File size: 11,002 Bytes
ad9f5e1 1aa50db 630c9ca 1aa50db 928143b 1aa50db 630c9ca 3afe0be 630c9ca b47352e 630c9ca b47352e 630c9ca b47352e 630c9ca 928143b 630c9ca 928143b 630c9ca 3afe0be 630c9ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import pandas as pd
import numpy as np
from typing import List, Dict
# Sample data based on your table (you'll need to update this with the full dataset)
data_synthesized_full = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
}
data_synthesized_10 = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
}
data_human_generated = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
}
class DataManager:
def __init__(self, data_synthesized_full: Dict, data_synthesized_10: Dict, data_human_generated: Dict):
self.df_synthesized_full = pd.DataFrame(data_synthesized_full)
self.df_synthesized_10 = pd.DataFrame(data_synthesized_10)
self.df_human_generated = pd.DataFrame(data_human_generated)
self.model_types = {
'Sparse Retriever': ['BM25'],
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker']
}
self.metrics = ['Hit@1', 'Hit@5', 'R@20', 'MRR']
self.datasets = ['AMAZON', 'MAG', 'PRIME']
def filter_by_model_type(self, df: pd.DataFrame, selected_types: List[str]) -> pd.DataFrame:
if not selected_types:
return df.head(0)
selected_models = [model for type in selected_types for model in self.model_types[type]]
return df[df['Method'].isin(selected_models)]
def format_dataframe(self, df: pd.DataFrame, dataset: str) -> pd.DataFrame:
columns = ['Method'] + [col for col in df.columns if dataset in col]
filtered_df = df[columns].copy()
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
# Format numeric columns to 2 decimal places
for col in filtered_df.columns:
if col != 'Method':
filtered_df[col] = filtered_df[col].round(2)
# Sort by MRR by default
filtered_df = filtered_df.sort_values('MRR', ascending=False)
return filtered_df
def get_best_model(self, df: pd.DataFrame, metric: str) -> str:
return df.loc[df[metric].idxmax(), 'Method']
# Custom components
def create_metric_summary(df: pd.DataFrame, dataset: str) -> str:
best_mrr = df['MRR'].max()
best_hit1 = df['Hit@1'].max()
best_model_mrr = df.loc[df['MRR'].idxmax(), 'Method']
best_model_hit1 = df.loc[df['Hit@1'].idxmax(), 'Method']
return f"""
### {dataset} Dataset Summary
- Best MRR: {best_mrr:.2f}% ({best_model_mrr})
- Best Hit@1: {best_hit1:.2f}% ({best_model_hit1})
"""
# Main application
def create_app(data_manager: DataManager):
with gr.Blocks(css="""
.metric-summary { margin: 1rem 0; padding: 1rem; background: #f7f7f7; border-radius: 4px; }
.table-container { margin-top: 1rem; }
.model-filter { margin-bottom: 1rem; }
.dataset-section { border: 1px solid #ddd; padding: 1rem; margin: 1rem 0; border-radius: 4px; }
""") as demo:
gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
gr.Markdown("### An evaluation benchmark for semi-structured text retrieval")
gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
with gr.Row():
with gr.Column(scale=3):
model_type_filter = gr.CheckboxGroup(
choices=list(data_manager.model_types.keys()),
value=list(data_manager.model_types.keys()),
label="Model Types",
interactive=True,
elem_classes=["model-filter"]
)
with gr.Column(scale=1):
sort_by = gr.Radio(
choices=data_manager.metrics,
value="MRR",
label="Sort by Metric",
interactive=True
)
all_dataframes = []
with gr.Tabs() as tabs:
data_sources = [
("Synthesized (Full)", data_manager.df_synthesized_full),
("Synthesized (10%)", data_manager.df_synthesized_10),
("Human-Generated", data_manager.df_human_generated)
]
for source_name, source_df in data_sources:
with gr.TabItem(source_name):
for dataset in data_manager.datasets:
with gr.Row(elem_classes=["dataset-section"]):
with gr.Column():
gr.Markdown(create_metric_summary(
data_manager.format_dataframe(source_df, f"STARK-{dataset}"),
dataset
))
df_display = gr.DataFrame(
interactive=False,
elem_classes=["table-container"]
)
all_dataframes.append(df_display)
def update_tables(selected_types: List[str], sort_metric: str):
outputs = []
for df_source in [data_manager.df_synthesized_full,
data_manager.df_synthesized_10,
data_manager.df_human_generated]:
filtered_df = data_manager.filter_by_model_type(df_source, selected_types)
for dataset in data_manager.datasets:
formatted_df = data_manager.format_dataframe(filtered_df, f"STARK-{dataset}")
formatted_df = formatted_df.sort_values(sort_metric, ascending=False)
outputs.append(formatted_df)
return outputs
# Register event handlers
model_type_filter.change(
update_tables,
inputs=[model_type_filter, sort_by],
outputs=all_dataframes
)
sort_by.change(
update_tables,
inputs=[model_type_filter, sort_by],
outputs=all_dataframes
)
# Initial load
demo.load(
update_tables,
inputs=[model_type_filter, sort_by],
outputs=all_dataframes
)
return demo
if __name__ == "__main__":
# Initialize data manager with your existing data
data_manager = DataManager(data_synthesized_full, data_synthesized_10, data_human_generated)
# Create and launch the app
demo = create_app(data_manager)
demo.launch() |