BERTGradGraph / ROBERTAmodel.py
yifan0sun's picture
Update ROBERTAmodel.py
013177a verified
from transformers import RobertaTokenizer, RobertaForMaskedLM
import torch
import torch.nn.functional as F
from models import TransformerVisualizer
from transformers import (
RobertaForMaskedLM, RobertaForSequenceClassification
)
import os,time
import torch.autograd.functional as Fgrad
CACHE_DIR = "/data/hf_cache"
class RoBERTaVisualizer(TransformerVisualizer):
def __init__(self, task):
super().__init__()
self.task = task
TOKENIZER = 'roberta-base'
LOCAL_PATH = os.path.join(CACHE_DIR, "tokenizers",TOKENIZER)
self.tokenizer = RobertaTokenizer.from_pretrained(LOCAL_PATH, local_files_only=True)
"""
try:
self.tokenizer = RobertaTokenizer.from_pretrained(LOCAL_PATH, local_files_only=True)
except Exception as e:
self.tokenizer = RobertaTokenizer.from_pretrained(TOKENIZER)
self.tokenizer.save_pretrained(LOCAL_PATH)
"""
if self.task == 'mlm':
MODEL = "roberta-base"
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL)
self.model = RobertaForMaskedLM.from_pretrained( LOCAL_PATH, local_files_only=True ).to(self.device)
"""
try:
self.model = RobertaForMaskedLM.from_pretrained( LOCAL_PATH, local_files_only=True )
except Exception as e:
self.model = RobertaForMaskedLM.from_pretrained( MODEL )
self.model.save_pretrained(LOCAL_PATH)
"""
elif self.task == 'sst':
MODEL = 'textattack_roberta-base-SST-2'
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL)
self.model = RobertaForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True ).to(self.device)
"""
try:
self.model = RobertaForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True )
except Exception as e:
self.model = RobertaForSequenceClassification.from_pretrained( MODEL )
self.model.save_pretrained(LOCAL_PATH)
"""
elif self.task == 'mnli':
MODEL = "roberta-large-mnli"
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL)
self.model = RobertaForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True).to(self.device)
"""
try:
self.model = RobertaForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True)
except Exception as e:
self.model = RobertaForSequenceClassification.from_pretrained( MODEL)
self.model.save_pretrained(LOCAL_PATH)
"""
self.model.to(self.device)
# Force materialization of all layers (avoids meta device errors)
with torch.no_grad():
dummy_ids = torch.tensor([[0, 1]], device=self.device)
dummy_mask = torch.tensor([[1, 1]], device=self.device)
_ = self.model(input_ids=dummy_ids, attention_mask=dummy_mask)
self.model.eval()
self.num_attention_layers = self.model.config.num_hidden_layers
def tokenize(self, text, hypothesis = ''):
if len(hypothesis) == 0:
encoded = self.tokenizer(text, return_tensors='pt', return_attention_mask=True,padding=False, truncation=True)
else:
encoded = self.tokenizer(text, hypothesis, return_tensors='pt', return_attention_mask=True,padding=False, truncation=True)
input_ids = encoded['input_ids'].to(self.device)
attention_mask = encoded['attention_mask'].to(self.device)
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
print('First time tokenizing:', tokens, len(tokens))
response = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'tokens': tokens
}
print(response)
return response
def predict(self, task, text, hypothesis='', maskID = None):
if task == 'mlm':
inputs = self.tokenizer(text, return_tensors='pt', padding=False, truncation=True)
if maskID is not None and 0 <= maskID < inputs['input_ids'].size(1):
inputs['input_ids'][0][maskID] = self.tokenizer.mask_token_id
mask_index = maskID
else:
raise ValueError(f"Invalid maskID {maskID} for input of length {inputs['input_ids'].size(1)}")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
mask_logits = logits[0, mask_index]
top_probs, top_indices = torch.topk(F.softmax(mask_logits, dim=-1), 10)
decoded = self.tokenizer.convert_ids_to_tokens(top_indices.tolist())
return decoded, top_probs
elif task == 'sst':
inputs = self.tokenizer(text, return_tensors='pt', padding=False, truncation=True).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=1).squeeze()
labels = ["negative", "positive"]
return labels, probs
elif task == 'mnli':
inputs = self.tokenizer(text, hypothesis, return_tensors='pt', padding=True, truncation=True).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=1).squeeze()
labels = ["entailment", "neutral", "contradiction"]
return labels, probs
else:
raise NotImplementedError(f"Task '{task}' not supported for RoBERTa")
def get_all_grad_attn_matrix(self, task, sentence, hypothesis='', maskID = None):
print(task, sentence, hypothesis)
print('Tokenize')
if task == 'mnli':
inputs = self.tokenizer(sentence, hypothesis, return_tensors='pt', padding=False, truncation=True)
elif task == 'mlm':
inputs = self.tokenizer(sentence, return_tensors='pt', padding=False, truncation=True)
if maskID is not None and 0 <= maskID < inputs['input_ids'].size(1):
inputs['input_ids'][0][maskID] = self.tokenizer.mask_token_id
else:
inputs = self.tokenizer(sentence, return_tensors='pt', padding=False, truncation=True)
tokens = self.tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
print(tokens)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
print('Input embeddings with grad')
embedding_layer = self.model.roberta.embeddings.word_embeddings
inputs_embeds = embedding_layer(inputs["input_ids"])
inputs_embeds.requires_grad_()
print('Forward pass')
outputs = self.model.roberta(
inputs_embeds=inputs_embeds,
attention_mask=inputs["attention_mask"],
output_attentions=True
)
attentions = outputs.attentions # list of [1, heads, seq, seq]
print('Average attentions per layer')
mean_attns = [a.squeeze(0).mean(dim=0).detach().cpu() for a in attentions]
def scalar_outputs(inputs_embeds):
outputs = self.model.roberta(
inputs_embeds=inputs_embeds,
attention_mask=inputs["attention_mask"],
output_attentions=True
)
attentions = outputs.attentions
attentions_condensed = [a.mean(dim=0).mean(dim=0).sum(dim=0) for a in attentions]
attentions_condensed= torch.vstack(attentions_condensed)
return attentions_condensed
start = time.time()
jac = torch.autograd.functional.jacobian(scalar_outputs, inputs_embeds).to(torch.float16)
print(jac.shape)
jac = jac.norm(dim=-1).squeeze(dim=2)
print(jac.shape)
seq_len = jac.shape[0]
print(seq_len)
grad_matrices_all = [jac[ii,:,:].tolist() for ii in range(seq_len)]
print(31,time.time()-start)
attn_matrices_all = []
for target_layer in range(len(attentions)):
#grad_matrix, attn_matrix = self.get_grad_attn_matrix(inputs_embeds, attentions, mean_attns, target_layer)
attn_matrix = mean_attns[target_layer]
seq_len = attn_matrix.shape[0]
attn_matrix = attn_matrix[:seq_len, :seq_len]
print(4,attn_matrix.shape)
attn_matrices_all.append(attn_matrix.tolist())
print(3,time.time()-start)
"""
attn_matrices_all = []
grad_matrices_all = []
for target_layer in range(len(attentions)):
#grad_matrix, attn_matrix = self.get_grad_attn_matrix(inputs_embeds, attentions, mean_attns, target_layer)
attn_matrix = mean_attns[target_layer]
seq_len = attn_matrix.shape[0]
attn_matrix = attn_matrix[:seq_len, :seq_len]
attn_matrices_all.append(attn_matrix.tolist())
start = time.time()
def scalar_outputs(inputs_embeds):
outputs = self.model.roberta(
inputs_embeds=inputs_embeds,
attention_mask=inputs["attention_mask"],
output_attentions=True
)
attentions = outputs.attentions
return attentions[target_layer].mean(dim=0).mean(dim=0).sum(dim=0)
jac = torch.autograd.functional.jacobian(scalar_outputs, inputs_embeds).norm(dim=-1).squeeze(1)
grad_matrices_all.append(jac.tolist())
print(1,time.time()-start)
start = time.time()
grad_norms_list = []
scalar_layer = attentions[target_layer].mean(dim=0).mean(dim=0)
for k in range(seq_len):
scalar = scalar_layer[:, k].sum()
grad = torch.autograd.grad(scalar, inputs_embeds, retain_graph=True)[0].squeeze(0)
grad_norms = grad.norm(dim=1)
grad_norms_list.append(grad_norms.unsqueeze(1))
print(2,time.time()-start)
"""
#print(grad_matrices_all)
return grad_matrices_all, attn_matrices_all