Spaces:
Runtime error
Runtime error
ui update
Browse files
app.py
CHANGED
@@ -5,9 +5,17 @@ run: `gradio main.py` to run the application
|
|
5 |
|
6 |
import sys
|
7 |
|
|
|
8 |
from loguru import logger
|
9 |
|
10 |
-
from app.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
logger.add(
|
13 |
sys.stdout,
|
@@ -16,7 +24,118 @@ logger.add(
|
|
16 |
level="INFO",
|
17 |
colorize=True,
|
18 |
)
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
if __name__ == "__main__":
|
22 |
demo.launch(mcp_server=True)
|
|
|
5 |
|
6 |
import sys
|
7 |
|
8 |
+
import gradio as gr
|
9 |
from loguru import logger
|
10 |
|
11 |
+
from app.service import (
|
12 |
+
analyze_trends,
|
13 |
+
connect_database,
|
14 |
+
detect_anomalies,
|
15 |
+
generate_analysis_report,
|
16 |
+
list_available_metrics,
|
17 |
+
query_timeseries,
|
18 |
+
)
|
19 |
|
20 |
logger.add(
|
21 |
sys.stdout,
|
|
|
24 |
level="INFO",
|
25 |
colorize=True,
|
26 |
)
|
27 |
+
example_sensor = "temperature"
|
28 |
+
example_start = "2019-06-15T02:54:00"
|
29 |
+
example_end = "2019-06-17T02:54:00"
|
30 |
|
31 |
+
with gr.Blocks() as demo:
|
32 |
+
gr.Markdown("# TimescaleDB Time Series Analyzer API (Gradio)")
|
33 |
+
with gr.Tab("Connect DB"):
|
34 |
+
connect_btn = gr.Button("Connect to TimescaleDB")
|
35 |
+
connect_out = gr.Textbox(label="Connection Result")
|
36 |
+
connect_btn.click(
|
37 |
+
fn=connect_database,
|
38 |
+
inputs=[],
|
39 |
+
outputs=connect_out,
|
40 |
+
)
|
41 |
+
with gr.Tab("List Metrics"):
|
42 |
+
list_btn = gr.Button("List Available Metrics")
|
43 |
+
list_out = gr.Textbox(label="Metrics")
|
44 |
+
list_btn.click(
|
45 |
+
fn=list_available_metrics,
|
46 |
+
inputs=[],
|
47 |
+
outputs=list_out,
|
48 |
+
)
|
49 |
+
with gr.Tab("Query Timeseries"):
|
50 |
+
sensor_id = gr.Textbox(label="Sensor ID", value=example_sensor)
|
51 |
+
start_time = gr.Textbox(label="Start Time (ISO)", value=example_start)
|
52 |
+
end_time = gr.Textbox(label="End Time (ISO)", value=example_end)
|
53 |
+
query_btn = gr.Button("Query")
|
54 |
+
query_out = gr.Textbox(label="Query Result")
|
55 |
+
query_btn.click(
|
56 |
+
fn=query_timeseries,
|
57 |
+
inputs=[sensor_id, start_time, end_time],
|
58 |
+
outputs=query_out,
|
59 |
+
)
|
60 |
+
with gr.Tab("Detect Anomalies"):
|
61 |
+
sensor_id2 = gr.Textbox(label="Sensor ID", value=example_sensor)
|
62 |
+
start_time2 = gr.Textbox(label="Start Time (ISO)", value=example_start)
|
63 |
+
end_time2 = gr.Textbox(label="End Time (ISO)", value=example_end)
|
64 |
+
algorithm = gr.Radio(
|
65 |
+
label="Algorithm",
|
66 |
+
choices=["zscore", "isolation_forest"],
|
67 |
+
value="zscore",
|
68 |
+
)
|
69 |
+
threshold = gr.Number(label="Z-Score Threshold", value=2.0)
|
70 |
+
contamination = gr.Number(
|
71 |
+
label="Isolation Forest Contamination",
|
72 |
+
value=0.1,
|
73 |
+
minimum=0.01,
|
74 |
+
maximum=0.5,
|
75 |
+
step=0.01,
|
76 |
+
)
|
77 |
+
anomaly_btn = gr.Button("Detect")
|
78 |
+
anomaly_out = gr.Textbox(label="Anomaly Result")
|
79 |
+
anomaly_btn.click(
|
80 |
+
fn=detect_anomalies,
|
81 |
+
inputs=[
|
82 |
+
sensor_id2,
|
83 |
+
start_time2,
|
84 |
+
end_time2,
|
85 |
+
threshold,
|
86 |
+
algorithm,
|
87 |
+
contamination,
|
88 |
+
],
|
89 |
+
outputs=anomaly_out,
|
90 |
+
)
|
91 |
+
with gr.Tab("Analyze Trends"):
|
92 |
+
sensor_id3 = gr.Textbox(label="Sensor ID", value=example_sensor)
|
93 |
+
start_time3 = gr.Textbox(label="Start Time (ISO)", value=example_start)
|
94 |
+
end_time3 = gr.Textbox(label="End Time (ISO)", value=example_end)
|
95 |
+
trend_btn = gr.Button("Analyze")
|
96 |
+
trend_out = gr.Textbox(label="Trend Result")
|
97 |
+
trend_btn.click(
|
98 |
+
fn=analyze_trends,
|
99 |
+
inputs=[sensor_id3, start_time3, end_time3],
|
100 |
+
outputs=trend_out,
|
101 |
+
)
|
102 |
+
with gr.Tab("Generate Report"):
|
103 |
+
sensor_id4 = gr.Textbox(label="Sensor ID", value=example_sensor)
|
104 |
+
start_time4 = gr.Textbox(label="Start Time (ISO)", value=example_start)
|
105 |
+
end_time4 = gr.Textbox(label="End Time (ISO)", value=example_end)
|
106 |
+
include_anomalies = gr.Checkbox(label="Include Anomalies", value=True)
|
107 |
+
include_trends = gr.Checkbox(label="Include Trends", value=True)
|
108 |
+
user_question = gr.Textbox(label="User Question", value="")
|
109 |
+
anomaly_algorithm = gr.Radio(
|
110 |
+
label="Anomaly Detection Algorithm",
|
111 |
+
choices=["zscore", "isolation_forest"],
|
112 |
+
value="zscore",
|
113 |
+
)
|
114 |
+
anomaly_threshold = gr.Number(label="Z-Score Threshold", value=2.0)
|
115 |
+
anomaly_contamination = gr.Number(
|
116 |
+
label="Isolation Forest Contamination",
|
117 |
+
value=0.1,
|
118 |
+
minimum=0.01,
|
119 |
+
maximum=0.5,
|
120 |
+
step=0.01,
|
121 |
+
)
|
122 |
+
report_btn = gr.Button("Generate Report")
|
123 |
+
report_out = gr.Markdown(label="Report")
|
124 |
+
report_btn.click(
|
125 |
+
fn=generate_analysis_report,
|
126 |
+
inputs=[
|
127 |
+
sensor_id4,
|
128 |
+
start_time4,
|
129 |
+
end_time4,
|
130 |
+
include_anomalies,
|
131 |
+
include_trends,
|
132 |
+
user_question,
|
133 |
+
anomaly_algorithm,
|
134 |
+
anomaly_threshold,
|
135 |
+
anomaly_contamination,
|
136 |
+
],
|
137 |
+
outputs=report_out,
|
138 |
+
)
|
139 |
|
140 |
if __name__ == "__main__":
|
141 |
demo.launch(mcp_server=True)
|
app/ui.py
DELETED
@@ -1,90 +0,0 @@
|
|
1 |
-
"""Definition of the Gradio UI."""
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
|
5 |
-
from app.service import (
|
6 |
-
analyze_trends,
|
7 |
-
connect_database,
|
8 |
-
detect_anomalies,
|
9 |
-
generate_analysis_report,
|
10 |
-
list_available_metrics,
|
11 |
-
query_timeseries,
|
12 |
-
)
|
13 |
-
|
14 |
-
example_sensor = "temperature"
|
15 |
-
example_start = "2019-06-15T02:54:00"
|
16 |
-
example_end = "2019-06-17T02:54:00"
|
17 |
-
|
18 |
-
with gr.Blocks() as demo:
|
19 |
-
gr.Markdown("# TimescaleDB Time Series Analyzer API (Gradio)")
|
20 |
-
with gr.Tab("Connect DB"):
|
21 |
-
connect_btn = gr.Button("Connect to TimescaleDB")
|
22 |
-
connect_out = gr.Textbox(label="Connection Result")
|
23 |
-
connect_btn.click(
|
24 |
-
fn=connect_database,
|
25 |
-
inputs=[],
|
26 |
-
outputs=connect_out,
|
27 |
-
)
|
28 |
-
with gr.Tab("List Metrics"):
|
29 |
-
list_btn = gr.Button("List Available Metrics")
|
30 |
-
list_out = gr.Textbox(label="Metrics")
|
31 |
-
list_btn.click(
|
32 |
-
fn=list_available_metrics,
|
33 |
-
inputs=[],
|
34 |
-
outputs=list_out,
|
35 |
-
)
|
36 |
-
with gr.Tab("Query Timeseries"):
|
37 |
-
sensor_id = gr.Textbox(label="Sensor ID", value=example_sensor)
|
38 |
-
start_time = gr.Textbox(label="Start Time (ISO)", value=example_start)
|
39 |
-
end_time = gr.Textbox(label="End Time (ISO)", value=example_end)
|
40 |
-
query_btn = gr.Button("Query")
|
41 |
-
query_out = gr.Textbox(label="Query Result")
|
42 |
-
query_btn.click(
|
43 |
-
fn=query_timeseries,
|
44 |
-
inputs=[sensor_id, start_time, end_time],
|
45 |
-
outputs=query_out,
|
46 |
-
)
|
47 |
-
with gr.Tab("Detect Anomalies"):
|
48 |
-
sensor_id2 = gr.Textbox(label="Sensor ID", value=example_sensor)
|
49 |
-
start_time2 = gr.Textbox(label="Start Time (ISO)", value=example_start)
|
50 |
-
end_time2 = gr.Textbox(label="End Time (ISO)", value=example_end)
|
51 |
-
threshold = gr.Number(label="Threshold", value=2.0)
|
52 |
-
anomaly_btn = gr.Button("Detect")
|
53 |
-
anomaly_out = gr.Textbox(label="Anomaly Result")
|
54 |
-
anomaly_btn.click(
|
55 |
-
fn=detect_anomalies,
|
56 |
-
inputs=[sensor_id2, start_time2, end_time2, threshold],
|
57 |
-
outputs=anomaly_out,
|
58 |
-
)
|
59 |
-
with gr.Tab("Analyze Trends"):
|
60 |
-
sensor_id3 = gr.Textbox(label="Sensor ID", value=example_sensor)
|
61 |
-
start_time3 = gr.Textbox(label="Start Time (ISO)", value=example_start)
|
62 |
-
end_time3 = gr.Textbox(label="End Time (ISO)", value=example_end)
|
63 |
-
trend_btn = gr.Button("Analyze")
|
64 |
-
trend_out = gr.Textbox(label="Trend Result")
|
65 |
-
trend_btn.click(
|
66 |
-
fn=analyze_trends,
|
67 |
-
inputs=[sensor_id3, start_time3, end_time3],
|
68 |
-
outputs=trend_out,
|
69 |
-
)
|
70 |
-
with gr.Tab("Generate Report"):
|
71 |
-
sensor_id4 = gr.Textbox(label="Sensor ID", value=example_sensor)
|
72 |
-
start_time4 = gr.Textbox(label="Start Time (ISO)", value=example_start)
|
73 |
-
end_time4 = gr.Textbox(label="End Time (ISO)", value=example_end)
|
74 |
-
include_anomalies = gr.Checkbox(label="Include Anomalies", value=True)
|
75 |
-
include_trends = gr.Checkbox(label="Include Trends", value=True)
|
76 |
-
user_question = gr.Textbox(label="User Question", value="")
|
77 |
-
report_btn = gr.Button("Generate Report")
|
78 |
-
report_out = gr.Markdown(label="Report")
|
79 |
-
report_btn.click(
|
80 |
-
fn=generate_analysis_report,
|
81 |
-
inputs=[
|
82 |
-
sensor_id4,
|
83 |
-
start_time4,
|
84 |
-
end_time4,
|
85 |
-
include_anomalies,
|
86 |
-
include_trends,
|
87 |
-
user_question,
|
88 |
-
],
|
89 |
-
outputs=report_out,
|
90 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|