Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +88 -43
src/streamlit_app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
import os
|
4 |
|
5 |
# ✅ Fix PermissionError on Hugging Face Spaces
|
@@ -39,6 +37,10 @@ model_type = st.sidebar.selectbox(
|
|
39 |
)
|
40 |
|
41 |
temperature = st.sidebar.slider("Sampling Temperature", 0.1, 2.0, 1.0)
|
|
|
|
|
|
|
|
|
42 |
train_button = st.sidebar.button("Train Model")
|
43 |
|
44 |
device = torch.device("cpu") # force CPU usage
|
@@ -74,9 +76,30 @@ def tokenize(text, tokenizer_type):
|
|
74 |
|
75 |
tokens = tokenize(text_data, tokenizer_type)
|
76 |
vocab = list(set(tokens))
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
token_to_idx = {tok: i for i, tok in enumerate(vocab)}
|
78 |
idx_to_token = {i: tok for tok, i in token_to_idx.items()}
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
###################################
|
81 |
# Models
|
82 |
###################################
|
@@ -122,15 +145,17 @@ class FFNN(nn.Module):
|
|
122 |
|
123 |
def train_ffnn(tokens, context_size=3, epochs=3):
|
124 |
data = []
|
125 |
-
for i in range(len(tokens)
|
126 |
-
|
127 |
-
|
|
|
|
|
128 |
data.append((
|
129 |
-
torch.tensor([token_to_idx[
|
130 |
-
token_to_idx[
|
131 |
))
|
132 |
|
133 |
-
model = FFNN(len(vocab), context_size-1).to(device)
|
134 |
optimizer = optim.Adam(model.parameters(), lr=0.01)
|
135 |
criterion = nn.CrossEntropyLoss()
|
136 |
|
@@ -138,28 +163,33 @@ def train_ffnn(tokens, context_size=3, epochs=3):
|
|
138 |
total_steps = epochs * len(data)
|
139 |
step = 0
|
140 |
|
|
|
|
|
141 |
for epoch in range(epochs):
|
142 |
total_loss = 0
|
|
|
143 |
for x, y in data:
|
144 |
-
x = x.unsqueeze(0)
|
145 |
y = torch.tensor([y], device=device)
|
|
|
|
|
146 |
out = model(x)
|
147 |
loss = criterion(out, y)
|
148 |
-
optimizer.zero_grad()
|
149 |
loss.backward()
|
150 |
optimizer.step()
|
151 |
-
total_loss += loss.item()
|
152 |
|
|
|
153 |
step += 1
|
154 |
progress_bar.progress(step / total_steps)
|
155 |
|
156 |
-
st.write(f"Epoch {epoch+1}, Loss: {total_loss:.4f}")
|
157 |
|
158 |
progress_bar.empty()
|
159 |
return model
|
160 |
|
161 |
def ffnn_predict(model, context, temperature=1.0):
|
162 |
-
|
|
|
163 |
with torch.no_grad():
|
164 |
logits = model(x).squeeze()
|
165 |
probs = torch.softmax(logits / temperature, dim=0).cpu().numpy()
|
@@ -171,11 +201,13 @@ def ffnn_predict(model, context, temperature=1.0):
|
|
171 |
|
172 |
def train_dt(tokens, context_size=3):
|
173 |
X, y = [], []
|
174 |
-
for i in range(len(tokens)
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
179 |
|
180 |
with st.spinner("Training Decision Tree..."):
|
181 |
model = DecisionTreeClassifier()
|
@@ -183,7 +215,8 @@ def train_dt(tokens, context_size=3):
|
|
183 |
return model
|
184 |
|
185 |
def dt_predict(model, context):
|
186 |
-
|
|
|
187 |
pred = model.predict([x])[0]
|
188 |
return idx_to_token[pred]
|
189 |
|
@@ -193,11 +226,13 @@ def dt_predict(model, context):
|
|
193 |
|
194 |
def train_gbt(tokens, context_size=3):
|
195 |
X, y = [], []
|
196 |
-
for i in range(len(tokens)
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
201 |
|
202 |
with st.spinner("Training Gradient Boosted Tree..."):
|
203 |
model = GradientBoostingClassifier()
|
@@ -205,7 +240,8 @@ def train_gbt(tokens, context_size=3):
|
|
205 |
return model
|
206 |
|
207 |
def gbt_predict(model, context):
|
208 |
-
|
|
|
209 |
pred = model.predict([x])[0]
|
210 |
return idx_to_token[pred]
|
211 |
|
@@ -228,12 +264,14 @@ class RNNModel(nn.Module):
|
|
228 |
|
229 |
def train_rnn(tokens, context_size=3, epochs=3):
|
230 |
data = []
|
231 |
-
for i in range(len(tokens)
|
232 |
-
|
233 |
-
|
|
|
|
|
234 |
data.append((
|
235 |
-
torch.tensor([token_to_idx[
|
236 |
-
token_to_idx[
|
237 |
))
|
238 |
|
239 |
model = RNNModel(len(vocab)).to(device)
|
@@ -244,9 +282,12 @@ def train_rnn(tokens, context_size=3, epochs=3):
|
|
244 |
total_steps = epochs * len(data)
|
245 |
step = 0
|
246 |
|
|
|
|
|
247 |
for epoch in range(epochs):
|
248 |
total_loss = 0
|
249 |
h = None
|
|
|
250 |
for x, y in data:
|
251 |
x = x.unsqueeze(0)
|
252 |
y = torch.tensor([y], device=device)
|
@@ -260,13 +301,14 @@ def train_rnn(tokens, context_size=3, epochs=3):
|
|
260 |
step += 1
|
261 |
progress_bar.progress(step / total_steps)
|
262 |
|
263 |
-
st.write(f"Epoch {epoch+1}, Loss: {total_loss:.4f}")
|
264 |
|
265 |
progress_bar.empty()
|
266 |
return model
|
267 |
|
268 |
def rnn_predict(model, context, temperature=1.0):
|
269 |
-
|
|
|
270 |
with torch.no_grad():
|
271 |
logits, _ = model(x)
|
272 |
probs = torch.softmax(logits.squeeze() / temperature, dim=0).cpu().numpy()
|
@@ -277,22 +319,23 @@ def rnn_predict(model, context, temperature=1.0):
|
|
277 |
###################################
|
278 |
|
279 |
if train_button:
|
280 |
-
st.write(f"Training **{model_type}** model...")
|
281 |
|
282 |
if model_type == "N-gram":
|
283 |
with st.spinner("Training N-gram model..."):
|
284 |
-
model = NGramModel(tokens, n=
|
285 |
elif model_type == "Feed Forward NN":
|
286 |
-
model = train_ffnn(tokens)
|
287 |
elif model_type == "Decision Tree":
|
288 |
-
model = train_dt(tokens)
|
289 |
elif model_type == "Gradient Boosted Tree":
|
290 |
-
model = train_gbt(tokens)
|
291 |
elif model_type == "RNN":
|
292 |
-
model = train_rnn(tokens)
|
293 |
|
294 |
st.session_state["model"] = model
|
295 |
st.session_state["model_type"] = model_type
|
|
|
296 |
st.success(f"{model_type} model trained.")
|
297 |
|
298 |
###################################
|
@@ -309,16 +352,18 @@ if "model" in st.session_state:
|
|
309 |
generated = context.copy()
|
310 |
|
311 |
for _ in range(20):
|
|
|
|
|
312 |
if st.session_state["model_type"] == "N-gram":
|
313 |
-
next_tok = st.session_state["model"].predict(
|
314 |
elif st.session_state["model_type"] == "Feed Forward NN":
|
315 |
-
next_tok = ffnn_predict(st.session_state["model"],
|
316 |
elif st.session_state["model_type"] == "Decision Tree":
|
317 |
-
next_tok = dt_predict(st.session_state["model"],
|
318 |
elif st.session_state["model_type"] == "Gradient Boosted Tree":
|
319 |
-
next_tok = gbt_predict(st.session_state["model"],
|
320 |
elif st.session_state["model_type"] == "RNN":
|
321 |
-
next_tok = rnn_predict(st.session_state["model"],
|
322 |
|
323 |
generated.append(next_tok)
|
324 |
if next_tok == "<END>":
|
|
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
# ✅ Fix PermissionError on Hugging Face Spaces
|
|
|
37 |
)
|
38 |
|
39 |
temperature = st.sidebar.slider("Sampling Temperature", 0.1, 2.0, 1.0)
|
40 |
+
|
41 |
+
# Context size slider (minimum 2)
|
42 |
+
context_size = st.sidebar.slider("Context Size (how many tokens to look back)", min_value=2, max_value=10, value=3, step=1)
|
43 |
+
|
44 |
train_button = st.sidebar.button("Train Model")
|
45 |
|
46 |
device = torch.device("cpu") # force CPU usage
|
|
|
76 |
|
77 |
tokens = tokenize(text_data, tokenizer_type)
|
78 |
vocab = list(set(tokens))
|
79 |
+
|
80 |
+
# Add PAD token to vocab for padding contexts shorter than context_size - 1
|
81 |
+
PAD_TOKEN = "<PAD>"
|
82 |
+
if PAD_TOKEN not in vocab:
|
83 |
+
vocab.append(PAD_TOKEN)
|
84 |
+
|
85 |
token_to_idx = {tok: i for i, tok in enumerate(vocab)}
|
86 |
idx_to_token = {i: tok for tok, i in token_to_idx.items()}
|
87 |
|
88 |
+
###################################
|
89 |
+
# Helper to pad context
|
90 |
+
###################################
|
91 |
+
|
92 |
+
def pad_context(context, size):
|
93 |
+
"""
|
94 |
+
Pads the context list at the front with PAD_TOKEN if length < size,
|
95 |
+
or truncates to last `size` tokens if longer.
|
96 |
+
"""
|
97 |
+
pad_len = size - len(context)
|
98 |
+
if pad_len > 0:
|
99 |
+
return [PAD_TOKEN]*pad_len + context
|
100 |
+
else:
|
101 |
+
return context[-size:]
|
102 |
+
|
103 |
###################################
|
104 |
# Models
|
105 |
###################################
|
|
|
145 |
|
146 |
def train_ffnn(tokens, context_size=3, epochs=3):
|
147 |
data = []
|
148 |
+
for i in range(len(tokens)):
|
149 |
+
start_idx = i - (context_size - 1)
|
150 |
+
context = tokens[start_idx:i] if start_idx >= 0 else tokens[0:i]
|
151 |
+
context = pad_context(context, context_size - 1)
|
152 |
+
target = tokens[i]
|
153 |
data.append((
|
154 |
+
torch.tensor([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context], device=device),
|
155 |
+
token_to_idx.get(target, token_to_idx[PAD_TOKEN])
|
156 |
))
|
157 |
|
158 |
+
model = FFNN(len(vocab), context_size - 1).to(device)
|
159 |
optimizer = optim.Adam(model.parameters(), lr=0.01)
|
160 |
criterion = nn.CrossEntropyLoss()
|
161 |
|
|
|
163 |
total_steps = epochs * len(data)
|
164 |
step = 0
|
165 |
|
166 |
+
model.train()
|
167 |
+
|
168 |
for epoch in range(epochs):
|
169 |
total_loss = 0
|
170 |
+
random.shuffle(data)
|
171 |
for x, y in data:
|
172 |
+
x = x.unsqueeze(0) # batch size 1
|
173 |
y = torch.tensor([y], device=device)
|
174 |
+
|
175 |
+
optimizer.zero_grad()
|
176 |
out = model(x)
|
177 |
loss = criterion(out, y)
|
|
|
178 |
loss.backward()
|
179 |
optimizer.step()
|
|
|
180 |
|
181 |
+
total_loss += loss.item()
|
182 |
step += 1
|
183 |
progress_bar.progress(step / total_steps)
|
184 |
|
185 |
+
st.write(f"Epoch {epoch+1}, Loss: {total_loss/len(data):.4f}")
|
186 |
|
187 |
progress_bar.empty()
|
188 |
return model
|
189 |
|
190 |
def ffnn_predict(model, context, temperature=1.0):
|
191 |
+
context = pad_context(context, context_size - 1)
|
192 |
+
x = torch.tensor([token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context], device=device).unsqueeze(0)
|
193 |
with torch.no_grad():
|
194 |
logits = model(x).squeeze()
|
195 |
probs = torch.softmax(logits / temperature, dim=0).cpu().numpy()
|
|
|
201 |
|
202 |
def train_dt(tokens, context_size=3):
|
203 |
X, y = [], []
|
204 |
+
for i in range(len(tokens)):
|
205 |
+
start_idx = i - (context_size - 1)
|
206 |
+
context = tokens[start_idx:i] if start_idx >= 0 else tokens[0:i]
|
207 |
+
context = pad_context(context, context_size - 1)
|
208 |
+
target = tokens[i]
|
209 |
+
X.append([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context])
|
210 |
+
y.append(token_to_idx.get(target, token_to_idx[PAD_TOKEN]))
|
211 |
|
212 |
with st.spinner("Training Decision Tree..."):
|
213 |
model = DecisionTreeClassifier()
|
|
|
215 |
return model
|
216 |
|
217 |
def dt_predict(model, context):
|
218 |
+
context = pad_context(context, context_size - 1)
|
219 |
+
x = [token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context]
|
220 |
pred = model.predict([x])[0]
|
221 |
return idx_to_token[pred]
|
222 |
|
|
|
226 |
|
227 |
def train_gbt(tokens, context_size=3):
|
228 |
X, y = [], []
|
229 |
+
for i in range(len(tokens)):
|
230 |
+
start_idx = i - (context_size - 1)
|
231 |
+
context = tokens[start_idx:i] if start_idx >= 0 else tokens[0:i]
|
232 |
+
context = pad_context(context, context_size - 1)
|
233 |
+
target = tokens[i]
|
234 |
+
X.append([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context])
|
235 |
+
y.append(token_to_idx.get(target, token_to_idx[PAD_TOKEN]))
|
236 |
|
237 |
with st.spinner("Training Gradient Boosted Tree..."):
|
238 |
model = GradientBoostingClassifier()
|
|
|
240 |
return model
|
241 |
|
242 |
def gbt_predict(model, context):
|
243 |
+
context = pad_context(context, context_size - 1)
|
244 |
+
x = [token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context]
|
245 |
pred = model.predict([x])[0]
|
246 |
return idx_to_token[pred]
|
247 |
|
|
|
264 |
|
265 |
def train_rnn(tokens, context_size=3, epochs=3):
|
266 |
data = []
|
267 |
+
for i in range(len(tokens)):
|
268 |
+
start_idx = i - (context_size - 1)
|
269 |
+
context = tokens[start_idx:i] if start_idx >= 0 else tokens[0:i]
|
270 |
+
context = pad_context(context, context_size - 1)
|
271 |
+
target = tokens[i]
|
272 |
data.append((
|
273 |
+
torch.tensor([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context], device=device),
|
274 |
+
token_to_idx.get(target, token_to_idx[PAD_TOKEN])
|
275 |
))
|
276 |
|
277 |
model = RNNModel(len(vocab)).to(device)
|
|
|
282 |
total_steps = epochs * len(data)
|
283 |
step = 0
|
284 |
|
285 |
+
model.train()
|
286 |
+
|
287 |
for epoch in range(epochs):
|
288 |
total_loss = 0
|
289 |
h = None
|
290 |
+
random.shuffle(data)
|
291 |
for x, y in data:
|
292 |
x = x.unsqueeze(0)
|
293 |
y = torch.tensor([y], device=device)
|
|
|
301 |
step += 1
|
302 |
progress_bar.progress(step / total_steps)
|
303 |
|
304 |
+
st.write(f"Epoch {epoch+1}, Loss: {total_loss/len(data):.4f}")
|
305 |
|
306 |
progress_bar.empty()
|
307 |
return model
|
308 |
|
309 |
def rnn_predict(model, context, temperature=1.0):
|
310 |
+
context = pad_context(context, context_size - 1)
|
311 |
+
x = torch.tensor([token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context], device=device).unsqueeze(0)
|
312 |
with torch.no_grad():
|
313 |
logits, _ = model(x)
|
314 |
probs = torch.softmax(logits.squeeze() / temperature, dim=0).cpu().numpy()
|
|
|
319 |
###################################
|
320 |
|
321 |
if train_button:
|
322 |
+
st.write(f"Training **{model_type}** model with context size {context_size}...")
|
323 |
|
324 |
if model_type == "N-gram":
|
325 |
with st.spinner("Training N-gram model..."):
|
326 |
+
model = NGramModel(tokens, n=context_size)
|
327 |
elif model_type == "Feed Forward NN":
|
328 |
+
model = train_ffnn(tokens, context_size=context_size)
|
329 |
elif model_type == "Decision Tree":
|
330 |
+
model = train_dt(tokens, context_size=context_size)
|
331 |
elif model_type == "Gradient Boosted Tree":
|
332 |
+
model = train_gbt(tokens, context_size=context_size)
|
333 |
elif model_type == "RNN":
|
334 |
+
model = train_rnn(tokens, context_size=context_size)
|
335 |
|
336 |
st.session_state["model"] = model
|
337 |
st.session_state["model_type"] = model_type
|
338 |
+
st.session_state["context_size"] = context_size
|
339 |
st.success(f"{model_type} model trained.")
|
340 |
|
341 |
###################################
|
|
|
352 |
generated = context.copy()
|
353 |
|
354 |
for _ in range(20):
|
355 |
+
ctx = pad_context(generated, st.session_state["context_size"] - 1)
|
356 |
+
|
357 |
if st.session_state["model_type"] == "N-gram":
|
358 |
+
next_tok = st.session_state["model"].predict(ctx, temperature)
|
359 |
elif st.session_state["model_type"] == "Feed Forward NN":
|
360 |
+
next_tok = ffnn_predict(st.session_state["model"], ctx, temperature)
|
361 |
elif st.session_state["model_type"] == "Decision Tree":
|
362 |
+
next_tok = dt_predict(st.session_state["model"], ctx)
|
363 |
elif st.session_state["model_type"] == "Gradient Boosted Tree":
|
364 |
+
next_tok = gbt_predict(st.session_state["model"], ctx)
|
365 |
elif st.session_state["model_type"] == "RNN":
|
366 |
+
next_tok = rnn_predict(st.session_state["model"], ctx, temperature)
|
367 |
|
368 |
generated.append(next_tok)
|
369 |
if next_tok == "<END>":
|