Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +7 -175
src/streamlit_app.py
CHANGED
@@ -1,4 +1,10 @@
|
|
1 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import streamlit as st
|
4 |
from datasets import load_dataset
|
@@ -153,177 +159,3 @@ def train_ffnn(tokens, context_size=3, epochs=3):
|
|
153 |
return model
|
154 |
|
155 |
def ffnn_predict(model, context, temperature=1.0):
|
156 |
-
x = torch.tensor([token_to_idx.get(tok, 0) for tok in context[-2:]], device=device).unsqueeze(0)
|
157 |
-
with torch.no_grad():
|
158 |
-
logits = model(x).squeeze()
|
159 |
-
probs = torch.softmax(logits / temperature, dim=0).cpu().numpy()
|
160 |
-
return np.random.choice(vocab, p=probs)
|
161 |
-
|
162 |
-
###################################
|
163 |
-
# Decision Tree
|
164 |
-
###################################
|
165 |
-
|
166 |
-
def train_dt(tokens, context_size=3):
|
167 |
-
X, y = [], []
|
168 |
-
for i in range(len(tokens) - context_size):
|
169 |
-
context = tokens[i:i+context_size-1]
|
170 |
-
target = tokens[i+context_size-1]
|
171 |
-
X.append([token_to_idx[tok] for tok in context])
|
172 |
-
y.append(token_to_idx[target])
|
173 |
-
|
174 |
-
with st.spinner("Training Decision Tree..."):
|
175 |
-
model = DecisionTreeClassifier()
|
176 |
-
model.fit(X, y)
|
177 |
-
return model
|
178 |
-
|
179 |
-
def dt_predict(model, context):
|
180 |
-
x = [token_to_idx.get(tok, 0) for tok in context[-2:]]
|
181 |
-
pred = model.predict([x])[0]
|
182 |
-
return idx_to_token[pred]
|
183 |
-
|
184 |
-
###################################
|
185 |
-
# Gradient Boosted Tree
|
186 |
-
###################################
|
187 |
-
|
188 |
-
def train_gbt(tokens, context_size=3):
|
189 |
-
X, y = [], []
|
190 |
-
for i in range(len(tokens) - context_size):
|
191 |
-
context = tokens[i:i+context_size-1]
|
192 |
-
target = tokens[i+context_size-1]
|
193 |
-
X.append([token_to_idx[tok] for tok in context])
|
194 |
-
y.append(token_to_idx[target])
|
195 |
-
|
196 |
-
with st.spinner("Training Gradient Boosted Tree..."):
|
197 |
-
model = GradientBoostingClassifier()
|
198 |
-
model.fit(X, y)
|
199 |
-
return model
|
200 |
-
|
201 |
-
def gbt_predict(model, context):
|
202 |
-
x = [token_to_idx.get(tok, 0) for tok in context[-2:]]
|
203 |
-
pred = model.predict([x])[0]
|
204 |
-
return idx_to_token[pred]
|
205 |
-
|
206 |
-
###################################
|
207 |
-
# RNN
|
208 |
-
###################################
|
209 |
-
|
210 |
-
class RNNModel(nn.Module):
|
211 |
-
def __init__(self, vocab_size, embed_size=64, hidden_size=128):
|
212 |
-
super().__init__()
|
213 |
-
self.embed = nn.Embedding(vocab_size, embed_size)
|
214 |
-
self.rnn = nn.RNN(embed_size, hidden_size, batch_first=True)
|
215 |
-
self.fc = nn.Linear(hidden_size, vocab_size)
|
216 |
-
|
217 |
-
def forward(self, x, h=None):
|
218 |
-
x = self.embed(x)
|
219 |
-
out, h = self.rnn(x, h)
|
220 |
-
out = self.fc(out[:, -1, :])
|
221 |
-
return out, h
|
222 |
-
|
223 |
-
def train_rnn(tokens, context_size=3, epochs=3):
|
224 |
-
data = []
|
225 |
-
for i in range(len(tokens) - context_size):
|
226 |
-
context = tokens[i:i+context_size-1]
|
227 |
-
target = tokens[i+context_size-1]
|
228 |
-
data.append((
|
229 |
-
torch.tensor([token_to_idx[tok] for tok in context], device=device),
|
230 |
-
token_to_idx[target]
|
231 |
-
))
|
232 |
-
|
233 |
-
model = RNNModel(len(vocab)).to(device)
|
234 |
-
optimizer = optim.Adam(model.parameters(), lr=0.01)
|
235 |
-
criterion = nn.CrossEntropyLoss()
|
236 |
-
|
237 |
-
progress_bar = st.progress(0)
|
238 |
-
total_steps = epochs * len(data)
|
239 |
-
step = 0
|
240 |
-
|
241 |
-
for epoch in range(epochs):
|
242 |
-
total_loss = 0
|
243 |
-
h = None
|
244 |
-
for x, y in data:
|
245 |
-
x = x.unsqueeze(0)
|
246 |
-
y = torch.tensor([y], device=device)
|
247 |
-
out, h = model(x, h)
|
248 |
-
loss = criterion(out, y)
|
249 |
-
optimizer.zero_grad()
|
250 |
-
loss.backward()
|
251 |
-
optimizer.step()
|
252 |
-
total_loss += loss.item()
|
253 |
-
|
254 |
-
step += 1
|
255 |
-
progress_bar.progress(step / total_steps)
|
256 |
-
|
257 |
-
st.write(f"Epoch {epoch+1}, Loss: {total_loss:.4f}")
|
258 |
-
|
259 |
-
progress_bar.empty()
|
260 |
-
return model
|
261 |
-
|
262 |
-
def rnn_predict(model, context, temperature=1.0):
|
263 |
-
x = torch.tensor([token_to_idx.get(tok, 0) for tok in context[-2:]], device=device).unsqueeze(0)
|
264 |
-
with torch.no_grad():
|
265 |
-
logits, _ = model(x)
|
266 |
-
probs = torch.softmax(logits.squeeze() / temperature, dim=0).cpu().numpy()
|
267 |
-
return np.random.choice(vocab, p=probs)
|
268 |
-
|
269 |
-
###################################
|
270 |
-
# Train and evaluate
|
271 |
-
###################################
|
272 |
-
|
273 |
-
if train_button:
|
274 |
-
st.write(f"Training **{model_type}** model...")
|
275 |
-
|
276 |
-
if model_type == "N-gram":
|
277 |
-
with st.spinner("Training N-gram model..."):
|
278 |
-
model = NGramModel(tokens, n=3)
|
279 |
-
elif model_type == "Feed Forward NN":
|
280 |
-
model = train_ffnn(tokens)
|
281 |
-
elif model_type == "Decision Tree":
|
282 |
-
model = train_dt(tokens)
|
283 |
-
elif model_type == "Gradient Boosted Tree":
|
284 |
-
model = train_gbt(tokens)
|
285 |
-
elif model_type == "RNN":
|
286 |
-
model = train_rnn(tokens)
|
287 |
-
|
288 |
-
st.session_state["model"] = model
|
289 |
-
st.session_state["model_type"] = model_type
|
290 |
-
st.success(f"{model_type} model trained.")
|
291 |
-
|
292 |
-
###################################
|
293 |
-
# Chat interface
|
294 |
-
###################################
|
295 |
-
|
296 |
-
st.header("💬 Chat with the model")
|
297 |
-
|
298 |
-
if "model" in st.session_state:
|
299 |
-
user_input = st.text_input("Type a prompt:")
|
300 |
-
|
301 |
-
if user_input:
|
302 |
-
context = tokenize(user_input, tokenizer_type)
|
303 |
-
generated = context.copy()
|
304 |
-
|
305 |
-
for _ in range(20):
|
306 |
-
if st.session_state["model_type"] == "N-gram":
|
307 |
-
next_tok = st.session_state["model"].predict(generated, temperature)
|
308 |
-
elif st.session_state["model_type"] == "Feed Forward NN":
|
309 |
-
next_tok = ffnn_predict(st.session_state["model"], generated, temperature)
|
310 |
-
elif st.session_state["model_type"] == "Decision Tree":
|
311 |
-
next_tok = dt_predict(st.session_state["model"], generated)
|
312 |
-
elif st.session_state["model_type"] == "Gradient Boosted Tree":
|
313 |
-
next_tok = gbt_predict(st.session_state["model"], generated)
|
314 |
-
elif st.session_state["model_type"] == "RNN":
|
315 |
-
next_tok = rnn_predict(st.session_state["model"], generated, temperature)
|
316 |
-
|
317 |
-
generated.append(next_tok)
|
318 |
-
if next_tok == "<END>":
|
319 |
-
break
|
320 |
-
|
321 |
-
if tokenizer_type == "character":
|
322 |
-
output = "".join(generated)
|
323 |
-
else:
|
324 |
-
output = " ".join(generated)
|
325 |
-
|
326 |
-
st.write("**Model Output:**")
|
327 |
-
st.write(output)
|
328 |
-
else:
|
329 |
-
st.info("Train a model to begin chatting.")
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
# ✅ Fix PermissionError on Hugging Face Spaces
|
6 |
+
os.environ["HF_HOME"] = "/tmp"
|
7 |
+
os.environ["HF_DATASETS_CACHE"] = "/tmp"
|
8 |
|
9 |
import streamlit as st
|
10 |
from datasets import load_dataset
|
|
|
159 |
return model
|
160 |
|
161 |
def ffnn_predict(model, context, temperature=1.0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|