Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
|
|
9 |
|
10 |
# Load models on CPU (Hugging Face Spaces default)
|
11 |
craft_model = Model.load("hezarai/CRAFT", device="cpu")
|
@@ -22,6 +23,10 @@ def recognize_handwritten_text(image):
|
|
22 |
# Load image with hezar utils using file path
|
23 |
processed_image = load_image(tmp_path)
|
24 |
|
|
|
|
|
|
|
|
|
25 |
# Detect text regions with CRAFT
|
26 |
outputs = craft_model.predict(processed_image)
|
27 |
if not outputs or "boxes" not in outputs[0]:
|
|
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
9 |
+
import io
|
10 |
|
11 |
# Load models on CPU (Hugging Face Spaces default)
|
12 |
craft_model = Model.load("hezarai/CRAFT", device="cpu")
|
|
|
23 |
# Load image with hezar utils using file path
|
24 |
processed_image = load_image(tmp_path)
|
25 |
|
26 |
+
# Ensure processed_image is in a compatible format (convert to NumPy if needed)
|
27 |
+
if not isinstance(processed_image, np.ndarray):
|
28 |
+
processed_image = np.array(Image.open(tmp_path))
|
29 |
+
|
30 |
# Detect text regions with CRAFT
|
31 |
outputs = craft_model.predict(processed_image)
|
32 |
if not outputs or "boxes" not in outputs[0]:
|