Spaces:
Running
on
T4
Running
on
T4
File size: 10,650 Bytes
93adbb1 9b48d92 93adbb1 e60ad79 93adbb1 013177a 93adbb1 013177a 93adbb1 013177a 93adbb1 e60ad79 93adbb1 9b48d92 93adbb1 9b48d92 93adbb1 9b48d92 93adbb1 2015ce0 7c7c06a 2015ce0 e60ad79 2015ce0 7c7c06a e60ad79 2015ce0 7c7c06a 2015ce0 7c7c06a 2015ce0 93adbb1 9b48d92 93adbb1 9b48d92 2015ce0 d37fcc1 9b48d92 2015ce0 9b48d92 1f7f45a 9b48d92 1f7f45a 9b48d92 2015ce0 7c7c06a 93adbb1 1f7f45a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from transformers import RobertaTokenizer, RobertaForMaskedLM
import torch
import torch.nn.functional as F
from models import TransformerVisualizer
from transformers import (
RobertaForMaskedLM, RobertaForSequenceClassification
)
import os,time
import torch.autograd.functional as Fgrad
CACHE_DIR = "/data/hf_cache"
class RoBERTaVisualizer(TransformerVisualizer):
def __init__(self, task):
super().__init__()
self.task = task
TOKENIZER = 'roberta-base'
LOCAL_PATH = os.path.join(CACHE_DIR, "tokenizers",TOKENIZER)
self.tokenizer = RobertaTokenizer.from_pretrained(LOCAL_PATH, local_files_only=True)
"""
try:
self.tokenizer = RobertaTokenizer.from_pretrained(LOCAL_PATH, local_files_only=True)
except Exception as e:
self.tokenizer = RobertaTokenizer.from_pretrained(TOKENIZER)
self.tokenizer.save_pretrained(LOCAL_PATH)
"""
if self.task == 'mlm':
MODEL = "roberta-base"
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL)
self.model = RobertaForMaskedLM.from_pretrained( LOCAL_PATH, local_files_only=True ).to(self.device)
"""
try:
self.model = RobertaForMaskedLM.from_pretrained( LOCAL_PATH, local_files_only=True )
except Exception as e:
self.model = RobertaForMaskedLM.from_pretrained( MODEL )
self.model.save_pretrained(LOCAL_PATH)
"""
elif self.task == 'sst':
MODEL = 'textattack_roberta-base-SST-2'
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL)
self.model = RobertaForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True ).to(self.device)
"""
try:
self.model = RobertaForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True )
except Exception as e:
self.model = RobertaForSequenceClassification.from_pretrained( MODEL )
self.model.save_pretrained(LOCAL_PATH)
"""
elif self.task == 'mnli':
MODEL = "roberta-large-mnli"
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL)
self.model = RobertaForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True).to(self.device)
"""
try:
self.model = RobertaForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True)
except Exception as e:
self.model = RobertaForSequenceClassification.from_pretrained( MODEL)
self.model.save_pretrained(LOCAL_PATH)
"""
self.model.to(self.device)
# Force materialization of all layers (avoids meta device errors)
with torch.no_grad():
dummy_ids = torch.tensor([[0, 1]], device=self.device)
dummy_mask = torch.tensor([[1, 1]], device=self.device)
_ = self.model(input_ids=dummy_ids, attention_mask=dummy_mask)
self.model.eval()
self.num_attention_layers = self.model.config.num_hidden_layers
def tokenize(self, text, hypothesis = ''):
if len(hypothesis) == 0:
encoded = self.tokenizer(text, return_tensors='pt', return_attention_mask=True,padding=False, truncation=True)
else:
encoded = self.tokenizer(text, hypothesis, return_tensors='pt', return_attention_mask=True,padding=False, truncation=True)
input_ids = encoded['input_ids'].to(self.device)
attention_mask = encoded['attention_mask'].to(self.device)
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
print('First time tokenizing:', tokens, len(tokens))
response = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'tokens': tokens
}
print(response)
return response
def predict(self, task, text, hypothesis='', maskID = None):
if task == 'mlm':
inputs = self.tokenizer(text, return_tensors='pt', padding=False, truncation=True)
if maskID is not None and 0 <= maskID < inputs['input_ids'].size(1):
inputs['input_ids'][0][maskID] = self.tokenizer.mask_token_id
mask_index = maskID
else:
raise ValueError(f"Invalid maskID {maskID} for input of length {inputs['input_ids'].size(1)}")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
mask_logits = logits[0, mask_index]
top_probs, top_indices = torch.topk(F.softmax(mask_logits, dim=-1), 10)
decoded = self.tokenizer.convert_ids_to_tokens(top_indices.tolist())
return decoded, top_probs
elif task == 'sst':
inputs = self.tokenizer(text, return_tensors='pt', padding=False, truncation=True).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=1).squeeze()
labels = ["negative", "positive"]
return labels, probs
elif task == 'mnli':
inputs = self.tokenizer(text, hypothesis, return_tensors='pt', padding=True, truncation=True).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=1).squeeze()
labels = ["entailment", "neutral", "contradiction"]
return labels, probs
else:
raise NotImplementedError(f"Task '{task}' not supported for RoBERTa")
def get_all_grad_attn_matrix(self, task, sentence, hypothesis='', maskID = None):
print(task, sentence, hypothesis)
print('Tokenize')
if task == 'mnli':
inputs = self.tokenizer(sentence, hypothesis, return_tensors='pt', padding=False, truncation=True)
elif task == 'mlm':
inputs = self.tokenizer(sentence, return_tensors='pt', padding=False, truncation=True)
if maskID is not None and 0 <= maskID < inputs['input_ids'].size(1):
inputs['input_ids'][0][maskID] = self.tokenizer.mask_token_id
else:
inputs = self.tokenizer(sentence, return_tensors='pt', padding=False, truncation=True)
tokens = self.tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
print(tokens)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
print('Input embeddings with grad')
embedding_layer = self.model.roberta.embeddings.word_embeddings
inputs_embeds = embedding_layer(inputs["input_ids"])
inputs_embeds.requires_grad_()
print('Forward pass')
outputs = self.model.roberta(
inputs_embeds=inputs_embeds,
attention_mask=inputs["attention_mask"],
output_attentions=True
)
attentions = outputs.attentions # list of [1, heads, seq, seq]
print('Average attentions per layer')
mean_attns = [a.squeeze(0).mean(dim=0).detach().cpu() for a in attentions]
def scalar_outputs(inputs_embeds):
outputs = self.model.roberta(
inputs_embeds=inputs_embeds,
attention_mask=inputs["attention_mask"],
output_attentions=True
)
attentions = outputs.attentions
attentions_condensed = [a.mean(dim=0).mean(dim=0).sum(dim=0) for a in attentions]
attentions_condensed= torch.vstack(attentions_condensed)
return attentions_condensed
start = time.time()
jac = torch.autograd.functional.jacobian(scalar_outputs, inputs_embeds).to(torch.float16)
print(jac.shape)
jac = jac.norm(dim=-1).squeeze(dim=2)
print(jac.shape)
seq_len = jac.shape[0]
print(seq_len)
grad_matrices_all = [jac[ii,:,:].tolist() for ii in range(seq_len)]
print(31,time.time()-start)
attn_matrices_all = []
for target_layer in range(len(attentions)):
#grad_matrix, attn_matrix = self.get_grad_attn_matrix(inputs_embeds, attentions, mean_attns, target_layer)
attn_matrix = mean_attns[target_layer]
seq_len = attn_matrix.shape[0]
attn_matrix = attn_matrix[:seq_len, :seq_len]
print(4,attn_matrix.shape)
attn_matrices_all.append(attn_matrix.tolist())
print(3,time.time()-start)
"""
attn_matrices_all = []
grad_matrices_all = []
for target_layer in range(len(attentions)):
#grad_matrix, attn_matrix = self.get_grad_attn_matrix(inputs_embeds, attentions, mean_attns, target_layer)
attn_matrix = mean_attns[target_layer]
seq_len = attn_matrix.shape[0]
attn_matrix = attn_matrix[:seq_len, :seq_len]
attn_matrices_all.append(attn_matrix.tolist())
start = time.time()
def scalar_outputs(inputs_embeds):
outputs = self.model.roberta(
inputs_embeds=inputs_embeds,
attention_mask=inputs["attention_mask"],
output_attentions=True
)
attentions = outputs.attentions
return attentions[target_layer].mean(dim=0).mean(dim=0).sum(dim=0)
jac = torch.autograd.functional.jacobian(scalar_outputs, inputs_embeds).norm(dim=-1).squeeze(1)
grad_matrices_all.append(jac.tolist())
print(1,time.time()-start)
start = time.time()
grad_norms_list = []
scalar_layer = attentions[target_layer].mean(dim=0).mean(dim=0)
for k in range(seq_len):
scalar = scalar_layer[:, k].sum()
grad = torch.autograd.grad(scalar, inputs_embeds, retain_graph=True)[0].squeeze(0)
grad_norms = grad.norm(dim=1)
grad_norms_list.append(grad_norms.unsqueeze(1))
print(2,time.time()-start)
"""
#print(grad_matrices_all)
return grad_matrices_all, attn_matrices_all
|