rtdetr-v2-r18-cppe5-finetune-2
This model is a fine-tuned version of PekingU/rtdetr_v2_r18vd on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 6.2464
- Map: 0.391
- Map 50: 0.5884
- Map 75: 0.4136
- Map Small: 0.1258
- Map Medium: 0.2954
- Map Large: 0.54
- Mar 1: 0.3316
- Mar 10: 0.6539
- Mar 100: 0.7039
- Mar Small: 0.2625
- Mar Medium: 0.6011
- Mar Large: 0.8306
- Map Coverall: 0.5645
- Mar 100 Coverall: 0.8333
- Map Face Shield: 0.2243
- Mar 100 Face Shield: 0.7118
- Map Gloves: 0.3913
- Mar 100 Gloves: 0.6458
- Map Goggles: 0.2728
- Mar 100 Goggles: 0.6069
- Map Mask: 0.5023
- Mar 100 Mask: 0.7216
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 107 | 13.7317 | 0.0582 | 0.1117 | 0.0465 | 0.0008 | 0.0241 | 0.0634 | 0.0748 | 0.167 | 0.2365 | 0.0744 | 0.1806 | 0.3026 | 0.2735 | 0.5595 | 0.0006 | 0.1063 | 0.0041 | 0.2277 | 0.0005 | 0.0754 | 0.0122 | 0.2138 |
No log | 2.0 | 214 | 9.1284 | 0.1153 | 0.2246 | 0.1016 | 0.0266 | 0.0796 | 0.1376 | 0.1715 | 0.3715 | 0.4531 | 0.1995 | 0.3849 | 0.5849 | 0.3802 | 0.6851 | 0.013 | 0.4291 | 0.0516 | 0.3871 | 0.0213 | 0.2923 | 0.1104 | 0.472 |
No log | 3.0 | 321 | 7.9830 | 0.1638 | 0.3049 | 0.1557 | 0.0511 | 0.1136 | 0.2051 | 0.2104 | 0.4223 | 0.5024 | 0.199 | 0.4148 | 0.6338 | 0.4245 | 0.7185 | 0.0237 | 0.4911 | 0.0831 | 0.4232 | 0.0875 | 0.3354 | 0.2 | 0.5436 |
No log | 4.0 | 428 | 7.6252 | 0.2065 | 0.3634 | 0.2029 | 0.1038 | 0.1285 | 0.2666 | 0.2349 | 0.4338 | 0.5114 | 0.2823 | 0.4169 | 0.6348 | 0.5146 | 0.7284 | 0.032 | 0.5025 | 0.1197 | 0.4295 | 0.1068 | 0.3462 | 0.2594 | 0.5507 |
19.8442 | 5.0 | 535 | 7.3826 | 0.2303 | 0.3983 | 0.2243 | 0.0944 | 0.1554 | 0.3224 | 0.254 | 0.4599 | 0.5318 | 0.2796 | 0.4541 | 0.6628 | 0.5438 | 0.7239 | 0.0556 | 0.5519 | 0.1415 | 0.4437 | 0.154 | 0.3954 | 0.2563 | 0.544 |
19.8442 | 6.0 | 642 | 7.2892 | 0.2359 | 0.4115 | 0.2391 | 0.084 | 0.1601 | 0.3395 | 0.2517 | 0.4673 | 0.5366 | 0.2873 | 0.4483 | 0.6742 | 0.5377 | 0.7311 | 0.0545 | 0.5684 | 0.1443 | 0.4464 | 0.1482 | 0.3923 | 0.2948 | 0.5449 |
19.8442 | 7.0 | 749 | 7.1910 | 0.2478 | 0.4306 | 0.2442 | 0.0709 | 0.1583 | 0.3803 | 0.2556 | 0.4735 | 0.5404 | 0.3185 | 0.4515 | 0.6852 | 0.5472 | 0.7275 | 0.065 | 0.5506 | 0.1771 | 0.4665 | 0.1536 | 0.3985 | 0.2962 | 0.5591 |
19.8442 | 8.0 | 856 | 7.1982 | 0.255 | 0.4381 | 0.2561 | 0.0743 | 0.1666 | 0.3783 | 0.2673 | 0.4773 | 0.5454 | 0.2991 | 0.4583 | 0.6846 | 0.5432 | 0.7315 | 0.0775 | 0.5544 | 0.1728 | 0.4714 | 0.1789 | 0.4138 | 0.3028 | 0.5556 |
19.8442 | 9.0 | 963 | 7.1636 | 0.2549 | 0.4427 | 0.2567 | 0.0713 | 0.1779 | 0.3697 | 0.2688 | 0.4821 | 0.5511 | 0.3067 | 0.4679 | 0.6859 | 0.5414 | 0.7252 | 0.0722 | 0.5646 | 0.1728 | 0.4732 | 0.1802 | 0.4338 | 0.308 | 0.5587 |
10.3959 | 10.0 | 1070 | 7.1785 | 0.247 | 0.4264 | 0.2567 | 0.0553 | 0.1709 | 0.3652 | 0.269 | 0.4752 | 0.5467 | 0.2664 | 0.4633 | 0.6939 | 0.5355 | 0.7342 | 0.069 | 0.5835 | 0.1719 | 0.4625 | 0.1548 | 0.3923 | 0.3037 | 0.5609 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for svetadomoi/rtdetr-v2-r18-cppe5-finetune-2
Base model
PekingU/rtdetr_v2_r18vd