Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -37,7 +37,8 @@ from utils import *
|
|
37 |
# Load .env
|
38 |
load_dotenv()
|
39 |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
40 |
-
|
|
|
41 |
# OCR + multimodal image description setup
|
42 |
ocr_model = ocr_predictor(
|
43 |
"db_resnet50", "crnn_mobilenet_v3_large", pretrained=True, assume_straight_pages=True
|
@@ -52,9 +53,20 @@ vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
|
52 |
|
53 |
@spaces.GPU()
|
54 |
def get_image_description(image: Image.Image) -> str:
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
torch.cuda.empty_cache()
|
57 |
gc.collect()
|
|
|
58 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
59 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
|
60 |
output = vision_model.generate(**inputs, max_new_tokens=100)
|
@@ -143,42 +155,45 @@ OCR_CHOICES = {
|
|
143 |
"db_resnet50 + crnn_resnet31": ("db_resnet50", "crnn_resnet31"),
|
144 |
}
|
145 |
|
|
|
146 |
def extract_data_from_pdfs(
|
147 |
-
docs,
|
148 |
-
session,
|
149 |
-
include_images, # "Include Images" or "Exclude Images"
|
150 |
-
do_ocr, # "Get Text With OCR" or "Get Available Text Only"
|
151 |
-
ocr_choice, # key into OCR_CHOICES
|
152 |
-
vlm_choice, # HF repo ID for LlavaNext
|
153 |
progress=gr.Progress()
|
154 |
):
|
155 |
"""
|
156 |
1) Dynamically instantiate the chosen OCR pipeline (if any)
|
157 |
2) Dynamically instantiate the chosen vision‐language model
|
158 |
-
3)
|
159 |
4) Extract text & images, index into ChromaDB
|
160 |
"""
|
161 |
if not docs:
|
162 |
raise gr.Error("No documents to process")
|
163 |
|
164 |
-
# ——— 1)
|
165 |
if do_ocr == "Get Text With OCR":
|
166 |
db_m, crnn_m = OCR_CHOICES[ocr_choice]
|
167 |
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
|
168 |
else:
|
169 |
local_ocr = None
|
170 |
|
171 |
-
# ——— 2)
|
|
|
172 |
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
|
173 |
-
vis
|
174 |
-
|
175 |
-
torch_dtype=torch.float16,
|
176 |
-
|
177 |
-
)
|
178 |
|
179 |
-
# ——— 3) Monkey‐patch
|
180 |
def describe(img: Image.Image) -> str:
|
181 |
-
torch.cuda.empty_cache()
|
|
|
182 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
183 |
inputs = proc(prompt, img, return_tensors="pt").to("cuda")
|
184 |
output = vis.generate(**inputs, max_new_tokens=100)
|
@@ -187,29 +202,35 @@ def extract_data_from_pdfs(
|
|
187 |
global get_image_description
|
188 |
get_image_description = describe
|
189 |
|
190 |
-
# ——— 4) Extract text & images
|
191 |
progress(0.2, "Extracting text and images…")
|
192 |
-
all_text
|
|
|
|
|
193 |
for path in docs:
|
|
|
194 |
if local_ocr:
|
195 |
pdf = DocumentFile.from_pdf(path)
|
196 |
res = local_ocr(pdf)
|
197 |
all_text += result_to_text(res, as_text=True) + "\n\n"
|
198 |
else:
|
199 |
txt = PdfReader(path).pages[0].extract_text() or ""
|
200 |
-
all_text +=
|
201 |
|
|
|
202 |
if include_images == "Include Images":
|
203 |
imgs = extract_images([path])
|
204 |
images.extend(imgs)
|
205 |
names.extend([os.path.basename(path)] * len(imgs))
|
206 |
|
207 |
-
# ——— 5) Index into
|
208 |
progress(0.6, "Indexing in vector DB…")
|
209 |
vdb = get_vectordb(all_text, images, names)
|
210 |
|
|
|
211 |
session["processed"] = True
|
212 |
sample_imgs = images[:4] if include_images == "Include Images" else []
|
|
|
213 |
return (
|
214 |
vdb,
|
215 |
session,
|
@@ -218,6 +239,7 @@ def extract_data_from_pdfs(
|
|
218 |
sample_imgs,
|
219 |
"<h3>Done!</h3>"
|
220 |
)
|
|
|
221 |
# Chat function
|
222 |
def conversation(
|
223 |
vdb, question: str, num_ctx, img_ctx,
|
|
|
37 |
# Load .env
|
38 |
load_dotenv()
|
39 |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
40 |
+
processor = None
|
41 |
+
vision_model = None
|
42 |
# OCR + multimodal image description setup
|
43 |
ocr_model = ocr_predictor(
|
44 |
"db_resnet50", "crnn_mobilenet_v3_large", pretrained=True, assume_straight_pages=True
|
|
|
53 |
|
54 |
@spaces.GPU()
|
55 |
def get_image_description(image: Image.Image) -> str:
|
56 |
+
global processor, vision_model
|
57 |
+
|
58 |
+
# on first call, load & move to cuda
|
59 |
+
if processor is None or vision_model is None:
|
60 |
+
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
61 |
+
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
62 |
+
"llava-hf/llava-v1.6-mistral-7b-hf",
|
63 |
+
torch_dtype=torch.float16,
|
64 |
+
low_cpu_mem_usage=True
|
65 |
+
).to("cuda")
|
66 |
+
|
67 |
torch.cuda.empty_cache()
|
68 |
gc.collect()
|
69 |
+
|
70 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
71 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
|
72 |
output = vision_model.generate(**inputs, max_new_tokens=100)
|
|
|
155 |
"db_resnet50 + crnn_resnet31": ("db_resnet50", "crnn_resnet31"),
|
156 |
}
|
157 |
|
158 |
+
@spaces.GPU()
|
159 |
def extract_data_from_pdfs(
|
160 |
+
docs: list[str],
|
161 |
+
session: dict,
|
162 |
+
include_images: str, # "Include Images" or "Exclude Images"
|
163 |
+
do_ocr: str, # "Get Text With OCR" or "Get Available Text Only"
|
164 |
+
ocr_choice: str, # key into OCR_CHOICES
|
165 |
+
vlm_choice: str, # HF repo ID for LlavaNext
|
166 |
progress=gr.Progress()
|
167 |
):
|
168 |
"""
|
169 |
1) Dynamically instantiate the chosen OCR pipeline (if any)
|
170 |
2) Dynamically instantiate the chosen vision‐language model
|
171 |
+
3) Monkey‐patch get_image_description to use that VL model
|
172 |
4) Extract text & images, index into ChromaDB
|
173 |
"""
|
174 |
if not docs:
|
175 |
raise gr.Error("No documents to process")
|
176 |
|
177 |
+
# ——— 1) OCR setup (if requested) —————————————————————
|
178 |
if do_ocr == "Get Text With OCR":
|
179 |
db_m, crnn_m = OCR_CHOICES[ocr_choice]
|
180 |
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
|
181 |
else:
|
182 |
local_ocr = None
|
183 |
|
184 |
+
# ——— 2) Vision‐language model setup ——————————————————
|
185 |
+
# Load processor + model *inside* the GPU worker
|
186 |
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
|
187 |
+
vis = (
|
188 |
+
LlavaNextForConditionalGeneration
|
189 |
+
.from_pretrained(vlm_choice, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
190 |
+
.to("cuda")
|
191 |
+
)
|
192 |
|
193 |
+
# ——— 3) Monkey‐patch get_image_description —————————————————
|
194 |
def describe(img: Image.Image) -> str:
|
195 |
+
torch.cuda.empty_cache()
|
196 |
+
gc.collect()
|
197 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
198 |
inputs = proc(prompt, img, return_tensors="pt").to("cuda")
|
199 |
output = vis.generate(**inputs, max_new_tokens=100)
|
|
|
202 |
global get_image_description
|
203 |
get_image_description = describe
|
204 |
|
205 |
+
# ——— 4) Extract text & images —————————————————————
|
206 |
progress(0.2, "Extracting text and images…")
|
207 |
+
all_text = ""
|
208 |
+
images, names = [], []
|
209 |
+
|
210 |
for path in docs:
|
211 |
+
# text extraction
|
212 |
if local_ocr:
|
213 |
pdf = DocumentFile.from_pdf(path)
|
214 |
res = local_ocr(pdf)
|
215 |
all_text += result_to_text(res, as_text=True) + "\n\n"
|
216 |
else:
|
217 |
txt = PdfReader(path).pages[0].extract_text() or ""
|
218 |
+
all_text += txt + "\n\n"
|
219 |
|
220 |
+
# image extraction
|
221 |
if include_images == "Include Images":
|
222 |
imgs = extract_images([path])
|
223 |
images.extend(imgs)
|
224 |
names.extend([os.path.basename(path)] * len(imgs))
|
225 |
|
226 |
+
# ——— 5) Index into ChromaDB —————————————————————
|
227 |
progress(0.6, "Indexing in vector DB…")
|
228 |
vdb = get_vectordb(all_text, images, names)
|
229 |
|
230 |
+
# mark session done & prepare outputs
|
231 |
session["processed"] = True
|
232 |
sample_imgs = images[:4] if include_images == "Include Images" else []
|
233 |
+
|
234 |
return (
|
235 |
vdb,
|
236 |
session,
|
|
|
239 |
sample_imgs,
|
240 |
"<h3>Done!</h3>"
|
241 |
)
|
242 |
+
|
243 |
# Chat function
|
244 |
def conversation(
|
245 |
vdb, question: str, num_ctx, img_ctx,
|