diy-language-model / src /streamlit_app.py
zakerytclarke's picture
Update src/streamlit_app.py
2d7d97f verified
raw
history blame
12.4 kB
import os
# βœ… Fix PermissionError on Hugging Face Spaces
os.environ["HF_HOME"] = "/tmp"
os.environ["HF_DATASETS_CACHE"] = "/tmp"
import streamlit as st
from datasets import load_dataset
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from collections import defaultdict, Counter
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
import random
st.title("🧠 Language Model Explorer")
###################################
# Sidebar configuration
###################################
dataset_name = st.sidebar.selectbox(
"Choose Dataset",
["squad", "tiny_shakespeare"]
)
tokenizer_type = st.sidebar.selectbox(
"Choose Tokenizer",
["character", "word"]
)
model_type = st.sidebar.selectbox(
"Choose Model",
["N-gram", "Feed Forward NN", "Decision Tree", "Gradient Boosted Tree", "RNN"]
)
temperature = st.sidebar.slider("Sampling Temperature", 0.1, 2.0, 1.0)
# Context size slider (minimum 2)
context_size = st.sidebar.slider("Context Size (how many tokens to look back)", min_value=2, max_value=10, value=3, step=1)
train_button = st.sidebar.button("Train Model")
device = torch.device("cpu") # force CPU usage
###################################
# Load dataset
###################################
@st.cache_data
def load_text(dataset_name):
if dataset_name == "squad":
data = load_dataset("squad", split="train[:1%]")
texts = [x['context'] for x in data]
elif dataset_name == "tiny_shakespeare":
data = load_dataset("tiny_shakespeare")
texts = [data['train'][0]['text']]
else:
texts = ["hello world"]
return " ".join(texts)
text_data = load_text(dataset_name)
###################################
# Tokenization
###################################
def tokenize(text, tokenizer_type):
if tokenizer_type == "character":
tokens = list(text)
elif tokenizer_type == "word":
tokens = text.split()
return tokens
tokens = tokenize(text_data, tokenizer_type)
vocab = list(set(tokens))
# Add PAD token to vocab for padding contexts shorter than context_size - 1
PAD_TOKEN = "<PAD>"
if PAD_TOKEN not in vocab:
vocab.append(PAD_TOKEN)
token_to_idx = {tok: i for i, tok in enumerate(vocab)}
idx_to_token = {i: tok for tok, i in token_to_idx.items()}
###################################
# Helper to pad context
###################################
def pad_context(context, size):
"""
Pads the context list at the front with PAD_TOKEN if length < size,
or truncates to last `size` tokens if longer.
"""
pad_len = size - len(context)
if pad_len > 0:
return [PAD_TOKEN]*pad_len + context
else:
return context[-size:]
###################################
# Models
###################################
class NGramModel:
def __init__(self, tokens, n=3):
self.n = n
self.model = defaultdict(Counter)
for i in range(len(tokens) - n):
context = tuple(tokens[i:i+n-1])
next_token = tokens[i+n-1]
self.model[context][next_token] += 1
def predict(self, context, temperature=1.0):
context = tuple(context[-(self.n-1):])
counts = self.model.get(context, None)
if counts is None:
return random.choice(list(token_to_idx.keys()))
items = list(counts.items())
tokens_, freqs = zip(*items)
probs = np.array(freqs, dtype=float)
probs = probs ** (1.0 / temperature)
probs /= probs.sum()
return np.random.choice(tokens_, p=probs)
###################################
# Feed Forward NN
###################################
class FFNN(nn.Module):
def __init__(self, vocab_size, context_size, hidden_size=128):
super().__init__()
self.embed = nn.Embedding(vocab_size, hidden_size)
self.fc1 = nn.Linear(hidden_size * context_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, vocab_size)
def forward(self, x):
x = self.embed(x)
x = x.view(x.size(0), -1)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
def train_ffnn(tokens, context_size=3, epochs=3):
data = []
for i in range(len(tokens)):
start_idx = i - (context_size - 1)
context = tokens[start_idx:i] if start_idx >= 0 else tokens[0:i]
context = pad_context(context, context_size - 1)
target = tokens[i]
data.append((
torch.tensor([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context], device=device),
token_to_idx.get(target, token_to_idx[PAD_TOKEN])
))
model = FFNN(len(vocab), context_size - 1).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
progress_bar = st.progress(0)
total_steps = epochs * len(data)
step = 0
model.train()
for epoch in range(epochs):
total_loss = 0
random.shuffle(data)
for x, y in data:
x = x.unsqueeze(0) # batch size 1
y = torch.tensor([y], device=device)
optimizer.zero_grad()
out = model(x)
loss = criterion(out, y)
loss.backward()
optimizer.step()
total_loss += loss.item()
step += 1
progress_bar.progress(step / total_steps)
st.write(f"Epoch {epoch+1}, Loss: {total_loss/len(data):.4f}")
progress_bar.empty()
return model
def ffnn_predict(model, context, temperature=1.0):
context = pad_context(context, context_size - 1)
x = torch.tensor([token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context], device=device).unsqueeze(0)
with torch.no_grad():
logits = model(x).squeeze()
probs = torch.softmax(logits / temperature, dim=0).cpu().numpy()
return np.random.choice(vocab, p=probs)
###################################
# Decision Tree
###################################
def train_dt(tokens, context_size=3):
X, y = [], []
for i in range(len(tokens)):
start_idx = i - (context_size - 1)
context = tokens[start_idx:i] if start_idx >= 0 else tokens[0:i]
context = pad_context(context, context_size - 1)
target = tokens[i]
X.append([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context])
y.append(token_to_idx.get(target, token_to_idx[PAD_TOKEN]))
with st.spinner("Training Decision Tree..."):
model = DecisionTreeClassifier()
model.fit(X, y)
return model
def dt_predict(model, context):
context = pad_context(context, context_size - 1)
x = [token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context]
pred = model.predict([x])[0]
return idx_to_token[pred]
###################################
# Gradient Boosted Tree
###################################
def train_gbt(tokens, context_size=3):
X, y = [], []
for i in range(len(tokens)):
start_idx = i - (context_size - 1)
context = tokens[start_idx:i] if start_idx >= 0 else tokens[0:i]
context = pad_context(context, context_size - 1)
target = tokens[i]
X.append([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context])
y.append(token_to_idx.get(target, token_to_idx[PAD_TOKEN]))
with st.spinner("Training Gradient Boosted Tree..."):
model = GradientBoostingClassifier()
model.fit(X, y)
return model
def gbt_predict(model, context):
context = pad_context(context, context_size - 1)
x = [token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context]
pred = model.predict([x])[0]
return idx_to_token[pred]
###################################
# RNN
###################################
class RNNModel(nn.Module):
def __init__(self, vocab_size, embed_size=64, hidden_size=128):
super().__init__()
self.embed = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.RNN(embed_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, x, h=None):
x = self.embed(x)
out, h = self.rnn(x, h)
out = self.fc(out[:, -1, :])
return out, h
def train_rnn(tokens, context_size=3, epochs=3):
data = []
for i in range(len(tokens)):
start_idx = i - (context_size - 1)
context = tokens[start_idx:i] if start_idx >= 0 else tokens[0:i]
context = pad_context(context, context_size - 1)
target = tokens[i]
data.append((
torch.tensor([token_to_idx.get(t, token_to_idx[PAD_TOKEN]) for t in context], device=device),
token_to_idx.get(target, token_to_idx[PAD_TOKEN])
))
model = RNNModel(len(vocab)).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
progress_bar = st.progress(0)
total_steps = epochs * len(data)
step = 0
model.train()
for epoch in range(epochs):
total_loss = 0
h = None
random.shuffle(data)
for x, y in data:
x = x.unsqueeze(0)
y = torch.tensor([y], device=device)
out, h = model(x, h)
loss = criterion(out, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
step += 1
progress_bar.progress(step / total_steps)
st.write(f"Epoch {epoch+1}, Loss: {total_loss/len(data):.4f}")
progress_bar.empty()
return model
def rnn_predict(model, context, temperature=1.0):
context = pad_context(context, context_size - 1)
x = torch.tensor([token_to_idx.get(tok, token_to_idx[PAD_TOKEN]) for tok in context], device=device).unsqueeze(0)
with torch.no_grad():
logits, _ = model(x)
probs = torch.softmax(logits.squeeze() / temperature, dim=0).cpu().numpy()
return np.random.choice(vocab, p=probs)
###################################
# Train and evaluate
###################################
if train_button:
st.write(f"Training **{model_type}** model with context size {context_size}...")
if model_type == "N-gram":
with st.spinner("Training N-gram model..."):
model = NGramModel(tokens, n=context_size)
elif model_type == "Feed Forward NN":
model = train_ffnn(tokens, context_size=context_size)
elif model_type == "Decision Tree":
model = train_dt(tokens, context_size=context_size)
elif model_type == "Gradient Boosted Tree":
model = train_gbt(tokens, context_size=context_size)
elif model_type == "RNN":
model = train_rnn(tokens, context_size=context_size)
st.session_state["model"] = model
st.session_state["model_type"] = model_type
st.session_state["context_size"] = context_size
st.success(f"{model_type} model trained.")
###################################
# Chat interface
###################################
st.header("πŸ’¬ Chat with the model")
if "model" in st.session_state:
user_input = st.text_input("Type a prompt:")
if user_input:
context = tokenize(user_input, tokenizer_type)
generated = context.copy()
for _ in range(20):
ctx = pad_context(generated, st.session_state["context_size"] - 1)
if st.session_state["model_type"] == "N-gram":
next_tok = st.session_state["model"].predict(ctx, temperature)
elif st.session_state["model_type"] == "Feed Forward NN":
next_tok = ffnn_predict(st.session_state["model"], ctx, temperature)
elif st.session_state["model_type"] == "Decision Tree":
next_tok = dt_predict(st.session_state["model"], ctx)
elif st.session_state["model_type"] == "Gradient Boosted Tree":
next_tok = gbt_predict(st.session_state["model"], ctx)
elif st.session_state["model_type"] == "RNN":
next_tok = rnn_predict(st.session_state["model"], ctx, temperature)
generated.append(next_tok)
if next_tok == "<END>":
break
if tokenizer_type == "character":
output = "".join(generated)
else:
output = " ".join(generated)
st.write("**Model Output:**")
st.write(output)
else:
st.info("Train a model to begin chatting.")