Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,730 Bytes
15067e5 53b8f1f 15067e5 1e770e5 ebb0646 1e770e5 15067e5 1e770e5 ebb0646 15067e5 1e770e5 cd8c42c 3ad87bd 1e770e5 ebb0646 82895ea 1e770e5 cd8c42c 1e770e5 cd8c42c 1e770e5 cd8c42c 1e770e5 3655123 1e770e5 281f3ad ebb0646 1e770e5 ebb0646 15067e5 281f3ad 1e770e5 15067e5 1e770e5 15067e5 1e770e5 15067e5 1e770e5 0a3438b 6d3678b 15067e5 6d3678b 1e770e5 15067e5 1e770e5 15067e5 1e770e5 15067e5 1e770e5 15067e5 1e770e5 ebb0646 1e770e5 ebb0646 53b8f1f 1e770e5 dbe872f 1e770e5 53b8f1f 1e770e5 15067e5 1e770e5 cd8c42c 1e770e5 82895ea 1e770e5 08d9c00 1e770e5 6d3678b 1e770e5 3ad87bd 15067e5 1e770e5 3ad87bd 1e770e5 82895ea 1e770e5 15067e5 281f3ad 1e770e5 15067e5 281f3ad 15067e5 281f3ad 15067e5 281f3ad 15067e5 1e770e5 15067e5 3ad87bd 1e770e5 3ad87bd 1e770e5 15067e5 1e770e5 15067e5 1e770e5 15067e5 1e770e5 281f3ad 08d9c00 15067e5 53b8f1f 15067e5 6d3678b 15067e5 a5216ce 94f2e74 15067e5 6d3678b 20a5a76 15067e5 a5216ce 08d9c00 6d3678b 53b8f1f 281f3ad 94f2e74 15067e5 6d3678b 15067e5 6d3678b 15067e5 08d9c00 6d3678b 281f3ad 6d3678b a5216ce 15067e5 281f3ad 15067e5 08d9c00 15067e5 e45b54b 281f3ad 3b6e025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import os
import io
import base64
import gc
from huggingface_hub.utils import HfHubHTTPError
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from pypdf import PdfReader
from PIL import Image
import chromadb
from chromadb.utils import embedding_functions
from langchain.text_splitter import RecursiveCharacterTextSplitter
import gradio as gr
# ─────────────────────────────────────────────────────────────────────────────
# Globals
CURRENT_VDB = None
processor = None
vision_model = None
# OCR & V+L defaults
OCR_CHOICES = {
"db_resnet50 + crnn_mobilenet_v3_large": ("db_resnet50", "crnn_mobilenet_v3_large"),
"db_resnet50 + crnn_resnet31": ("db_resnet50", "crnn_resnet31"),
}
SHARED_EMB_FN = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-MiniLM-L6-v2"
)
def get_image_description(img: Image.Image) -> str:
global processor, vision_model
if processor is None or vision_model is None:
# use the same default V+L model everywhere
vlm = "llava-hf/llava-v1.6-mistral-7b-hf"
processor = LlavaNextProcessor.from_pretrained(vlm)
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
vlm, torch_dtype=torch.float16, low_cpu_mem_usage=True
).to("cuda")
torch.cuda.empty_cache(); gc.collect()
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
inputs = processor(prompt, img, return_tensors="pt").to("cuda")
out = vision_model.generate(**inputs, max_new_tokens=100)
return processor.decode(out[0], skip_special_tokens=True)
def extract_data_from_pdfs(
docs, session, include_images, do_ocr, ocr_choice, vlm_choice, progress=gr.Progress()
):
if not docs:
raise gr.Error("No documents to process")
# 1) Optional OCR
local_ocr = None
if do_ocr == "Get Text With OCR":
db_m, crnn_m = OCR_CHOICES[ocr_choice]
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
# 2) Prepare V+L
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
vis = LlavaNextForConditionalGeneration.from_pretrained(
vlm_choice, torch_dtype=torch.float16, low_cpu_mem_usage=True
).to("cuda")
# 3) Patch get_image_description to use this choice
def describe(img: Image.Image) -> str:
torch.cuda.empty_cache(); gc.collect()
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
inp = proc(prompt, img, return_tensors="pt").to("cuda")
out = vis.generate(**inp, max_new_tokens=100)
return proc.decode(out[0], skip_special_tokens=True)
global get_image_description, CURRENT_VDB
get_image_description = describe
# 4) Pull text + images
progress(0.2, "Extracting text and images…")
full_text, images, names = "", [], []
for p in docs:
if local_ocr:
pdf = DocumentFile.from_pdf(p)
res = local_ocr(pdf)
full_text += " ".join(w.value for blk in res.pages for line in blk.lines for w in line.words) + "\n\n"
else:
full_text += (PdfReader(p).pages[0].extract_text() or "") + "\n\n"
if include_images == "Include Images":
imgs = extract_images([p])
images.extend(imgs)
names.extend([os.path.basename(p)] * len(imgs))
# 5) Build in-memory Chroma
progress(0.6, "Indexing in vector DB…")
client = chromadb.EphemeralClient()
for col in ("text_db", "image_db"):
if col in [c.name for c in client.list_collections()]:
client.delete_collection(col)
text_col = client.get_or_create_collection("text_db", embedding_function=SHARED_EMB_FN)
img_col = client.get_or_create_collection("image_db", embedding_function=SHARED_EMB_FN,
metadata={"hnsw:space":"cosine"})
if images:
descs, metas = [], []
for i, im in enumerate(images):
cap = get_image_description(im)
descs.append(f"{names[i]}: {cap}")
metas.append({"image": image_to_bytes(im)})
img_col.add(ids=[str(i) for i in range(len(images))],
documents=descs, metadatas=metas)
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
docs_ = splitter.create_documents([full_text])
text_col.add(ids=[str(i) for i in range(len(docs_))],
documents=[d.page_content for d in docs_])
CURRENT_VDB = client
session["processed"] = True
sample = images[:4] if include_images=="Include Images" else []
return session, full_text[:2000]+"...", sample, "<h3>Done!</h3>"
def conversation(session, question, num_ctx, img_ctx, history, temp, max_tok, model_id):
global CURRENT_VDB
if not session.get("processed") or CURRENT_VDB is None:
raise gr.Error("Please extract data first")
# a) text retrieval
docs = CURRENT_VDB.get_collection("text_db")\
.query(query_texts=[question], n_results=int(num_ctx), include=["documents"])["documents"][0]
# b) image retrieval
img_q = CURRENT_VDB.get_collection("image_db")\
.query(query_texts=[question], n_results=int(img_ctx),
include=["metadatas","documents"])
img_descs = img_q["documents"][0] or ["No images found"]
images = []
for m in img_q["metadatas"][0]:
b = m.get("image","")
try: images.append(Image.open(io.BytesIO(base64.b64decode(b))))
except: pass
img_desc = "\n".join(img_descs)
# c) prompt & LLM
prompt = PromptTemplate(
template="""
Context:
{text}
Included Images:
{img_desc}
Question:
{q}
Answer:
""", input_variables=["text","img_desc","q"])
inp = prompt.format(text="\n\n".join(docs), img_desc=img_desc, q=question)
llm = HuggingFaceEndpoint(
repo_id=model_id, task="text-generation",
temperature=temp, max_new_tokens=max_tok,
huggingfacehub_api_token=HF_TOKEN
)
try: ans = llm.invoke(inp)
except HfHubHTTPError as e:
ans = f"❌ Model `{model_id}` not hosted." if e.response.status_code==404 else f"⚠️ HF API error: {e}"
except Exception as e:
ans = f"⚠️ Unexpected error: {e}"
new_hist = history + [{"role":"user","content":question},
{"role":"assistant","content":ans}]
return new_hist, docs, images
# ─────────────────────────────────────────────────────────────────────────────
# Gradio UI
CSS = """
footer {visibility:hidden;}
"""
MODEL_OPTIONS = [
"HuggingFaceH4/zephyr-7b-beta",
"mistralai/Mistral-7B-Instruct-v0.2",
"openchat/openchat-3.5-0106",
"google/gemma-7b-it",
"deepseek-ai/deepseek-llm-7b-chat",
"microsoft/Phi-3-mini-4k-instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"Qwen/Qwen1.5-7B-Chat",
"tiiuae/falcon-7b-instruct", # Falcon 7B Instruct
"bigscience/bloomz-7b1", # BLOOMZ 7B
"facebook/opt-2.7b",
]
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
session_state = gr.State({})
with gr.Column(visible=True) as welcome_col:
gr.Markdown(f"<div style='text-align:center'>{WELCOME_INTRO}</div>")
start_btn = gr.Button("🚀 Start")
with gr.Column(visible=False) as app_col:
gr.Markdown("## 📚 Multimodal Chat-PDF Playground")
extract_event = None
with gr.Tabs() as tabs:
with gr.TabItem("1. Upload & Extract"):
docs = gr.File(file_count="multiple", file_types=[".pdf"], label="Upload PDFs")
include_dd = gr.Radio(["Include Images","Exclude Images"],"Exclude Images","Images")
ocr_radio = gr.Radio(["Get Text With OCR","Get Available Text Only"],"Get Available Text Only","OCR")
ocr_dd = gr.Dropdown(list(OCR_CHOICES.keys()), list(OCR_CHOICES.keys())[0], "OCR Model")
vlm_dd = gr.Dropdown(["llava-hf/llava-v1.6-mistral-7b-hf","llava-hf/llava-v1.5-mistral-7b"], "llava-hf/llava-v1.6-mistral-7b-hf", "Vision-Language Model")
extract_btn = gr.Button("Extract")
preview_text = gr.Textbox(lines=10, label="Sample Text", interactive=False)
preview_img = gr.Gallery(label="Sample Images", rows=2, value=[])
preview_html = gr.HTML()
extract_event = extract_btn.click(
fn=extract_data_from_pdfs,
inputs=[docs, session_state, include_dd, ocr_radio, ocr_dd, vlm_dd],
outputs=[session_state, preview_text, preview_img, preview_html]
)
with gr.TabItem("2. Chat", visible=False) as chat_tab:
with gr.Row():
with gr.Column(scale=3):
chat = gr.Chatbot(type="messages", label="Chat")
msg = gr.Textbox(placeholder="Ask about your PDF...", label="Your question")
send = gr.Button("Send")
with gr.Column(scale=1):
model_dd = gr.Dropdown(MODEL_OPTIONS, MODEL_OPTIONS[0], "Choose Chat Model")
num_ctx = gr.Slider(1,20, value=3, label="Text Contexts")
img_ctx = gr.Slider(1,10, value=2, label="Image Contexts")
temp = gr.Slider(0.1,1.0, step=0.1, value=0.4, label="Temperature")
max_tok = gr.Slider(10,1000, step=10, value=200, label="Max Tokens")
send.click(
fn=conversation,
inputs=[session_state, msg, num_ctx, img_ctx, chat, temp, max_tok, model_dd],
outputs=[chat, gr.Dataframe(), gr.Gallery(label="Relevant Images", rows=2, value=[])]
)
# Unhide the Chat tab once extraction completes
extract_event.then(
fn=lambda: gr.update(visible=True),
inputs=[],
outputs=[chat_tab]
)
gr.HTML("<center>Made with ❤️ by Zamal</center>")
start_btn.click(
fn=lambda: (gr.update(visible=False), gr.update(visible=True)),
outputs=[welcome_col, app_col]
)
if __name__ == "__main__":
demo.launch()
|