File size: 14,977 Bytes
ad9f5e1
 
4c504d3
d9a1db1
 
 
 
2c4b436
4c504d3
928143b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aa50db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c504d3
2c8dbc2
 
 
4c504d3
 
 
 
 
 
 
 
 
 
 
d9a1db1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c504d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a1db1
 
 
 
 
1250c3d
 
 
 
 
d9a1db1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c504d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a1db1
 
1250c3d
d9a1db1
 
 
 
 
 
1250c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a1db1
1250c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
928143b
4c504d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c8dbc2
4c504d3
 
 
 
 
 
 
 
 
2c8dbc2
4c504d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import gradio as gr
import pandas as pd
import numpy as np
import os
import re
from datetime import datetime
import json

# Data dictionaries for leaderboard
data_synthesized_full = {
    'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
    'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
    'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
    'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
    'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
    'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
    'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
    'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
    'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
    'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
    'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
    'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
    'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
}

data_synthesized_10 = {
    'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
    'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
    'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
    'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
    'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
    'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
    'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
    'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
    'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
    'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
    'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
    'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
    'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
}

data_human_generated = {
    'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
    'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
    'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
    'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
    'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
    'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
    'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
    'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
    'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
    'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
    'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
    'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
    'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
}

# Initialize DataFrames
df_synthesized_full = pd.DataFrame(data_synthesized_full)
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
df_human_generated = pd.DataFrame(data_human_generated)

# Model type definitions
model_types = {
    'Sparse Retriever': ['BM25'],
    'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
    'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
    'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
    'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker']
}

# Submission form validation functions
def validate_email(email_str):
    """Validate email format(s)"""
    emails = [e.strip() for e in email_str.split(';')]
    email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')
    return all(email_pattern.match(email) for email in emails)

def validate_github_url(url):
    """Validate GitHub URL format"""
    github_pattern = re.compile(
        r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$'
    )
    return bool(github_pattern.match(url))

def validate_csv(file_obj):
    """Validate CSV file format and content"""
    try:
        df = pd.read_csv(file_obj.name)
        required_cols = ['query_id', 'pred_rank']
        
        if not all(col in df.columns for col in required_cols):
            return False, "CSV must contain 'query_id' and 'pred_rank' columns"
            
        try:
            first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0]
            if not isinstance(first_rank, list) or len(first_rank) < 20:
                return False, "pred_rank must be a list with at least 20 candidates"
        except:
            return False, "Invalid pred_rank format"
            
        return True, "Valid CSV file"
    except Exception as e:
        return False, f"Error processing CSV: {str(e)}"

def save_submission(submission_data):
    """Save submission data to a JSON file"""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    submission_id = f"{submission_data['team_name']}_{timestamp}"
    
    os.makedirs("submissions", exist_ok=True)
    submission_path = f"submissions/{submission_id}.json"
    with open(submission_path, 'w') as f:
        json.dump(submission_data, f, indent=4)
    
    return submission_id

# Leaderboard functions
def filter_by_model_type(df, selected_types):
    if not selected_types:
        return df.head(0)
    selected_models = [model for type in selected_types for model in model_types[type]]
    return df[df['Method'].isin(selected_models)]

def format_dataframe(df, dataset):
    columns = ['Method'] + [col for col in df.columns if dataset in col]
    filtered_df = df[columns].copy()
    filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
    filtered_df = filtered_df.sort_values('MRR', ascending=False)
    return filtered_df

def update_tables(selected_types):
    filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types)
    filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types)
    filtered_df_human = filter_by_model_type(df_human_generated, selected_types)
    
    outputs = []
    for df in [filtered_df_full, filtered_df_10, filtered_df_human]:
        for dataset in ['AMAZON', 'MAG', 'PRIME']:
            outputs.append(format_dataframe(df, f"STARK-{dataset}"))
    
    return outputs

def process_submission(
    method_name, team_name, dataset, split, contact_email,
    code_repo, csv_file, model_description, hardware, paper_link
):
    """Process and validate submission"""
    # Input validation
    if not method_name or not team_name or not dataset or not split or not contact_email or not code_repo or not csv_file:
        return "Error: Please fill in all required fields"
    
    # Length validation
    if len(method_name) > 25:
        return "Error: Method name must be 25 characters or less"
    if len(team_name) > 25:
        return "Error: Team name must be 25 characters or less"
    if not validate_email(contact_email):
        return "Error: Invalid email format"
    if not validate_github_url(code_repo):
        return "Error: Invalid GitHub repository URL"
    
    # Validate CSV file
    csv_valid, csv_message = validate_csv(csv_file)
    if not csv_valid:
        return f"Error with CSV file: {csv_message}"
    
    # Process CSV file through evaluation pipeline
    try:
        results = compute_metrics(
            csv_file.name,
            dataset=dataset.lower(),
            split=split,
            num_workers=4
        )
        
        if isinstance(results, str) and results.startswith("Error"):
            return f"Evaluation error: {results}"
            
        # Prepare submission data
        submission_data = {
            "method_name": method_name,
            "team_name": team_name,
            "dataset": dataset,
            "split": split,
            "contact_email": contact_email,
            "code_repo": code_repo,
            "model_description": model_description,
            "hardware": hardware,
            "paper_link": paper_link,
            "results": results,
            "status": "pending_review",
            "submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        }
        
        # Save submission
        submission_id = save_submission(submission_data)
        
        return f"""
        Submission successful! Your submission ID is: {submission_id}
        
        Evaluation Results:
        Hit@1: {results['hit@1']:.2f}
        Hit@5: {results['hit@5']:.2f}
        Recall@20: {results['recall@20']:.2f}
        MRR: {results['mrr']:.2f}
        
        Your submission is pending review. You will receive an email notification once the review is complete.
        """
        
    except Exception as e:
        return f"Error processing submission: {str(e)}"

# CSS styling
css = """
table > thead {
    white-space: normal
}

table {
    --cell-width-1: 250px
}

table > tbody > tr > td:nth-child(2) > div {
    overflow-x: auto
}
"""

def add_submission_form(demo):
    with demo:
        gr.Markdown("---")
        gr.Markdown("## Submit Your Results")
        gr.Markdown("""
        Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements.
        For questions, contact stark-qa@cs.stanford.edu
        """)
        
        with gr.Row():
            with gr.Column():
                method_name = gr.Textbox(
                    label="Method Name (max 25 chars)*",
                    placeholder="e.g., MyRetrievalModel-v1"
                )
                team_name = gr.Textbox(
                    label="Team Name (max 25 chars)*",
                    placeholder="e.g., Stanford NLP"
                )
                dataset = gr.Dropdown(
                    choices=["amazon", "mag", "prime"],
                    label="Dataset*",
                    value="amazon"
                )
                split = gr.Dropdown(
                    choices=["test", "test-0.1", "human_generated_eval"],
                    label="Split*",
                    value="test"
                )
                contact_email = gr.Textbox(
                    label="Contact Email(s)*",
                    placeholder="email@example.com; another@example.com"
                )
            
            with gr.Column():
                code_repo = gr.Textbox(
                    label="Code Repository*",
                    placeholder="https://github.com/username/repository"
                )
                csv_file = gr.File(
                    label="Prediction CSV*",
                    file_types=[".csv"]
                )
                model_description = gr.Textbox(
                    label="Model Description*",
                    lines=3,
                    placeholder="Briefly describe how your retriever model works..."
                )
                hardware = gr.Textbox(
                    label="Hardware Specifications*",
                    placeholder="e.g., 4x NVIDIA A100 80GB"
                )
                paper_link = gr.Textbox(
                    label="Paper Link (Optional)",
                    placeholder="https://arxiv.org/abs/..."
                )
        
        submit_btn = gr.Button("Submit", variant="primary")
        result = gr.Textbox(label="Submission Status", interactive=False)
        
        submit_btn.click(
            process_submission,
            inputs=[
                method_name, team_name, dataset, split, contact_email,
                code_repo, csv_file, model_description, hardware, paper_link
            ],
            outputs=result
        )

# Main application
if __name__ == "__main__":
    with gr.Blocks(css=css) as demo:
        gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
        gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
        
        with gr.Row():
            model_type_filter = gr.CheckboxGroup(
                choices=list(model_types.keys()),
                value=list(model_types.keys()),
                label="Model types",
                interactive=True
            )
        
        all_dfs = []
        
        with gr.Tabs() as outer_tabs:
            for tab_name, df_source in [("Synthesized (full)", df_synthesized_full), 
                                      ("Synthesized (10%)", df_synthesized_10), 
                                      ("Human-Generated", df_human_generated)]:
                with gr.TabItem(tab_name):
                    with gr.Tabs() as inner_tabs:
                        for dataset in ['AMAZON', 'MAG', 'PRIME']:
                            with gr.TabItem(dataset):
                                df = gr.DataFrame(interactive=False)
                                all_dfs.append(df)
        
        model_type_filter.change(
            update_tables,
            inputs=[model_type_filter],
            outputs=all_dfs
        )
        
        demo.load(
            update_tables,
            inputs=[model_type_filter],
            outputs=all_dfs
        )
        
        # Add submission form
        add_submission_form(demo)
    
    demo.launch()