Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,11 @@ trocr_model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-ha
|
|
15 |
|
16 |
def recognize_handwritten_text(image):
|
17 |
try:
|
18 |
-
#
|
|
|
|
|
|
|
|
|
19 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
|
20 |
image.save(tmp_file.name, format="JPEG")
|
21 |
tmp_path = tmp_file.name
|
@@ -36,9 +40,16 @@ def recognize_handwritten_text(image):
|
|
36 |
pil_image = Image.fromarray(processed_image)
|
37 |
texts = []
|
38 |
|
39 |
-
#
|
40 |
for box in boxes:
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
crop = pil_image.crop((x_min, y_min, x_max, y_max))
|
43 |
pixel_values = processor(images=crop, return_tensors="pt").pixel_values
|
44 |
generated_ids = trocr_model.generate(pixel_values)
|
@@ -63,10 +74,10 @@ def recognize_handwritten_text(image):
|
|
63 |
# Create Gradio interface
|
64 |
interface = gr.Interface(
|
65 |
fn=recognize_handwritten_text,
|
66 |
-
inputs=gr.Image(type="pil"),
|
67 |
-
outputs=[gr.Image(type="pil"), gr.Text()],
|
68 |
title="Handwritten Text Detection and Recognition",
|
69 |
-
description="Upload an image to detect and recognize handwritten text."
|
70 |
)
|
71 |
|
72 |
# Launch the app
|
|
|
15 |
|
16 |
def recognize_handwritten_text(image):
|
17 |
try:
|
18 |
+
# Ensure image is a PIL image and convert to a compatible format
|
19 |
+
if not isinstance(image, Image.Image):
|
20 |
+
image = Image.fromarray(np.array(image)).convert("RGB")
|
21 |
+
|
22 |
+
# Save the uploaded image to a temporary file in JPEG format
|
23 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
|
24 |
image.save(tmp_file.name, format="JPEG")
|
25 |
tmp_path = tmp_file.name
|
|
|
40 |
pil_image = Image.fromarray(processed_image)
|
41 |
texts = []
|
42 |
|
43 |
+
# Adjust box unpacking based on actual structure
|
44 |
for box in boxes:
|
45 |
+
if len(box) >= 4: # Check if box has at least 4 coordinates
|
46 |
+
x_min, y_min, x_max, y_max = box[0][0], box[0][1], box[2][0], box[2][1]
|
47 |
+
elif len(box) == 2: # Handle case with only 2 points (e.g., center and size)
|
48 |
+
x_min, y_min = box[0][0] - box[1][0] / 2, box[0][1] - box[1][1] / 2
|
49 |
+
x_max, y_max = box[0][0] + box[1][0] / 2, box[0][1] + box[1][1] / 2
|
50 |
+
else:
|
51 |
+
continue # Skip invalid boxes
|
52 |
+
|
53 |
crop = pil_image.crop((x_min, y_min, x_max, y_max))
|
54 |
pixel_values = processor(images=crop, return_tensors="pt").pixel_values
|
55 |
generated_ids = trocr_model.generate(pixel_values)
|
|
|
74 |
# Create Gradio interface
|
75 |
interface = gr.Interface(
|
76 |
fn=recognize_handwritten_text,
|
77 |
+
inputs=gr.Image(type="pil", label="Upload any image format"),
|
78 |
+
outputs=[gr.Image(type="pil", label="Detected Text Image"), gr.Text(label="Recognized Text")],
|
79 |
title="Handwritten Text Detection and Recognition",
|
80 |
+
description="Upload an image in any format (JPEG, PNG, BMP, etc.) to detect and recognize handwritten text."
|
81 |
)
|
82 |
|
83 |
# Launch the app
|