File size: 71,487 Bytes
7bc5051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
import argparse
from datetime import datetime
import gc
import json
import random
import os
import re
import time
import math
import copy
from typing import Tuple, Optional, List, Union, Any, Dict

import torch
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from PIL import Image
import cv2
import numpy as np
import torchvision.transforms.functional as TF
from transformers import LlamaModel
from tqdm import tqdm

from networks import lora_framepack
from hunyuan_model.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
from frame_pack import hunyuan
from frame_pack.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked, load_packed_model
from frame_pack.utils import crop_or_pad_yield_mask, resize_and_center_crop, soft_append_bcthw
from frame_pack.bucket_tools import find_nearest_bucket
from frame_pack.clip_vision import hf_clip_vision_encode
from frame_pack.k_diffusion_hunyuan import sample_hunyuan
from dataset import image_video_dataset

try:
    from lycoris.kohya import create_network_from_weights
except:
    pass

from utils.device_utils import clean_memory_on_device
from hv_generate_video import save_images_grid, save_videos_grid, synchronize_device
from wan_generate_video import merge_lora_weights
from frame_pack.framepack_utils import load_vae, load_text_encoder1, load_text_encoder2, load_image_encoders
from dataset.image_video_dataset import load_video

import logging

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


class GenerationSettings:
    def __init__(self, device: torch.device, dit_weight_dtype: Optional[torch.dtype] = None):
        self.device = device
        self.dit_weight_dtype = dit_weight_dtype  # not used currently because model may be optimized


def parse_args() -> argparse.Namespace:
    """parse command line arguments"""
    parser = argparse.ArgumentParser(description="Wan 2.1 inference script")

    # WAN arguments
    # parser.add_argument("--ckpt_dir", type=str, default=None, help="The path to the checkpoint directory (Wan 2.1 official).")
    parser.add_argument(
        "--sample_solver", type=str, default="unipc", choices=["unipc", "dpm++", "vanilla"], help="The solver used to sample."
    )

    parser.add_argument("--dit", type=str, default=None, help="DiT directory or path")
    parser.add_argument("--vae", type=str, default=None, help="VAE directory or path")
    parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory or path")
    parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory or path")
    parser.add_argument("--image_encoder", type=str, required=True, help="Image Encoder directory or path")
    parser.add_argument("--f1", action="store_true", help="Use F1 sampling method")

    # LoRA
    parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path")
    parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier")
    parser.add_argument("--include_patterns", type=str, nargs="*", default=None, help="LoRA module include patterns")
    parser.add_argument("--exclude_patterns", type=str, nargs="*", default=None, help="LoRA module exclude patterns")
    parser.add_argument(
        "--save_merged_model",
        type=str,
        default=None,
        help="Save merged model to path. If specified, no inference will be performed.",
    )

    # inference
    parser.add_argument(
        "--prompt",
        type=str,
        default=None,
        help="prompt for generation. If `;;;` is used, it will be split into sections. Example: `section_index:prompt` or "
        "`section_index:prompt;;;section_index:prompt;;;...`, section_index can be `0` or `-1` or `0-2`, `-1` means last section, `0-2` means from 0 to 2 (inclusive).",
    )
    parser.add_argument(
        "--negative_prompt",
        type=str,
        default=None,
        help="negative prompt for generation, default is empty string. should not change.",
    )
    parser.add_argument(
        "--custom_system_prompt",
        type=str,
        default=None,
        help="Custom system prompt for LLM. If specified, it will override the default system prompt. See hunyuan_model/text_encoder.py for the default system prompt.",
    )
    parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size, height and width")
    parser.add_argument("--video_seconds", type=float, default=5.0, help="video length, default is 5.0 seconds")
    parser.add_argument(
        "--video_sections",
        type=int,
        default=None,
        help="number of video sections, Default is None (auto calculate from video seconds)",
    )
    parser.add_argument(
        "--one_frame_inference",
        type=str,
        default=None,
        help="one frame inference, default is None, comma separated values from 'zero_post', 'no_2x', 'no_4x' and 'no_post'.",
    )
    parser.add_argument(
        "--image_mask_path",
        type=str,
        default=None,
        help="path to image mask for one frame inference. If specified, it will be used as mask for input image.",
    )
    parser.add_argument(
        "--end_image_mask_path",
        type=str,
        default=None,
        nargs="*",
        help="path to end (reference) image mask for one frame inference. If specified, it will be used as mask for end image.",
    )
    parser.add_argument("--fps", type=int, default=30, help="video fps, default is 30")
    parser.add_argument("--infer_steps", type=int, default=25, help="number of inference steps, default is 25")
    parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
    parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
    # parser.add_argument(
    #     "--cpu_noise", action="store_true", help="Use CPU to generate noise (compatible with ComfyUI). Default is False."
    # )
    parser.add_argument("--latent_window_size", type=int, default=9, help="latent window size, default is 9. should not change.")
    parser.add_argument(
        "--embedded_cfg_scale", type=float, default=10.0, help="Embeded CFG scale (distilled CFG Scale), default is 10.0"
    )
    parser.add_argument(
        "--guidance_scale",
        type=float,
        default=1.0,
        help="Guidance scale for classifier free guidance. Default is 1.0 (no guidance), should not change.",
    )
    parser.add_argument("--guidance_rescale", type=float, default=0.0, help="CFG Re-scale, default is 0.0. Should not change.")
    # parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference")
    parser.add_argument(
        "--image_path",
        type=str,
        default=None,
        help="path to image for image2video inference. If `;;;` is used, it will be used as section images. The notation is same as `--prompt`.",
    )
    parser.add_argument("--end_image_path", type=str, nargs="*", default=None, help="path to end image for image2video inference")
    parser.add_argument(
        "--latent_paddings",
        type=str,
        default=None,
        help="latent paddings for each section, comma separated values. default is None (FramePack default paddings)",
    )
    # parser.add_argument(
    #     "--control_path",
    #     type=str,
    #     default=None,
    #     help="path to control video for inference with controlnet. video file or directory with images",
    # )
    # parser.add_argument("--trim_tail_frames", type=int, default=0, help="trim tail N frames from the video before saving")

    # # Flow Matching
    # parser.add_argument(
    #     "--flow_shift",
    #     type=float,
    #     default=None,
    #     help="Shift factor for flow matching schedulers. Default depends on task.",
    # )

    parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
    parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT, only for fp8")
    # parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arithmetic (RTX 4XXX+), only for fp8_scaled")
    parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
    parser.add_argument(
        "--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
    )
    parser.add_argument(
        "--attn_mode",
        type=str,
        default="torch",
        choices=["flash", "torch", "sageattn", "xformers", "sdpa"],  #  "flash2", "flash3",
        help="attention mode",
    )
    parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
    parser.add_argument(
        "--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
    )
    parser.add_argument("--bulk_decode", action="store_true", help="decode all frames at once")
    parser.add_argument("--blocks_to_swap", type=int, default=0, help="number of blocks to swap in the model")
    parser.add_argument(
        "--output_type",
        type=str,
        default="video",
        choices=["video", "images", "latent", "both", "latent_images"],
        help="output type",
    )
    parser.add_argument("--no_metadata", action="store_true", help="do not save metadata")
    parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference")
    parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference")
    # parser.add_argument("--compile", action="store_true", help="Enable torch.compile")
    # parser.add_argument(
    #     "--compile_args",
    #     nargs=4,
    #     metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"),
    #     default=["inductor", "max-autotune-no-cudagraphs", "False", "False"],
    #     help="Torch.compile settings",
    # )

    # New arguments for batch and interactive modes
    parser.add_argument("--from_file", type=str, default=None, help="Read prompts from a file")
    parser.add_argument("--interactive", action="store_true", help="Interactive mode: read prompts from console")

    args = parser.parse_args()

    # Validate arguments
    if args.from_file and args.interactive:
        raise ValueError("Cannot use both --from_file and --interactive at the same time")

    if args.latent_path is None or len(args.latent_path) == 0:
        if args.prompt is None and not args.from_file and not args.interactive:
            raise ValueError("Either --prompt, --from_file or --interactive must be specified")

    return args


def parse_prompt_line(line: str) -> Dict[str, Any]:
    """Parse a prompt line into a dictionary of argument overrides

    Args:
        line: Prompt line with options

    Returns:
        Dict[str, Any]: Dictionary of argument overrides
    """
    # TODO common function with hv_train_network.line_to_prompt_dict
    parts = line.split(" --")
    prompt = parts[0].strip()

    # Create dictionary of overrides
    overrides = {"prompt": prompt}
    # Initialize end_image_path and end_image_mask_path as a list to accommodate multiple paths
    overrides["end_image_path"] = []
    overrides["end_image_mask_path"] = []

    for part in parts[1:]:
        if not part.strip():
            continue
        option_parts = part.split(" ", 1)
        option = option_parts[0].strip()
        value = option_parts[1].strip() if len(option_parts) > 1 else ""

        # Map options to argument names
        if option == "w":
            overrides["video_size_width"] = int(value)
        elif option == "h":
            overrides["video_size_height"] = int(value)
        elif option == "f":
            overrides["video_seconds"] = float(value)
        elif option == "d":
            overrides["seed"] = int(value)
        elif option == "s":
            overrides["infer_steps"] = int(value)
        elif option == "g" or option == "l":
            overrides["guidance_scale"] = float(value)
        # elif option == "fs":
        #     overrides["flow_shift"] = float(value)
        elif option == "i":
            overrides["image_path"] = value
        elif option == "im":
            overrides["image_mask_path"] = value
        # elif option == "cn":
        #     overrides["control_path"] = value
        elif option == "n":
            overrides["negative_prompt"] = value
        elif option == "vs":  # video_sections
            overrides["video_sections"] = int(value)
        elif option == "ei":  # end_image_path
            overrides["end_image_path"].append(value)
        elif option == "eim":  # end_image_mask_path
            overrides["end_image_mask_path"].append(value)
        elif option == "of":  # one_frame_inference
            overrides["one_frame_inference"] = value

    # If no end_image_path was provided, remove the empty list
    if not overrides["end_image_path"]:
        del overrides["end_image_path"]
    if not overrides["end_image_mask_path"]:
        del overrides["end_image_mask_path"]

    return overrides


def apply_overrides(args: argparse.Namespace, overrides: Dict[str, Any]) -> argparse.Namespace:
    """Apply overrides to args

    Args:
        args: Original arguments
        overrides: Dictionary of overrides

    Returns:
        argparse.Namespace: New arguments with overrides applied
    """
    args_copy = copy.deepcopy(args)

    for key, value in overrides.items():
        if key == "video_size_width":
            args_copy.video_size[1] = value
        elif key == "video_size_height":
            args_copy.video_size[0] = value
        else:
            setattr(args_copy, key, value)

    return args_copy


def check_inputs(args: argparse.Namespace) -> Tuple[int, int, int]:
    """Validate video size and length

    Args:
        args: command line arguments

    Returns:
        Tuple[int, int, float]: (height, width, video_seconds)
    """
    height = args.video_size[0]
    width = args.video_size[1]

    video_seconds = args.video_seconds
    if args.video_sections is not None:
        video_seconds = (args.video_sections * (args.latent_window_size * 4) + 1) / args.fps

    if height % 8 != 0 or width % 8 != 0:
        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

    return height, width, video_seconds


# region DiT model


def load_dit_model(args: argparse.Namespace, device: torch.device) -> HunyuanVideoTransformer3DModelPacked:
    """load DiT model

    Args:
        args: command line arguments
        device: device to use
        dit_dtype: data type for the model
        dit_weight_dtype: data type for the model weights. None for as-is

    Returns:
        HunyuanVideoTransformer3DModelPacked: DiT model
    """
    loading_device = "cpu"
    if args.blocks_to_swap == 0 and not args.fp8_scaled and args.lora_weight is None:
        loading_device = device

    # do not fp8 optimize because we will merge LoRA weights
    model = load_packed_model(device, args.dit, args.attn_mode, loading_device)
    return model


def optimize_model(model: HunyuanVideoTransformer3DModelPacked, args: argparse.Namespace, device: torch.device) -> None:
    """optimize the model (FP8 conversion, device move etc.)

    Args:
        model: dit model
        args: command line arguments
        device: device to use
    """
    if args.fp8_scaled:
        # load state dict as-is and optimize to fp8
        state_dict = model.state_dict()

        # if no blocks to swap, we can move the weights to GPU after optimization on GPU (omit redundant CPU->GPU copy)
        move_to_device = args.blocks_to_swap == 0  # if blocks_to_swap > 0, we will keep the model on CPU
        state_dict = model.fp8_optimization(state_dict, device, move_to_device, use_scaled_mm=False)  # args.fp8_fast)

        info = model.load_state_dict(state_dict, strict=True, assign=True)
        logger.info(f"Loaded FP8 optimized weights: {info}")

        if args.blocks_to_swap == 0:
            model.to(device)  # make sure all parameters are on the right device (e.g. RoPE etc.)
    else:
        # simple cast to dit_dtype
        target_dtype = None  # load as-is (dit_weight_dtype == dtype of the weights in state_dict)
        target_device = None

        if args.fp8:
            target_dtype = torch.float8e4m3fn

        if args.blocks_to_swap == 0:
            logger.info(f"Move model to device: {device}")
            target_device = device

        if target_device is not None and target_dtype is not None:
            model.to(target_device, target_dtype)  # move and cast  at the same time. this reduces redundant copy operations

    # if args.compile:
    #     compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args
    #     logger.info(
    #         f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]"
    #     )
    #     torch._dynamo.config.cache_size_limit = 32
    #     for i in range(len(model.blocks)):
    #         model.blocks[i] = torch.compile(
    #             model.blocks[i],
    #             backend=compile_backend,
    #             mode=compile_mode,
    #             dynamic=compile_dynamic.lower() in "true",
    #             fullgraph=compile_fullgraph.lower() in "true",
    #         )

    if args.blocks_to_swap > 0:
        logger.info(f"Enable swap {args.blocks_to_swap} blocks to CPU from device: {device}")
        model.enable_block_swap(args.blocks_to_swap, device, supports_backward=False)
        model.move_to_device_except_swap_blocks(device)
        model.prepare_block_swap_before_forward()
    else:
        # make sure the model is on the right device
        model.to(device)

    model.eval().requires_grad_(False)
    clean_memory_on_device(device)


# endregion


def decode_latent(
    latent_window_size: int,
    total_latent_sections: int,
    bulk_decode: bool,
    vae: AutoencoderKLCausal3D,
    latent: torch.Tensor,
    device: torch.device,
    one_frame_inference_mode: bool = False,
) -> torch.Tensor:
    logger.info(f"Decoding video...")
    if latent.ndim == 4:
        latent = latent.unsqueeze(0)  # add batch dimension

    vae.to(device)
    if not bulk_decode and not one_frame_inference_mode:
        latent_window_size = latent_window_size  # default is 9
        # total_latent_sections = (args.video_seconds * 30) / (latent_window_size * 4)
        # total_latent_sections = int(max(round(total_latent_sections), 1))
        num_frames = latent_window_size * 4 - 3

        latents_to_decode = []
        latent_frame_index = 0
        for i in range(total_latent_sections - 1, -1, -1):
            is_last_section = i == total_latent_sections - 1
            generated_latent_frames = (num_frames + 3) // 4 + (1 if is_last_section else 0)
            section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)

            section_latent = latent[:, :, latent_frame_index : latent_frame_index + section_latent_frames, :, :]
            if section_latent.shape[2] > 0:
                latents_to_decode.append(section_latent)

            latent_frame_index += generated_latent_frames

        latents_to_decode = latents_to_decode[::-1]  # reverse the order of latents to decode

        history_pixels = None
        for latent in tqdm(latents_to_decode):
            if history_pixels is None:
                history_pixels = hunyuan.vae_decode(latent, vae).cpu()
            else:
                overlapped_frames = latent_window_size * 4 - 3
                current_pixels = hunyuan.vae_decode(latent, vae).cpu()
                history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
            clean_memory_on_device(device)
    else:
        # bulk decode
        logger.info(f"Bulk decoding or one frame inference")
        if not one_frame_inference_mode:
            history_pixels = hunyuan.vae_decode(latent, vae).cpu()  # normal
        else:
            # one frame inference
            history_pixels = [hunyuan.vae_decode(latent[:, :, i : i + 1, :, :], vae).cpu() for i in range(latent.shape[2])]
            history_pixels = torch.cat(history_pixels, dim=2)

    vae.to("cpu")

    logger.info(f"Decoded. Pixel shape {history_pixels.shape}")
    return history_pixels[0]  # remove batch dimension


def prepare_i2v_inputs(
    args: argparse.Namespace,
    device: torch.device,
    vae: AutoencoderKLCausal3D,
    shared_models: Optional[Dict] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
    """Prepare inputs for I2V

    Args:
        args: command line arguments
        config: model configuration
        device: device to use
        vae: VAE model, used for image encoding
        shared_models: dictionary containing pre-loaded models

    Returns:
        Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
            (noise, context, context_null, y, (arg_c, arg_null))
    """

    height, width, video_seconds = check_inputs(args)

    # define parsing function
    def parse_section_strings(input_string: str) -> dict[int, str]:
        section_strings = {}
        if ";;;" in input_string:
            split_section_strings = input_string.split(";;;")
            for section_str in split_section_strings:
                if ":" not in section_str:
                    start = end = 0
                    section_str = section_str.strip()
                else:
                    index_str, section_str = section_str.split(":", 1)
                    index_str = index_str.strip()
                    section_str = section_str.strip()

                    m = re.match(r"^(-?\d+)(-\d+)?$", index_str)
                    if m:
                        start = int(m.group(1))
                        end = int(m.group(2)[1:]) if m.group(2) is not None else start
                    else:
                        start = end = 0
                        section_str = section_str.strip()
                for i in range(start, end + 1):
                    section_strings[i] = section_str
        else:
            section_strings[0] = input_string

        # assert 0 in section_prompts, "Section prompts must contain section 0"
        if 0 not in section_strings:
            # use smallest section index. prefer positive index over negative index
            # if all section indices are negative, use the smallest negative index
            indices = list(section_strings.keys())
            if all(i < 0 for i in indices):
                section_index = min(indices)
            else:
                section_index = min(i for i in indices if i >= 0)
            section_strings[0] = section_strings[section_index]
        return section_strings

    # prepare image
    def preprocess_image(image_path: str):
        image = Image.open(image_path).convert("RGB")

        image_np = np.array(image)  # PIL to numpy, HWC

        image_np = image_video_dataset.resize_image_to_bucket(image_np, (width, height))
        image_tensor = torch.from_numpy(image_np).float() / 127.5 - 1.0  # -1 to 1.0, HWC
        image_tensor = image_tensor.permute(2, 0, 1)[None, :, None]  # HWC -> CHW -> NCFHW, N=1, C=3, F=1
        return image_tensor, image_np

    section_image_paths = parse_section_strings(args.image_path)

    section_images = {}
    for index, image_path in section_image_paths.items():
        img_tensor, img_np = preprocess_image(image_path)
        section_images[index] = (img_tensor, img_np)

    # check end images
    if args.end_image_path is not None and len(args.end_image_path) > 0:
        end_image_tensors = []
        for end_img_path in args.end_image_path:
            end_image_tensor, _ = preprocess_image(end_img_path)
            end_image_tensors.append(end_image_tensor)
    else:
        end_image_tensors = None

    # configure negative prompt
    n_prompt = args.negative_prompt if args.negative_prompt else ""

    # parse section prompts
    section_prompts = parse_section_strings(args.prompt)

    # load text encoder
    if shared_models is not None:
        tokenizer1, text_encoder1 = shared_models["tokenizer1"], shared_models["text_encoder1"]
        tokenizer2, text_encoder2 = shared_models["tokenizer2"], shared_models["text_encoder2"]
        text_encoder1.to(device)
    else:
        tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, device)
        tokenizer2, text_encoder2 = load_text_encoder2(args)
    text_encoder2.to(device)

    logger.info(f"Encoding prompt")
    llama_vecs = {}
    llama_attention_masks = {}
    clip_l_poolers = {}
    with torch.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
        for index, prompt in section_prompts.items():
            llama_vec, clip_l_pooler = hunyuan.encode_prompt_conds(
                prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2, custom_system_prompt=args.custom_system_prompt
            )
            llama_vec = llama_vec.cpu()
            clip_l_pooler = clip_l_pooler.cpu()

            llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)

            llama_vecs[index] = llama_vec
            llama_attention_masks[index] = llama_attention_mask
            clip_l_poolers[index] = clip_l_pooler

    if args.guidance_scale == 1.0:
        llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vecs[0]), torch.zeros_like(clip_l_poolers[0])
    else:
        with torch.autocast(device_type=device.type, dtype=text_encoder1.dtype), torch.no_grad():
            llama_vec_n, clip_l_pooler_n = hunyuan.encode_prompt_conds(
                n_prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2, custom_system_prompt=args.custom_system_prompt
            )
            llama_vec_n = llama_vec_n.cpu()
            clip_l_pooler_n = clip_l_pooler_n.cpu()

    llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)

    # free text encoder and clean memory
    if shared_models is not None:  # if shared models are used, do not free them but move to CPU
        text_encoder1.to("cpu")
        text_encoder2.to("cpu")
    del tokenizer1, text_encoder1, tokenizer2, text_encoder2  # do not free shared models
    clean_memory_on_device(device)

    # load image encoder
    if shared_models is not None:
        feature_extractor, image_encoder = shared_models["feature_extractor"], shared_models["image_encoder"]
    else:
        feature_extractor, image_encoder = load_image_encoders(args)
    image_encoder.to(device)

    # encode image with image encoder
    section_image_encoder_last_hidden_states = {}
    for index, (img_tensor, img_np) in section_images.items():
        with torch.no_grad():
            image_encoder_output = hf_clip_vision_encode(img_np, feature_extractor, image_encoder)
        image_encoder_last_hidden_state = image_encoder_output.last_hidden_state.cpu()
        section_image_encoder_last_hidden_states[index] = image_encoder_last_hidden_state

    # free image encoder and clean memory
    if shared_models is not None:
        image_encoder.to("cpu")
    del image_encoder, feature_extractor
    clean_memory_on_device(device)

    # VAE encoding
    logger.info(f"Encoding image to latent space")
    vae.to(device)

    section_start_latents = {}
    for index, (img_tensor, img_np) in section_images.items():
        start_latent = hunyuan.vae_encode(img_tensor, vae).cpu()
        section_start_latents[index] = start_latent

    # end_latent = hunyuan.vae_encode(end_image_tensor, vae).cpu() if end_image_tensor is not None else None
    if end_image_tensors is not None:
        end_latents = []
        for end_image_tensor in end_image_tensors:
            end_latent = hunyuan.vae_encode(end_image_tensor, vae).cpu()
            end_latents.append(end_latent)
    else:
        end_latents = None

    vae.to("cpu")  # move VAE to CPU to save memory
    clean_memory_on_device(device)

    # prepare model input arguments
    arg_c = {}
    arg_null = {}
    for index in llama_vecs.keys():
        llama_vec = llama_vecs[index]
        llama_attention_mask = llama_attention_masks[index]
        clip_l_pooler = clip_l_poolers[index]
        arg_c_i = {
            "llama_vec": llama_vec,
            "llama_attention_mask": llama_attention_mask,
            "clip_l_pooler": clip_l_pooler,
            "prompt": section_prompts[index],  # for debugging
        }
        arg_c[index] = arg_c_i

    arg_null = {
        "llama_vec": llama_vec_n,
        "llama_attention_mask": llama_attention_mask_n,
        "clip_l_pooler": clip_l_pooler_n,
    }

    arg_c_img = {}
    for index in section_images.keys():
        image_encoder_last_hidden_state = section_image_encoder_last_hidden_states[index]
        start_latent = section_start_latents[index]
        arg_c_img_i = {
            "image_encoder_last_hidden_state": image_encoder_last_hidden_state,
            "start_latent": start_latent,
            "image_path": section_image_paths[index],
        }
        arg_c_img[index] = arg_c_img_i

    return height, width, video_seconds, arg_c, arg_null, arg_c_img, end_latents


# def setup_scheduler(args: argparse.Namespace, config, device: torch.device) -> Tuple[Any, torch.Tensor]:
#     """setup scheduler for sampling

#     Args:
#         args: command line arguments
#         config: model configuration
#         device: device to use

#     Returns:
#         Tuple[Any, torch.Tensor]: (scheduler, timesteps)
#     """
#     if args.sample_solver == "unipc":
#         scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False)
#         scheduler.set_timesteps(args.infer_steps, device=device, shift=args.flow_shift)
#         timesteps = scheduler.timesteps
#     elif args.sample_solver == "dpm++":
#         scheduler = FlowDPMSolverMultistepScheduler(
#             num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False
#         )
#         sampling_sigmas = get_sampling_sigmas(args.infer_steps, args.flow_shift)
#         timesteps, _ = retrieve_timesteps(scheduler, device=device, sigmas=sampling_sigmas)
#     elif args.sample_solver == "vanilla":
#         scheduler = FlowMatchDiscreteScheduler(num_train_timesteps=config.num_train_timesteps, shift=args.flow_shift)
#         scheduler.set_timesteps(args.infer_steps, device=device)
#         timesteps = scheduler.timesteps

#         # FlowMatchDiscreteScheduler does not support generator argument in step method
#         org_step = scheduler.step

#         def step_wrapper(
#             model_output: torch.Tensor,
#             timestep: Union[int, torch.Tensor],
#             sample: torch.Tensor,
#             return_dict: bool = True,
#             generator=None,
#         ):
#             return org_step(model_output, timestep, sample, return_dict=return_dict)

#         scheduler.step = step_wrapper
#     else:
#         raise NotImplementedError("Unsupported solver.")

#     return scheduler, timesteps


def convert_lora_for_framepack(lora_sd: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
    # Check the format of the LoRA file
    keys = list(lora_sd.keys())
    if keys[0].startswith("lora_unet_"):
        # logging.info(f"Musubi Tuner LoRA detected")
        pass

    else:
        transformer_prefixes = ["diffusion_model", "transformer"]  # to ignore Text Encoder modules
        lora_suffix = None
        prefix = None
        for key in keys:
            if lora_suffix is None and "lora_A" in key:
                lora_suffix = "lora_A"
            if prefix is None:
                pfx = key.split(".")[0]
                if pfx in transformer_prefixes:
                    prefix = pfx
            if lora_suffix is not None and prefix is not None:
                break

        if lora_suffix == "lora_A" and prefix is not None:
            logging.info(f"Diffusion-pipe (?) LoRA detected, converting to the default LoRA format")
            lora_sd = convert_lora_from_diffusion_pipe_or_something(lora_sd, "lora_unet_")

        else:
            logging.info(f"LoRA file format not recognized. Using it as-is.")

    # Check LoRA is for FramePack or for HunyuanVideo
    is_hunyuan = False
    for key in lora_sd.keys():
        if "double_blocks" in key or "single_blocks" in key:
            is_hunyuan = True
            break
    if is_hunyuan:
        logging.info("HunyuanVideo LoRA detected, converting to FramePack format")
        lora_sd = convert_hunyuan_to_framepack(lora_sd)

    return lora_sd


def convert_lora_from_diffusion_pipe_or_something(lora_sd: dict[str, torch.Tensor], prefix: str) -> dict[str, torch.Tensor]:
    """
    Convert LoRA weights to the format used by the diffusion pipeline to Musubi Tuner.
    Copy from Musubi Tuner repo.
    """
    # convert from diffusers(?) to default LoRA
    # Diffusers format: {"diffusion_model.module.name.lora_A.weight": weight, "diffusion_model.module.name.lora_B.weight": weight, ...}
    # default LoRA format: {"prefix_module_name.lora_down.weight": weight, "prefix_module_name.lora_up.weight": weight, ...}

    # note: Diffusers has no alpha, so alpha is set to rank
    new_weights_sd = {}
    lora_dims = {}
    for key, weight in lora_sd.items():
        diffusers_prefix, key_body = key.split(".", 1)
        if diffusers_prefix != "diffusion_model" and diffusers_prefix != "transformer":
            print(f"unexpected key: {key} in diffusers format")
            continue

        new_key = f"{prefix}{key_body}".replace(".", "_").replace("_lora_A_", ".lora_down.").replace("_lora_B_", ".lora_up.")
        new_weights_sd[new_key] = weight

        lora_name = new_key.split(".")[0]  # before first dot
        if lora_name not in lora_dims and "lora_down" in new_key:
            lora_dims[lora_name] = weight.shape[0]

    # add alpha with rank
    for lora_name, dim in lora_dims.items():
        new_weights_sd[f"{lora_name}.alpha"] = torch.tensor(dim)

    return new_weights_sd


def convert_hunyuan_to_framepack(lora_sd: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
    """
    Convert HunyuanVideo LoRA weights to FramePack format.
    """
    new_lora_sd = {}
    for key, weight in lora_sd.items():
        if "double_blocks" in key:
            key = key.replace("double_blocks", "transformer_blocks")
            key = key.replace("img_mod_linear", "norm1_linear")
            key = key.replace("img_attn_qkv", "attn_to_QKV")  # split later
            key = key.replace("img_attn_proj", "attn_to_out_0")
            key = key.replace("img_mlp_fc1", "ff_net_0_proj")
            key = key.replace("img_mlp_fc2", "ff_net_2")
            key = key.replace("txt_mod_linear", "norm1_context_linear")
            key = key.replace("txt_attn_qkv", "attn_add_QKV_proj")  # split later
            key = key.replace("txt_attn_proj", "attn_to_add_out")
            key = key.replace("txt_mlp_fc1", "ff_context_net_0_proj")
            key = key.replace("txt_mlp_fc2", "ff_context_net_2")
        elif "single_blocks" in key:
            key = key.replace("single_blocks", "single_transformer_blocks")
            key = key.replace("linear1", "attn_to_QKVM")  # split later
            key = key.replace("linear2", "proj_out")
            key = key.replace("modulation_linear", "norm_linear")
        else:
            print(f"Unsupported module name: {key}, only double_blocks and single_blocks are supported")
            continue

        if "QKVM" in key:
            # split QKVM into Q, K, V, M
            key_q = key.replace("QKVM", "q")
            key_k = key.replace("QKVM", "k")
            key_v = key.replace("QKVM", "v")
            key_m = key.replace("attn_to_QKVM", "proj_mlp")
            if "_down" in key or "alpha" in key:
                # copy QKVM weight or alpha to Q, K, V, M
                assert "alpha" in key or weight.size(1) == 3072, f"QKVM weight size mismatch: {key}. {weight.size()}"
                new_lora_sd[key_q] = weight
                new_lora_sd[key_k] = weight
                new_lora_sd[key_v] = weight
                new_lora_sd[key_m] = weight
            elif "_up" in key:
                # split QKVM weight into Q, K, V, M
                assert weight.size(0) == 21504, f"QKVM weight size mismatch: {key}. {weight.size()}"
                new_lora_sd[key_q] = weight[:3072]
                new_lora_sd[key_k] = weight[3072 : 3072 * 2]
                new_lora_sd[key_v] = weight[3072 * 2 : 3072 * 3]
                new_lora_sd[key_m] = weight[3072 * 3 :]  # 21504 - 3072 * 3 = 12288
            else:
                print(f"Unsupported module name: {key}")
                continue
        elif "QKV" in key:
            # split QKV into Q, K, V
            key_q = key.replace("QKV", "q")
            key_k = key.replace("QKV", "k")
            key_v = key.replace("QKV", "v")
            if "_down" in key or "alpha" in key:
                # copy QKV weight or alpha to Q, K, V
                assert "alpha" in key or weight.size(1) == 3072, f"QKV weight size mismatch: {key}. {weight.size()}"
                new_lora_sd[key_q] = weight
                new_lora_sd[key_k] = weight
                new_lora_sd[key_v] = weight
            elif "_up" in key:
                # split QKV weight into Q, K, V
                assert weight.size(0) == 3072 * 3, f"QKV weight size mismatch: {key}. {weight.size()}"
                new_lora_sd[key_q] = weight[:3072]
                new_lora_sd[key_k] = weight[3072 : 3072 * 2]
                new_lora_sd[key_v] = weight[3072 * 2 :]
            else:
                print(f"Unsupported module name: {key}")
                continue
        else:
            # no split needed
            new_lora_sd[key] = weight

    return new_lora_sd


def generate(
    args: argparse.Namespace, gen_settings: GenerationSettings, shared_models: Optional[Dict] = None
) -> tuple[AutoencoderKLCausal3D, torch.Tensor]:
    """main function for generation

    Args:
        args: command line arguments
        shared_models: dictionary containing pre-loaded models

    Returns:
        tuple: (AutoencoderKLCausal3D model (vae), torch.Tensor generated latent)
    """
    device, dit_weight_dtype = (gen_settings.device, gen_settings.dit_weight_dtype)

    # prepare seed
    seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
    args.seed = seed  # set seed to args for saving

    # Check if we have shared models
    if shared_models is not None:
        # Use shared models and encoded data
        vae = shared_models.get("vae")
        height, width, video_seconds, context, context_null, context_img, end_latents = prepare_i2v_inputs(
            args, device, vae, shared_models
        )
    else:
        # prepare inputs without shared models
        vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
        height, width, video_seconds, context, context_null, context_img, end_latents = prepare_i2v_inputs(args, device, vae)

    if shared_models is None or "model" not in shared_models:
        # load DiT model
        model = load_dit_model(args, device)

        # merge LoRA weights
        if args.lora_weight is not None and len(args.lora_weight) > 0:
            # ugly hack to common merge_lora_weights function
            merge_lora_weights(lora_framepack, model, args, device, convert_lora_for_framepack)

            # if we only want to save the model, we can skip the rest
            if args.save_merged_model:
                return None, None

        # optimize model: fp8 conversion, block swap etc.
        optimize_model(model, args, device)

        if shared_models is not None:
            shared_models["model"] = model
    else:
        # use shared model
        model: HunyuanVideoTransformer3DModelPacked = shared_models["model"]
        model.move_to_device_except_swap_blocks(device)
        model.prepare_block_swap_before_forward()

    # sampling
    latent_window_size = args.latent_window_size  # default is 9
    # ex: (5s * 30fps) / (9 * 4) = 4.16 -> 4 sections, 60s -> 1800 / 36 = 50 sections
    total_latent_sections = (video_seconds * 30) / (latent_window_size * 4)
    total_latent_sections = int(max(round(total_latent_sections), 1))

    # set random generator
    seed_g = torch.Generator(device="cpu")
    seed_g.manual_seed(seed)
    num_frames = latent_window_size * 4 - 3

    logger.info(
        f"Video size: {height}x{width}@{video_seconds} (HxW@seconds), fps: {args.fps}, num sections: {total_latent_sections}, "
        f"infer_steps: {args.infer_steps}, frames per generation: {num_frames}"
    )

    # video generation ######
    f1_mode = args.f1
    one_frame_inference = None
    if args.one_frame_inference is not None:
        one_frame_inference = set()
        for mode in args.one_frame_inference.split(","):
            one_frame_inference.add(mode.strip())

    # prepare history latents
    history_latents = torch.zeros((1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32)
    if end_latents is not None and not f1_mode:
        logger.info(f"Use end image(s): {args.end_image_path}")
        for i, end_latent in enumerate(end_latents):
            history_latents[:, :, i + 1 : i + 2] = end_latent.to(history_latents)

    # prepare clean latents and indices
    if not f1_mode:
        # Inverted Anti-drifting
        total_generated_latent_frames = 0
        latent_paddings = reversed(range(total_latent_sections))

        if total_latent_sections > 4 and one_frame_inference is None:
            # In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
            # items looks better than expanding it when total_latent_sections > 4
            # One can try to remove below trick and just
            # use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
            # 4 sections: 3, 2, 1, 0. 50 sections: 3, 2, 2, ... 2, 1, 0
            latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]

        if args.latent_paddings is not None:
            # parse user defined latent paddings
            user_latent_paddings = [int(x) for x in args.latent_paddings.split(",")]
            if len(user_latent_paddings) < total_latent_sections:
                print(
                    f"User defined latent paddings length {len(user_latent_paddings)} does not match total sections {total_latent_sections}."
                )
                print(f"Use default paddings instead for unspecified sections.")
                latent_paddings[: len(user_latent_paddings)] = user_latent_paddings
            elif len(user_latent_paddings) > total_latent_sections:
                print(
                    f"User defined latent paddings length {len(user_latent_paddings)} is greater than total sections {total_latent_sections}."
                )
                print(f"Use only first {total_latent_sections} paddings instead.")
                latent_paddings = user_latent_paddings[:total_latent_sections]
            else:
                latent_paddings = user_latent_paddings
    else:
        start_latent = context_img[0]["start_latent"]
        history_latents = torch.cat([history_latents, start_latent], dim=2)
        total_generated_latent_frames = 1  # a bit hacky, but we employ the same logic as in official code
        latent_paddings = [0] * total_latent_sections  # dummy paddings for F1 mode

    latent_paddings = list(latent_paddings)  # make sure it's a list
    for loop_index in range(total_latent_sections):
        latent_padding = latent_paddings[loop_index]

        if not f1_mode:
            # Inverted Anti-drifting
            section_index_reverse = loop_index  # 0, 1, 2, 3
            section_index = total_latent_sections - 1 - section_index_reverse  # 3, 2, 1, 0
            section_index_from_last = -(section_index_reverse + 1)  # -1, -2, -3, -4

            is_last_section = section_index == 0
            is_first_section = section_index_reverse == 0
            latent_padding_size = latent_padding * latent_window_size

            logger.info(f"latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}")
        else:
            section_index = loop_index  # 0, 1, 2, 3
            section_index_from_last = section_index - total_latent_sections  # -4, -3, -2, -1
            is_last_section = loop_index == total_latent_sections - 1
            is_first_section = loop_index == 0
            latent_padding_size = 0  # dummy padding for F1 mode

        # select start latent
        if section_index_from_last in context_img:
            image_index = section_index_from_last
        elif section_index in context_img:
            image_index = section_index
        else:
            image_index = 0

        start_latent = context_img[image_index]["start_latent"]
        image_path = context_img[image_index]["image_path"]
        if image_index != 0:  # use section image other than section 0
            logger.info(f"Apply experimental section image, latent_padding_size = {latent_padding_size}, image_path = {image_path}")

        if not f1_mode:
            # Inverted Anti-drifting
            indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
            (
                clean_latent_indices_pre,
                blank_indices,
                latent_indices,
                clean_latent_indices_post,
                clean_latent_2x_indices,
                clean_latent_4x_indices,
            ) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
            clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)

            clean_latents_pre = start_latent.to(history_latents)
            clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, : 1 + 2 + 16, :, :].split(
                [1, 2, 16], dim=2
            )
            clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)

            if end_latents is not None:
                clean_latents = torch.cat([clean_latents_pre, history_latents[:, :, : len(end_latents)]], dim=2)
                clean_latent_indices_extended = torch.zeros(1, 1 + len(end_latents), dtype=clean_latent_indices.dtype)
                clean_latent_indices_extended[:, :2] = clean_latent_indices
                clean_latent_indices = clean_latent_indices_extended

        else:
            # F1 mode
            indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
            (
                clean_latent_indices_start,
                clean_latent_4x_indices,
                clean_latent_2x_indices,
                clean_latent_1x_indices,
                latent_indices,
            ) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
            clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)

            clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]) :, :, :].split(
                [16, 2, 1], dim=2
            )
            clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)

        # if use_teacache:
        #     transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
        # else:
        #     transformer.initialize_teacache(enable_teacache=False)

        # prepare conditioning inputs
        if section_index_from_last in context:
            prompt_index = section_index_from_last
        elif section_index in context:
            prompt_index = section_index
        else:
            prompt_index = 0

        context_for_index = context[prompt_index]
        # if args.section_prompts is not None:
        logger.info(f"Section {section_index}: {context_for_index['prompt']}")

        llama_vec = context_for_index["llama_vec"].to(device, dtype=torch.bfloat16)
        llama_attention_mask = context_for_index["llama_attention_mask"].to(device)
        clip_l_pooler = context_for_index["clip_l_pooler"].to(device, dtype=torch.bfloat16)

        image_encoder_last_hidden_state = context_img[image_index]["image_encoder_last_hidden_state"].to(
            device, dtype=torch.bfloat16
        )

        llama_vec_n = context_null["llama_vec"].to(device, dtype=torch.bfloat16)
        llama_attention_mask_n = context_null["llama_attention_mask"].to(device)
        clip_l_pooler_n = context_null["clip_l_pooler"].to(device, dtype=torch.bfloat16)

        # call DiT model to generate latents
        sample_num_frames = num_frames
        if one_frame_inference is not None:
            # one frame inference
            latent_indices = latent_indices[:, -1:]  # only use the last frame (default)
            sample_num_frames = 1

            def get_latent_mask(mask_path: str):
                mask_image = Image.open(mask_path).convert("L")  # grayscale
                mask_image = mask_image.resize((width // 8, height // 8), Image.LANCZOS)
                mask_image = np.array(mask_image)  # PIL to numpy, HWC
                mask_image = torch.from_numpy(mask_image).float() / 255.0  # 0 to 1.0, HWC
                mask_image = mask_image.squeeze(-1)  # HWC -> HW
                mask_image = mask_image.unsqueeze(0).unsqueeze(0)  # HW -> 11HW
                mask_image = mask_image.to(clean_latents)
                return mask_image

            if args.image_mask_path is not None:
                mask_image = get_latent_mask(args.image_mask_path)
                logger.info(f"Apply mask for clean latents (start image): {args.image_mask_path}, shape: {mask_image.shape}")
                clean_latents[:, :, 0, :, :] = clean_latents[:, :, 0, :, :] * mask_image
            if args.end_image_mask_path is not None and len(args.end_image_mask_path) > 0:
                # # apply mask for clean latents 1x (end image)
                count = min(len(args.end_image_mask_path), len(end_latents))
                for i in range(count):
                    mask_image = get_latent_mask(args.end_image_mask_path[i])
                    logger.info(
                        f"Apply mask for clean latents 1x (end image) for {i+1}: {args.end_image_mask_path[i]}, shape: {mask_image.shape}"
                    )
                    clean_latents[:, :, i + 1 : i + 2, :, :] = clean_latents[:, :, i + 1 : i + 2, :, :] * mask_image

            for one_frame_param in one_frame_inference:
                if one_frame_param.startswith("target_index="):
                    target_index = int(one_frame_param.split("=")[1])
                    latent_indices[:, 0] = target_index
                    logger.info(f"Set index for target: {target_index}")
                elif one_frame_param.startswith("start_index="):
                    start_index = int(one_frame_param.split("=")[1])
                    clean_latent_indices[:, 0] = start_index
                    logger.info(f"Set index for clean latent pre (start image): {start_index}")
                elif one_frame_param.startswith("history_index="):
                    history_indices = one_frame_param.split("=")[1].split(";")
                    i = 0
                    while i < len(history_indices) and i < len(end_latents):
                        history_index = int(history_indices[i])
                        clean_latent_indices[:, 1 + i] = history_index
                        i += 1
                    while i < len(end_latents):
                        clean_latent_indices[:, 1 + i] = history_index
                        i += 1
                    logger.info(f"Set index for clean latent post (end image): {history_indices}")

            if "no_2x" in one_frame_inference:
                clean_latents_2x = None
                clean_latent_2x_indices = None
                logger.info(f"No clean_latents_2x")
            if "no_4x" in one_frame_inference:
                clean_latents_4x = None
                clean_latent_4x_indices = None
                logger.info(f"No clean_latents_4x")
            if "no_post" in one_frame_inference:
                clean_latents = clean_latents[:, :, :1, :, :]
                clean_latent_indices = clean_latent_indices[:, :1]
                logger.info(f"No clean_latents post")
            elif "zero_post" in one_frame_inference:
                # zero out the history latents. this seems to prevent the images from corrupting
                clean_latents[:, :, 1:, :, :] = torch.zeros_like(clean_latents[:, :, 1:, :, :])
                logger.info(f"Zero out clean_latents post")

            logger.info(
                f"One frame inference. clean_latent: {clean_latents.shape} latent_indices: {latent_indices}, clean_latent_indices: {clean_latent_indices}, num_frames: {sample_num_frames}"
            )

        generated_latents = sample_hunyuan(
            transformer=model,
            sampler=args.sample_solver,
            width=width,
            height=height,
            frames=sample_num_frames,
            real_guidance_scale=args.guidance_scale,
            distilled_guidance_scale=args.embedded_cfg_scale,
            guidance_rescale=args.guidance_rescale,
            # shift=3.0,
            num_inference_steps=args.infer_steps,
            generator=seed_g,
            prompt_embeds=llama_vec,
            prompt_embeds_mask=llama_attention_mask,
            prompt_poolers=clip_l_pooler,
            negative_prompt_embeds=llama_vec_n,
            negative_prompt_embeds_mask=llama_attention_mask_n,
            negative_prompt_poolers=clip_l_pooler_n,
            device=device,
            dtype=torch.bfloat16,
            image_embeddings=image_encoder_last_hidden_state,
            latent_indices=latent_indices,
            clean_latents=clean_latents,
            clean_latent_indices=clean_latent_indices,
            clean_latents_2x=clean_latents_2x,
            clean_latent_2x_indices=clean_latent_2x_indices,
            clean_latents_4x=clean_latents_4x,
            clean_latent_4x_indices=clean_latent_4x_indices,
        )

        # concatenate generated latents
        total_generated_latent_frames += int(generated_latents.shape[2])
        if not f1_mode:
            # Inverted Anti-drifting: prepend generated latents to history latents
            if is_last_section:
                generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
                total_generated_latent_frames += 1

            history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
            real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
        else:
            # F1 mode: append generated latents to history latents
            history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
            real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]

        logger.info(f"Generated. Latent shape {real_history_latents.shape}")

        # # TODO support saving intermediate video
        # clean_memory_on_device(device)
        # vae.to(device)
        # if history_pixels is None:
        #     history_pixels = hunyuan.vae_decode(real_history_latents, vae).cpu()
        # else:
        #     section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
        #     overlapped_frames = latent_window_size * 4 - 3
        #     current_pixels = hunyuan.vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
        #     history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
        # vae.to("cpu")
        # # if not is_last_section:
        # #     # save intermediate video
        # #     save_video(history_pixels[0], args, total_generated_latent_frames)
        # print(f"Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}")

    if one_frame_inference is not None:
        real_history_latents = real_history_latents[:, :, 1:, :, :]  # remove the first frame (start_latent)

    # Only clean up shared models if they were created within this function
    if shared_models is None:
        del model  # free memory
        synchronize_device(device)
    else:
        # move model to CPU to save memory
        model.to("cpu")

    # wait for 5 seconds until block swap is done
    logger.info("Waiting for 5 seconds to finish block swap")
    time.sleep(5)

    gc.collect()
    clean_memory_on_device(device)

    return vae, real_history_latents


def save_latent(latent: torch.Tensor, args: argparse.Namespace, height: int, width: int) -> str:
    """Save latent to file

    Args:
        latent: Latent tensor
        args: command line arguments
        height: height of frame
        width: width of frame

    Returns:
        str: Path to saved latent file
    """
    save_path = args.save_path
    os.makedirs(save_path, exist_ok=True)
    time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")

    seed = args.seed
    video_seconds = args.video_seconds
    latent_path = f"{save_path}/{time_flag}_{seed}_latent.safetensors"

    if args.no_metadata:
        metadata = None
    else:
        metadata = {
            "seeds": f"{seed}",
            "prompt": f"{args.prompt}",
            "height": f"{height}",
            "width": f"{width}",
            "video_seconds": f"{video_seconds}",
            "infer_steps": f"{args.infer_steps}",
            "guidance_scale": f"{args.guidance_scale}",
            "latent_window_size": f"{args.latent_window_size}",
            "embedded_cfg_scale": f"{args.embedded_cfg_scale}",
            "guidance_rescale": f"{args.guidance_rescale}",
            "sample_solver": f"{args.sample_solver}",
            "latent_window_size": f"{args.latent_window_size}",
            "fps": f"{args.fps}",
        }
        if args.negative_prompt is not None:
            metadata["negative_prompt"] = f"{args.negative_prompt}"

    sd = {"latent": latent.contiguous()}
    save_file(sd, latent_path, metadata=metadata)
    logger.info(f"Latent saved to: {latent_path}")

    return latent_path


def save_video(
    video: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None, latent_frames: Optional[int] = None
) -> str:
    """Save video to file

    Args:
        video: Video tensor
        args: command line arguments
        original_base_name: Original base name (if latents are loaded from files)

    Returns:
        str: Path to saved video file
    """
    save_path = args.save_path
    os.makedirs(save_path, exist_ok=True)
    time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")

    seed = args.seed
    original_name = "" if original_base_name is None else f"_{original_base_name}"
    latent_frames = "" if latent_frames is None else f"_{latent_frames}"
    video_path = f"{save_path}/{time_flag}_{seed}{original_name}{latent_frames}.mp4"

    video = video.unsqueeze(0)
    save_videos_grid(video, video_path, fps=args.fps, rescale=True)
    logger.info(f"Video saved to: {video_path}")

    return video_path


def save_images(sample: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str:
    """Save images to directory

    Args:
        sample: Video tensor
        args: command line arguments
        original_base_name: Original base name (if latents are loaded from files)

    Returns:
        str: Path to saved images directory
    """
    save_path = args.save_path
    os.makedirs(save_path, exist_ok=True)
    time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")

    seed = args.seed
    original_name = "" if original_base_name is None else f"_{original_base_name}"
    image_name = f"{time_flag}_{seed}{original_name}"
    sample = sample.unsqueeze(0)
    one_frame_mode = args.one_frame_inference is not None
    save_images_grid(sample, save_path, image_name, rescale=True, create_subdir=not one_frame_mode)
    logger.info(f"Sample images saved to: {save_path}/{image_name}")

    return f"{save_path}/{image_name}"


def save_output(
    args: argparse.Namespace,
    vae: AutoencoderKLCausal3D,
    latent: torch.Tensor,
    device: torch.device,
    original_base_names: Optional[List[str]] = None,
) -> None:
    """save output

    Args:
        args: command line arguments
        vae: VAE model
        latent: latent tensor
        device: device to use
        original_base_names: original base names (if latents are loaded from files)
    """
    height, width = latent.shape[-2], latent.shape[-1]  # BCTHW
    height *= 8
    width *= 8
    # print(f"Saving output. Latent shape {latent.shape}; pixel shape {height}x{width}")
    if args.output_type == "latent" or args.output_type == "both" or args.output_type == "latent_images":
        # save latent
        save_latent(latent, args, height, width)
    if args.output_type == "latent":
        return

    total_latent_sections = (args.video_seconds * 30) / (args.latent_window_size * 4)
    total_latent_sections = int(max(round(total_latent_sections), 1))
    video = decode_latent(
        args.latent_window_size, total_latent_sections, args.bulk_decode, vae, latent, device, args.one_frame_inference is not None
    )

    if args.output_type == "video" or args.output_type == "both":
        # save video
        original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
        save_video(video, args, original_name)

    elif args.output_type == "images" or args.output_type == "latent_images":
        # save images
        original_name = "" if original_base_names is None else f"_{original_base_names[0]}"
        save_images(video, args, original_name)


def preprocess_prompts_for_batch(prompt_lines: List[str], base_args: argparse.Namespace) -> List[Dict]:
    """Process multiple prompts for batch mode

    Args:
        prompt_lines: List of prompt lines
        base_args: Base command line arguments

    Returns:
        List[Dict]: List of prompt data dictionaries
    """
    prompts_data = []

    for line in prompt_lines:
        line = line.strip()
        if not line or line.startswith("#"):  # Skip empty lines and comments
            continue

        # Parse prompt line and create override dictionary
        prompt_data = parse_prompt_line(line)
        logger.info(f"Parsed prompt data: {prompt_data}")
        prompts_data.append(prompt_data)

    return prompts_data


def load_shared_models(args: argparse.Namespace) -> Dict:
    """Load shared models for batch processing or interactive mode.
    Models are loaded to CPU to save memory.

    Args:
        args: Base command line arguments

    Returns:
        Dict: Dictionary of shared models
    """
    shared_models = {}
    tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, "cpu")
    tokenizer2, text_encoder2 = load_text_encoder2(args)
    feature_extractor, image_encoder = load_image_encoders(args)
    vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, "cpu")
    shared_models["tokenizer1"] = tokenizer1
    shared_models["text_encoder1"] = text_encoder1
    shared_models["tokenizer2"] = tokenizer2
    shared_models["text_encoder2"] = text_encoder2
    shared_models["feature_extractor"] = feature_extractor
    shared_models["image_encoder"] = image_encoder
    shared_models["vae"] = vae

    return shared_models


def process_batch_prompts(prompts_data: List[Dict], args: argparse.Namespace) -> None:
    """Process multiple prompts with model reuse

    Args:
        prompts_data: List of prompt data dictionaries
        args: Base command line arguments
    """
    if not prompts_data:
        logger.warning("No valid prompts found")
        return

    # 1. Load configuration
    gen_settings = get_generation_settings(args)
    device = gen_settings.device

    # 2. Load models to CPU in advance except for VAE and DiT
    shared_models = load_shared_models(args)

    # 3. Generate for each prompt
    all_latents = []
    all_prompt_args = []

    with torch.no_grad():
        for prompt_data in prompts_data:
            prompt = prompt_data["prompt"]
            prompt_args = apply_overrides(args, prompt_data)
            logger.info(f"Processing prompt: {prompt}")

            try:
                vae, latent = generate(prompt_args, gen_settings, shared_models)

                # Save latent if needed
                if args.output_type == "latent" or args.output_type == "both" or args.output_type == "latent_images":
                    height, width = latent.shape[-2], latent.shape[-1]  # BCTHW
                    height *= 8
                    width *= 8
                    save_latent(latent, prompt_args, height, width)

                all_latents.append(latent)
                all_prompt_args.append(prompt_args)
            except Exception as e:
                logger.error(f"Error processing prompt: {prompt}. Error: {e}")
                continue

    # 4. Free models
    if "model" in shared_models:
        del shared_models["model"]
    del shared_models["tokenizer1"]
    del shared_models["text_encoder1"]
    del shared_models["tokenizer2"]
    del shared_models["text_encoder2"]
    del shared_models["feature_extractor"]
    del shared_models["image_encoder"]

    clean_memory_on_device(device)
    synchronize_device(device)

    # 5. Decode latents if needed
    if args.output_type != "latent":
        logger.info("Decoding latents to videos/images")
        vae.to(device)

        for i, (latent, prompt_args) in enumerate(zip(all_latents, all_prompt_args)):
            logger.info(f"Decoding output {i+1}/{len(all_latents)}")

            # avoid saving latents again (ugly hack)
            if prompt_args.output_type == "both":
                prompt_args.output_type = "video"
            elif prompt_args.output_type == "latent_images":
                prompt_args.output_type = "images"

            save_output(prompt_args, vae, latent[0], device)


def process_interactive(args: argparse.Namespace) -> None:
    """Process prompts in interactive mode

    Args:
        args: Base command line arguments
    """
    gen_settings = get_generation_settings(args)
    device = gen_settings.device
    shared_models = load_shared_models(args)

    print("Interactive mode. Enter prompts (Ctrl+D or Ctrl+Z (Windows) to exit):")

    try:
        while True:
            try:
                line = input("> ")
                if not line.strip():
                    continue

                # Parse prompt
                prompt_data = parse_prompt_line(line)
                prompt_args = apply_overrides(args, prompt_data)

                # Generate latent
                vae, latent = generate(prompt_args, gen_settings, shared_models)

                # Save latent and video
                save_output(prompt_args, vae, latent[0], device)

            except KeyboardInterrupt:
                print("\nInterrupted. Continue (Ctrl+D or Ctrl+Z (Windows) to exit)")
                continue

    except EOFError:
        print("\nExiting interactive mode")


def get_generation_settings(args: argparse.Namespace) -> GenerationSettings:
    device = torch.device(args.device)

    dit_weight_dtype = None  # default
    if args.fp8_scaled:
        dit_weight_dtype = None  # various precision weights, so don't cast to specific dtype
    elif args.fp8:
        dit_weight_dtype = torch.float8_e4m3fn

    logger.info(f"Using device: {device}, DiT weight weight precision: {dit_weight_dtype}")

    gen_settings = GenerationSettings(device=device, dit_weight_dtype=dit_weight_dtype)
    return gen_settings


def main():
    # Parse arguments
    args = parse_args()

    # Check if latents are provided
    latents_mode = args.latent_path is not None and len(args.latent_path) > 0

    # Set device
    device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
    device = torch.device(device)
    logger.info(f"Using device: {device}")
    args.device = device

    if latents_mode:
        # Original latent decode mode
        original_base_names = []
        latents_list = []
        seeds = []

        # assert len(args.latent_path) == 1, "Only one latent path is supported for now"

        for latent_path in args.latent_path:
            original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0])
            seed = 0

            if os.path.splitext(latent_path)[1] != ".safetensors":
                latents = torch.load(latent_path, map_location="cpu")
            else:
                latents = load_file(latent_path)["latent"]
                with safe_open(latent_path, framework="pt") as f:
                    metadata = f.metadata()
                if metadata is None:
                    metadata = {}
                logger.info(f"Loaded metadata: {metadata}")

                if "seeds" in metadata:
                    seed = int(metadata["seeds"])
                if "height" in metadata and "width" in metadata:
                    height = int(metadata["height"])
                    width = int(metadata["width"])
                    args.video_size = [height, width]
                if "video_seconds" in metadata:
                    args.video_seconds = float(metadata["video_seconds"])

            seeds.append(seed)
            logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}")

            if latents.ndim == 5:  # [BCTHW]
                latents = latents.squeeze(0)  # [CTHW]

            latents_list.append(latents)

        # latent = torch.stack(latents_list, dim=0)  # [N, ...], must be same shape

        for i, latent in enumerate(latents_list):
            args.seed = seeds[i]

            vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
            save_output(args, vae, latent, device, original_base_names)

    elif args.from_file:
        # Batch mode from file

        # Read prompts from file
        with open(args.from_file, "r", encoding="utf-8") as f:
            prompt_lines = f.readlines()

        # Process prompts
        prompts_data = preprocess_prompts_for_batch(prompt_lines, args)
        process_batch_prompts(prompts_data, args)

    elif args.interactive:
        # Interactive mode
        process_interactive(args)

    else:
        # Single prompt mode (original behavior)

        # Generate latent
        gen_settings = get_generation_settings(args)
        vae, latent = generate(args, gen_settings)
        # print(f"Generated latent shape: {latent.shape}")
        if args.save_merged_model:
            return

        # Save latent and video
        save_output(args, vae, latent[0], device)

    logger.info("Done!")


if __name__ == "__main__":
    main()