FramePack_Image_Edit_Lora_Early / fpack_generate_video.py
svjack's picture
Upload folder using huggingface_hub
7bc5051 verified
import argparse
from datetime import datetime
import gc
import json
import random
import os
import re
import time
import math
import copy
from typing import Tuple, Optional, List, Union, Any, Dict
import torch
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from PIL import Image
import cv2
import numpy as np
import torchvision.transforms.functional as TF
from transformers import LlamaModel
from tqdm import tqdm
from networks import lora_framepack
from hunyuan_model.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
from frame_pack import hunyuan
from frame_pack.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked, load_packed_model
from frame_pack.utils import crop_or_pad_yield_mask, resize_and_center_crop, soft_append_bcthw
from frame_pack.bucket_tools import find_nearest_bucket
from frame_pack.clip_vision import hf_clip_vision_encode
from frame_pack.k_diffusion_hunyuan import sample_hunyuan
from dataset import image_video_dataset
try:
from lycoris.kohya import create_network_from_weights
except:
pass
from utils.device_utils import clean_memory_on_device
from hv_generate_video import save_images_grid, save_videos_grid, synchronize_device
from wan_generate_video import merge_lora_weights
from frame_pack.framepack_utils import load_vae, load_text_encoder1, load_text_encoder2, load_image_encoders
from dataset.image_video_dataset import load_video
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
class GenerationSettings:
def __init__(self, device: torch.device, dit_weight_dtype: Optional[torch.dtype] = None):
self.device = device
self.dit_weight_dtype = dit_weight_dtype # not used currently because model may be optimized
def parse_args() -> argparse.Namespace:
"""parse command line arguments"""
parser = argparse.ArgumentParser(description="Wan 2.1 inference script")
# WAN arguments
# parser.add_argument("--ckpt_dir", type=str, default=None, help="The path to the checkpoint directory (Wan 2.1 official).")
parser.add_argument(
"--sample_solver", type=str, default="unipc", choices=["unipc", "dpm++", "vanilla"], help="The solver used to sample."
)
parser.add_argument("--dit", type=str, default=None, help="DiT directory or path")
parser.add_argument("--vae", type=str, default=None, help="VAE directory or path")
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory or path")
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory or path")
parser.add_argument("--image_encoder", type=str, required=True, help="Image Encoder directory or path")
parser.add_argument("--f1", action="store_true", help="Use F1 sampling method")
# LoRA
parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path")
parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier")
parser.add_argument("--include_patterns", type=str, nargs="*", default=None, help="LoRA module include patterns")
parser.add_argument("--exclude_patterns", type=str, nargs="*", default=None, help="LoRA module exclude patterns")
parser.add_argument(
"--save_merged_model",
type=str,
default=None,
help="Save merged model to path. If specified, no inference will be performed.",
)
# inference
parser.add_argument(
"--prompt",
type=str,
default=None,
help="prompt for generation. If `;;;` is used, it will be split into sections. Example: `section_index:prompt` or "
"`section_index:prompt;;;section_index:prompt;;;...`, section_index can be `0` or `-1` or `0-2`, `-1` means last section, `0-2` means from 0 to 2 (inclusive).",
)
parser.add_argument(
"--negative_prompt",
type=str,
default=None,
help="negative prompt for generation, default is empty string. should not change.",
)
parser.add_argument(
"--custom_system_prompt",
type=str,
default=None,
help="Custom system prompt for LLM. If specified, it will override the default system prompt. See hunyuan_model/text_encoder.py for the default system prompt.",
)
parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size, height and width")
parser.add_argument("--video_seconds", type=float, default=5.0, help="video length, default is 5.0 seconds")
parser.add_argument(
"--video_sections",
type=int,
default=None,
help="number of video sections, Default is None (auto calculate from video seconds)",
)
parser.add_argument(
"--one_frame_inference",
type=str,
default=None,
help="one frame inference, default is None, comma separated values from 'zero_post', 'no_2x', 'no_4x' and 'no_post'.",
)
parser.add_argument(
"--image_mask_path",
type=str,
default=None,
help="path to image mask for one frame inference. If specified, it will be used as mask for input image.",
)
parser.add_argument(
"--end_image_mask_path",
type=str,
default=None,
nargs="*",
help="path to end (reference) image mask for one frame inference. If specified, it will be used as mask for end image.",
)
parser.add_argument("--fps", type=int, default=30, help="video fps, default is 30")
parser.add_argument("--infer_steps", type=int, default=25, help="number of inference steps, default is 25")
parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
# parser.add_argument(
# "--cpu_noise", action="store_true", help="Use CPU to generate noise (compatible with ComfyUI). Default is False."
# )
parser.add_argument("--latent_window_size", type=int, default=9, help="latent window size, default is 9. should not change.")
parser.add_argument(
"--embedded_cfg_scale", type=float, default=10.0, help="Embeded CFG scale (distilled CFG Scale), default is 10.0"
)
parser.add_argument(
"--guidance_scale",
type=float,
default=1.0,
help="Guidance scale for classifier free guidance. Default is 1.0 (no guidance), should not change.",
)
parser.add_argument("--guidance_rescale", type=float, default=0.0, help="CFG Re-scale, default is 0.0. Should not change.")
# parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference")
parser.add_argument(
"--image_path",
type=str,
default=None,
help="path to image for image2video inference. If `;;;` is used, it will be used as section images. The notation is same as `--prompt`.",
)
parser.add_argument("--end_image_path", type=str, nargs="*", default=None, help="path to end image for image2video inference")
parser.add_argument(
"--latent_paddings",
type=str,
default=None,
help="latent paddings for each section, comma separated values. default is None (FramePack default paddings)",
)
# parser.add_argument(
# "--control_path",
# type=str,
# default=None,
# help="path to control video for inference with controlnet. video file or directory with images",
# )
# parser.add_argument("--trim_tail_frames", type=int, default=0, help="trim tail N frames from the video before saving")
# # Flow Matching
# parser.add_argument(
# "--flow_shift",
# type=float,
# default=None,
# help="Shift factor for flow matching schedulers. Default depends on task.",
# )
parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT, only for fp8")
# parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arithmetic (RTX 4XXX+), only for fp8_scaled")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
parser.add_argument(
"--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
)
parser.add_argument(
"--attn_mode",
type=str,
default="torch",
choices=["flash", "torch", "sageattn", "xformers", "sdpa"], # "flash2", "flash3",
help="attention mode",
)
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
parser.add_argument("--bulk_decode", action="store_true", help="decode all frames at once")
parser.add_argument("--blocks_to_swap", type=int, default=0, help="number of blocks to swap in the model")
parser.add_argument(
"--output_type",
type=str,
default="video",
choices=["video", "images", "latent", "both", "latent_images"],
help="output type",
)
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata")
parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference")
parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference")
# parser.add_argument("--compile", action="store_true", help="Enable torch.compile")
# parser.add_argument(
# "--compile_args",
# nargs=4,
# metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"),
# default=["inductor", "max-autotune-no-cudagraphs", "False", "False"],
# help="Torch.compile settings",
# )
# New arguments for batch and interactive modes
parser.add_argument("--from_file", type=str, default=None, help="Read prompts from a file")
parser.add_argument("--interactive", action="store_true", help="Interactive mode: read prompts from console")
args = parser.parse_args()
# Validate arguments
if args.from_file and args.interactive:
raise ValueError("Cannot use both --from_file and --interactive at the same time")
if args.latent_path is None or len(args.latent_path) == 0:
if args.prompt is None and not args.from_file and not args.interactive:
raise ValueError("Either --prompt, --from_file or --interactive must be specified")
return args
def parse_prompt_line(line: str) -> Dict[str, Any]:
"""Parse a prompt line into a dictionary of argument overrides
Args:
line: Prompt line with options
Returns:
Dict[str, Any]: Dictionary of argument overrides
"""
# TODO common function with hv_train_network.line_to_prompt_dict
parts = line.split(" --")
prompt = parts[0].strip()
# Create dictionary of overrides
overrides = {"prompt": prompt}
# Initialize end_image_path and end_image_mask_path as a list to accommodate multiple paths
overrides["end_image_path"] = []
overrides["end_image_mask_path"] = []
for part in parts[1:]:
if not part.strip():
continue
option_parts = part.split(" ", 1)
option = option_parts[0].strip()
value = option_parts[1].strip() if len(option_parts) > 1 else ""
# Map options to argument names
if option == "w":
overrides["video_size_width"] = int(value)
elif option == "h":
overrides["video_size_height"] = int(value)
elif option == "f":
overrides["video_seconds"] = float(value)
elif option == "d":
overrides["seed"] = int(value)
elif option == "s":
overrides["infer_steps"] = int(value)
elif option == "g" or option == "l":
overrides["guidance_scale"] = float(value)
# elif option == "fs":
# overrides["flow_shift"] = float(value)
elif option == "i":
overrides["image_path"] = value
elif option == "im":
overrides["image_mask_path"] = value
# elif option == "cn":
# overrides["control_path"] = value
elif option == "n":
overrides["negative_prompt"] = value
elif option == "vs": # video_sections
overrides["video_sections"] = int(value)
elif option == "ei": # end_image_path
overrides["end_image_path"].append(value)
elif option == "eim": # end_image_mask_path
overrides["end_image_mask_path"].append(value)
elif option == "of": # one_frame_inference
overrides["one_frame_inference"] = value
# If no end_image_path was provided, remove the empty list
if not overrides["end_image_path"]:
del overrides["end_image_path"]
if not overrides["end_image_mask_path"]:
del overrides["end_image_mask_path"]
return overrides
def apply_overrides(args: argparse.Namespace, overrides: Dict[str, Any]) -> argparse.Namespace:
"""Apply overrides to args
Args:
args: Original arguments
overrides: Dictionary of overrides
Returns:
argparse.Namespace: New arguments with overrides applied
"""
args_copy = copy.deepcopy(args)
for key, value in overrides.items():
if key == "video_size_width":
args_copy.video_size[1] = value
elif key == "video_size_height":
args_copy.video_size[0] = value
else:
setattr(args_copy, key, value)
return args_copy
def check_inputs(args: argparse.Namespace) -> Tuple[int, int, int]:
"""Validate video size and length
Args:
args: command line arguments
Returns:
Tuple[int, int, float]: (height, width, video_seconds)
"""
height = args.video_size[0]
width = args.video_size[1]
video_seconds = args.video_seconds
if args.video_sections is not None:
video_seconds = (args.video_sections * (args.latent_window_size * 4) + 1) / args.fps
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
return height, width, video_seconds
# region DiT model
def load_dit_model(args: argparse.Namespace, device: torch.device) -> HunyuanVideoTransformer3DModelPacked:
"""load DiT model
Args:
args: command line arguments
device: device to use
dit_dtype: data type for the model
dit_weight_dtype: data type for the model weights. None for as-is
Returns:
HunyuanVideoTransformer3DModelPacked: DiT model
"""
loading_device = "cpu"
if args.blocks_to_swap == 0 and not args.fp8_scaled and args.lora_weight is None:
loading_device = device
# do not fp8 optimize because we will merge LoRA weights
model = load_packed_model(device, args.dit, args.attn_mode, loading_device)
return model
def optimize_model(model: HunyuanVideoTransformer3DModelPacked, args: argparse.Namespace, device: torch.device) -> None:
"""optimize the model (FP8 conversion, device move etc.)
Args:
model: dit model
args: command line arguments
device: device to use
"""
if args.fp8_scaled:
# load state dict as-is and optimize to fp8
state_dict = model.state_dict()
# if no blocks to swap, we can move the weights to GPU after optimization on GPU (omit redundant CPU->GPU copy)
move_to_device = args.blocks_to_swap == 0 # if blocks_to_swap > 0, we will keep the model on CPU
state_dict = model.fp8_optimization(state_dict, device, move_to_device, use_scaled_mm=False) # args.fp8_fast)
info = model.load_state_dict(state_dict, strict=True, assign=True)
logger.info(f"Loaded FP8 optimized weights: {info}")
if args.blocks_to_swap == 0:
model.to(device) # make sure all parameters are on the right device (e.g. RoPE etc.)
else:
# simple cast to dit_dtype
target_dtype = None # load as-is (dit_weight_dtype == dtype of the weights in state_dict)
target_device = None
if args.fp8:
target_dtype = torch.float8e4m3fn
if args.blocks_to_swap == 0:
logger.info(f"Move model to device: {device}")
target_device = device
if target_device is not None and target_dtype is not None:
model.to(target_device, target_dtype) # move and cast at the same time. this reduces redundant copy operations
# if args.compile:
# compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args
# logger.info(
# f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]"
# )
# torch._dynamo.config.cache_size_limit = 32
# for i in range(len(model.blocks)):
# model.blocks[i] = torch.compile(
# model.blocks[i],
# backend=compile_backend,
# mode=compile_mode,
# dynamic=compile_dynamic.lower() in "true",
# fullgraph=compile_fullgraph.lower() in "true",
# )
if args.blocks_to_swap > 0:
logger.info(f"Enable swap {args.blocks_to_swap} blocks to CPU from device: {device}")
model.enable_block_swap(args.blocks_to_swap, device, supports_backward=False)
model.move_to_device_except_swap_blocks(device)
model.prepare_block_swap_before_forward()
else:
# make sure the model is on the right device
model.to(device)
model.eval().requires_grad_(False)
clean_memory_on_device(device)
# endregion
def decode_latent(
latent_window_size: int,
total_latent_sections: int,
bulk_decode: bool,
vae: AutoencoderKLCausal3D,
latent: torch.Tensor,
device: torch.device,
one_frame_inference_mode: bool = False,
) -> torch.Tensor:
logger.info(f"Decoding video...")
if latent.ndim == 4:
latent = latent.unsqueeze(0) # add batch dimension
vae.to(device)
if not bulk_decode and not one_frame_inference_mode:
latent_window_size = latent_window_size # default is 9
# total_latent_sections = (args.video_seconds * 30) / (latent_window_size * 4)
# total_latent_sections = int(max(round(total_latent_sections), 1))
num_frames = latent_window_size * 4 - 3
latents_to_decode = []
latent_frame_index = 0
for i in range(total_latent_sections - 1, -1, -1):
is_last_section = i == total_latent_sections - 1
generated_latent_frames = (num_frames + 3) // 4 + (1 if is_last_section else 0)
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
section_latent = latent[:, :, latent_frame_index : latent_frame_index + section_latent_frames, :, :]
if section_latent.shape[2] > 0:
latents_to_decode.append(section_latent)
latent_frame_index += generated_latent_frames
latents_to_decode = latents_to_decode[::-1] # reverse the order of latents to decode
history_pixels = None
for latent in tqdm(latents_to_decode):
if history_pixels is None:
history_pixels = hunyuan.vae_decode(latent, vae).cpu()
else:
overlapped_frames = latent_window_size * 4 - 3
current_pixels = hunyuan.vae_decode(latent, vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
clean_memory_on_device(device)
else:
# bulk decode
logger.info(f"Bulk decoding or one frame inference")
if not one_frame_inference_mode:
history_pixels = hunyuan.vae_decode(latent, vae).cpu() # normal
else:
# one frame inference
history_pixels = [hunyuan.vae_decode(latent[:, :, i : i + 1, :, :], vae).cpu() for i in range(latent.shape[2])]
history_pixels = torch.cat(history_pixels, dim=2)
vae.to("cpu")
logger.info(f"Decoded. Pixel shape {history_pixels.shape}")
return history_pixels[0] # remove batch dimension
def prepare_i2v_inputs(
args: argparse.Namespace,
device: torch.device,
vae: AutoencoderKLCausal3D,
shared_models: Optional[Dict] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
"""Prepare inputs for I2V
Args:
args: command line arguments
config: model configuration
device: device to use
vae: VAE model, used for image encoding
shared_models: dictionary containing pre-loaded models
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
(noise, context, context_null, y, (arg_c, arg_null))
"""
height, width, video_seconds = check_inputs(args)
# define parsing function
def parse_section_strings(input_string: str) -> dict[int, str]:
section_strings = {}
if ";;;" in input_string:
split_section_strings = input_string.split(";;;")
for section_str in split_section_strings:
if ":" not in section_str:
start = end = 0
section_str = section_str.strip()
else:
index_str, section_str = section_str.split(":", 1)
index_str = index_str.strip()
section_str = section_str.strip()
m = re.match(r"^(-?\d+)(-\d+)?$", index_str)
if m:
start = int(m.group(1))
end = int(m.group(2)[1:]) if m.group(2) is not None else start
else:
start = end = 0
section_str = section_str.strip()
for i in range(start, end + 1):
section_strings[i] = section_str
else:
section_strings[0] = input_string
# assert 0 in section_prompts, "Section prompts must contain section 0"
if 0 not in section_strings:
# use smallest section index. prefer positive index over negative index
# if all section indices are negative, use the smallest negative index
indices = list(section_strings.keys())
if all(i < 0 for i in indices):
section_index = min(indices)
else:
section_index = min(i for i in indices if i >= 0)
section_strings[0] = section_strings[section_index]
return section_strings
# prepare image
def preprocess_image(image_path: str):
image = Image.open(image_path).convert("RGB")
image_np = np.array(image) # PIL to numpy, HWC
image_np = image_video_dataset.resize_image_to_bucket(image_np, (width, height))
image_tensor = torch.from_numpy(image_np).float() / 127.5 - 1.0 # -1 to 1.0, HWC
image_tensor = image_tensor.permute(2, 0, 1)[None, :, None] # HWC -> CHW -> NCFHW, N=1, C=3, F=1
return image_tensor, image_np
section_image_paths = parse_section_strings(args.image_path)
section_images = {}
for index, image_path in section_image_paths.items():
img_tensor, img_np = preprocess_image(image_path)
section_images[index] = (img_tensor, img_np)
# check end images
if args.end_image_path is not None and len(args.end_image_path) > 0:
end_image_tensors = []
for end_img_path in args.end_image_path:
end_image_tensor, _ = preprocess_image(end_img_path)
end_image_tensors.append(end_image_tensor)
else:
end_image_tensors = None
# configure negative prompt
n_prompt = args.negative_prompt if args.negative_prompt else ""
# parse section prompts
section_prompts = parse_section_strings(args.prompt)
# load text encoder
if shared_models is not None:
tokenizer1, text_encoder1 = shared_models["tokenizer1"], shared_models["text_encoder1"]
tokenizer2, text_encoder2 = shared_models["tokenizer2"], shared_models["text_encoder2"]
text_encoder1.to(device)
else:
tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, device)
tokenizer2, text_encoder2 = load_text_encoder2(args)
text_encoder2.to(device)
logger.info(f"Encoding prompt")
llama_vecs = {}
llama_attention_masks = {}
clip_l_poolers = {}
with torch.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
for index, prompt in section_prompts.items():
llama_vec, clip_l_pooler = hunyuan.encode_prompt_conds(
prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2, custom_system_prompt=args.custom_system_prompt
)
llama_vec = llama_vec.cpu()
clip_l_pooler = clip_l_pooler.cpu()
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vecs[index] = llama_vec
llama_attention_masks[index] = llama_attention_mask
clip_l_poolers[index] = clip_l_pooler
if args.guidance_scale == 1.0:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vecs[0]), torch.zeros_like(clip_l_poolers[0])
else:
with torch.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
llama_vec_n, clip_l_pooler_n = hunyuan.encode_prompt_conds(
n_prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2, custom_system_prompt=args.custom_system_prompt
)
llama_vec_n = llama_vec_n.cpu()
clip_l_pooler_n = clip_l_pooler_n.cpu()
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# free text encoder and clean memory
if shared_models is not None: # if shared models are used, do not free them but move to CPU
text_encoder1.to("cpu")
text_encoder2.to("cpu")
del tokenizer1, text_encoder1, tokenizer2, text_encoder2 # do not free shared models
clean_memory_on_device(device)
# load image encoder
if shared_models is not None:
feature_extractor, image_encoder = shared_models["feature_extractor"], shared_models["image_encoder"]
else:
feature_extractor, image_encoder = load_image_encoders(args)
image_encoder.to(device)
# encode image with image encoder
section_image_encoder_last_hidden_states = {}
for index, (img_tensor, img_np) in section_images.items():
with torch.no_grad():
image_encoder_output = hf_clip_vision_encode(img_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state.cpu()
section_image_encoder_last_hidden_states[index] = image_encoder_last_hidden_state
# free image encoder and clean memory
if shared_models is not None:
image_encoder.to("cpu")
del image_encoder, feature_extractor
clean_memory_on_device(device)
# VAE encoding
logger.info(f"Encoding image to latent space")
vae.to(device)
section_start_latents = {}
for index, (img_tensor, img_np) in section_images.items():
start_latent = hunyuan.vae_encode(img_tensor, vae).cpu()
section_start_latents[index] = start_latent
# end_latent = hunyuan.vae_encode(end_image_tensor, vae).cpu() if end_image_tensor is not None else None
if end_image_tensors is not None:
end_latents = []
for end_image_tensor in end_image_tensors:
end_latent = hunyuan.vae_encode(end_image_tensor, vae).cpu()
end_latents.append(end_latent)
else:
end_latents = None
vae.to("cpu") # move VAE to CPU to save memory
clean_memory_on_device(device)
# prepare model input arguments
arg_c = {}
arg_null = {}
for index in llama_vecs.keys():
llama_vec = llama_vecs[index]
llama_attention_mask = llama_attention_masks[index]
clip_l_pooler = clip_l_poolers[index]
arg_c_i = {
"llama_vec": llama_vec,
"llama_attention_mask": llama_attention_mask,
"clip_l_pooler": clip_l_pooler,
"prompt": section_prompts[index], # for debugging
}
arg_c[index] = arg_c_i
arg_null = {
"llama_vec": llama_vec_n,
"llama_attention_mask": llama_attention_mask_n,
"clip_l_pooler": clip_l_pooler_n,
}
arg_c_img = {}
for index in section_images.keys():
image_encoder_last_hidden_state = section_image_encoder_last_hidden_states[index]
start_latent = section_start_latents[index]
arg_c_img_i = {
"image_encoder_last_hidden_state": image_encoder_last_hidden_state,
"start_latent": start_latent,
"image_path": section_image_paths[index],
}
arg_c_img[index] = arg_c_img_i
return height, width, video_seconds, arg_c, arg_null, arg_c_img, end_latents
# def setup_scheduler(args: argparse.Namespace, config, device: torch.device) -> Tuple[Any, torch.Tensor]:
# """setup scheduler for sampling
# Args:
# args: command line arguments
# config: model configuration
# device: device to use
# Returns:
# Tuple[Any, torch.Tensor]: (scheduler, timesteps)
# """
# if args.sample_solver == "unipc":
# scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False)
# scheduler.set_timesteps(args.infer_steps, device=device, shift=args.flow_shift)
# timesteps = scheduler.timesteps
# elif args.sample_solver == "dpm++":
# scheduler = FlowDPMSolverMultistepScheduler(
# num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False
# )
# sampling_sigmas = get_sampling_sigmas(args.infer_steps, args.flow_shift)
# timesteps, _ = retrieve_timesteps(scheduler, device=device, sigmas=sampling_sigmas)
# elif args.sample_solver == "vanilla":
# scheduler = FlowMatchDiscreteScheduler(num_train_timesteps=config.num_train_timesteps, shift=args.flow_shift)
# scheduler.set_timesteps(args.infer_steps, device=device)
# timesteps = scheduler.timesteps
# # FlowMatchDiscreteScheduler does not support generator argument in step method
# org_step = scheduler.step
# def step_wrapper(
# model_output: torch.Tensor,
# timestep: Union[int, torch.Tensor],
# sample: torch.Tensor,
# return_dict: bool = True,
# generator=None,
# ):
# return org_step(model_output, timestep, sample, return_dict=return_dict)
# scheduler.step = step_wrapper
# else:
# raise NotImplementedError("Unsupported solver.")
# return scheduler, timesteps
def convert_lora_for_framepack(lora_sd: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
# Check the format of the LoRA file
keys = list(lora_sd.keys())
if keys[0].startswith("lora_unet_"):
# logging.info(f"Musubi Tuner LoRA detected")
pass
else:
transformer_prefixes = ["diffusion_model", "transformer"] # to ignore Text Encoder modules
lora_suffix = None
prefix = None
for key in keys:
if lora_suffix is None and "lora_A" in key:
lora_suffix = "lora_A"
if prefix is None:
pfx = key.split(".")[0]
if pfx in transformer_prefixes:
prefix = pfx
if lora_suffix is not None and prefix is not None:
break
if lora_suffix == "lora_A" and prefix is not None:
logging.info(f"Diffusion-pipe (?) LoRA detected, converting to the default LoRA format")
lora_sd = convert_lora_from_diffusion_pipe_or_something(lora_sd, "lora_unet_")
else:
logging.info(f"LoRA file format not recognized. Using it as-is.")
# Check LoRA is for FramePack or for HunyuanVideo
is_hunyuan = False
for key in lora_sd.keys():
if "double_blocks" in key or "single_blocks" in key:
is_hunyuan = True
break
if is_hunyuan:
logging.info("HunyuanVideo LoRA detected, converting to FramePack format")
lora_sd = convert_hunyuan_to_framepack(lora_sd)
return lora_sd
def convert_lora_from_diffusion_pipe_or_something(lora_sd: dict[str, torch.Tensor], prefix: str) -> dict[str, torch.Tensor]:
"""
Convert LoRA weights to the format used by the diffusion pipeline to Musubi Tuner.
Copy from Musubi Tuner repo.
"""
# convert from diffusers(?) to default LoRA
# Diffusers format: {"diffusion_model.module.name.lora_A.weight": weight, "diffusion_model.module.name.lora_B.weight": weight, ...}
# default LoRA format: {"prefix_module_name.lora_down.weight": weight, "prefix_module_name.lora_up.weight": weight, ...}
# note: Diffusers has no alpha, so alpha is set to rank
new_weights_sd = {}
lora_dims = {}
for key, weight in lora_sd.items():
diffusers_prefix, key_body = key.split(".", 1)
if diffusers_prefix != "diffusion_model" and diffusers_prefix != "transformer":
print(f"unexpected key: {key} in diffusers format")
continue
new_key = f"{prefix}{key_body}".replace(".", "_").replace("_lora_A_", ".lora_down.").replace("_lora_B_", ".lora_up.")
new_weights_sd[new_key] = weight
lora_name = new_key.split(".")[0] # before first dot
if lora_name not in lora_dims and "lora_down" in new_key:
lora_dims[lora_name] = weight.shape[0]
# add alpha with rank
for lora_name, dim in lora_dims.items():
new_weights_sd[f"{lora_name}.alpha"] = torch.tensor(dim)
return new_weights_sd
def convert_hunyuan_to_framepack(lora_sd: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
"""
Convert HunyuanVideo LoRA weights to FramePack format.
"""
new_lora_sd = {}
for key, weight in lora_sd.items():
if "double_blocks" in key:
key = key.replace("double_blocks", "transformer_blocks")
key = key.replace("img_mod_linear", "norm1_linear")
key = key.replace("img_attn_qkv", "attn_to_QKV") # split later
key = key.replace("img_attn_proj", "attn_to_out_0")
key = key.replace("img_mlp_fc1", "ff_net_0_proj")
key = key.replace("img_mlp_fc2", "ff_net_2")
key = key.replace("txt_mod_linear", "norm1_context_linear")
key = key.replace("txt_attn_qkv", "attn_add_QKV_proj") # split later
key = key.replace("txt_attn_proj", "attn_to_add_out")
key = key.replace("txt_mlp_fc1", "ff_context_net_0_proj")
key = key.replace("txt_mlp_fc2", "ff_context_net_2")
elif "single_blocks" in key:
key = key.replace("single_blocks", "single_transformer_blocks")
key = key.replace("linear1", "attn_to_QKVM") # split later
key = key.replace("linear2", "proj_out")
key = key.replace("modulation_linear", "norm_linear")
else:
print(f"Unsupported module name: {key}, only double_blocks and single_blocks are supported")
continue
if "QKVM" in key:
# split QKVM into Q, K, V, M
key_q = key.replace("QKVM", "q")
key_k = key.replace("QKVM", "k")
key_v = key.replace("QKVM", "v")
key_m = key.replace("attn_to_QKVM", "proj_mlp")
if "_down" in key or "alpha" in key:
# copy QKVM weight or alpha to Q, K, V, M
assert "alpha" in key or weight.size(1) == 3072, f"QKVM weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight
new_lora_sd[key_k] = weight
new_lora_sd[key_v] = weight
new_lora_sd[key_m] = weight
elif "_up" in key:
# split QKVM weight into Q, K, V, M
assert weight.size(0) == 21504, f"QKVM weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight[:3072]
new_lora_sd[key_k] = weight[3072 : 3072 * 2]
new_lora_sd[key_v] = weight[3072 * 2 : 3072 * 3]
new_lora_sd[key_m] = weight[3072 * 3 :] # 21504 - 3072 * 3 = 12288
else:
print(f"Unsupported module name: {key}")
continue
elif "QKV" in key:
# split QKV into Q, K, V
key_q = key.replace("QKV", "q")
key_k = key.replace("QKV", "k")
key_v = key.replace("QKV", "v")
if "_down" in key or "alpha" in key:
# copy QKV weight or alpha to Q, K, V
assert "alpha" in key or weight.size(1) == 3072, f"QKV weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight
new_lora_sd[key_k] = weight
new_lora_sd[key_v] = weight
elif "_up" in key:
# split QKV weight into Q, K, V
assert weight.size(0) == 3072 * 3, f"QKV weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight[:3072]
new_lora_sd[key_k] = weight[3072 : 3072 * 2]
new_lora_sd[key_v] = weight[3072 * 2 :]
else:
print(f"Unsupported module name: {key}")
continue
else:
# no split needed
new_lora_sd[key] = weight
return new_lora_sd
def generate(
args: argparse.Namespace, gen_settings: GenerationSettings, shared_models: Optional[Dict] = None
) -> tuple[AutoencoderKLCausal3D, torch.Tensor]:
"""main function for generation
Args:
args: command line arguments
shared_models: dictionary containing pre-loaded models
Returns:
tuple: (AutoencoderKLCausal3D model (vae), torch.Tensor generated latent)
"""
device, dit_weight_dtype = (gen_settings.device, gen_settings.dit_weight_dtype)
# prepare seed
seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
args.seed = seed # set seed to args for saving
# Check if we have shared models
if shared_models is not None:
# Use shared models and encoded data
vae = shared_models.get("vae")
height, width, video_seconds, context, context_null, context_img, end_latents = prepare_i2v_inputs(
args, device, vae, shared_models
)
else:
# prepare inputs without shared models
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
height, width, video_seconds, context, context_null, context_img, end_latents = prepare_i2v_inputs(args, device, vae)
if shared_models is None or "model" not in shared_models:
# load DiT model
model = load_dit_model(args, device)
# merge LoRA weights
if args.lora_weight is not None and len(args.lora_weight) > 0:
# ugly hack to common merge_lora_weights function
merge_lora_weights(lora_framepack, model, args, device, convert_lora_for_framepack)
# if we only want to save the model, we can skip the rest
if args.save_merged_model:
return None, None
# optimize model: fp8 conversion, block swap etc.
optimize_model(model, args, device)
if shared_models is not None:
shared_models["model"] = model
else:
# use shared model
model: HunyuanVideoTransformer3DModelPacked = shared_models["model"]
model.move_to_device_except_swap_blocks(device)
model.prepare_block_swap_before_forward()
# sampling
latent_window_size = args.latent_window_size # default is 9
# ex: (5s * 30fps) / (9 * 4) = 4.16 -> 4 sections, 60s -> 1800 / 36 = 50 sections
total_latent_sections = (video_seconds * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
# set random generator
seed_g = torch.Generator(device="cpu")
seed_g.manual_seed(seed)
num_frames = latent_window_size * 4 - 3
logger.info(
f"Video size: {height}x{width}@{video_seconds} (HxW@seconds), fps: {args.fps}, num sections: {total_latent_sections}, "
f"infer_steps: {args.infer_steps}, frames per generation: {num_frames}"
)
# video generation ######
f1_mode = args.f1
one_frame_inference = None
if args.one_frame_inference is not None:
one_frame_inference = set()
for mode in args.one_frame_inference.split(","):
one_frame_inference.add(mode.strip())
# prepare history latents
history_latents = torch.zeros((1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32)
if end_latents is not None and not f1_mode:
logger.info(f"Use end image(s): {args.end_image_path}")
for i, end_latent in enumerate(end_latents):
history_latents[:, :, i + 1 : i + 2] = end_latent.to(history_latents)
# prepare clean latents and indices
if not f1_mode:
# Inverted Anti-drifting
total_generated_latent_frames = 0
latent_paddings = reversed(range(total_latent_sections))
if total_latent_sections > 4 and one_frame_inference is None:
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
# items looks better than expanding it when total_latent_sections > 4
# One can try to remove below trick and just
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
# 4 sections: 3, 2, 1, 0. 50 sections: 3, 2, 2, ... 2, 1, 0
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
if args.latent_paddings is not None:
# parse user defined latent paddings
user_latent_paddings = [int(x) for x in args.latent_paddings.split(",")]
if len(user_latent_paddings) < total_latent_sections:
print(
f"User defined latent paddings length {len(user_latent_paddings)} does not match total sections {total_latent_sections}."
)
print(f"Use default paddings instead for unspecified sections.")
latent_paddings[: len(user_latent_paddings)] = user_latent_paddings
elif len(user_latent_paddings) > total_latent_sections:
print(
f"User defined latent paddings length {len(user_latent_paddings)} is greater than total sections {total_latent_sections}."
)
print(f"Use only first {total_latent_sections} paddings instead.")
latent_paddings = user_latent_paddings[:total_latent_sections]
else:
latent_paddings = user_latent_paddings
else:
start_latent = context_img[0]["start_latent"]
history_latents = torch.cat([history_latents, start_latent], dim=2)
total_generated_latent_frames = 1 # a bit hacky, but we employ the same logic as in official code
latent_paddings = [0] * total_latent_sections # dummy paddings for F1 mode
latent_paddings = list(latent_paddings) # make sure it's a list
for loop_index in range(total_latent_sections):
latent_padding = latent_paddings[loop_index]
if not f1_mode:
# Inverted Anti-drifting
section_index_reverse = loop_index # 0, 1, 2, 3
section_index = total_latent_sections - 1 - section_index_reverse # 3, 2, 1, 0
section_index_from_last = -(section_index_reverse + 1) # -1, -2, -3, -4
is_last_section = section_index == 0
is_first_section = section_index_reverse == 0
latent_padding_size = latent_padding * latent_window_size
logger.info(f"latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}")
else:
section_index = loop_index # 0, 1, 2, 3
section_index_from_last = section_index - total_latent_sections # -4, -3, -2, -1
is_last_section = loop_index == total_latent_sections - 1
is_first_section = loop_index == 0
latent_padding_size = 0 # dummy padding for F1 mode
# select start latent
if section_index_from_last in context_img:
image_index = section_index_from_last
elif section_index in context_img:
image_index = section_index
else:
image_index = 0
start_latent = context_img[image_index]["start_latent"]
image_path = context_img[image_index]["image_path"]
if image_index != 0: # use section image other than section 0
logger.info(f"Apply experimental section image, latent_padding_size = {latent_padding_size}, image_path = {image_path}")
if not f1_mode:
# Inverted Anti-drifting
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
(
clean_latent_indices_pre,
blank_indices,
latent_indices,
clean_latent_indices_post,
clean_latent_2x_indices,
clean_latent_4x_indices,
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split(
[1, 2, 16], dim=2
)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
if end_latents is not None:
clean_latents = torch.cat([clean_latents_pre, history_latents[:, :, : len(end_latents)]], dim=2)
clean_latent_indices_extended = torch.zeros(1, 1 + len(end_latents), dtype=clean_latent_indices.dtype)
clean_latent_indices_extended[:, :2] = clean_latent_indices
clean_latent_indices = clean_latent_indices_extended
else:
# F1 mode
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
(
clean_latent_indices_start,
clean_latent_4x_indices,
clean_latent_2x_indices,
clean_latent_1x_indices,
latent_indices,
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]) :, :, :].split(
[16, 2, 1], dim=2
)
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
# if use_teacache:
# transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
# else:
# transformer.initialize_teacache(enable_teacache=False)
# prepare conditioning inputs
if section_index_from_last in context:
prompt_index = section_index_from_last
elif section_index in context:
prompt_index = section_index
else:
prompt_index = 0
context_for_index = context[prompt_index]
# if args.section_prompts is not None:
logger.info(f"Section {section_index}: {context_for_index['prompt']}")
llama_vec = context_for_index["llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask = context_for_index["llama_attention_mask"].to(device)
clip_l_pooler = context_for_index["clip_l_pooler"].to(device, dtype=torch.bfloat16)
image_encoder_last_hidden_state = context_img[image_index]["image_encoder_last_hidden_state"].to(
device, dtype=torch.bfloat16
)
llama_vec_n = context_null["llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask_n = context_null["llama_attention_mask"].to(device)
clip_l_pooler_n = context_null["clip_l_pooler"].to(device, dtype=torch.bfloat16)
# call DiT model to generate latents
sample_num_frames = num_frames
if one_frame_inference is not None:
# one frame inference
latent_indices = latent_indices[:, -1:] # only use the last frame (default)
sample_num_frames = 1
def get_latent_mask(mask_path: str):
mask_image = Image.open(mask_path).convert("L") # grayscale
mask_image = mask_image.resize((width // 8, height // 8), Image.LANCZOS)
mask_image = np.array(mask_image) # PIL to numpy, HWC
mask_image = torch.from_numpy(mask_image).float() / 255.0 # 0 to 1.0, HWC
mask_image = mask_image.squeeze(-1) # HWC -> HW
mask_image = mask_image.unsqueeze(0).unsqueeze(0) # HW -> 11HW
mask_image = mask_image.to(clean_latents)
return mask_image
if args.image_mask_path is not None:
mask_image = get_latent_mask(args.image_mask_path)
logger.info(f"Apply mask for clean latents (start image): {args.image_mask_path}, shape: {mask_image.shape}")
clean_latents[:, :, 0, :, :] = clean_latents[:, :, 0, :, :] * mask_image
if args.end_image_mask_path is not None and len(args.end_image_mask_path) > 0:
# # apply mask for clean latents 1x (end image)
count = min(len(args.end_image_mask_path), len(end_latents))
for i in range(count):
mask_image = get_latent_mask(args.end_image_mask_path[i])
logger.info(
f"Apply mask for clean latents 1x (end image) for {i+1}: {args.end_image_mask_path[i]}, shape: {mask_image.shape}"
)
clean_latents[:, :, i + 1 : i + 2, :, :] = clean_latents[:, :, i + 1 : i + 2, :, :] * mask_image
for one_frame_param in one_frame_inference:
if one_frame_param.startswith("target_index="):
target_index = int(one_frame_param.split("=")[1])
latent_indices[:, 0] = target_index
logger.info(f"Set index for target: {target_index}")
elif one_frame_param.startswith("start_index="):
start_index = int(one_frame_param.split("=")[1])
clean_latent_indices[:, 0] = start_index
logger.info(f"Set index for clean latent pre (start image): {start_index}")
elif one_frame_param.startswith("history_index="):
history_indices = one_frame_param.split("=")[1].split(";")
i = 0
while i < len(history_indices) and i < len(end_latents):
history_index = int(history_indices[i])
clean_latent_indices[:, 1 + i] = history_index
i += 1
while i < len(end_latents):
clean_latent_indices[:, 1 + i] = history_index
i += 1
logger.info(f"Set index for clean latent post (end image): {history_indices}")
if "no_2x" in one_frame_inference:
clean_latents_2x = None
clean_latent_2x_indices = None
logger.info(f"No clean_latents_2x")
if "no_4x" in one_frame_inference:
clean_latents_4x = None
clean_latent_4x_indices = None
logger.info(f"No clean_latents_4x")
if "no_post" in one_frame_inference:
clean_latents = clean_latents[:, :, :1, :, :]
clean_latent_indices = clean_latent_indices[:, :1]
logger.info(f"No clean_latents post")
elif "zero_post" in one_frame_inference:
# zero out the history latents. this seems to prevent the images from corrupting
clean_latents[:, :, 1:, :, :] = torch.zeros_like(clean_latents[:, :, 1:, :, :])
logger.info(f"Zero out clean_latents post")
logger.info(
f"One frame inference. clean_latent: {clean_latents.shape} latent_indices: {latent_indices}, clean_latent_indices: {clean_latent_indices}, num_frames: {sample_num_frames}"
)
generated_latents = sample_hunyuan(
transformer=model,
sampler=args.sample_solver,
width=width,
height=height,
frames=sample_num_frames,
real_guidance_scale=args.guidance_scale,
distilled_guidance_scale=args.embedded_cfg_scale,
guidance_rescale=args.guidance_rescale,
# shift=3.0,
num_inference_steps=args.infer_steps,
generator=seed_g,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
)
# concatenate generated latents
total_generated_latent_frames += int(generated_latents.shape[2])
if not f1_mode:
# Inverted Anti-drifting: prepend generated latents to history latents
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += 1
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
else:
# F1 mode: append generated latents to history latents
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
logger.info(f"Generated. Latent shape {real_history_latents.shape}")
# # TODO support saving intermediate video
# clean_memory_on_device(device)
# vae.to(device)
# if history_pixels is None:
# history_pixels = hunyuan.vae_decode(real_history_latents, vae).cpu()
# else:
# section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
# overlapped_frames = latent_window_size * 4 - 3
# current_pixels = hunyuan.vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
# history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
# vae.to("cpu")
# # if not is_last_section:
# # # save intermediate video
# # save_video(history_pixels[0], args, total_generated_latent_frames)
# print(f"Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}")
if one_frame_inference is not None:
real_history_latents = real_history_latents[:, :, 1:, :, :] # remove the first frame (start_latent)
# Only clean up shared models if they were created within this function
if shared_models is None:
del model # free memory
synchronize_device(device)
else:
# move model to CPU to save memory
model.to("cpu")
# wait for 5 seconds until block swap is done
logger.info("Waiting for 5 seconds to finish block swap")
time.sleep(5)
gc.collect()
clean_memory_on_device(device)
return vae, real_history_latents
def save_latent(latent: torch.Tensor, args: argparse.Namespace, height: int, width: int) -> str:
"""Save latent to file
Args:
latent: Latent tensor
args: command line arguments
height: height of frame
width: width of frame
Returns:
str: Path to saved latent file
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
video_seconds = args.video_seconds
latent_path = f"{save_path}/{time_flag}_{seed}_latent.safetensors"
if args.no_metadata:
metadata = None
else:
metadata = {
"seeds": f"{seed}",
"prompt": f"{args.prompt}",
"height": f"{height}",
"width": f"{width}",
"video_seconds": f"{video_seconds}",
"infer_steps": f"{args.infer_steps}",
"guidance_scale": f"{args.guidance_scale}",
"latent_window_size": f"{args.latent_window_size}",
"embedded_cfg_scale": f"{args.embedded_cfg_scale}",
"guidance_rescale": f"{args.guidance_rescale}",
"sample_solver": f"{args.sample_solver}",
"latent_window_size": f"{args.latent_window_size}",
"fps": f"{args.fps}",
}
if args.negative_prompt is not None:
metadata["negative_prompt"] = f"{args.negative_prompt}"
sd = {"latent": latent.contiguous()}
save_file(sd, latent_path, metadata=metadata)
logger.info(f"Latent saved to: {latent_path}")
return latent_path
def save_video(
video: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None, latent_frames: Optional[int] = None
) -> str:
"""Save video to file
Args:
video: Video tensor
args: command line arguments
original_base_name: Original base name (if latents are loaded from files)
Returns:
str: Path to saved video file
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
original_name = "" if original_base_name is None else f"_{original_base_name}"
latent_frames = "" if latent_frames is None else f"_{latent_frames}"
video_path = f"{save_path}/{time_flag}_{seed}{original_name}{latent_frames}.mp4"
video = video.unsqueeze(0)
save_videos_grid(video, video_path, fps=args.fps, rescale=True)
logger.info(f"Video saved to: {video_path}")
return video_path
def save_images(sample: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str:
"""Save images to directory
Args:
sample: Video tensor
args: command line arguments
original_base_name: Original base name (if latents are loaded from files)
Returns:
str: Path to saved images directory
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
original_name = "" if original_base_name is None else f"_{original_base_name}"
image_name = f"{time_flag}_{seed}{original_name}"
sample = sample.unsqueeze(0)
one_frame_mode = args.one_frame_inference is not None
save_images_grid(sample, save_path, image_name, rescale=True, create_subdir=not one_frame_mode)
logger.info(f"Sample images saved to: {save_path}/{image_name}")
return f"{save_path}/{image_name}"
def save_output(
args: argparse.Namespace,
vae: AutoencoderKLCausal3D,
latent: torch.Tensor,
device: torch.device,
original_base_names: Optional[List[str]] = None,
) -> None:
"""save output
Args:
args: command line arguments
vae: VAE model
latent: latent tensor
device: device to use
original_base_names: original base names (if latents are loaded from files)
"""
height, width = latent.shape[-2], latent.shape[-1] # BCTHW
height *= 8
width *= 8
# print(f"Saving output. Latent shape {latent.shape}; pixel shape {height}x{width}")
if args.output_type == "latent" or args.output_type == "both" or args.output_type == "latent_images":
# save latent
save_latent(latent, args, height, width)
if args.output_type == "latent":
return
total_latent_sections = (args.video_seconds * 30) / (args.latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
video = decode_latent(
args.latent_window_size, total_latent_sections, args.bulk_decode, vae, latent, device, args.one_frame_inference is not None
)
if args.output_type == "video" or args.output_type == "both":
# save video
original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
save_video(video, args, original_name)
elif args.output_type == "images" or args.output_type == "latent_images":
# save images
original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
save_images(video, args, original_name)
def preprocess_prompts_for_batch(prompt_lines: List[str], base_args: argparse.Namespace) -> List[Dict]:
"""Process multiple prompts for batch mode
Args:
prompt_lines: List of prompt lines
base_args: Base command line arguments
Returns:
List[Dict]: List of prompt data dictionaries
"""
prompts_data = []
for line in prompt_lines:
line = line.strip()
if not line or line.startswith("#"): # Skip empty lines and comments
continue
# Parse prompt line and create override dictionary
prompt_data = parse_prompt_line(line)
logger.info(f"Parsed prompt data: {prompt_data}")
prompts_data.append(prompt_data)
return prompts_data
def load_shared_models(args: argparse.Namespace) -> Dict:
"""Load shared models for batch processing or interactive mode.
Models are loaded to CPU to save memory.
Args:
args: Base command line arguments
Returns:
Dict: Dictionary of shared models
"""
shared_models = {}
tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, "cpu")
tokenizer2, text_encoder2 = load_text_encoder2(args)
feature_extractor, image_encoder = load_image_encoders(args)
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, "cpu")
shared_models["tokenizer1"] = tokenizer1
shared_models["text_encoder1"] = text_encoder1
shared_models["tokenizer2"] = tokenizer2
shared_models["text_encoder2"] = text_encoder2
shared_models["feature_extractor"] = feature_extractor
shared_models["image_encoder"] = image_encoder
shared_models["vae"] = vae
return shared_models
def process_batch_prompts(prompts_data: List[Dict], args: argparse.Namespace) -> None:
"""Process multiple prompts with model reuse
Args:
prompts_data: List of prompt data dictionaries
args: Base command line arguments
"""
if not prompts_data:
logger.warning("No valid prompts found")
return
# 1. Load configuration
gen_settings = get_generation_settings(args)
device = gen_settings.device
# 2. Load models to CPU in advance except for VAE and DiT
shared_models = load_shared_models(args)
# 3. Generate for each prompt
all_latents = []
all_prompt_args = []
with torch.no_grad():
for prompt_data in prompts_data:
prompt = prompt_data["prompt"]
prompt_args = apply_overrides(args, prompt_data)
logger.info(f"Processing prompt: {prompt}")
try:
vae, latent = generate(prompt_args, gen_settings, shared_models)
# Save latent if needed
if args.output_type == "latent" or args.output_type == "both" or args.output_type == "latent_images":
height, width = latent.shape[-2], latent.shape[-1] # BCTHW
height *= 8
width *= 8
save_latent(latent, prompt_args, height, width)
all_latents.append(latent)
all_prompt_args.append(prompt_args)
except Exception as e:
logger.error(f"Error processing prompt: {prompt}. Error: {e}")
continue
# 4. Free models
if "model" in shared_models:
del shared_models["model"]
del shared_models["tokenizer1"]
del shared_models["text_encoder1"]
del shared_models["tokenizer2"]
del shared_models["text_encoder2"]
del shared_models["feature_extractor"]
del shared_models["image_encoder"]
clean_memory_on_device(device)
synchronize_device(device)
# 5. Decode latents if needed
if args.output_type != "latent":
logger.info("Decoding latents to videos/images")
vae.to(device)
for i, (latent, prompt_args) in enumerate(zip(all_latents, all_prompt_args)):
logger.info(f"Decoding output {i+1}/{len(all_latents)}")
# avoid saving latents again (ugly hack)
if prompt_args.output_type == "both":
prompt_args.output_type = "video"
elif prompt_args.output_type == "latent_images":
prompt_args.output_type = "images"
save_output(prompt_args, vae, latent[0], device)
def process_interactive(args: argparse.Namespace) -> None:
"""Process prompts in interactive mode
Args:
args: Base command line arguments
"""
gen_settings = get_generation_settings(args)
device = gen_settings.device
shared_models = load_shared_models(args)
print("Interactive mode. Enter prompts (Ctrl+D or Ctrl+Z (Windows) to exit):")
try:
while True:
try:
line = input("> ")
if not line.strip():
continue
# Parse prompt
prompt_data = parse_prompt_line(line)
prompt_args = apply_overrides(args, prompt_data)
# Generate latent
vae, latent = generate(prompt_args, gen_settings, shared_models)
# Save latent and video
save_output(prompt_args, vae, latent[0], device)
except KeyboardInterrupt:
print("\nInterrupted. Continue (Ctrl+D or Ctrl+Z (Windows) to exit)")
continue
except EOFError:
print("\nExiting interactive mode")
def get_generation_settings(args: argparse.Namespace) -> GenerationSettings:
device = torch.device(args.device)
dit_weight_dtype = None # default
if args.fp8_scaled:
dit_weight_dtype = None # various precision weights, so don't cast to specific dtype
elif args.fp8:
dit_weight_dtype = torch.float8_e4m3fn
logger.info(f"Using device: {device}, DiT weight weight precision: {dit_weight_dtype}")
gen_settings = GenerationSettings(device=device, dit_weight_dtype=dit_weight_dtype)
return gen_settings
def main():
# Parse arguments
args = parse_args()
# Check if latents are provided
latents_mode = args.latent_path is not None and len(args.latent_path) > 0
# Set device
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
logger.info(f"Using device: {device}")
args.device = device
if latents_mode:
# Original latent decode mode
original_base_names = []
latents_list = []
seeds = []
# assert len(args.latent_path) == 1, "Only one latent path is supported for now"
for latent_path in args.latent_path:
original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0])
seed = 0
if os.path.splitext(latent_path)[1] != ".safetensors":
latents = torch.load(latent_path, map_location="cpu")
else:
latents = load_file(latent_path)["latent"]
with safe_open(latent_path, framework="pt") as f:
metadata = f.metadata()
if metadata is None:
metadata = {}
logger.info(f"Loaded metadata: {metadata}")
if "seeds" in metadata:
seed = int(metadata["seeds"])
if "height" in metadata and "width" in metadata:
height = int(metadata["height"])
width = int(metadata["width"])
args.video_size = [height, width]
if "video_seconds" in metadata:
args.video_seconds = float(metadata["video_seconds"])
seeds.append(seed)
logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}")
if latents.ndim == 5: # [BCTHW]
latents = latents.squeeze(0) # [CTHW]
latents_list.append(latents)
# latent = torch.stack(latents_list, dim=0) # [N, ...], must be same shape
for i, latent in enumerate(latents_list):
args.seed = seeds[i]
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
save_output(args, vae, latent, device, original_base_names)
elif args.from_file:
# Batch mode from file
# Read prompts from file
with open(args.from_file, "r", encoding="utf-8") as f:
prompt_lines = f.readlines()
# Process prompts
prompts_data = preprocess_prompts_for_batch(prompt_lines, args)
process_batch_prompts(prompts_data, args)
elif args.interactive:
# Interactive mode
process_interactive(args)
else:
# Single prompt mode (original behavior)
# Generate latent
gen_settings = get_generation_settings(args)
vae, latent = generate(args, gen_settings)
# print(f"Generated latent shape: {latent.shape}")
if args.save_merged_model:
return
# Save latent and video
save_output(args, vae, latent[0], device)
logger.info("Done!")
if __name__ == "__main__":
main()