File size: 29,389 Bytes
1bb2f87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
import argparse
import gc
import math
import time
from typing import Optional
from PIL import Image
import numpy as np
import torch
import torchvision.transforms.functional as TF
from tqdm import tqdm
from accelerate import Accelerator, init_empty_weights
from dataset import image_video_dataset
from dataset.image_video_dataset import ARCHITECTURE_FRAMEPACK, ARCHITECTURE_FRAMEPACK_FULL, load_video
from fpack_generate_video import decode_latent
from frame_pack import hunyuan
from frame_pack.clip_vision import hf_clip_vision_encode
from frame_pack.framepack_utils import load_image_encoders, load_text_encoder1, load_text_encoder2
from frame_pack.framepack_utils import load_vae as load_framepack_vae
from frame_pack.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked, load_packed_model
from frame_pack.k_diffusion_hunyuan import sample_hunyuan
from frame_pack.utils import crop_or_pad_yield_mask
from dataset.image_video_dataset import resize_image_to_bucket
from hv_train_network import NetworkTrainer, load_prompts, clean_memory_on_device, setup_parser_common, read_config_from_file
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
from utils import model_utils
from utils.safetensors_utils import load_safetensors, MemoryEfficientSafeOpen
class FramePackNetworkTrainer(NetworkTrainer):
def __init__(self):
super().__init__()
# region model specific
@property
def architecture(self) -> str:
return ARCHITECTURE_FRAMEPACK
@property
def architecture_full_name(self) -> str:
return ARCHITECTURE_FRAMEPACK_FULL
def handle_model_specific_args(self, args):
self._i2v_training = True
self._control_training = False
self.default_guidance_scale = 10.0 # embeded guidance scale
def process_sample_prompts(
self,
args: argparse.Namespace,
accelerator: Accelerator,
sample_prompts: str,
):
device = accelerator.device
logger.info(f"cache Text Encoder outputs for sample prompt: {sample_prompts}")
prompts = load_prompts(sample_prompts)
# load text encoder
tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, device)
tokenizer2, text_encoder2 = load_text_encoder2(args)
text_encoder2.to(device)
sample_prompts_te_outputs = {} # (prompt) -> (t1 embeds, t1 mask, t2 embeds)
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
if p is None or p in sample_prompts_te_outputs:
continue
logger.info(f"cache Text Encoder outputs for prompt: {p}")
with torch.amp.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
llama_vec, clip_l_pooler = hunyuan.encode_prompt_conds(p, text_encoder1, text_encoder2, tokenizer1, tokenizer2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec = llama_vec.to("cpu")
llama_attention_mask = llama_attention_mask.to("cpu")
clip_l_pooler = clip_l_pooler.to("cpu")
sample_prompts_te_outputs[p] = (llama_vec, llama_attention_mask, clip_l_pooler)
del text_encoder1, text_encoder2
clean_memory_on_device(device)
# image embedding for I2V training
feature_extractor, image_encoder = load_image_encoders(args)
image_encoder.to(device)
# encode image with image encoder
sample_prompts_image_embs = {}
for prompt_dict in prompts:
image_path = prompt_dict.get("image_path", None)
assert image_path is not None, "image_path should be set for I2V training"
if image_path in sample_prompts_image_embs:
continue
logger.info(f"Encoding image to image encoder context: {image_path}")
height = prompt_dict.get("height", 256)
width = prompt_dict.get("width", 256)
img = Image.open(image_path).convert("RGB")
img_np = np.array(img) # PIL to numpy, HWC
img_np = image_video_dataset.resize_image_to_bucket(img_np, (width, height)) # returns a numpy array
with torch.no_grad():
image_encoder_output = hf_clip_vision_encode(img_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to("cpu")
sample_prompts_image_embs[image_path] = image_encoder_last_hidden_state
del image_encoder
clean_memory_on_device(device)
# prepare sample parameters
sample_parameters = []
for prompt_dict in prompts:
prompt_dict_copy = prompt_dict.copy()
p = prompt_dict.get("prompt", "")
llama_vec, llama_attention_mask, clip_l_pooler = sample_prompts_te_outputs[p]
prompt_dict_copy["llama_vec"] = llama_vec
prompt_dict_copy["llama_attention_mask"] = llama_attention_mask
prompt_dict_copy["clip_l_pooler"] = clip_l_pooler
p = prompt_dict.get("negative_prompt", "")
llama_vec, llama_attention_mask, clip_l_pooler = sample_prompts_te_outputs[p]
prompt_dict_copy["negative_llama_vec"] = llama_vec
prompt_dict_copy["negative_llama_attention_mask"] = llama_attention_mask
prompt_dict_copy["negative_clip_l_pooler"] = clip_l_pooler
p = prompt_dict.get("image_path", None)
prompt_dict_copy["image_encoder_last_hidden_state"] = sample_prompts_image_embs[p]
sample_parameters.append(prompt_dict_copy)
clean_memory_on_device(accelerator.device)
return sample_parameters
def do_inference(
self,
accelerator,
args,
sample_parameter,
vae,
dit_dtype,
transformer,
discrete_flow_shift,
sample_steps,
width,
height,
frame_count,
generator,
do_classifier_free_guidance,
guidance_scale,
cfg_scale,
image_path=None,
control_video_path=None,
):
"""architecture dependent inference"""
model: HunyuanVideoTransformer3DModelPacked = transformer
device = accelerator.device
if cfg_scale is None:
cfg_scale = 1.0
do_classifier_free_guidance = do_classifier_free_guidance and cfg_scale != 1.0
# prepare parameters
one_frame_mode = args.one_frame
if one_frame_mode:
one_frame_inference = set()
for mode in sample_parameter["one_frame"].split(","):
one_frame_inference.add(mode.strip())
else:
one_frame_inference = None
latent_window_size = args.latent_window_size # default is 9
latent_f = (frame_count - 1) // 4 + 1
total_latent_sections = math.floor((latent_f - 1) / latent_window_size)
if total_latent_sections < 1 and not one_frame_mode:
logger.warning(f"Not enough frames for FramePack: {latent_f}, minimum: {latent_window_size*4+1}")
return None
latent_f = total_latent_sections * latent_window_size + 1
actual_frame_count = (latent_f - 1) * 4 + 1
if actual_frame_count != frame_count:
logger.info(f"Frame count mismatch: {actual_frame_count} != {frame_count}, trimming to {actual_frame_count}")
frame_count = actual_frame_count
num_frames = latent_window_size * 4 - 3
# prepare start and control latent
def encode_image(path):
image = Image.open(path)
if image.mode == "RGBA":
alpha = image.split()[-1]
image = image.convert("RGB")
else:
alpha = None
image = resize_image_to_bucket(image, (width, height)) # returns a numpy array
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(1).unsqueeze(0).float() # 1, C, 1, H, W
image = image / 127.5 - 1 # -1 to 1
return hunyuan.vae_encode(image, vae).to("cpu"), alpha
# VAE encoding
logger.info(f"Encoding image to latent space")
vae.to(device)
start_latent, _ = (
encode_image(image_path) if image_path else torch.zeros((1, 16, 1, height // 8, width // 8), dtype=torch.float32)
)
if one_frame_mode:
control_latents = []
control_alphas = []
if "control_image_path" in sample_parameter:
for control_image_path in sample_parameter["control_image_path"]:
control_latent, control_alpha = encode_image(control_image_path)
control_latents.append(control_latent)
control_alphas.append(control_alpha)
else:
control_latents = None
control_alphas = None
vae.to("cpu") # move VAE to CPU to save memory
clean_memory_on_device(device)
# sampilng
if not one_frame_mode:
f1_mode = args.f1
history_latents = torch.zeros((1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32)
if not f1_mode:
total_generated_latent_frames = 0
latent_paddings = reversed(range(total_latent_sections))
else:
total_generated_latent_frames = 1
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
latent_paddings = [0] * total_latent_sections
if total_latent_sections > 4:
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
latent_paddings = list(latent_paddings)
for loop_index in range(total_latent_sections):
latent_padding = latent_paddings[loop_index]
if not f1_mode:
is_last_section = latent_padding == 0
latent_padding_size = latent_padding * latent_window_size
logger.info(f"latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}")
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
(
clean_latent_indices_pre,
blank_indices,
latent_indices,
clean_latent_indices_post,
clean_latent_2x_indices,
clean_latent_4x_indices,
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split(
[1, 2, 16], dim=2
)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
else:
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
(
clean_latent_indices_start,
clean_latent_4x_indices,
clean_latent_2x_indices,
clean_latent_1x_indices,
latent_indices,
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]) :, :, :].split(
[16, 2, 1], dim=2
)
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
# if use_teacache:
# transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
# else:
# transformer.initialize_teacache(enable_teacache=False)
llama_vec = sample_parameter["llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask = sample_parameter["llama_attention_mask"].to(device)
clip_l_pooler = sample_parameter["clip_l_pooler"].to(device, dtype=torch.bfloat16)
if cfg_scale == 1.0:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
else:
llama_vec_n = sample_parameter["negative_llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask_n = sample_parameter["negative_llama_attention_mask"].to(device)
clip_l_pooler_n = sample_parameter["negative_clip_l_pooler"].to(device, dtype=torch.bfloat16)
image_encoder_last_hidden_state = sample_parameter["image_encoder_last_hidden_state"].to(
device, dtype=torch.bfloat16
)
generated_latents = sample_hunyuan(
transformer=model,
sampler=args.sample_solver,
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg_scale,
distilled_guidance_scale=guidance_scale,
guidance_rescale=0.0,
# shift=3.0,
num_inference_steps=sample_steps,
generator=generator,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
)
total_generated_latent_frames += int(generated_latents.shape[2])
if not f1_mode:
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += 1
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
else:
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
logger.info(f"Generated. Latent shape {real_history_latents.shape}")
else:
# one frame mode
sample_num_frames = 1
latent_indices = torch.zeros((1, 1), dtype=torch.int64) # 1x1 latent index for target image
latent_indices[:, 0] = latent_window_size # last of latent_window
def get_latent_mask(mask_image: Image.Image):
mask_image = mask_image.resize((width // 8, height // 8), Image.LANCZOS)
mask_image = np.array(mask_image) # PIL to numpy, HWC
mask_image = torch.from_numpy(mask_image).float() / 255.0 # 0 to 1.0, HWC
mask_image = mask_image.squeeze(-1) # HWC -> HW
mask_image = mask_image.unsqueeze(0).unsqueeze(0).unsqueeze(0) # HW -> 111HW (B, C, F, H, W)
mask_image = mask_image.to(torch.float32)
return mask_image
if control_latents is None or len(control_latents) == 0:
logger.info(f"No control images provided for one frame inference. Use zero latents for control images.")
control_latents = [torch.zeros(1, 16, 1, height // 8, width // 8, dtype=torch.float32)]
if "no_post" not in one_frame_inference:
# add zero latents as clean latents post
control_latents.append(torch.zeros((1, 16, 1, height // 8, width // 8), dtype=torch.float32))
logger.info(f"Add zero latents as clean latents post for one frame inference.")
# kisekaeichi and 1f-mc: both are using control images, but indices are different
clean_latents = torch.cat(control_latents, dim=2) # (1, 16, num_control_images, H//8, W//8)
clean_latent_indices = torch.zeros((1, len(control_latents)), dtype=torch.int64)
if "no_post" not in one_frame_inference:
clean_latent_indices[:, -1] = 1 + latent_window_size # default index for clean latents post
# apply mask for control latents (clean latents)
for i in range(len(control_alphas)):
control_alpha = control_alphas[i]
if control_alpha is not None:
latent_mask = get_latent_mask(control_alpha)
logger.info(
f"Apply mask for clean latents 1x for {i+1}: shape: {latent_mask.shape}"
)
clean_latents[:, :, i : i + 1, :, :] = clean_latents[:, :, i : i + 1, :, :] * latent_mask
for one_frame_param in one_frame_inference:
if one_frame_param.startswith("target_index="):
target_index = int(one_frame_param.split("=")[1])
latent_indices[:, 0] = target_index
logger.info(f"Set index for target: {target_index}")
elif one_frame_param.startswith("control_index="):
control_indices = one_frame_param.split("=")[1].split(";")
i = 0
while i < len(control_indices) and i < clean_latent_indices.shape[1]:
control_index = int(control_indices[i])
clean_latent_indices[:, i] = control_index
i += 1
logger.info(f"Set index for clean latent 1x: {control_indices}")
if "no_2x" in one_frame_inference:
clean_latents_2x = None
clean_latent_2x_indices = None
logger.info(f"No clean_latents_2x")
else:
clean_latents_2x = torch.zeros((1, 16, 2, height // 8, width // 8), dtype=torch.float32)
index = 1 + latent_window_size + 1
clean_latent_2x_indices = torch.arange(index, index + 2) # 2
if "no_4x" in one_frame_inference:
clean_latents_4x = None
clean_latent_4x_indices = None
logger.info(f"No clean_latents_4x")
else:
index = 1 + latent_window_size + 1 + 2
clean_latent_4x_indices = torch.arange(index, index + 16) # 16
logger.info(
f"One frame inference. clean_latent: {clean_latents.shape} latent_indices: {latent_indices}, clean_latent_indices: {clean_latent_indices}, num_frames: {sample_num_frames}"
)
# prepare conditioning inputs
llama_vec = sample_parameter["llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask = sample_parameter["llama_attention_mask"].to(device)
clip_l_pooler = sample_parameter["clip_l_pooler"].to(device, dtype=torch.bfloat16)
if cfg_scale == 1.0:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
else:
llama_vec_n = sample_parameter["negative_llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask_n = sample_parameter["negative_llama_attention_mask"].to(device)
clip_l_pooler_n = sample_parameter["negative_clip_l_pooler"].to(device, dtype=torch.bfloat16)
image_encoder_last_hidden_state = sample_parameter["image_encoder_last_hidden_state"].to(
device, dtype=torch.bfloat16
)
generated_latents = sample_hunyuan(
transformer=model,
sampler=args.sample_solver,
width=width,
height=height,
frames=1,
real_guidance_scale=cfg_scale,
distilled_guidance_scale=guidance_scale,
guidance_rescale=0.0,
# shift=3.0,
num_inference_steps=sample_steps,
generator=generator,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
)
real_history_latents = generated_latents.to(clean_latents)
# wait for 5 seconds until block swap is done
logger.info("Waiting for 5 seconds to finish block swap")
time.sleep(5)
gc.collect()
clean_memory_on_device(device)
video = decode_latent(
latent_window_size, total_latent_sections, args.bulk_decode, vae, real_history_latents, device, one_frame_mode
)
video = video.to("cpu", dtype=torch.float32).unsqueeze(0) # add batch dimension
video = (video / 2 + 0.5).clamp(0, 1) # -1 to 1 -> 0 to 1
clean_memory_on_device(device)
return video
def load_vae(self, args: argparse.Namespace, vae_dtype: torch.dtype, vae_path: str):
vae_path = args.vae
logger.info(f"Loading VAE model from {vae_path}")
vae = load_framepack_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, "cpu")
return vae
def load_transformer(
self,
accelerator: Accelerator,
args: argparse.Namespace,
dit_path: str,
attn_mode: str,
split_attn: bool,
loading_device: str,
dit_weight_dtype: Optional[torch.dtype],
):
logger.info(f"Loading DiT model from {dit_path}")
device = accelerator.device
model = load_packed_model(device, dit_path, attn_mode, loading_device, args.fp8_scaled, split_attn)
return model
def scale_shift_latents(self, latents):
# FramePack VAE includes scaling
return latents
def call_dit(
self,
args: argparse.Namespace,
accelerator: Accelerator,
transformer,
latents: torch.Tensor,
batch: dict[str, torch.Tensor],
noise: torch.Tensor,
noisy_model_input: torch.Tensor,
timesteps: torch.Tensor,
network_dtype: torch.dtype,
):
model: HunyuanVideoTransformer3DModelPacked = transformer
device = accelerator.device
batch_size = latents.shape[0]
# maybe model.dtype is better than network_dtype...
distilled_guidance = torch.tensor([args.guidance_scale * 1000.0] * batch_size).to(device=device, dtype=network_dtype)
latents = latents.to(device=accelerator.device, dtype=network_dtype)
noisy_model_input = noisy_model_input.to(device=accelerator.device, dtype=network_dtype)
# for k, v in batch.items():
# if isinstance(v, torch.Tensor):
# print(f"{k}: {v.shape} {v.dtype} {v.device}")
with accelerator.autocast():
clean_latent_2x_indices = batch["clean_latent_2x_indices"] if "clean_latent_2x_indices" in batch else None
if clean_latent_2x_indices is not None:
clean_latent_2x = batch["latents_clean_2x"] if "latents_clean_2x" in batch else None
if clean_latent_2x is None:
clean_latent_2x = torch.zeros(
(batch_size, 16, 2, latents.shape[3], latents.shape[4]), dtype=latents.dtype, device=latents.device
)
else:
clean_latent_2x = None
clean_latent_4x_indices = batch["clean_latent_4x_indices"] if "clean_latent_4x_indices" in batch else None
if clean_latent_4x_indices is not None:
clean_latent_4x = batch["latents_clean_4x"] if "latents_clean_4x" in batch else None
if clean_latent_4x is None:
clean_latent_4x = torch.zeros(
(batch_size, 16, 16, latents.shape[3], latents.shape[4]), dtype=latents.dtype, device=latents.device
)
else:
clean_latent_4x = None
model_pred = model(
hidden_states=noisy_model_input,
timestep=timesteps,
encoder_hidden_states=batch["llama_vec"],
encoder_attention_mask=batch["llama_attention_mask"],
pooled_projections=batch["clip_l_pooler"],
guidance=distilled_guidance,
latent_indices=batch["latent_indices"],
clean_latents=batch["latents_clean"],
clean_latent_indices=batch["clean_latent_indices"],
clean_latents_2x=clean_latent_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latent_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
image_embeddings=batch["image_embeddings"],
return_dict=False,
)
model_pred = model_pred[0] # returns tuple (model_pred, )
# flow matching loss
target = noise - latents
return model_pred, target
# endregion model specific
def framepack_setup_parser(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
"""FramePack specific parser setup"""
parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT / DiTにスケーリングされたfp8を使う")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for LLM / LLMにfp8を使う")
parser.add_argument("--text_encoder1", type=str, help="Text Encoder 1 directory / テキストエンコーダ1のディレクトリ")
parser.add_argument("--text_encoder2", type=str, help="Text Encoder 2 directory / テキストエンコーダ2のディレクトリ")
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
parser.add_argument("--image_encoder", type=str, required=True, help="Image encoder (CLIP) checkpoint path or directory")
parser.add_argument("--latent_window_size", type=int, default=9, help="FramePack latent window size (default 9)")
parser.add_argument("--bulk_decode", action="store_true", help="decode all frames at once in sample generation")
parser.add_argument("--f1", action="store_true", help="Use F1 sampling method for sample generation")
parser.add_argument("--one_frame", action="store_true", help="Use one frame sampling method for sample generation")
return parser
if __name__ == "__main__":
parser = setup_parser_common()
parser = framepack_setup_parser(parser)
args = parser.parse_args()
args = read_config_from_file(args, parser)
assert (
args.vae_dtype is None or args.vae_dtype == "float16"
), "VAE dtype must be float16 / VAEのdtypeはfloat16でなければなりません"
args.vae_dtype = "float16" # fixed
args.dit_dtype = "bfloat16" # fixed
args.sample_solver = "unipc" # for sample generation, fixed to unipc
trainer = FramePackNetworkTrainer()
trainer.train(args)
|