File size: 15,418 Bytes
7d49285 270623b 51b704b 270623b 7d49285 51b704b 7d49285 ac1764e 210470f 7d49285 270623b 7d49285 270623b 7f58b70 c0763e9 7f58b70 7d49285 91126af 7d49285 91126af f9bd0ff 91126af f9bd0ff 91126af 298eb3a 91126af 42a3533 69eadb3 fedb6c1 e671e99 91126af bbda53a 91126af 7f58b70 91126af 298eb3a 91126af 2b5f0b7 91126af 298eb3a 91126af 581c8e3 7d49285 91126af 42a3533 298eb3a 91126af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import subprocess
import os
import torch
import sys
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" # ! cu121 already installed
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
# install_cuda_toolkit() # to compile the dependencies
# # pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
# version_str="".join([
# f"py3{sys.version_info.minor}_cu",
# torch.version.cuda.replace(".",""),
# f"_pyt{pyt_version_str}"
# ])
# install pytorch3d with the right version
os.system('pip install iopath')
# os.system('FORCE_CUDA=1 pip install "git+https://github.com/facebookresearch/pytorch3d.git@stable"')
pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
version_str="".join([
f"py3{sys.version_info.minor}_cu",
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
# install pytorch3d with the right version
# os.system('pip install iopath')
# os.system("pip install -U 'git+https://github.com/facebookresearch/fvcore'")
# os.system("pip uninstall fvcore -y")
# os.system("pip install -U --no-deps fvcore")
# os.system(f'pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html')
# print(f'pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html')
import spaces
import mast3r.utils.path_to_dust3r # noqa
import dust3r.utils.path_to_croco # noqa: F401
import mast3r.utils.path_to_dust3r # noqa
import sys
import os.path as path
import torch
import tempfile
import gradio
import shutil
import math
from mast3r.model import AsymmetricMASt3R
import matplotlib.pyplot as pl
from dust3r.utils.image import load_images
import torch.nn.functional as F
from dust3r.utils.geometry import xy_grid
import numpy as np
import cv2
from dust3r.utils.device import to_numpy
import trimesh
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from scipy.spatial.transform import Rotation
pl.ion()
# for gpu >= Ampere and pytorch >= 1.12
torch.backends.cuda.matmul.allow_tf32 = True
batch_size = 1
inf = float('inf')
# weights_path = "checkpoints/geometry_pose.pth"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# ckpt = torch.load(weights_path, map_location=device)
model = AsymmetricMASt3R(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='catmlp+dpt', output_mode='pts3d+desc24', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, two_confs=True, desc_conf_mode=('exp', 0, inf))
model = AsymmetricMASt3R.from_pretrained("zhang3z/FLARE").to(device)
# model.from_pretrained(ckpt['model'], strict=False)
model = model.to(device).eval()
image_size = 512
silent = True
gradio_delete_cache = 7200
backbone = torch.hub.load(
"facebookresearch/dinov2", "dinov2_vitb14_reg"
)
backbone = backbone.eval().cuda()
class FileState:
def __init__(self, outfile_name=None):
self.outfile_name = outfile_name
def __del__(self):
if self.outfile_name is not None and os.path.isfile(self.outfile_name):
os.remove(self.outfile_name)
self.outfile_name = None
def pad_to_square(reshaped_image):
B, C, H, W = reshaped_image.shape
max_dim = max(H, W)
pad_height = max_dim - H
pad_width = max_dim - W
padding = (pad_width // 2, pad_width - pad_width // 2,
pad_height // 2, pad_height - pad_height // 2)
padded_image = F.pad(reshaped_image, padding, mode='constant', value=0)
return padded_image
def generate_rank_by_dino(
reshaped_image, backbone, query_frame_num, image_size=336
):
# Downsample image to image_size x image_size
# because we found it is unnecessary to use high resolution
rgbs = pad_to_square(reshaped_image)
rgbs = F.interpolate(
reshaped_image,
(image_size, image_size),
mode="bilinear",
align_corners=True,
)
rgbs = _resnet_normalize_image(rgbs.cuda())
# Get the image features (patch level)
frame_feat = backbone(rgbs, is_training=True)
frame_feat = frame_feat["x_norm_patchtokens"]
frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)
# Compute the similiarty matrix
frame_feat_norm = frame_feat_norm.permute(1, 0, 2)
similarity_matrix = torch.bmm(
frame_feat_norm, frame_feat_norm.transpose(-1, -2)
)
similarity_matrix = similarity_matrix.mean(dim=0)
distance_matrix = 100 - similarity_matrix.clone()
# Ignore self-pairing
similarity_matrix.fill_diagonal_(-100)
similarity_sum = similarity_matrix.sum(dim=1)
# Find the most common frame
most_common_frame_index = torch.argmax(similarity_sum).item()
return most_common_frame_index
_RESNET_MEAN = [0.485, 0.456, 0.406]
_RESNET_STD = [0.229, 0.224, 0.225]
_resnet_mean = torch.tensor(_RESNET_MEAN).view(1, 3, 1, 1).cuda()
_resnet_std = torch.tensor(_RESNET_STD).view(1, 3, 1, 1).cuda()
def _resnet_normalize_image(img: torch.Tensor) -> torch.Tensor:
return (img - _resnet_mean) / _resnet_std
def calculate_index_mappings(query_index, S, device=None):
"""
Construct an order that we can switch [query_index] and [0]
so that the content of query_index would be placed at [0]
"""
new_order = torch.arange(S)
new_order[0] = query_index
new_order[query_index] = 0
if device is not None:
new_order = new_order.to(device)
return new_order
def _convert_scene_output_to_glb(outfile, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
cam_color=None, as_pointcloud=False,
transparent_cams=False, silent=False):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
mask = to_numpy(mask)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]).reshape(-1, 3)
col = np.concatenate([p[m] for p, m in zip(imgs, mask)]).reshape(-1, 3)
valid_msk = np.isfinite(pts.sum(axis=1))
pct = trimesh.PointCloud(pts[valid_msk], colors=col[valid_msk])
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
pts3d_i = pts3d[i].reshape(imgs[i].shape)
msk_i = mask[i] & np.isfinite(pts3d_i.sum(axis=-1))
meshes.append(pts3d_to_trimesh(imgs[i], pts3d_i, msk_i))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(scene, pose_c2w, camera_edge_color,
None if transparent_cams else imgs[i], focals[i],
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
if not silent:
print('(exporting 3D scene to', outfile, ')')
scene.export(file_obj=outfile)
return outfile
class FileState:
def __init__(self, outfile_name=None):
self.outfile_name = outfile_name
def __del__(self):
if self.outfile_name is not None and os.path.isfile(self.outfile_name):
os.remove(self.outfile_name)
self.outfile_name = None
@spaces.GPU(duration=180)
def local_get_reconstructed_scene(inputfiles, min_conf_thr, cam_size):
# import sys
# import torch
# pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
# version_str="".join([
# f"py3{sys.version_info.minor}_cu",
# torch.version.cuda.replace(".",""),
# f"_pyt{pyt_version_str}"
# ])
# os.system('pip install iopath')
# print(f"pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html")
from pytorch3d.ops import knn_points
outdir = tempfile.mkdtemp(suffix='_FLARE_gradio_demo')
batch = load_images(inputfiles, size=image_size, verbose=not silent)
images = [gt['img'] for gt in batch]
images = torch.cat(images, dim=0)
images = images / 2 + 0.5
index = generate_rank_by_dino(images, backbone, query_frame_num=1)
sorted_order = calculate_index_mappings(index, len(images), device=device)
sorted_batch = []
for i in range(len(batch)):
sorted_batch.append(batch[sorted_order[i]])
batch = sorted_batch
ignore_keys = set(['depthmap', 'dataset', 'label', 'instance', 'idx', 'rng', 'vid'])
ignore_dtype_keys = set(['true_shape', 'camera_pose', 'pts3d', 'fxfycxcy', 'img_org', 'camera_intrinsics', 'depthmap', 'depth_anything', 'fxfycxcy_unorm'])
dtype = torch.bfloat16
for view in batch:
for name in view.keys(): # pseudo_focal
if name in ignore_keys:
continue
if isinstance(view[name], torch.Tensor):
view[name] = view[name].to(device, non_blocking=True)
else:
view[name] = torch.tensor(view[name]).to(device, non_blocking=True)
if view[name].dtype == torch.float32 and name not in ignore_dtype_keys:
view[name] = view[name].to(dtype)
view1 = batch[:1]
view2 = batch[1:]
with torch.cuda.amp.autocast(enabled=True, dtype=dtype):
pred1, pred2, pred_cameras = model(view1, view2, True, dtype)
pts3d = pred2['pts3d']
conf = pred2['conf']
pts3d = pts3d.detach().cpu()
B, N, H, W, _ = pts3d.shape
thres = torch.quantile(conf.flatten(2,3), min_conf_thr, dim=-1)[0]
masks_conf = conf > thres[None, :, None, None]
masks_conf = masks_conf.cpu()
images = [view['img'] for view in view1+view2]
shape = torch.stack([view['true_shape'] for view in view1+view2], dim=1).detach().cpu().numpy()
images = torch.stack(images,1).float().permute(0,1,3,4,2).detach().cpu().numpy()
images = images / 2 + 0.5
images = images.reshape(B, N, H, W, 3)
# estimate focal length
images = images[0]
pts3d = pts3d[0]
masks_conf = masks_conf[0]
xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(posinf=0, neginf=0) # homogeneous (x,y,1)
pp = torch.tensor((W/2, H/2)).to(xy_over_z)
pixels = xy_grid(W, H, device=xy_over_z.device).view(1, -1, 2) - pp.view(-1, 1, 2) # B,HW,2
u, v = pixels[:1].unbind(dim=-1)
x, y, z = pts3d[:1].reshape(-1,3).unbind(dim=-1)
fx_votes = (u * z) / x
fy_votes = (v * z) / y
# assume square pixels, hence same focal for X and Y
f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1)
focal = torch.nanmedian(f_votes, dim=-1).values
focal = focal.item()
pts3d = pts3d.numpy()
# use PNP to estimate camera poses
pred_poses = []
for i in range(pts3d.shape[0]):
shape_input_each = shape[:, i]
mesh_grid = xy_grid(shape_input_each[0,1], shape_input_each[0,0])
cur_inlier = conf[0,i] > torch.quantile(conf[0,i], 0.6)
cur_inlier = cur_inlier.detach().cpu().numpy()
ransac_thres = 0.5
confidence = 0.9999
iterationsCount = 10_000
cur_pts3d = pts3d[i]
K = np.float32([(focal, 0, W/2), (0, focal, H/2), (0, 0, 1)])
success, r_pose, t_pose, _ = cv2.solvePnPRansac(cur_pts3d[cur_inlier].astype(np.float64), mesh_grid[cur_inlier].astype(np.float64), K, None,
flags=cv2.SOLVEPNP_SQPNP,
iterationsCount=iterationsCount,
reprojectionError=1,
confidence=confidence)
r_pose = cv2.Rodrigues(r_pose)[0]
RT = np.r_[np.c_[r_pose, t_pose], [(0,0,0,1)]]
cam2world = np.linalg.inv(RT)
pred_poses.append(cam2world)
pred_poses = np.stack(pred_poses, axis=0)
pred_poses = torch.tensor(pred_poses)
# use knn to clean the point cloud
K = 10
print('Cleaning point cloud with knn...')
points = torch.tensor(pts3d.reshape(1,-1,3)).cuda()
# knn = knn_points(points, points, K=K)
# dists = knn.dists
# mean_dists = dists.mean(dim=-1)
# masks_dist = mean_dists < torch.quantile(mean_dists.reshape(-1), 0.95)
# masks_dist = masks_dist.detach().cpu().numpy()
# masks_conf = (masks_conf > 0) & masks_dist.reshape(-1,H,W)
masks_conf = masks_conf > 0
os.makedirs(outdir, exist_ok=True)
focals = [focal] * len(images)
outfile_name = tempfile.mktemp(suffix='_scene.glb', dir=outdir)
_convert_scene_output_to_glb(outfile_name, images, pts3d, masks_conf, focals, pred_poses, as_pointcloud=True,
transparent_cams=False, cam_size=cam_size, silent=silent)
return outfile_name
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
title = "FLARE Demo"
# import sys
# import torch
# os.system('pip uninstall -y pytorch3d')
with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, gradio_delete_cache)) as demo:
# filestate = gradio.State(None)
gradio.HTML('<h2 style="text-align: center;">3D Reconstruction with FLARE</h2>')
with gradio.Column():
inputfiles = gradio.File(file_count="multiple")
snapshot = gradio.Image(None, visible=False)
with gradio.Row():
# adjust the confidence threshold
min_conf_thr = gradio.Slider(label="min_conf_thr", value=0.1, minimum=0.0, maximum=1, step=0.05)
# adjust the camera size in the output pointcloud
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
run_btn = gradio.Button("Run")
outmodel = gradio.Model3D()
run_btn.click(fn=local_get_reconstructed_scene,
inputs=[inputfiles, min_conf_thr, cam_size],
outputs=[outmodel])
demo.launch(show_error=True, share=None, server_name=None, server_port=None)
shutil.rmtree(tmpdirname) |