.shape[1]:
                        control_index = int(control_indices[i])
                        clean_latent_indices[:, i] = control_index
                        i += 1
                    logger.info(f"Set index for clean latent 1x: {control_indices}")

            if "no_2x" in one_frame_inference:
                clean_latents_2x = None
                clean_latent_2x_indices = None
                logger.info(f"No clean_latents_2x")
            else:
                clean_latents_2x = torch.zeros((1, 16, 2, height // 8, width // 8), dtype=torch.float32)
                index = 1 + latent_window_size + 1
                clean_latent_2x_indices = torch.arange(index, index + 2)  #  2

            if "no_4x" in one_frame_inference:
                clean_latents_4x = None
                clean_latent_4x_indices = None
                logger.info(f"No clean_latents_4x")
            else:
                index = 1 + latent_window_size + 1 + 2
                clean_latent_4x_indices = torch.arange(index, index + 16)  #  16

            logger.info(
                f"One frame inference. clean_latent: {clean_latents.shape} latent_indices: {latent_indices}, clean_latent_indices: {clean_latent_indices}, num_frames: {sample_num_frames}"
            )

            # prepare conditioning inputs
            llama_vec = sample_parameter["llama_vec"].to(device, dtype=torch.bfloat16)
            llama_attention_mask = sample_parameter["llama_attention_mask"].to(device)
            clip_l_pooler = sample_parameter["clip_l_pooler"].to(device, dtype=torch.bfloat16)
            if cfg_scale == 1.0:
                llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
                llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
            else:
                llama_vec_n = sample_parameter["negative_llama_vec"].to(device, dtype=torch.bfloat16)
                llama_attention_mask_n = sample_parameter["negative_llama_attention_mask"].to(device)
                clip_l_pooler_n = sample_parameter["negative_clip_l_pooler"].to(device, dtype=torch.bfloat16)
            image_encoder_last_hidden_state = sample_parameter["image_encoder_last_hidden_state"].to(
                device, dtype=torch.bfloat16
            )

            generated_latents = sample_hunyuan(
                transformer=model,
                sampler=args.sample_solver,
                width=width,
                height=height,
                frames=1,
                real_guidance_scale=cfg_scale,
                distilled_guidance_scale=guidance_scale,
                guidance_rescale=0.0,
                # shift=3.0,
                num_inference_steps=sample_steps,
                generator=generator,
                prompt_embeds=llama_vec,
                prompt_embeds_mask=llama_attention_mask,
                prompt_poolers=clip_l_pooler,
                negative_prompt_embeds=llama_vec_n,
                negative_prompt_embeds_mask=llama_attention_mask_n,
                negative_prompt_poolers=clip_l_pooler_n,
                device=device,
                dtype=torch.bfloat16,
                image_embeddings=image_encoder_last_hidden_state,
                latent_indices=latent_indices,
                clean_latents=clean_latents,
                clean_latent_indices=clean_latent_indices,
                clean_latents_2x=clean_latents_2x,
                clean_latent_2x_indices=clean_latent_2x_indices,
                clean_latents_4x=clean_latents_4x,
                clean_latent_4x_indices=clean_latent_4x_indices,
            )

            real_history_latents = generated_latents.to(clean_latents)

        # wait for 5 seconds until block swap is done
        logger.info("Waiting for 5 seconds to finish block swap")
        time.sleep(5)

        gc.collect()
        clean_memory_on_device(device)

        video = decode_latent(
            latent_window_size, total_latent_sections, args.bulk_decode, vae, real_history_latents, device, one_frame_mode
        )
        video = video.to("cpu", dtype=torch.float32).unsqueeze(0)  # add batch dimension
        video = (video / 2 + 0.5).clamp(0, 1)  # -1 to 1 -> 0 to 1
        clean_memory_on_device(device)

        return video

    def load_vae(self, args: argparse.Namespace, vae_dtype: torch.dtype, vae_path: str):
        vae_path = args.vae
        logger.info(f"Loading VAE model from {vae_path}")
        vae = load_framepack_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, "cpu")
        return vae

    def load_transformer(
        self,
        accelerator: Accelerator,
        args: argparse.Namespace,
        dit_path: str,
        attn_mode: str,
        split_attn: bool,
        loading_device: str,
        dit_weight_dtype: Optional[torch.dtype],
    ):
        logger.info(f"Loading DiT model from {dit_path}")
        device = accelerator.device
        model = load_packed_model(device, dit_path, attn_mode, loading_device, args.fp8_scaled, split_attn)
        return model

    def scale_shift_latents(self, latents):
        # FramePack VAE includes scaling
        return latents

    def call_dit(
        self,
        args: argparse.Namespace,
        accelerator: Accelerator,
        transformer,
        latents: torch.Tensor,
        batch: dict[str, torch.Tensor],
        noise: torch.Tensor,
        noisy_model_input: torch.Tensor,
        timesteps: torch.Tensor,
        network_dtype: torch.dtype,
    ):
        model: HunyuanVideoTransformer3DModelPacked = transformer
        device = accelerator.device
        batch_size = latents.shape[0]

        # maybe model.dtype is better than network_dtype...
        distilled_guidance = torch.tensor([args.guidance_scale * 1000.0] * batch_size).to(device=device, dtype=network_dtype)
        latents = latents.to(device=accelerator.device, dtype=network_dtype)
        noisy_model_input = noisy_model_input.to(device=accelerator.device, dtype=network_dtype)
        # for k, v in batch.items():
        #     if isinstance(v, torch.Tensor):
        #         print(f"{k}: {v.shape} {v.dtype} {v.device}")
        with accelerator.autocast():
            clean_latent_2x_indices = batch["clean_latent_2x_indices"] if "clean_latent_2x_indices" in batch else None
            if clean_latent_2x_indices is not None:
                clean_latent_2x = batch["latents_clean_2x"] if "latents_clean_2x" in batch else None
                if clean_latent_2x is None:
                    clean_latent_2x = torch.zeros(
                        (batch_size, 16, 2, latents.shape[3], latents.shape[4]), dtype=latents.dtype, device=latents.device
                    )
            else:
                clean_latent_2x = None

            clean_latent_4x_indices = batch["clean_latent_4x_indices"] if "clean_latent_4x_indices" in batch else None
            if clean_latent_4x_indices is not None:
                clean_latent_4x = batch["latents_clean_4x"] if "latents_clean_4x" in batch else None
                if clean_latent_4x is None:
                    clean_latent_4x = torch.zeros(
                        (batch_size, 16, 16, latents.shape[3], latents.shape[4]), dtype=latents.dtype, device=latents.device
                    )
            else:
                clean_latent_4x = None

            model_pred = model(
                hidden_states=noisy_model_input,
                timestep=timesteps,
                encoder_hidden_states=batch["llama_vec"],
                encoder_attention_mask=batch["llama_attention_mask"],
                pooled_projections=batch["clip_l_pooler"],
                guidance=distilled_guidance,
                latent_indices=batch["latent_indices"],
                clean_latents=batch["latents_clean"],
                clean_latent_indices=batch["clean_latent_indices"],
                clean_latents_2x=clean_latent_2x,
                clean_latent_2x_indices=clean_latent_2x_indices,
                clean_latents_4x=clean_latent_4x,
                clean_latent_4x_indices=clean_latent_4x_indices,
                image_embeddings=batch["image_embeddings"],
                return_dict=False,
            )
            model_pred = model_pred[0]  # returns tuple (model_pred, )

        # flow matching loss
        target = noise - latents

        return model_pred, target

    # endregion model specific


def framepack_setup_parser(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
    """FramePack specific parser setup"""
    parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT / DiTにスケーリングされたfp8を使う")
    parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for LLM / LLMにfp8を使う")
    parser.add_argument("--text_encoder1", type=str, help="Text Encoder 1 directory / テキストエンコーダ1のディレクトリ")
    parser.add_argument("--text_encoder2", type=str, help="Text Encoder 2 directory / テキストエンコーダ2のディレクトリ")
    parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
    parser.add_argument(
        "--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
    )
    parser.add_argument("--image_encoder", type=str, required=True, help="Image encoder (CLIP) checkpoint path or directory")
    parser.add_argument("--latent_window_size", type=int, default=9, help="FramePack latent window size (default 9)")
    parser.add_argument("--bulk_decode", action="store_true", help="decode all frames at once in sample generation")
    parser.add_argument("--f1", action="store_true", help="Use F1 sampling method for sample generation")
    parser.add_argument("--one_frame", action="store_true", help="Use one frame sampling method for sample generation")
    return parser


if __name__ == "__main__":
    parser = setup_parser_common()
    parser = framepack_setup_parser(parser)

    args = parser.parse_args()
    args = read_config_from_file(args, parser)

    assert (
        args.vae_dtype is None or args.vae_dtype == "float16"
    ), "VAE dtype must be float16 / VAEのdtypeはfloat16でなければなりません"
    args.vae_dtype = "float16"  # fixed
    args.dit_dtype = "bfloat16"  # fixed
    args.sample_solver = "unipc"  # for sample generation, fixed to unipc

    trainer = FramePackNetworkTrainer()
    trainer.train(args)