Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import torch
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
from PIL import Image
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
# Force CPU usage
|
@@ -9,17 +12,28 @@ torch.set_default_device('cpu')
|
|
9 |
# Load model and processor
|
10 |
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
|
11 |
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
|
|
|
12 |
|
13 |
def recognize_handwritten(image):
|
14 |
-
# Convert
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Create Gradio interface
|
25 |
interface = gr.Interface(
|
@@ -31,4 +45,7 @@ interface = gr.Interface(
|
|
31 |
)
|
32 |
|
33 |
# Launch the app
|
34 |
-
interface.launch()
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
from PIL import Image
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from craft_text_detector import Craft
|
7 |
import gradio as gr
|
8 |
|
9 |
# Force CPU usage
|
|
|
12 |
# Load model and processor
|
13 |
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
|
14 |
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
|
15 |
+
craft = Craft(output_dir=None, crop_type="box", cuda=False)
|
16 |
|
17 |
def recognize_handwritten(image):
|
18 |
+
# Convert Gradio image to OpenCV format
|
19 |
+
image_np = np.array(image)
|
20 |
+
image_cv = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
21 |
|
22 |
+
# Detect text regions with Craft
|
23 |
+
result = craft.detect_text(image=image_cv)
|
24 |
+
boxes = result["boxes"]
|
25 |
+
pil_image = Image.fromarray(cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB))
|
26 |
+
texts = []
|
27 |
|
28 |
+
for box in boxes:
|
29 |
+
crop = pil_image.crop([box[0][0], box[0][1], box[2][0], box[2][1]])
|
30 |
+
pixel_values = processor(images=crop, return_tensors="pt").pixel_values
|
31 |
+
generated_ids = model.generate(pixel_values)
|
32 |
+
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
33 |
+
texts.append(text)
|
34 |
+
|
35 |
+
text_data = " ".join(texts) if texts else "No text detected"
|
36 |
+
return f"Recognized text: {text_data}"
|
37 |
|
38 |
# Create Gradio interface
|
39 |
interface = gr.Interface(
|
|
|
45 |
)
|
46 |
|
47 |
# Launch the app
|
48 |
+
interface.launch()
|
49 |
+
|
50 |
+
# Cleanup
|
51 |
+
craft.unload_craftnet_model()
|