File size: 15,418 Bytes
7d49285
 
270623b
51b704b
270623b
7d49285
 
51b704b
7d49285
 
 
 
 
 
 
 
 
 
 
 
 
 
ac1764e
210470f
 
 
 
 
 
7d49285
 
270623b
7d49285
270623b
 
 
 
 
 
 
7f58b70
 
c0763e9
 
7f58b70
 
7d49285
 
91126af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d49285
91126af
 
 
 
 
f9bd0ff
91126af
f9bd0ff
91126af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298eb3a
 
 
 
 
 
 
 
 
 
 
91126af
42a3533
69eadb3
 
 
 
 
 
 
 
 
 
fedb6c1
e671e99
91126af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbda53a
91126af
7f58b70
 
 
 
 
 
 
91126af
 
 
 
 
 
298eb3a
91126af
 
 
2b5f0b7
 
 
91126af
298eb3a
91126af
 
 
 
 
 
 
 
 
 
 
581c8e3
7d49285
91126af
42a3533
298eb3a
91126af
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import subprocess
import os
import torch
import sys

def install_cuda_toolkit():
    # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" # ! cu121 already installed
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"

# install_cuda_toolkit() # to compile the dependencies
# # pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
# version_str="".join([
#     f"py3{sys.version_info.minor}_cu",
#     torch.version.cuda.replace(".",""),
#     f"_pyt{pyt_version_str}"
# ])
# install pytorch3d with the right version
os.system('pip install iopath')
# os.system('FORCE_CUDA=1 pip install "git+https://github.com/facebookresearch/pytorch3d.git@stable"')

pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
version_str="".join([
    f"py3{sys.version_info.minor}_cu",
    torch.version.cuda.replace(".",""),
    f"_pyt{pyt_version_str}"
])
# install pytorch3d with the right version
# os.system('pip install iopath')
# os.system("pip install -U 'git+https://github.com/facebookresearch/fvcore'")
# os.system("pip uninstall fvcore -y")
# os.system("pip install -U --no-deps fvcore")
# os.system(f'pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html')
# print(f'pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html')


import spaces
import mast3r.utils.path_to_dust3r  # noqa
import dust3r.utils.path_to_croco  # noqa: F401
import mast3r.utils.path_to_dust3r  # noqa
import sys
import os.path as path
import torch
import tempfile
import gradio
import shutil
import math
from mast3r.model import AsymmetricMASt3R
import matplotlib.pyplot as pl
from dust3r.utils.image import load_images
import torch.nn.functional as F
from dust3r.utils.geometry import xy_grid
import numpy as np 
import cv2
from dust3r.utils.device import to_numpy
import trimesh
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from scipy.spatial.transform import Rotation


pl.ion()
# for gpu >= Ampere and pytorch >= 1.12
torch.backends.cuda.matmul.allow_tf32 = True
batch_size = 1
inf = float('inf')
# weights_path = "checkpoints/geometry_pose.pth"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# ckpt = torch.load(weights_path, map_location=device)
model = AsymmetricMASt3R(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='catmlp+dpt', output_mode='pts3d+desc24', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, two_confs=True, desc_conf_mode=('exp', 0, inf))
model = AsymmetricMASt3R.from_pretrained("zhang3z/FLARE").to(device)
# model.from_pretrained(ckpt['model'], strict=False)
model = model.to(device).eval()

image_size = 512
silent = True
gradio_delete_cache = 7200
backbone = torch.hub.load(
    "facebookresearch/dinov2", "dinov2_vitb14_reg"
    )
backbone = backbone.eval().cuda()

class FileState:
    def __init__(self, outfile_name=None):
        self.outfile_name = outfile_name

    def __del__(self):
        if self.outfile_name is not None and os.path.isfile(self.outfile_name):
            os.remove(self.outfile_name)
        self.outfile_name = None

def pad_to_square(reshaped_image):
    B, C, H, W = reshaped_image.shape
    max_dim = max(H, W)
    pad_height = max_dim - H
    pad_width = max_dim - W
    padding = (pad_width // 2, pad_width - pad_width // 2,
               pad_height // 2, pad_height - pad_height // 2)
    padded_image = F.pad(reshaped_image, padding, mode='constant', value=0)
    return padded_image

def generate_rank_by_dino(
    reshaped_image, backbone, query_frame_num, image_size=336
):
    # Downsample image to image_size x image_size
    # because we found it is unnecessary to use high resolution
    rgbs = pad_to_square(reshaped_image)
    rgbs = F.interpolate(
        reshaped_image,
        (image_size, image_size),
        mode="bilinear",
        align_corners=True,
    )
    rgbs = _resnet_normalize_image(rgbs.cuda())

    # Get the image features (patch level)
    frame_feat = backbone(rgbs, is_training=True)
    frame_feat = frame_feat["x_norm_patchtokens"]
    frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)

    # Compute the similiarty matrix
    frame_feat_norm = frame_feat_norm.permute(1, 0, 2)
    similarity_matrix = torch.bmm(
        frame_feat_norm, frame_feat_norm.transpose(-1, -2)
    )
    similarity_matrix = similarity_matrix.mean(dim=0)
    distance_matrix = 100 - similarity_matrix.clone()

    # Ignore self-pairing
    similarity_matrix.fill_diagonal_(-100)

    similarity_sum = similarity_matrix.sum(dim=1)

    # Find the most common frame
    most_common_frame_index = torch.argmax(similarity_sum).item()
    return most_common_frame_index

_RESNET_MEAN = [0.485, 0.456, 0.406]
_RESNET_STD = [0.229, 0.224, 0.225]
_resnet_mean = torch.tensor(_RESNET_MEAN).view(1, 3, 1, 1).cuda()
_resnet_std = torch.tensor(_RESNET_STD).view(1, 3, 1, 1).cuda()
def _resnet_normalize_image(img: torch.Tensor) -> torch.Tensor:
        return (img - _resnet_mean) / _resnet_std

def calculate_index_mappings(query_index, S, device=None):
    """
    Construct an order that we can switch [query_index] and [0]
    so that the content of query_index would be placed at [0]
    """
    new_order = torch.arange(S)
    new_order[0] = query_index
    new_order[query_index] = 0
    if device is not None:
        new_order = new_order.to(device)
    return new_order

def _convert_scene_output_to_glb(outfile, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
                                 cam_color=None, as_pointcloud=False,
                                 transparent_cams=False, silent=False):
    assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
    pts3d = to_numpy(pts3d)
    imgs = to_numpy(imgs)
    focals = to_numpy(focals)
    mask = to_numpy(mask)
    cams2world = to_numpy(cams2world)

    scene = trimesh.Scene()
    # full pointcloud
    if as_pointcloud:
        pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]).reshape(-1, 3)
        col = np.concatenate([p[m] for p, m in zip(imgs, mask)]).reshape(-1, 3)
        valid_msk = np.isfinite(pts.sum(axis=1))
        pct = trimesh.PointCloud(pts[valid_msk], colors=col[valid_msk])
        scene.add_geometry(pct)
    else:
        meshes = []
        for i in range(len(imgs)):
            pts3d_i = pts3d[i].reshape(imgs[i].shape)
            msk_i = mask[i] & np.isfinite(pts3d_i.sum(axis=-1))
            meshes.append(pts3d_to_trimesh(imgs[i], pts3d_i, msk_i))
        mesh = trimesh.Trimesh(**cat_meshes(meshes))
        scene.add_geometry(mesh)

    # add each camera
    for i, pose_c2w in enumerate(cams2world):
        if isinstance(cam_color, list):
            camera_edge_color = cam_color[i]
        else:
            camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
        add_scene_cam(scene, pose_c2w, camera_edge_color,
                      None if transparent_cams else imgs[i], focals[i],
                      imsize=imgs[i].shape[1::-1], screen_width=cam_size)

    rot = np.eye(4)
    rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
    scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
    if not silent:
        print('(exporting 3D scene to', outfile, ')')

    scene.export(file_obj=outfile)
    return outfile


class FileState:
    def __init__(self, outfile_name=None):
        self.outfile_name = outfile_name

    def __del__(self):
        if self.outfile_name is not None and os.path.isfile(self.outfile_name):
            os.remove(self.outfile_name)
        self.outfile_name = None


@spaces.GPU(duration=180)
def local_get_reconstructed_scene(inputfiles, min_conf_thr, cam_size):
    # import sys
    # import torch
    # pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
    # version_str="".join([
    #     f"py3{sys.version_info.minor}_cu",
    #     torch.version.cuda.replace(".",""),
    #     f"_pyt{pyt_version_str}"
    # ])
    # os.system('pip install iopath')
    # print(f"pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html")
    from pytorch3d.ops import knn_points
    outdir = tempfile.mkdtemp(suffix='_FLARE_gradio_demo')
    batch = load_images(inputfiles, size=image_size, verbose=not silent)
    images = [gt['img'] for gt in batch]
    images = torch.cat(images, dim=0)
    images = images / 2 + 0.5
    index = generate_rank_by_dino(images, backbone, query_frame_num=1)
    sorted_order = calculate_index_mappings(index, len(images), device=device)
    sorted_batch = []
    for i in range(len(batch)):
        sorted_batch.append(batch[sorted_order[i]])
    batch = sorted_batch
    ignore_keys = set(['depthmap', 'dataset', 'label', 'instance', 'idx', 'rng', 'vid'])
    ignore_dtype_keys = set(['true_shape', 'camera_pose', 'pts3d', 'fxfycxcy', 'img_org', 'camera_intrinsics', 'depthmap', 'depth_anything', 'fxfycxcy_unorm'])
    dtype = torch.bfloat16
    for view in batch:
        for name in view.keys():  # pseudo_focal
            if name in ignore_keys:
                continue
            if isinstance(view[name], torch.Tensor):
                view[name] = view[name].to(device, non_blocking=True)
            else:
                view[name] = torch.tensor(view[name]).to(device, non_blocking=True)
            if view[name].dtype == torch.float32 and name not in ignore_dtype_keys:
                view[name] = view[name].to(dtype)
    view1 = batch[:1]
    view2 = batch[1:]
    with torch.cuda.amp.autocast(enabled=True, dtype=dtype):
        pred1, pred2, pred_cameras = model(view1, view2, True, dtype)
    pts3d = pred2['pts3d']
    conf = pred2['conf']
    pts3d = pts3d.detach().cpu()
    B, N, H, W, _ = pts3d.shape
    thres = torch.quantile(conf.flatten(2,3), min_conf_thr, dim=-1)[0]
    masks_conf = conf > thres[None, :, None, None]
    masks_conf = masks_conf.cpu()
    
    images = [view['img'] for view in view1+view2]
    shape = torch.stack([view['true_shape'] for view in view1+view2], dim=1).detach().cpu().numpy()
    images = torch.stack(images,1).float().permute(0,1,3,4,2).detach().cpu().numpy()
    images = images / 2 + 0.5
    images = images.reshape(B, N, H, W, 3)
    # estimate focal length
    images = images[0]
    pts3d = pts3d[0]
    masks_conf = masks_conf[0]
    xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(posinf=0, neginf=0)  # homogeneous (x,y,1)
    pp = torch.tensor((W/2, H/2)).to(xy_over_z)
    pixels = xy_grid(W, H, device=xy_over_z.device).view(1, -1, 2) - pp.view(-1, 1, 2)  # B,HW,2
    u, v = pixels[:1].unbind(dim=-1)
    x, y, z = pts3d[:1].reshape(-1,3).unbind(dim=-1)
    fx_votes = (u * z) / x
    fy_votes = (v * z) / y
    # assume square pixels, hence same focal for X and Y
    f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1)
    focal = torch.nanmedian(f_votes, dim=-1).values
    focal = focal.item()
    pts3d = pts3d.numpy()
    # use PNP to estimate camera poses
    pred_poses = []
    for i in range(pts3d.shape[0]):
        shape_input_each = shape[:, i]
        mesh_grid = xy_grid(shape_input_each[0,1], shape_input_each[0,0])
        cur_inlier = conf[0,i] > torch.quantile(conf[0,i], 0.6)
        cur_inlier = cur_inlier.detach().cpu().numpy()
        ransac_thres = 0.5
        confidence = 0.9999
        iterationsCount = 10_000
        cur_pts3d = pts3d[i]
        K = np.float32([(focal, 0, W/2), (0, focal, H/2), (0, 0, 1)])
        success, r_pose, t_pose, _ = cv2.solvePnPRansac(cur_pts3d[cur_inlier].astype(np.float64), mesh_grid[cur_inlier].astype(np.float64), K, None,
                                                        flags=cv2.SOLVEPNP_SQPNP,
                                                        iterationsCount=iterationsCount,
                                                        reprojectionError=1,
                                                        confidence=confidence)
        r_pose = cv2.Rodrigues(r_pose)[0]  
        RT = np.r_[np.c_[r_pose, t_pose], [(0,0,0,1)]]
        cam2world = np.linalg.inv(RT)
        pred_poses.append(cam2world)
    pred_poses = np.stack(pred_poses, axis=0)
    pred_poses = torch.tensor(pred_poses)
    # use knn to clean the point cloud
    K = 10
    print('Cleaning point cloud with knn...')
    points = torch.tensor(pts3d.reshape(1,-1,3)).cuda()
    # knn = knn_points(points, points, K=K)
    # dists = knn.dists  
    # mean_dists = dists.mean(dim=-1)
    # masks_dist = mean_dists < torch.quantile(mean_dists.reshape(-1), 0.95)
    # masks_dist = masks_dist.detach().cpu().numpy()
    # masks_conf = (masks_conf > 0) & masks_dist.reshape(-1,H,W)
    masks_conf = masks_conf > 0
    os.makedirs(outdir, exist_ok=True)
    focals = [focal] * len(images)
    outfile_name = tempfile.mktemp(suffix='_scene.glb', dir=outdir)

    _convert_scene_output_to_glb(outfile_name, images, pts3d, masks_conf, focals, pred_poses, as_pointcloud=True,
                                        transparent_cams=False, cam_size=cam_size, silent=silent)
    return outfile_name

css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
title = "FLARE Demo"
# import sys
# import torch
# os.system('pip uninstall -y pytorch3d')
with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, gradio_delete_cache)) as demo:
    # filestate = gradio.State(None)
    gradio.HTML('<h2 style="text-align: center;">3D Reconstruction with FLARE</h2>')
    with gradio.Column():
        inputfiles = gradio.File(file_count="multiple")
        snapshot = gradio.Image(None, visible=False)
        with gradio.Row():
            # adjust the confidence threshold
            min_conf_thr = gradio.Slider(label="min_conf_thr", value=0.1, minimum=0.0, maximum=1, step=0.05)
            # adjust the camera size in the output pointcloud
            cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
        run_btn = gradio.Button("Run")
        outmodel = gradio.Model3D()


        run_btn.click(fn=local_get_reconstructed_scene,
                      inputs=[inputfiles, min_conf_thr, cam_size],
                      outputs=[outmodel])

demo.launch(show_error=True, share=None, server_name=None, server_port=None)
shutil.rmtree(tmpdirname)