File size: 6,366 Bytes
0167724
 
 
 
 
 
 
c82570a
0167724
 
c82570a
 
 
 
 
 
 
 
0167724
 
 
 
 
 
 
 
c82570a
 
 
0167724
c82570a
 
ead1fd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c82570a
 
 
 
ead1fd2
c82570a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0167724
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""Module to launch the application.

run: `gradio main.py` to run the application
"""

import sys

import gradio as gr
from loguru import logger

from app.service import (
    analyze_trends,
    connect_database,
    detect_anomalies,
    generate_analysis_report,
    list_available_metrics,
    query_timeseries,
)

logger.add(
    sys.stdout,
    format="<green>{time}</green> <level>{message}</level>",
    filter="my_module",
    level="INFO",
    colorize=True,
)
example_sensor = "temperature"
example_start = "2019-06-15T02:54:00"
example_end = "2019-06-17T02:54:00"

with gr.Blocks() as demo:
    gr.Markdown("# TimescaleDB Time Series Analyzer API (Gradio)")
    with gr.Tab("About"):
        gr.Markdown("""
# mcp-tscontext

**mcp-tscontext** is a time series analysis tool designed for use with TimescaleDB.
Its goal is to provide a textual context about time series.
The idea is to provide a tool to an Agent to make it possible to better
understand the context when a user asks a question.
Built with Gradio, provides a mcp server.

My main use Case:

- provide an assistant to operators in charge of supervising industrial systems
(like a power plant). Combine this tool with RAG on technical documentation.

Other use case ideas:

- Build a personal assistant that could be aware of health metrics provided by a
smartwatch.

## Features

- **Database Connection**: Connect to a TimescaleDB instance or use a mock SQLite database for testing.
- **List Metrics**: View all available sensor ids in the database.
- **Query Time Series**: Retrieve time series for a specific sensor and time range.
- **Anomaly Detection**: Identify anomalies in sensor data using statistical methods.
- **Trend Analysis**: Analyze trends and changes in sensor data over time.
- **Report Generation**: Generate a report with trends, anomalies, and statistics.
- **User-Friendly UI**: Interact with all features through a modern Gradio web interface.


## Usage

By default, the app uses a mock SQLite database (`mock.db`).
To connect to a real TimescaleDB instance, set the following environment variables:

- USE_MOCK_DB (set to false)
- `DB_HOST`
- `DB_PORT`
- `DB_NAME`
- `DB_USER`
- `DB_PASS`
        """)
    with gr.Tab("Connect DB"):
        connect_btn = gr.Button("Connect to TimescaleDB")
        connect_out = gr.Textbox(label="Connection Result")
        connect_btn.click(
            fn=connect_database, inputs=[], outputs=connect_out, show_api=False
        )
    with gr.Tab("List Metrics"):
        list_btn = gr.Button("List Available Metrics")
        list_out = gr.Textbox(label="Metrics")
        list_btn.click(
            fn=list_available_metrics,
            inputs=[],
            outputs=list_out,
        )
    with gr.Tab("Query Timeseries"):
        sensor_id = gr.Textbox(label="Sensor ID", value=example_sensor)
        start_time = gr.Textbox(label="Start Time (ISO)", value=example_start)
        end_time = gr.Textbox(label="End Time (ISO)", value=example_end)
        query_btn = gr.Button("Query")
        query_out = gr.Textbox(label="Query Result")
        query_btn.click(
            fn=query_timeseries,
            inputs=[sensor_id, start_time, end_time],
            outputs=query_out,
        )
    with gr.Tab("Detect Anomalies"):
        sensor_id2 = gr.Textbox(label="Sensor ID", value=example_sensor)
        start_time2 = gr.Textbox(label="Start Time (ISO)", value=example_start)
        end_time2 = gr.Textbox(label="End Time (ISO)", value=example_end)
        algorithm = gr.Radio(
            label="Algorithm",
            choices=["zscore", "isolation_forest"],
            value="zscore",
        )
        threshold = gr.Number(label="Z-Score Threshold", value=2.0)
        contamination = gr.Number(
            label="Isolation Forest Contamination",
            value=0.1,
            minimum=0.01,
            maximum=0.5,
            step=0.01,
        )
        anomaly_btn = gr.Button("Detect")
        anomaly_out = gr.Textbox(label="Anomaly Result")
        anomaly_btn.click(
            fn=detect_anomalies,
            inputs=[
                sensor_id2,
                start_time2,
                end_time2,
                threshold,
                algorithm,
                contamination,
            ],
            outputs=anomaly_out,
        )
    with gr.Tab("Analyze Trends"):
        sensor_id3 = gr.Textbox(label="Sensor ID", value=example_sensor)
        start_time3 = gr.Textbox(label="Start Time (ISO)", value=example_start)
        end_time3 = gr.Textbox(label="End Time (ISO)", value=example_end)
        trend_btn = gr.Button("Analyze")
        trend_out = gr.Textbox(label="Trend Result")
        trend_btn.click(
            fn=analyze_trends,
            inputs=[sensor_id3, start_time3, end_time3],
            outputs=trend_out,
        )
    with gr.Tab("Generate Report"):
        sensor_id4 = gr.Textbox(label="Sensor ID", value=example_sensor)
        start_time4 = gr.Textbox(label="Start Time (ISO)", value=example_start)
        end_time4 = gr.Textbox(label="End Time (ISO)", value=example_end)
        include_anomalies = gr.Checkbox(label="Include Anomalies", value=True)
        include_trends = gr.Checkbox(label="Include Trends", value=True)
        user_question = gr.Textbox(label="User Question", value="")
        anomaly_algorithm = gr.Radio(
            label="Anomaly Detection Algorithm",
            choices=["zscore", "isolation_forest"],
            value="zscore",
        )
        anomaly_threshold = gr.Number(label="Z-Score Threshold", value=2.0)
        anomaly_contamination = gr.Number(
            label="Isolation Forest Contamination",
            value=0.1,
            minimum=0.01,
            maximum=0.5,
            step=0.01,
        )
        report_btn = gr.Button("Generate Report")
        report_out = gr.Markdown(label="Report")
        report_btn.click(
            fn=generate_analysis_report,
            inputs=[
                sensor_id4,
                start_time4,
                end_time4,
                include_anomalies,
                include_trends,
                user_question,
                anomaly_algorithm,
                anomaly_threshold,
                anomaly_contamination,
            ],
            outputs=report_out,
        )

if __name__ == "__main__":
    demo.launch(mcp_server=True)