Shiyu Zhao
commited on
Commit
·
2c8dbc2
1
Parent(s):
b47352e
Update space
Browse files
app.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
-
from typing import List, Dict
|
5 |
-
|
6 |
|
7 |
# Sample data based on your table (you'll need to update this with the full dataset)
|
8 |
data_synthesized_full = {
|
@@ -53,152 +51,105 @@ data_human_generated = {
|
|
53 |
'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
|
54 |
}
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
|
65 |
-
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
|
66 |
-
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
|
67 |
-
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker']
|
68 |
-
}
|
69 |
-
|
70 |
-
self.metrics = ['Hit@1', 'Hit@5', 'R@20', 'MRR']
|
71 |
-
self.datasets = ['AMAZON', 'MAG', 'PRIME']
|
72 |
-
|
73 |
-
def filter_by_model_type(self, df: pd.DataFrame, selected_types: List[str]) -> pd.DataFrame:
|
74 |
-
if not selected_types:
|
75 |
-
return df.head(0)
|
76 |
-
selected_models = [model for type in selected_types for model in self.model_types[type]]
|
77 |
-
return df[df['Method'].isin(selected_models)]
|
78 |
-
|
79 |
-
def format_dataframe(self, df: pd.DataFrame, dataset: str) -> pd.DataFrame:
|
80 |
-
columns = ['Method'] + [col for col in df.columns if dataset in col]
|
81 |
-
filtered_df = df[columns].copy()
|
82 |
-
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
|
83 |
-
|
84 |
-
# Format numeric columns to 2 decimal places
|
85 |
-
for col in filtered_df.columns:
|
86 |
-
if col != 'Method':
|
87 |
-
filtered_df[col] = filtered_df[col].round(2)
|
88 |
-
|
89 |
-
# Sort by MRR by default
|
90 |
-
filtered_df = filtered_df.sort_values('MRR', ascending=False)
|
91 |
-
return filtered_df
|
92 |
-
|
93 |
-
def get_best_model(self, df: pd.DataFrame, metric: str) -> str:
|
94 |
-
return df.loc[df[metric].idxmax(), 'Method']
|
95 |
-
|
96 |
-
# Custom components
|
97 |
-
def create_metric_summary(df: pd.DataFrame, dataset: str) -> str:
|
98 |
-
best_mrr = df['MRR'].max()
|
99 |
-
best_hit1 = df['Hit@1'].max()
|
100 |
-
best_model_mrr = df.loc[df['MRR'].idxmax(), 'Method']
|
101 |
-
best_model_hit1 = df.loc[df['Hit@1'].idxmax(), 'Method']
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
def create_app(data_manager: DataManager):
|
111 |
-
with gr.Blocks(css="""
|
112 |
-
.metric-summary { margin: 1rem 0; padding: 1rem; background: #f7f7f7; border-radius: 4px; }
|
113 |
-
.table-container { margin-top: 1rem; }
|
114 |
-
.model-filter { margin-bottom: 1rem; }
|
115 |
-
.dataset-section { border: 1px solid #ddd; padding: 1rem; margin: 1rem 0; border-radius: 4px; }
|
116 |
-
""") as demo:
|
117 |
-
|
118 |
-
gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
|
119 |
-
gr.Markdown("### An evaluation benchmark for semi-structured text retrieval")
|
120 |
-
gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
|
121 |
-
|
122 |
-
with gr.Row():
|
123 |
-
with gr.Column(scale=3):
|
124 |
-
model_type_filter = gr.CheckboxGroup(
|
125 |
-
choices=list(data_manager.model_types.keys()),
|
126 |
-
value=list(data_manager.model_types.keys()),
|
127 |
-
label="Model Types",
|
128 |
-
interactive=True,
|
129 |
-
elem_classes=["model-filter"]
|
130 |
-
)
|
131 |
-
|
132 |
-
with gr.Column(scale=1):
|
133 |
-
sort_by = gr.Radio(
|
134 |
-
choices=data_manager.metrics,
|
135 |
-
value="MRR",
|
136 |
-
label="Sort by Metric",
|
137 |
-
interactive=True
|
138 |
-
)
|
139 |
-
|
140 |
-
all_dataframes = []
|
141 |
-
|
142 |
-
with gr.Tabs() as tabs:
|
143 |
-
data_sources = [
|
144 |
-
("Synthesized (Full)", data_manager.df_synthesized_full),
|
145 |
-
("Synthesized (10%)", data_manager.df_synthesized_10),
|
146 |
-
("Human-Generated", data_manager.df_human_generated)
|
147 |
-
]
|
148 |
-
|
149 |
-
for source_name, source_df in data_sources:
|
150 |
-
with gr.TabItem(source_name):
|
151 |
-
for dataset in data_manager.datasets:
|
152 |
-
with gr.Row(elem_classes=["dataset-section"]):
|
153 |
-
with gr.Column():
|
154 |
-
gr.Markdown(create_metric_summary(
|
155 |
-
data_manager.format_dataframe(source_df, f"STARK-{dataset}"),
|
156 |
-
dataset
|
157 |
-
))
|
158 |
-
df_display = gr.DataFrame(
|
159 |
-
interactive=False,
|
160 |
-
elem_classes=["table-container"]
|
161 |
-
)
|
162 |
-
all_dataframes.append(df_display)
|
163 |
-
|
164 |
-
def update_tables(selected_types: List[str], sort_metric: str):
|
165 |
-
outputs = []
|
166 |
-
for df_source in [data_manager.df_synthesized_full,
|
167 |
-
data_manager.df_synthesized_10,
|
168 |
-
data_manager.df_human_generated]:
|
169 |
-
filtered_df = data_manager.filter_by_model_type(df_source, selected_types)
|
170 |
-
for dataset in data_manager.datasets:
|
171 |
-
formatted_df = data_manager.format_dataframe(filtered_df, f"STARK-{dataset}")
|
172 |
-
formatted_df = formatted_df.sort_values(sort_metric, ascending=False)
|
173 |
-
outputs.append(formatted_df)
|
174 |
-
return outputs
|
175 |
-
|
176 |
-
# Register event handlers
|
177 |
-
model_type_filter.change(
|
178 |
-
update_tables,
|
179 |
-
inputs=[model_type_filter, sort_by],
|
180 |
-
outputs=all_dataframes
|
181 |
-
)
|
182 |
-
|
183 |
-
sort_by.change(
|
184 |
-
update_tables,
|
185 |
-
inputs=[model_type_filter, sort_by],
|
186 |
-
outputs=all_dataframes
|
187 |
-
)
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
|
199 |
-
#
|
200 |
-
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
|
|
|
|
4 |
|
5 |
# Sample data based on your table (you'll need to update this with the full dataset)
|
6 |
data_synthesized_full = {
|
|
|
51 |
'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
|
52 |
}
|
53 |
|
54 |
+
df_synthesized_full = pd.DataFrame(data_synthesized_full)
|
55 |
+
df_synthesized_10 = pd.DataFrame(data_synthesized_10)
|
56 |
+
df_human_generated = pd.DataFrame(data_human_generated)
|
57 |
+
|
58 |
+
def format_dataframe(df, dataset):
|
59 |
+
# Filter the dataframe for the selected dataset
|
60 |
+
columns = ['Method'] + [col for col in df.columns if dataset in col]
|
61 |
+
filtered_df = df[columns].copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Rename columns
|
64 |
+
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
|
65 |
+
|
66 |
+
# Sort by MRR
|
67 |
+
filtered_df = filtered_df.sort_values('MRR', ascending=False)
|
68 |
+
|
69 |
+
return filtered_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
model_types = {
|
72 |
+
'Sparse Retriever': ['BM25'],
|
73 |
+
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
|
74 |
+
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
|
75 |
+
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
|
76 |
+
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker']
|
77 |
+
}
|
78 |
+
|
79 |
+
def filter_by_model_type(df, selected_types):
|
80 |
+
if not selected_types: # If no types are selected, return an empty DataFrame
|
81 |
+
return df.head(0)
|
82 |
+
selected_models = [model for type in selected_types for model in model_types[type]]
|
83 |
+
return df[df['Method'].isin(selected_models)]
|
84 |
+
|
85 |
+
def format_dataframe(df, dataset):
|
86 |
+
columns = ['Method'] + [col for col in df.columns if dataset in col]
|
87 |
+
filtered_df = df[columns].copy()
|
88 |
+
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
|
89 |
+
filtered_df = filtered_df.sort_values('MRR', ascending=False)
|
90 |
+
return filtered_df
|
91 |
+
|
92 |
+
def update_tables(selected_types):
|
93 |
+
filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types)
|
94 |
+
filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types)
|
95 |
+
filtered_df_human = filter_by_model_type(df_human_generated, selected_types)
|
96 |
+
|
97 |
+
outputs = []
|
98 |
+
for df in [filtered_df_full, filtered_df_10, filtered_df_human]:
|
99 |
+
for dataset in ['AMAZON', 'MAG', 'PRIME']:
|
100 |
+
outputs.append(format_dataframe(df, f"STARK-{dataset}"))
|
101 |
+
|
102 |
+
return outputs
|
103 |
+
|
104 |
+
css = """
|
105 |
+
table > thead {
|
106 |
+
white-space: normal
|
107 |
+
}
|
108 |
|
109 |
+
table {
|
110 |
+
--cell-width-1: 250px
|
111 |
+
}
|
112 |
+
|
113 |
+
table > tbody > tr > td:nth-child(2) > div {
|
114 |
+
overflow-x: auto
|
115 |
+
}
|
116 |
+
"""
|
117 |
|
118 |
+
with gr.Blocks(css=css) as demo:
|
119 |
+
gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard")
|
120 |
+
gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.")
|
121 |
|
122 |
+
with gr.Row():
|
123 |
+
model_type_filter = gr.CheckboxGroup(
|
124 |
+
choices=list(model_types.keys()),
|
125 |
+
value=list(model_types.keys()),
|
126 |
+
label="Model types",
|
127 |
+
interactive=True
|
128 |
+
)
|
129 |
+
|
130 |
+
all_dfs = []
|
131 |
+
|
132 |
+
with gr.Tabs() as outer_tabs:
|
133 |
+
for tab_name, df_source in [("Synthesized (full)", df_synthesized_full),
|
134 |
+
("Synthesized (10%)", df_synthesized_10),
|
135 |
+
("Human-Generated", df_human_generated)]:
|
136 |
+
with gr.TabItem(tab_name):
|
137 |
+
with gr.Tabs() as inner_tabs:
|
138 |
+
for dataset in ['AMAZON', 'MAG', 'PRIME']:
|
139 |
+
with gr.TabItem(dataset):
|
140 |
+
df = gr.DataFrame(interactive=False)
|
141 |
+
all_dfs.append(df)
|
142 |
+
|
143 |
+
model_type_filter.change(
|
144 |
+
update_tables,
|
145 |
+
inputs=[model_type_filter],
|
146 |
+
outputs=all_dfs
|
147 |
+
)
|
148 |
+
|
149 |
+
demo.load(
|
150 |
+
update_tables,
|
151 |
+
inputs=[model_type_filter],
|
152 |
+
outputs=all_dfs
|
153 |
+
)
|
154 |
+
|
155 |
+
demo.launch()
|