stark / app.py
Shiyu Zhao
Update space
b47352e
raw
history blame
11 kB
import gradio as gr
import pandas as pd
import numpy as np
from typing import List, Dict
# Sample data based on your table (you'll need to update this with the full dataset)
data_synthesized_full = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
}
data_synthesized_10 = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
}
data_human_generated = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
}
class DataManager:
def __init__(self, data_synthesized_full: Dict, data_synthesized_10: Dict, data_human_generated: Dict):
self.df_synthesized_full = pd.DataFrame(data_synthesized_full)
self.df_synthesized_10 = pd.DataFrame(data_synthesized_10)
self.df_human_generated = pd.DataFrame(data_human_generated)
self.model_types = {
'Sparse Retriever': ['BM25'],
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker']
}
self.metrics = ['Hit@1', 'Hit@5', 'R@20', 'MRR']
self.datasets = ['AMAZON', 'MAG', 'PRIME']
def filter_by_model_type(self, df: pd.DataFrame, selected_types: List[str]) -> pd.DataFrame:
if not selected_types:
return df.head(0)
selected_models = [model for type in selected_types for model in self.model_types[type]]
return df[df['Method'].isin(selected_models)]
def format_dataframe(self, df: pd.DataFrame, dataset: str) -> pd.DataFrame:
columns = ['Method'] + [col for col in df.columns if dataset in col]
filtered_df = df[columns].copy()
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
# Format numeric columns to 2 decimal places
for col in filtered_df.columns:
if col != 'Method':
filtered_df[col] = filtered_df[col].round(2)
# Sort by MRR by default
filtered_df = filtered_df.sort_values('MRR', ascending=False)
return filtered_df
def get_best_model(self, df: pd.DataFrame, metric: str) -> str:
return df.loc[df[metric].idxmax(), 'Method']
# Custom components
def create_metric_summary(df: pd.DataFrame, dataset: str) -> str:
best_mrr = df['MRR'].max()
best_hit1 = df['Hit@1'].max()
best_model_mrr = df.loc[df['MRR'].idxmax(), 'Method']
best_model_hit1 = df.loc[df['Hit@1'].idxmax(), 'Method']
return f"""
### {dataset} Dataset Summary
- Best MRR: {best_mrr:.2f}% ({best_model_mrr})
- Best Hit@1: {best_hit1:.2f}% ({best_model_hit1})
"""
# Main application
def create_app(data_manager: DataManager):
with gr.Blocks(css="""
.metric-summary { margin: 1rem 0; padding: 1rem; background: #f7f7f7; border-radius: 4px; }
.table-container { margin-top: 1rem; }
.model-filter { margin-bottom: 1rem; }
.dataset-section { border: 1px solid #ddd; padding: 1rem; margin: 1rem 0; border-radius: 4px; }
""") as demo:
gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
gr.Markdown("### An evaluation benchmark for semi-structured text retrieval")
gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
with gr.Row():
with gr.Column(scale=3):
model_type_filter = gr.CheckboxGroup(
choices=list(data_manager.model_types.keys()),
value=list(data_manager.model_types.keys()),
label="Model Types",
interactive=True,
elem_classes=["model-filter"]
)
with gr.Column(scale=1):
sort_by = gr.Radio(
choices=data_manager.metrics,
value="MRR",
label="Sort by Metric",
interactive=True
)
all_dataframes = []
with gr.Tabs() as tabs:
data_sources = [
("Synthesized (Full)", data_manager.df_synthesized_full),
("Synthesized (10%)", data_manager.df_synthesized_10),
("Human-Generated", data_manager.df_human_generated)
]
for source_name, source_df in data_sources:
with gr.TabItem(source_name):
for dataset in data_manager.datasets:
with gr.Row(elem_classes=["dataset-section"]):
with gr.Column():
gr.Markdown(create_metric_summary(
data_manager.format_dataframe(source_df, f"STARK-{dataset}"),
dataset
))
df_display = gr.DataFrame(
interactive=False,
elem_classes=["table-container"]
)
all_dataframes.append(df_display)
def update_tables(selected_types: List[str], sort_metric: str):
outputs = []
for df_source in [data_manager.df_synthesized_full,
data_manager.df_synthesized_10,
data_manager.df_human_generated]:
filtered_df = data_manager.filter_by_model_type(df_source, selected_types)
for dataset in data_manager.datasets:
formatted_df = data_manager.format_dataframe(filtered_df, f"STARK-{dataset}")
formatted_df = formatted_df.sort_values(sort_metric, ascending=False)
outputs.append(formatted_df)
return outputs
# Register event handlers
model_type_filter.change(
update_tables,
inputs=[model_type_filter, sort_by],
outputs=all_dataframes
)
sort_by.change(
update_tables,
inputs=[model_type_filter, sort_by],
outputs=all_dataframes
)
# Initial load
demo.load(
update_tables,
inputs=[model_type_filter, sort_by],
outputs=all_dataframes
)
return demo
if __name__ == "__main__":
# Initialize data manager with your existing data
data_manager = DataManager(data_synthesized_full, data_synthesized_10, data_human_generated)
# Create and launch the app
demo = create_app(data_manager)
demo.launch()