File size: 71,487 Bytes
7bc5051 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 |
import argparse
from datetime import datetime
import gc
import json
import random
import os
import re
import time
import math
import copy
from typing import Tuple, Optional, List, Union, Any, Dict
import torch
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from PIL import Image
import cv2
import numpy as np
import torchvision.transforms.functional as TF
from transformers import LlamaModel
from tqdm import tqdm
from networks import lora_framepack
from hunyuan_model.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
from frame_pack import hunyuan
from frame_pack.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked, load_packed_model
from frame_pack.utils import crop_or_pad_yield_mask, resize_and_center_crop, soft_append_bcthw
from frame_pack.bucket_tools import find_nearest_bucket
from frame_pack.clip_vision import hf_clip_vision_encode
from frame_pack.k_diffusion_hunyuan import sample_hunyuan
from dataset import image_video_dataset
try:
from lycoris.kohya import create_network_from_weights
except:
pass
from utils.device_utils import clean_memory_on_device
from hv_generate_video import save_images_grid, save_videos_grid, synchronize_device
from wan_generate_video import merge_lora_weights
from frame_pack.framepack_utils import load_vae, load_text_encoder1, load_text_encoder2, load_image_encoders
from dataset.image_video_dataset import load_video
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
class GenerationSettings:
def __init__(self, device: torch.device, dit_weight_dtype: Optional[torch.dtype] = None):
self.device = device
self.dit_weight_dtype = dit_weight_dtype # not used currently because model may be optimized
def parse_args() -> argparse.Namespace:
"""parse command line arguments"""
parser = argparse.ArgumentParser(description="Wan 2.1 inference script")
# WAN arguments
# parser.add_argument("--ckpt_dir", type=str, default=None, help="The path to the checkpoint directory (Wan 2.1 official).")
parser.add_argument(
"--sample_solver", type=str, default="unipc", choices=["unipc", "dpm++", "vanilla"], help="The solver used to sample."
)
parser.add_argument("--dit", type=str, default=None, help="DiT directory or path")
parser.add_argument("--vae", type=str, default=None, help="VAE directory or path")
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory or path")
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory or path")
parser.add_argument("--image_encoder", type=str, required=True, help="Image Encoder directory or path")
parser.add_argument("--f1", action="store_true", help="Use F1 sampling method")
# LoRA
parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path")
parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier")
parser.add_argument("--include_patterns", type=str, nargs="*", default=None, help="LoRA module include patterns")
parser.add_argument("--exclude_patterns", type=str, nargs="*", default=None, help="LoRA module exclude patterns")
parser.add_argument(
"--save_merged_model",
type=str,
default=None,
help="Save merged model to path. If specified, no inference will be performed.",
)
# inference
parser.add_argument(
"--prompt",
type=str,
default=None,
help="prompt for generation. If `;;;` is used, it will be split into sections. Example: `section_index:prompt` or "
"`section_index:prompt;;;section_index:prompt;;;...`, section_index can be `0` or `-1` or `0-2`, `-1` means last section, `0-2` means from 0 to 2 (inclusive).",
)
parser.add_argument(
"--negative_prompt",
type=str,
default=None,
help="negative prompt for generation, default is empty string. should not change.",
)
parser.add_argument(
"--custom_system_prompt",
type=str,
default=None,
help="Custom system prompt for LLM. If specified, it will override the default system prompt. See hunyuan_model/text_encoder.py for the default system prompt.",
)
parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size, height and width")
parser.add_argument("--video_seconds", type=float, default=5.0, help="video length, default is 5.0 seconds")
parser.add_argument(
"--video_sections",
type=int,
default=None,
help="number of video sections, Default is None (auto calculate from video seconds)",
)
parser.add_argument(
"--one_frame_inference",
type=str,
default=None,
help="one frame inference, default is None, comma separated values from 'zero_post', 'no_2x', 'no_4x' and 'no_post'.",
)
parser.add_argument(
"--image_mask_path",
type=str,
default=None,
help="path to image mask for one frame inference. If specified, it will be used as mask for input image.",
)
parser.add_argument(
"--end_image_mask_path",
type=str,
default=None,
nargs="*",
help="path to end (reference) image mask for one frame inference. If specified, it will be used as mask for end image.",
)
parser.add_argument("--fps", type=int, default=30, help="video fps, default is 30")
parser.add_argument("--infer_steps", type=int, default=25, help="number of inference steps, default is 25")
parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
# parser.add_argument(
# "--cpu_noise", action="store_true", help="Use CPU to generate noise (compatible with ComfyUI). Default is False."
# )
parser.add_argument("--latent_window_size", type=int, default=9, help="latent window size, default is 9. should not change.")
parser.add_argument(
"--embedded_cfg_scale", type=float, default=10.0, help="Embeded CFG scale (distilled CFG Scale), default is 10.0"
)
parser.add_argument(
"--guidance_scale",
type=float,
default=1.0,
help="Guidance scale for classifier free guidance. Default is 1.0 (no guidance), should not change.",
)
parser.add_argument("--guidance_rescale", type=float, default=0.0, help="CFG Re-scale, default is 0.0. Should not change.")
# parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference")
parser.add_argument(
"--image_path",
type=str,
default=None,
help="path to image for image2video inference. If `;;;` is used, it will be used as section images. The notation is same as `--prompt`.",
)
parser.add_argument("--end_image_path", type=str, nargs="*", default=None, help="path to end image for image2video inference")
parser.add_argument(
"--latent_paddings",
type=str,
default=None,
help="latent paddings for each section, comma separated values. default is None (FramePack default paddings)",
)
# parser.add_argument(
# "--control_path",
# type=str,
# default=None,
# help="path to control video for inference with controlnet. video file or directory with images",
# )
# parser.add_argument("--trim_tail_frames", type=int, default=0, help="trim tail N frames from the video before saving")
# # Flow Matching
# parser.add_argument(
# "--flow_shift",
# type=float,
# default=None,
# help="Shift factor for flow matching schedulers. Default depends on task.",
# )
parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT, only for fp8")
# parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arithmetic (RTX 4XXX+), only for fp8_scaled")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
parser.add_argument(
"--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
)
parser.add_argument(
"--attn_mode",
type=str,
default="torch",
choices=["flash", "torch", "sageattn", "xformers", "sdpa"], # "flash2", "flash3",
help="attention mode",
)
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
parser.add_argument("--bulk_decode", action="store_true", help="decode all frames at once")
parser.add_argument("--blocks_to_swap", type=int, default=0, help="number of blocks to swap in the model")
parser.add_argument(
"--output_type",
type=str,
default="video",
choices=["video", "images", "latent", "both", "latent_images"],
help="output type",
)
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata")
parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference")
parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference")
# parser.add_argument("--compile", action="store_true", help="Enable torch.compile")
# parser.add_argument(
# "--compile_args",
# nargs=4,
# metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"),
# default=["inductor", "max-autotune-no-cudagraphs", "False", "False"],
# help="Torch.compile settings",
# )
# New arguments for batch and interactive modes
parser.add_argument("--from_file", type=str, default=None, help="Read prompts from a file")
parser.add_argument("--interactive", action="store_true", help="Interactive mode: read prompts from console")
args = parser.parse_args()
# Validate arguments
if args.from_file and args.interactive:
raise ValueError("Cannot use both --from_file and --interactive at the same time")
if args.latent_path is None or len(args.latent_path) == 0:
if args.prompt is None and not args.from_file and not args.interactive:
raise ValueError("Either --prompt, --from_file or --interactive must be specified")
return args
def parse_prompt_line(line: str) -> Dict[str, Any]:
"""Parse a prompt line into a dictionary of argument overrides
Args:
line: Prompt line with options
Returns:
Dict[str, Any]: Dictionary of argument overrides
"""
# TODO common function with hv_train_network.line_to_prompt_dict
parts = line.split(" --")
prompt = parts[0].strip()
# Create dictionary of overrides
overrides = {"prompt": prompt}
# Initialize end_image_path and end_image_mask_path as a list to accommodate multiple paths
overrides["end_image_path"] = []
overrides["end_image_mask_path"] = []
for part in parts[1:]:
if not part.strip():
continue
option_parts = part.split(" ", 1)
option = option_parts[0].strip()
value = option_parts[1].strip() if len(option_parts) > 1 else ""
# Map options to argument names
if option == "w":
overrides["video_size_width"] = int(value)
elif option == "h":
overrides["video_size_height"] = int(value)
elif option == "f":
overrides["video_seconds"] = float(value)
elif option == "d":
overrides["seed"] = int(value)
elif option == "s":
overrides["infer_steps"] = int(value)
elif option == "g" or option == "l":
overrides["guidance_scale"] = float(value)
# elif option == "fs":
# overrides["flow_shift"] = float(value)
elif option == "i":
overrides["image_path"] = value
elif option == "im":
overrides["image_mask_path"] = value
# elif option == "cn":
# overrides["control_path"] = value
elif option == "n":
overrides["negative_prompt"] = value
elif option == "vs": # video_sections
overrides["video_sections"] = int(value)
elif option == "ei": # end_image_path
overrides["end_image_path"].append(value)
elif option == "eim": # end_image_mask_path
overrides["end_image_mask_path"].append(value)
elif option == "of": # one_frame_inference
overrides["one_frame_inference"] = value
# If no end_image_path was provided, remove the empty list
if not overrides["end_image_path"]:
del overrides["end_image_path"]
if not overrides["end_image_mask_path"]:
del overrides["end_image_mask_path"]
return overrides
def apply_overrides(args: argparse.Namespace, overrides: Dict[str, Any]) -> argparse.Namespace:
"""Apply overrides to args
Args:
args: Original arguments
overrides: Dictionary of overrides
Returns:
argparse.Namespace: New arguments with overrides applied
"""
args_copy = copy.deepcopy(args)
for key, value in overrides.items():
if key == "video_size_width":
args_copy.video_size[1] = value
elif key == "video_size_height":
args_copy.video_size[0] = value
else:
setattr(args_copy, key, value)
return args_copy
def check_inputs(args: argparse.Namespace) -> Tuple[int, int, int]:
"""Validate video size and length
Args:
args: command line arguments
Returns:
Tuple[int, int, float]: (height, width, video_seconds)
"""
height = args.video_size[0]
width = args.video_size[1]
video_seconds = args.video_seconds
if args.video_sections is not None:
video_seconds = (args.video_sections * (args.latent_window_size * 4) + 1) / args.fps
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
return height, width, video_seconds
# region DiT model
def load_dit_model(args: argparse.Namespace, device: torch.device) -> HunyuanVideoTransformer3DModelPacked:
"""load DiT model
Args:
args: command line arguments
device: device to use
dit_dtype: data type for the model
dit_weight_dtype: data type for the model weights. None for as-is
Returns:
HunyuanVideoTransformer3DModelPacked: DiT model
"""
loading_device = "cpu"
if args.blocks_to_swap == 0 and not args.fp8_scaled and args.lora_weight is None:
loading_device = device
# do not fp8 optimize because we will merge LoRA weights
model = load_packed_model(device, args.dit, args.attn_mode, loading_device)
return model
def optimize_model(model: HunyuanVideoTransformer3DModelPacked, args: argparse.Namespace, device: torch.device) -> None:
"""optimize the model (FP8 conversion, device move etc.)
Args:
model: dit model
args: command line arguments
device: device to use
"""
if args.fp8_scaled:
# load state dict as-is and optimize to fp8
state_dict = model.state_dict()
# if no blocks to swap, we can move the weights to GPU after optimization on GPU (omit redundant CPU->GPU copy)
move_to_device = args.blocks_to_swap == 0 # if blocks_to_swap > 0, we will keep the model on CPU
state_dict = model.fp8_optimization(state_dict, device, move_to_device, use_scaled_mm=False) # args.fp8_fast)
info = model.load_state_dict(state_dict, strict=True, assign=True)
logger.info(f"Loaded FP8 optimized weights: {info}")
if args.blocks_to_swap == 0:
model.to(device) # make sure all parameters are on the right device (e.g. RoPE etc.)
else:
# simple cast to dit_dtype
target_dtype = None # load as-is (dit_weight_dtype == dtype of the weights in state_dict)
target_device = None
if args.fp8:
target_dtype = torch.float8e4m3fn
if args.blocks_to_swap == 0:
logger.info(f"Move model to device: {device}")
target_device = device
if target_device is not None and target_dtype is not None:
model.to(target_device, target_dtype) # move and cast at the same time. this reduces redundant copy operations
# if args.compile:
# compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args
# logger.info(
# f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]"
# )
# torch._dynamo.config.cache_size_limit = 32
# for i in range(len(model.blocks)):
# model.blocks[i] = torch.compile(
# model.blocks[i],
# backend=compile_backend,
# mode=compile_mode,
# dynamic=compile_dynamic.lower() in "true",
# fullgraph=compile_fullgraph.lower() in "true",
# )
if args.blocks_to_swap > 0:
logger.info(f"Enable swap {args.blocks_to_swap} blocks to CPU from device: {device}")
model.enable_block_swap(args.blocks_to_swap, device, supports_backward=False)
model.move_to_device_except_swap_blocks(device)
model.prepare_block_swap_before_forward()
else:
# make sure the model is on the right device
model.to(device)
model.eval().requires_grad_(False)
clean_memory_on_device(device)
# endregion
def decode_latent(
latent_window_size: int,
total_latent_sections: int,
bulk_decode: bool,
vae: AutoencoderKLCausal3D,
latent: torch.Tensor,
device: torch.device,
one_frame_inference_mode: bool = False,
) -> torch.Tensor:
logger.info(f"Decoding video...")
if latent.ndim == 4:
latent = latent.unsqueeze(0) # add batch dimension
vae.to(device)
if not bulk_decode and not one_frame_inference_mode:
latent_window_size = latent_window_size # default is 9
# total_latent_sections = (args.video_seconds * 30) / (latent_window_size * 4)
# total_latent_sections = int(max(round(total_latent_sections), 1))
num_frames = latent_window_size * 4 - 3
latents_to_decode = []
latent_frame_index = 0
for i in range(total_latent_sections - 1, -1, -1):
is_last_section = i == total_latent_sections - 1
generated_latent_frames = (num_frames + 3) // 4 + (1 if is_last_section else 0)
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
section_latent = latent[:, :, latent_frame_index : latent_frame_index + section_latent_frames, :, :]
if section_latent.shape[2] > 0:
latents_to_decode.append(section_latent)
latent_frame_index += generated_latent_frames
latents_to_decode = latents_to_decode[::-1] # reverse the order of latents to decode
history_pixels = None
for latent in tqdm(latents_to_decode):
if history_pixels is None:
history_pixels = hunyuan.vae_decode(latent, vae).cpu()
else:
overlapped_frames = latent_window_size * 4 - 3
current_pixels = hunyuan.vae_decode(latent, vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
clean_memory_on_device(device)
else:
# bulk decode
logger.info(f"Bulk decoding or one frame inference")
if not one_frame_inference_mode:
history_pixels = hunyuan.vae_decode(latent, vae).cpu() # normal
else:
# one frame inference
history_pixels = [hunyuan.vae_decode(latent[:, :, i : i + 1, :, :], vae).cpu() for i in range(latent.shape[2])]
history_pixels = torch.cat(history_pixels, dim=2)
vae.to("cpu")
logger.info(f"Decoded. Pixel shape {history_pixels.shape}")
return history_pixels[0] # remove batch dimension
def prepare_i2v_inputs(
args: argparse.Namespace,
device: torch.device,
vae: AutoencoderKLCausal3D,
shared_models: Optional[Dict] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
"""Prepare inputs for I2V
Args:
args: command line arguments
config: model configuration
device: device to use
vae: VAE model, used for image encoding
shared_models: dictionary containing pre-loaded models
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
(noise, context, context_null, y, (arg_c, arg_null))
"""
height, width, video_seconds = check_inputs(args)
# define parsing function
def parse_section_strings(input_string: str) -> dict[int, str]:
section_strings = {}
if ";;;" in input_string:
split_section_strings = input_string.split(";;;")
for section_str in split_section_strings:
if ":" not in section_str:
start = end = 0
section_str = section_str.strip()
else:
index_str, section_str = section_str.split(":", 1)
index_str = index_str.strip()
section_str = section_str.strip()
m = re.match(r"^(-?\d+)(-\d+)?$", index_str)
if m:
start = int(m.group(1))
end = int(m.group(2)[1:]) if m.group(2) is not None else start
else:
start = end = 0
section_str = section_str.strip()
for i in range(start, end + 1):
section_strings[i] = section_str
else:
section_strings[0] = input_string
# assert 0 in section_prompts, "Section prompts must contain section 0"
if 0 not in section_strings:
# use smallest section index. prefer positive index over negative index
# if all section indices are negative, use the smallest negative index
indices = list(section_strings.keys())
if all(i < 0 for i in indices):
section_index = min(indices)
else:
section_index = min(i for i in indices if i >= 0)
section_strings[0] = section_strings[section_index]
return section_strings
# prepare image
def preprocess_image(image_path: str):
image = Image.open(image_path).convert("RGB")
image_np = np.array(image) # PIL to numpy, HWC
image_np = image_video_dataset.resize_image_to_bucket(image_np, (width, height))
image_tensor = torch.from_numpy(image_np).float() / 127.5 - 1.0 # -1 to 1.0, HWC
image_tensor = image_tensor.permute(2, 0, 1)[None, :, None] # HWC -> CHW -> NCFHW, N=1, C=3, F=1
return image_tensor, image_np
section_image_paths = parse_section_strings(args.image_path)
section_images = {}
for index, image_path in section_image_paths.items():
img_tensor, img_np = preprocess_image(image_path)
section_images[index] = (img_tensor, img_np)
# check end images
if args.end_image_path is not None and len(args.end_image_path) > 0:
end_image_tensors = []
for end_img_path in args.end_image_path:
end_image_tensor, _ = preprocess_image(end_img_path)
end_image_tensors.append(end_image_tensor)
else:
end_image_tensors = None
# configure negative prompt
n_prompt = args.negative_prompt if args.negative_prompt else ""
# parse section prompts
section_prompts = parse_section_strings(args.prompt)
# load text encoder
if shared_models is not None:
tokenizer1, text_encoder1 = shared_models["tokenizer1"], shared_models["text_encoder1"]
tokenizer2, text_encoder2 = shared_models["tokenizer2"], shared_models["text_encoder2"]
text_encoder1.to(device)
else:
tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, device)
tokenizer2, text_encoder2 = load_text_encoder2(args)
text_encoder2.to(device)
logger.info(f"Encoding prompt")
llama_vecs = {}
llama_attention_masks = {}
clip_l_poolers = {}
with torch.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
for index, prompt in section_prompts.items():
llama_vec, clip_l_pooler = hunyuan.encode_prompt_conds(
prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2, custom_system_prompt=args.custom_system_prompt
)
llama_vec = llama_vec.cpu()
clip_l_pooler = clip_l_pooler.cpu()
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vecs[index] = llama_vec
llama_attention_masks[index] = llama_attention_mask
clip_l_poolers[index] = clip_l_pooler
if args.guidance_scale == 1.0:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vecs[0]), torch.zeros_like(clip_l_poolers[0])
else:
with torch.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
llama_vec_n, clip_l_pooler_n = hunyuan.encode_prompt_conds(
n_prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2, custom_system_prompt=args.custom_system_prompt
)
llama_vec_n = llama_vec_n.cpu()
clip_l_pooler_n = clip_l_pooler_n.cpu()
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# free text encoder and clean memory
if shared_models is not None: # if shared models are used, do not free them but move to CPU
text_encoder1.to("cpu")
text_encoder2.to("cpu")
del tokenizer1, text_encoder1, tokenizer2, text_encoder2 # do not free shared models
clean_memory_on_device(device)
# load image encoder
if shared_models is not None:
feature_extractor, image_encoder = shared_models["feature_extractor"], shared_models["image_encoder"]
else:
feature_extractor, image_encoder = load_image_encoders(args)
image_encoder.to(device)
# encode image with image encoder
section_image_encoder_last_hidden_states = {}
for index, (img_tensor, img_np) in section_images.items():
with torch.no_grad():
image_encoder_output = hf_clip_vision_encode(img_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state.cpu()
section_image_encoder_last_hidden_states[index] = image_encoder_last_hidden_state
# free image encoder and clean memory
if shared_models is not None:
image_encoder.to("cpu")
del image_encoder, feature_extractor
clean_memory_on_device(device)
# VAE encoding
logger.info(f"Encoding image to latent space")
vae.to(device)
section_start_latents = {}
for index, (img_tensor, img_np) in section_images.items():
start_latent = hunyuan.vae_encode(img_tensor, vae).cpu()
section_start_latents[index] = start_latent
# end_latent = hunyuan.vae_encode(end_image_tensor, vae).cpu() if end_image_tensor is not None else None
if end_image_tensors is not None:
end_latents = []
for end_image_tensor in end_image_tensors:
end_latent = hunyuan.vae_encode(end_image_tensor, vae).cpu()
end_latents.append(end_latent)
else:
end_latents = None
vae.to("cpu") # move VAE to CPU to save memory
clean_memory_on_device(device)
# prepare model input arguments
arg_c = {}
arg_null = {}
for index in llama_vecs.keys():
llama_vec = llama_vecs[index]
llama_attention_mask = llama_attention_masks[index]
clip_l_pooler = clip_l_poolers[index]
arg_c_i = {
"llama_vec": llama_vec,
"llama_attention_mask": llama_attention_mask,
"clip_l_pooler": clip_l_pooler,
"prompt": section_prompts[index], # for debugging
}
arg_c[index] = arg_c_i
arg_null = {
"llama_vec": llama_vec_n,
"llama_attention_mask": llama_attention_mask_n,
"clip_l_pooler": clip_l_pooler_n,
}
arg_c_img = {}
for index in section_images.keys():
image_encoder_last_hidden_state = section_image_encoder_last_hidden_states[index]
start_latent = section_start_latents[index]
arg_c_img_i = {
"image_encoder_last_hidden_state": image_encoder_last_hidden_state,
"start_latent": start_latent,
"image_path": section_image_paths[index],
}
arg_c_img[index] = arg_c_img_i
return height, width, video_seconds, arg_c, arg_null, arg_c_img, end_latents
# def setup_scheduler(args: argparse.Namespace, config, device: torch.device) -> Tuple[Any, torch.Tensor]:
# """setup scheduler for sampling
# Args:
# args: command line arguments
# config: model configuration
# device: device to use
# Returns:
# Tuple[Any, torch.Tensor]: (scheduler, timesteps)
# """
# if args.sample_solver == "unipc":
# scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False)
# scheduler.set_timesteps(args.infer_steps, device=device, shift=args.flow_shift)
# timesteps = scheduler.timesteps
# elif args.sample_solver == "dpm++":
# scheduler = FlowDPMSolverMultistepScheduler(
# num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False
# )
# sampling_sigmas = get_sampling_sigmas(args.infer_steps, args.flow_shift)
# timesteps, _ = retrieve_timesteps(scheduler, device=device, sigmas=sampling_sigmas)
# elif args.sample_solver == "vanilla":
# scheduler = FlowMatchDiscreteScheduler(num_train_timesteps=config.num_train_timesteps, shift=args.flow_shift)
# scheduler.set_timesteps(args.infer_steps, device=device)
# timesteps = scheduler.timesteps
# # FlowMatchDiscreteScheduler does not support generator argument in step method
# org_step = scheduler.step
# def step_wrapper(
# model_output: torch.Tensor,
# timestep: Union[int, torch.Tensor],
# sample: torch.Tensor,
# return_dict: bool = True,
# generator=None,
# ):
# return org_step(model_output, timestep, sample, return_dict=return_dict)
# scheduler.step = step_wrapper
# else:
# raise NotImplementedError("Unsupported solver.")
# return scheduler, timesteps
def convert_lora_for_framepack(lora_sd: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
# Check the format of the LoRA file
keys = list(lora_sd.keys())
if keys[0].startswith("lora_unet_"):
# logging.info(f"Musubi Tuner LoRA detected")
pass
else:
transformer_prefixes = ["diffusion_model", "transformer"] # to ignore Text Encoder modules
lora_suffix = None
prefix = None
for key in keys:
if lora_suffix is None and "lora_A" in key:
lora_suffix = "lora_A"
if prefix is None:
pfx = key.split(".")[0]
if pfx in transformer_prefixes:
prefix = pfx
if lora_suffix is not None and prefix is not None:
break
if lora_suffix == "lora_A" and prefix is not None:
logging.info(f"Diffusion-pipe (?) LoRA detected, converting to the default LoRA format")
lora_sd = convert_lora_from_diffusion_pipe_or_something(lora_sd, "lora_unet_")
else:
logging.info(f"LoRA file format not recognized. Using it as-is.")
# Check LoRA is for FramePack or for HunyuanVideo
is_hunyuan = False
for key in lora_sd.keys():
if "double_blocks" in key or "single_blocks" in key:
is_hunyuan = True
break
if is_hunyuan:
logging.info("HunyuanVideo LoRA detected, converting to FramePack format")
lora_sd = convert_hunyuan_to_framepack(lora_sd)
return lora_sd
def convert_lora_from_diffusion_pipe_or_something(lora_sd: dict[str, torch.Tensor], prefix: str) -> dict[str, torch.Tensor]:
"""
Convert LoRA weights to the format used by the diffusion pipeline to Musubi Tuner.
Copy from Musubi Tuner repo.
"""
# convert from diffusers(?) to default LoRA
# Diffusers format: {"diffusion_model.module.name.lora_A.weight": weight, "diffusion_model.module.name.lora_B.weight": weight, ...}
# default LoRA format: {"prefix_module_name.lora_down.weight": weight, "prefix_module_name.lora_up.weight": weight, ...}
# note: Diffusers has no alpha, so alpha is set to rank
new_weights_sd = {}
lora_dims = {}
for key, weight in lora_sd.items():
diffusers_prefix, key_body = key.split(".", 1)
if diffusers_prefix != "diffusion_model" and diffusers_prefix != "transformer":
print(f"unexpected key: {key} in diffusers format")
continue
new_key = f"{prefix}{key_body}".replace(".", "_").replace("_lora_A_", ".lora_down.").replace("_lora_B_", ".lora_up.")
new_weights_sd[new_key] = weight
lora_name = new_key.split(".")[0] # before first dot
if lora_name not in lora_dims and "lora_down" in new_key:
lora_dims[lora_name] = weight.shape[0]
# add alpha with rank
for lora_name, dim in lora_dims.items():
new_weights_sd[f"{lora_name}.alpha"] = torch.tensor(dim)
return new_weights_sd
def convert_hunyuan_to_framepack(lora_sd: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
"""
Convert HunyuanVideo LoRA weights to FramePack format.
"""
new_lora_sd = {}
for key, weight in lora_sd.items():
if "double_blocks" in key:
key = key.replace("double_blocks", "transformer_blocks")
key = key.replace("img_mod_linear", "norm1_linear")
key = key.replace("img_attn_qkv", "attn_to_QKV") # split later
key = key.replace("img_attn_proj", "attn_to_out_0")
key = key.replace("img_mlp_fc1", "ff_net_0_proj")
key = key.replace("img_mlp_fc2", "ff_net_2")
key = key.replace("txt_mod_linear", "norm1_context_linear")
key = key.replace("txt_attn_qkv", "attn_add_QKV_proj") # split later
key = key.replace("txt_attn_proj", "attn_to_add_out")
key = key.replace("txt_mlp_fc1", "ff_context_net_0_proj")
key = key.replace("txt_mlp_fc2", "ff_context_net_2")
elif "single_blocks" in key:
key = key.replace("single_blocks", "single_transformer_blocks")
key = key.replace("linear1", "attn_to_QKVM") # split later
key = key.replace("linear2", "proj_out")
key = key.replace("modulation_linear", "norm_linear")
else:
print(f"Unsupported module name: {key}, only double_blocks and single_blocks are supported")
continue
if "QKVM" in key:
# split QKVM into Q, K, V, M
key_q = key.replace("QKVM", "q")
key_k = key.replace("QKVM", "k")
key_v = key.replace("QKVM", "v")
key_m = key.replace("attn_to_QKVM", "proj_mlp")
if "_down" in key or "alpha" in key:
# copy QKVM weight or alpha to Q, K, V, M
assert "alpha" in key or weight.size(1) == 3072, f"QKVM weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight
new_lora_sd[key_k] = weight
new_lora_sd[key_v] = weight
new_lora_sd[key_m] = weight
elif "_up" in key:
# split QKVM weight into Q, K, V, M
assert weight.size(0) == 21504, f"QKVM weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight[:3072]
new_lora_sd[key_k] = weight[3072 : 3072 * 2]
new_lora_sd[key_v] = weight[3072 * 2 : 3072 * 3]
new_lora_sd[key_m] = weight[3072 * 3 :] # 21504 - 3072 * 3 = 12288
else:
print(f"Unsupported module name: {key}")
continue
elif "QKV" in key:
# split QKV into Q, K, V
key_q = key.replace("QKV", "q")
key_k = key.replace("QKV", "k")
key_v = key.replace("QKV", "v")
if "_down" in key or "alpha" in key:
# copy QKV weight or alpha to Q, K, V
assert "alpha" in key or weight.size(1) == 3072, f"QKV weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight
new_lora_sd[key_k] = weight
new_lora_sd[key_v] = weight
elif "_up" in key:
# split QKV weight into Q, K, V
assert weight.size(0) == 3072 * 3, f"QKV weight size mismatch: {key}. {weight.size()}"
new_lora_sd[key_q] = weight[:3072]
new_lora_sd[key_k] = weight[3072 : 3072 * 2]
new_lora_sd[key_v] = weight[3072 * 2 :]
else:
print(f"Unsupported module name: {key}")
continue
else:
# no split needed
new_lora_sd[key] = weight
return new_lora_sd
def generate(
args: argparse.Namespace, gen_settings: GenerationSettings, shared_models: Optional[Dict] = None
) -> tuple[AutoencoderKLCausal3D, torch.Tensor]:
"""main function for generation
Args:
args: command line arguments
shared_models: dictionary containing pre-loaded models
Returns:
tuple: (AutoencoderKLCausal3D model (vae), torch.Tensor generated latent)
"""
device, dit_weight_dtype = (gen_settings.device, gen_settings.dit_weight_dtype)
# prepare seed
seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
args.seed = seed # set seed to args for saving
# Check if we have shared models
if shared_models is not None:
# Use shared models and encoded data
vae = shared_models.get("vae")
height, width, video_seconds, context, context_null, context_img, end_latents = prepare_i2v_inputs(
args, device, vae, shared_models
)
else:
# prepare inputs without shared models
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
height, width, video_seconds, context, context_null, context_img, end_latents = prepare_i2v_inputs(args, device, vae)
if shared_models is None or "model" not in shared_models:
# load DiT model
model = load_dit_model(args, device)
# merge LoRA weights
if args.lora_weight is not None and len(args.lora_weight) > 0:
# ugly hack to common merge_lora_weights function
merge_lora_weights(lora_framepack, model, args, device, convert_lora_for_framepack)
# if we only want to save the model, we can skip the rest
if args.save_merged_model:
return None, None
# optimize model: fp8 conversion, block swap etc.
optimize_model(model, args, device)
if shared_models is not None:
shared_models["model"] = model
else:
# use shared model
model: HunyuanVideoTransformer3DModelPacked = shared_models["model"]
model.move_to_device_except_swap_blocks(device)
model.prepare_block_swap_before_forward()
# sampling
latent_window_size = args.latent_window_size # default is 9
# ex: (5s * 30fps) / (9 * 4) = 4.16 -> 4 sections, 60s -> 1800 / 36 = 50 sections
total_latent_sections = (video_seconds * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
# set random generator
seed_g = torch.Generator(device="cpu")
seed_g.manual_seed(seed)
num_frames = latent_window_size * 4 - 3
logger.info(
f"Video size: {height}x{width}@{video_seconds} (HxW@seconds), fps: {args.fps}, num sections: {total_latent_sections}, "
f"infer_steps: {args.infer_steps}, frames per generation: {num_frames}"
)
# video generation ######
f1_mode = args.f1
one_frame_inference = None
if args.one_frame_inference is not None:
one_frame_inference = set()
for mode in args.one_frame_inference.split(","):
one_frame_inference.add(mode.strip())
# prepare history latents
history_latents = torch.zeros((1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32)
if end_latents is not None and not f1_mode:
logger.info(f"Use end image(s): {args.end_image_path}")
for i, end_latent in enumerate(end_latents):
history_latents[:, :, i + 1 : i + 2] = end_latent.to(history_latents)
# prepare clean latents and indices
if not f1_mode:
# Inverted Anti-drifting
total_generated_latent_frames = 0
latent_paddings = reversed(range(total_latent_sections))
if total_latent_sections > 4 and one_frame_inference is None:
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
# items looks better than expanding it when total_latent_sections > 4
# One can try to remove below trick and just
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
# 4 sections: 3, 2, 1, 0. 50 sections: 3, 2, 2, ... 2, 1, 0
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
if args.latent_paddings is not None:
# parse user defined latent paddings
user_latent_paddings = [int(x) for x in args.latent_paddings.split(",")]
if len(user_latent_paddings) < total_latent_sections:
print(
f"User defined latent paddings length {len(user_latent_paddings)} does not match total sections {total_latent_sections}."
)
print(f"Use default paddings instead for unspecified sections.")
latent_paddings[: len(user_latent_paddings)] = user_latent_paddings
elif len(user_latent_paddings) > total_latent_sections:
print(
f"User defined latent paddings length {len(user_latent_paddings)} is greater than total sections {total_latent_sections}."
)
print(f"Use only first {total_latent_sections} paddings instead.")
latent_paddings = user_latent_paddings[:total_latent_sections]
else:
latent_paddings = user_latent_paddings
else:
start_latent = context_img[0]["start_latent"]
history_latents = torch.cat([history_latents, start_latent], dim=2)
total_generated_latent_frames = 1 # a bit hacky, but we employ the same logic as in official code
latent_paddings = [0] * total_latent_sections # dummy paddings for F1 mode
latent_paddings = list(latent_paddings) # make sure it's a list
for loop_index in range(total_latent_sections):
latent_padding = latent_paddings[loop_index]
if not f1_mode:
# Inverted Anti-drifting
section_index_reverse = loop_index # 0, 1, 2, 3
section_index = total_latent_sections - 1 - section_index_reverse # 3, 2, 1, 0
section_index_from_last = -(section_index_reverse + 1) # -1, -2, -3, -4
is_last_section = section_index == 0
is_first_section = section_index_reverse == 0
latent_padding_size = latent_padding * latent_window_size
logger.info(f"latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}")
else:
section_index = loop_index # 0, 1, 2, 3
section_index_from_last = section_index - total_latent_sections # -4, -3, -2, -1
is_last_section = loop_index == total_latent_sections - 1
is_first_section = loop_index == 0
latent_padding_size = 0 # dummy padding for F1 mode
# select start latent
if section_index_from_last in context_img:
image_index = section_index_from_last
elif section_index in context_img:
image_index = section_index
else:
image_index = 0
start_latent = context_img[image_index]["start_latent"]
image_path = context_img[image_index]["image_path"]
if image_index != 0: # use section image other than section 0
logger.info(f"Apply experimental section image, latent_padding_size = {latent_padding_size}, image_path = {image_path}")
if not f1_mode:
# Inverted Anti-drifting
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
(
clean_latent_indices_pre,
blank_indices,
latent_indices,
clean_latent_indices_post,
clean_latent_2x_indices,
clean_latent_4x_indices,
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split(
[1, 2, 16], dim=2
)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
if end_latents is not None:
clean_latents = torch.cat([clean_latents_pre, history_latents[:, :, : len(end_latents)]], dim=2)
clean_latent_indices_extended = torch.zeros(1, 1 + len(end_latents), dtype=clean_latent_indices.dtype)
clean_latent_indices_extended[:, :2] = clean_latent_indices
clean_latent_indices = clean_latent_indices_extended
else:
# F1 mode
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
(
clean_latent_indices_start,
clean_latent_4x_indices,
clean_latent_2x_indices,
clean_latent_1x_indices,
latent_indices,
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]) :, :, :].split(
[16, 2, 1], dim=2
)
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
# if use_teacache:
# transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
# else:
# transformer.initialize_teacache(enable_teacache=False)
# prepare conditioning inputs
if section_index_from_last in context:
prompt_index = section_index_from_last
elif section_index in context:
prompt_index = section_index
else:
prompt_index = 0
context_for_index = context[prompt_index]
# if args.section_prompts is not None:
logger.info(f"Section {section_index}: {context_for_index['prompt']}")
llama_vec = context_for_index["llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask = context_for_index["llama_attention_mask"].to(device)
clip_l_pooler = context_for_index["clip_l_pooler"].to(device, dtype=torch.bfloat16)
image_encoder_last_hidden_state = context_img[image_index]["image_encoder_last_hidden_state"].to(
device, dtype=torch.bfloat16
)
llama_vec_n = context_null["llama_vec"].to(device, dtype=torch.bfloat16)
llama_attention_mask_n = context_null["llama_attention_mask"].to(device)
clip_l_pooler_n = context_null["clip_l_pooler"].to(device, dtype=torch.bfloat16)
# call DiT model to generate latents
sample_num_frames = num_frames
if one_frame_inference is not None:
# one frame inference
latent_indices = latent_indices[:, -1:] # only use the last frame (default)
sample_num_frames = 1
def get_latent_mask(mask_path: str):
mask_image = Image.open(mask_path).convert("L") # grayscale
mask_image = mask_image.resize((width // 8, height // 8), Image.LANCZOS)
mask_image = np.array(mask_image) # PIL to numpy, HWC
mask_image = torch.from_numpy(mask_image).float() / 255.0 # 0 to 1.0, HWC
mask_image = mask_image.squeeze(-1) # HWC -> HW
mask_image = mask_image.unsqueeze(0).unsqueeze(0) # HW -> 11HW
mask_image = mask_image.to(clean_latents)
return mask_image
if args.image_mask_path is not None:
mask_image = get_latent_mask(args.image_mask_path)
logger.info(f"Apply mask for clean latents (start image): {args.image_mask_path}, shape: {mask_image.shape}")
clean_latents[:, :, 0, :, :] = clean_latents[:, :, 0, :, :] * mask_image
if args.end_image_mask_path is not None and len(args.end_image_mask_path) > 0:
# # apply mask for clean latents 1x (end image)
count = min(len(args.end_image_mask_path), len(end_latents))
for i in range(count):
mask_image = get_latent_mask(args.end_image_mask_path[i])
logger.info(
f"Apply mask for clean latents 1x (end image) for {i+1}: {args.end_image_mask_path[i]}, shape: {mask_image.shape}"
)
clean_latents[:, :, i + 1 : i + 2, :, :] = clean_latents[:, :, i + 1 : i + 2, :, :] * mask_image
for one_frame_param in one_frame_inference:
if one_frame_param.startswith("target_index="):
target_index = int(one_frame_param.split("=")[1])
latent_indices[:, 0] = target_index
logger.info(f"Set index for target: {target_index}")
elif one_frame_param.startswith("start_index="):
start_index = int(one_frame_param.split("=")[1])
clean_latent_indices[:, 0] = start_index
logger.info(f"Set index for clean latent pre (start image): {start_index}")
elif one_frame_param.startswith("history_index="):
history_indices = one_frame_param.split("=")[1].split(";")
i = 0
while i < len(history_indices) and i < len(end_latents):
history_index = int(history_indices[i])
clean_latent_indices[:, 1 + i] = history_index
i += 1
while i < len(end_latents):
clean_latent_indices[:, 1 + i] = history_index
i += 1
logger.info(f"Set index for clean latent post (end image): {history_indices}")
if "no_2x" in one_frame_inference:
clean_latents_2x = None
clean_latent_2x_indices = None
logger.info(f"No clean_latents_2x")
if "no_4x" in one_frame_inference:
clean_latents_4x = None
clean_latent_4x_indices = None
logger.info(f"No clean_latents_4x")
if "no_post" in one_frame_inference:
clean_latents = clean_latents[:, :, :1, :, :]
clean_latent_indices = clean_latent_indices[:, :1]
logger.info(f"No clean_latents post")
elif "zero_post" in one_frame_inference:
# zero out the history latents. this seems to prevent the images from corrupting
clean_latents[:, :, 1:, :, :] = torch.zeros_like(clean_latents[:, :, 1:, :, :])
logger.info(f"Zero out clean_latents post")
logger.info(
f"One frame inference. clean_latent: {clean_latents.shape} latent_indices: {latent_indices}, clean_latent_indices: {clean_latent_indices}, num_frames: {sample_num_frames}"
)
generated_latents = sample_hunyuan(
transformer=model,
sampler=args.sample_solver,
width=width,
height=height,
frames=sample_num_frames,
real_guidance_scale=args.guidance_scale,
distilled_guidance_scale=args.embedded_cfg_scale,
guidance_rescale=args.guidance_rescale,
# shift=3.0,
num_inference_steps=args.infer_steps,
generator=seed_g,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
)
# concatenate generated latents
total_generated_latent_frames += int(generated_latents.shape[2])
if not f1_mode:
# Inverted Anti-drifting: prepend generated latents to history latents
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += 1
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
else:
# F1 mode: append generated latents to history latents
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
logger.info(f"Generated. Latent shape {real_history_latents.shape}")
# # TODO support saving intermediate video
# clean_memory_on_device(device)
# vae.to(device)
# if history_pixels is None:
# history_pixels = hunyuan.vae_decode(real_history_latents, vae).cpu()
# else:
# section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
# overlapped_frames = latent_window_size * 4 - 3
# current_pixels = hunyuan.vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
# history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
# vae.to("cpu")
# # if not is_last_section:
# # # save intermediate video
# # save_video(history_pixels[0], args, total_generated_latent_frames)
# print(f"Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}")
if one_frame_inference is not None:
real_history_latents = real_history_latents[:, :, 1:, :, :] # remove the first frame (start_latent)
# Only clean up shared models if they were created within this function
if shared_models is None:
del model # free memory
synchronize_device(device)
else:
# move model to CPU to save memory
model.to("cpu")
# wait for 5 seconds until block swap is done
logger.info("Waiting for 5 seconds to finish block swap")
time.sleep(5)
gc.collect()
clean_memory_on_device(device)
return vae, real_history_latents
def save_latent(latent: torch.Tensor, args: argparse.Namespace, height: int, width: int) -> str:
"""Save latent to file
Args:
latent: Latent tensor
args: command line arguments
height: height of frame
width: width of frame
Returns:
str: Path to saved latent file
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
video_seconds = args.video_seconds
latent_path = f"{save_path}/{time_flag}_{seed}_latent.safetensors"
if args.no_metadata:
metadata = None
else:
metadata = {
"seeds": f"{seed}",
"prompt": f"{args.prompt}",
"height": f"{height}",
"width": f"{width}",
"video_seconds": f"{video_seconds}",
"infer_steps": f"{args.infer_steps}",
"guidance_scale": f"{args.guidance_scale}",
"latent_window_size": f"{args.latent_window_size}",
"embedded_cfg_scale": f"{args.embedded_cfg_scale}",
"guidance_rescale": f"{args.guidance_rescale}",
"sample_solver": f"{args.sample_solver}",
"latent_window_size": f"{args.latent_window_size}",
"fps": f"{args.fps}",
}
if args.negative_prompt is not None:
metadata["negative_prompt"] = f"{args.negative_prompt}"
sd = {"latent": latent.contiguous()}
save_file(sd, latent_path, metadata=metadata)
logger.info(f"Latent saved to: {latent_path}")
return latent_path
def save_video(
video: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None, latent_frames: Optional[int] = None
) -> str:
"""Save video to file
Args:
video: Video tensor
args: command line arguments
original_base_name: Original base name (if latents are loaded from files)
Returns:
str: Path to saved video file
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
original_name = "" if original_base_name is None else f"_{original_base_name}"
latent_frames = "" if latent_frames is None else f"_{latent_frames}"
video_path = f"{save_path}/{time_flag}_{seed}{original_name}{latent_frames}.mp4"
video = video.unsqueeze(0)
save_videos_grid(video, video_path, fps=args.fps, rescale=True)
logger.info(f"Video saved to: {video_path}")
return video_path
def save_images(sample: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str:
"""Save images to directory
Args:
sample: Video tensor
args: command line arguments
original_base_name: Original base name (if latents are loaded from files)
Returns:
str: Path to saved images directory
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
original_name = "" if original_base_name is None else f"_{original_base_name}"
image_name = f"{time_flag}_{seed}{original_name}"
sample = sample.unsqueeze(0)
one_frame_mode = args.one_frame_inference is not None
save_images_grid(sample, save_path, image_name, rescale=True, create_subdir=not one_frame_mode)
logger.info(f"Sample images saved to: {save_path}/{image_name}")
return f"{save_path}/{image_name}"
def save_output(
args: argparse.Namespace,
vae: AutoencoderKLCausal3D,
latent: torch.Tensor,
device: torch.device,
original_base_names: Optional[List[str]] = None,
) -> None:
"""save output
Args:
args: command line arguments
vae: VAE model
latent: latent tensor
device: device to use
original_base_names: original base names (if latents are loaded from files)
"""
height, width = latent.shape[-2], latent.shape[-1] # BCTHW
height *= 8
width *= 8
# print(f"Saving output. Latent shape {latent.shape}; pixel shape {height}x{width}")
if args.output_type == "latent" or args.output_type == "both" or args.output_type == "latent_images":
# save latent
save_latent(latent, args, height, width)
if args.output_type == "latent":
return
total_latent_sections = (args.video_seconds * 30) / (args.latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
video = decode_latent(
args.latent_window_size, total_latent_sections, args.bulk_decode, vae, latent, device, args.one_frame_inference is not None
)
if args.output_type == "video" or args.output_type == "both":
# save video
original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
save_video(video, args, original_name)
elif args.output_type == "images" or args.output_type == "latent_images":
# save images
original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
save_images(video, args, original_name)
def preprocess_prompts_for_batch(prompt_lines: List[str], base_args: argparse.Namespace) -> List[Dict]:
"""Process multiple prompts for batch mode
Args:
prompt_lines: List of prompt lines
base_args: Base command line arguments
Returns:
List[Dict]: List of prompt data dictionaries
"""
prompts_data = []
for line in prompt_lines:
line = line.strip()
if not line or line.startswith("#"): # Skip empty lines and comments
continue
# Parse prompt line and create override dictionary
prompt_data = parse_prompt_line(line)
logger.info(f"Parsed prompt data: {prompt_data}")
prompts_data.append(prompt_data)
return prompts_data
def load_shared_models(args: argparse.Namespace) -> Dict:
"""Load shared models for batch processing or interactive mode.
Models are loaded to CPU to save memory.
Args:
args: Base command line arguments
Returns:
Dict: Dictionary of shared models
"""
shared_models = {}
tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, "cpu")
tokenizer2, text_encoder2 = load_text_encoder2(args)
feature_extractor, image_encoder = load_image_encoders(args)
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, "cpu")
shared_models["tokenizer1"] = tokenizer1
shared_models["text_encoder1"] = text_encoder1
shared_models["tokenizer2"] = tokenizer2
shared_models["text_encoder2"] = text_encoder2
shared_models["feature_extractor"] = feature_extractor
shared_models["image_encoder"] = image_encoder
shared_models["vae"] = vae
return shared_models
def process_batch_prompts(prompts_data: List[Dict], args: argparse.Namespace) -> None:
"""Process multiple prompts with model reuse
Args:
prompts_data: List of prompt data dictionaries
args: Base command line arguments
"""
if not prompts_data:
logger.warning("No valid prompts found")
return
# 1. Load configuration
gen_settings = get_generation_settings(args)
device = gen_settings.device
# 2. Load models to CPU in advance except for VAE and DiT
shared_models = load_shared_models(args)
# 3. Generate for each prompt
all_latents = []
all_prompt_args = []
with torch.no_grad():
for prompt_data in prompts_data:
prompt = prompt_data["prompt"]
prompt_args = apply_overrides(args, prompt_data)
logger.info(f"Processing prompt: {prompt}")
try:
vae, latent = generate(prompt_args, gen_settings, shared_models)
# Save latent if needed
if args.output_type == "latent" or args.output_type == "both" or args.output_type == "latent_images":
height, width = latent.shape[-2], latent.shape[-1] # BCTHW
height *= 8
width *= 8
save_latent(latent, prompt_args, height, width)
all_latents.append(latent)
all_prompt_args.append(prompt_args)
except Exception as e:
logger.error(f"Error processing prompt: {prompt}. Error: {e}")
continue
# 4. Free models
if "model" in shared_models:
del shared_models["model"]
del shared_models["tokenizer1"]
del shared_models["text_encoder1"]
del shared_models["tokenizer2"]
del shared_models["text_encoder2"]
del shared_models["feature_extractor"]
del shared_models["image_encoder"]
clean_memory_on_device(device)
synchronize_device(device)
# 5. Decode latents if needed
if args.output_type != "latent":
logger.info("Decoding latents to videos/images")
vae.to(device)
for i, (latent, prompt_args) in enumerate(zip(all_latents, all_prompt_args)):
logger.info(f"Decoding output {i+1}/{len(all_latents)}")
# avoid saving latents again (ugly hack)
if prompt_args.output_type == "both":
prompt_args.output_type = "video"
elif prompt_args.output_type == "latent_images":
prompt_args.output_type = "images"
save_output(prompt_args, vae, latent[0], device)
def process_interactive(args: argparse.Namespace) -> None:
"""Process prompts in interactive mode
Args:
args: Base command line arguments
"""
gen_settings = get_generation_settings(args)
device = gen_settings.device
shared_models = load_shared_models(args)
print("Interactive mode. Enter prompts (Ctrl+D or Ctrl+Z (Windows) to exit):")
try:
while True:
try:
line = input("> ")
if not line.strip():
continue
# Parse prompt
prompt_data = parse_prompt_line(line)
prompt_args = apply_overrides(args, prompt_data)
# Generate latent
vae, latent = generate(prompt_args, gen_settings, shared_models)
# Save latent and video
save_output(prompt_args, vae, latent[0], device)
except KeyboardInterrupt:
print("\nInterrupted. Continue (Ctrl+D or Ctrl+Z (Windows) to exit)")
continue
except EOFError:
print("\nExiting interactive mode")
def get_generation_settings(args: argparse.Namespace) -> GenerationSettings:
device = torch.device(args.device)
dit_weight_dtype = None # default
if args.fp8_scaled:
dit_weight_dtype = None # various precision weights, so don't cast to specific dtype
elif args.fp8:
dit_weight_dtype = torch.float8_e4m3fn
logger.info(f"Using device: {device}, DiT weight weight precision: {dit_weight_dtype}")
gen_settings = GenerationSettings(device=device, dit_weight_dtype=dit_weight_dtype)
return gen_settings
def main():
# Parse arguments
args = parse_args()
# Check if latents are provided
latents_mode = args.latent_path is not None and len(args.latent_path) > 0
# Set device
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
logger.info(f"Using device: {device}")
args.device = device
if latents_mode:
# Original latent decode mode
original_base_names = []
latents_list = []
seeds = []
# assert len(args.latent_path) == 1, "Only one latent path is supported for now"
for latent_path in args.latent_path:
original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0])
seed = 0
if os.path.splitext(latent_path)[1] != ".safetensors":
latents = torch.load(latent_path, map_location="cpu")
else:
latents = load_file(latent_path)["latent"]
with safe_open(latent_path, framework="pt") as f:
metadata = f.metadata()
if metadata is None:
metadata = {}
logger.info(f"Loaded metadata: {metadata}")
if "seeds" in metadata:
seed = int(metadata["seeds"])
if "height" in metadata and "width" in metadata:
height = int(metadata["height"])
width = int(metadata["width"])
args.video_size = [height, width]
if "video_seconds" in metadata:
args.video_seconds = float(metadata["video_seconds"])
seeds.append(seed)
logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}")
if latents.ndim == 5: # [BCTHW]
latents = latents.squeeze(0) # [CTHW]
latents_list.append(latents)
# latent = torch.stack(latents_list, dim=0) # [N, ...], must be same shape
for i, latent in enumerate(latents_list):
args.seed = seeds[i]
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
save_output(args, vae, latent, device, original_base_names)
elif args.from_file:
# Batch mode from file
# Read prompts from file
with open(args.from_file, "r", encoding="utf-8") as f:
prompt_lines = f.readlines()
# Process prompts
prompts_data = preprocess_prompts_for_batch(prompt_lines, args)
process_batch_prompts(prompts_data, args)
elif args.interactive:
# Interactive mode
process_interactive(args)
else:
# Single prompt mode (original behavior)
# Generate latent
gen_settings = get_generation_settings(args)
vae, latent = generate(args, gen_settings)
# print(f"Generated latent shape: {latent.shape}")
if args.save_merged_model:
return
# Save latent and video
save_output(args, vae, latent[0], device)
logger.info("Done!")
if __name__ == "__main__":
main()
|