Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,25 @@
|
|
1 |
-
import gc
|
2 |
import torch
|
3 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
4 |
-
from craft_text_detector import Craft
|
5 |
from PIL import Image
|
6 |
-
import cv2
|
7 |
-
import time
|
8 |
import gradio as gr
|
9 |
|
10 |
-
# Force CPU usage
|
11 |
torch.set_default_device('cpu')
|
12 |
-
craft = Craft(output_dir=None, crop_type="box", cuda=False)
|
13 |
|
14 |
-
# Load
|
15 |
-
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-
|
16 |
-
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-
|
17 |
|
18 |
def recognize_handwritten(image):
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
boxes = result["boxes"]
|
25 |
-
pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
26 |
-
texts = []
|
27 |
|
28 |
-
|
29 |
-
crop = pil_image.crop([box[0][0], box[0][1], box[2][0], box[2][1]])
|
30 |
-
pixel_values = processor(crop, return_tensors="pt").pixel_values
|
31 |
-
with torch.no_grad():
|
32 |
-
generated_ids = model.generate(pixel_values)
|
33 |
-
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
34 |
-
texts.append(text)
|
35 |
-
|
36 |
-
text_data = " ".join(texts)
|
37 |
-
end_time = time.time()
|
38 |
-
time_difference = end_time - start_time
|
39 |
-
|
40 |
-
return f"Recognized text: {text_data}\nTime: {time_difference} seconds"
|
41 |
|
42 |
# Create Gradio interface
|
43 |
interface = gr.Interface(
|
@@ -49,8 +31,4 @@ interface = gr.Interface(
|
|
49 |
)
|
50 |
|
51 |
# Launch the app
|
52 |
-
interface.launch()
|
53 |
-
|
54 |
-
# Cleanup
|
55 |
-
craft.unload_craftnet_model()
|
56 |
-
gc.collect()
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
|
|
3 |
from PIL import Image
|
|
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# Force CPU usage
|
7 |
torch.set_default_device('cpu')
|
|
|
8 |
|
9 |
+
# Load model and processor
|
10 |
+
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
|
11 |
+
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten')
|
12 |
|
13 |
def recognize_handwritten(image):
|
14 |
+
# Convert uploaded image to RGB
|
15 |
+
image = image.convert("RGB")
|
16 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
17 |
|
18 |
+
# Generate text
|
19 |
+
generated_ids = model.generate(pixel_values)
|
20 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
|
|
|
21 |
|
22 |
+
return f"Recognized text: {generated_text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Create Gradio interface
|
25 |
interface = gr.Interface(
|
|
|
31 |
)
|
32 |
|
33 |
# Launch the app
|
34 |
+
interface.launch()
|
|
|
|
|
|
|
|